xref: /dragonfly/sys/dev/drm/i915/i915_gem_tiling.c (revision 97055fc2)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/bitops.h>
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 
33 /** @file i915_gem_tiling.c
34  *
35  * Support for managing tiling state of buffer objects.
36  *
37  * The idea behind tiling is to increase cache hit rates by rearranging
38  * pixel data so that a group of pixel accesses are in the same cacheline.
39  * Performance improvement from doing this on the back/depth buffer are on
40  * the order of 30%.
41  *
42  * Intel architectures make this somewhat more complicated, though, by
43  * adjustments made to addressing of data when the memory is in interleaved
44  * mode (matched pairs of DIMMS) to improve memory bandwidth.
45  * For interleaved memory, the CPU sends every sequential 64 bytes
46  * to an alternate memory channel so it can get the bandwidth from both.
47  *
48  * The GPU also rearranges its accesses for increased bandwidth to interleaved
49  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
50  * it does it a little differently, since one walks addresses not just in the
51  * X direction but also Y.  So, along with alternating channels when bit
52  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
53  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
54  * are common to both the 915 and 965-class hardware.
55  *
56  * The CPU also sometimes XORs in higher bits as well, to improve
57  * bandwidth doing strided access like we do so frequently in graphics.  This
58  * is called "Channel XOR Randomization" in the MCH documentation.  The result
59  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
60  * decode.
61  *
62  * All of this bit 6 XORing has an effect on our memory management,
63  * as we need to make sure that the 3d driver can correctly address object
64  * contents.
65  *
66  * If we don't have interleaved memory, all tiling is safe and no swizzling is
67  * required.
68  *
69  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
70  * 17 is not just a page offset, so as we page an objet out and back in,
71  * individual pages in it will have different bit 17 addresses, resulting in
72  * each 64 bytes being swapped with its neighbor!
73  *
74  * Otherwise, if interleaved, we have to tell the 3d driver what the address
75  * swizzling it needs to do is, since it's writing with the CPU to the pages
76  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
77  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
78  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
79  * to match what the GPU expects.
80  */
81 
82 /**
83  * Detects bit 6 swizzling of address lookup between IGD access and CPU
84  * access through main memory.
85  */
86 void
87 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
88 {
89 	struct drm_i915_private *dev_priv = dev->dev_private;
90 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
91 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
92 
93 	if (IS_VALLEYVIEW(dev)) {
94 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
95 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
96 	} else if (INTEL_INFO(dev)->gen >= 6) {
97 		uint32_t dimm_c0, dimm_c1;
98 		dimm_c0 = I915_READ(MAD_DIMM_C0);
99 		dimm_c1 = I915_READ(MAD_DIMM_C1);
100 		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
101 		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
102 		/* Enable swizzling when the channels are populated with
103 		 * identically sized dimms. We don't need to check the 3rd
104 		 * channel because no cpu with gpu attached ships in that
105 		 * configuration. Also, swizzling only makes sense for 2
106 		 * channels anyway. */
107 		if (dimm_c0 == dimm_c1) {
108 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
109 			swizzle_y = I915_BIT_6_SWIZZLE_9;
110 		} else {
111 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
112 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
113 		}
114 	} else if (IS_GEN5(dev)) {
115 		/* On Ironlake whatever DRAM config, GPU always do
116 		 * same swizzling setup.
117 		 */
118 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
119 		swizzle_y = I915_BIT_6_SWIZZLE_9;
120 	} else if (IS_GEN2(dev)) {
121 		/* As far as we know, the 865 doesn't have these bit 6
122 		 * swizzling issues.
123 		 */
124 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
125 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
126 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
127 		uint32_t dcc;
128 
129 		/* On 9xx chipsets, channel interleave by the CPU is
130 		 * determined by DCC.  For single-channel, neither the CPU
131 		 * nor the GPU do swizzling.  For dual channel interleaved,
132 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
133 		 * 9 for Y tiled.  The CPU's interleave is independent, and
134 		 * can be based on either bit 11 (haven't seen this yet) or
135 		 * bit 17 (common).
