xref: /dragonfly/sys/dev/drm/i915/i915_gem_request.h (revision ff038999)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef I915_GEM_REQUEST_H
26 #define I915_GEM_REQUEST_H
27 
28 #include <linux/fence.h>
29 
30 #include "i915_gem.h"
31 #include "i915_sw_fence.h"
32 
33 struct intel_wait {
34 	struct rb_node node;
35 	struct task_struct *tsk;
36 	u32 seqno;
37 };
38 
39 struct intel_signal_node {
40 	struct rb_node node;
41 	struct intel_wait wait;
42 };
43 
44 /**
45  * Request queue structure.
46  *
47  * The request queue allows us to note sequence numbers that have been emitted
48  * and may be associated with active buffers to be retired.
49  *
50  * By keeping this list, we can avoid having to do questionable sequence
51  * number comparisons on buffer last_read|write_seqno. It also allows an
52  * emission time to be associated with the request for tracking how far ahead
53  * of the GPU the submission is.
54  *
55  * When modifying this structure be very aware that we perform a lockless
56  * RCU lookup of it that may race against reallocation of the struct
57  * from the slab freelist. We intentionally do not zero the structure on
58  * allocation so that the lookup can use the dangling pointers (and is
59  * cogniscent that those pointers may be wrong). Instead, everything that
60  * needs to be initialised must be done so explicitly.
61  *
62  * The requests are reference counted.
63  */
64 struct drm_i915_gem_request {
65 	struct fence fence;
66 	struct lock lock;
67 
68 	/** On Which ring this request was generated */
69 	struct drm_i915_private *i915;
70 
71 	/**
72 	 * Context and ring buffer related to this request
73 	 * Contexts are refcounted, so when this request is associated with a
74 	 * context, we must increment the context's refcount, to guarantee that
75 	 * it persists while any request is linked to it. Requests themselves
76 	 * are also refcounted, so the request will only be freed when the last
77 	 * reference to it is dismissed, and the code in
78 	 * i915_gem_request_free() will then decrement the refcount on the
79 	 * context.
80 	 */
81 	struct i915_gem_context *ctx;
82 	struct intel_engine_cs *engine;
83 	struct intel_ring *ring;
84 	struct intel_signal_node signaling;
85 
86 	struct i915_sw_fence submit;
87 	wait_queue_t submitq;
88 
89 	/** GEM sequence number associated with the previous request,
90 	 * when the HWS breadcrumb is equal to this the GPU is processing
91 	 * this request.
92 	 */
93 	u32 previous_seqno;
94 
95 	/** Position in the ring of the start of the request */
96 	u32 head;
97 
98 	/**
99 	 * Position in the ring of the start of the postfix.
100 	 * This is required to calculate the maximum available ring space
101 	 * without overwriting the postfix.
102 	 */
103 	u32 postfix;
104 
105 	/** Position in the ring of the end of the whole request */
106 	u32 tail;
107 
108 	/** Position in the ring of the end of any workarounds after the tail */
109 	u32 wa_tail;
110 
111 	/** Preallocate space in the ring for the emitting the request */
112 	u32 reserved_space;
113 
114 	/**
115 	 * Context related to the previous request.
116 	 * As the contexts are accessed by the hardware until the switch is
117 	 * completed to a new context, the hardware may still be writing
118 	 * to the context object after the breadcrumb is visible. We must
119 	 * not unpin/unbind/prune that object whilst still active and so
120 	 * we keep the previous context pinned until the following (this)
121 	 * request is retired.
122 	 */
123 	struct i915_gem_context *previous_context;
124 
125 	/** Batch buffer related to this request if any (used for
126 	 * error state dump only).
