1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 #include <linux/firmware.h>
25 #include <linux/circ_buf.h>
26 #include <linux/debugfs.h>
27 #include <linux/relay.h>
28 #include "i915_drv.h"
29 #include "intel_guc.h"
30 
31 /**
32  * DOC: GuC-based command submission
33  *
34  * i915_guc_client:
35  * We use the term client to avoid confusion with contexts. A i915_guc_client is
36  * equivalent to GuC object guc_context_desc. This context descriptor is
37  * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
38  * and workqueue for it. Also the process descriptor (guc_process_desc), which
39  * is mapped to client space. So the client can write Work Item then ring the
40  * doorbell.
41  *
42  * To simplify the implementation, we allocate one gem object that contains all
43  * pages for doorbell, process descriptor and workqueue.
44  *
45  * The Scratch registers:
46  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
47  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
48  * triggers an interrupt on the GuC via another register write (0xC4C8).
49  * Firmware writes a success/fail code back to the action register after
50  * processes the request. The kernel driver polls waiting for this update and
51  * then proceeds.
52  * See host2guc_action()
53  *
54  * Doorbells:
55  * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
56  * mapped into process space.
57  *
58  * Work Items:
59  * There are several types of work items that the host may place into a
60  * workqueue, each with its own requirements and limitations. Currently only
61  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
62  * represents in-order queue. The kernel driver packs ring tail pointer and an
63  * ELSP context descriptor dword into Work Item.
64  * See guc_wq_item_append()
65  *
66  */
67 
68 /*
69  * Read GuC command/status register (SOFT_SCRATCH_0)
70  * Return true if it contains a response rather than a command
71  */
72 static inline bool host2guc_action_response(struct drm_i915_private *dev_priv,
73 					    u32 *status)
74 {
75 	u32 val = I915_READ(SOFT_SCRATCH(0));
76 	*status = val;
77 	return GUC2HOST_IS_RESPONSE(val);
78 }
79 
80 static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len)
81 {
82 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
83 	u32 status;
84 	int i;
85 	int ret;
86 
87 	if (WARN_ON(len < 1 || len > 15))
88 		return -EINVAL;
89 
90 	mutex_lock(&guc->action_lock);
91 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
92 
93 	dev_priv->guc.action_count += 1;
94 	dev_priv->guc.action_cmd = data[0];
95 
96 	for (i = 0; i < len; i++)
97 		I915_WRITE(SOFT_SCRATCH(i), data[i]);
98 
99 	POSTING_READ(SOFT_SCRATCH(i - 1));
100 
101 	I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER);
102 
103 	/*
104 	 * Fast commands should complete in less than 10us, so sample quickly
105 	 * up to that length of time, then switch to a slower sleep-wait loop.
106 	 * No HOST2GUC command should ever take longer than 10ms.
107 	 */
108 	ret = wait_for_us(host2guc_action_response(dev_priv, &status), 10);
109 	if (ret)
110 		ret = wait_for(host2guc_action_response(dev_priv, &status), 10);
111 	if (status != GUC2HOST_STATUS_SUCCESS) {
112 		/*
113 		 * Either the GuC explicitly returned an error (which
114 		 * we convert to -EIO here) or no response at all was
115 		 * received within the timeout limit (-ETIMEDOUT)
116 		 */
117 		if (ret != -ETIMEDOUT)
118 			ret = -EIO;
119 
120 		DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n",
121 			 data[0], ret, status, I915_READ(SOFT_SCRATCH(15)));
122 
123 		dev_priv->guc.action_fail += 1;
124 		dev_priv->guc.action_err = ret;
125 	}
126 	dev_priv->guc.action_status = status;
127 
128 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
129 	mutex_unlock(&guc->action_lock);
130 
131 	return ret;
132 }
133 
134 /*
135  * Tell the GuC to allocate or deallocate a specific doorbell
136  */
137 
138 static int host2guc_allocate_doorbell(struct intel_guc *guc,
139 				      struct i915_guc_client *client)
140 {
141 	u32 data[2];
142 
143 	data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL;
144 	data[1] = client->ctx_index;
145 
146 	return host2guc_action(guc, data, 2);
147 }
148 
149 static int host2guc_release_doorbell(struct intel_guc *guc,
150 				     struct i915_guc_client *client)
151 {
152 	u32 data[2];
153 
154 	data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL;
155 	data[1] = client->ctx_index;
156 
157 	return host2guc_action(guc, data, 2);
158 }
159 
160 static int host2guc_sample_forcewake(struct intel_guc *guc,
161 				     struct i915_guc_client *client)
162 {
163 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
164 	u32 data[2];
165 
166 	data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE;
167 	/* WaRsDisableCoarsePowerGating:skl,bxt */
168 	if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
169 		data[1] = 0;
170 	else
171 		/* bit 0 and 1 are for Render and Media domain separately */
172 		data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
173 
174 	return host2guc_action(guc, data, ARRAY_SIZE(data));
175 }
176 
177 #if 0
178 static int host2guc_logbuffer_flush_complete(struct intel_guc *guc)
179 {
180 	u32 data[1];
181 
182 	data[0] = HOST2GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE;
183 
184 	return host2guc_action(guc, data, 1);
185 }
186 #endif
187 
188 static int host2guc_force_logbuffer_flush(struct intel_guc *guc)
189 {
190 	u32 data[2];
191 
192 	data[0] = HOST2GUC_ACTION_FORCE_LOG_BUFFER_FLUSH;
193 	data[1] = 0;
194 
195 	return host2guc_action(guc, data, 2);
196 }
197 
198 static int host2guc_logging_control(struct intel_guc *guc, u32 control_val)
199 {
200 	u32 data[2];
201 
202 	data[0] = HOST2GUC_ACTION_UK_LOG_ENABLE_LOGGING;
203 	data[1] = control_val;
204 
205 	return host2guc_action(guc, data, 2);
206 }
207 
208 /*
209  * Initialise, update, or clear doorbell data shared with the GuC
210  *
211  * These functions modify shared data and so need access to the mapped
212  * client object which contains the page being used for the doorbell
213  */
214 
215 static int guc_update_doorbell_id(struct intel_guc *guc,
216 				  struct i915_guc_client *client,
217 				  u16 new_id)
218 {
219 	struct sg_table *sg = guc->ctx_pool_vma->pages;
220 	void *doorbell_bitmap = guc->doorbell_bitmap;
221 	struct guc_doorbell_info *doorbell;
222 	struct guc_context_desc desc;
223 	size_t len;
224 
225 	doorbell = client->vaddr + client->doorbell_offset;
226 
227 	if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
228 	    test_bit(client->doorbell_id, doorbell_bitmap)) {
229 		/* Deactivate the old doorbell */
230 		doorbell->db_status = GUC_DOORBELL_DISABLED;
231 		(void)host2guc_release_doorbell(guc, client);
232 		__clear_bit(client->doorbell_id, doorbell_bitmap);
233 	}
234 
235 	/* Update the GuC's idea of the doorbell ID */
236 	len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
237 			     sizeof(desc) * client->ctx_index);
238 	if (len != sizeof(desc))
239 		return -EFAULT;
240 	desc.db_id = new_id;
241 	len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
242 			     sizeof(desc) * client->ctx_index);
243 	if (len != sizeof(desc))
244 		return -EFAULT;
245 
246 	client->doorbell_id = new_id;
247 	if (new_id == GUC_INVALID_DOORBELL_ID)
248 		return 0;
249 
250 	/* Activate the new doorbell */
251 	__set_bit(new_id, doorbell_bitmap);
252 	doorbell->cookie = 0;
253 	doorbell->db_status = GUC_DOORBELL_ENABLED;
254 	return host2guc_allocate_doorbell(guc, client);
255 }
256 
257 static int guc_init_doorbell(struct intel_guc *guc,
258 			      struct i915_guc_client *client,
259 			      uint16_t db_id)
260 {
261 	return guc_update_doorbell_id(guc, client, db_id);
262 }
263 
264 static void guc_disable_doorbell(struct intel_guc *guc,
265 				 struct i915_guc_client *client)
266 {
267 	(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
268 
269 	/* XXX: wait for any interrupts */
270 	/* XXX: wait for workqueue to drain */
271 }
272 
273 static uint16_t
274 select_doorbell_register(struct intel_guc *guc, uint32_t priority)
275 {
276 	/*
277 	 * The bitmap tracks which doorbell registers are currently in use.