136 		 */
137 		dcc = I915_READ(DCC);
138 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
139 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
140 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
141 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
142 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
143 			break;
144 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
145 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
146 				/* This is the base swizzling by the GPU for
147 				 * tiled buffers.
148 				 */
149 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
150 				swizzle_y = I915_BIT_6_SWIZZLE_9;
151 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
152 				/* Bit 11 swizzling by the CPU in addition. */
153 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
154 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
155 			} else {
156 				/* Bit 17 swizzling by the CPU in addition. */
157 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
158 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
159 			}
160 			break;
161 		}
162 		if (dcc == 0xffffffff) {
163 			DRM_ERROR("Couldn't read from MCHBAR.  "
164 				  "Disabling tiling.\n");
165 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
166 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
167 		}
168 	} else {
169 		/* The 965, G33, and newer, have a very flexible memory
170 		 * configuration.  It will enable dual-channel mode
171 		 * (interleaving) on as much memory as it can, and the GPU
172 		 * will additionally sometimes enable different bit 6
173 		 * swizzling for tiled objects from the CPU.
174 		 *
175 		 * Here's what I found on the G965:
176 		 *    slot fill         memory size  swizzling
177 		 * 0A   0B   1A   1B    1-ch   2-ch
178 		 * 512  0    0    0     512    0     O
179 		 * 512  0    512  0     16     1008  X
180 		 * 512  0    0    512   16     1008  X
181 		 * 0    512  0    512   16     1008  X
182 		 * 1024 1024 1024 0     2048   1024  O
183 		 *
184 		 * We could probably detect this based on either the DRB
185 		 * matching, which was the case for the swizzling required in
186 		 * the table above, or from the 1-ch value being less than
187 		 * the minimum size of a rank.
188 		 */
189 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
190 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
191 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
192 		} else {
193 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
194 			swizzle_y = I915_BIT_6_SWIZZLE_9;
195 		}
196 	}
197 
198 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
199 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
200 }
201 
202 /* Check pitch constriants for all chips & tiling formats */
203 static bool
204 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
205 {
206 	int tile_width;
207 
208 	/* Linear is always fine */
209 	if (tiling_mode == I915_TILING_NONE)
210 		return true;
211 
212 	if (IS_GEN2(dev) ||
213 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
214 		tile_width = 128;
215 	else
216 		tile_width = 512;
217 
218 	/* check maximum stride & object size */
219 	/* i965+ stores the end address of the gtt mapping in the fence
220 	 * reg, so dont bother to check the size */
221 	if (INTEL_INFO(dev)->gen >= 7) {
222 		if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
223 			return false;
224 	} else if (INTEL_INFO(dev)->gen >= 4) {
225 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
226 			return false;
227 	} else {
228 		if (stride > 8192)
229 			return false;
230 
231 		if (IS_GEN3(dev)) {
232 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
233 				return false;
234 		} else {
235 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
236 				return false;
237 		}
238 	}
239 
240 	if (stride < tile_width)
241 		return false;
242 
243 	/* 965+ just needs multiples of tile width */
244 	if (INTEL_INFO(dev)->gen >= 4) {
245 		if (stride & (tile_width - 1))
246 			return false;
247 		return true;
248 	}
249 
250 	/* Pre-965 needs power of two tile widths */
251 	if (stride & (stride - 1))
252 		return false;
253 
254 	return true;
255 }
256 
257 /* Is the current GTT allocation valid for the change in tiling? */
258 static bool
259 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
260 {
261 	u32 size;
262 
263 	if (tiling_mode == I915_TILING_NONE)
264 		return true;
265 
266 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
267 		return true;
268 
269 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
270 		if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
271 			return false;
272 	} else {
273 		if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
274 			return false;
275 	}
276 
277 	size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
278 	if (i915_gem_obj_ggtt_size(obj) != size)
279 		return false;
280 
281 	if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
282 		return false;
283 
284 	return true;
285 }
286 
287 /**
288  * Sets the tiling mode of an object, returning the required swizzling of
289  * bit 6 of addresses in the object.
