xref: /dragonfly/sys/dev/drm/i915/i915_gem_tiling.c (revision 0ca59c34)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/bitops.h>
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 
33 /** @file i915_gem_tiling.c
34  *
35  * Support for managing tiling state of buffer objects.
36  *
37  * The idea behind tiling is to increase cache hit rates by rearranging
38  * pixel data so that a group of pixel accesses are in the same cacheline.
39  * Performance improvement from doing this on the back/depth buffer are on
40  * the order of 30%.
41  *
42  * Intel architectures make this somewhat more complicated, though, by
43  * adjustments made to addressing of data when the memory is in interleaved
44  * mode (matched pairs of DIMMS) to improve memory bandwidth.
45  * For interleaved memory, the CPU sends every sequential 64 bytes
46  * to an alternate memory channel so it can get the bandwidth from both.
47  *
48  * The GPU also rearranges its accesses for increased bandwidth to interleaved
49  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
50  * it does it a little differently, since one walks addresses not just in the
51  * X direction but also Y.  So, along with alternating channels when bit
52  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
53  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
54  * are common to both the 915 and 965-class hardware.
55  *
56  * The CPU also sometimes XORs in higher bits as well, to improve
57  * bandwidth doing strided access like we do so frequently in graphics.  This
58  * is called "Channel XOR Randomization" in the MCH documentation.  The result
59  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
60  * decode.
61  *
62  * All of this bit 6 XORing has an effect on our memory management,
63  * as we need to make sure that the 3d driver can correctly address object
64  * contents.
65  *
66  * If we don't have interleaved memory, all tiling is safe and no swizzling is
67  * required.
68  *
69  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
70  * 17 is not just a page offset, so as we page an objet out and back in,
71  * individual pages in it will have different bit 17 addresses, resulting in
72  * each 64 bytes being swapped with its neighbor!
73  *
74  * Otherwise, if interleaved, we have to tell the 3d driver what the address
75  * swizzling it needs to do is, since it's writing with the CPU to the pages
76  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
77  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
78  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
79  * to match what the GPU expects.
80  */
81 
82 /**
83  * Detects bit 6 swizzling of address lookup between IGD access and CPU
84  * access through main memory.
85  */
86 void
87 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
88 {
89 	struct drm_i915_private *dev_priv = dev->dev_private;
90 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
91 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
92 
93 	if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
94 		/*
95 		 * On BDW+, swizzling is not used. We leave the CPU memory
96 		 * controller in charge of optimizing memory accesses without
97 		 * the extra address manipulation GPU side.
98 		 *
99 		 * VLV and CHV don't have GPU swizzling.
100 		 */
101 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
102 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
103 	} else if (INTEL_INFO(dev)->gen >= 6) {
104 		uint32_t dimm_c0, dimm_c1;
105 		dimm_c0 = I915_READ(MAD_DIMM_C0);
106 		dimm_c1 = I915_READ(MAD_DIMM_C1);
107 		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
108 		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
109 		/* Enable swizzling when the channels are populated with
110 		 * identically sized dimms. We don't need to check the 3rd
111 		 * channel because no cpu with gpu attached ships in that
112 		 * configuration. Also, swizzling only makes sense for 2
113 		 * channels anyway. */
114 		if (dimm_c0 == dimm_c1) {
115 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
116 			swizzle_y = I915_BIT_6_SWIZZLE_9;
117 		} else {
118 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
119 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
120 		}
121 	} else if (IS_GEN5(dev)) {
122 		/* On Ironlake whatever DRAM config, GPU always do
123 		 * same swizzling setup.
124 		 */
125 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
126 		swizzle_y = I915_BIT_6_SWIZZLE_9;
127 	} else if (IS_GEN2(dev)) {
128 		/* As far as we know, the 865 doesn't have these bit 6
129 		 * swizzling issues.
130 		 */
131 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
132 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
133 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
134 		uint32_t dcc;
135 
136 		/* On 9xx chipsets, channel interleave by the CPU is
137 		 * determined by DCC.  For single-channel, neither the CPU
138 		 * nor the GPU do swizzling.  For dual channel interleaved,
139 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
140 		 * 9 for Y tiled.  The CPU's interleave is independent, and
141 		 * can be based on either bit 11 (haven't seen this yet) or
142 		 * bit 17 (common).
143 		 */
144 		dcc = I915_READ(DCC);
145 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
146 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
147 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
148 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
149 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
150 			break;
151 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
152 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
153 				/* This is the base swizzling by the GPU for
154 				 * tiled buffers.
155 				 */
156 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
157 				swizzle_y = I915_BIT_6_SWIZZLE_9;
158 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
159 				/* Bit 11 swizzling by the CPU in addition. */
160 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
161 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
162 			} else {
163 				/* Bit 17 swizzling by the CPU in addition. */
164 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
165 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
166 			}
167 			break;
168 		}
169 		if (dcc == 0xffffffff) {
170 			DRM_ERROR("Couldn't read from MCHBAR.  "
171 				  "Disabling tiling.\n");
172 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
173 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
174 		}
175 	} else {
176 		/* The 965, G33, and newer, have a very flexible memory
177 		 * configuration.  It will enable dual-channel mode
178 		 * (interleaving) on as much memory as it can, and the GPU
179 		 * will additionally sometimes enable different bit 6
180 		 * swizzling for tiled objects from the CPU.
