xref: /dragonfly/sys/dev/drm/i915/i915_gem_userptr.c (revision a9783bc6)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/swap.h>
33 
34 struct i915_mm_struct {
35 	struct mm_struct *mm;
36 	struct drm_i915_private *i915;
37 	struct i915_mmu_notifier *mn;
38 	struct hlist_node node;
39 	struct kref kref;
40 	struct work_struct work;
41 };
42 
43 #if defined(CONFIG_MMU_NOTIFIER)
44 #include <linux/interval_tree.h>
45 
46 struct i915_mmu_notifier {
47 	spinlock_t lock;
48 	struct hlist_node node;
49 	struct mmu_notifier mn;
50 	struct rb_root objects;
51 	struct workqueue_struct *wq;
52 };
53 
54 struct i915_mmu_object {
55 	struct i915_mmu_notifier *mn;
56 	struct drm_i915_gem_object *obj;
57 	struct interval_tree_node it;
58 	struct list_head link;
59 	struct work_struct work;
60 	bool attached;
61 };
62 
63 static void wait_rendering(struct drm_i915_gem_object *obj)
64 {
65 	struct drm_device *dev = obj->base.dev;
66 	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
67 	int i, n;
68 
69 	if (!obj->active)
70 		return;
71 
72 	n = 0;
73 	for (i = 0; i < I915_NUM_ENGINES; i++) {
74 		struct drm_i915_gem_request *req;
75 
76 		req = obj->last_read_req[i];
77 		if (req == NULL)
78 			continue;
79 
80 		requests[n++] = i915_gem_request_reference(req);
81 	}
82 
83 	mutex_unlock(&dev->struct_mutex);
84 
85 	for (i = 0; i < n; i++)
86 		__i915_wait_request(requests[i], false, NULL, NULL);
87 
88 	mutex_lock(&dev->struct_mutex);
89 
90 	for (i = 0; i < n; i++)
91 		i915_gem_request_unreference(requests[i]);
92 }
93 
94 static void cancel_userptr(struct work_struct *work)
95 {
96 	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
97 	struct drm_i915_gem_object *obj = mo->obj;
98 	struct drm_device *dev = obj->base.dev;
99 
100 	mutex_lock(&dev->struct_mutex);
101 	/* Cancel any active worker and force us to re-evaluate gup */
102 	obj->userptr.work = NULL;
103 
104 	if (obj->pages != NULL) {
105 		struct drm_i915_private *dev_priv = to_i915(dev);
106 		struct i915_vma *vma, *tmp;
107 		bool was_interruptible;
108 
109 		wait_rendering(obj);
110 
111 		was_interruptible = dev_priv->mm.interruptible;
112 		dev_priv->mm.interruptible = false;
113 
114 		list_for_each_entry_safe(vma, tmp, &obj->vma_list, obj_link)
115 			WARN_ON(i915_vma_unbind(vma));
116 		WARN_ON(i915_gem_object_put_pages(obj));
117 
118 		dev_priv->mm.interruptible = was_interruptible;
119 	}
120 
121 	drm_gem_object_unreference(&obj->base);
122 	mutex_unlock(&dev->struct_mutex);
123 }
124 
125 static void add_object(struct i915_mmu_object *mo)
126 {
127 	if (mo->attached)
128 		return;
129 
130 	interval_tree_insert(&mo->it, &mo->mn->objects);
131 	mo->attached = true;
132 }
133 
134 static void del_object(struct i915_mmu_object *mo)
135 {
136 	if (!mo->attached)
137 		return;
138 
139 	interval_tree_remove(&mo->it, &mo->mn->objects);
140 	mo->attached = false;
141 }
142 
143 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
144 						       struct mm_struct *mm,
145 						       unsigned long start,
146 						       unsigned long end)
147 {
148 	struct i915_mmu_notifier *mn =
149 		container_of(_mn, struct i915_mmu_notifier, mn);
150 	struct i915_mmu_object *mo;
151 	struct interval_tree_node *it;
152 	LIST_HEAD(cancelled);
153 
154 	if (RB_EMPTY_ROOT(&mn->objects))
155 		return;
156 
157 	/* interval ranges are inclusive, but invalidate range is exclusive */
158 	end--;
159 
160 	spin_lock(&mn->lock);
161 	it = interval_tree_iter_first(&mn->objects, start, end);
162 	while (it) {
163 		/* The mmu_object is released late when destroying the
164 		 * GEM object so it is entirely possible to gain a
165 		 * reference on an object in the process of being freed
166 		 * since our serialisation is via the spinlock and not
167 		 * the struct_mutex - and consequently use it after it
168 		 * is freed and then double free it. To prevent that
169 		 * use-after-free we only acquire a reference on the
170 		 * object if it is not in the process of being destroyed.