278 	 * It is split into two halves; the first half is used for normal
279 	 * priority contexts, the second half for high-priority ones.
280 	 * Note that logically higher priorities are numerically less than
281 	 * normal ones, so the test below means "is it high-priority?"
282 	 */
283 	const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
284 	const uint16_t half = GUC_MAX_DOORBELLS / 2;
285 	const uint16_t start = hi_pri ? half : 0;
286 	const uint16_t end = start + half;
287 	uint16_t id;
288 
289 	id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
290 	if (id == end)
291 		id = GUC_INVALID_DOORBELL_ID;
292 
293 	DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
294 			hi_pri ? "high" : "normal", id);
295 
296 	return id;
297 }
298 
299 /*
300  * Select, assign and relase doorbell cachelines
301  *
302  * These functions track which doorbell cachelines are in use.
303  * The data they manipulate is protected by the host2guc lock.
304  */
305 
306 static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
307 {
308 	const uint32_t cacheline_size = cache_line_size();
309 	uint32_t offset;
310 
311 	/* Doorbell uses a single cache line within a page */
312 	offset = offset_in_page(guc->db_cacheline);
313 
314 	/* Moving to next cache line to reduce contention */
315 	guc->db_cacheline += cacheline_size;
316 
317 	DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
318 			offset, guc->db_cacheline, cacheline_size);
319 
320 	return offset;
321 }
322 
323 /*
324  * Initialise the process descriptor shared with the GuC firmware.
325  */
326 static void guc_proc_desc_init(struct intel_guc *guc,
327 			       struct i915_guc_client *client)
328 {
329 	struct guc_process_desc *desc;
330 
331 	desc = client->vaddr + client->proc_desc_offset;
332 
333 	memset(desc, 0, sizeof(*desc));
334 
335 	/*
336 	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
337 	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
338 	 * space for kernel clients (map on demand instead? May make debug
339 	 * easier to have it mapped).
340 	 */
341 	desc->wq_base_addr = 0;
342 	desc->db_base_addr = 0;
343 
344 	desc->context_id = client->ctx_index;
345 	desc->wq_size_bytes = client->wq_size;
346 	desc->wq_status = WQ_STATUS_ACTIVE;
347 	desc->priority = client->priority;
348 }
349 
350 /*
351  * Initialise/clear the context descriptor shared with the GuC firmware.
352  *
353  * This descriptor tells the GuC where (in GGTT space) to find the important
354  * data structures relating to this client (doorbell, process descriptor,
355  * write queue, etc).
356  */
357 
358 static void guc_ctx_desc_init(struct intel_guc *guc,
359 			      struct i915_guc_client *client)
360 {
361 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
362 	struct intel_engine_cs *engine;
363 	struct i915_gem_context *ctx = client->owner;
364 	struct guc_context_desc desc;
365 	struct sg_table *sg;
366 	unsigned int tmp;
367 	u32 gfx_addr;
368 
369 	memset(&desc, 0, sizeof(desc));
370 
371 	desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
372 	desc.context_id = client->ctx_index;
373 	desc.priority = client->priority;
374 	desc.db_id = client->doorbell_id;
375 
376 	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
377 		struct intel_context *ce = &ctx->engine[engine->id];
378 		uint32_t guc_engine_id = engine->guc_id;
379 		struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
380 
381 		/* TODO: We have a design issue to be solved here. Only when we
382 		 * receive the first batch, we know which engine is used by the
383 		 * user. But here GuC expects the lrc and ring to be pinned. It
384 		 * is not an issue for default context, which is the only one
385 		 * for now who owns a GuC client. But for future owner of GuC
386 		 * client, need to make sure lrc is pinned prior to enter here.
387 		 */
388 		if (!ce->state)
389 			break;	/* XXX: continue? */
390 
391 		lrc->context_desc = lower_32_bits(ce->lrc_desc);
392 
393 		/* The state page is after PPHWSP */
394 		lrc->ring_lcra =
395 			i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
396 		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
397 				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
398 
399 		lrc->ring_begin = i915_ggtt_offset(ce->ring->vma);
400 		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
401 		lrc->ring_next_free_location = lrc->ring_begin;
402 		lrc->ring_current_tail_pointer_value = 0;
403 
404 		desc.engines_used |= (1 << guc_engine_id);
405 	}
406 
407 	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
408 			client->engines, desc.engines_used);
409 	WARN_ON(desc.engines_used == 0);
410 
411 	/*
412 	 * The doorbell, process descriptor, and workqueue are all parts
413 	 * of the client object, which the GuC will reference via the GGTT
414 	 */
415 	gfx_addr = i915_ggtt_offset(client->vma);
416 	desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
417 				client->doorbell_offset;
418 	desc.db_trigger_cpu =
419 		(uintptr_t)client->vaddr + client->doorbell_offset;
420 	desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
421 	desc.process_desc = gfx_addr + client->proc_desc_offset;
422 	desc.wq_addr = gfx_addr + client->wq_offset;
423 	desc.wq_size = client->wq_size;
424 
425 	/*
426 	 * XXX: Take LRCs from an existing context if this is not an
427 	 * IsKMDCreatedContext client
428 	 */
429 	desc.desc_private = (uintptr_t)client;
430 
431 	/* Pool context is pinned already */
432 	sg = guc->ctx_pool_vma->pages;
433 	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
434 			     sizeof(desc) * client->ctx_index);
435 }
436 
437 static void guc_ctx_desc_fini(struct intel_guc *guc,
438 			      struct i915_guc_client *client)
439 {
440 	struct guc_context_desc desc;
441 	struct sg_table *sg;
442 
443 	memset(&desc, 0, sizeof(desc));
444 
445 	sg = guc->ctx_pool_vma->pages;
446 	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
447 			     sizeof(desc) * client->ctx_index);
448 }
449 
450 /**
451  * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
452  * @request:	request associated with the commands
453  *
454  * Return:	0 if space is available
455  *		-EAGAIN if space is not currently available
456  *
457  * This function must be called (and must return 0) before a request
458  * is submitted to the GuC via i915_guc_submit() below. Once a result
459  * of 0 has been returned, it must be balanced by a corresponding
460  * call to submit().
461  *
462  * Reservation allows the caller to determine in advance that space
463  * will be available for the next submission before committing resources
464  * to it, and helps avoid late failures with complicated recovery paths.
