xref: /dragonfly/sys/dev/drm/i915/i915_gem_userptr.c (revision 0d27ae55)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 
31 struct i915_mm_struct {
32 	struct mm_struct *mm;
33 	struct drm_device *dev;
34 	struct i915_mmu_notifier *mn;
35 	struct hlist_node node;
36 	struct kref kref;
37 	struct work_struct work;
38 };
39 
40 #if defined(CONFIG_MMU_NOTIFIER)
41 #include <linux/interval_tree.h>
42 
43 struct i915_mmu_notifier {
44 	spinlock_t lock;
45 	struct hlist_node node;
46 	struct mmu_notifier mn;
47 	struct rb_root objects;
48 	struct list_head linear;
49 	unsigned long serial;
50 	bool has_linear;
51 };
52 
53 struct i915_mmu_object {
54 	struct i915_mmu_notifier *mn;
55 	struct interval_tree_node it;
56 	struct list_head link;
57 	struct drm_i915_gem_object *obj;
58 	bool is_linear;
59 };
60 
61 static unsigned long cancel_userptr(struct drm_i915_gem_object *obj)
62 {
63 	struct drm_device *dev = obj->base.dev;
64 	unsigned long end;
65 
66 	mutex_lock(&dev->struct_mutex);
67 	/* Cancel any active worker and force us to re-evaluate gup */
68 	obj->userptr.work = NULL;
69 
70 	if (obj->pages != NULL) {
71 		struct drm_i915_private *dev_priv = to_i915(dev);
72 		struct i915_vma *vma, *tmp;
73 		bool was_interruptible;
74 
75 		was_interruptible = dev_priv->mm.interruptible;
76 		dev_priv->mm.interruptible = false;
77 
78 		list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
79 			int ret = i915_vma_unbind(vma);
80 			WARN_ON(ret && ret != -EIO);
81 		}
82 		WARN_ON(i915_gem_object_put_pages(obj));
83 
84 		dev_priv->mm.interruptible = was_interruptible;
85 	}
86 
87 	end = obj->userptr.ptr + obj->base.size;
88 
89 	drm_gem_object_unreference(&obj->base);
90 	mutex_unlock(&dev->struct_mutex);
91 
92 	return end;
93 }
94 
95 static void *invalidate_range__linear(struct i915_mmu_notifier *mn,
96 				      struct mm_struct *mm,
97 				      unsigned long start,
98 				      unsigned long end)
99 {
100 	struct i915_mmu_object *mo;
101 	unsigned long serial;
102 
103 restart:
104 	serial = mn->serial;
105 	list_for_each_entry(mo, &mn->linear, link) {
106 		struct drm_i915_gem_object *obj;
107 
108 		if (mo->it.last < start || mo->it.start > end)
109 			continue;
110 
111 		obj = mo->obj;
112 
113 		if (!kref_get_unless_zero(&obj->base.refcount))
114 			continue;
115 
116 		spin_unlock(&mn->lock);
117 
118 		cancel_userptr(obj);
119 
120 		spin_lock(&mn->lock);
121 		if (serial != mn->serial)
122 			goto restart;
123 	}
124 
125 	return NULL;
126 }
127 
128 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
129 						       struct mm_struct *mm,
130 						       unsigned long start,
131 						       unsigned long end)
132 {
133 	struct i915_mmu_notifier *mn = container_of(_mn, struct i915_mmu_notifier, mn);
134 	struct interval_tree_node *it = NULL;
135 	unsigned long next = start;
136 	unsigned long serial = 0;
137 
138 	end--; /* interval ranges are inclusive, but invalidate range is exclusive */
139 	while (next < end) {
140 		struct drm_i915_gem_object *obj = NULL;
141 
142 		spin_lock(&mn->lock);
143 		if (mn->has_linear)
144 			it = invalidate_range__linear(mn, mm, start, end);
145 		else if (serial == mn->serial)
146 			it = interval_tree_iter_next(it, next, end);
147 		else
148 			it = interval_tree_iter_first(&mn->objects, start, end);
149 		if (it != NULL) {
150 			obj = container_of(it, struct i915_mmu_object, it)->obj;
151 
152 			/* The mmu_object is released late when destroying the
153 			 * GEM object so it is entirely possible to gain a
154 			 * reference on an object in the process of being freed
155 			 * since our serialisation is via the spinlock and not
156 			 * the struct_mutex - and consequently use it after it
157 			 * is freed and then double free it.