171 		 */
172 		mo = container_of(it, struct i915_mmu_object, it);
173 		if (kref_get_unless_zero(&mo->obj->base.refcount))
174 			queue_work(mn->wq, &mo->work);
175 
176 		list_add(&mo->link, &cancelled);
177 		it = interval_tree_iter_next(it, start, end);
178 	}
179 	list_for_each_entry(mo, &cancelled, link)
180 		del_object(mo);
181 	spin_unlock(&mn->lock);
182 
183 	flush_workqueue(mn->wq);
184 }
185 
186 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
187 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
188 };
189 
190 static struct i915_mmu_notifier *
191 i915_mmu_notifier_create(struct mm_struct *mm)
192 {
193 	struct i915_mmu_notifier *mn;
194 	int ret;
195 
196 	mn = kmalloc(sizeof(*mn), M_DRM, GFP_KERNEL);
197 	if (mn == NULL)
198 		return ERR_PTR(-ENOMEM);
199 
200 	spin_lock_init(&mn->lock);
201 	mn->mn.ops = &i915_gem_userptr_notifier;
202 	mn->objects = RB_ROOT;
203 	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
204 	if (mn->wq == NULL) {
205 		kfree(mn);
206 		return ERR_PTR(-ENOMEM);
207 	}
208 
209 	 /* Protected by mmap_sem (write-lock) */
210 	ret = __mmu_notifier_register(&mn->mn, mm);
211 	if (ret) {
212 		destroy_workqueue(mn->wq);
213 		kfree(mn);
214 		return ERR_PTR(ret);
215 	}
216 
217 	return mn;
218 }
219 
220 static void
221 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
222 {
223 	struct i915_mmu_object *mo;
224 
225 	mo = obj->userptr.mmu_object;
226 	if (mo == NULL)
227 		return;
228 
229 	spin_lock(&mo->mn->lock);
230 	del_object(mo);
231 	spin_unlock(&mo->mn->lock);
232 	kfree(mo);
233 
234 	obj->userptr.mmu_object = NULL;
235 }
236 
237 static struct i915_mmu_notifier *
238 i915_mmu_notifier_find(struct i915_mm_struct *mm)
239 {
240 	struct i915_mmu_notifier *mn = mm->mn;
241 
242 	mn = mm->mn;
243 	if (mn)
244 		return mn;
245 
246 	down_write(&mm->mm->mmap_sem);
247 	mutex_lock(&mm->i915->mm_lock);
248 	if ((mn = mm->mn) == NULL) {
249 		mn = i915_mmu_notifier_create(mm->mm);
250 		if (!IS_ERR(mn))
251 			mm->mn = mn;
252 	}
253 	mutex_unlock(&mm->i915->mm_lock);
254 	up_write(&mm->mm->mmap_sem);
255 
256 	return mn;
257 }
258 
259 static int
260 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
261 				    unsigned flags)
262 {
263 	struct i915_mmu_notifier *mn;
264 	struct i915_mmu_object *mo;
265 
266 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
267 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
268 
269 	if (WARN_ON(obj->userptr.mm == NULL))
270 		return -EINVAL;
271 
272 	mn = i915_mmu_notifier_find(obj->userptr.mm);
273 	if (IS_ERR(mn))
274 		return PTR_ERR(mn);
275 
276 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
277 	if (mo == NULL)
278 		return -ENOMEM;
279 
280 	mo->mn = mn;
281 	mo->obj = obj;
282 	mo->it.start = obj->userptr.ptr;
283 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
284 	INIT_WORK(&mo->work, cancel_userptr);
285 
286 	obj->userptr.mmu_object = mo;
287 	return 0;
288 }
289 
290 static void
291 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
292 		       struct mm_struct *mm)
293 {
294 	if (mn == NULL)
295 		return;
296 
297 	mmu_notifier_unregister(&mn->mn, mm);
298 	destroy_workqueue(mn->wq);
299 	kfree(mn);
300 }
301 
302 #else
303 
304 static void
305 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
306 {
307 }
308 
309 static int
310 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
311 				    unsigned flags)
312 {
313 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
314 		return -ENODEV;
315 
316 	if (!capable(CAP_SYS_ADMIN))
317 		return -EPERM;
318 
319 	return 0;
320 }
321 
322 static void
323 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
324 		       struct mm_struct *mm)
325 {
326 }
327 
328 #endif
329 
330 static struct i915_mm_struct *
331 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
332 {
333 	struct i915_mm_struct *mm;
334 
335 	/* Protected by dev_priv->mm_lock */
336 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
337 		if (mm->mm == real)
338 			return mm;
339 
340 	return NULL;
341 }
342 
343 static int
344 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
345 {
346 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
347 	struct i915_mm_struct *mm;
348 	int ret = 0;
349 
350 	/* During release of the GEM object we hold the struct_mutex. This
351 	 * precludes us from calling mmput() at that time as that may be
352 	 * the last reference and so call exit_mmap(). exit_mmap() will
353 	 * attempt to reap the vma, and if we were holding a GTT mmap
354 	 * would then call drm_gem_vm_close() and attempt to reacquire
355 	 * the struct mutex. So in order to avoid that recursion, we have
356 	 * to defer releasing the mm reference until after we drop the
357 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
358 	 * up.
