xref: /dragonfly/sys/dev/drm/i915/i915_gem_userptr.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 #include <linux/sched/mm.h>
35 
36 struct i915_mm_struct {
37 	struct mm_struct *mm;
38 	struct drm_i915_private *i915;
39 	struct i915_mmu_notifier *mn;
40 	struct hlist_node node;
41 	struct kref kref;
42 	struct work_struct work;
43 };
44 
45 #if defined(CONFIG_MMU_NOTIFIER)
46 #include <linux/interval_tree.h>
47 
48 struct i915_mmu_notifier {
49 	spinlock_t lock;
50 	struct hlist_node node;
51 	struct mmu_notifier mn;
52 	struct rb_root objects;
53 	struct workqueue_struct *wq;
54 };
55 
56 struct i915_mmu_object {
57 	struct i915_mmu_notifier *mn;
58 	struct drm_i915_gem_object *obj;
59 	struct interval_tree_node it;
60 	struct list_head link;
61 	struct work_struct work;
62 	bool attached;
63 };
64 
65 static void cancel_userptr(struct work_struct *work)
66 {
67 	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
68 	struct drm_i915_gem_object *obj = mo->obj;
69 	struct work_struct *active;
70 
71 	/* Cancel any active worker and force us to re-evaluate gup */
72 	mutex_lock(&obj->mm.lock);
73 	active = fetch_and_zero(&obj->userptr.work);
74 	mutex_unlock(&obj->mm.lock);
75 	if (active)
76 		goto out;
77 
78 	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
79 
80 	mutex_lock(&obj->base.dev->struct_mutex);
81 
82 	/* We are inside a kthread context and can't be interrupted */
83 	if (i915_gem_object_unbind(obj) == 0)
84 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
85 	WARN_ONCE(i915_gem_object_has_pages(obj),
86 		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_global=%d\n",
87 		  obj->bind_count,
88 		  atomic_read(&obj->mm.pages_pin_count),
89 		  obj->pin_global);
90 
91 	mutex_unlock(&obj->base.dev->struct_mutex);
92 
93 out:
94 	i915_gem_object_put(obj);
95 }
96 
97 static void add_object(struct i915_mmu_object *mo)
98 {
99 	if (mo->attached)
100 		return;
101 
102 	interval_tree_insert(&mo->it, &mo->mn->objects);
103 	mo->attached = true;
104 }
105 
106 static void del_object(struct i915_mmu_object *mo)
107 {
108 	if (!mo->attached)
109 		return;
110 
111 	interval_tree_remove(&mo->it, &mo->mn->objects);
112 	mo->attached = false;
113 }
114 
115 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
116 						       struct mm_struct *mm,
117 						       unsigned long start,
118 						       unsigned long end)
119 {
120 	struct i915_mmu_notifier *mn =
121 		container_of(_mn, struct i915_mmu_notifier, mn);
122 	struct i915_mmu_object *mo;
123 	struct interval_tree_node *it;
124 	LINUX_LIST_HEAD(cancelled);
125 
126 	if (RB_EMPTY_ROOT(&mn->objects))
127 		return;
128 
129 	/* interval ranges are inclusive, but invalidate range is exclusive */
130 	end--;
131 
132 	lockmgr(&mn->lock, LK_EXCLUSIVE);
133 	it = interval_tree_iter_first(&mn->objects, start, end);
134 	while (it) {
135 		/* The mmu_object is released late when destroying the
136 		 * GEM object so it is entirely possible to gain a
137 		 * reference on an object in the process of being freed
138 		 * since our serialisation is via the spinlock and not
139 		 * the struct_mutex - and consequently use it after it
140 		 * is freed and then double free it. To prevent that
141 		 * use-after-free we only acquire a reference on the
142 		 * object if it is not in the process of being destroyed.
