xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision 3cc0afc6)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 static const u32 hpd_ibx[] = {
36 	[HPD_CRT] = SDE_CRT_HOTPLUG,
37 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
38 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
39 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
40 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
41 };
42 
43 static const u32 hpd_cpt[] = {
44 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
45 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
46 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
47 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
48 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
49 };
50 
51 static const u32 hpd_mask_i915[] = {
52 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
53 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
54 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
55 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
56 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
57 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
58 };
59 
60 static const u32 hpd_status_g4x[] = {
61 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
62 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
63 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
64 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
65 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
66 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
67 };
68 
69 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
70 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
71 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
72 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
73 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
74 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
75 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
76 };
77 
78 /* IIR can theoretically queue up two events. Be paranoid. */
79 #define GEN8_IRQ_RESET_NDX(type, which) do { \
80 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
81 	POSTING_READ(GEN8_##type##_IMR(which)); \
82 	I915_WRITE(GEN8_##type##_IER(which), 0); \
83 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
84 	POSTING_READ(GEN8_##type##_IIR(which)); \
85 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IIR(which)); \
87 } while (0)
88 
89 #define GEN5_IRQ_RESET(type) do { \
90 	I915_WRITE(type##IMR, 0xffffffff); \
91 	POSTING_READ(type##IMR); \
92 	I915_WRITE(type##IER, 0); \
93 	I915_WRITE(type##IIR, 0xffffffff); \
94 	POSTING_READ(type##IIR); \
95 	I915_WRITE(type##IIR, 0xffffffff); \
96 	POSTING_READ(type##IIR); \
97 } while (0)
98 
99 /*
100  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
101  */
102 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
103 	u32 val = I915_READ(reg); \
104 	if (val) { \
105 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
106 		     (reg), val); \
107 		I915_WRITE((reg), 0xffffffff); \
108 		POSTING_READ(reg); \
109 		I915_WRITE((reg), 0xffffffff); \
110 		POSTING_READ(reg); \
111 	} \
112 } while (0)
113 
114 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
115 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
116 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
117 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
118 	POSTING_READ(GEN8_##type##_IER(which)); \
119 } while (0)
120 
121 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
122 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
123 	I915_WRITE(type##IMR, (imr_val)); \
124 	I915_WRITE(type##IER, (ier_val)); \
125 	POSTING_READ(type##IER); \
126 } while (0)
127 
128 /* For display hotplug interrupt */
129 static void
130 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
131 {
132 	assert_spin_locked(&dev_priv->irq_lock);
133 
134 	if (WARN_ON(dev_priv->pm.irqs_disabled))
135 		return;
136 
137 	if ((dev_priv->irq_mask & mask) != 0) {
138 		dev_priv->irq_mask &= ~mask;
139 		I915_WRITE(DEIMR, dev_priv->irq_mask);
140 		POSTING_READ(DEIMR);
141 	}
142 }
143 
144 static void
145 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 	assert_spin_locked(&dev_priv->irq_lock);
148 
149 	if (WARN_ON(dev_priv->pm.irqs_disabled))
150 		return;
151 
152 	if ((dev_priv->irq_mask & mask) != mask) {
153 		dev_priv->irq_mask |= mask;
154 		I915_WRITE(DEIMR, dev_priv->irq_mask);
155 		POSTING_READ(DEIMR);
156 	}
157 }
158 
159 /**
160  * ilk_update_gt_irq - update GTIMR
161  * @dev_priv: driver private
162  * @interrupt_mask: mask of interrupt bits to update
163  * @enabled_irq_mask: mask of interrupt bits to enable
164  */
165 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
166 			      uint32_t interrupt_mask,
167 			      uint32_t enabled_irq_mask)
168 {
169 	assert_spin_locked(&dev_priv->irq_lock);
170 
171 	if (WARN_ON(dev_priv->pm.irqs_disabled))
172 		return;
173 
174 	dev_priv->gt_irq_mask &= ~interrupt_mask;
175 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
176 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
177 	POSTING_READ(GTIMR);
178 }
179 
180 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
181 {
182 	ilk_update_gt_irq(dev_priv, mask, mask);
183 }
184 
185 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, 0);
188 }
189 
190 /**
191   * snb_update_pm_irq - update GEN6_PMIMR
192   * @dev_priv: driver private
193   * @interrupt_mask: mask of interrupt bits to update
194   * @enabled_irq_mask: mask of interrupt bits to enable
195   */
196 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
197 			      uint32_t interrupt_mask,
198 			      uint32_t enabled_irq_mask)
199 {
200 	uint32_t new_val;
201 
202 	assert_spin_locked(&dev_priv->irq_lock);
203 
204 	if (WARN_ON(dev_priv->pm.irqs_disabled))
205 		return;
206 
207 	new_val = dev_priv->pm_irq_mask;
208 	new_val &= ~interrupt_mask;
209 	new_val |= (~enabled_irq_mask & interrupt_mask);
210 
211 	if (new_val != dev_priv->pm_irq_mask) {
212 		dev_priv->pm_irq_mask = new_val;
213 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
214 		POSTING_READ(GEN6_PMIMR);
215 	}
216 }
217 
218 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
219 {
220 	snb_update_pm_irq(dev_priv, mask, mask);
221 }
222 
223 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, 0);
226 }
227 
228 static bool ivb_can_enable_err_int(struct drm_device *dev)
229 {
230 	struct drm_i915_private *dev_priv = dev->dev_private;
231 	struct intel_crtc *crtc;
232 	enum i915_pipe pipe;
233 
234 	assert_spin_locked(&dev_priv->irq_lock);
235 
236 	for_each_pipe(pipe) {
237 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
238 
239 		if (crtc->cpu_fifo_underrun_disabled)
240 			return false;
241 	}
242 
243 	return true;
244 }
245 
246 /**
247   * bdw_update_pm_irq - update GT interrupt 2
248   * @dev_priv: driver private
249   * @interrupt_mask: mask of interrupt bits to update
250   * @enabled_irq_mask: mask of interrupt bits to enable
251   *
252   * Copied from the snb function, updated with relevant register offsets
253   */
254 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
255 			      uint32_t interrupt_mask,
256 			      uint32_t enabled_irq_mask)
257 {
258 	uint32_t new_val;
259 
260 	assert_spin_locked(&dev_priv->irq_lock);
261 
262 	if (WARN_ON(dev_priv->pm.irqs_disabled))
263 		return;
264 
265 	new_val = dev_priv->pm_irq_mask;
266 	new_val &= ~interrupt_mask;
267 	new_val |= (~enabled_irq_mask & interrupt_mask);
268 
269 	if (new_val != dev_priv->pm_irq_mask) {
270 		dev_priv->pm_irq_mask = new_val;
271 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
272 		POSTING_READ(GEN8_GT_IMR(2));
273 	}
274 }
275 
276 void bdw_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 	bdw_update_pm_irq(dev_priv, mask, mask);
279 }
280 
281 void bdw_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, 0);
284 }
285 
286 static bool cpt_can_enable_serr_int(struct drm_device *dev)
287 {
288 	struct drm_i915_private *dev_priv = dev->dev_private;
289 	enum i915_pipe pipe;
290 	struct intel_crtc *crtc;
291 
