xref: /dragonfly/sys/dev/drm/i915/i915_gem_userptr.c (revision 9317c2d0)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 
35 struct i915_mm_struct {
36 	struct mm_struct *mm;
37 	struct drm_i915_private *i915;
38 	struct i915_mmu_notifier *mn;
39 	struct hlist_node node;
40 	struct kref kref;
41 	struct work_struct work;
42 };
43 
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
46 
47 struct i915_mmu_notifier {
48 	spinlock_t lock;
49 	struct hlist_node node;
50 	struct mmu_notifier mn;
51 	struct rb_root objects;
52 	struct workqueue_struct *wq;
53 };
54 
55 struct i915_mmu_object {
56 	struct i915_mmu_notifier *mn;
57 	struct drm_i915_gem_object *obj;
58 	struct interval_tree_node it;
59 	struct list_head link;
60 	struct work_struct work;
61 	bool attached;
62 };
63 
64 static void cancel_userptr(struct work_struct *work)
65 {
66 	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
67 	struct drm_i915_gem_object *obj = mo->obj;
68 	struct drm_device *dev = obj->base.dev;
69 
70 	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
71 
72 	mutex_lock(&dev->struct_mutex);
73 	/* Cancel any active worker and force us to re-evaluate gup */
74 	obj->userptr.work = NULL;
75 
76 	/* We are inside a kthread context and can't be interrupted */
77 	if (i915_gem_object_unbind(obj) == 0)
78 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
79 	WARN_ONCE(obj->mm.pages,
80 		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
81 		  obj->bind_count,
82 		  atomic_read(&obj->mm.pages_pin_count),
83 		  obj->pin_display);
84 
85 	i915_gem_object_put(obj);
86 	mutex_unlock(&dev->struct_mutex);
87 }
88 
89 static void add_object(struct i915_mmu_object *mo)
90 {
91 	if (mo->attached)
92 		return;
93 
94 	interval_tree_insert(&mo->it, &mo->mn->objects);
95 	mo->attached = true;
96 }
97 
98 static void del_object(struct i915_mmu_object *mo)
99 {
100 	if (!mo->attached)
101 		return;
102 
103 	interval_tree_remove(&mo->it, &mo->mn->objects);
104 	mo->attached = false;
105 }
106 
107 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
108 						       struct mm_struct *mm,
109 						       unsigned long start,
110 						       unsigned long end)
111 {
112 	struct i915_mmu_notifier *mn =
113 		container_of(_mn, struct i915_mmu_notifier, mn);
114 	struct i915_mmu_object *mo;
115 	struct interval_tree_node *it;
116 	LINUX_LIST_HEAD(cancelled);
117 
118 	if (RB_EMPTY_ROOT(&mn->objects))
119 		return;
120 
121 	/* interval ranges are inclusive, but invalidate range is exclusive */
122 	end--;
123 
124 	lockmgr(&mn->lock, LK_EXCLUSIVE);
125 	it = interval_tree_iter_first(&mn->objects, start, end);
126 	while (it) {
127 		/* The mmu_object is released late when destroying the
128 		 * GEM object so it is entirely possible to gain a
129 		 * reference on an object in the process of being freed
130 		 * since our serialisation is via the spinlock and not
131 		 * the struct_mutex - and consequently use it after it
132 		 * is freed and then double free it. To prevent that
133 		 * use-after-free we only acquire a reference on the
134 		 * object if it is not in the process of being destroyed.