158 			 */
159 			if (!kref_get_unless_zero(&obj->base.refcount)) {
160 				spin_unlock(&mn->lock);
161 				serial = 0;
162 				continue;
163 			}
164 
165 			serial = mn->serial;
166 		}
167 		spin_unlock(&mn->lock);
168 		if (obj == NULL)
169 			return;
170 
171 		next = cancel_userptr(obj);
172 	}
173 }
174 
175 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
176 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
177 };
178 
179 static struct i915_mmu_notifier *
180 i915_mmu_notifier_create(struct mm_struct *mm)
181 {
182 	struct i915_mmu_notifier *mn;
183 	int ret;
184 
185 	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
186 	if (mn == NULL)
187 		return ERR_PTR(-ENOMEM);
188 
189 	spin_lock_init(&mn->lock);
190 	mn->mn.ops = &i915_gem_userptr_notifier;
191 	mn->objects = RB_ROOT;
192 	mn->serial = 1;
193 	INIT_LIST_HEAD(&mn->linear);
194 	mn->has_linear = false;
195 
196 	 /* Protected by mmap_sem (write-lock) */
197 	ret = __mmu_notifier_register(&mn->mn, mm);
198 	if (ret) {
199 		kfree(mn);
200 		return ERR_PTR(ret);
201 	}
202 
203 	return mn;
204 }
205 
206 static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier *mn)
207 {
208 	if (++mn->serial == 0)
209 		mn->serial = 1;
210 }
211 
212 static int
213 i915_mmu_notifier_add(struct drm_device *dev,
214 		      struct i915_mmu_notifier *mn,
215 		      struct i915_mmu_object *mo)
216 {
217 	struct interval_tree_node *it;
218 	int ret = 0;
219 
220 	/* By this point we have already done a lot of expensive setup that
221 	 * we do not want to repeat just because the caller (e.g. X) has a
222 	 * signal pending (and partly because of that expensive setup, X
223 	 * using an interrupt timer is likely to get stuck in an EINTR loop).
224 	 */
225 	mutex_lock(&dev->struct_mutex);
226 
227 	/* Make sure we drop the final active reference (and thereby
228 	 * remove the objects from the interval tree) before we do
229 	 * the check for overlapping objects.
230 	 */
231 	i915_gem_retire_requests(dev);
232 
233 	spin_lock(&mn->lock);
234 	it = interval_tree_iter_first(&mn->objects,
235 				      mo->it.start, mo->it.last);
236 	if (it) {
237 		struct drm_i915_gem_object *obj;
238 
239 		/* We only need to check the first object in the range as it
240 		 * either has cancelled gup work queued and we need to
241 		 * return back to the user to give time for the gup-workers
242 		 * to flush their object references upon which the object will
243 		 * be removed from the interval-tree, or the the range is
244 		 * still in use by another client and the overlap is invalid.
245 		 *
246 		 * If we do have an overlap, we cannot use the interval tree
247 		 * for fast range invalidation.
248 		 */
249 
250 		obj = container_of(it, struct i915_mmu_object, it)->obj;
251 		if (!obj->userptr.workers)
252 			mn->has_linear = mo->is_linear = true;
253 		else
254 			ret = -EAGAIN;
255 	} else
256 		interval_tree_insert(&mo->it, &mn->objects);
257 
258 	if (ret == 0) {
259 		list_add(&mo->link, &mn->linear);
260 		__i915_mmu_notifier_update_serial(mn);
261 	}
262 	spin_unlock(&mn->lock);
263 	mutex_unlock(&dev->struct_mutex);
264 
265 	return ret;
266 }
267 
268 static bool i915_mmu_notifier_has_linear(struct i915_mmu_notifier *mn)
269 {
270 	struct i915_mmu_object *mo;
271 
272 	list_for_each_entry(mo, &mn->linear, link)
273 		if (mo->is_linear)
274 			return true;
275 
276 	return false;
277 }
278 
279 static void
280 i915_mmu_notifier_del(struct i915_mmu_notifier *mn,
281 		      struct i915_mmu_object *mo)
282 {
283 	spin_lock(&mn->lock);
284 	list_del(&mo->link);
285 	if (mo->is_linear)
286 		mn->has_linear = i915_mmu_notifier_has_linear(mn);
287 	else