292 	assert_spin_locked(&dev_priv->irq_lock);
293 
294 	for_each_pipe(pipe) {
295 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
296 
297 		if (crtc->pch_fifo_underrun_disabled)
298 			return false;
299 	}
300 
301 	return true;
302 }
303 
304 void i9xx_check_fifo_underruns(struct drm_device *dev)
305 {
306 	struct drm_i915_private *dev_priv = dev->dev_private;
307 	struct intel_crtc *crtc;
308 
309 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
310 
311 	for_each_intel_crtc(dev, crtc) {
312 		u32 reg = PIPESTAT(crtc->pipe);
313 		u32 pipestat;
314 
315 		if (crtc->cpu_fifo_underrun_disabled)
316 			continue;
317 
318 		pipestat = I915_READ(reg) & 0xffff0000;
319 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
320 			continue;
321 
322 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
323 		POSTING_READ(reg);
324 
325 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
326 	}
327 
328 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
329 }
330 
331 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
332 					     enum i915_pipe pipe,
333 					     bool enable, bool old)
334 {
335 	struct drm_i915_private *dev_priv = dev->dev_private;
336 	u32 reg = PIPESTAT(pipe);
337 	u32 pipestat = I915_READ(reg) & 0xffff0000;
338 
339 	assert_spin_locked(&dev_priv->irq_lock);
340 
341 	if (enable) {
342 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
343 		POSTING_READ(reg);
344 	} else {
345 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
346 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
347 	}
348 }
349 
350 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
351 						 enum i915_pipe pipe, bool enable)
352 {
353 	struct drm_i915_private *dev_priv = dev->dev_private;
354 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
355 					  DE_PIPEB_FIFO_UNDERRUN;
356 
357 	if (enable)
358 		ironlake_enable_display_irq(dev_priv, bit);
359 	else
360 		ironlake_disable_display_irq(dev_priv, bit);
361 }
362 
363 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
364 						  enum i915_pipe pipe,
365 						  bool enable, bool old)
366 {
367 	struct drm_i915_private *dev_priv = dev->dev_private;
368 	if (enable) {
369 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
370 
371 		if (!ivb_can_enable_err_int(dev))
372 			return;
373 
374 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
375 	} else {
376 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
377 
378 		if (old &&
379 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
380 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
381 				  pipe_name(pipe));
382 		}
383 	}
384 }
385 
386 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
387 						  enum i915_pipe pipe, bool enable)
388 {
389 	struct drm_i915_private *dev_priv = dev->dev_private;
390 
391 	assert_spin_locked(&dev_priv->irq_lock);
392 
393 	if (enable)
394 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
395 	else
396 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
397 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
398 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
399 }
400 
401 /**
402  * ibx_display_interrupt_update - update SDEIMR
403  * @dev_priv: driver private
404  * @interrupt_mask: mask of interrupt bits to update
405  * @enabled_irq_mask: mask of interrupt bits to enable
406  */
407 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
408 					 uint32_t interrupt_mask,
409 					 uint32_t enabled_irq_mask)
410 {
411 	uint32_t sdeimr = I915_READ(SDEIMR);
412 	sdeimr &= ~interrupt_mask;
413 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
414 
415 	assert_spin_locked(&dev_priv->irq_lock);
416 
417 	if (WARN_ON(dev_priv->pm.irqs_disabled))
418 		return;
419 
420 	I915_WRITE(SDEIMR, sdeimr);
421 	POSTING_READ(SDEIMR);
422 }
423 #define ibx_enable_display_interrupt(dev_priv, bits) \
424 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
425 #define ibx_disable_display_interrupt(dev_priv, bits) \
426 	ibx_display_interrupt_update((dev_priv), (bits), 0)
427 
428 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
429 					    enum transcoder pch_transcoder,
430 					    bool enable)
431 {
432 	struct drm_i915_private *dev_priv = dev->dev_private;
433 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
434 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
435 
436 	if (enable)
437 		ibx_enable_display_interrupt(dev_priv, bit);
438 	else
439 		ibx_disable_display_interrupt(dev_priv, bit);
440 }
441 
442 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
443 					    enum transcoder pch_transcoder,
444 					    bool enable, bool old)
445 {
446 	struct drm_i915_private *dev_priv = dev->dev_private;
447 
448 	if (enable) {
449 		I915_WRITE(SERR_INT,
450 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
451 
452 		if (!cpt_can_enable_serr_int(dev))
453 			return;
454 
455 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
456 	} else {
457 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
458 
459 		if (old && I915_READ(SERR_INT) &
460 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
461 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
462 				  transcoder_name(pch_transcoder));
463 		}
464 	}
465 }
466 
467 /**
468  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
469  * @dev: drm device
470  * @pipe: pipe
471  * @enable: true if we want to report FIFO underrun errors, false otherwise
472  *
473  * This function makes us disable or enable CPU fifo underruns for a specific
474  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
475  * reporting for one pipe may also disable all the other CPU error interruts for
476  * the other pipes, due to the fact that there's just one interrupt mask/enable
477  * bit for all the pipes.
478  *
479  * Returns the previous state of underrun reporting.
480  */
481 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
482 						    enum i915_pipe pipe, bool enable)
483 {
484 	struct drm_i915_private *dev_priv = dev->dev_private;
485 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
486 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
487 	bool old;
488 
489 	assert_spin_locked(&dev_priv->irq_lock);
490 
491 	old = !intel_crtc->cpu_fifo_underrun_disabled;
492 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
493 
494 	if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
495 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
496 	else if (IS_GEN5(dev) || IS_GEN6(dev))
497 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
498 	else if (IS_GEN7(dev))
499 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
500 	else if (IS_GEN8(dev))
501 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
502 
503 	return old;
504 }
505 
506 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
507 					   enum i915_pipe pipe, bool enable)
508 {
509 	struct drm_i915_private *dev_priv = dev->dev_private;
510 	bool ret;
511 
512 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
513 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
514 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
515 
516 	return ret;
517 }
518 
519 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
520 						  enum i915_pipe pipe)
521 {
522 	struct drm_i915_private *dev_priv = dev->dev_private;
523 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
524 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
525 
526 	return !intel_crtc->cpu_fifo_underrun_disabled;
527 }
528 
529 /**
530  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
531  * @dev: drm device
532  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
533  * @enable: true if we want to report FIFO underrun errors, false otherwise
534  *
535  * This function makes us disable or enable PCH fifo underruns for a specific
536  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
537  * underrun reporting for one transcoder may also disable all the other PCH
538  * error interruts for the other transcoders, due to the fact that there's just
539  * one interrupt mask/enable bit for all the transcoders.