127 	 */
128 	struct i915_vma *batch;
129 	struct list_head active_list;
130 
131 	/** Time at which this request was emitted, in jiffies. */
132 	unsigned long emitted_jiffies;
133 
134 	/** engine->request_list entry for this request */
135 	struct list_head link;
136 
137 	/** ring->request_list entry for this request */
138 	struct list_head ring_link;
139 
140 	struct drm_i915_file_private *file_priv;
141 	/** file_priv list entry for this request */
142 	struct list_head client_list;
143 
144 	/** Link in the execlist submission queue, guarded by execlist_lock. */
145 	struct list_head execlist_link;
146 };
147 
148 extern const struct fence_ops i915_fence_ops;
149 
150 static inline bool fence_is_i915(struct fence *fence)
151 {
152 	return fence->ops == &i915_fence_ops;
153 }
154 
155 struct drm_i915_gem_request * __must_check
156 i915_gem_request_alloc(struct intel_engine_cs *engine,
157 		       struct i915_gem_context *ctx);
158 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
159 				   struct drm_file *file);
160 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req);
161 
162 static inline u32
163 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
164 {
165 	return req ? req->fence.seqno : 0;
166 }
167 
168 static inline struct intel_engine_cs *
169 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
170 {
171 	return req ? req->engine : NULL;
172 }
173 
174 static inline struct drm_i915_gem_request *
175 to_request(struct fence *fence)
176 {
177 	/* We assume that NULL fence/request are interoperable */
178 	BUILD_BUG_ON(offsetof(struct drm_i915_gem_request, fence) != 0);
179 	GEM_BUG_ON(fence && !fence_is_i915(fence));
180 	return container_of(fence, struct drm_i915_gem_request, fence);
181 }
182 
183 static inline struct drm_i915_gem_request *
184 i915_gem_request_get(struct drm_i915_gem_request *req)
185 {
186 	return to_request(fence_get(&req->fence));
187 }
188 
189 static inline struct drm_i915_gem_request *
190 i915_gem_request_get_rcu(struct drm_i915_gem_request *req)
191 {
192 	return to_request(fence_get_rcu(&req->fence));
193 }
194 
195 static inline void
196 i915_gem_request_put(struct drm_i915_gem_request *req)
197 {
198 	fence_put(&req->fence);
199 }
200 
201 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
202 					   struct drm_i915_gem_request *src)
203 {
204 	if (src)
205 		i915_gem_request_get(src);
206 
207 	if (*pdst)
208 		i915_gem_request_put(*pdst);
209 
210 	*pdst = src;
211 }
212 
213 int
214 i915_gem_request_await_object(struct drm_i915_gem_request *to,
215 			      struct drm_i915_gem_object *obj,
216 			      bool write);
217 
218 void __i915_add_request(struct drm_i915_gem_request *req, bool flush_caches);
219 #define i915_add_request(req) \
220 	__i915_add_request(req, true)
221 #define i915_add_request_no_flush(req) \
222 	__i915_add_request(req, false)
223 
224 struct intel_rps_client;
225 #define NO_WAITBOOST ERR_PTR(-1)
226 #define IS_RPS_CLIENT(p) (!IS_ERR(p))
227 #define IS_RPS_USER(p) (!IS_ERR_OR_NULL(p))
228 
229 int i915_wait_request(struct drm_i915_gem_request *req,
230 		      unsigned int flags,
231 		      s64 *timeout,
232 		      struct intel_rps_client *rps)
233 	__attribute__((nonnull(1)));
234 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
235 #define I915_WAIT_LOCKED	BIT(1) /* struct_mutex held, handle GPU reset */
236 
237 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine);
238 
239 /**
240  * Returns true if seq1 is later than seq2.
241  */
242 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
243 {
244 	return (s32)(seq1 - seq2) >= 0;
245 }
246 
247 static inline bool
248 i915_gem_request_started(const struct drm_i915_gem_request *req)
249 {
250 	return i915_seqno_passed(intel_engine_get_seqno(req->engine),
251 				 req->previous_seqno);
252 }
253 
254 static inline bool
255 i915_gem_request_completed(const struct drm_i915_gem_request *req)
256 {
257 	return i915_seqno_passed(intel_engine_get_seqno(req->engine),
258 				 req->fence.seqno);
259 }
260 
261 bool __i915_spin_request(const struct drm_i915_gem_request *request,
262 			 int state, unsigned long timeout_us);
263 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
264 				     int state, unsigned long timeout_us)
265 {
266 	return (i915_gem_request_started(request) &&
267 		__i915_spin_request(request, state, timeout_us));
268 }
269 
270 /* We treat requests as fences. This is not be to confused with our
271  * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
272  * We use the fences to synchronize access from the CPU with activity on the
273  * GPU, for example, we should not rewrite an object's PTE whilst the GPU
274  * is reading them. We also track fences at a higher level to provide
275  * implicit synchronisation around GEM objects, e.g. set-domain will wait
276  * for outstanding GPU rendering before marking the object ready for CPU
277  * access, or a pageflip will wait until the GPU is complete before showing
278  * the frame on the scanout.