465  */
466 int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
467 {
468 	const size_t wqi_size = sizeof(struct guc_wq_item);
469 	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
470 	struct guc_process_desc *desc = gc->vaddr + gc->proc_desc_offset;
471 	u32 freespace;
472 	int ret;
473 
474 	lockmgr(&gc->wq_lock, LK_EXCLUSIVE);
475 	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
476 	freespace -= gc->wq_rsvd;
477 	if (likely(freespace >= wqi_size)) {
478 		gc->wq_rsvd += wqi_size;
479 		ret = 0;
480 	} else {
481 		gc->no_wq_space++;
482 		ret = -EAGAIN;
483 	}
484 	lockmgr(&gc->wq_lock, LK_RELEASE);
485 
486 	return ret;
487 }
488 
489 void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
490 {
491 	const size_t wqi_size = sizeof(struct guc_wq_item);
492 	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
493 
494 	GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size);
495 
496 	lockmgr(&gc->wq_lock, LK_EXCLUSIVE);
497 	gc->wq_rsvd -= wqi_size;
498 	lockmgr(&gc->wq_lock, LK_RELEASE);
499 }
500 
501 /* Construct a Work Item and append it to the GuC's Work Queue */
502 static void guc_wq_item_append(struct i915_guc_client *gc,
503 			       struct drm_i915_gem_request *rq)
504 {
505 	/* wqi_len is in DWords, and does not include the one-word header */
506 	const size_t wqi_size = sizeof(struct guc_wq_item);
507 	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
508 	struct intel_engine_cs *engine = rq->engine;
509 	struct guc_process_desc *desc;
510 	struct guc_wq_item *wqi;
511 	u32 freespace, tail, wq_off;
512 
513 	desc = gc->vaddr + gc->proc_desc_offset;
514 
515 	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
516 	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
517 	GEM_BUG_ON(freespace < wqi_size);
518 
519 	/* The GuC firmware wants the tail index in QWords, not bytes */
520 	tail = rq->tail;
521 	GEM_BUG_ON(tail & 7);
522 	tail >>= 3;
523 	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
524 
525 	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
526 	 * should not have the case where structure wqi is across page, neither
527 	 * wrapped to the beginning. This simplifies the implementation below.
528 	 *
529 	 * XXX: if not the case, we need save data to a temp wqi and copy it to
530 	 * workqueue buffer dw by dw.
531 	 */
532 	BUILD_BUG_ON(wqi_size != 16);
533 	GEM_BUG_ON(gc->wq_rsvd < wqi_size);
534 
535 	/* postincrement WQ tail for next time */
536 	wq_off = gc->wq_tail;
537 	GEM_BUG_ON(wq_off & (wqi_size - 1));
538 	gc->wq_tail += wqi_size;
539 	gc->wq_tail &= gc->wq_size - 1;
540 	gc->wq_rsvd -= wqi_size;
541 
542 	/* WQ starts from the page after doorbell / process_desc */
543 	wqi = gc->vaddr + wq_off + GUC_DB_SIZE;
544 
545 	/* Now fill in the 4-word work queue item */
546 	wqi->header = WQ_TYPE_INORDER |
547 			(wqi_len << WQ_LEN_SHIFT) |
548 			(engine->guc_id << WQ_TARGET_SHIFT) |
549 			WQ_NO_WCFLUSH_WAIT;
550 
551 	/* The GuC wants only the low-order word of the context descriptor */
552 	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
553 
554 	wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
555 	wqi->fence_id = rq->global_seqno;
556 }
557 
558 static int guc_ring_doorbell(struct i915_guc_client *gc)
559 {
560 	struct guc_process_desc *desc;
561 	union guc_doorbell_qw db_cmp, db_exc, db_ret;
562 	union guc_doorbell_qw *db;
563 	int attempt = 2, ret = -EAGAIN;
564 
565 	desc = gc->vaddr + gc->proc_desc_offset;
566 
567 	/* Update the tail so it is visible to GuC */
568 	desc->tail = gc->wq_tail;
569 
570 	/* current cookie */
571 	db_cmp.db_status = GUC_DOORBELL_ENABLED;
572 	db_cmp.cookie = gc->cookie;
573 
574 	/* cookie to be updated */
575 	db_exc.db_status = GUC_DOORBELL_ENABLED;
576 	db_exc.cookie = gc->cookie + 1;
577 	if (db_exc.cookie == 0)
578 		db_exc.cookie = 1;
579 
580 	/* pointer of current doorbell cacheline */
581 	db = gc->vaddr + gc->doorbell_offset;
582 
583 	while (attempt--) {
584 		/* lets ring the doorbell */
585 		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
586 			db_cmp.value_qw, db_exc.value_qw);
587 
588 		/* if the exchange was successfully executed */
589 		if (db_ret.value_qw == db_cmp.value_qw) {
590 			/* db was successfully rung */
591 			gc->cookie = db_exc.cookie;
592 			ret = 0;
593 			break;
594 		}
595 
596 		/* XXX: doorbell was lost and need to acquire it again */
597 		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
598 			break;
599 
600 		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
601 			 db_cmp.cookie, db_ret.cookie);
602 
603 		/* update the cookie to newly read cookie from GuC */
604 		db_cmp.cookie = db_ret.cookie;
605 		db_exc.cookie = db_ret.cookie + 1;
606 		if (db_exc.cookie == 0)
607 			db_exc.cookie = 1;
608 	}
609 
610 	return ret;
611 }
612 
613 /**
614  * i915_guc_submit() - Submit commands through GuC
615  * @rq:		request associated with the commands
616  *
617  * Return:	0 on success, otherwise an errno.
618  * 		(Note: nonzero really shouldn't happen!)
619  *
620  * The caller must have already called i915_guc_wq_reserve() above with
621  * a result of 0 (success), guaranteeing that there is space in the work
622  * queue for the new request, so enqueuing the item cannot fail.
623  *
624  * Bad Things Will Happen if the caller violates this protocol e.g. calls
625  * submit() when _reserve() says there's no space, or calls _submit()
626  * a different number of times from (successful) calls to _reserve().
627  *
628  * The only error here arises if the doorbell hardware isn't functioning
629  * as expected, which really shouln't happen.
630  */
631 static void i915_guc_submit(struct drm_i915_gem_request *rq)
632 {
633 	struct drm_i915_private *dev_priv = rq->i915;
634 	struct intel_engine_cs *engine = rq->engine;
635 	unsigned int engine_id = engine->id;
636 	struct intel_guc *guc = &rq->i915->guc;
637 	struct i915_guc_client *client = guc->execbuf_client;
638 	int b_ret;
639 
640 	/* We keep the previous context alive until we retire the following
641 	 * request. This ensures that any the context object is still pinned
642 	 * for any residual writes the HW makes into it on the context switch
643 	 * into the next object following the breadcrumb. Otherwise, we may
644 	 * retire the context too early.
645 	 */
646 	rq->previous_context = engine->last_context;
647 	engine->last_context = rq->ctx;
648 
649 	i915_gem_request_submit(rq);
650 
651 	lockmgr(&client->wq_lock, LK_EXCLUSIVE);
652 	guc_wq_item_append(client, rq);
653 
654 	/* WA to flush out the pending GMADR writes to ring buffer. */
655 	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
656 		POSTING_READ_FW(GUC_STATUS);
657 
658 	b_ret = guc_ring_doorbell(client);
659 
660 	client->submissions[engine_id] += 1;
661 	client->retcode = b_ret;
662 	if (b_ret)
663 		client->b_fail += 1;
664 
665 	guc->submissions[engine_id] += 1;
666 	guc->last_seqno[engine_id] = rq->global_seqno;
667 	lockmgr(&client->wq_lock, LK_RELEASE);
668 }
669 
670 /*
671  * Everything below here is concerned with setup & teardown, and is
672  * therefore not part of the somewhat time-critical batch-submission
673  * path of i915_guc_submit() above.