540  *
541  * Returns the previous state of underrun reporting.
542  */
543 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
544 					   enum transcoder pch_transcoder,
545 					   bool enable)
546 {
547 	struct drm_i915_private *dev_priv = dev->dev_private;
548 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
549 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
550 	bool old;
551 
552 	/*
553 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
554 	 * has only one pch transcoder A that all pipes can use. To avoid racy
555 	 * pch transcoder -> pipe lookups from interrupt code simply store the
556 	 * underrun statistics in crtc A. Since we never expose this anywhere
557 	 * nor use it outside of the fifo underrun code here using the "wrong"
558 	 * crtc on LPT won't cause issues.
559 	 */
560 
561 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
562 
563 	old = !intel_crtc->pch_fifo_underrun_disabled;
564 	intel_crtc->pch_fifo_underrun_disabled = !enable;
565 
566 	if (HAS_PCH_IBX(dev))
567 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
568 	else
569 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
570 
571 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
572 	return old;
573 }
574 
575 static void
576 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
577 		       u32 enable_mask, u32 status_mask)
578 {
579 	u32 reg = PIPESTAT(pipe);
580 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
581 
582 	assert_spin_locked(&dev_priv->irq_lock);
583 
584 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
585 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
586 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
587 		      pipe_name(pipe), enable_mask, status_mask))
588 		return;
589 
590 	if ((pipestat & enable_mask) == enable_mask)
591 		return;
592 
593 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
594 
595 	/* Enable the interrupt, clear any pending status */
596 	pipestat |= enable_mask | status_mask;
597 	I915_WRITE(reg, pipestat);
598 	POSTING_READ(reg);
599 }
600 
601 static void
602 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
603 		        u32 enable_mask, u32 status_mask)
604 {
605 	u32 reg = PIPESTAT(pipe);
606 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
607 
608 	assert_spin_locked(&dev_priv->irq_lock);
609 
610 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
611 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
612 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
613 		      pipe_name(pipe), enable_mask, status_mask))
614 		return;
615 
616 	if ((pipestat & enable_mask) == 0)
617 		return;
618 
619 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
620 
621 	pipestat &= ~enable_mask;
622 	I915_WRITE(reg, pipestat);
623 	POSTING_READ(reg);
624 }
625 
626 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
627 {
628 	u32 enable_mask = status_mask << 16;
629 
630 	/*
631 	 * On pipe A we don't support the PSR interrupt yet,
632 	 * on pipe B and C the same bit MBZ.
633 	 */
634 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
635 		return 0;
636 	/*
637 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
638 	 * A the same bit is for perf counters which we don't use either.
639 	 */
640 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
641 		return 0;
642 
643 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
644 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
645 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
646 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
647 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
648 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
649 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
650 
651 	return enable_mask;
652 }
653 
654 void
655 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
656 		     u32 status_mask)
657 {
658 	u32 enable_mask;
659 
660 	if (IS_VALLEYVIEW(dev_priv->dev))
661 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
662 							   status_mask);
663 	else
664 		enable_mask = status_mask << 16;
665 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
666 }
667 
668 void
669 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
670 		      u32 status_mask)
671 {
672 	u32 enable_mask;
673 
674 	if (IS_VALLEYVIEW(dev_priv->dev))
675 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
676 							   status_mask);
677 	else
678 		enable_mask = status_mask << 16;
679 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
680 }
681 
682 /**
683  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
684  */
685 static void i915_enable_asle_pipestat(struct drm_device *dev)
686 {
687 	struct drm_i915_private *dev_priv = dev->dev_private;
688 
689 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
690 		return;
691 
692 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
693 
694 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
695 	if (INTEL_INFO(dev)->gen >= 4)
696 		i915_enable_pipestat(dev_priv, PIPE_A,
697 				     PIPE_LEGACY_BLC_EVENT_STATUS);
698 
699 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
700 }
701 
702 /**
703  * i915_pipe_enabled - check if a pipe is enabled
704  * @dev: DRM device
705  * @pipe: pipe to check
706  *
707  * Reading certain registers when the pipe is disabled can hang the chip.
708  * Use this routine to make sure the PLL is running and the pipe is active
709  * before reading such registers if unsure.
710  */
711 static int
712 i915_pipe_enabled(struct drm_device *dev, int pipe)
713 {
714 	struct drm_i915_private *dev_priv = dev->dev_private;
715 
716 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
717 		/* Locking is horribly broken here, but whatever. */
718 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
719 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
720 
721 		return intel_crtc->active;
722 	} else {
723 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
724 	}
725 }
726 
727 /*
728  * This timing diagram depicts the video signal in and
729  * around the vertical blanking period.
730  *
731  * Assumptions about the fictitious mode used in this example:
732  *  vblank_start >= 3
733  *  vsync_start = vblank_start + 1
734  *  vsync_end = vblank_start + 2
735  *  vtotal = vblank_start + 3
736  *
737  *           start of vblank:
738  *           latch double buffered registers
739  *           increment frame counter (ctg+)
740  *           generate start of vblank interrupt (gen4+)
741  *           |
742  *           |          frame start:
743  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
744  *           |          may be shifted forward 1-3 extra lines via PIPECONF
745  *           |          |
746  *           |          |  start of vsync:
747  *           |          |  generate vsync interrupt
748  *           |          |  |
749  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
750  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
751  * ----va---> <-----------------vb--------------------> <--------va-------------
752  *       |          |       <----vs----->                     |
753  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
754  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
755  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
756  *       |          |                                         |
757  *       last visible pixel                                   first visible pixel
758  *                  |                                         increment frame counter (gen3/4)
759  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
760  *
761  * x  = horizontal active
762  * _  = horizontal blanking
763  * hs = horizontal sync
764  * va = vertical active
765  * vb = vertical blanking
766  * vs = vertical sync
767  * vbs = vblank_start (number)
768  *
769  * Summary:
770  * - most events happen at the start of horizontal sync
771  * - frame start happens at the start of horizontal blank, 1-4 lines
772  *   (depending on PIPECONF settings) after the start of vblank
773  * - gen3/4 pixel and frame counter are synchronized with the start
774  *   of horizontal active on the first line of vertical active
775  */
776 
777 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
778 {
779 	/* Gen2 doesn't have a hardware frame counter */
780 	return 0;
781 }
782 
783 /* Called from drm generic code, passed a 'crtc', which
784  * we use as a pipe index
785  */
786 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
787 {
788 	struct drm_i915_private *dev_priv = dev->dev_private;
789 	unsigned long high_frame;
790 	unsigned long low_frame;
791 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
792 
793 	if (!i915_pipe_enabled(dev, pipe)) {
794 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
795 				"pipe %c\n", pipe_name(pipe));
796 		return 0;
797 	}
798 
799 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
800 		struct intel_crtc *intel_crtc =
801 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
802 		const struct drm_display_mode *mode =
803 			&intel_crtc->config.adjusted_mode;
804 
805 		htotal = mode->crtc_htotal;
806 		hsync_start = mode->crtc_hsync_start;
807 		vbl_start = mode->crtc_vblank_start;
808 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
809 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
810 	} else {
811 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
812 
813 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
814 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
815 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
816 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
817 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
818 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 	}
820 
821 	/* Convert to pixel count */
822 	vbl_start *= htotal;
823 
824 	/* Start of vblank event occurs at start of hsync */
825 	vbl_start -= htotal - hsync_start;
826 
827 	high_frame = PIPEFRAME(pipe);
828 	low_frame = PIPEFRAMEPIXEL(pipe);
829 
830 	/*
831 	 * High & low register fields aren't synchronized, so make sure
832 	 * we get a low value that's stable across two reads of the high
833 	 * register.