143 		 */
144 		mo = container_of(it, struct i915_mmu_object, it);
145 		if (kref_get_unless_zero(&mo->obj->base.refcount))
146 			queue_work(mn->wq, &mo->work);
147 
148 		list_add(&mo->link, &cancelled);
149 		it = interval_tree_iter_next(it, start, end);
150 	}
151 	list_for_each_entry(mo, &cancelled, link)
152 		del_object(mo);
153 	lockmgr(&mn->lock, LK_RELEASE);
154 
155 	if (!list_empty(&cancelled))
156 		flush_workqueue(mn->wq);
157 }
158 
159 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
160 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
161 };
162 
163 static struct i915_mmu_notifier *
164 i915_mmu_notifier_create(struct mm_struct *mm)
165 {
166 	struct i915_mmu_notifier *mn;
167 
168 	mn = kmalloc(sizeof(*mn), M_DRM, GFP_KERNEL);
169 	if (mn == NULL)
170 		return ERR_PTR(-ENOMEM);
171 
172 	spin_lock_init(&mn->lock);
173 	mn->mn.ops = &i915_gem_userptr_notifier;
174 	mn->objects = LINUX_RB_ROOT;
175 	mn->wq = alloc_workqueue("i915-userptr-release",
176 				 WQ_UNBOUND | WQ_MEM_RECLAIM,
177 				 0);
178 	if (mn->wq == NULL) {
179 		kfree(mn);
180 		return ERR_PTR(-ENOMEM);
181 	}
182 
183 	return mn;
184 }
185 
186 static void
187 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
188 {
189 	struct i915_mmu_object *mo;
190 
191 	mo = obj->userptr.mmu_object;
192 	if (mo == NULL)
193 		return;
194 
195 	lockmgr(&mo->mn->lock, LK_EXCLUSIVE);
196 	del_object(mo);
197 	lockmgr(&mo->mn->lock, LK_RELEASE);
198 	kfree(mo);
199 
200 	obj->userptr.mmu_object = NULL;
201 }
202 
203 static struct i915_mmu_notifier *
204 i915_mmu_notifier_find(struct i915_mm_struct *mm)
205 {
206 	struct i915_mmu_notifier *mn;
207 	int err = 0;
208 
209 	mn = mm->mn;
210 	if (mn)
211 		return mn;
212 
213 	mn = i915_mmu_notifier_create(mm->mm);
214 	if (IS_ERR(mn))
215 		err = PTR_ERR(mn);
216 
217 	down_write(&mm->mm->mmap_sem);
218 	mutex_lock(&mm->i915->mm_lock);
219 	if (mm->mn == NULL && !err) {
220 		/* Protected by mmap_sem (write-lock) */
221 		err = __mmu_notifier_register(&mn->mn, mm->mm);
222 		if (!err) {
223 			/* Protected by mm_lock */
224 			mm->mn = fetch_and_zero(&mn);
225 		}
226 	} else if (mm->mn) {
227 		/*
228 		 * Someone else raced and successfully installed the mmu
229 		 * notifier, we can cancel our own errors.
230 		 */
231 		err = 0;
232 	}
233 	mutex_unlock(&mm->i915->mm_lock);
234 	up_write(&mm->mm->mmap_sem);
235 
236 	if (mn && !IS_ERR(mn)) {
237 		destroy_workqueue(mn->wq);
238 		kfree(mn);
239 	}
240 
241 	return err ? ERR_PTR(err) : mm->mn;
242 }
243 
244 static int
245 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
246 				    unsigned flags)
247 {
248 	struct i915_mmu_notifier *mn;
249 	struct i915_mmu_object *mo;
250 
251 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
252 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
253 
254 	if (WARN_ON(obj->userptr.mm == NULL))
255 		return -EINVAL;
256 
257 	mn = i915_mmu_notifier_find(obj->userptr.mm);
258 	if (IS_ERR(mn))
259 		return PTR_ERR(mn);
260 
261 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
262 	if (mo == NULL)
263 		return -ENOMEM;
264 
265 	mo->mn = mn;
266 	mo->obj = obj;
267 	mo->it.start = obj->userptr.ptr;
268 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
269 	INIT_WORK(&mo->work, cancel_userptr);
270 
271 	obj->userptr.mmu_object = mo;
272 	return 0;
273 }
274 
275 static void
276 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
277 		       struct mm_struct *mm)
278 {
279 	if (mn == NULL)
280 		return;
281 
282 	mmu_notifier_unregister(&mn->mn, mm);
283 	destroy_workqueue(mn->wq);
284 	kfree(mn);
285 }
286 
287 #else
288 
289 static void
290 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
291 {
292 }
293 
294 static int
295 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
296 				    unsigned flags)
297 {
298 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
299 		return -ENODEV;
300 
301 	if (!capable(CAP_SYS_ADMIN))
302 		return -EPERM;
303 
304 	return 0;
305 }
306 
307 static void
308 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
309 		       struct mm_struct *mm)
310 {
311 }
312 
313 #endif
314 
315 static struct i915_mm_struct *
316 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
317 {
318 	struct i915_mm_struct *mm;
319 
320 	/* Protected by dev_priv->mm_lock */
321 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
322 		if (mm->mm == real)
323 			return mm;
324 
325 	return NULL;
326 }
327 
328 static int
329 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
330 {
331 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
332 	struct i915_mm_struct *mm;
333 	int ret = 0;
334 
335 	/* During release of the GEM object we hold the struct_mutex. This
336 	 * precludes us from calling mmput() at that time as that may be
337 	 * the last reference and so call exit_mmap(). exit_mmap() will
338 	 * attempt to reap the vma, and if we were holding a GTT mmap
339 	 * would then call drm_gem_vm_close() and attempt to reacquire
340 	 * the struct mutex. So in order to avoid that recursion, we have
341 	 * to defer releasing the mm reference until after we drop the
342 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
343 	 * up.
