xref: /dragonfly/sys/dev/drm/i915/i915_gem_tiling.c (revision 066b6da2)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * $FreeBSD: src/sys/dev/drm2/i915/i915_gem_tiling.c,v 1.1 2012/05/22 11:07:44 kib Exp $
27  */
28 
29 #include <sys/sfbuf.h>
30 
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 
35 /** @file i915_gem_tiling.c
36  *
37  * Support for managing tiling state of buffer objects.
38  *
39  * The idea behind tiling is to increase cache hit rates by rearranging
40  * pixel data so that a group of pixel accesses are in the same cacheline.
41  * Performance improvement from doing this on the back/depth buffer are on
42  * the order of 30%.
43  *
44  * Intel architectures make this somewhat more complicated, though, by
45  * adjustments made to addressing of data when the memory is in interleaved
46  * mode (matched pairs of DIMMS) to improve memory bandwidth.
47  * For interleaved memory, the CPU sends every sequential 64 bytes
48  * to an alternate memory channel so it can get the bandwidth from both.
49  *
50  * The GPU also rearranges its accesses for increased bandwidth to interleaved
51  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
52  * it does it a little differently, since one walks addresses not just in the
53  * X direction but also Y.  So, along with alternating channels when bit
54  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
55  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
56  * are common to both the 915 and 965-class hardware.
57  *
58  * The CPU also sometimes XORs in higher bits as well, to improve
59  * bandwidth doing strided access like we do so frequently in graphics.  This
60  * is called "Channel XOR Randomization" in the MCH documentation.  The result
61  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
62  * decode.
63  *
64  * All of this bit 6 XORing has an effect on our memory management,
65  * as we need to make sure that the 3d driver can correctly address object
66  * contents.
67  *
68  * If we don't have interleaved memory, all tiling is safe and no swizzling is
69  * required.
70  *
71  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
72  * 17 is not just a page offset, so as we page an objet out and back in,
73  * individual pages in it will have different bit 17 addresses, resulting in
74  * each 64 bytes being swapped with its neighbor!
75  *
76  * Otherwise, if interleaved, we have to tell the 3d driver what the address
77  * swizzling it needs to do is, since it's writing with the CPU to the pages
78  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
79  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
80  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
81  * to match what the GPU expects.
82  */
83 
84 /**
85  * Detects bit 6 swizzling of address lookup between IGD access and CPU
86  * access through main memory.
87  */
88 void
89 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
90 {
91 	drm_i915_private_t *dev_priv = dev->dev_private;
92 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
93 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
94 
95 	if (IS_VALLEYVIEW(dev)) {
96 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
97 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
98 	} else if (INTEL_INFO(dev)->gen >= 6) {
99 		uint32_t dimm_c0, dimm_c1;
100 		dimm_c0 = I915_READ(MAD_DIMM_C0);
101 		dimm_c1 = I915_READ(MAD_DIMM_C1);
102 		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
103 		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
104 		/* Enable swizzling when the channels are populated with
105 		 * identically sized dimms. We don't need to check the 3rd
106 		 * channel because no cpu with gpu attached ships in that
107 		 * configuration. Also, swizzling only makes sense for 2
108 		 * channels anyway. */
109 		if (dimm_c0 == dimm_c1) {
110 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
111 			swizzle_y = I915_BIT_6_SWIZZLE_9;
112 		} else {
113 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
114 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
115 		}
116 	} else if (IS_GEN5(dev)) {
117 		/* On Ironlake whatever DRAM config, GPU always do
118 		 * same swizzling setup.
119 		 */
120 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
121 		swizzle_y = I915_BIT_6_SWIZZLE_9;
122 	} else if (IS_GEN2(dev)) {
123 		/* As far as we know, the 865 doesn't have these bit 6
124 		 * swizzling issues.