135 		 */
136 		mo = container_of(it, struct i915_mmu_object, it);
137 		if (kref_get_unless_zero(&mo->obj->base.refcount))
138 			queue_work(mn->wq, &mo->work);
139 
140 		list_add(&mo->link, &cancelled);
141 		it = interval_tree_iter_next(it, start, end);
142 	}
143 	list_for_each_entry(mo, &cancelled, link)
144 		del_object(mo);
145 	lockmgr(&mn->lock, LK_RELEASE);
146 
147 	flush_workqueue(mn->wq);
148 }
149 
150 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
151 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
152 };
153 
154 static struct i915_mmu_notifier *
155 i915_mmu_notifier_create(struct mm_struct *mm)
156 {
157 	struct i915_mmu_notifier *mn;
158 	int ret;
159 
160 	mn = kmalloc(sizeof(*mn), M_DRM, GFP_KERNEL);
161 	if (mn == NULL)
162 		return ERR_PTR(-ENOMEM);
163 
164 	spin_lock_init(&mn->lock);
165 	mn->mn.ops = &i915_gem_userptr_notifier;
166 	mn->objects = LINUX_RB_ROOT;
167 	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
168 	if (mn->wq == NULL) {
169 		kfree(mn);
170 		return ERR_PTR(-ENOMEM);
171 	}
172 
173 	 /* Protected by mmap_sem (write-lock) */
174 	ret = __mmu_notifier_register(&mn->mn, mm);
175 	if (ret) {
176 		destroy_workqueue(mn->wq);
177 		kfree(mn);
178 		return ERR_PTR(ret);
179 	}
180 
181 	return mn;
182 }
183 
184 static void
185 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
186 {
187 	struct i915_mmu_object *mo;
188 
189 	mo = obj->userptr.mmu_object;
190 	if (mo == NULL)
191 		return;
192 
193 	lockmgr(&mo->mn->lock, LK_EXCLUSIVE);
194 	del_object(mo);
195 	lockmgr(&mo->mn->lock, LK_RELEASE);
196 	kfree(mo);
197 
198 	obj->userptr.mmu_object = NULL;
199 }
200 
201 static struct i915_mmu_notifier *
202 i915_mmu_notifier_find(struct i915_mm_struct *mm)
203 {
204 	struct i915_mmu_notifier *mn = mm->mn;
205 
206 	mn = mm->mn;
207 	if (mn)
208 		return mn;
209 
210 	down_write(&mm->mm->mmap_sem);
211 	mutex_lock(&mm->i915->mm_lock);
212 	if ((mn = mm->mn) == NULL) {
213 		mn = i915_mmu_notifier_create(mm->mm);
214 		if (!IS_ERR(mn))
215 			mm->mn = mn;
216 	}
217 	mutex_unlock(&mm->i915->mm_lock);
218 	up_write(&mm->mm->mmap_sem);
219 
220 	return mn;
221 }
222 
223 static int
224 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
225 				    unsigned flags)
226 {
227 	struct i915_mmu_notifier *mn;
228 	struct i915_mmu_object *mo;
229 
230 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
231 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
232 
233 	if (WARN_ON(obj->userptr.mm == NULL))
234 		return -EINVAL;
235 
236 	mn = i915_mmu_notifier_find(obj->userptr.mm);
237 	if (IS_ERR(mn))
238 		return PTR_ERR(mn);
239 
240 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
241 	if (mo == NULL)
242 		return -ENOMEM;
243 
244 	mo->mn = mn;
245 	mo->obj = obj;
246 	mo->it.start = obj->userptr.ptr;
247 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
248 	INIT_WORK(&mo->work, cancel_userptr);
249 
250 	obj->userptr.mmu_object = mo;
251 	return 0;
252 }
253 
254 static void
255 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
256 		       struct mm_struct *mm)
257 {
258 	if (mn == NULL)
259 		return;
260 
261 	mmu_notifier_unregister(&mn->mn, mm);
262 	destroy_workqueue(mn->wq);
263 	kfree(mn);
264 }
265 
266 #else
267 
268 static void
269 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
270 {
271 }
272 
273 static int
274 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
275 				    unsigned flags)
276 {
277 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
278 		return -ENODEV;
279 
280 	if (!capable(CAP_SYS_ADMIN))
281 		return -EPERM;
282 
283 	return 0;
284 }
285 
286 static void
287 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
288 		       struct mm_struct *mm)
289 {
290 }
291 
292 #endif
293 
294 static struct i915_mm_struct *
295 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
296 {
297 	struct i915_mm_struct *mm;
298 
299 	/* Protected by dev_priv->mm_lock */
300 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
301 		if (mm->mm == real)
302 			return mm;
303 
304 	return NULL;
305 }
306 
307 static int
308 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
309 {
310 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
311 	struct i915_mm_struct *mm;
312 	int ret = 0;
313 
314 	/* During release of the GEM object we hold the struct_mutex. This
315 	 * precludes us from calling mmput() at that time as that may be
316 	 * the last reference and so call exit_mmap(). exit_mmap() will
317 	 * attempt to reap the vma, and if we were holding a GTT mmap
318 	 * would then call drm_gem_vm_close() and attempt to reacquire
319 	 * the struct mutex. So in order to avoid that recursion, we have
320 	 * to defer releasing the mm reference until after we drop the
321 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
322 	 * up.