290  */
291 int
292 i915_gem_set_tiling(struct drm_device *dev, void *data,
293 		   struct drm_file *file)
294 {
295 	struct drm_i915_gem_set_tiling *args = data;
296 	struct drm_i915_private *dev_priv = dev->dev_private;
297 	struct drm_i915_gem_object *obj;
298 	int ret = 0;
299 
300 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
301 	if (&obj->base == NULL)
302 		return -ENOENT;
303 
304 	if (!i915_tiling_ok(dev,
305 			    args->stride, obj->base.size, args->tiling_mode)) {
306 		drm_gem_object_unreference_unlocked(&obj->base);
307 		return -EINVAL;
308 	}
309 
310 	if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
311 		drm_gem_object_unreference_unlocked(&obj->base);
312 		return -EBUSY;
313 	}
314 
315 	if (args->tiling_mode == I915_TILING_NONE) {
316 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
317 		args->stride = 0;
318 	} else {
319 		if (args->tiling_mode == I915_TILING_X)
320 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
321 		else
322 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
323 
324 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
325 		 * from aborting the application on sw fallbacks to bit 17,
326 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
327 		 * If there was a user that was relying on the swizzle
328 		 * information for drm_intel_bo_map()ed reads/writes this would
329 		 * break it, but we don't have any of those.
330 		 */
331 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
332 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
333 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
334 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
335 
336 		/* If we can't handle the swizzling, make it untiled. */
337 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
338 			args->tiling_mode = I915_TILING_NONE;
339 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
340 			args->stride = 0;
341 		}
342 	}
343 
344 	mutex_lock(&dev->struct_mutex);
345 	if (args->tiling_mode != obj->tiling_mode ||
346 	    args->stride != obj->stride) {
347 		/* We need to rebind the object if its current allocation
348 		 * no longer meets the alignment restrictions for its new
349 		 * tiling mode. Otherwise we can just leave it alone, but
350 		 * need to ensure that any fence register is updated before
351 		 * the next fenced (either through the GTT or by the BLT unit
352 		 * on older GPUs) access.
353 		 *
354 		 * After updating the tiling parameters, we then flag whether
355 		 * we need to update an associated fence register. Note this
356 		 * has to also include the unfenced register the GPU uses
357 		 * whilst executing a fenced command for an untiled object.
358 		 */
359 
360 		obj->map_and_fenceable =
361 			!i915_gem_obj_ggtt_bound(obj) ||
362 			(i915_gem_obj_ggtt_offset(obj) +
363 			 obj->base.size <= dev_priv->gtt.mappable_end &&
364 			 i915_gem_object_fence_ok(obj, args->tiling_mode));
365 
366 		/* Rebind if we need a change of alignment */
367 		if (!obj->map_and_fenceable) {
368 			u32 unfenced_align =
369 				i915_gem_get_gtt_alignment(dev, obj->base.size,
370 							    args->tiling_mode,
371 							    false);
372 			if (i915_gem_obj_ggtt_offset(obj) & (unfenced_align - 1))
373 				ret = i915_gem_object_ggtt_unbind(obj);
374 		}
375 
376 		if (ret == 0) {
377 			obj->fence_dirty =
378 				obj->fenced_gpu_access ||
379 				obj->fence_reg != I915_FENCE_REG_NONE;
380 
381 			obj->tiling_mode = args->tiling_mode;
382 			obj->stride = args->stride;
383 
384 			/* Force the fence to be reacquired for GTT access */
385 			i915_gem_release_mmap(obj);
386 		}
387 	}
388 	/* we have to maintain this existing ABI... */
389 	args->stride = obj->stride;
390 	args->tiling_mode = obj->tiling_mode;
391 
392 	/* Try to preallocate memory required to save swizzling on put-pages */
393 	if (i915_gem_object_needs_bit17_swizzle(obj)) {
394 		if (obj->bit_17 == NULL) {
395 			obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
396 					      sizeof(long), GFP_KERNEL);
397 		}
398 	} else {
399 		kfree(obj->bit_17);
400 		obj->bit_17 = NULL;
401 	}
402 
403 	drm_gem_object_unreference(&obj->base);
404 	mutex_unlock(&dev->struct_mutex);
405 
406 	return ret;
407 }
408 
409 /**
410  * Returns the current tiling mode and required bit 6 swizzling for the object.