674  */
675 
676 /**
677  * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
678  * @guc:	the guc
679  * @size:	size of area to allocate (both virtual space and memory)
680  *
681  * This is a wrapper to create an object for use with the GuC. In order to
682  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
683  * both some backing storage and a range inside the Global GTT. We must pin
684  * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
685  * range is reserved inside GuC.
686  *
687  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
688  */
689 static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size)
690 {
691 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
692 	struct drm_i915_gem_object *obj;
693 	struct i915_vma *vma;
694 	int ret;
695 
696 	obj = i915_gem_object_create(&dev_priv->drm, size);
697 	if (IS_ERR(obj))
698 		return ERR_CAST(obj);
699 
700 	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
701 	if (IS_ERR(vma))
702 		goto err;
703 
704 	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
705 			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
706 	if (ret) {
707 		vma = ERR_PTR(ret);
708 		goto err;
709 	}
710 
711 	/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
712 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
713 
714 	return vma;
715 
716 err:
717 	i915_gem_object_put(obj);
718 	return vma;
719 }
720 
721 static void
722 guc_client_free(struct drm_i915_private *dev_priv,
723 		struct i915_guc_client *client)
724 {
725 	struct intel_guc *guc = &dev_priv->guc;
726 
727 	if (!client)
728 		return;
729 
730 	/*
731 	 * XXX: wait for any outstanding submissions before freeing memory.
732 	 * Be sure to drop any locks
733 	 */
734 
735 	if (client->vaddr) {
736 		/*
737 		 * If we got as far as setting up a doorbell, make sure we
738 		 * shut it down before unmapping & deallocating the memory.
739 		 */
740 		guc_disable_doorbell(guc, client);
741 
742 		i915_gem_object_unpin_map(client->vma->obj);
743 	}
744 
745 	i915_vma_unpin_and_release(&client->vma);
746 
747 	if (client->ctx_index != GUC_INVALID_CTX_ID) {
748 		guc_ctx_desc_fini(guc, client);
749 		ida_simple_remove(&guc->ctx_ids, client->ctx_index);
750 	}
751 
752 	kfree(client);
753 }
754 
755 /* Check that a doorbell register is in the expected state */
756 static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
757 {
758 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
759 	i915_reg_t drbreg = GEN8_DRBREGL(db_id);
760 	uint32_t value = I915_READ(drbreg);
761 	bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
762 	bool expected = test_bit(db_id, guc->doorbell_bitmap);
763 
764 	if (enabled == expected)
765 		return true;
766 
767 	DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
768 			 db_id, drbreg.reg, value,
769 			 expected ? "active" : "inactive");
770 
771 	return false;
772 }
773 
774 /*
775  * Borrow the first client to set up & tear down each unused doorbell
776  * in turn, to ensure that all doorbell h/w is (re)initialised.
777  */
778 static void guc_init_doorbell_hw(struct intel_guc *guc)
779 {
780 	struct i915_guc_client *client = guc->execbuf_client;
781 	uint16_t db_id;
782 	int i, err;
783 
784 	/* Save client's original doorbell selection */
785 	db_id = client->doorbell_id;
786 
787 	for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
788 		/* Skip if doorbell is OK */
789 		if (guc_doorbell_check(guc, i))
790 			continue;
791 
792 		err = guc_update_doorbell_id(guc, client, i);
793 		if (err)
794 			DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
795 					i, err);
796 	}
797 
798 	/* Restore to original value */
799 	err = guc_update_doorbell_id(guc, client, db_id);
800 	if (err)
801 		DRM_WARN("Failed to restore doorbell to %d, err %d\n",
802 			 db_id, err);
803 
804 	/* Read back & verify all doorbell registers */
805 	for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
806 		(void)guc_doorbell_check(guc, i);
807 }
808 
809 /**
810  * guc_client_alloc() - Allocate an i915_guc_client
811  * @dev_priv:	driver private data structure
812  * @engines:	The set of engines to enable for this client
813  * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
814  * 		The kernel client to replace ExecList submission is created with
815  * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
816  * 		while a preemption context can use CRITICAL.
817  * @ctx:	the context that owns the client (we use the default render
818  * 		context)
819  *
820  * Return:	An i915_guc_client object if success, else NULL.
821  */
822 static struct i915_guc_client *
823 guc_client_alloc(struct drm_i915_private *dev_priv,
824 		 uint32_t engines,
825 		 uint32_t priority,
826 		 struct i915_gem_context *ctx)
827 {
828 	struct i915_guc_client *client;
829 	struct intel_guc *guc = &dev_priv->guc;
830 	struct i915_vma *vma;
831 	void *vaddr;
832 	uint16_t db_id;
833 
834 	client = kzalloc(sizeof(*client), GFP_KERNEL);
835 	if (!client)
836 		return NULL;
837 
838 	client->owner = ctx;
839 	client->guc = guc;
840 	client->engines = engines;
841 	client->priority = priority;
842 	client->doorbell_id = GUC_INVALID_DOORBELL_ID;
843 
844 	client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
845 			GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
846 	if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
847 		client->ctx_index = GUC_INVALID_CTX_ID;
848 		goto err;
849 	}
850 
851 	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
852 	vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
853 	if (IS_ERR(vma))
854 		goto err;
855 
856 	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
857 	client->vma = vma;
858 
859 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
860 	if (IS_ERR(vaddr))
861 		goto err;
862 
863 	client->vaddr = vaddr;
864 
865 	lockinit(&client->wq_lock, "i9gcwql", 0, 0);
866 	client->wq_offset = GUC_DB_SIZE;
867 	client->wq_size = GUC_WQ_SIZE;
868 
869 	db_id = select_doorbell_register(guc, client->priority);
870 	if (db_id == GUC_INVALID_DOORBELL_ID)
871 		/* XXX: evict a doorbell instead? */
872 		goto err;
873 
874 	client->doorbell_offset = select_doorbell_cacheline(guc);
875 
876 	/*
877 	 * Since the doorbell only requires a single cacheline, we can save
878 	 * space by putting the application process descriptor in the same
879 	 * page. Use the half of the page that doesn't include the doorbell.
880 	 */
881 	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
882 		client->proc_desc_offset = 0;
883 	else
884 		client->proc_desc_offset = (GUC_DB_SIZE / 2);
885 
886 	guc_proc_desc_init(guc, client);
887 	guc_ctx_desc_init(guc, client);
888 	if (guc_init_doorbell(guc, client, db_id))
889 		goto err;
890 
891 	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
892 		priority, client, client->engines, client->ctx_index);
893 	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
894 		client->doorbell_id, client->doorbell_offset);
895 
896 	return client;
897 
898 err:
899 	guc_client_free(dev_priv, client);
900 	return NULL;
901 }
902 
903 #if 0
904 /*
905  * Sub buffer switch callback. Called whenever relay has to switch to a new
906  * sub buffer, relay stays on the same sub buffer if 0 is returned.
907  */
908 static int subbuf_start_callback(struct rchan_buf *buf,
909 				 void *subbuf,
910 				 void *prev_subbuf,
911 				 size_t prev_padding)
912 {
913 	/* Use no-overwrite mode by default, where relay will stop accepting
914 	 * new data if there are no empty sub buffers left.