359 	 */
360 	mutex_lock(&dev_priv->mm_lock);
361 	mm = __i915_mm_struct_find(dev_priv, current->mm);
362 #if 0
363 	if (mm == NULL) {
364 		mm = kmalloc(sizeof(*mm), M_DRM, GFP_KERNEL);
365 		if (mm == NULL) {
366 #endif
367 			ret = -ENOMEM;
368 #if 0
369 			goto out;
370 		}
371 
372 		kref_init(&mm->kref);
373 		mm->i915 = to_i915(obj->base.dev);
374 
375 		mm->mm = current->mm;
376 		atomic_inc(&current->mm->mm_count);
377 
378 		mm->mn = NULL;
379 
380 		/* Protected by dev_priv->mm_lock */
381 		hash_add(dev_priv->mm_structs,
382 			 &mm->node, (unsigned long)mm->mm);
383 	} else
384 		kref_get(&mm->kref);
385 
386 	obj->userptr.mm = mm;
387 out:
388 	mutex_unlock(&dev_priv->mm_lock);
389 #endif
390 	return ret;
391 }
392 
393 static void
394 __i915_mm_struct_free__worker(struct work_struct *work)
395 {
396 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
397 	i915_mmu_notifier_free(mm->mn, mm->mm);
398 #if 0
399 	mmdrop(mm->mm);
400 #endif
401 	kfree(mm);
402 }
403 
404 static void
405 __i915_mm_struct_free(struct kref *kref)
406 {
407 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
408 
409 	/* Protected by dev_priv->mm_lock */
410 	hash_del(&mm->node);
411 	mutex_unlock(&mm->i915->mm_lock);
412 
413 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
414 	schedule_work(&mm->work);
415 }
416 
417 static void
418 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
419 {
420 	if (obj->userptr.mm == NULL)
421 		return;
422 
423 	kref_put_mutex(&obj->userptr.mm->kref,
424 		       __i915_mm_struct_free,
425 		       &to_i915(obj->base.dev)->mm_lock);
426 	obj->userptr.mm = NULL;
427 }
428 
429 struct get_pages_work {
430 	struct work_struct work;
431 	struct drm_i915_gem_object *obj;
432 	struct task_struct *task;
433 };
434 
435 #if IS_ENABLED(CONFIG_SWIOTLB)
436 #define swiotlb_active() swiotlb_nr_tbl()
437 #else
438 #define swiotlb_active() 0
439 #endif
440 
441 #if 0
442 static int
443 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
444 {
445 	struct scatterlist *sg;
446 	int ret, n;
447 
448 	*st = kmalloc(sizeof(**st), M_DRM, GFP_KERNEL);
449 	if (*st == NULL)
450 		return -ENOMEM;
451 
452 	if (swiotlb_active()) {
453 		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
454 		if (ret)
455 			goto err;
456 
457 		for_each_sg((*st)->sgl, sg, num_pages, n)
458 			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
459 	} else {
460 		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
461 						0, num_pages << PAGE_SHIFT,
462 						GFP_KERNEL);
463 		if (ret)
464 			goto err;
465 	}
466 
467 	return 0;
468 
469 err:
470 	kfree(*st);
471 	*st = NULL;
472 	return ret;
473 }
474 
475 static int
476 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
477 			     struct page **pvec, int num_pages)
478 {
479 	int ret;
480 
481 	ret = st_set_pages(&obj->pages, pvec, num_pages);
482 	if (ret)
483 		return ret;
484 
485 	ret = i915_gem_gtt_prepare_object(obj);
486 	if (ret) {
487 		sg_free_table(obj->pages);
488 		kfree(obj->pages);
489 		obj->pages = NULL;
490 	}
491 
492 	return ret;
493 }
494 #endif
495 
496 static int
497 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
498 			      bool value)
499 {
500 	int ret = 0;
501 
502 	/* During mm_invalidate_range we need to cancel any userptr that
503 	 * overlaps the range being invalidated. Doing so requires the
504 	 * struct_mutex, and that risks recursion. In order to cause
505 	 * recursion, the user must alias the userptr address space with
506 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
507 	 * to invalidate that mmaping, mm_invalidate_range is called with
508 	 * the userptr address *and* the struct_mutex held.  To prevent that
509 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
510 	 * whether this object is valid.
