xref: /dragonfly/sys/dev/drm/i915/i915_gem_userptr.c (revision d19ef5a2)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/swap.h>
33 #include <linux/sched/mm.h>
34 
35 struct i915_mm_struct {
36 	struct mm_struct *mm;
37 	struct drm_i915_private *i915;
38 	struct i915_mmu_notifier *mn;
39 	struct hlist_node node;
40 	struct kref kref;
41 	struct work_struct work;
42 };
43 
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
46 
47 struct i915_mmu_notifier {
48 	spinlock_t lock;
49 	struct hlist_node node;
50 	struct mmu_notifier mn;
51 	struct rb_root objects;
52 	struct workqueue_struct *wq;
53 };
54 
55 struct i915_mmu_object {
56 	struct i915_mmu_notifier *mn;
57 	struct drm_i915_gem_object *obj;
58 	struct interval_tree_node it;
59 	struct list_head link;
60 	struct work_struct work;
61 	bool attached;
62 };
63 
64 static void cancel_userptr(struct work_struct *work)
65 {
66 	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
67 	struct drm_i915_gem_object *obj = mo->obj;
68 	struct work_struct *active;
69 
70 	/* Cancel any active worker and force us to re-evaluate gup */
71 	mutex_lock(&obj->mm.lock);
72 	active = fetch_and_zero(&obj->userptr.work);
73 	mutex_unlock(&obj->mm.lock);
74 	if (active)
75 		goto out;
76 
77 	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
78 
79 	mutex_lock(&obj->base.dev->struct_mutex);
80 
81 	/* We are inside a kthread context and can't be interrupted */
82 	if (i915_gem_object_unbind(obj) == 0)
83 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
84 	WARN_ONCE(obj->mm.pages,
85 		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
86 		  obj->bind_count,
87 		  atomic_read(&obj->mm.pages_pin_count),
88 		  obj->pin_display);
89 
90 	mutex_unlock(&obj->base.dev->struct_mutex);
91 
92 out:
93 	i915_gem_object_put(obj);
94 }
95 
96 static void add_object(struct i915_mmu_object *mo)
97 {
98 	if (mo->attached)
99 		return;
100 
101 	interval_tree_insert(&mo->it, &mo->mn->objects);
102 	mo->attached = true;
103 }
104 
105 static void del_object(struct i915_mmu_object *mo)
106 {
107 	if (!mo->attached)
108 		return;
109 
110 	interval_tree_remove(&mo->it, &mo->mn->objects);
111 	mo->attached = false;
112 }
113 
114 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
115 						       struct mm_struct *mm,
116 						       unsigned long start,
117 						       unsigned long end)
118 {
119 	struct i915_mmu_notifier *mn =
120 		container_of(_mn, struct i915_mmu_notifier, mn);
121 	struct i915_mmu_object *mo;
122 	struct interval_tree_node *it;
123 	LINUX_LIST_HEAD(cancelled);
124 
125 	if (RB_EMPTY_ROOT(&mn->objects))
126 		return;
127 
128 	/* interval ranges are inclusive, but invalidate range is exclusive */
129 	end--;
130 
131 	lockmgr(&mn->lock, LK_EXCLUSIVE);
132 	it = interval_tree_iter_first(&mn->objects, start, end);
133 	while (it) {
134 		/* The mmu_object is released late when destroying the
135 		 * GEM object so it is entirely possible to gain a
136 		 * reference on an object in the process of being freed
137 		 * since our serialisation is via the spinlock and not
138 		 * the struct_mutex - and consequently use it after it
139 		 * is freed and then double free it. To prevent that
140 		 * use-after-free we only acquire a reference on the
141 		 * object if it is not in the process of being destroyed.