181 		 *
182 		 * Here's what I found on the G965:
183 		 *    slot fill         memory size  swizzling
184 		 * 0A   0B   1A   1B    1-ch   2-ch
185 		 * 512  0    0    0     512    0     O
186 		 * 512  0    512  0     16     1008  X
187 		 * 512  0    0    512   16     1008  X
188 		 * 0    512  0    512   16     1008  X
189 		 * 1024 1024 1024 0     2048   1024  O
190 		 *
191 		 * We could probably detect this based on either the DRB
192 		 * matching, which was the case for the swizzling required in
193 		 * the table above, or from the 1-ch value being less than
194 		 * the minimum size of a rank.
195 		 */
196 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
197 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
198 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
199 		} else {
200 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
201 			swizzle_y = I915_BIT_6_SWIZZLE_9;
202 		}
203 	}
204 
205 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
206 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
207 }
208 
209 /* Check pitch constriants for all chips & tiling formats */
210 static bool
211 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
212 {
213 	int tile_width;
214 
215 	/* Linear is always fine */
216 	if (tiling_mode == I915_TILING_NONE)
217 		return true;
218 
219 	if (IS_GEN2(dev) ||
220 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
221 		tile_width = 128;
222 	else
223 		tile_width = 512;
224 
225 	/* check maximum stride & object size */
226 	/* i965+ stores the end address of the gtt mapping in the fence
227 	 * reg, so dont bother to check the size */
228 	if (INTEL_INFO(dev)->gen >= 7) {
229 		if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
230 			return false;
231 	} else if (INTEL_INFO(dev)->gen >= 4) {
232 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
233 			return false;
234 	} else {
235 		if (stride > 8192)
236 			return false;
237 
238 		if (IS_GEN3(dev)) {
239 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
240 				return false;
241 		} else {
242 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
243 				return false;
244 		}
245 	}
246 
247 	if (stride < tile_width)
248 		return false;
249 
250 	/* 965+ just needs multiples of tile width */
251 	if (INTEL_INFO(dev)->gen >= 4) {
252 		if (stride & (tile_width - 1))
253 			return false;
254 		return true;
255 	}
256 
257 	/* Pre-965 needs power of two tile widths */
258 	if (stride & (stride - 1))
259 		return false;
260 
261 	return true;
262 }
263 
264 /* Is the current GTT allocation valid for the change in tiling? */
265 static bool
266 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
267 {
268 	u32 size;
269 
270 	if (tiling_mode == I915_TILING_NONE)
271 		return true;
272 
273 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
274 		return true;
275 
276 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
277 		if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
278 			return false;
279 	} else {
280 		if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
281 			return false;
282 	}
283 
284 	size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
285 	if (i915_gem_obj_ggtt_size(obj) != size)
286 		return false;
287 
288 	if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
289 		return false;
290 
291 	return true;
292 }
293 
294 /**
295  * Sets the tiling mode of an object, returning the required swizzling of
296  * bit 6 of addresses in the object.
297  */
298 int
299 i915_gem_set_tiling(struct drm_device *dev, void *data,
300 		   struct drm_file *file)
301 {
302 	struct drm_i915_gem_set_tiling *args = data;
303 	struct drm_i915_private *dev_priv = dev->dev_private;
304 	struct drm_i915_gem_object *obj;
305 	int ret = 0;
306 
307 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
308 	if (&obj->base == NULL)
309 		return -ENOENT;
310 
311 	if (!i915_tiling_ok(dev,
312 			    args->stride, obj->base.size, args->tiling_mode)) {
313 		drm_gem_object_unreference_unlocked(&obj->base);
314 		return -EINVAL;
315 	}
316 
317 	if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
318 		drm_gem_object_unreference_unlocked(&obj->base);
319 		return -EBUSY;
320 	}
321 
322 	if (args->tiling_mode == I915_TILING_NONE) {
323 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
324 		args->stride = 0;
325 	} else {
326 		if (args->tiling_mode == I915_TILING_X)
327 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
328 		else
329 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
330 
331 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
332 		 * from aborting the application on sw fallbacks to bit 17,
333 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
334 		 * If there was a user that was relying on the swizzle
335 		 * information for drm_intel_bo_map()ed reads/writes this would
336 		 * break it, but we don't have any of those.
337 		 */
338 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
339 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
340 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
341 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
342 
343 		/* If we can't handle the swizzling, make it untiled. */
344 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
345 			args->tiling_mode = I915_TILING_NONE;
346 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
347 			args->stride = 0;
348 		}
349 	}
350 
351 	mutex_lock(&dev->struct_mutex);
352 	if (args->tiling_mode != obj->tiling_mode ||
353 	    args->stride != obj->stride) {
354 		/* We need to rebind the object if its current allocation
355 		 * no longer meets the alignment restrictions for its new
356 		 * tiling mode. Otherwise we can just leave it alone, but
357 		 * need to ensure that any fence register is updated before
358 		 * the next fenced (either through the GTT or by the BLT unit
359 		 * on older GPUs) access.