511 	 */
512 #if defined(CONFIG_MMU_NOTIFIER)
513 	if (obj->userptr.mmu_object == NULL)
514 		return 0;
515 
516 	spin_lock(&obj->userptr.mmu_object->mn->lock);
517 	/* In order to serialise get_pages with an outstanding
518 	 * cancel_userptr, we must drop the struct_mutex and try again.
519 	 */
520 	if (!value)
521 		del_object(obj->userptr.mmu_object);
522 	else if (!work_pending(&obj->userptr.mmu_object->work))
523 		add_object(obj->userptr.mmu_object);
524 	else
525 		ret = -EAGAIN;
526 	spin_unlock(&obj->userptr.mmu_object->mn->lock);
527 #endif
528 
529 	return ret;
530 }
531 
532 #if 0
533 static void
534 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
535 {
536 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
537 	struct drm_i915_gem_object *obj = work->obj;
538 	struct drm_device *dev = obj->base.dev;
539 	const int npages = obj->base.size >> PAGE_SHIFT;
540 	struct page **pvec;
541 	int pinned, ret;
542 
543 	ret = -ENOMEM;
544 	pinned = 0;
545 
546 	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
547 	if (pvec != NULL) {
548 		struct mm_struct *mm = obj->userptr.mm->mm;
549 
550 		ret = -EFAULT;
551 		if (atomic_inc_not_zero(&mm->mm_users)) {
552 			down_read(&mm->mmap_sem);
553 			while (pinned < npages) {
554 				ret = get_user_pages_remote
555 					(work->task, mm,
556 					 obj->userptr.ptr + pinned * PAGE_SIZE,
557 					 npages - pinned,
558 					 !obj->userptr.read_only, 0,
559 					 pvec + pinned, NULL);
560 				if (ret < 0)
561 					break;
562 
563 				pinned += ret;
564 			}
565 			up_read(&mm->mmap_sem);
566 			mmput(mm);
567 		}
568 	}
569 
570 	mutex_lock(&dev->struct_mutex);
571 	if (obj->userptr.work == &work->work) {
572 		if (pinned == npages) {
573 			ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
574 			if (ret == 0) {
575 				list_add_tail(&obj->global_list,
576 					      &to_i915(dev)->mm.unbound_list);
577 				obj->get_page.sg = obj->pages->sgl;
578 				obj->get_page.last = 0;
579 				pinned = 0;
580 			}
581 		}
582 		obj->userptr.work = ERR_PTR(ret);
583 		if (ret)
584 			__i915_gem_userptr_set_active(obj, false);
585 	}
586 
587 	obj->userptr.workers--;
588 	drm_gem_object_unreference(&obj->base);
589 	mutex_unlock(&dev->struct_mutex);
590 
591 	release_pages(pvec, pinned, 0);
592 	drm_free_large(pvec);
593 
594 	put_task_struct(work->task);
595 	kfree(work);
596 }
597 
598 static int
599 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
600 				      bool *active)
601 {
602 	struct get_pages_work *work;
603 
604 	/* Spawn a worker so that we can acquire the
605 	 * user pages without holding our mutex. Access
606 	 * to the user pages requires mmap_sem, and we have
607 	 * a strict lock ordering of mmap_sem, struct_mutex -
608 	 * we already hold struct_mutex here and so cannot
609 	 * call gup without encountering a lock inversion.
