xref: /dragonfly/sys/dev/drm/i915/i915_gem_tiling.c (revision d4ef6694)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/bitops.h>
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include <linux/highmem.h>
33 
34 /** @file i915_gem_tiling.c
35  *
36  * Support for managing tiling state of buffer objects.
37  *
38  * The idea behind tiling is to increase cache hit rates by rearranging
39  * pixel data so that a group of pixel accesses are in the same cacheline.
40  * Performance improvement from doing this on the back/depth buffer are on
41  * the order of 30%.
42  *
43  * Intel architectures make this somewhat more complicated, though, by
44  * adjustments made to addressing of data when the memory is in interleaved
45  * mode (matched pairs of DIMMS) to improve memory bandwidth.
46  * For interleaved memory, the CPU sends every sequential 64 bytes
47  * to an alternate memory channel so it can get the bandwidth from both.
48  *
49  * The GPU also rearranges its accesses for increased bandwidth to interleaved
50  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
51  * it does it a little differently, since one walks addresses not just in the
52  * X direction but also Y.  So, along with alternating channels when bit
53  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
54  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
55  * are common to both the 915 and 965-class hardware.
56  *
57  * The CPU also sometimes XORs in higher bits as well, to improve
58  * bandwidth doing strided access like we do so frequently in graphics.  This
59  * is called "Channel XOR Randomization" in the MCH documentation.  The result
60  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
61  * decode.
62  *
63  * All of this bit 6 XORing has an effect on our memory management,
64  * as we need to make sure that the 3d driver can correctly address object
65  * contents.
66  *
67  * If we don't have interleaved memory, all tiling is safe and no swizzling is
68  * required.
69  *
70  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
71  * 17 is not just a page offset, so as we page an objet out and back in,
72  * individual pages in it will have different bit 17 addresses, resulting in
73  * each 64 bytes being swapped with its neighbor!
74  *
75  * Otherwise, if interleaved, we have to tell the 3d driver what the address
76  * swizzling it needs to do is, since it's writing with the CPU to the pages
77  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
78  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
79  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
80  * to match what the GPU expects.
81  */
82 
83 /**
84  * Detects bit 6 swizzling of address lookup between IGD access and CPU
85  * access through main memory.
86  */
87 void
88 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
89 {
90 	drm_i915_private_t *dev_priv = dev->dev_private;
91 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
92 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
93 
94 	if (IS_VALLEYVIEW(dev)) {
95 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
96 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
97 	} else if (INTEL_INFO(dev)->gen >= 6) {
98 		uint32_t dimm_c0, dimm_c1;
99 		dimm_c0 = I915_READ(MAD_DIMM_C0);
100 		dimm_c1 = I915_READ(MAD_DIMM_C1);
101 		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
102 		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
103 		/* Enable swizzling when the channels are populated with
104 		 * identically sized dimms. We don't need to check the 3rd
105 		 * channel because no cpu with gpu attached ships in that
106 		 * configuration. Also, swizzling only makes sense for 2
107 		 * channels anyway. */
108 		if (dimm_c0 == dimm_c1) {
109 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
110 			swizzle_y = I915_BIT_6_SWIZZLE_9;
111 		} else {
112 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
113 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
114 		}
115 	} else if (IS_GEN5(dev)) {
116 		/* On Ironlake whatever DRAM config, GPU always do
117 		 * same swizzling setup.
118 		 */
119 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
120 		swizzle_y = I915_BIT_6_SWIZZLE_9;
121 	} else if (IS_GEN2(dev)) {
122 		/* As far as we know, the 865 doesn't have these bit 6
123 		 * swizzling issues.
124 		 */
125 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
126 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
127 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
128 		uint32_t dcc;
129 
130 		/* On 9xx chipsets, channel interleave by the CPU is
131 		 * determined by DCC.  For single-channel, neither the CPU
132 		 * nor the GPU do swizzling.  For dual channel interleaved,
133 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
134 		 * 9 for Y tiled.  The CPU's interleave is independent, and
135 		 * can be based on either bit 11 (haven't seen this yet) or
136 		 * bit 17 (common).
137 		 */
138 		dcc = I915_READ(DCC);
139 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
140 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
141 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
142 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
143 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
144 			break;
145 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
146 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
147 				/* This is the base swizzling by the GPU for
148 				 * tiled buffers.
149 				 */
150 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
151 				swizzle_y = I915_BIT_6_SWIZZLE_9;
152 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
153 				/* Bit 11 swizzling by the CPU in addition. */
154 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
155 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
156 			} else {
157 				/* Bit 17 swizzling by the CPU in addition. */
158 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
159 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
160 			}
161 			break;
162 		}
163 		if (dcc == 0xffffffff) {
164 			DRM_ERROR("Couldn't read from MCHBAR.  "
165 				  "Disabling tiling.\n");
166 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
167 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
168 		}
169 	} else {
170 		/* The 965, G33, and newer, have a very flexible memory
171 		 * configuration.  It will enable dual-channel mode
172 		 * (interleaving) on as much memory as it can, and the GPU
173 		 * will additionally sometimes enable different bit 6
174 		 * swizzling for tiled objects from the CPU.