834 	 */
835 	do {
836 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
837 		low   = I915_READ(low_frame);
838 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
839 	} while (high1 != high2);
840 
841 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
842 	pixel = low & PIPE_PIXEL_MASK;
843 	low >>= PIPE_FRAME_LOW_SHIFT;
844 
845 	/*
846 	 * The frame counter increments at beginning of active.
847 	 * Cook up a vblank counter by also checking the pixel
848 	 * counter against vblank start.
849 	 */
850 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
851 }
852 
853 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
854 {
855 	struct drm_i915_private *dev_priv = dev->dev_private;
856 	int reg = PIPE_FRMCOUNT_GM45(pipe);
857 
858 	if (!i915_pipe_enabled(dev, pipe)) {
859 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
860 				 "pipe %c\n", pipe_name(pipe));
861 		return 0;
862 	}
863 
864 	return I915_READ(reg);
865 }
866 
867 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
868 #define __raw_i915_read32(dev_priv__, reg__) DRM_READ32(dev_priv__->mmio_map, reg__)
869 
870 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
871 {
872 	struct drm_device *dev = crtc->base.dev;
873 	struct drm_i915_private *dev_priv = dev->dev_private;
874 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
875 	enum i915_pipe pipe = crtc->pipe;
876 	int position, vtotal;
877 
878 	vtotal = mode->crtc_vtotal;
879 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
880 		vtotal /= 2;
881 
882 	if (IS_GEN2(dev))
883 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
884 	else
885 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
886 
887 	/*
888 	 * See update_scanline_offset() for the details on the
889 	 * scanline_offset adjustment.
890 	 */
891 	return (position + crtc->scanline_offset) % vtotal;
892 }
893 
894 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
895 				    unsigned int flags, int *vpos, int *hpos,
896 				    ktime_t *stime, ktime_t *etime)
897 {
898 	struct drm_i915_private *dev_priv = dev->dev_private;
899 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
900 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
901 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
902 	int position;
903 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
904 	bool in_vbl = true;
905 	int ret = 0;
906 
907 	if (!intel_crtc->active) {
908 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
909 				 "pipe %c\n", pipe_name(pipe));
910 		return 0;
911 	}
912 
913 	htotal = mode->crtc_htotal;
914 	hsync_start = mode->crtc_hsync_start;
915 	vtotal = mode->crtc_vtotal;
916 	vbl_start = mode->crtc_vblank_start;
917 	vbl_end = mode->crtc_vblank_end;
918 
919 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
920 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
921 		vbl_end /= 2;
922 		vtotal /= 2;
923 	}
924 
925 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
926 
927 	/*
928 	 * Lock uncore.lock, as we will do multiple timing critical raw
929 	 * register reads, potentially with preemption disabled, so the
930 	 * following code must not block on uncore.lock.
931 	 */
932 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
933 
934 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
935 
936 	/* Get optional system timestamp before query. */
937 	if (stime)
938 		*stime = ktime_get();
939 
940 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
941 		/* No obvious pixelcount register. Only query vertical
942 		 * scanout position from Display scan line register.
943 		 */
944 		position = __intel_get_crtc_scanline(intel_crtc);
945 	} else {
946 		/* Have access to pixelcount since start of frame.
947 		 * We can split this into vertical and horizontal
948 		 * scanout position.
949 		 */
950 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
951 
952 		/* convert to pixel counts */
953 		vbl_start *= htotal;
954 		vbl_end *= htotal;
955 		vtotal *= htotal;
956 
957 		/*
958 		 * In interlaced modes, the pixel counter counts all pixels,
959 		 * so one field will have htotal more pixels. In order to avoid
960 		 * the reported position from jumping backwards when the pixel
961 		 * counter is beyond the length of the shorter field, just
962 		 * clamp the position the length of the shorter field. This
963 		 * matches how the scanline counter based position works since
964 		 * the scanline counter doesn't count the two half lines.
965 		 */
966 		if (position >= vtotal)
967 			position = vtotal - 1;
968 
969 		/*
970 		 * Start of vblank interrupt is triggered at start of hsync,
971 		 * just prior to the first active line of vblank. However we
972 		 * consider lines to start at the leading edge of horizontal
973 		 * active. So, should we get here before we've crossed into
974 		 * the horizontal active of the first line in vblank, we would
975 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
976 		 * always add htotal-hsync_start to the current pixel position.
977 		 */
978 		position = (position + htotal - hsync_start) % vtotal;
979 	}
980 
981 	/* Get optional system timestamp after query. */
982 	if (etime)
983 		*etime = ktime_get();
984 
985 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
986 
987 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
988 
989 	in_vbl = position >= vbl_start && position < vbl_end;
990 
991 	/*
992 	 * While in vblank, position will be negative
993 	 * counting up towards 0 at vbl_end. And outside
994 	 * vblank, position will be positive counting
995 	 * up since vbl_end.