288 		interval_tree_remove(&mo->it, &mn->objects);
289 	__i915_mmu_notifier_update_serial(mn);
290 	spin_unlock(&mn->lock);
291 }
292 
293 static void
294 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
295 {
296 	struct i915_mmu_object *mo;
297 
298 	mo = obj->userptr.mmu_object;
299 	if (mo == NULL)
300 		return;
301 
302 	i915_mmu_notifier_del(mo->mn, mo);
303 	kfree(mo);
304 
305 	obj->userptr.mmu_object = NULL;
306 }
307 
308 static struct i915_mmu_notifier *
309 i915_mmu_notifier_find(struct i915_mm_struct *mm)
310 {
311 	struct i915_mmu_notifier *mn = mm->mn;
312 
313 	mn = mm->mn;
314 	if (mn)
315 		return mn;
316 
317 	down_write(&mm->mm->mmap_sem);
318 	mutex_lock(&to_i915(mm->dev)->mm_lock);
319 	if ((mn = mm->mn) == NULL) {
320 		mn = i915_mmu_notifier_create(mm->mm);
321 		if (!IS_ERR(mn))
322 			mm->mn = mn;
323 	}
324 	mutex_unlock(&to_i915(mm->dev)->mm_lock);
325 	up_write(&mm->mm->mmap_sem);
326 
327 	return mn;
328 }
329 
330 static int
331 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
332 				    unsigned flags)
333 {
334 	struct i915_mmu_notifier *mn;
335 	struct i915_mmu_object *mo;
336 	int ret;
337 
338 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
339 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
340 
341 	if (WARN_ON(obj->userptr.mm == NULL))
342 		return -EINVAL;
343 
344 	mn = i915_mmu_notifier_find(obj->userptr.mm);
345 	if (IS_ERR(mn))
346 		return PTR_ERR(mn);
347 
348 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
349 	if (mo == NULL)
350 		return -ENOMEM;
351 
352 	mo->mn = mn;
353 	mo->it.start = obj->userptr.ptr;
354 	mo->it.last = mo->it.start + obj->base.size - 1;
355 	mo->obj = obj;
356 
357 	ret = i915_mmu_notifier_add(obj->base.dev, mn, mo);
358 	if (ret) {
359 		kfree(mo);
360 		return ret;
361 	}
362 
363 	obj->userptr.mmu_object = mo;
364 	return 0;
365 }
366 
367 static void
368 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
369 		       struct mm_struct *mm)
370 {
371 	if (mn == NULL)
372 		return;
373 
374 	mmu_notifier_unregister(&mn->mn, mm);
375 	kfree(mn);
376 }
377 
378 #else
379 
380 #if 0
381 static void
382 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
383 {
384 }
385 
386 static int
387 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
388 				    unsigned flags)
389 {
390 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
391 		return -ENODEV;
392 
393 	if (!capable(CAP_SYS_ADMIN))
394 		return -EPERM;
395 
396 	return 0;
397 }
398 
399 static void
400 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
401 		       struct mm_struct *mm)
402 {
403 }
404 #endif
405 
406 #endif
407 
408 #if 0
409 static struct i915_mm_struct *
410 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
411 {
412 	struct i915_mm_struct *mm;
413 
414 	/* Protected by dev_priv->mm_lock */
415 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
416 		if (mm->mm == real)
417 			return mm;
418 
419 	return NULL;
420 }
421 
422 static int
423 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
424 {
425 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
426 	struct i915_mm_struct *mm;
427 	int ret = 0;
428 
429 	/* During release of the GEM object we hold the struct_mutex. This
430 	 * precludes us from calling mmput() at that time as that may be
431 	 * the last reference and so call exit_mmap(). exit_mmap() will
432 	 * attempt to reap the vma, and if we were holding a GTT mmap
433 	 * would then call drm_gem_vm_close() and attempt to reacquire
434 	 * the struct mutex. So in order to avoid that recursion, we have
435 	 * to defer releasing the mm reference until after we drop the
436 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
437 	 * up.