142 		 */
143 		mo = container_of(it, struct i915_mmu_object, it);
144 		if (kref_get_unless_zero(&mo->obj->base.refcount))
145 			queue_work(mn->wq, &mo->work);
146 
147 		list_add(&mo->link, &cancelled);
148 		it = interval_tree_iter_next(it, start, end);
149 	}
150 	list_for_each_entry(mo, &cancelled, link)
151 		del_object(mo);
152 	lockmgr(&mn->lock, LK_RELEASE);
153 
154 	if (!list_empty(&cancelled))
155 		flush_workqueue(mn->wq);
156 }
157 
158 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
159 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
160 };
161 
162 static struct i915_mmu_notifier *
163 i915_mmu_notifier_create(struct mm_struct *mm)
164 {
165 	struct i915_mmu_notifier *mn;
166 	int ret;
167 
168 	mn = kmalloc(sizeof(*mn), M_DRM, GFP_KERNEL);
169 	if (mn == NULL)
170 		return ERR_PTR(-ENOMEM);
171 
172 	spin_lock_init(&mn->lock);
173 	mn->mn.ops = &i915_gem_userptr_notifier;
174 	mn->objects = LINUX_RB_ROOT;
175 	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
176 	if (mn->wq == NULL) {
177 		kfree(mn);
178 		return ERR_PTR(-ENOMEM);
179 	}
180 
181 	 /* Protected by mmap_sem (write-lock) */
182 	ret = __mmu_notifier_register(&mn->mn, mm);
183 	if (ret) {
184 		destroy_workqueue(mn->wq);
185 		kfree(mn);
186 		return ERR_PTR(ret);
187 	}
188 
189 	return mn;
190 }
191 
192 static void
193 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
194 {
195 	struct i915_mmu_object *mo;
196 
197 	mo = obj->userptr.mmu_object;
198 	if (mo == NULL)
199 		return;
200 
201 	lockmgr(&mo->mn->lock, LK_EXCLUSIVE);
202 	del_object(mo);
203 	lockmgr(&mo->mn->lock, LK_RELEASE);
204 	kfree(mo);
205 
206 	obj->userptr.mmu_object = NULL;
207 }
208 
209 static struct i915_mmu_notifier *
210 i915_mmu_notifier_find(struct i915_mm_struct *mm)
211 {
212 	struct i915_mmu_notifier *mn = mm->mn;
213 
214 	mn = mm->mn;
215 	if (mn)
216 		return mn;
217 
218 	down_write(&mm->mm->mmap_sem);
219 	mutex_lock(&mm->i915->mm_lock);
220 	if ((mn = mm->mn) == NULL) {
221 		mn = i915_mmu_notifier_create(mm->mm);
222 		if (!IS_ERR(mn))
223 			mm->mn = mn;
224 	}
225 	mutex_unlock(&mm->i915->mm_lock);
226 	up_write(&mm->mm->mmap_sem);
227 
228 	return mn;
229 }
230 
231 static int
232 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
233 				    unsigned flags)
234 {
235 	struct i915_mmu_notifier *mn;
236 	struct i915_mmu_object *mo;
237 
238 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
239 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
240 
241 	if (WARN_ON(obj->userptr.mm == NULL))
242 		return -EINVAL;
243 
244 	mn = i915_mmu_notifier_find(obj->userptr.mm);
245 	if (IS_ERR(mn))
246 		return PTR_ERR(mn);
247 
248 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
249 	if (mo == NULL)
250 		return -ENOMEM;
251 
252 	mo->mn = mn;
253 	mo->obj = obj;
254 	mo->it.start = obj->userptr.ptr;
255 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
256 	INIT_WORK(&mo->work, cancel_userptr);
257 
258 	obj->userptr.mmu_object = mo;
259 	return 0;
260 }
261 
262 static void
263 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
264 		       struct mm_struct *mm)
265 {
266 	if (mn == NULL)
267 		return;
268 
269 	mmu_notifier_unregister(&mn->mn, mm);
270 	destroy_workqueue(mn->wq);
271 	kfree(mn);
272 }
273 
274 #else
275 
276 static void
277 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
278 {
279 }
280 
281 static int
282 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
283 				    unsigned flags)
284 {
285 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
286 		return -ENODEV;
287 
288 	if (!capable(CAP_SYS_ADMIN))
289 		return -EPERM;
290 
291 	return 0;
292 }
293 
294 static void
295 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
296 		       struct mm_struct *mm)
297 {
298 }
299 
300 #endif
301 
302 static struct i915_mm_struct *
303 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
304 {
305 	struct i915_mm_struct *mm;
306 
307 	/* Protected by dev_priv->mm_lock */
308 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
309 		if (mm->mm == real)
310 			return mm;
311 
312 	return NULL;
313 }
314 
315 static int
316 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
317 {
318 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
319 	struct i915_mm_struct *mm;
320 	int ret = 0;
321 
322 	/* During release of the GEM object we hold the struct_mutex. This
323 	 * precludes us from calling mmput() at that time as that may be
324 	 * the last reference and so call exit_mmap(). exit_mmap() will
325 	 * attempt to reap the vma, and if we were holding a GTT mmap
326 	 * would then call drm_gem_vm_close() and attempt to reacquire
327 	 * the struct mutex. So in order to avoid that recursion, we have
328 	 * to defer releasing the mm reference until after we drop the
329 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
330 	 * up.