610 	 *
611 	 * Userspace will keep on repeating the operation
612 	 * (thanks to EAGAIN) until either we hit the fast
613 	 * path or the worker completes. If the worker is
614 	 * cancelled or superseded, the task is still run
615 	 * but the results ignored. (This leads to
616 	 * complications that we may have a stray object
617 	 * refcount that we need to be wary of when
618 	 * checking for existing objects during creation.)
619 	 * If the worker encounters an error, it reports
620 	 * that error back to this function through
621 	 * obj->userptr.work = ERR_PTR.
622 	 */
623 	if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
624 		return -EAGAIN;
625 
626 	work = kmalloc(sizeof(*work), GFP_KERNEL);
627 	if (work == NULL)
628 		return -ENOMEM;
629 
630 	obj->userptr.work = &work->work;
631 	obj->userptr.workers++;
632 
633 	work->obj = obj;
634 	drm_gem_object_reference(&obj->base);
635 
636 	work->task = current;
637 	get_task_struct(work->task);
638 
639 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
640 	schedule_work(&work->work);
641 
642 	*active = true;
643 	return -EAGAIN;
644 }
645 #endif
646 
647 static int
648 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
649 {
650 #if 0
651 	const int num_pages = obj->base.size >> PAGE_SHIFT;
652 	struct page **pvec;
653 	int pinned, ret;
654 	bool active;
655 
656 	/* If userspace should engineer that these pages are replaced in
657 	 * the vma between us binding this page into the GTT and completion
658 	 * of rendering... Their loss. If they change the mapping of their
659 	 * pages they need to create a new bo to point to the new vma.
660 	 *
661 	 * However, that still leaves open the possibility of the vma
662 	 * being copied upon fork. Which falls under the same userspace
663 	 * synchronisation issue as a regular bo, except that this time
664 	 * the process may not be expecting that a particular piece of
665 	 * memory is tied to the GPU.
666 	 *
667 	 * Fortunately, we can hook into the mmu_notifier in order to
668 	 * discard the page references prior to anything nasty happening
669 	 * to the vma (discard or cloning) which should prevent the more
670 	 * egregious cases from causing harm.
671 	 */
672 	if (IS_ERR(obj->userptr.work)) {
673 		/* active flag will have been dropped already by the worker */
674 		ret = PTR_ERR(obj->userptr.work);
675 		obj->userptr.work = NULL;
676 		return ret;
677 	}
678 	if (obj->userptr.work)
679 		/* active flag should still be held for the pending work */
680 		return -EAGAIN;
681 
682 	/* Let the mmu-notifier know that we have begun and need cancellation */
683 	ret = __i915_gem_userptr_set_active(obj, true);
684 	if (ret)
685 		return ret;
686 
687 	pvec = NULL;
688 	pinned = 0;
689 	if (obj->userptr.mm->mm == current->mm) {
690 		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
691 				      GFP_TEMPORARY);
692 		if (pvec == NULL) {
693 			__i915_gem_userptr_set_active(obj, false);
694 			return -ENOMEM;
695 		}
696 
697 		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
698 					       !obj->userptr.read_only, pvec);
699 	}
700 
701 	active = false;
702 	if (pinned < 0)
703 		ret = pinned, pinned = 0;
704 	else if (pinned < num_pages)
705 		ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
706 	else
707 		ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
708 	if (ret) {
709 		__i915_gem_userptr_set_active(obj, active);
710 		release_pages(pvec, pinned, 0);
711 	}
712 	drm_free_large(pvec);
713 	return ret;
714 #else
715 	return 0;
716 #endif	/* 0 */
717 }
718 
719 static void
720 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
721 {
722 	struct sgt_iter sgt_iter;
723 	struct page *page;
724 
725 	BUG_ON(obj->userptr.work != NULL);
726 	__i915_gem_userptr_set_active(obj, false);
727 
728 	if (obj->madv != I915_MADV_WILLNEED)
729 		obj->dirty = 0;
730 
731 	i915_gem_gtt_finish_object(obj);
732 
733 	for_each_sgt_page(page, sgt_iter, obj->pages) {
734 		if (obj->dirty)
735 			set_page_dirty(page);
736 
737 		mark_page_accessed(page);
738 #if 0
739 		put_page(page);
740 #endif
741 	}
742 	obj->dirty = 0;
743 
744 	sg_free_table(obj->pages);
745 	kfree(obj->pages);
746 }
747 
748 static void
749 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
750 {
751 	i915_gem_userptr_release__mmu_notifier(obj);
752 	i915_gem_userptr_release__mm_struct(obj);
753 }
754 
755 static int
756 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
757 {
758 	if (obj->userptr.mmu_object)
759 		return 0;
760 
761 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
762 }
763 
764 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
765 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
766 	.get_pages = i915_gem_userptr_get_pages,
767 	.put_pages = i915_gem_userptr_put_pages,
768 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
769 	.release = i915_gem_userptr_release,
770 };
771 
772 /**
773  * Creates a new mm object that wraps some normal memory from the process
774  * context - user memory.