996 	 */
997 	if (position >= vbl_start)
998 		position -= vbl_end;
999 	else
1000 		position += vtotal - vbl_end;
1001 
1002 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1003 		*vpos = position;
1004 		*hpos = 0;
1005 	} else {
1006 		*vpos = position / htotal;
1007 		*hpos = position - (*vpos * htotal);
1008 	}
1009 
1010 	/* In vblank? */
1011 	if (in_vbl)
1012 		ret |= DRM_SCANOUTPOS_INVBL;
1013 
1014 	return ret;
1015 }
1016 
1017 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1018 {
1019 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1020 	int position;
1021 
1022 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
1023 	position = __intel_get_crtc_scanline(crtc);
1024 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
1025 
1026 	return position;
1027 }
1028 
1029 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1030 			      int *max_error,
1031 			      struct timeval *vblank_time,
1032 			      unsigned flags)
1033 {
1034 	struct drm_crtc *crtc;
1035 
1036 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1037 		DRM_ERROR("Invalid crtc %d\n", pipe);
1038 		return -EINVAL;
1039 	}
1040 
1041 	/* Get drm_crtc to timestamp: */
1042 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1043 	if (crtc == NULL) {
1044 		DRM_ERROR("Invalid crtc %d\n", pipe);
1045 		return -EINVAL;
1046 	}
1047 
1048 	if (!crtc->enabled) {
1049 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1050 		return -EBUSY;
1051 	}
1052 
1053 	/* Helper routine in DRM core does all the work: */
1054 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1055 						     vblank_time, flags,
1056 						     crtc,
1057 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1058 }
1059 
1060 static bool intel_hpd_irq_event(struct drm_device *dev,
1061 				struct drm_connector *connector)
1062 {
1063 	enum drm_connector_status old_status;
1064 
1065 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1066 	old_status = connector->status;
1067 
1068 	connector->status = connector->funcs->detect(connector, false);
1069 	if (old_status == connector->status)
1070 		return false;
1071 
1072 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1073 		      connector->base.id,
1074 		      connector->name,
1075 		      drm_get_connector_status_name(old_status),
1076 		      drm_get_connector_status_name(connector->status));
1077 
1078 	return true;
1079 }
1080 
1081 /*
1082  * Handle hotplug events outside the interrupt handler proper.
1083  */
1084 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1085 
1086 static void i915_hotplug_work_func(struct work_struct *work)
1087 {
1088 	struct drm_i915_private *dev_priv =
1089 		container_of(work, struct drm_i915_private, hotplug_work);
1090 	struct drm_device *dev = dev_priv->dev;
1091 	struct drm_mode_config *mode_config = &dev->mode_config;
1092 	struct intel_connector *intel_connector;
1093 	struct intel_encoder *intel_encoder;
1094 	struct drm_connector *connector;
1095 	bool hpd_disabled = false;
1096 	bool changed = false;
1097 	u32 hpd_event_bits;
1098 
1099 	/* HPD irq before everything is fully set up. */
1100 	if (!dev_priv->enable_hotplug_processing)
1101 		return;
1102 
1103 	mutex_lock(&mode_config->mutex);
1104 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1105 
1106 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1107 
1108 	hpd_event_bits = dev_priv->hpd_event_bits;
1109 	dev_priv->hpd_event_bits = 0;
1110 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1111 		intel_connector = to_intel_connector(connector);
1112 		intel_encoder = intel_connector->encoder;
1113 		if (intel_encoder->hpd_pin > HPD_NONE &&
1114 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1115 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1116 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1117 				 "switching from hotplug detection to polling\n",
1118 				connector->name);
1119 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1120 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1121 				| DRM_CONNECTOR_POLL_DISCONNECT;
1122 			hpd_disabled = true;
1123 		}
1124 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1125 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1126 				      connector->name, intel_encoder->hpd_pin);
1127 		}
1128 	}
1129 	 /* if there were no outputs to poll, poll was disabled,
1130 	  * therefore make sure it's enabled when disabling HPD on
1131 	  * some connectors */
1132 	if (hpd_disabled) {
1133 		drm_kms_helper_poll_enable(dev);
1134 		mod_timer(&dev_priv->hotplug_reenable_timer,
1135 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1136 	}
1137 
1138 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1139 
1140 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1141 		intel_connector = to_intel_connector(connector);
1142 		intel_encoder = intel_connector->encoder;
1143 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1144 			if (intel_encoder->hot_plug)
1145 				intel_encoder->hot_plug(intel_encoder);
1146 			if (intel_hpd_irq_event(dev, connector))
1147 				changed = true;
1148 		}
1149 	}
1150 	mutex_unlock(&mode_config->mutex);
1151 
1152 	if (changed)
1153 		drm_kms_helper_hotplug_event(dev);
1154 }
1155 
1156 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1157 {
1158 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
1159 }
1160 
1161 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1162 {
1163 	struct drm_i915_private *dev_priv = dev->dev_private;
1164 	u32 busy_up, busy_down, max_avg, min_avg;
1165 	u8 new_delay;
1166 
1167 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
1168 
1169 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1170 
1171 	new_delay = dev_priv->ips.cur_delay;
1172 
1173 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1174 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1175 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1176 	max_avg = I915_READ(RCBMAXAVG);
1177 	min_avg = I915_READ(RCBMINAVG);
1178 
1179 	/* Handle RCS change request from hw */
1180 	if (busy_up > max_avg) {
1181 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1182 			new_delay = dev_priv->ips.cur_delay - 1;
1183 		if (new_delay < dev_priv->ips.max_delay)
1184 			new_delay = dev_priv->ips.max_delay;
1185 	} else if (busy_down < min_avg) {
1186 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1187 			new_delay = dev_priv->ips.cur_delay + 1;
1188 		if (new_delay > dev_priv->ips.min_delay)
1189 			new_delay = dev_priv->ips.min_delay;
1190 	}
1191 
1192 	if (ironlake_set_drps(dev, new_delay))
1193 		dev_priv->ips.cur_delay = new_delay;
1194 
1195 	lockmgr(&mchdev_lock, LK_RELEASE);
1196 
1197 	return;
1198 }
1199 
1200 static void notify_ring(struct drm_device *dev,
1201 			struct intel_engine_cs *ring)
1202 {
1203 	if (!intel_ring_initialized(ring))
1204 		return;
1205 
1206 	trace_i915_gem_request_complete(ring);
1207 
1208 	wake_up_all(&ring->irq_queue);
1209 	i915_queue_hangcheck(dev);
1210 }
1211 
1212 static void gen6_pm_rps_work(struct work_struct *work)
1213 {
1214 	struct drm_i915_private *dev_priv =
1215 		container_of(work, struct drm_i915_private, rps.work);
1216 	u32 pm_iir;
1217 	int new_delay, adj;
1218 
1219 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1220 	pm_iir = dev_priv->rps.pm_iir;
1221 	dev_priv->rps.pm_iir = 0;
1222 	if (IS_BROADWELL(dev_priv->dev))
1223 		bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1224 	else {
1225 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1226 		snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1227 	}
1228 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1229 
1230 	/* Make sure we didn't queue anything we're not going to process. */
1231 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1232 
1233 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1234 		return;
1235 
1236 	mutex_lock(&dev_priv->rps.hw_lock);
1237 
1238 	adj = dev_priv->rps.last_adj;
1239 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1240 		if (adj > 0)
1241 			adj *= 2;
1242 		else
1243 			adj = 1;
1244 		new_delay = dev_priv->rps.cur_freq + adj;
1245 
1246 		/*
1247 		 * For better performance, jump directly
1248 		 * to RPe if we're below it.