344 	 */
345 	mutex_lock(&dev_priv->mm_lock);
346 	mm = __i915_mm_struct_find(dev_priv, current->mm);
347 	if (mm == NULL) {
348 		mm = kmalloc(sizeof(*mm), M_DRM, GFP_KERNEL);
349 		if (mm == NULL) {
350 			ret = -ENOMEM;
351 			goto out;
352 		}
353 
354 		kref_init(&mm->kref);
355 		mm->i915 = to_i915(obj->base.dev);
356 
357 		mm->mm = current->mm;
358 		mmgrab(current->mm);
359 
360 		mm->mn = NULL;
361 
362 		/* Protected by dev_priv->mm_lock */
363 		hash_add(dev_priv->mm_structs,
364 			 &mm->node, (unsigned long)mm->mm);
365 	} else
366 		kref_get(&mm->kref);
367 
368 	obj->userptr.mm = mm;
369 out:
370 	mutex_unlock(&dev_priv->mm_lock);
371 	return ret;
372 }
373 
374 static void
375 __i915_mm_struct_free__worker(struct work_struct *work)
376 {
377 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
378 	i915_mmu_notifier_free(mm->mn, mm->mm);
379 #if 0
380 	mmdrop(mm->mm);
381 #endif
382 	kfree(mm);
383 }
384 
385 static void
386 __i915_mm_struct_free(struct kref *kref)
387 {
388 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
389 
390 	/* Protected by dev_priv->mm_lock */
391 	hash_del(&mm->node);
392 	mutex_unlock(&mm->i915->mm_lock);
393 
394 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
395 	queue_work(mm->i915->mm.userptr_wq, &mm->work);
396 }
397 
398 static void
399 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
400 {
401 	if (obj->userptr.mm == NULL)
402 		return;
403 
404 	kref_put_mutex(&obj->userptr.mm->kref,
405 		       __i915_mm_struct_free,
406 		       &to_i915(obj->base.dev)->mm_lock);
407 	obj->userptr.mm = NULL;
408 }
409 
410 struct get_pages_work {
411 	struct work_struct work;
412 	struct drm_i915_gem_object *obj;
413 	struct task_struct *task;
414 };
415 
416 #if 0
417 static struct sg_table *
418 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
419 			       struct page **pvec, int num_pages)
420 {
421 	unsigned int max_segment = i915_sg_segment_size();
422 	struct sg_table *st;
423 	unsigned int sg_page_sizes;
424 	int ret;
425 
426 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
427 	if (!st)
428 		return ERR_PTR(-ENOMEM);
429 
430 alloc_table:
431 	ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
432 					  0, num_pages << PAGE_SHIFT,
433 					  max_segment,
434 					  GFP_KERNEL);
435 	if (ret) {
436 		kfree(st);
437 		return ERR_PTR(ret);
438 	}
439 
440 	ret = i915_gem_gtt_prepare_pages(obj, st);
441 	if (ret) {
442 		sg_free_table(st);
443 
444 		if (max_segment > PAGE_SIZE) {
445 			max_segment = PAGE_SIZE;
446 			goto alloc_table;
447 		}
448 
449 		kfree(st);
450 		return ERR_PTR(ret);
451 	}
452 
453 	sg_page_sizes = i915_sg_page_sizes(st->sgl);
454 
455 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
456 
457 	return st;
458 }
459 #endif
460 
461 static int
462 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
463 			      bool value)
464 {
465 	int ret = 0;
466 
467 	/* During mm_invalidate_range we need to cancel any userptr that
468 	 * overlaps the range being invalidated. Doing so requires the
469 	 * struct_mutex, and that risks recursion. In order to cause
470 	 * recursion, the user must alias the userptr address space with
471 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
472 	 * to invalidate that mmaping, mm_invalidate_range is called with
473 	 * the userptr address *and* the struct_mutex held.  To prevent that
474 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
475 	 * whether this object is valid.