279  *
280  * In order to use a fence, the object must track the fence it needs to
281  * serialise with. For example, GEM objects want to track both read and
282  * write access so that we can perform concurrent read operations between
283  * the CPU and GPU engines, as well as waiting for all rendering to
284  * complete, or waiting for the last GPU user of a "fence register". The
285  * object then embeds a #i915_gem_active to track the most recent (in
286  * retirement order) request relevant for the desired mode of access.
287  * The #i915_gem_active is updated with i915_gem_active_set() to track the
288  * most recent fence request, typically this is done as part of
289  * i915_vma_move_to_active().
290  *
291  * When the #i915_gem_active completes (is retired), it will
292  * signal its completion to the owner through a callback as well as mark
293  * itself as idle (i915_gem_active.request == NULL). The owner
294  * can then perform any action, such as delayed freeing of an active
295  * resource including itself.
296  */
297 struct i915_gem_active;
298 
299 typedef void (*i915_gem_retire_fn)(struct i915_gem_active *,
300 				   struct drm_i915_gem_request *);
301 
302 struct i915_gem_active {
303 	struct drm_i915_gem_request __rcu *request;
304 	struct list_head link;
305 	i915_gem_retire_fn retire;
306 };
307 
308 void i915_gem_retire_noop(struct i915_gem_active *,
309 			  struct drm_i915_gem_request *request);
310 
311 /**
312  * init_request_active - prepares the activity tracker for use
313  * @active - the active tracker
314  * @func - a callback when then the tracker is retired (becomes idle),
315  *         can be NULL
316  *
317  * init_request_active() prepares the embedded @active struct for use as
318  * an activity tracker, that is for tracking the last known active request
319  * associated with it. When the last request becomes idle, when it is retired
320  * after completion, the optional callback @func is invoked.
321  */
322 static inline void
323 init_request_active(struct i915_gem_active *active,
324 		    i915_gem_retire_fn retire)
325 {
326 	INIT_LIST_HEAD(&active->link);
327 	active->retire = retire ?: i915_gem_retire_noop;
328 }
329 
330 /**
331  * i915_gem_active_set - updates the tracker to watch the current request
332  * @active - the active tracker
333  * @request - the request to watch
334  *
335  * i915_gem_active_set() watches the given @request for completion. Whilst
336  * that @request is busy, the @active reports busy. When that @request is
337  * retired, the @active tracker is updated to report idle.
338  */
339 static inline void
340 i915_gem_active_set(struct i915_gem_active *active,
341 		    struct drm_i915_gem_request *request)
342 {
343 	list_move(&active->link, &request->active_list);
344 	rcu_assign_pointer(active->request, request);
345 }
346 
347 static inline struct drm_i915_gem_request *
348 __i915_gem_active_peek(const struct i915_gem_active *active)
349 {
350 	/* Inside the error capture (running with the driver in an unknown
351 	 * state), we want to bend the rules slightly (a lot).
352 	 *
353 	 * Work is in progress to make it safer, in the meantime this keeps
354 	 * the known issue from spamming the logs.
355 	 */
356 	return rcu_dereference_protected(active->request, 1);
357 }
358 
359 /**
360  * i915_gem_active_raw - return the active request
361  * @active - the active tracker
362  *
363  * i915_gem_active_raw() returns the current request being tracked, or NULL.
364  * It does not obtain a reference on the request for the caller, so the caller
365  * must hold struct_mutex.