323 	 */
324 	mutex_lock(&dev_priv->mm_lock);
325 	mm = __i915_mm_struct_find(dev_priv, current->mm);
326 	if (mm == NULL) {
327 		mm = kmalloc(sizeof(*mm), M_DRM, GFP_KERNEL);
328 		if (mm == NULL) {
329 			ret = -ENOMEM;
330 			goto out;
331 		}
332 
333 		kref_init(&mm->kref);
334 		mm->i915 = to_i915(obj->base.dev);
335 
336 		mm->mm = current->mm;
337 		atomic_inc(&current->mm->mm_count);
338 
339 		mm->mn = NULL;
340 
341 		/* Protected by dev_priv->mm_lock */
342 		hash_add(dev_priv->mm_structs,
343 			 &mm->node, (unsigned long)mm->mm);
344 	} else
345 		kref_get(&mm->kref);
346 
347 	obj->userptr.mm = mm;
348 out:
349 	mutex_unlock(&dev_priv->mm_lock);
350 	return ret;
351 }
352 
353 static void
354 __i915_mm_struct_free__worker(struct work_struct *work)
355 {
356 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
357 	i915_mmu_notifier_free(mm->mn, mm->mm);
358 #if 0
359 	mmdrop(mm->mm);
360 #endif
361 	kfree(mm);
362 }
363 
364 static void
365 __i915_mm_struct_free(struct kref *kref)
366 {
367 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
368 
369 	/* Protected by dev_priv->mm_lock */
370 	hash_del(&mm->node);
371 	mutex_unlock(&mm->i915->mm_lock);
372 
373 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
374 	schedule_work(&mm->work);
375 }
376 
377 static void
378 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
379 {
380 	if (obj->userptr.mm == NULL)
381 		return;
382 
383 	kref_put_mutex(&obj->userptr.mm->kref,
384 		       __i915_mm_struct_free,
385 		       &to_i915(obj->base.dev)->mm_lock);
386 	obj->userptr.mm = NULL;
387 }
388 
389 struct get_pages_work {
390 	struct work_struct work;
391 	struct drm_i915_gem_object *obj;
392 	struct task_struct *task;
393 };
394 
395 #if IS_ENABLED(CONFIG_SWIOTLB)
396 #define swiotlb_active() swiotlb_nr_tbl()
397 #else
398 #define swiotlb_active() 0
399 #endif
400 
401 #if 0
402 static int
403 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
404 {
405 	struct scatterlist *sg;
406 	int ret, n;
407 
408 	*st = kmalloc(sizeof(**st), M_DRM, GFP_KERNEL);
409 	if (*st == NULL)
410 		return -ENOMEM;
411 
412 	if (swiotlb_active()) {
413 		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
414 		if (ret)
415 			goto err;
416 
417 		for_each_sg((*st)->sgl, sg, num_pages, n)
418 			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
419 	} else {
420 		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
421 						0, num_pages << PAGE_SHIFT,
422 						GFP_KERNEL);
423 		if (ret)
424 			goto err;
425 	}
426 
427 	return 0;
428 
429 err:
430 	kfree(*st);
431 	*st = NULL;
432 	return ret;
433 }
434 
435 static struct sg_table *
436 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
437 			     struct page **pvec, int num_pages)
438 {
439 	struct sg_table *pages;
440 	int ret;
441 
442 	ret = st_set_pages(&pages, pvec, num_pages);
443 	if (ret)
444 		return ERR_PTR(ret);
445 
446 	ret = i915_gem_gtt_prepare_pages(obj, pages);
447 	if (ret) {
448 		sg_free_table(pages);
449 		kfree(pages);
450 		return ERR_PTR(ret);
451 	}
452 
453 	return pages;
454 }
455 #endif
456 
457 static int
458 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
459 			      bool value)
460 {
461 	int ret = 0;
462 
463 	/* During mm_invalidate_range we need to cancel any userptr that
464 	 * overlaps the range being invalidated. Doing so requires the
465 	 * struct_mutex, and that risks recursion. In order to cause
466 	 * recursion, the user must alias the userptr address space with
467 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
468 	 * to invalidate that mmaping, mm_invalidate_range is called with
469 	 * the userptr address *and* the struct_mutex held.  To prevent that
470 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
471 	 * whether this object is valid.