175 		 *
176 		 * Here's what I found on the G965:
177 		 *    slot fill         memory size  swizzling
178 		 * 0A   0B   1A   1B    1-ch   2-ch
179 		 * 512  0    0    0     512    0     O
180 		 * 512  0    512  0     16     1008  X
181 		 * 512  0    0    512   16     1008  X
182 		 * 0    512  0    512   16     1008  X
183 		 * 1024 1024 1024 0     2048   1024  O
184 		 *
185 		 * We could probably detect this based on either the DRB
186 		 * matching, which was the case for the swizzling required in
187 		 * the table above, or from the 1-ch value being less than
188 		 * the minimum size of a rank.
189 		 */
190 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
191 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
192 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
193 		} else {
194 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
195 			swizzle_y = I915_BIT_6_SWIZZLE_9;
196 		}
197 	}
198 
199 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
200 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
201 }
202 
203 /* Check pitch constriants for all chips & tiling formats */
204 static bool
205 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
206 {
207 	int tile_width;
208 
209 	/* Linear is always fine */
210 	if (tiling_mode == I915_TILING_NONE)
211 		return true;
212 
213 	if (IS_GEN2(dev) ||
214 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
215 		tile_width = 128;
216 	else
217 		tile_width = 512;
218 
219 	/* check maximum stride & object size */
220 	if (INTEL_INFO(dev)->gen >= 4) {
221 		/* i965 stores the end address of the gtt mapping in the fence
222 		 * reg, so dont bother to check the size */
223 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
224 			return false;
225 	} else {
226 		if (stride > 8192)
227 			return false;
228 
229 		if (IS_GEN3(dev)) {
230 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
231 				return false;
232 		} else {
233 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
234 				return false;
235 		}
236 	}
237 
238 	/* 965+ just needs multiples of tile width */
239 	if (INTEL_INFO(dev)->gen >= 4) {
240 		if (stride & (tile_width - 1))
241 			return false;
242 		return true;
243 	}
244 
245 	/* Pre-965 needs power of two tile widths */
246 	if (stride < tile_width)
247 		return false;
248 
249 	if (stride & (stride - 1))
250 		return false;
251 
252 	return true;
253 }
254 
255 /* Is the current GTT allocation valid for the change in tiling? */
256 static bool
257 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
258 {
259 	u32 size;
260 
261 	if (tiling_mode == I915_TILING_NONE)
262 		return true;
263 
264 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
265 		return true;
266 
267 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
268 		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
269 			return false;
270 	} else {
271 		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
272 			return false;
273 	}
274 
275 	/*
276 	 * Previous chips need to be aligned to the size of the smallest
277 	 * fence register that can contain the object.
278 	 */
279 	if (INTEL_INFO(obj->base.dev)->gen == 3)
280 		size = 1024*1024;
281 	else
282 		size = 512*1024;
283 
284 	while (size < obj->base.size)
285 		size <<= 1;
286 
287 	if (obj->gtt_space->size != size)
288 		return false;
289 
290 	if (obj->gtt_offset & (size - 1))
291 		return false;
292 
293 	return true;
294 }
295 
296 /**
297  * Sets the tiling mode of an object, returning the required swizzling of
298  * bit 6 of addresses in the object.
299  */
300 int
301 i915_gem_set_tiling(struct drm_device *dev, void *data,
302 		   struct drm_file *file)
303 {
304 	struct drm_i915_gem_set_tiling *args = data;
305 	drm_i915_private_t *dev_priv = dev->dev_private;
306 	struct drm_i915_gem_object *obj;
307 	int ret = 0;
308 
309 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
310 	if (&obj->base == NULL)
311 		return -ENOENT;
312 
313 	if (!i915_tiling_ok(dev,
314 			    args->stride, obj->base.size, args->tiling_mode)) {
315 		drm_gem_object_unreference_unlocked(&obj->base);
316 		return -EINVAL;
317 	}
318 
319 	if (obj->pin_count) {
320 		drm_gem_object_unreference_unlocked(&obj->base);
321 		return -EBUSY;
322 	}
323 
324 	if (args->tiling_mode == I915_TILING_NONE) {
325 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
326 		args->stride = 0;
327 	} else {
328 		if (args->tiling_mode == I915_TILING_X)
329 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
330 		else
331 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
332 
333 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
334 		 * from aborting the application on sw fallbacks to bit 17,
335 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
336 		 * If there was a user that was relying on the swizzle
337 		 * information for drm_intel_bo_map()ed reads/writes this would
338 		 * break it, but we don't have any of those.
339 		 */
340 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
341 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
342 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
343 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
344 
345 		/* If we can't handle the swizzling, make it untiled. */
346 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
347 			args->tiling_mode = I915_TILING_NONE;
348 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
349 			args->stride = 0;
350 		}
351 	}
352 
353 	DRM_LOCK(dev);
354 	if (args->tiling_mode != obj->tiling_mode ||
355 	    args->stride != obj->stride) {
356 		/* We need to rebind the object if its current allocation
357 		 * no longer meets the alignment restrictions for its new
358 		 * tiling mode. Otherwise we can just leave it alone, but
359 		 * need to ensure that any fence register is updated before
360 		 * the next fenced (either through the GTT or by the BLT unit
361 		 * on older GPUs) access.