125 		 */
126 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
127 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
128 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
129 		uint32_t dcc;
130 
131 		/* On 9xx chipsets, channel interleave by the CPU is
132 		 * determined by DCC.  For single-channel, neither the CPU
133 		 * nor the GPU do swizzling.  For dual channel interleaved,
134 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
135 		 * 9 for Y tiled.  The CPU's interleave is independent, and
136 		 * can be based on either bit 11 (haven't seen this yet) or
137 		 * bit 17 (common).
138 		 */
139 		dcc = I915_READ(DCC);
140 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
141 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
142 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
143 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
144 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
145 			break;
146 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
147 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
148 				/* This is the base swizzling by the GPU for
149 				 * tiled buffers.
150 				 */
151 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
152 				swizzle_y = I915_BIT_6_SWIZZLE_9;
153 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
154 				/* Bit 11 swizzling by the CPU in addition. */
155 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
156 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
157 			} else {
158 				/* Bit 17 swizzling by the CPU in addition. */
159 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
160 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
161 			}
162 			break;
163 		}
164 		if (dcc == 0xffffffff) {
165 			DRM_ERROR("Couldn't read from MCHBAR.  "
166 				  "Disabling tiling.\n");
167 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
168 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
169 		}
170 	} else {
171 		/* The 965, G33, and newer, have a very flexible memory
172 		 * configuration.  It will enable dual-channel mode
173 		 * (interleaving) on as much memory as it can, and the GPU
174 		 * will additionally sometimes enable different bit 6
175 		 * swizzling for tiled objects from the CPU.
176 		 *
177 		 * Here's what I found on the G965:
178 		 *    slot fill         memory size  swizzling
179 		 * 0A   0B   1A   1B    1-ch   2-ch
180 		 * 512  0    0    0     512    0     O
181 		 * 512  0    512  0     16     1008  X
182 		 * 512  0    0    512   16     1008  X
183 		 * 0    512  0    512   16     1008  X
184 		 * 1024 1024 1024 0     2048   1024  O
185 		 *
186 		 * We could probably detect this based on either the DRB
187 		 * matching, which was the case for the swizzling required in
188 		 * the table above, or from the 1-ch value being less than
189 		 * the minimum size of a rank.
190 		 */
191 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
192 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
193 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
194 		} else {
195 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
196 			swizzle_y = I915_BIT_6_SWIZZLE_9;
197 		}
198 	}
199 
200 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
201 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
202 }
203 
204 /* Check pitch constriants for all chips & tiling formats */
205 static bool
206 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
207 {
208 	int tile_width;
209 
210 	/* Linear is always fine */
211 	if (tiling_mode == I915_TILING_NONE)
212 		return true;
213 
214 	if (IS_GEN2(dev) ||
215 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
216 		tile_width = 128;
217 	else
218 		tile_width = 512;
219 
220 	/* check maximum stride & object size */
221 	if (INTEL_INFO(dev)->gen >= 4) {
222 		/* i965 stores the end address of the gtt mapping in the fence
223 		 * reg, so dont bother to check the size */
224 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
225 			return false;
226 	} else {
227 		if (stride > 8192)
228 			return false;
229 
230 		if (IS_GEN3(dev)) {
231 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
232 				return false;
233 		} else {
234 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
235 				return false;
236 		}
237 	}
238 
239 	/* 965+ just needs multiples of tile width */
240 	if (INTEL_INFO(dev)->gen >= 4) {
241 		if (stride & (tile_width - 1))
242 			return false;
243 		return true;
244 	}
245 
246 	/* Pre-965 needs power of two tile widths */
247 	if (stride < tile_width)
248 		return false;
249 
250 	if (stride & (stride - 1))
251 		return false;
252 
253 	return true;
254 }
255 
256 /* Is the current GTT allocation valid for the change in tiling? */
257 static bool
258 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
259 {
260 	u32 size;
261 
262 	if (tiling_mode == I915_TILING_NONE)
263 		return true;
264 
265 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
266 		return true;
267 
268 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
269 		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
270 			return false;
271 	} else {
272 		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
273 			return false;
274 	}
275 
276 	/*
277 	 * Previous chips need to be aligned to the size of the smallest
278 	 * fence register that can contain the object.