472 	 */
473 #if defined(CONFIG_MMU_NOTIFIER)
474 	if (obj->userptr.mmu_object == NULL)
475 		return 0;
476 
477 	lockmgr(&obj->userptr.mmu_object->mn->lock, LK_EXCLUSIVE);
478 	/* In order to serialise get_pages with an outstanding
479 	 * cancel_userptr, we must drop the struct_mutex and try again.
480 	 */
481 	if (!value)
482 		del_object(obj->userptr.mmu_object);
483 	else if (!work_pending(&obj->userptr.mmu_object->work))
484 		add_object(obj->userptr.mmu_object);
485 	else
486 		ret = -EAGAIN;
487 	lockmgr(&obj->userptr.mmu_object->mn->lock, LK_RELEASE);
488 #endif
489 
490 	return ret;
491 }
492 
493 #if 0
494 static void
495 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
496 {
497 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
498 	struct drm_i915_gem_object *obj = work->obj;
499 	const int npages = obj->base.size >> PAGE_SHIFT;
500 	struct page **pvec;
501 	int pinned, ret;
502 
503 	ret = -ENOMEM;
504 	pinned = 0;
505 
506 	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
507 	if (pvec != NULL) {
508 		struct mm_struct *mm = obj->userptr.mm->mm;
509 		unsigned int flags = 0;
510 
511 		if (!obj->userptr.read_only)
512 			flags |= FOLL_WRITE;
513 
514 		ret = -EFAULT;
515 		if (atomic_inc_not_zero(&mm->mm_users)) {
516 			down_read(&mm->mmap_sem);
517 			while (pinned < npages) {
518 				ret = get_user_pages_remote
519 					(work->task, mm,
520 					 obj->userptr.ptr + pinned * PAGE_SIZE,
521 					 npages - pinned,
522 					 flags,
523 					 pvec + pinned, NULL, NULL);
524 				if (ret < 0)
525 					break;
526 
527 				pinned += ret;
528 			}
529 			up_read(&mm->mmap_sem);
530 			mmput(mm);
531 		}
532 	}
533 
534 	mutex_lock(&obj->mm.lock);
535 	if (obj->userptr.work == &work->work) {
536 		struct sg_table *pages = ERR_PTR(ret);
537 
538 		if (pinned == npages) {
539 			pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
540 			if (!IS_ERR(pages)) {
541 				__i915_gem_object_set_pages(obj, pages);
542 				pinned = 0;
543 				pages = NULL;
544 			}
545 		}
546 
547 		obj->userptr.work = ERR_CAST(pages);
548 	}
549 	mutex_unlock(&obj->mm.lock);
550 
551 	release_pages(pvec, pinned, 0);
552 	drm_free_large(pvec);
553 
554 	i915_gem_object_put(obj);
555 	put_task_struct(work->task);
556 	kfree(work);
557 }
558 
559 static struct sg_table *
560 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
561 				      bool *active)
562 {
563 	struct get_pages_work *work;
564 
565 	/* Spawn a worker so that we can acquire the
566 	 * user pages without holding our mutex. Access
567 	 * to the user pages requires mmap_sem, and we have
568 	 * a strict lock ordering of mmap_sem, struct_mutex -
569 	 * we already hold struct_mutex here and so cannot
570 	 * call gup without encountering a lock inversion.
571 	 *
572 	 * Userspace will keep on repeating the operation
573 	 * (thanks to EAGAIN) until either we hit the fast
574 	 * path or the worker completes. If the worker is
575 	 * cancelled or superseded, the task is still run
576 	 * but the results ignored. (This leads to
577 	 * complications that we may have a stray object
578 	 * refcount that we need to be wary of when
579 	 * checking for existing objects during creation.)
580 	 * If the worker encounters an error, it reports
581 	 * that error back to this function through
582 	 * obj->userptr.work = ERR_PTR.