1249 		 */
1250 		if (new_delay < dev_priv->rps.efficient_freq)
1251 			new_delay = dev_priv->rps.efficient_freq;
1252 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1253 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1254 			new_delay = dev_priv->rps.efficient_freq;
1255 		else
1256 			new_delay = dev_priv->rps.min_freq_softlimit;
1257 		adj = 0;
1258 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1259 		if (adj < 0)
1260 			adj *= 2;
1261 		else
1262 			adj = -1;
1263 		new_delay = dev_priv->rps.cur_freq + adj;
1264 	} else { /* unknown event */
1265 		new_delay = dev_priv->rps.cur_freq;
1266 	}
1267 
1268 	/* sysfs frequency interfaces may have snuck in while servicing the
1269 	 * interrupt
1270 	 */
1271 	new_delay = clamp_t(int, new_delay,
1272 			    dev_priv->rps.min_freq_softlimit,
1273 			    dev_priv->rps.max_freq_softlimit);
1274 
1275 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1276 
1277 	if (IS_VALLEYVIEW(dev_priv->dev))
1278 		valleyview_set_rps(dev_priv->dev, new_delay);
1279 	else
1280 		gen6_set_rps(dev_priv->dev, new_delay);
1281 
1282 	mutex_unlock(&dev_priv->rps.hw_lock);
1283 }
1284 
1285 
1286 /**
1287  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1288  * occurred.
1289  * @work: workqueue struct
1290  *
1291  * Doesn't actually do anything except notify userspace. As a consequence of
1292  * this event, userspace should try to remap the bad rows since statistically
1293  * it is likely the same row is more likely to go bad again.
1294  */
1295 static void ivybridge_parity_work(struct work_struct *work)
1296 {
1297 	struct drm_i915_private *dev_priv =
1298 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1299 	u32 error_status, row, bank, subbank;
1300 	char *parity_event[6];
1301 	uint32_t misccpctl;
1302 	uint8_t slice = 0;
1303 
1304 	/* We must turn off DOP level clock gating to access the L3 registers.
1305 	 * In order to prevent a get/put style interface, acquire struct mutex
1306 	 * any time we access those registers.
1307 	 */
1308 	mutex_lock(&dev_priv->dev->struct_mutex);
1309 
1310 	/* If we've screwed up tracking, just let the interrupt fire again */
1311 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1312 		goto out;
1313 
1314 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1315 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1316 	POSTING_READ(GEN7_MISCCPCTL);
1317 
1318 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1319 		u32 reg;
1320 
1321 		slice--;
1322 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1323 			break;
1324 
1325 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1326 
1327 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1328 
1329 		error_status = I915_READ(reg);
1330 		row = GEN7_PARITY_ERROR_ROW(error_status);
1331 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1332 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1333 
1334 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1335 		POSTING_READ(reg);
1336 
1337 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1338 		parity_event[1] = drm_asprintf(GFP_KERNEL, "ROW=%d", row);
1339 		parity_event[2] = drm_asprintf(GFP_KERNEL, "BANK=%d", bank);
1340 		parity_event[3] = drm_asprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1341 		parity_event[4] = drm_asprintf(GFP_KERNEL, "SLICE=%d", slice);
1342 		parity_event[5] = NULL;
1343 
1344 #if 0
1345 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1346 				   KOBJ_CHANGE, parity_event);
1347 #endif
1348 
1349 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1350 			  slice, row, bank, subbank);
1351 
1352 		kfree(parity_event[4]);
1353 		kfree(parity_event[3]);
1354 		kfree(parity_event[2]);
1355 		kfree(parity_event[1]);
1356 	}
1357 
1358 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1359 
1360 out:
1361 	WARN_ON(dev_priv->l3_parity.which_slice);
1362 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1363 	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1364 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1365 
1366 	mutex_unlock(&dev_priv->dev->struct_mutex);
1367 }
1368 
1369 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1370 {
1371 	struct drm_i915_private *dev_priv = dev->dev_private;
1372 
1373 	if (!HAS_L3_DPF(dev))
1374 		return;
1375 
1376 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1377 	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1378 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1379 
1380 	iir &= GT_PARITY_ERROR(dev);
1381 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1382 		dev_priv->l3_parity.which_slice |= 1 << 1;
1383 
1384 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1385 		dev_priv->l3_parity.which_slice |= 1 << 0;
1386 
1387 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1388 }
1389 
1390 static void ilk_gt_irq_handler(struct drm_device *dev,
1391 			       struct drm_i915_private *dev_priv,
1392 			       u32 gt_iir)
1393 {
1394 	if (gt_iir &
1395 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1396 		notify_ring(dev, &dev_priv->ring[RCS]);
1397 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1398 		notify_ring(dev, &dev_priv->ring[VCS]);
1399 }
1400 
1401 static void snb_gt_irq_handler(struct drm_device *dev,
1402 			       struct drm_i915_private *dev_priv,
1403 			       u32 gt_iir)
1404 {
1405 
1406 	if (gt_iir &
1407 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1408 		notify_ring(dev, &dev_priv->ring[RCS]);
1409 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1410 		notify_ring(dev, &dev_priv->ring[VCS]);
1411 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1412 		notify_ring(dev, &dev_priv->ring[BCS]);
1413 
1414 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1415 		      GT_BSD_CS_ERROR_INTERRUPT |
1416 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1417 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1418 				  gt_iir);
1419 	}
1420 
1421 	if (gt_iir & GT_PARITY_ERROR(dev))
1422 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1423 }
1424 
1425 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1426 {
1427 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1428 		return;
1429 
1430 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1431 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1432 	bdw_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1433 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1434 
1435 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1436 }
1437 
1438 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1439 				       struct drm_i915_private *dev_priv,
1440 				       u32 master_ctl)
1441 {
1442 	u32 rcs, bcs, vcs;
1443 	uint32_t tmp = 0;
1444 
1445 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1446 		tmp = I915_READ(GEN8_GT_IIR(0));
1447 		if (tmp) {
1448 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1449 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1450 			if (rcs & GT_RENDER_USER_INTERRUPT)
1451 				notify_ring(dev, &dev_priv->ring[RCS]);
1452 			if (bcs & GT_RENDER_USER_INTERRUPT)
1453 				notify_ring(dev, &dev_priv->ring[BCS]);
1454 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1455 		} else
1456 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1457 	}
1458 
1459 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1460 		tmp = I915_READ(GEN8_GT_IIR(1));
1461 		if (tmp) {
1462 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1463 			if (vcs & GT_RENDER_USER_INTERRUPT)
1464 				notify_ring(dev, &dev_priv->ring[VCS]);
1465 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1466 			if (vcs & GT_RENDER_USER_INTERRUPT)
1467 				notify_ring(dev, &dev_priv->ring[VCS2]);
1468 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1469 		} else
1470 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1471 	}
1472 
1473 	if (master_ctl & GEN8_GT_PM_IRQ) {
1474 		tmp = I915_READ(GEN8_GT_IIR(2));
1475 		if (tmp & dev_priv->pm_rps_events) {
1476 			gen8_rps_irq_handler(dev_priv, tmp);
1477 			I915_WRITE(GEN8_GT_IIR(2),
1478 				   tmp & dev_priv->pm_rps_events);
1479 		} else
1480 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1481 	}
1482 
1483 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1484 		tmp = I915_READ(GEN8_GT_IIR(3));
1485 		if (tmp) {
1486 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1487 			if (vcs & GT_RENDER_USER_INTERRUPT)
1488 				notify_ring(dev, &dev_priv->ring[VECS]);
1489 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1490 		} else
1491 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1492 	}
1493 
1494 }
1495 
1496 #define HPD_STORM_DETECT_PERIOD 1000
1497 #define HPD_STORM_THRESHOLD 5
1498 
1499 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1500 					 u32 hotplug_trigger,
1501 					 const u32 *hpd)
1502 {
1503 	struct drm_i915_private *dev_priv = dev->dev_private;
1504 	int i;
1505 	bool storm_detected = false;
1506 
1507 	if (!hotplug_trigger)
1508 		return;
1509 
1510 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1511 			  hotplug_trigger);
1512 
1513 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1514 	for (i = 1; i < HPD_NUM_PINS; i++) {
1515 
1516 		if (hpd[i] & hotplug_trigger &&
1517 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1518 			/*
1519 			 * On GMCH platforms the interrupt mask bits only
1520 			 * prevent irq generation, not the setting of the
1521 			 * hotplug bits itself. So only WARN about unexpected
1522 			 * interrupts on saner platforms.