360 		 *
361 		 * After updating the tiling parameters, we then flag whether
362 		 * we need to update an associated fence register. Note this
363 		 * has to also include the unfenced register the GPU uses
364 		 * whilst executing a fenced command for an untiled object.
365 		 */
366 		if (obj->map_and_fenceable &&
367 		    !i915_gem_object_fence_ok(obj, args->tiling_mode))
368 			ret = i915_gem_object_ggtt_unbind(obj);
369 
370 		if (ret == 0) {
371 			obj->fence_dirty =
372 				obj->last_fenced_seqno ||
373 				obj->fence_reg != I915_FENCE_REG_NONE;
374 
375 			obj->tiling_mode = args->tiling_mode;
376 			obj->stride = args->stride;
377 
378 			/* Force the fence to be reacquired for GTT access */
379 			i915_gem_release_mmap(obj);
380 		}
381 	}
382 	/* we have to maintain this existing ABI... */
383 	args->stride = obj->stride;
384 	args->tiling_mode = obj->tiling_mode;
385 
386 	/* Try to preallocate memory required to save swizzling on put-pages */
387 	if (i915_gem_object_needs_bit17_swizzle(obj)) {
388 		if (obj->bit_17 == NULL) {
389 			obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
390 					      sizeof(long), GFP_KERNEL);
391 		}
392 	} else {
393 		kfree(obj->bit_17);
394 		obj->bit_17 = NULL;
395 	}
396 
397 	drm_gem_object_unreference(&obj->base);
398 	mutex_unlock(&dev->struct_mutex);
399 
400 	return ret;
401 }
402 
403 /**
404  * Returns the current tiling mode and required bit 6 swizzling for the object.
405  */
406 int
407 i915_gem_get_tiling(struct drm_device *dev, void *data,
408 		   struct drm_file *file)
409 {
410 	struct drm_i915_gem_get_tiling *args = data;
411 	struct drm_i915_private *dev_priv = dev->dev_private;
412 	struct drm_i915_gem_object *obj;
413 
414 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
415 	if (&obj->base == NULL)
416 		return -ENOENT;
417 
418 	mutex_lock(&dev->struct_mutex);
419 
420 	args->tiling_mode = obj->tiling_mode;
421 	switch (obj->tiling_mode) {
422 	case I915_TILING_X:
423 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
424 		break;
425 	case I915_TILING_Y:
426 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
427 		break;
428 	case I915_TILING_NONE:
429 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
430 		break;
431 	default:
432 		DRM_ERROR("unknown tiling mode\n");
433 	}
434 
435 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
436 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
437 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
438 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
439 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
440 
441 	drm_gem_object_unreference(&obj->base);
442 	mutex_unlock(&dev->struct_mutex);
443 
444 	return 0;
445 }
446 
447 /**
448  * Swap every 64 bytes of this page around, to account for it having a new
449  * bit 17 of its physical address and therefore being interpreted differently
450  * by the GPU.
451  */
452 static void
453 i915_gem_swizzle_page(struct vm_page *page)
454 {
455 	char temp[64];
456 	char *vaddr;
457 	int i;
458 
459 	vaddr = kmap(page);
460 
461 	for (i = 0; i < PAGE_SIZE; i += 128) {
462 		memcpy(temp, &vaddr[i], 64);
463 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
464 		memcpy(&vaddr[i + 64], temp, 64);
465 	}
466 
467 	kunmap(page);
468 }
469 
470 void
471 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
472 {
473 	int page_count = obj->base.size >> PAGE_SHIFT;
474 	int i;
475 
476 	if (obj->bit_17 == NULL)
477 		return;
478 
479 	for (i = 0; i < page_count; i++) {
480 		struct vm_page *page = obj->pages[i];
481 		char new_bit_17 = VM_PAGE_TO_PHYS(obj->pages[i]) >> 17;
482 		if ((new_bit_17 & 0x1) !=
483 		    (test_bit(i, obj->bit_17) != 0)) {
484 			i915_gem_swizzle_page(page);
485 			set_page_dirty(page);
486 		}
487 	}
488 }
489 
490 void
491 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
492 {
493 	int page_count = obj->base.size >> PAGE_SHIFT;
494 	int i;
495 
496 	if (obj->bit_17 == NULL) {
497 		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
498 				      sizeof(long), GFP_KERNEL);
499 		if (obj->bit_17 == NULL) {
500 			DRM_ERROR("Failed to allocate memory for bit 17 "
501 				  "record\n");
502 			return;
503 		}
504 	}
505 
506 	for (i = 0; i < page_count; i++) {
507 		if (VM_PAGE_TO_PHYS(obj->pages[i]) & (1 << 17))
508 			__set_bit(i, obj->bit_17);
509 		else
510 			__clear_bit(i, obj->bit_17);
511 	}
512 }
513