438 	 */
439 	mutex_lock(&dev_priv->mm_lock);
440 	mm = __i915_mm_struct_find(dev_priv, current->mm);
441 	if (mm == NULL) {
442 		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
443 		if (mm == NULL) {
444 			ret = -ENOMEM;
445 			goto out;
446 		}
447 
448 		kref_init(&mm->kref);
449 		mm->dev = obj->base.dev;
450 
451 		mm->mm = current->mm;
452 		atomic_inc(&current->mm->mm_count);
453 
454 		mm->mn = NULL;
455 
456 		/* Protected by dev_priv->mm_lock */
457 		hash_add(dev_priv->mm_structs,
458 			 &mm->node, (unsigned long)mm->mm);
459 	} else
460 		kref_get(&mm->kref);
461 
462 	obj->userptr.mm = mm;
463 out:
464 	mutex_unlock(&dev_priv->mm_lock);
465 	return ret;
466 }
467 
468 static void
469 __i915_mm_struct_free__worker(struct work_struct *work)
470 {
471 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
472 	i915_mmu_notifier_free(mm->mn, mm->mm);
473 	mmdrop(mm->mm);
474 	kfree(mm);
475 }
476 
477 static void
478 __i915_mm_struct_free(struct kref *kref)
479 {
480 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
481 
482 	/* Protected by dev_priv->mm_lock */
483 	hash_del(&mm->node);
484 	mutex_unlock(&to_i915(mm->dev)->mm_lock);
485 
486 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
487 	schedule_work(&mm->work);
488 }
489 
490 static void
491 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
492 {
493 	if (obj->userptr.mm == NULL)
494 		return;
495 
496 	kref_put_mutex(&obj->userptr.mm->kref,
497 		       __i915_mm_struct_free,
498 		       &to_i915(obj->base.dev)->mm_lock);
499 	obj->userptr.mm = NULL;
500 }
501 #endif
502 
503 struct get_pages_work {
504 	struct work_struct work;
505 	struct drm_i915_gem_object *obj;
506 	struct task_struct *task;
507 };
508 
509 #if IS_ENABLED(CONFIG_SWIOTLB)
510 #define swiotlb_active() swiotlb_nr_tbl()
511 #else
512 #define swiotlb_active() 0
513 #endif
514 
515 #if 0
516 static int
517 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
518 {
519 	struct scatterlist *sg;
520 	int ret, n;
521 
522 	*st = kmalloc(sizeof(**st), GFP_KERNEL);
523 	if (*st == NULL)
524 		return -ENOMEM;
525 
526 	if (swiotlb_active()) {
527 		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
528 		if (ret)
529 			goto err;
530 
531 		for_each_sg((*st)->sgl, sg, num_pages, n)
532 			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
533 	} else {
534 		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
535 						0, num_pages << PAGE_SHIFT,
536 						GFP_KERNEL);
537 		if (ret)
538 			goto err;
539 	}
540 
541 	return 0;
542 
543 err:
544 	kfree(*st);
545 	*st = NULL;
546 	return ret;
547 }
548 
549 static int
550 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
551 			     struct page **pvec, int num_pages)
552 {
553 	int ret;
554 
555 	ret = st_set_pages(&obj->pages, pvec, num_pages);
556 	if (ret)
557 		return ret;
558 
559 	ret = i915_gem_gtt_prepare_object(obj);
560 	if (ret) {
561 		sg_free_table(obj->pages);
562 		kfree(obj->pages);
563 		obj->pages = NULL;
564 	}
565 
566 	return ret;
567 }
568 
569 static void
570 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
571 {
572 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
573 	struct drm_i915_gem_object *obj = work->obj;
574 	struct drm_device *dev = obj->base.dev;
575 	const int num_pages = obj->base.size >> PAGE_SHIFT;
576 	struct page **pvec;
577 	int pinned, ret;
578 
579 	ret = -ENOMEM;
580 	pinned = 0;
581 
582 	pvec = kmalloc(num_pages*sizeof(struct page *),
583 		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
584 	if (pvec == NULL)
585 		pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
586 	if (pvec != NULL) {
587 		struct mm_struct *mm = obj->userptr.mm->mm;
588 
589 		down_read(&mm->mmap_sem);
590 		while (pinned < num_pages) {
591 			ret = get_user_pages(work->task, mm,
592 					     obj->userptr.ptr + pinned * PAGE_SIZE,
593 					     num_pages - pinned,
594 					     !obj->userptr.read_only, 0,
595 					     pvec + pinned, NULL);
596 			if (ret < 0)
597 				break;
598 
599 			pinned += ret;
600 		}
601 		up_read(&mm->mmap_sem);
602 	}
603 
604 	mutex_lock(&dev->struct_mutex);
605 	if (obj->userptr.work != &work->work) {
606 		ret = 0;
607 	} else if (pinned == num_pages) {
608 		ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
609 		if (ret == 0) {
610 			list_add_tail(&obj->global_list, &to_i915(dev)->mm.unbound_list);
611 			obj->get_page.sg = obj->pages->sgl;
612 			obj->get_page.last = 0;
613 
614 			pinned = 0;
615 		}
616 	}
617 
618 	obj->userptr.work = ERR_PTR(ret);
619 	obj->userptr.workers--;
620 	drm_gem_object_unreference(&obj->base);
621 	mutex_unlock(&dev->struct_mutex);
622 
623 	release_pages(pvec, pinned, 0);
624 	drm_free_large(pvec);
625 
626 	put_task_struct(work->task);
627 	kfree(work);
628 }
629 
630 static int
631 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
632 {
633 	const int num_pages = obj->base.size >> PAGE_SHIFT;
634 	struct page **pvec;
635 	int pinned, ret;
636 
637 	/* If userspace should engineer that these pages are replaced in
638 	 * the vma between us binding this page into the GTT and completion
639 	 * of rendering... Their loss. If they change the mapping of their
640 	 * pages they need to create a new bo to point to the new vma.