1523 			 */
1524 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1525 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1526 				  hotplug_trigger, i, hpd[i]);
1527 
1528 			continue;
1529 		}
1530 
1531 		if (!(hpd[i] & hotplug_trigger) ||
1532 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1533 			continue;
1534 
1535 		dev_priv->hpd_event_bits |= (1 << i);
1536 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1537 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1538 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1539 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1540 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1541 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1542 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1543 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1544 			dev_priv->hpd_event_bits &= ~(1 << i);
1545 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1546 			storm_detected = true;
1547 		} else {
1548 			dev_priv->hpd_stats[i].hpd_cnt++;
1549 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1550 				      dev_priv->hpd_stats[i].hpd_cnt);
1551 		}
1552 	}
1553 
1554 	if (storm_detected)
1555 		dev_priv->display.hpd_irq_setup(dev);
1556 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1557 
1558 	/*
1559 	 * Our hotplug handler can grab modeset locks (by calling down into the
1560 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1561 	 * queue for otherwise the flush_work in the pageflip code will
1562 	 * deadlock.
1563 	 */
1564 	schedule_work(&dev_priv->hotplug_work);
1565 }
1566 
1567 static void gmbus_irq_handler(struct drm_device *dev)
1568 {
1569 	struct drm_i915_private *dev_priv = dev->dev_private;
1570 
1571 	wake_up_all(&dev_priv->gmbus_wait_queue);
1572 }
1573 
1574 static void dp_aux_irq_handler(struct drm_device *dev)
1575 {
1576 	struct drm_i915_private *dev_priv = dev->dev_private;
1577 
1578 	wake_up_all(&dev_priv->gmbus_wait_queue);
1579 }
1580 
1581 #if defined(CONFIG_DEBUG_FS)
1582 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1583 					 uint32_t crc0, uint32_t crc1,
1584 					 uint32_t crc2, uint32_t crc3,
1585 					 uint32_t crc4)
1586 {
1587 	struct drm_i915_private *dev_priv = dev->dev_private;
1588 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1589 	struct intel_pipe_crc_entry *entry;
1590 	int head, tail;
1591 
1592 	spin_lock(&pipe_crc->lock);
1593 
1594 	if (!pipe_crc->entries) {
1595 		spin_unlock(&pipe_crc->lock);
1596 		DRM_ERROR("spurious interrupt\n");
1597 		return;
1598 	}
1599 
1600 	head = pipe_crc->head;
1601 	tail = pipe_crc->tail;
1602 
1603 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1604 		spin_unlock(&pipe_crc->lock);
1605 		DRM_ERROR("CRC buffer overflowing\n");
1606 		return;
1607 	}
1608 
1609 	entry = &pipe_crc->entries[head];
1610 
1611 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1612 	entry->crc[0] = crc0;
1613 	entry->crc[1] = crc1;
1614 	entry->crc[2] = crc2;
1615 	entry->crc[3] = crc3;
1616 	entry->crc[4] = crc4;
1617 
1618 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1619 	pipe_crc->head = head;
1620 
1621 	spin_unlock(&pipe_crc->lock);
1622 
1623 	wake_up_interruptible(&pipe_crc->wq);
1624 }
1625 #else
1626 static inline void
1627 display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1628 			     uint32_t crc0, uint32_t crc1,
1629 			     uint32_t crc2, uint32_t crc3,
1630 			     uint32_t crc4) {}
1631 #endif
1632 
1633 
1634 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1635 {
1636 	struct drm_i915_private *dev_priv = dev->dev_private;
1637 
1638 	display_pipe_crc_irq_handler(dev, pipe,
1639 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1640 				     0, 0, 0, 0);
1641 }
1642 
1643 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1644 {
1645 	struct drm_i915_private *dev_priv = dev->dev_private;
1646 
1647 	display_pipe_crc_irq_handler(dev, pipe,
1648 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1649 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1650 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1651 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1652 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1653 }
1654 
1655 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1656 {
1657 	struct drm_i915_private *dev_priv = dev->dev_private;
1658 	uint32_t res1, res2;
1659 
1660 	if (INTEL_INFO(dev)->gen >= 3)
1661 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1662 	else
1663 		res1 = 0;
1664 
1665 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1666 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1667 	else
1668 		res2 = 0;
1669 
1670 	display_pipe_crc_irq_handler(dev, pipe,
1671 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1672 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1673 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1674 				     res1, res2);
1675 }
1676 
1677 /* The RPS events need forcewake, so we add them to a work queue and mask their
1678  * IMR bits until the work is done. Other interrupts can be processed without
1679  * the work queue. */
1680 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1681 {
1682 	if (pm_iir & dev_priv->pm_rps_events) {
1683 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1684 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1685 		snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1686 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1687 
1688 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1689 	}
1690 
1691 	if (HAS_VEBOX(dev_priv->dev)) {
1692 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1693 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1694 
1695 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1696 			i915_handle_error(dev_priv->dev, false,
1697 					  "VEBOX CS error interrupt 0x%08x",
1698 					  pm_iir);
1699 		}
1700 	}
1701 }
1702 
1703 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum i915_pipe pipe)
1704 {
1705 	struct intel_crtc *crtc;
1706 
1707 	if (!drm_handle_vblank(dev, pipe))
1708 		return false;
1709 
1710 	crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1711 	wake_up(&crtc->vbl_wait);
1712 
1713 	return true;
1714 }
1715 
1716 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1717 {
1718 	struct drm_i915_private *dev_priv = dev->dev_private;
1719 	u32 pipe_stats[I915_MAX_PIPES] = { };
1720 	int pipe;
1721 
1722 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1723 	for_each_pipe(pipe) {
1724 		int reg;
1725 		u32 mask, iir_bit = 0;
1726 
1727 		/*
1728 		 * PIPESTAT bits get signalled even when the interrupt is
1729 		 * disabled with the mask bits, and some of the status bits do
1730 		 * not generate interrupts at all (like the underrun bit). Hence
1731 		 * we need to be careful that we only handle what we want to
1732 		 * handle.