279 	 */
280 	if (INTEL_INFO(obj->base.dev)->gen == 3)
281 		size = 1024*1024;
282 	else
283 		size = 512*1024;
284 
285 	while (size < obj->base.size)
286 		size <<= 1;
287 
288 	if (obj->gtt_space->size != size)
289 		return false;
290 
291 	if (obj->gtt_offset & (size - 1))
292 		return false;
293 
294 	return true;
295 }
296 
297 /**
298  * Sets the tiling mode of an object, returning the required swizzling of
299  * bit 6 of addresses in the object.
300  */
301 int
302 i915_gem_set_tiling(struct drm_device *dev, void *data,
303 		   struct drm_file *file)
304 {
305 	struct drm_i915_gem_set_tiling *args = data;
306 	drm_i915_private_t *dev_priv = dev->dev_private;
307 	struct drm_i915_gem_object *obj;
308 	int ret = 0;
309 
310 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
311 	if (&obj->base == NULL)
312 		return -ENOENT;
313 
314 	if (!i915_tiling_ok(dev,
315 			    args->stride, obj->base.size, args->tiling_mode)) {
316 		drm_gem_object_unreference_unlocked(&obj->base);
317 		return -EINVAL;
318 	}
319 
320 	if (obj->pin_count) {
321 		drm_gem_object_unreference_unlocked(&obj->base);
322 		return -EBUSY;
323 	}
324 
325 	if (args->tiling_mode == I915_TILING_NONE) {
326 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
327 		args->stride = 0;
328 	} else {
329 		if (args->tiling_mode == I915_TILING_X)
330 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
331 		else
332 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
333 
334 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
335 		 * from aborting the application on sw fallbacks to bit 17,
336 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
337 		 * If there was a user that was relying on the swizzle
338 		 * information for drm_intel_bo_map()ed reads/writes this would
339 		 * break it, but we don't have any of those.
340 		 */
341 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
342 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
343 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
344 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
345 
346 		/* If we can't handle the swizzling, make it untiled. */
347 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
348 			args->tiling_mode = I915_TILING_NONE;
349 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
350 			args->stride = 0;
351 		}
352 	}
353 
354 	DRM_LOCK(dev);
355 	if (args->tiling_mode != obj->tiling_mode ||
356 	    args->stride != obj->stride) {
357 		/* We need to rebind the object if its current allocation
358 		 * no longer meets the alignment restrictions for its new
359 		 * tiling mode. Otherwise we can just leave it alone, but
360 		 * need to ensure that any fence register is cleared.
361 		 *
362 		 * After updating the tiling parameters, we then flag whether
363 		 * we need to update an associated fence register. Note this
364 		 * has to also include the unfenced register the GPU uses
365 		 * whilst executing a fenced command for an untiled object.
366 		 */
367 		i915_gem_release_mmap(obj);
368 
369 		obj->map_and_fenceable =
370 			obj->gtt_space == NULL ||
371 			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
372 			 i915_gem_object_fence_ok(obj, args->tiling_mode));
373 
374 		/* Rebind if we need a change of alignment */
375 		if (!obj->map_and_fenceable) {
376 			u32 unfenced_alignment =
377 				i915_gem_get_unfenced_gtt_alignment(dev,
378 								    obj->base.size,
379 								    args->tiling_mode);
380 			if (obj->gtt_offset & (unfenced_alignment - 1))
381 				ret = i915_gem_object_unbind(obj);
382 		}
383 
384 		if (ret == 0) {
385 			obj->fence_dirty =
386 				obj->fenced_gpu_access ||
387 				obj->fence_reg != I915_FENCE_REG_NONE;
388 
389 			obj->tiling_mode = args->tiling_mode;
390 			obj->stride = args->stride;
391 		}
392 	}
393 	/* we have to maintain this existing ABI... */
394 	args->stride = obj->stride;
395 	args->tiling_mode = obj->tiling_mode;
396 	drm_gem_object_unreference(&obj->base);
397 	DRM_UNLOCK(dev);
398 
399 	return ret;
400 }
401 
402 /**
403  * Returns the current tiling mode and required bit 6 swizzling for the object.