641 	 *
642 	 * However, that still leaves open the possibility of the vma
643 	 * being copied upon fork. Which falls under the same userspace
644 	 * synchronisation issue as a regular bo, except that this time
645 	 * the process may not be expecting that a particular piece of
646 	 * memory is tied to the GPU.
647 	 *
648 	 * Fortunately, we can hook into the mmu_notifier in order to
649 	 * discard the page references prior to anything nasty happening
650 	 * to the vma (discard or cloning) which should prevent the more
651 	 * egregious cases from causing harm.
652 	 */
653 
654 	pvec = NULL;
655 	pinned = 0;
656 	if (obj->userptr.mm->mm == current->mm) {
657 		pvec = kmalloc(num_pages*sizeof(struct page *),
658 			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
659 		if (pvec == NULL) {
660 			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
661 			if (pvec == NULL)
662 				return -ENOMEM;
663 		}
664 
665 		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
666 					       !obj->userptr.read_only, pvec);
667 	}
668 	if (pinned < num_pages) {
669 		if (pinned < 0) {
670 			ret = pinned;
671 			pinned = 0;
672 		} else {
673 			/* Spawn a worker so that we can acquire the
674 			 * user pages without holding our mutex. Access
675 			 * to the user pages requires mmap_sem, and we have
676 			 * a strict lock ordering of mmap_sem, struct_mutex -
677 			 * we already hold struct_mutex here and so cannot
678 			 * call gup without encountering a lock inversion.
679 			 *
680 			 * Userspace will keep on repeating the operation
681 			 * (thanks to EAGAIN) until either we hit the fast
682 			 * path or the worker completes. If the worker is
683 			 * cancelled or superseded, the task is still run
684 			 * but the results ignored. (This leads to
685 			 * complications that we may have a stray object
686 			 * refcount that we need to be wary of when
687 			 * checking for existing objects during creation.)
688 			 * If the worker encounters an error, it reports
689 			 * that error back to this function through
690 			 * obj->userptr.work = ERR_PTR.
691 			 */
692 			ret = -EAGAIN;
693 			if (obj->userptr.work == NULL &&
694 			    obj->userptr.workers < I915_GEM_USERPTR_MAX_WORKERS) {
695 				struct get_pages_work *work;
696 
697 				work = kmalloc(sizeof(*work), GFP_KERNEL);
698 				if (work != NULL) {
699 					obj->userptr.work = &work->work;
700 					obj->userptr.workers++;
701 
702 					work->obj = obj;
703 					drm_gem_object_reference(&obj->base);
704 
705 					work->task = current;
706 					get_task_struct(work->task);
707 
708 					INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
709 					schedule_work(&work->work);
710 				} else
711 					ret = -ENOMEM;
712 			} else {
713 				if (IS_ERR(obj->userptr.work)) {
714 					ret = PTR_ERR(obj->userptr.work);
715 					obj->userptr.work = NULL;
716 				}
717 			}
718 		}
719 	} else {
720 		ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
721 		if (ret == 0) {
722 			obj->userptr.work = NULL;
723 			pinned = 0;
724 		}
725 	}
726 
727 	release_pages(pvec, pinned, 0);
728 	drm_free_large(pvec);
729 	return ret;
730 }
731 
732 static void
733 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
734 {
735 	struct sg_page_iter sg_iter;
736 
737 	BUG_ON(obj->userptr.work != NULL);
738 
739 	if (obj->madv != I915_MADV_WILLNEED)
740 		obj->dirty = 0;
741 
742 	i915_gem_gtt_finish_object(obj);
743 
744 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
745 		struct page *page = sg_page_iter_page(&sg_iter);
746 
747 		if (obj->dirty)
748 			set_page_dirty(page);
749 
750 		mark_page_accessed(page);
751 		page_cache_release(page);
752 	}
753 	obj->dirty = 0;
754 
755 	sg_free_table(obj->pages);
756 	kfree(obj->pages);
757 }
758 
759 static void
760 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
761 {
762 	i915_gem_userptr_release__mmu_notifier(obj);
763 	i915_gem_userptr_release__mm_struct(obj);
764 }
765 
766 static int
767 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
768 {
769 	if (obj->userptr.mmu_object)
770 		return 0;
771 
772 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
773 }
774 
775 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
776 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
777 	.get_pages = i915_gem_userptr_get_pages,
778 	.put_pages = i915_gem_userptr_put_pages,
779 	.release = i915_gem_userptr_release,
780 };
781 
782 /**
783  * Creates a new mm object that wraps some normal memory from the process
784  * context - user memory.