915 	 * There is no strict synchronization enforced by relay between Consumer
916 	 * and Producer. In overwrite mode, there is a possibility of getting
917 	 * inconsistent/garbled data, the producer could be writing on to the
918 	 * same sub buffer from which Consumer is reading. This can't be avoided
919 	 * unless Consumer is fast enough and can always run in tandem with
920 	 * Producer.
921 	 */
922 	if (relay_buf_full(buf))
923 		return 0;
924 
925 	return 1;
926 }
927 
928 /*
929  * file_create() callback. Creates relay file in debugfs.
930  */
931 static struct dentry *create_buf_file_callback(const char *filename,
932 					       struct dentry *parent,
933 					       umode_t mode,
934 					       struct rchan_buf *buf,
935 					       int *is_global)
936 {
937 	struct dentry *buf_file;
938 
939 	/* This to enable the use of a single buffer for the relay channel and
940 	 * correspondingly have a single file exposed to User, through which
941 	 * it can collect the logs in order without any post-processing.
942 	 * Need to set 'is_global' even if parent is NULL for early logging.
943 	 */
944 	*is_global = 1;
945 
946 	if (!parent)
947 		return NULL;
948 
949 	/* Not using the channel filename passed as an argument, since for each
950 	 * channel relay appends the corresponding CPU number to the filename
951 	 * passed in relay_open(). This should be fine as relay just needs a
952 	 * dentry of the file associated with the channel buffer and that file's
953 	 * name need not be same as the filename passed as an argument.
954 	 */
955 	buf_file = debugfs_create_file("guc_log", mode,
956 				       parent, buf, &relay_file_operations);
957 	return buf_file;
958 }
959 
960 /*
961  * file_remove() default callback. Removes relay file in debugfs.
962  */
963 static int remove_buf_file_callback(struct dentry *dentry)
964 {
965 	debugfs_remove(dentry);
966 	return 0;
967 }
968 
969 /* relay channel callbacks */
970 static struct rchan_callbacks relay_callbacks = {
971 	.subbuf_start = subbuf_start_callback,
972 	.create_buf_file = create_buf_file_callback,
973 	.remove_buf_file = remove_buf_file_callback,
974 };
975 
976 static void guc_log_remove_relay_file(struct intel_guc *guc)
977 {
978 	relay_close(guc->log.relay_chan);
979 }
980 
981 static int guc_log_create_relay_channel(struct intel_guc *guc)
982 {
983 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
984 	struct rchan *guc_log_relay_chan;
985 	size_t n_subbufs, subbuf_size;
986 
987 	/* Keep the size of sub buffers same as shared log buffer */
988 	subbuf_size = guc->log.vma->obj->base.size;
989 
990 	/* Store up to 8 snapshots, which is large enough to buffer sufficient
991 	 * boot time logs and provides enough leeway to User, in terms of
992 	 * latency, for consuming the logs from relay. Also doesn't take
993 	 * up too much memory.
994 	 */
995 	n_subbufs = 8;
996 
997 	guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size,
998 					n_subbufs, &relay_callbacks, dev_priv);
999 	if (!guc_log_relay_chan) {
1000 		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
1001 		return -ENOMEM;
1002 	}
1003 
1004 	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
1005 	guc->log.relay_chan = guc_log_relay_chan;
1006 	return 0;
1007 }
1008 
1009 static int guc_log_create_relay_file(struct intel_guc *guc)
1010 {
1011 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1012 	struct dentry *log_dir;
1013 	int ret;
1014 
1015 	/* For now create the log file in /sys/kernel/debug/dri/0 dir */
1016 	log_dir = dev_priv->drm.primary->debugfs_root;
1017 
1018 	/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
1019 	 * not mounted and so can't create the relay file.
1020 	 * The relay API seems to fit well with debugfs only, for availing relay
1021 	 * there are 3 requirements which can be met for debugfs file only in a
1022 	 * straightforward/clean manner :-
1023 	 * i)   Need the associated dentry pointer of the file, while opening the
1024 	 *      relay channel.
1025 	 * ii)  Should be able to use 'relay_file_operations' fops for the file.
1026 	 * iii) Set the 'i_private' field of file's inode to the pointer of
1027 	 *	relay channel buffer.
1028 	 */
1029 	if (!log_dir) {
1030 		DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
1031 		return -ENODEV;
1032 	}
1033 
1034 	ret = relay_late_setup_files(guc->log.relay_chan, "guc_log", log_dir);
1035 	if (ret) {
1036 		DRM_ERROR("Couldn't associate relay chan with file %d\n", ret);
1037 		return ret;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static void guc_move_to_next_buf(struct intel_guc *guc)
1044 {
1045 	/* Make sure the updates made in the sub buffer are visible when
1046 	 * Consumer sees the following update to offset inside the sub buffer.
1047 	 */
1048 	smp_wmb();
1049 
1050 	/* All data has been written, so now move the offset of sub buffer. */
1051 	relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size);
1052 
1053 	/* Switch to the next sub buffer */
1054 	relay_flush(guc->log.relay_chan);
1055 }
1056 
1057 static void *guc_get_write_buffer(struct intel_guc *guc)
1058 {
1059 	if (!guc->log.relay_chan)
1060 		return NULL;
1061 
1062 	/* Just get the base address of a new sub buffer and copy data into it
1063 	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
1064 	 * buffers are full. Could have used the relay_write() to indirectly
1065 	 * copy the data, but that would have been bit convoluted, as we need to
1066 	 * write to only certain locations inside a sub buffer which cannot be
1067 	 * done without using relay_reserve() along with relay_write(). So its
1068 	 * better to use relay_reserve() alone.
1069 	 */
1070 	return relay_reserve(guc->log.relay_chan, 0);
1071 }
1072 
1073 static bool
1074 guc_check_log_buf_overflow(struct intel_guc *guc,
1075 			   enum guc_log_buffer_type type, unsigned int full_cnt)
1076 {
1077 	unsigned int prev_full_cnt = guc->log.prev_overflow_count[type];
1078 	bool overflow = false;
1079 
1080 	if (full_cnt != prev_full_cnt) {
1081 		overflow = true;
1082 
1083 		guc->log.prev_overflow_count[type] = full_cnt;
1084 		guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt;
1085 
1086 		if (full_cnt < prev_full_cnt) {
1087 			/* buffer_full_cnt is a 4 bit counter */
1088 			guc->log.total_overflow_count[type] += 16;
1089 		}
1090 		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
1091 	}
1092 
1093 	return overflow;
1094 }
1095 
1096 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
1097 {
1098 	switch (type) {
1099 	case GUC_ISR_LOG_BUFFER:
1100 		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
1101 	case GUC_DPC_LOG_BUFFER:
1102 		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
1103 	case GUC_CRASH_DUMP_LOG_BUFFER:
1104 		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
1105 	default:
1106 		MISSING_CASE(type);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 static void guc_read_update_log_buffer(struct intel_guc *guc)
1113 {
1114 	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
1115 	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
1116 	struct guc_log_buffer_state log_buf_state_local;
1117 	enum guc_log_buffer_type type;
1118 	void *src_data, *dst_data;
1119 	bool new_overflow;
1120 
1121 	if (WARN_ON(!guc->log.buf_addr))
1122 		return;
1123 
1124 	/* Get the pointer to shared GuC log buffer */
1125 	log_buf_state = src_data = guc->log.buf_addr;
1126 
1127 	/* Get the pointer to local buffer to store the logs */
1128 	log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);
1129 
1130 	/* Actual logs are present from the 2nd page */
1131 	src_data += PAGE_SIZE;
1132 	dst_data += PAGE_SIZE;
1133 
1134 	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
1135 		/* Make a copy of the state structure, inside GuC log buffer
1136 		 * (which is uncached mapped), on the stack to avoid reading
1137 		 * from it multiple times.