362 		 *
363 		 * After updating the tiling parameters, we then flag whether
364 		 * we need to update an associated fence register. Note this
365 		 * has to also include the unfenced register the GPU uses
366 		 * whilst executing a fenced command for an untiled object.
367 		 */
368 
369 		obj->map_and_fenceable =
370 			obj->gtt_space == NULL ||
371 			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
372 			 i915_gem_object_fence_ok(obj, args->tiling_mode));
373 
374 		/* Rebind if we need a change of alignment */
375 		if (!obj->map_and_fenceable) {
376 			u32 unfenced_alignment =
377 				i915_gem_get_unfenced_gtt_alignment(dev,
378 								    obj->base.size,
379 								    args->tiling_mode);
380 			if (obj->gtt_offset & (unfenced_alignment - 1))
381 				ret = i915_gem_object_unbind(obj);
382 		}
383 
384 		if (ret == 0) {
385 			obj->fence_dirty =
386 				obj->fenced_gpu_access ||
387 				obj->fence_reg != I915_FENCE_REG_NONE;
388 
389 			obj->tiling_mode = args->tiling_mode;
390 			obj->stride = args->stride;
391 
392 			/* Force the fence to be reacquired for GTT access */
393 			i915_gem_release_mmap(obj);
394 		}
395 	}
396 	/* we have to maintain this existing ABI... */
397 	args->stride = obj->stride;
398 	args->tiling_mode = obj->tiling_mode;
399 	drm_gem_object_unreference(&obj->base);
400 	DRM_UNLOCK(dev);
401 
402 	return ret;
403 }
404 
405 /**
406  * Returns the current tiling mode and required bit 6 swizzling for the object.
407  */
408 int
409 i915_gem_get_tiling(struct drm_device *dev, void *data,
410 		   struct drm_file *file)
411 {
412 	struct drm_i915_gem_get_tiling *args = data;
413 	drm_i915_private_t *dev_priv = dev->dev_private;
414 	struct drm_i915_gem_object *obj;
415 
416 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
417 	if (&obj->base == NULL)
418 		return -ENOENT;
419 
420 	DRM_LOCK(dev);
421 
422 	args->tiling_mode = obj->tiling_mode;
423 	switch (obj->tiling_mode) {
424 	case I915_TILING_X:
425 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
426 		break;
427 	case I915_TILING_Y:
428 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
429 		break;
430 	case I915_TILING_NONE:
431 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
432 		break;
433 	default:
434 		DRM_ERROR("unknown tiling mode\n");
435 	}
436 
437 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
438 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
439 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
440 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
441 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
442 
443 	drm_gem_object_unreference(&obj->base);
444 	DRM_UNLOCK(dev);
445 
446 	return 0;
447 }
448 
449 /**
450  * Swap every 64 bytes of this page around, to account for it having a new
451  * bit 17 of its physical address and therefore being interpreted differently
452  * by the GPU.
453  */
454 static void
455 i915_gem_swizzle_page(struct vm_page *page)
456 {
457 	char temp[64];
458 	char *vaddr;
459 	int i;
460 
461 	vaddr = kmap(page);
462 
463 	for (i = 0; i < PAGE_SIZE; i += 128) {
464 		memcpy(temp, &vaddr[i], 64);
465 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
466 		memcpy(&vaddr[i + 64], temp, 64);
467 	}
468 
469 	kunmap(page);
470 }
471 
472 void
473 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
474 {
475 	int page_count = obj->base.size >> PAGE_SHIFT;
476 	int i;
477 
478 	if (obj->bit_17 == NULL)
479 		return;
480 
481 	for (i = 0; i < page_count; i++) {
482 		char new_bit_17 = VM_PAGE_TO_PHYS(obj->pages[i]) >> 17;
483 		if ((new_bit_17 & 0x1) !=
484 		    (test_bit(i, obj->bit_17) != 0)) {
485 			i915_gem_swizzle_page(obj->pages[i]);
486 			vm_page_dirty(obj->pages[i]);
487 		}
488 	}
489 }
490 
491 void
492 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
493 {
494 	int page_count = obj->base.size >> PAGE_SHIFT;
495 	int i;
496 
497 	if (obj->bit_17 == NULL) {
498 		obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
499 					   sizeof(long), M_DRM, M_WAITOK);
500 		if (obj->bit_17 == NULL) {
501 			DRM_ERROR("Failed to allocate memory for bit 17 "
502 				  "record\n");
503 			return;
504 		}
505 	}
506 
507 	for (i = 0; i < page_count; i++) {
508 		if (VM_PAGE_TO_PHYS(obj->pages[i]) & (1 << 17))
509 			__set_bit(i, obj->bit_17);
510 		else
511 			__clear_bit(i, obj->bit_17);
512 	}
513 }
514