785  *
786  * We impose several restrictions upon the memory being mapped
787  * into the GPU.
788  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
789  * 2. It must be normal system memory, not a pointer into another map of IO
790  *    space (e.g. it must not be a GTT mmapping of another object).
791  * 3. We only allow a bo as large as we could in theory map into the GTT,
792  *    that is we limit the size to the total size of the GTT.
793  * 4. The bo is marked as being snoopable. The backing pages are left
794  *    accessible directly by the CPU, but reads and writes by the GPU may
795  *    incur the cost of a snoop (unless you have an LLC architecture).
796  *
797  * Synchronisation between multiple users and the GPU is left to userspace
798  * through the normal set-domain-ioctl. The kernel will enforce that the
799  * GPU relinquishes the VMA before it is returned back to the system
800  * i.e. upon free(), munmap() or process termination. However, the userspace
801  * malloc() library may not immediately relinquish the VMA after free() and
802  * instead reuse it whilst the GPU is still reading and writing to the VMA.
803  * Caveat emptor.
804  *
805  * Also note, that the object created here is not currently a "first class"
806  * object, in that several ioctls are banned. These are the CPU access
807  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
808  * direct access via your pointer rather than use those ioctls.
809  *
810  * If you think this is a good interface to use to pass GPU memory between
811  * drivers, please use dma-buf instead. In fact, wherever possible use
812  * dma-buf instead.
813  */
814 int
815 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
816 {
817 	struct drm_i915_private *dev_priv = dev->dev_private;
818 	struct drm_i915_gem_userptr *args = data;
819 	struct drm_i915_gem_object *obj;
820 	int ret;
821 	u32 handle;
822 
823 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
824 			    I915_USERPTR_UNSYNCHRONIZED))
825 		return -EINVAL;
826 
827 	if (offset_in_page(args->user_ptr | args->user_size))
828 		return -EINVAL;
829 
830 	if (args->user_size > dev_priv->gtt.base.total)
831 		return -E2BIG;
832 
833 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
834 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
835 		return -EFAULT;
836 
837 	if (args->flags & I915_USERPTR_READ_ONLY) {
838 		/* On almost all of the current hw, we cannot tell the GPU that a
839 		 * page is readonly, so this is just a placeholder in the uAPI.
840 		 */
841 		return -ENODEV;
842 	}
843 
844 	obj = i915_gem_object_alloc(dev);
845 	if (obj == NULL)
846 		return -ENOMEM;
847 
848 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
849 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
850 	obj->cache_level = I915_CACHE_LLC;
851 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
852 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
853 
854 	obj->userptr.ptr = args->user_ptr;
855 	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
856 
857 	/* And keep a pointer to the current->mm for resolving the user pages
858 	 * at binding. This means that we need to hook into the mmu_notifier
859 	 * in order to detect if the mmu is destroyed.
860 	 */
861 	ret = i915_gem_userptr_init__mm_struct(obj);
862 	if (ret == 0)
863 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
864 	if (ret == 0)
865 		ret = drm_gem_handle_create(file, &obj->base, &handle);
866 
867 	/* drop reference from allocate - handle holds it now */
868 	drm_gem_object_unreference_unlocked(&obj->base);
869 	if (ret)
870 		return ret;
871 
872 	args->handle = handle;
873 	return 0;
874 }
875 #endif
876 
877 int
878 i915_gem_init_userptr(struct drm_device *dev)
879 {
880 	struct drm_i915_private *dev_priv = to_i915(dev);
881 	lockinit(&dev_priv->mm_lock, "i915dmm", 0, LK_CANRECURSE);
882 #if 0
883 	hash_init(dev_priv->mm_structs);
884 #endif
885 	return 0;
886 }
887