1138 		 */
1139 		memcpy(&log_buf_state_local, log_buf_state,
1140 		       sizeof(struct guc_log_buffer_state));
1141 		buffer_size = guc_get_log_buffer_size(type);
1142 		read_offset = log_buf_state_local.read_ptr;
1143 		write_offset = log_buf_state_local.sampled_write_ptr;
1144 		full_cnt = log_buf_state_local.buffer_full_cnt;
1145 
1146 		/* Bookkeeping stuff */
1147 		guc->log.flush_count[type] += log_buf_state_local.flush_to_file;
1148 		new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt);
1149 
1150 		/* Update the state of shared log buffer */
1151 		log_buf_state->read_ptr = write_offset;
1152 		log_buf_state->flush_to_file = 0;
1153 		log_buf_state++;
1154 
1155 		if (unlikely(!log_buf_snapshot_state))
1156 			continue;
1157 
1158 		/* First copy the state structure in snapshot buffer */
1159 		memcpy(log_buf_snapshot_state, &log_buf_state_local,
1160 		       sizeof(struct guc_log_buffer_state));
1161 
1162 		/* The write pointer could have been updated by GuC firmware,
1163 		 * after sending the flush interrupt to Host, for consistency
1164 		 * set write pointer value to same value of sampled_write_ptr
1165 		 * in the snapshot buffer.
1166 		 */
1167 		log_buf_snapshot_state->write_ptr = write_offset;
1168 		log_buf_snapshot_state++;
1169 
1170 		/* Now copy the actual logs. */
1171 		if (unlikely(new_overflow)) {
1172 			/* copy the whole buffer in case of overflow */
1173 			read_offset = 0;
1174 			write_offset = buffer_size;
1175 		} else if (unlikely((read_offset > buffer_size) ||
1176 				    (write_offset > buffer_size))) {
1177 			DRM_ERROR("invalid log buffer state\n");
1178 			/* copy whole buffer as offsets are unreliable */
1179 			read_offset = 0;
1180 			write_offset = buffer_size;
1181 		}
1182 
1183 		/* Just copy the newly written data */
1184 		if (read_offset > write_offset) {
1185 			i915_memcpy_from_wc(dst_data, src_data, write_offset);
1186 			bytes_to_copy = buffer_size - read_offset;
1187 		} else {
1188 			bytes_to_copy = write_offset - read_offset;
1189 		}
1190 		i915_memcpy_from_wc(dst_data + read_offset,
1191 				    src_data + read_offset, bytes_to_copy);
1192 
1193 		src_data += buffer_size;
1194 		dst_data += buffer_size;
1195 	}
1196 
1197 	if (log_buf_snapshot_state)
1198 		guc_move_to_next_buf(guc);
1199 	else {
1200 		/* Used rate limited to avoid deluge of messages, logs might be
1201 		 * getting consumed by User at a slow rate.
1202 		 */
1203 		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
1204 		guc->log.capture_miss_count++;
1205 	}
1206 }
1207 
1208 static void guc_capture_logs_work(struct work_struct *work)
1209 {
1210 	struct drm_i915_private *dev_priv =
1211 		container_of(work, struct drm_i915_private, guc.log.flush_work);
1212 
1213 	i915_guc_capture_logs(dev_priv);
1214 }
1215 
1216 static void guc_log_cleanup(struct intel_guc *guc)
1217 {
1218 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1219 
1220 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1221 
1222 	/* First disable the flush interrupt */
1223 	gen9_disable_guc_interrupts(dev_priv);
1224 
1225 	if (guc->log.flush_wq)
1226 		destroy_workqueue(guc->log.flush_wq);
1227 
1228 	guc->log.flush_wq = NULL;
1229 
1230 	if (guc->log.relay_chan)
1231 		guc_log_remove_relay_file(guc);
1232 
1233 	guc->log.relay_chan = NULL;
1234 
1235 	if (guc->log.buf_addr)
1236 		i915_gem_object_unpin_map(guc->log.vma->obj);
1237 
1238 	guc->log.buf_addr = NULL;
1239 }
1240 
1241 static int guc_log_create_extras(struct intel_guc *guc)
1242 {
1243 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1244 	void *vaddr;
1245 	int ret;
1246 
1247 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1248 
1249 	/* Nothing to do */
1250 	if (i915.guc_log_level < 0)
1251 		return 0;
1252 
1253 	if (!guc->log.buf_addr) {
1254 		/* Create a WC (Uncached for read) vmalloc mapping of log
1255 		 * buffer pages, so that we can directly get the data
1256 		 * (up-to-date) from memory.
1257 		 */
1258 		vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC);
1259 		if (IS_ERR(vaddr)) {
1260 			ret = PTR_ERR(vaddr);
1261 			DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
1262 			return ret;
1263 		}
1264 
1265 		guc->log.buf_addr = vaddr;
1266 	}
1267 
1268 	if (!guc->log.relay_chan) {
1269 		/* Create a relay channel, so that we have buffers for storing
1270 		 * the GuC firmware logs, the channel will be linked with a file
1271 		 * later on when debugfs is registered.
1272 		 */
1273 		ret = guc_log_create_relay_channel(guc);
1274 		if (ret)
1275 			return ret;
1276 	}
1277 
1278 	if (!guc->log.flush_wq) {
1279 		INIT_WORK(&guc->log.flush_work, guc_capture_logs_work);
1280 
1281 		 /*
1282 		 * GuC log buffer flush work item has to do register access to
1283 		 * send the ack to GuC and this work item, if not synced before
1284 		 * suspend, can potentially get executed after the GFX device is
1285 		 * suspended.
1286 		 * By marking the WQ as freezable, we don't have to bother about
1287 		 * flushing of this work item from the suspend hooks, the pending
1288 		 * work item if any will be either executed before the suspend
1289 		 * or scheduled later on resume. This way the handling of work
1290 		 * item can be kept same between system suspend & rpm suspend.
1291 		 */
1292 		guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log",
1293 							    WQ_HIGHPRI | WQ_FREEZABLE);
1294 		if (guc->log.flush_wq == NULL) {
1295 			DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
1296 			return -ENOMEM;
1297 		}
1298 	}
1299 
1300 	return 0;
1301 }
1302 #endif
1303 
1304 static void guc_log_create(struct intel_guc *guc)
1305 {
1306 	struct i915_vma *vma;
1307 	unsigned long offset;
1308 	uint32_t size, flags;
1309 
1310 	if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
1311 		i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;
1312 
1313 	/* The first page is to save log buffer state. Allocate one
1314 	 * extra page for others in case for overlap */
1315 	size = (1 + GUC_LOG_DPC_PAGES + 1 +
1316 		GUC_LOG_ISR_PAGES + 1 +
1317 		GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;
1318 
1319 	vma = guc->log.vma;
1320 	if (!vma) {
1321 		/* We require SSE 4.1 for fast reads from the GuC log buffer and
1322 		 * it should be present on the chipsets supporting GuC based
1323 		 * submisssions.