476 	 */
477 #if defined(CONFIG_MMU_NOTIFIER)
478 	if (obj->userptr.mmu_object == NULL)
479 		return 0;
480 
481 	lockmgr(&obj->userptr.mmu_object->mn->lock, LK_EXCLUSIVE);
482 	/* In order to serialise get_pages with an outstanding
483 	 * cancel_userptr, we must drop the struct_mutex and try again.
484 	 */
485 	if (!value)
486 		del_object(obj->userptr.mmu_object);
487 	else if (!work_pending(&obj->userptr.mmu_object->work))
488 		add_object(obj->userptr.mmu_object);
489 	else
490 		ret = -EAGAIN;
491 	lockmgr(&obj->userptr.mmu_object->mn->lock, LK_RELEASE);
492 #endif
493 
494 	return ret;
495 }
496 
497 #if 0
498 static void
499 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
500 {
501 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
502 	struct drm_i915_gem_object *obj = work->obj;
503 	const int npages = obj->base.size >> PAGE_SHIFT;
504 	struct page **pvec;
505 	int pinned, ret;
506 
507 	ret = -ENOMEM;
508 	pinned = 0;
509 
510 	pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_TEMPORARY);
511 	if (pvec != NULL) {
512 		struct mm_struct *mm = obj->userptr.mm->mm;
513 		unsigned int flags = 0;
514 
515 		if (!obj->userptr.read_only)
516 			flags |= FOLL_WRITE;
517 
518 		ret = -EFAULT;
519 		if (mmget_not_zero(mm)) {
520 			down_read(&mm->mmap_sem);
521 			while (pinned < npages) {
522 				ret = get_user_pages_remote
523 					(work->task, mm,
524 					 obj->userptr.ptr + pinned * PAGE_SIZE,
525 					 npages - pinned,
526 					 flags,
527 					 pvec + pinned, NULL, NULL);
528 				if (ret < 0)
529 					break;
530 
531 				pinned += ret;
532 			}
533 			up_read(&mm->mmap_sem);
534 			mmput(mm);
535 		}
536 	}
537 
538 	mutex_lock(&obj->mm.lock);
539 	if (obj->userptr.work == &work->work) {
540 		struct sg_table *pages = ERR_PTR(ret);
541 
542 		if (pinned == npages) {
543 			pages = __i915_gem_userptr_alloc_pages(obj, pvec,
544 							       npages);
545 			if (!IS_ERR(pages)) {
546 				pinned = 0;
547 				pages = NULL;
548 			}
549 		}
550 
551 		obj->userptr.work = ERR_CAST(pages);
552 		if (IS_ERR(pages))
553 			__i915_gem_userptr_set_active(obj, false);
554 	}
555 	mutex_unlock(&obj->mm.lock);
556 
557 	release_pages(pvec, pinned);
558 	kvfree(pvec);
559 
560 	i915_gem_object_put(obj);
561 	put_task_struct(work->task);
562 	kfree(work);
563 }
564 
565 static struct sg_table *
566 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
567 {
568 	struct get_pages_work *work;
569 
570 	/* Spawn a worker so that we can acquire the
571 	 * user pages without holding our mutex. Access
572 	 * to the user pages requires mmap_sem, and we have
573 	 * a strict lock ordering of mmap_sem, struct_mutex -
574 	 * we already hold struct_mutex here and so cannot
575 	 * call gup without encountering a lock inversion.
576 	 *
577 	 * Userspace will keep on repeating the operation
578 	 * (thanks to EAGAIN) until either we hit the fast
579 	 * path or the worker completes. If the worker is
580 	 * cancelled or superseded, the task is still run
581 	 * but the results ignored. (This leads to
582 	 * complications that we may have a stray object
583 	 * refcount that we need to be wary of when
584 	 * checking for existing objects during creation.)
585 	 * If the worker encounters an error, it reports
586 	 * that error back to this function through
587 	 * obj->userptr.work = ERR_PTR.