411  */
412 int
413 i915_gem_get_tiling(struct drm_device *dev, void *data,
414 		   struct drm_file *file)
415 {
416 	struct drm_i915_gem_get_tiling *args = data;
417 	struct drm_i915_private *dev_priv = dev->dev_private;
418 	struct drm_i915_gem_object *obj;
419 
420 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
421 	if (&obj->base == NULL)
422 		return -ENOENT;
423 
424 	mutex_lock(&dev->struct_mutex);
425 
426 	args->tiling_mode = obj->tiling_mode;
427 	switch (obj->tiling_mode) {
428 	case I915_TILING_X:
429 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
430 		break;
431 	case I915_TILING_Y:
432 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
433 		break;
434 	case I915_TILING_NONE:
435 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
436 		break;
437 	default:
438 		DRM_ERROR("unknown tiling mode\n");
439 	}
440 
441 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
442 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
443 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
444 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
445 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
446 
447 	drm_gem_object_unreference(&obj->base);
448 	mutex_unlock(&dev->struct_mutex);
449 
450 	return 0;
451 }
452 
453 /**
454  * Swap every 64 bytes of this page around, to account for it having a new
455  * bit 17 of its physical address and therefore being interpreted differently
456  * by the GPU.
457  */
458 static void
459 i915_gem_swizzle_page(struct vm_page *page)
460 {
461 	char temp[64];
462 	char *vaddr;
463 	int i;
464 
465 	vaddr = kmap(page);
466 
467 	for (i = 0; i < PAGE_SIZE; i += 128) {
468 		memcpy(temp, &vaddr[i], 64);
469 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
470 		memcpy(&vaddr[i + 64], temp, 64);
471 	}
472 
473 	kunmap(page);
474 }
475 
476 void
477 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
478 {
479 	int page_count = obj->base.size >> PAGE_SHIFT;
480 	int i;
481 
482 	if (obj->bit_17 == NULL)
483 		return;
484 
485 	for (i = 0; i < page_count; i++) {
486 		struct vm_page *page = obj->pages[i];
487 		char new_bit_17 = VM_PAGE_TO_PHYS(obj->pages[i]) >> 17;
488 		if ((new_bit_17 & 0x1) !=
489 		    (test_bit(i, obj->bit_17) != 0)) {
490 			i915_gem_swizzle_page(page);
491 			set_page_dirty(page);
492 		}
493 	}
494 }
495 
496 void
497 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
498 {
499 	int page_count = obj->base.size >> PAGE_SHIFT;
500 	int i;
501 
502 	if (obj->bit_17 == NULL) {
503 		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
504 				      sizeof(long), GFP_KERNEL);
505 		if (obj->bit_17 == NULL) {
506 			DRM_ERROR("Failed to allocate memory for bit 17 "
507 				  "record\n");
508 			return;
509 		}
510 	}
511 
512 	for (i = 0; i < page_count; i++) {
513 		if (VM_PAGE_TO_PHYS(obj->pages[i]) & (1 << 17))
514 			__set_bit(i, obj->bit_17);
515 		else
516 			__clear_bit(i, obj->bit_17);
517 	}
518 }
519