1324 		 */
1325 		if (WARN_ON(!i915_memcpy_from_wc(NULL, NULL, 0))) {
1326 			/* logging will not be enabled */
1327 			i915.guc_log_level = -1;
1328 			return;
1329 		}
1330 
1331 		vma = guc_allocate_vma(guc, size);
1332 		if (IS_ERR(vma)) {
1333 			/* logging will be off */
1334 			i915.guc_log_level = -1;
1335 			return;
1336 		}
1337 
1338 		guc->log.vma = vma;
1339 
1340 #if 0
1341 		if (guc_log_create_extras(guc)) {
1342 			guc_log_cleanup(guc);
1343 			i915_vma_unpin_and_release(&guc->log.vma);
1344 			i915.guc_log_level = -1;
1345 			return;
1346 		}
1347 #endif
1348 	}
1349 
1350 	/* each allocated unit is a page */
1351 	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
1352 		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
1353 		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
1354 		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);
1355 
1356 	offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
1357 	guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
1358 }
1359 
1360 #if 0
1361 static int guc_log_late_setup(struct intel_guc *guc)
1362 {
1363 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1364 	int ret;
1365 
1366 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1367 
1368 	if (i915.guc_log_level < 0)
1369 		return -EINVAL;
1370 
1371 	/* If log_level was set as -1 at boot time, then setup needed to
1372 	 * handle log buffer flush interrupts would not have been done yet,
1373 	 * so do that now.
1374 	 */
1375 	ret = guc_log_create_extras(guc);
1376 	if (ret)
1377 		goto err;
1378 
1379 	ret = guc_log_create_relay_file(guc);
1380 	if (ret)
1381 		goto err;
1382 
1383 	return 0;
1384 err:
1385 	guc_log_cleanup(guc);
1386 	/* logging will remain off */
1387 	i915.guc_log_level = -1;
1388 	return ret;
1389 }
1390 #endif
1391 
1392 static void guc_policies_init(struct guc_policies *policies)
1393 {
1394 	struct guc_policy *policy;
1395 	u32 p, i;
1396 
1397 	policies->dpc_promote_time = 500000;
1398 	policies->max_num_work_items = POLICY_MAX_NUM_WI;
1399 
1400 	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
1401 		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1402 			policy = &policies->policy[p][i];
1403 
1404 			policy->execution_quantum = 1000000;
1405 			policy->preemption_time = 500000;
1406 			policy->fault_time = 250000;
1407 			policy->policy_flags = 0;
1408 		}
1409 	}
1410 
1411 	policies->is_valid = 1;
1412 }
1413 
1414 static void guc_addon_create(struct intel_guc *guc)
1415 {
1416 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1417 	struct i915_vma *vma;
1418 	struct guc_ads *ads;
1419 	struct guc_policies *policies;
1420 	struct guc_mmio_reg_state *reg_state;
1421 	struct intel_engine_cs *engine;
1422 	enum intel_engine_id id;
1423 	struct page *page;
1424 	u32 size;
1425 
1426 	/* The ads obj includes the struct itself and buffers passed to GuC */
1427 	size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
1428 			sizeof(struct guc_mmio_reg_state) +
1429 			GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE;
1430 
1431 	vma = guc->ads_vma;
1432 	if (!vma) {
1433 		vma = guc_allocate_vma(guc, PAGE_ALIGN(size));
1434 		if (IS_ERR(vma))
1435 			return;
1436 
1437 		guc->ads_vma = vma;
1438 	}
1439 
1440 	page = i915_vma_first_page(vma);
1441 	ads = kmap(page);
1442 
1443 	/*
1444 	 * The GuC requires a "Golden Context" when it reinitialises
1445 	 * engines after a reset. Here we use the Render ring default
1446 	 * context, which must already exist and be pinned in the GGTT,
1447 	 * so its address won't change after we've told the GuC where
1448 	 * to find it.
1449 	 */
1450 	engine = dev_priv->engine[RCS];
1451 	ads->golden_context_lrca = engine->status_page.ggtt_offset;
1452 
1453 	for_each_engine(engine, dev_priv, id)
1454 		ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
1455 
1456 	/* GuC scheduling policies */
1457 	policies = (void *)ads + sizeof(struct guc_ads);
1458 	guc_policies_init(policies);
1459 
1460 	ads->scheduler_policies =
1461 		i915_ggtt_offset(vma) + sizeof(struct guc_ads);
1462 
1463 	/* MMIO reg state */
1464 	reg_state = (void *)policies + sizeof(struct guc_policies);
1465 
1466 	for_each_engine(engine, dev_priv, id) {
1467 		reg_state->mmio_white_list[engine->guc_id].mmio_start =
1468 			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1469 
1470 		/* Nothing to be saved or restored for now. */
1471 		reg_state->mmio_white_list[engine->guc_id].count = 0;
1472 	}
1473 
1474 	ads->reg_state_addr = ads->scheduler_policies +
1475 			sizeof(struct guc_policies);
1476 
1477 	ads->reg_state_buffer = ads->reg_state_addr +
1478 			sizeof(struct guc_mmio_reg_state);
1479 
1480 	kunmap(page);
1481 }
1482 
1483 /*
1484  * Set up the memory resources to be shared with the GuC.  At this point,
1485  * we require just one object that can be mapped through the GGTT.