583 	 */
584 	work = kmalloc(sizeof(*work), M_DRM, GFP_KERNEL);
585 	if (work == NULL)
586 		return ERR_PTR(-ENOMEM);
587 
588 	obj->userptr.work = &work->work;
589 
590 	work->obj = i915_gem_object_get(obj);
591 
592 	work->task = current;
593 	get_task_struct(work->task);
594 
595 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
596 	schedule_work(&work->work);
597 
598 	*active = true;
599 	return ERR_PTR(-EAGAIN);
600 }
601 #endif
602 
603 static struct sg_table *
604 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
605 {
606 #if 0
607 	const int num_pages = obj->base.size >> PAGE_SHIFT;
608 	struct page **pvec;
609 	struct sg_table *pages;
610 	int pinned, ret;
611 	bool active;
612 
613 	/* If userspace should engineer that these pages are replaced in
614 	 * the vma between us binding this page into the GTT and completion
615 	 * of rendering... Their loss. If they change the mapping of their
616 	 * pages they need to create a new bo to point to the new vma.
617 	 *
618 	 * However, that still leaves open the possibility of the vma
619 	 * being copied upon fork. Which falls under the same userspace
620 	 * synchronisation issue as a regular bo, except that this time
621 	 * the process may not be expecting that a particular piece of
622 	 * memory is tied to the GPU.
623 	 *
624 	 * Fortunately, we can hook into the mmu_notifier in order to
625 	 * discard the page references prior to anything nasty happening
626 	 * to the vma (discard or cloning) which should prevent the more
627 	 * egregious cases from causing harm.
628 	 */
629 
630 	if (obj->userptr.work) {
631 		/* active flag should still be held for the pending work */
632 		if (IS_ERR(obj->userptr.work))
633 			return ERR_CAST(obj->userptr.work);
634 		else
635 			return ERR_PTR(-EAGAIN);
636 	}
637 
638 	/* Let the mmu-notifier know that we have begun and need cancellation */
639 	ret = __i915_gem_userptr_set_active(obj, true);
640 	if (ret)
641 		return ERR_PTR(ret);
642 
643 	pvec = NULL;
644 	pinned = 0;
645 	if (obj->userptr.mm->mm == current->mm) {
646 		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
647 				      GFP_TEMPORARY);
648 		if (pvec == NULL) {
649 			__i915_gem_userptr_set_active(obj, false);
650 			return ERR_PTR(-ENOMEM);
651 		}
652 
653 		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
654 					       !obj->userptr.read_only, pvec);
655 	}
656 
657 	active = false;
658 	if (pinned < 0)
659 		pages = ERR_PTR(pinned), pinned = 0;
660 	else if (pinned < num_pages)
661 		pages = __i915_gem_userptr_get_pages_schedule(obj, &active);
662 	else
663 		pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
664 	if (IS_ERR(pages)) {
665 		__i915_gem_userptr_set_active(obj, active);
666 		release_pages(pvec, pinned, 0);
667 	}
668 	drm_free_large(pvec);
669 	return pages;
670 #else
671 	return ERR_PTR(-ENOMEM);
672 #endif	/* 0 */
673 }
674 
675 static void
676 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
677 			   struct sg_table *pages)
678 {
679 	struct sgt_iter sgt_iter;
680 	struct page *page;
681 
682 	BUG_ON(obj->userptr.work != NULL);
683 	__i915_gem_userptr_set_active(obj, false);
684 
685 	if (obj->mm.madv != I915_MADV_WILLNEED)
686 		obj->mm.dirty = false;
687 
688 	i915_gem_gtt_finish_pages(obj, pages);
689 
690 	for_each_sgt_page(page, sgt_iter, pages) {
691 		if (obj->mm.dirty)
692 			set_page_dirty(page);
693 
694 		mark_page_accessed(page);
695 		put_page(page);
696 	}
697 	obj->mm.dirty = false;
698 
699 	sg_free_table(pages);
700 	kfree(pages);
701 }
702 
703 static void
704 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
705 {
706 	i915_gem_userptr_release__mmu_notifier(obj);
707 	i915_gem_userptr_release__mm_struct(obj);
708 }
709 
710 static int
711 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
712 {
713 	if (obj->userptr.mmu_object)
714 		return 0;
715 
716 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
717 }
718 
719 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
720 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
721 		 I915_GEM_OBJECT_IS_SHRINKABLE,
722 	.get_pages = i915_gem_userptr_get_pages,
723 	.put_pages = i915_gem_userptr_put_pages,
724 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
725 	.release = i915_gem_userptr_release,
726 };
727 
728 /**
729  * Creates a new mm object that wraps some normal memory from the process
730  * context - user memory.