404  */
405 int
406 i915_gem_get_tiling(struct drm_device *dev, void *data,
407 		   struct drm_file *file)
408 {
409 	struct drm_i915_gem_get_tiling *args = data;
410 	drm_i915_private_t *dev_priv = dev->dev_private;
411 	struct drm_i915_gem_object *obj;
412 
413 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
414 	if (&obj->base == NULL)
415 		return -ENOENT;
416 
417 	DRM_LOCK(dev);
418 
419 	args->tiling_mode = obj->tiling_mode;
420 	switch (obj->tiling_mode) {
421 	case I915_TILING_X:
422 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
423 		break;
424 	case I915_TILING_Y:
425 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
426 		break;
427 	case I915_TILING_NONE:
428 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
429 		break;
430 	default:
431 		DRM_ERROR("unknown tiling mode\n");
432 	}
433 
434 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
435 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
436 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
437 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
438 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
439 
440 	drm_gem_object_unreference(&obj->base);
441 	DRM_UNLOCK(dev);
442 
443 	return 0;
444 }
445 
446 /**
447  * Swap every 64 bytes of this page around, to account for it having a new
448  * bit 17 of its physical address and therefore being interpreted differently
449  * by the GPU.
450  */
451 static void
452 i915_gem_swizzle_page(vm_page_t m)
453 {
454 	char temp[64];
455 	char *vaddr;
456 	struct sf_buf *sf;
457 	int i;
458 
459 	/* XXXKIB sleep */
460 	sf = sf_buf_alloc(m);
461 	vaddr = (char *)sf_buf_kva(sf);
462 
463 	for (i = 0; i < PAGE_SIZE; i += 128) {
464 		memcpy(temp, &vaddr[i], 64);
465 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
466 		memcpy(&vaddr[i + 64], temp, 64);
467 	}
468 
469 	sf_buf_free(sf);
470 }
471 
472 void
473 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
474 {
475 	int page_count = obj->base.size >> PAGE_SHIFT;
476 	int i;
477 
478 	if (obj->bit_17 == NULL)
479 		return;
480 
481 	for (i = 0; i < page_count; i++) {
482 		char new_bit_17 = VM_PAGE_TO_PHYS(obj->pages[i]) >> 17;
483 		if ((new_bit_17 & 0x1) !=
484 		    (test_bit(i, obj->bit_17) != 0)) {
485 			i915_gem_swizzle_page(obj->pages[i]);
486 			vm_page_dirty(obj->pages[i]);
487 		}
488 	}
489 }
490 
491 void
492 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
493 {
494 	int page_count = obj->base.size >> PAGE_SHIFT;
495 	int i;
496 
497 	if (obj->bit_17 == NULL) {
498 		obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
499 		    sizeof(long), DRM_I915_GEM, M_WAITOK);
500 		if (obj->bit_17 == NULL) {
501 			DRM_ERROR("Failed to allocate memory for bit 17 "
502 				  "record\n");
503 			return;
504 		}
505 	}
506 
507 	/* XXXKIB: review locking, atomics might be not needed there */
508 	for (i = 0; i < page_count; i++) {
509 		if (VM_PAGE_TO_PHYS(obj->pages[i]) & (1 << 17))
510 			set_bit(i, obj->bit_17);
511 		else
512 			clear_bit(i, obj->bit_17);
513 	}
514 }
515