366  */
367 static inline struct drm_i915_gem_request *
368 i915_gem_active_raw(const struct i915_gem_active *active, struct lock *mutex)
369 {
370 	return rcu_dereference_protected(active->request,
371 					 lockdep_is_held(mutex));
372 }
373 
374 /**
375  * i915_gem_active_peek - report the active request being monitored
376  * @active - the active tracker
377  *
378  * i915_gem_active_peek() returns the current request being tracked if
379  * still active, or NULL. It does not obtain a reference on the request
380  * for the caller, so the caller must hold struct_mutex.
381  */
382 static inline struct drm_i915_gem_request *
383 i915_gem_active_peek(const struct i915_gem_active *active, struct lock *mutex)
384 {
385 	struct drm_i915_gem_request *request;
386 
387 	request = i915_gem_active_raw(active, mutex);
388 	if (!request || i915_gem_request_completed(request))
389 		return NULL;
390 
391 	return request;
392 }
393 
394 /**
395  * i915_gem_active_get - return a reference to the active request
396  * @active - the active tracker
397  *
398  * i915_gem_active_get() returns a reference to the active request, or NULL
399  * if the active tracker is idle. The caller must hold struct_mutex.
400  */
401 static inline struct drm_i915_gem_request *
402 i915_gem_active_get(const struct i915_gem_active *active, struct lock *mutex)
403 {
404 	return i915_gem_request_get(i915_gem_active_peek(active, mutex));
405 }
406 
407 /**
408  * __i915_gem_active_get_rcu - return a reference to the active request
409  * @active - the active tracker
410  *
411  * __i915_gem_active_get() returns a reference to the active request, or NULL
412  * if the active tracker is idle. The caller must hold the RCU read lock, but
413  * the returned pointer is safe to use outside of RCU.
414  */
415 static inline struct drm_i915_gem_request *
416 __i915_gem_active_get_rcu(const struct i915_gem_active *active)
417 {
418 	/* Performing a lockless retrieval of the active request is super
419 	 * tricky. SLAB_DESTROY_BY_RCU merely guarantees that the backing
420 	 * slab of request objects will not be freed whilst we hold the
421 	 * RCU read lock. It does not guarantee that the request itself
422 	 * will not be freed and then *reused*. Viz,
423 	 *
424 	 * Thread A			Thread B
425 	 *
426 	 * req = active.request
427 	 *				retire(req) -> free(req);
428 	 *				(req is now first on the slab freelist)
429 	 *				active.request = NULL
430 	 *
431 	 *				req = new submission on a new object
432 	 * ref(req)
433 	 *
434 	 * To prevent the request from being reused whilst the caller
435 	 * uses it, we take a reference like normal. Whilst acquiring
436 	 * the reference we check that it is not in a destroyed state
437 	 * (refcnt == 0). That prevents the request being reallocated
438 	 * whilst the caller holds on to it. To check that the request
439 	 * was not reallocated as we acquired the reference we have to
440 	 * check that our request remains the active request across
441 	 * the lookup, in the same manner as a seqlock. The visibility
442 	 * of the pointer versus the reference counting is controlled
443 	 * by using RCU barriers (rcu_dereference and rcu_assign_pointer).
444 	 *
445 	 * In the middle of all that, we inspect whether the request is
446 	 * complete. Retiring is lazy so the request may be completed long
447 	 * before the active tracker is updated. Querying whether the
448 	 * request is complete is far cheaper (as it involves no locked
449 	 * instructions setting cachelines to exclusive) than acquiring
450 	 * the reference, so we do it first. The RCU read lock ensures the
451 	 * pointer dereference is valid, but does not ensure that the
452 	 * seqno nor HWS is the right one! However, if the request was
453 	 * reallocated, that means the active tracker's request was complete.
454 	 * If the new request is also complete, then both are and we can
455 	 * just report the active tracker is idle. If the new request is
456 	 * incomplete, then we acquire a reference on it and check that
457 	 * it remained the active request.
458 	 *
459 	 * It is then imperative that we do not zero the request on
460 	 * reallocation, so that we can chase the dangling pointers!
461 	 * See i915_gem_request_alloc().