588 	 */
589 	work = kmalloc(sizeof(*work), M_DRM, GFP_KERNEL);
590 	if (work == NULL)
591 		return ERR_PTR(-ENOMEM);
592 
593 	obj->userptr.work = &work->work;
594 
595 	work->obj = i915_gem_object_get(obj);
596 
597 	work->task = current;
598 	get_task_struct(work->task);
599 
600 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
601 	queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
602 
603 	return ERR_PTR(-EAGAIN);
604 }
605 #endif
606 
607 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
608 {
609 #if 0
610 	const int num_pages = obj->base.size >> PAGE_SHIFT;
611 	struct mm_struct *mm = obj->userptr.mm->mm;
612 	struct page **pvec;
613 	struct sg_table *pages;
614 	bool active;
615 	int pinned;
616 
617 	/* If userspace should engineer that these pages are replaced in
618 	 * the vma between us binding this page into the GTT and completion
619 	 * of rendering... Their loss. If they change the mapping of their
620 	 * pages they need to create a new bo to point to the new vma.
621 	 *
622 	 * However, that still leaves open the possibility of the vma
623 	 * being copied upon fork. Which falls under the same userspace
624 	 * synchronisation issue as a regular bo, except that this time
625 	 * the process may not be expecting that a particular piece of
626 	 * memory is tied to the GPU.
627 	 *
628 	 * Fortunately, we can hook into the mmu_notifier in order to
629 	 * discard the page references prior to anything nasty happening
630 	 * to the vma (discard or cloning) which should prevent the more
631 	 * egregious cases from causing harm.
632 	 */
633 
634 	if (obj->userptr.work) {
635 		/* active flag should still be held for the pending work */
636 		if (IS_ERR(obj->userptr.work))
637 			return PTR_ERR(obj->userptr.work);
638 		else
639 			return -EAGAIN;
640 	}
641 
642 	pvec = NULL;
643 	pinned = 0;
644 
645 	if (mm == current->mm) {
646 		pvec = kvmalloc_array(num_pages, sizeof(struct page *),
647 				      GFP_KERNEL |
648 				      __GFP_NORETRY |
649 				      __GFP_NOWARN);
650 		if (pvec) /* defer to worker if malloc fails */
651 			pinned = __get_user_pages_fast(obj->userptr.ptr,
652 						       num_pages,
653 						       !obj->userptr.read_only,
654 						       pvec);
655 	}
656 
657 	active = false;
658 	if (pinned < 0) {
659 		pages = ERR_PTR(pinned);
660 		pinned = 0;
661 	} else if (pinned < num_pages) {
662 		pages = __i915_gem_userptr_get_pages_schedule(obj);
663 		active = pages == ERR_PTR(-EAGAIN);
664 	} else {
665 		pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
666 		active = !IS_ERR(pages);
667 	}
668 	if (active)
669 		__i915_gem_userptr_set_active(obj, true);
670 
671 	if (IS_ERR(pages))
672 		release_pages(pvec, pinned);
673 	kvfree(pvec);
674 
675 	return PTR_ERR_OR_ZERO(pages);
676 #endif
677 	return -EINVAL;
678 }
679 
680 static void
681 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
682 			   struct sg_table *pages)
683 {
684 	struct sgt_iter sgt_iter;
685 	struct page *page;
686 
687 	BUG_ON(obj->userptr.work != NULL);
688 	__i915_gem_userptr_set_active(obj, false);
689 
690 	if (obj->mm.madv != I915_MADV_WILLNEED)
691 		obj->mm.dirty = false;
692 
693 	i915_gem_gtt_finish_pages(obj, pages);
694 
695 	for_each_sgt_page(page, sgt_iter, pages) {
696 		if (obj->mm.dirty)
697 			set_page_dirty(page);
698 
699 		mark_page_accessed(page);
700 		put_page(page);
701 	}
702 	obj->mm.dirty = false;
703 
704 	sg_free_table(pages);
705 	kfree(pages);
706 }
707 
708 static void
709 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
710 {
711 	i915_gem_userptr_release__mmu_notifier(obj);
712 	i915_gem_userptr_release__mm_struct(obj);
713 }
714 
715 static int
716 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
717 {
718 	if (obj->userptr.mmu_object)
719 		return 0;
720 
721 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
722 }
723 
724 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
725 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
726 		 I915_GEM_OBJECT_IS_SHRINKABLE,
727 	.get_pages = i915_gem_userptr_get_pages,
728 	.put_pages = i915_gem_userptr_put_pages,
729 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
730 	.release = i915_gem_userptr_release,
731 };
732 
733 /**
734  * Creates a new mm object that wraps some normal memory from the process
735  * context - user memory.