331 	 */
332 	mutex_lock(&dev_priv->mm_lock);
333 	mm = __i915_mm_struct_find(dev_priv, current->mm);
334 #if 0
335 	if (mm == NULL) {
336 		mm = kmalloc(sizeof(*mm), M_DRM, GFP_KERNEL);
337 		if (mm == NULL) {
338 #endif
339 			ret = -ENOMEM;
340 #if 0
341 			goto out;
342 		}
343 
344 		kref_init(&mm->kref);
345 		mm->i915 = to_i915(obj->base.dev);
346 
347 		mm->mm = current->mm;
348 		mmgrab(current->mm);
349 
350 		mm->mn = NULL;
351 
352 		/* Protected by dev_priv->mm_lock */
353 		hash_add(dev_priv->mm_structs,
354 			 &mm->node, (unsigned long)mm->mm);
355 	} else
356 		kref_get(&mm->kref);
357 
358 	obj->userptr.mm = mm;
359 out:
360 	mutex_unlock(&dev_priv->mm_lock);
361 #endif
362 	return ret;
363 }
364 
365 static void
366 __i915_mm_struct_free__worker(struct work_struct *work)
367 {
368 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
369 	i915_mmu_notifier_free(mm->mn, mm->mm);
370 #if 0
371 	mmdrop(mm->mm);
372 #endif
373 	kfree(mm);
374 }
375 
376 static void
377 __i915_mm_struct_free(struct kref *kref)
378 {
379 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
380 
381 	/* Protected by dev_priv->mm_lock */
382 	hash_del(&mm->node);
383 	mutex_unlock(&mm->i915->mm_lock);
384 
385 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
386 	schedule_work(&mm->work);
387 }
388 
389 #if 0
390 static bool noncontiguous_or_overlaps_ggtt(struct drm_i915_gem_object *obj,
391 					   struct mm_struct *mm)
392 {
393 	const struct vm_operations_struct *gem_vm_ops =
394 		obj->base.dev->driver->gem_vm_ops;
395 	unsigned long addr = obj->userptr.ptr;
396 	const unsigned long end = addr + obj->base.size;
397 	struct vm_area_struct *vma;
398 
399 	/* Check for a contiguous set of vma covering the userptr, if any
400 	 * are absent, they will EFAULT. More importantly if any point back
401 	 * to a drm_i915_gem_object GTT mmaping, we may trigger a deadlock
402 	 * between the deferred gup of this userptr and the object being
403 	 * unbound calling invalidate_range -> cancel_userptr.
404 	 */
405 	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
406 		if (vma->vm_start > addr) /* gap */
407 			break;
408 
409 		if (vma->vm_ops == gem_vm_ops) /* GTT mmapping */
410 			break;
411 
412 		if (vma->vm_end >= end)
413 			return false;
414 
415 		addr = vma->vm_end;
416 	}
417 
418 	return true;
419 }
420 #endif
421 
422 static void
423 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
424 {
425 	if (obj->userptr.mm == NULL)
426 		return;
427 
428 	kref_put_mutex(&obj->userptr.mm->kref,
429 		       __i915_mm_struct_free,
430 		       &to_i915(obj->base.dev)->mm_lock);
431 	obj->userptr.mm = NULL;
432 }
433 
434 struct get_pages_work {
435 	struct work_struct work;
436 	struct drm_i915_gem_object *obj;
437 	struct task_struct *task;
438 };
439 
440 #if IS_ENABLED(CONFIG_SWIOTLB)
441 #define swiotlb_active() swiotlb_nr_tbl()
442 #else
443 #define swiotlb_active() 0
444 #endif
445 
446 #if 0
447 static int
448 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
449 {
450 	struct scatterlist *sg;
451 	int ret, n;
452 
453 	*st = kmalloc(sizeof(**st), M_DRM, GFP_KERNEL);
454 	if (*st == NULL)
455 		return -ENOMEM;
456 
457 	if (swiotlb_active()) {
458 		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
459 		if (ret)
460 			goto err;
461 
462 		for_each_sg((*st)->sgl, sg, num_pages, n)
463 			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
464 	} else {
465 		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
466 						0, num_pages << PAGE_SHIFT,
467 						GFP_KERNEL);
468 		if (ret)
469 			goto err;
470 	}
471 
472 	return 0;
473 
474 err:
475 	kfree(*st);
476 	*st = NULL;
477 	return ret;
478 }
479 
480 static struct sg_table *
481 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
482 			     struct page **pvec, int num_pages)
483 {
484 	struct sg_table *pages;
485 	int ret;
486 
487 	ret = st_set_pages(&pages, pvec, num_pages);
488 	if (ret)
489 		return ERR_PTR(ret);
490 
491 	ret = i915_gem_gtt_prepare_pages(obj, pages);
492 	if (ret) {
493 		sg_free_table(pages);
494 		kfree(pages);
495 		return ERR_PTR(ret);
496 	}
497 
498 	return pages;
499 }
500 #endif
501 
502 static int
503 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
504 			      bool value)
505 {
506 	int ret = 0;
507 
508 	/* During mm_invalidate_range we need to cancel any userptr that
509 	 * overlaps the range being invalidated. Doing so requires the
510 	 * struct_mutex, and that risks recursion. In order to cause
511 	 * recursion, the user must alias the userptr address space with
512 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
513 	 * to invalidate that mmaping, mm_invalidate_range is called with
514 	 * the userptr address *and* the struct_mutex held.  To prevent that
515 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
516 	 * whether this object is valid.