1486  */
1487 int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1488 {
1489 	const size_t ctxsize = sizeof(struct guc_context_desc);
1490 	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
1491 	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
1492 	struct intel_guc *guc = &dev_priv->guc;
1493 	struct i915_vma *vma;
1494 
1495 	/* Wipe bitmap & delete client in case of reinitialisation */
1496 	bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
1497 	i915_guc_submission_disable(dev_priv);
1498 
1499 	if (!i915.enable_guc_submission)
1500 		return 0; /* not enabled  */
1501 
1502 	if (guc->ctx_pool_vma)
1503 		return 0; /* already allocated */
1504 
1505 	vma = guc_allocate_vma(guc, gemsize);
1506 	if (IS_ERR(vma))
1507 		return PTR_ERR(vma);
1508 
1509 	guc->ctx_pool_vma = vma;
1510 	ida_init(&guc->ctx_ids);
1511 	lockinit(&guc->action_lock, "i9gac", 0, LK_CANRECURSE);
1512 	guc_log_create(guc);
1513 	guc_addon_create(guc);
1514 
1515 	return 0;
1516 }
1517 
1518 int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1519 {
1520 	struct intel_guc *guc = &dev_priv->guc;
1521 	struct drm_i915_gem_request *request;
1522 	struct i915_guc_client *client;
1523 	struct intel_engine_cs *engine;
1524 	enum intel_engine_id id;
1525 
1526 	/* client for execbuf submission */
1527 	client = guc_client_alloc(dev_priv,
1528 				  INTEL_INFO(dev_priv)->ring_mask,
1529 				  GUC_CTX_PRIORITY_KMD_NORMAL,
1530 				  dev_priv->kernel_context);
1531 	if (!client) {
1532 		DRM_ERROR("Failed to create normal GuC client!\n");
1533 		return -ENOMEM;
1534 	}
1535 
1536 	guc->execbuf_client = client;
1537 	host2guc_sample_forcewake(guc, client);
1538 	guc_init_doorbell_hw(guc);
1539 
1540 	/* Take over from manual control of ELSP (execlists) */
1541 	for_each_engine(engine, dev_priv, id) {
1542 		engine->submit_request = i915_guc_submit;
1543 		engine->schedule = NULL;
1544 
1545 		/* Replay the current set of previously submitted requests */
1546 		list_for_each_entry(request,
1547 				    &engine->timeline->requests, link) {
1548 			client->wq_rsvd += sizeof(struct guc_wq_item);
1549 			if (i915_sw_fence_done(&request->submit))
1550 				i915_guc_submit(request);
1551 		}
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1558 {
1559 	struct intel_guc *guc = &dev_priv->guc;
1560 
1561 	if (!guc->execbuf_client)
1562 		return;
1563 
1564 	/* Revert back to manual ELSP submission */
1565 	intel_execlists_enable_submission(dev_priv);
1566 
1567 	guc_client_free(dev_priv, guc->execbuf_client);
1568 	guc->execbuf_client = NULL;
1569 }
1570 
1571 void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1572 {
1573 	struct intel_guc *guc = &dev_priv->guc;
1574 
1575 	i915_vma_unpin_and_release(&guc->ads_vma);
1576 	i915_vma_unpin_and_release(&guc->log.vma);
1577 
1578 	if (guc->ctx_pool_vma)
1579 		ida_destroy(&guc->ctx_ids);
1580 	i915_vma_unpin_and_release(&guc->ctx_pool_vma);
1581 }
1582 
1583 /**
1584  * intel_guc_suspend() - notify GuC entering suspend state
1585  * @dev:	drm device
1586  */
1587 int intel_guc_suspend(struct drm_device *dev)
1588 {
1589 	struct drm_i915_private *dev_priv = to_i915(dev);
1590 	struct intel_guc *guc = &dev_priv->guc;
1591 	struct i915_gem_context *ctx;
1592 	u32 data[3];
1593 
1594 	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1595 		return 0;
1596 
1597 	gen9_disable_guc_interrupts(dev_priv);
1598 
1599 	ctx = dev_priv->kernel_context;
1600 
1601 	data[0] = HOST2GUC_ACTION_ENTER_S_STATE;
1602 	/* any value greater than GUC_POWER_D0 */
1603 	data[1] = GUC_POWER_D1;
1604 	/* first page is shared data with GuC */
1605 	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1606 
1607 	return host2guc_action(guc, data, ARRAY_SIZE(data));
1608 }
1609 
1610 
1611 /**
1612  * intel_guc_resume() - notify GuC resuming from suspend state
1613  * @dev:	drm device
1614  */
1615 int intel_guc_resume(struct drm_device *dev)
1616 {
1617 	struct drm_i915_private *dev_priv = to_i915(dev);
1618 	struct intel_guc *guc = &dev_priv->guc;
1619 	struct i915_gem_context *ctx;
1620 	u32 data[3];
1621 
1622 	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1623 		return 0;
1624 
1625 	if (i915.guc_log_level >= 0)
1626 		gen9_enable_guc_interrupts(dev_priv);
1627 
1628 	ctx = dev_priv->kernel_context;
1629 
1630 	data[0] = HOST2GUC_ACTION_EXIT_S_STATE;
1631 	data[1] = GUC_POWER_D0;
1632 	/* first page is shared data with GuC */
1633 	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1634 
1635 	return host2guc_action(guc, data, ARRAY_SIZE(data));
1636 }
1637 
1638 void i915_guc_capture_logs(struct drm_i915_private *dev_priv)
1639 {
1640 #if 0
1641 	guc_read_update_log_buffer(&dev_priv->guc);
1642 
1643 	/* Generally device is expected to be active only at this
1644 	 * time, so get/put should be really quick.
1645 	 */
1646 	intel_runtime_pm_get(dev_priv);
1647 	host2guc_logbuffer_flush_complete(&dev_priv->guc);
1648 	intel_runtime_pm_put(dev_priv);
1649 #endif
1650 }
1651 
1652 void i915_guc_flush_logs(struct drm_i915_private *dev_priv)
1653 {
1654 	if (!i915.enable_guc_submission || (i915.guc_log_level < 0))
1655 		return;
1656 
1657 	/* First disable the interrupts, will be renabled afterwards */
1658 	gen9_disable_guc_interrupts(dev_priv);
1659 
1660 	/* Before initiating the forceful flush, wait for any pending/ongoing
1661 	 * flush to complete otherwise forceful flush may not actually happen.
1662 	 */
1663 	flush_work(&dev_priv->guc.log.flush_work);
1664 
1665 	/* Ask GuC to update the log buffer state */
1666 	host2guc_force_logbuffer_flush(&dev_priv->guc);
1667 
1668 	/* GuC would have updated log buffer by now, so capture it */
1669 	i915_guc_capture_logs(dev_priv);
1670 }
1671 
1672 void i915_guc_unregister(struct drm_i915_private *dev_priv)
1673 {
1674 	if (!i915.enable_guc_submission)
1675 		return;
1676 
1677 	mutex_lock(&dev_priv->drm.struct_mutex);
1678 #if 0
1679 	guc_log_cleanup(&dev_priv->guc);
1680 #endif
1681 	mutex_unlock(&dev_priv->drm.struct_mutex);
1682 }
1683 
1684 void i915_guc_register(struct drm_i915_private *dev_priv)
1685 {
1686 	if (!i915.enable_guc_submission)
1687 		return;
1688 
1689 	mutex_lock(&dev_priv->drm.struct_mutex);
1690 #if 0
1691 	guc_log_late_setup(&dev_priv->guc);
1692 #endif
1693 	mutex_unlock(&dev_priv->drm.struct_mutex);
1694 }
1695 
1696 int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val)
1697 {
1698 	union guc_log_control log_param;
1699 	int ret;
1700 
1701 	log_param.value = control_val;
1702 
1703 	if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN ||
1704 	    log_param.verbosity > GUC_LOG_VERBOSITY_MAX)
1705 		return -EINVAL;
1706 
1707 	/* This combination doesn't make sense & won't have any effect */
1708 	if (!log_param.logging_enabled && (i915.guc_log_level < 0))
1709 		return 0;
1710 
1711 	ret = host2guc_logging_control(&dev_priv->guc, log_param.value);
1712 	if (ret < 0) {
1713 		DRM_DEBUG_DRIVER("host2guc action failed %d\n", ret);
1714 		return ret;
1715 	}
1716 
1717 	i915.guc_log_level = log_param.verbosity;
1718 
1719 	/* If log_level was set as -1 at boot time, then the relay channel file
1720 	 * wouldn't have been created by now and interrupts also would not have
1721 	 * been enabled.
1722 	 */
1723 	if (!dev_priv->guc.log.relay_chan) {
1724 #if 0
1725 		ret = guc_log_late_setup(&dev_priv->guc);
1726 		if (!ret)
1727 			gen9_enable_guc_interrupts(dev_priv);
1728 #endif
1729 	} else if (!log_param.logging_enabled) {
1730 		/* Once logging is disabled, GuC won't generate logs & send an
1731 		 * interrupt. But there could be some data in the log buffer
1732 		 * which is yet to be captured. So request GuC to update the log
1733 		 * buffer state and then collect the left over logs.
1734 		 */
1735 		i915_guc_flush_logs(dev_priv);
1736 
1737 		/* As logging is disabled, update log level to reflect that */
1738 		i915.guc_log_level = -1;
1739 	} else {
1740 		/* In case interrupts were disabled, enable them now */
1741 		gen9_enable_guc_interrupts(dev_priv);
1742 	}
1743 
1744 	return ret;
1745 }
1746