462 	 */
463 	do {
464 		struct drm_i915_gem_request *request;
465 
466 		request = rcu_dereference(active->request);
467 		if (!request || i915_gem_request_completed(request))
468 			return NULL;
469 
470 		/* An especially silly compiler could decide to recompute the
471 		 * result of i915_gem_request_completed, more specifically
472 		 * re-emit the load for request->fence.seqno. A race would catch
473 		 * a later seqno value, which could flip the result from true to
474 		 * false. Which means part of the instructions below might not
475 		 * be executed, while later on instructions are executed. Due to
476 		 * barriers within the refcounting the inconsistency can't reach
477 		 * past the call to i915_gem_request_get_rcu, but not executing
478 		 * that while still executing i915_gem_request_put() creates
479 		 * havoc enough.  Prevent this with a compiler barrier.
480 		 */
481 		barrier();
482 
483 		request = i915_gem_request_get_rcu(request);
484 
485 		/* What stops the following rcu_access_pointer() from occurring
486 		 * before the above i915_gem_request_get_rcu()? If we were
487 		 * to read the value before pausing to get the reference to
488 		 * the request, we may not notice a change in the active
489 		 * tracker.
490 		 *
491 		 * The rcu_access_pointer() is a mere compiler barrier, which
492 		 * means both the CPU and compiler are free to perform the
493 		 * memory read without constraint. The compiler only has to
494 		 * ensure that any operations after the rcu_access_pointer()
495 		 * occur afterwards in program order. This means the read may
496 		 * be performed earlier by an out-of-order CPU, or adventurous
497 		 * compiler.
498 		 *
499 		 * The atomic operation at the heart of
500 		 * i915_gem_request_get_rcu(), see fence_get_rcu(), is
501 		 * atomic_inc_not_zero() which is only a full memory barrier
502 		 * when successful. That is, if i915_gem_request_get_rcu()
503 		 * returns the request (and so with the reference counted
504 		 * incremented) then the following read for rcu_access_pointer()
505 		 * must occur after the atomic operation and so confirm
506 		 * that this request is the one currently being tracked.
507 		 *
508 		 * The corresponding write barrier is part of
509 		 * rcu_assign_pointer().
510 		 */
511 		if (!request || request == rcu_access_pointer(active->request))
512 			return rcu_pointer_handoff(request);
513 
514 		i915_gem_request_put(request);
515 	} while (1);
516 }
517 
518 /**
519  * i915_gem_active_get_unlocked - return a reference to the active request
520  * @active - the active tracker
521  *
522  * i915_gem_active_get_unlocked() returns a reference to the active request,
523  * or NULL if the active tracker is idle. The reference is obtained under RCU,
524  * so no locking is required by the caller.
525  *
526  * The reference should be freed with i915_gem_request_put().
527  */
528 static inline struct drm_i915_gem_request *
529 i915_gem_active_get_unlocked(const struct i915_gem_active *active)
530 {
531 	struct drm_i915_gem_request *request;
532 
533 	rcu_read_lock();
534 	request = __i915_gem_active_get_rcu(active);
535 	rcu_read_unlock();
536 
537 	return request;
538 }
539 
540 /**
541  * i915_gem_active_isset - report whether the active tracker is assigned
542  * @active - the active tracker
543  *
544  * i915_gem_active_isset() returns true if the active tracker is currently
545  * assigned to a request. Due to the lazy retiring, that request may be idle
546  * and this may report stale information.
547  */
548 static inline bool
549 i915_gem_active_isset(const struct i915_gem_active *active)
550 {
551 	return rcu_access_pointer(active->request);
552 }
553 
554 /**
555  * i915_gem_active_is_idle - report whether the active tracker is idle
556  * @active - the active tracker
557  *
558  * i915_gem_active_is_idle() returns true if the active tracker is currently
559  * unassigned or if the request is complete (but not yet retired). Requires
560  * the caller to hold struct_mutex (but that can be relaxed if desired).