517 	 */
518 #if defined(CONFIG_MMU_NOTIFIER)
519 	if (obj->userptr.mmu_object == NULL)
520 		return 0;
521 
522 	lockmgr(&obj->userptr.mmu_object->mn->lock, LK_EXCLUSIVE);
523 	/* In order to serialise get_pages with an outstanding
524 	 * cancel_userptr, we must drop the struct_mutex and try again.
525 	 */
526 	if (!value)
527 		del_object(obj->userptr.mmu_object);
528 	else if (!work_pending(&obj->userptr.mmu_object->work))
529 		add_object(obj->userptr.mmu_object);
530 	else
531 		ret = -EAGAIN;
532 	lockmgr(&obj->userptr.mmu_object->mn->lock, LK_RELEASE);
533 #endif
534 
535 	return ret;
536 }
537 
538 #if 0
539 static void
540 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
541 {
542 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
543 	struct drm_i915_gem_object *obj = work->obj;
544 	const int npages = obj->base.size >> PAGE_SHIFT;
545 	struct page **pvec;
546 	int pinned, ret;
547 
548 	ret = -ENOMEM;
549 	pinned = 0;
550 
551 	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
552 	if (pvec != NULL) {
553 		struct mm_struct *mm = obj->userptr.mm->mm;
554 
555 		ret = -EFAULT;
556 		if (mmget_not_zero(mm)) {
557 			down_read(&mm->mmap_sem);
558 			while (pinned < npages) {
559 				ret = get_user_pages_remote
560 					(work->task, mm,
561 					 obj->userptr.ptr + pinned * PAGE_SIZE,
562 					 npages - pinned,
563 					 !obj->userptr.read_only, 0,
564 					 pvec + pinned, NULL);
565 				if (ret < 0)
566 					break;
567 
568 				pinned += ret;
569 			}
570 			up_read(&mm->mmap_sem);
571 			mmput(mm);
572 		}
573 	}
574 
575 	mutex_lock(&obj->mm.lock);
576 	if (obj->userptr.work == &work->work) {
577 		struct sg_table *pages = ERR_PTR(ret);
578 
579 		if (pinned == npages) {
580 			pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
581 			if (!IS_ERR(pages)) {
582 				__i915_gem_object_set_pages(obj, pages);
583 				pinned = 0;
584 				pages = NULL;
585 			}
586 		}
587 
588 		obj->userptr.work = ERR_CAST(pages);
589 		if (IS_ERR(pages))
590 			__i915_gem_userptr_set_active(obj, false);
591 	}
592 	mutex_unlock(&obj->mm.lock);
593 
594 	release_pages(pvec, pinned, 0);
595 	drm_free_large(pvec);
596 
597 	i915_gem_object_put(obj);
598 	put_task_struct(work->task);
599 	kfree(work);
600 }
601 
602 static struct sg_table *
603 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
604 {
605 	struct get_pages_work *work;
606 
607 	/* Spawn a worker so that we can acquire the
608 	 * user pages without holding our mutex. Access
609 	 * to the user pages requires mmap_sem, and we have
610 	 * a strict lock ordering of mmap_sem, struct_mutex -
611 	 * we already hold struct_mutex here and so cannot
612 	 * call gup without encountering a lock inversion.