775  *
776  * We impose several restrictions upon the memory being mapped
777  * into the GPU.
778  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
779  * 2. It must be normal system memory, not a pointer into another map of IO
780  *    space (e.g. it must not be a GTT mmapping of another object).
781  * 3. We only allow a bo as large as we could in theory map into the GTT,
782  *    that is we limit the size to the total size of the GTT.
783  * 4. The bo is marked as being snoopable. The backing pages are left
784  *    accessible directly by the CPU, but reads and writes by the GPU may
785  *    incur the cost of a snoop (unless you have an LLC architecture).
786  *
787  * Synchronisation between multiple users and the GPU is left to userspace
788  * through the normal set-domain-ioctl. The kernel will enforce that the
789  * GPU relinquishes the VMA before it is returned back to the system
790  * i.e. upon free(), munmap() or process termination. However, the userspace
791  * malloc() library may not immediately relinquish the VMA after free() and
792  * instead reuse it whilst the GPU is still reading and writing to the VMA.
793  * Caveat emptor.
794  *
795  * Also note, that the object created here is not currently a "first class"
796  * object, in that several ioctls are banned. These are the CPU access
797  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
798  * direct access via your pointer rather than use those ioctls. Another
799  * restriction is that we do not allow userptr surfaces to be pinned to the
800  * hardware and so we reject any attempt to create a framebuffer out of a
801  * userptr.
802  *
803  * If you think this is a good interface to use to pass GPU memory between
804  * drivers, please use dma-buf instead. In fact, wherever possible use
805  * dma-buf instead.
806  */
807 int
808 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
809 {
810 	struct drm_i915_gem_userptr *args = data;
811 	struct drm_i915_gem_object *obj;
812 	int ret;
813 	u32 handle;
814 
815 	if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) {
816 		/* We cannot support coherent userptr objects on hw without
817 		 * LLC and broken snooping.
818 		 */
819 		return -ENODEV;
820 	}
821 
822 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
823 			    I915_USERPTR_UNSYNCHRONIZED))
824 		return -EINVAL;
825 
826 	if (offset_in_page(args->user_ptr | args->user_size))
827 		return -EINVAL;
828 
829 #if 0
830 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
831 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
832 		return -EFAULT;
833 #endif
834 
835 	if (args->flags & I915_USERPTR_READ_ONLY) {
836 		/* On almost all of the current hw, we cannot tell the GPU that a
837 		 * page is readonly, so this is just a placeholder in the uAPI.
838 		 */
839 		return -ENODEV;
840 	}
841 
842 	obj = i915_gem_object_alloc(dev);
843 	if (obj == NULL)
844 		return -ENOMEM;
845 
846 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
847 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
848 	obj->cache_level = I915_CACHE_LLC;
849 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
850 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
851 
852 	obj->userptr.ptr = args->user_ptr;
853 	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
854 
855 	/* And keep a pointer to the current->mm for resolving the user pages
856 	 * at binding. This means that we need to hook into the mmu_notifier
857 	 * in order to detect if the mmu is destroyed.
858 	 */
859 	ret = i915_gem_userptr_init__mm_struct(obj);
860 	if (ret == 0)
861 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
862 	if (ret == 0)
863 		ret = drm_gem_handle_create(file, &obj->base, &handle);
864 
865 	/* drop reference from allocate - handle holds it now */
866 	drm_gem_object_unreference_unlocked(&obj->base);
867 	if (ret)
868 		return ret;
869 
870 	args->handle = handle;
871 	return 0;
872 }
873 
874 void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
875 {
876 	lockinit(&dev_priv->mm_lock, "i915dmm", 0, LK_CANRECURSE);
877 	hash_init(dev_priv->mm_structs);
878 }
879