561  */
562 static inline bool
563 i915_gem_active_is_idle(const struct i915_gem_active *active,
564 			struct lock *mutex)
565 {
566 	return !i915_gem_active_peek(active, mutex);
567 }
568 
569 /**
570  * i915_gem_active_wait - waits until the request is completed
571  * @active - the active request on which to wait
572  *
573  * i915_gem_active_wait() waits until the request is completed before
574  * returning. Note that it does not guarantee that the request is
575  * retired first, see i915_gem_active_retire().
576  *
577  * i915_gem_active_wait() returns immediately if the active
578  * request is already complete.
579  */
580 static inline int __must_check
581 i915_gem_active_wait(const struct i915_gem_active *active, struct lock *mutex)
582 {
583 	struct drm_i915_gem_request *request;
584 
585 	request = i915_gem_active_peek(active, mutex);
586 	if (!request)
587 		return 0;
588 
589 	return i915_wait_request(request,
590 				 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
591 				 NULL, NULL);
592 }
593 
594 /**
595  * i915_gem_active_wait_unlocked - waits until the request is completed
596  * @active - the active request on which to wait
597  * @flags - how to wait
598  * @timeout - how long to wait at most
599  * @rps - userspace client to charge for a waitboost
600  *
601  * i915_gem_active_wait_unlocked() waits until the request is completed before
602  * returning, without requiring any locks to be held. Note that it does not
603  * retire any requests before returning.
604  *
605  * This function relies on RCU in order to acquire the reference to the active
606  * request without holding any locks. See __i915_gem_active_get_rcu() for the
607  * glory details on how that is managed. Once the reference is acquired, we
608  * can then wait upon the request, and afterwards release our reference,
609  * free of any locking.
610  *
611  * This function wraps i915_wait_request(), see it for the full details on
612  * the arguments.
613  *
614  * Returns 0 if successful, or a negative error code.
615  */
616 static inline int
617 i915_gem_active_wait_unlocked(const struct i915_gem_active *active,
618 			      unsigned int flags,
619 			      s64 *timeout,
620 			      struct intel_rps_client *rps)
621 {
622 	struct drm_i915_gem_request *request;
623 	int ret = 0;
624 
625 	request = i915_gem_active_get_unlocked(active);
626 	if (request) {
627 		ret = i915_wait_request(request, flags, timeout, rps);
628 		i915_gem_request_put(request);
629 	}
630 
631 	return ret;
632 }
633 
634 /**
635  * i915_gem_active_retire - waits until the request is retired
636  * @active - the active request on which to wait
637  *
638  * i915_gem_active_retire() waits until the request is completed,
639  * and then ensures that at least the retirement handler for this
640  * @active tracker is called before returning. If the @active
641  * tracker is idle, the function returns immediately.
642  */
643 static inline int __must_check
644 i915_gem_active_retire(struct i915_gem_active *active,
645 		       struct lock *mutex)
646 {
647 	struct drm_i915_gem_request *request;
648 	int ret;
649 
650 	request = i915_gem_active_raw(active, mutex);
651 	if (!request)
652 		return 0;
653 
654 	ret = i915_wait_request(request,
655 				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
656 				NULL, NULL);
657 	if (ret)
658 		return ret;
659 
660 	list_del_init(&active->link);
661 	RCU_INIT_POINTER(active->request, NULL);
662 
663 	active->retire(active, request);
664 
665 	return 0;
666 }
667 
668 /* Convenience functions for peeking at state inside active's request whilst
669  * guarded by the struct_mutex.
670  */
671 
672 static inline uint32_t
673 i915_gem_active_get_seqno(const struct i915_gem_active *active,
674 			  struct lock *mutex)
675 {
676 	return i915_gem_request_get_seqno(i915_gem_active_peek(active, mutex));
677 }
678 
679 static inline struct intel_engine_cs *
680 i915_gem_active_get_engine(const struct i915_gem_active *active,
681 			   struct lock *mutex)
682 {
683 	return i915_gem_request_get_engine(i915_gem_active_peek(active, mutex));
684 }
685 
686 #define for_each_active(mask, idx) \
687 	for (; mask ? idx = ffs(mask) - 1, 1 : 0; mask &= ~BIT(idx))
688 
689 #endif /* I915_GEM_REQUEST_H */
690