731  *
732  * We impose several restrictions upon the memory being mapped
733  * into the GPU.
734  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
735  * 2. It must be normal system memory, not a pointer into another map of IO
736  *    space (e.g. it must not be a GTT mmapping of another object).
737  * 3. We only allow a bo as large as we could in theory map into the GTT,
738  *    that is we limit the size to the total size of the GTT.
739  * 4. The bo is marked as being snoopable. The backing pages are left
740  *    accessible directly by the CPU, but reads and writes by the GPU may
741  *    incur the cost of a snoop (unless you have an LLC architecture).
742  *
743  * Synchronisation between multiple users and the GPU is left to userspace
744  * through the normal set-domain-ioctl. The kernel will enforce that the
745  * GPU relinquishes the VMA before it is returned back to the system
746  * i.e. upon free(), munmap() or process termination. However, the userspace
747  * malloc() library may not immediately relinquish the VMA after free() and
748  * instead reuse it whilst the GPU is still reading and writing to the VMA.
749  * Caveat emptor.
750  *
751  * Also note, that the object created here is not currently a "first class"
752  * object, in that several ioctls are banned. These are the CPU access
753  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
754  * direct access via your pointer rather than use those ioctls. Another
755  * restriction is that we do not allow userptr surfaces to be pinned to the
756  * hardware and so we reject any attempt to create a framebuffer out of a
757  * userptr.
758  *
759  * If you think this is a good interface to use to pass GPU memory between
760  * drivers, please use dma-buf instead. In fact, wherever possible use
761  * dma-buf instead.
762  */
763 int
764 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
765 {
766 	struct drm_i915_private *dev_priv = to_i915(dev);
767 	struct drm_i915_gem_userptr *args = data;
768 	struct drm_i915_gem_object *obj;
769 	int ret;
770 	u32 handle;
771 
772 	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
773 		/* We cannot support coherent userptr objects on hw without
774 		 * LLC and broken snooping.
775 		 */
776 		return -ENODEV;
777 	}
778 
779 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
780 			    I915_USERPTR_UNSYNCHRONIZED))
781 		return -EINVAL;
782 
783 	if (offset_in_page(args->user_ptr | args->user_size))
784 		return -EINVAL;
785 
786 #if 0
787 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
788 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
789 		return -EFAULT;
790 #endif
791 
792 	if (args->flags & I915_USERPTR_READ_ONLY) {
793 		/* On almost all of the current hw, we cannot tell the GPU that a
794 		 * page is readonly, so this is just a placeholder in the uAPI.
795 		 */
796 		return -ENODEV;
797 	}
798 
799 	obj = i915_gem_object_alloc(dev);
800 	if (obj == NULL)
801 		return -ENOMEM;
802 
803 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
804 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
805 	obj->cache_level = I915_CACHE_LLC;
806 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
807 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
808 
809 	obj->userptr.ptr = args->user_ptr;
810 	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
811 
812 	/* And keep a pointer to the current->mm for resolving the user pages
813 	 * at binding. This means that we need to hook into the mmu_notifier
814 	 * in order to detect if the mmu is destroyed.
815 	 */
816 	ret = i915_gem_userptr_init__mm_struct(obj);
817 	if (ret == 0)
818 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
819 	if (ret == 0)
820 		ret = drm_gem_handle_create(file, &obj->base, &handle);
821 
822 	/* drop reference from allocate - handle holds it now */
823 	i915_gem_object_put(obj);
824 	if (ret)
825 		return ret;
826 
827 	args->handle = handle;
828 	return 0;
829 }
830 
831 void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
832 {
833 	lockinit(&dev_priv->mm_lock, "i915dmm", 0, LK_CANRECURSE);
834 	hash_init(dev_priv->mm_structs);
835 }
836