613 	 *
614 	 * Userspace will keep on repeating the operation
615 	 * (thanks to EAGAIN) until either we hit the fast
616 	 * path or the worker completes. If the worker is
617 	 * cancelled or superseded, the task is still run
618 	 * but the results ignored. (This leads to
619 	 * complications that we may have a stray object
620 	 * refcount that we need to be wary of when
621 	 * checking for existing objects during creation.)
622 	 * If the worker encounters an error, it reports
623 	 * that error back to this function through
624 	 * obj->userptr.work = ERR_PTR.
625 	 */
626 	work = kmalloc(sizeof(*work), GFP_KERNEL);
627 	if (work == NULL)
628 		return ERR_PTR(-ENOMEM);
629 
630 	obj->userptr.work = &work->work;
631 
632 	work->obj = i915_gem_object_get(obj);
633 
634 	work->task = current;
635 	get_task_struct(work->task);
636 
637 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
638 	schedule_work(&work->work);
639 
640 	return ERR_PTR(-EAGAIN);
641 }
642 #endif
643 
644 static struct sg_table *
645 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
646 {
647 #if 0
648 	const int num_pages = obj->base.size >> PAGE_SHIFT;
649 	struct mm_struct *mm = obj->userptr.mm->mm;
650 	struct page **pvec;
651 	struct sg_table *pages;
652 	bool active;
653 	int pinned;
654 
655 	/* If userspace should engineer that these pages are replaced in
656 	 * the vma between us binding this page into the GTT and completion
657 	 * of rendering... Their loss. If they change the mapping of their
658 	 * pages they need to create a new bo to point to the new vma.
659 	 *
660 	 * However, that still leaves open the possibility of the vma
661 	 * being copied upon fork. Which falls under the same userspace
662 	 * synchronisation issue as a regular bo, except that this time
663 	 * the process may not be expecting that a particular piece of
664 	 * memory is tied to the GPU.
665 	 *
666 	 * Fortunately, we can hook into the mmu_notifier in order to
667 	 * discard the page references prior to anything nasty happening
668 	 * to the vma (discard or cloning) which should prevent the more
669 	 * egregious cases from causing harm.
670 	 */
671 
672 	if (obj->userptr.work) {
673 		/* active flag should still be held for the pending work */
674 		if (IS_ERR(obj->userptr.work))
675 			return ERR_CAST(obj->userptr.work);
676 		else
677 			return ERR_PTR(-EAGAIN);
678 	}
679 
680 	pvec = NULL;
681 	pinned = 0;
682 
683 	if (mm == current->mm) {
684 		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
685 				      GFP_TEMPORARY |
686 				      __GFP_NORETRY |
687 				      __GFP_NOWARN);
688 		if (pvec) /* defer to worker if malloc fails */
689 			pinned = __get_user_pages_fast(obj->userptr.ptr,
690 						       num_pages,
691 						       !obj->userptr.read_only,
692 						       pvec);
693 	}
694 
695 	active = false;
696 	if (pinned < 0) {
697 		pages = ERR_PTR(pinned);
698 		pinned = 0;
699 	} else if (pinned < num_pages) {
700 		pages = __i915_gem_userptr_get_pages_schedule(obj);
701 		active = pages == ERR_PTR(-EAGAIN);
702 	} else {
703 		pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
704 		active = !IS_ERR(pages);
705 	}
706 	if (active)
707 		__i915_gem_userptr_set_active(obj, true);
708 
709 	if (IS_ERR(pages))
710 		release_pages(pvec, pinned, 0);
711 	drm_free_large(pvec);
712 
713 	return pages;
714 #else
715 	return NULL;
716 #endif	/* 0 */
717 }
718 
719 static void
720 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
721 			   struct sg_table *pages)
722 {
723 	struct sgt_iter sgt_iter;
724 	struct page *page;
725 
726 	BUG_ON(obj->userptr.work != NULL);
727 	__i915_gem_userptr_set_active(obj, false);
728 
729 	if (obj->mm.madv != I915_MADV_WILLNEED)
730 		obj->mm.dirty = false;
731 
732 	i915_gem_gtt_finish_pages(obj, pages);
733 
734 	for_each_sgt_page(page, sgt_iter, pages) {
735 		if (obj->mm.dirty)
736 			set_page_dirty(page);
737 
738 		mark_page_accessed(page);
739 #if 0
740 		put_page(page);
741 #endif
742 	}
743 	obj->mm.dirty = false;
744 
745 	sg_free_table(pages);
746 	kfree(pages);
747 }
748 
749 static void
750 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
751 {
752 	i915_gem_userptr_release__mmu_notifier(obj);
753 	i915_gem_userptr_release__mm_struct(obj);
754 }
755 
756 static int
757 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
758 {
759 	if (obj->userptr.mmu_object)
760 		return 0;
761 
762 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
763 }
764 
765 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
766 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
767 		 I915_GEM_OBJECT_IS_SHRINKABLE,
768 	.get_pages = i915_gem_userptr_get_pages,
769 	.put_pages = i915_gem_userptr_put_pages,
770 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
771 	.release = i915_gem_userptr_release,
772 };
773 
774 /**
775  * Creates a new mm object that wraps some normal memory from the process
776  * context - user memory.