736  *
737  * We impose several restrictions upon the memory being mapped
738  * into the GPU.
739  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
740  * 2. It must be normal system memory, not a pointer into another map of IO
741  *    space (e.g. it must not be a GTT mmapping of another object).
742  * 3. We only allow a bo as large as we could in theory map into the GTT,
743  *    that is we limit the size to the total size of the GTT.
744  * 4. The bo is marked as being snoopable. The backing pages are left
745  *    accessible directly by the CPU, but reads and writes by the GPU may
746  *    incur the cost of a snoop (unless you have an LLC architecture).
747  *
748  * Synchronisation between multiple users and the GPU is left to userspace
749  * through the normal set-domain-ioctl. The kernel will enforce that the
750  * GPU relinquishes the VMA before it is returned back to the system
751  * i.e. upon free(), munmap() or process termination. However, the userspace
752  * malloc() library may not immediately relinquish the VMA after free() and
753  * instead reuse it whilst the GPU is still reading and writing to the VMA.
754  * Caveat emptor.
755  *
756  * Also note, that the object created here is not currently a "first class"
757  * object, in that several ioctls are banned. These are the CPU access
758  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
759  * direct access via your pointer rather than use those ioctls. Another
760  * restriction is that we do not allow userptr surfaces to be pinned to the
761  * hardware and so we reject any attempt to create a framebuffer out of a
762  * userptr.
763  *
764  * If you think this is a good interface to use to pass GPU memory between
765  * drivers, please use dma-buf instead. In fact, wherever possible use
766  * dma-buf instead.
767  */
768 int
769 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
770 {
771 	struct drm_i915_private *dev_priv = to_i915(dev);
772 	struct drm_i915_gem_userptr *args = data;
773 	struct drm_i915_gem_object *obj;
774 	int ret;
775 	u32 handle;
776 
777 	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
778 		/* We cannot support coherent userptr objects on hw without
779 		 * LLC and broken snooping.
780 		 */
781 		return -ENODEV;
782 	}
783 
784 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
785 			    I915_USERPTR_UNSYNCHRONIZED))
786 		return -EINVAL;
787 
788 	if (offset_in_page(args->user_ptr | args->user_size))
789 		return -EINVAL;
790 
791 #if 0
792 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
793 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
794 		return -EFAULT;
795 #endif
796 
797 	if (args->flags & I915_USERPTR_READ_ONLY) {
798 		/* On almost all of the current hw, we cannot tell the GPU that a
799 		 * page is readonly, so this is just a placeholder in the uAPI.
800 		 */
801 		return -ENODEV;
802 	}
803 
804 	obj = i915_gem_object_alloc(dev_priv);
805 	if (obj == NULL)
806 		return -ENOMEM;
807 
808 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
809 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
810 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
811 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
813 
814 	obj->userptr.ptr = args->user_ptr;
815 	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
816 
817 	/* And keep a pointer to the current->mm for resolving the user pages
818 	 * at binding. This means that we need to hook into the mmu_notifier
819 	 * in order to detect if the mmu is destroyed.
820 	 */
821 	ret = i915_gem_userptr_init__mm_struct(obj);
822 	if (ret == 0)
823 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
824 	if (ret == 0)
825 		ret = drm_gem_handle_create(file, &obj->base, &handle);
826 
827 	/* drop reference from allocate - handle holds it now */
828 	i915_gem_object_put(obj);
829 	if (ret)
830 		return ret;
831 
832 	args->handle = handle;
833 	return 0;
834 }
835 
836 int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
837 {
838 	lockinit(&dev_priv->mm_lock, "i915dmm", 0, LK_CANRECURSE);
839 	hash_init(dev_priv->mm_structs);
840 
841 	dev_priv->mm.userptr_wq =
842 		alloc_workqueue("i915-userptr-acquire",
843 				WQ_HIGHPRI | WQ_UNBOUND,
844 				0);
845 	if (!dev_priv->mm.userptr_wq)
846 		return -ENOMEM;
847 
848 	return 0;
849 }
850 
851 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
852 {
853 	destroy_workqueue(dev_priv->mm.userptr_wq);
854 }
855