777  *
778  * We impose several restrictions upon the memory being mapped
779  * into the GPU.
780  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
781  * 2. It must be normal system memory, not a pointer into another map of IO
782  *    space (e.g. it must not be a GTT mmapping of another object).
783  * 3. We only allow a bo as large as we could in theory map into the GTT,
784  *    that is we limit the size to the total size of the GTT.
785  * 4. The bo is marked as being snoopable. The backing pages are left
786  *    accessible directly by the CPU, but reads and writes by the GPU may
787  *    incur the cost of a snoop (unless you have an LLC architecture).
788  *
789  * Synchronisation between multiple users and the GPU is left to userspace
790  * through the normal set-domain-ioctl. The kernel will enforce that the
791  * GPU relinquishes the VMA before it is returned back to the system
792  * i.e. upon free(), munmap() or process termination. However, the userspace
793  * malloc() library may not immediately relinquish the VMA after free() and
794  * instead reuse it whilst the GPU is still reading and writing to the VMA.
795  * Caveat emptor.
796  *
797  * Also note, that the object created here is not currently a "first class"
798  * object, in that several ioctls are banned. These are the CPU access
799  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
800  * direct access via your pointer rather than use those ioctls. Another
801  * restriction is that we do not allow userptr surfaces to be pinned to the
802  * hardware and so we reject any attempt to create a framebuffer out of a
803  * userptr.
804  *
805  * If you think this is a good interface to use to pass GPU memory between
806  * drivers, please use dma-buf instead. In fact, wherever possible use
807  * dma-buf instead.
808  */
809 int
810 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
811 {
812 	struct drm_i915_private *dev_priv = to_i915(dev);
813 	struct drm_i915_gem_userptr *args = data;
814 	struct drm_i915_gem_object *obj;
815 	int ret;
816 	u32 handle;
817 
818 	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
819 		/* We cannot support coherent userptr objects on hw without
820 		 * LLC and broken snooping.
821 		 */
822 		return -ENODEV;
823 	}
824 
825 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
826 			    I915_USERPTR_UNSYNCHRONIZED))
827 		return -EINVAL;
828 
829 	if (offset_in_page(args->user_ptr | args->user_size))
830 		return -EINVAL;
831 
832 #if 0
833 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
834 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
835 		return -EFAULT;
836 #endif
837 
838 	if (args->flags & I915_USERPTR_READ_ONLY) {
839 		/* On almost all of the current hw, we cannot tell the GPU that a
840 		 * page is readonly, so this is just a placeholder in the uAPI.
841 		 */
842 		return -ENODEV;
843 	}
844 
845 	obj = i915_gem_object_alloc(dev_priv);
846 	if (obj == NULL)
847 		return -ENOMEM;
848 
849 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
850 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
851 	obj->cache_level = I915_CACHE_LLC;
852 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
853 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
854 
855 	obj->userptr.ptr = args->user_ptr;
856 	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
857 
858 	/* And keep a pointer to the current->mm for resolving the user pages
859 	 * at binding. This means that we need to hook into the mmu_notifier
860 	 * in order to detect if the mmu is destroyed.
861 	 */
862 	ret = i915_gem_userptr_init__mm_struct(obj);
863 	if (ret == 0)
864 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
865 	if (ret == 0)
866 		ret = drm_gem_handle_create(file, &obj->base, &handle);
867 
868 	/* drop reference from allocate - handle holds it now */
869 	i915_gem_object_put(obj);
870 	if (ret)
871 		return ret;
872 
873 	args->handle = handle;
874 	return 0;
875 }
876 
877 void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
878 {
879 	lockinit(&dev_priv->mm_lock, "i915dmm", 0, LK_CANRECURSE);
880 	hash_init(dev_priv->mm_structs);
881 }
882