1733 		 */
1734 		mask = 0;
1735 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1736 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
1737 
1738 		switch (pipe) {
1739 		case PIPE_A:
1740 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1741 			break;
1742 		case PIPE_B:
1743 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1744 			break;
1745 		case PIPE_C:
1746 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1747 			break;
1748 		}
1749 		if (iir & iir_bit)
1750 			mask |= dev_priv->pipestat_irq_mask[pipe];
1751 
1752 		if (!mask)
1753 			continue;
1754 
1755 		reg = PIPESTAT(pipe);
1756 		mask |= PIPESTAT_INT_ENABLE_MASK;
1757 		pipe_stats[pipe] = I915_READ(reg) & mask;
1758 
1759 		/*
1760 		 * Clear the PIPE*STAT regs before the IIR
1761 		 */
1762 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1763 					PIPESTAT_INT_STATUS_MASK))
1764 			I915_WRITE(reg, pipe_stats[pipe]);
1765 	}
1766 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1767 
1768 	for_each_pipe(pipe) {
1769 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1770 			intel_pipe_handle_vblank(dev, pipe);
1771 
1772 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1773 			intel_prepare_page_flip(dev, pipe);
1774 			intel_finish_page_flip(dev, pipe);
1775 		}
1776 
1777 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1778 			i9xx_pipe_crc_irq_handler(dev, pipe);
1779 
1780 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1781 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1782 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1783 	}
1784 
1785 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1786 		gmbus_irq_handler(dev);
1787 }
1788 
1789 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1790 {
1791 	struct drm_i915_private *dev_priv = dev->dev_private;
1792 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1793 
1794 	if (IS_G4X(dev)) {
1795 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1796 
1797 		intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1798 	} else {
1799 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1800 
1801 		intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1802 	}
1803 
1804 	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1805 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1806 		dp_aux_irq_handler(dev);
1807 
1808 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1809 	/*
1810 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1811 	 * may miss hotplug events.
1812 	 */
1813 	POSTING_READ(PORT_HOTPLUG_STAT);
1814 }
1815 
1816 static irqreturn_t valleyview_irq_handler(void *arg)
1817 {
1818 	struct drm_device *dev = arg;
1819 	struct drm_i915_private *dev_priv = dev->dev_private;
1820 	u32 iir, gt_iir, pm_iir;
1821 
1822 	while (true) {
1823 		iir = I915_READ(VLV_IIR);
1824 		gt_iir = I915_READ(GTIIR);
1825 		pm_iir = I915_READ(GEN6_PMIIR);
1826 
1827 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1828 			goto out;
1829 
1830 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1831 
1832 		valleyview_pipestat_irq_handler(dev, iir);
1833 
1834 		/* Consume port.  Then clear IIR or we'll miss events */
1835 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1836 			i9xx_hpd_irq_handler(dev);
1837 
1838 		if (pm_iir)
1839 			gen6_rps_irq_handler(dev_priv, pm_iir);
1840 
1841 		I915_WRITE(GTIIR, gt_iir);
1842 		I915_WRITE(GEN6_PMIIR, pm_iir);
1843 		I915_WRITE(VLV_IIR, iir);
1844 	}
1845 
1846 out:
1847 	return;
1848 }
1849 
1850 static irqreturn_t cherryview_irq_handler(void *arg)
1851 {
1852 	struct drm_device *dev = arg;
1853 	struct drm_i915_private *dev_priv = dev->dev_private;
1854 	u32 master_ctl, iir;
1855 
1856 	for (;;) {
1857 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1858 		iir = I915_READ(VLV_IIR);
1859 
1860 		if (master_ctl == 0 && iir == 0)
1861 			break;
1862 
1863 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1864 
1865 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1866 
1867 		valleyview_pipestat_irq_handler(dev, iir);
1868 
1869 		/* Consume port.  Then clear IIR or we'll miss events */
1870 		i9xx_hpd_irq_handler(dev);
1871 
1872 		I915_WRITE(VLV_IIR, iir);
1873 
1874 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1875 		POSTING_READ(GEN8_MASTER_IRQ);
1876 	}
1877 }
1878 
1879 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1880 {
1881 	struct drm_i915_private *dev_priv = dev->dev_private;
1882 	int pipe;
1883 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1884 
1885 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1886 
1887 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1888 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1889 			       SDE_AUDIO_POWER_SHIFT);
1890 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1891 				 port_name(port));
1892 	}
1893 
1894 	if (pch_iir & SDE_AUX_MASK)
1895 		dp_aux_irq_handler(dev);
1896 
1897 	if (pch_iir & SDE_GMBUS)
1898 		gmbus_irq_handler(dev);
1899 
1900 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1901 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1902 
1903 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1904 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1905 
1906 	if (pch_iir & SDE_POISON)
1907 		DRM_ERROR("PCH poison interrupt\n");
1908 
1909 	if (pch_iir & SDE_FDI_MASK)
1910 		for_each_pipe(pipe)
1911 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1912 					 pipe_name(pipe),
1913 					 I915_READ(FDI_RX_IIR(pipe)));
1914 
1915 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1916 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1917 
1918 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1919 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1920 
1921 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1922 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1923 							  false))
1924 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1925 
1926 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1927 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1928 							  false))
1929 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1930 }
1931 
1932 static void ivb_err_int_handler(struct drm_device *dev)
1933 {
1934 	struct drm_i915_private *dev_priv = dev->dev_private;
1935 	u32 err_int = I915_READ(GEN7_ERR_INT);
1936 	enum i915_pipe pipe;
1937 
1938 	if (err_int & ERR_INT_POISON)
1939 		DRM_ERROR("Poison interrupt\n");
1940 
1941 	for_each_pipe(pipe) {
1942 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1943 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1944 								  false))
1945 				DRM_ERROR("Pipe %c FIFO underrun\n",
1946 					  pipe_name(pipe));
1947 		}
1948 
1949 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1950 			if (IS_IVYBRIDGE(dev))
1951 				ivb_pipe_crc_irq_handler(dev, pipe);
1952 			else
1953 				hsw_pipe_crc_irq_handler(dev, pipe);
1954 		}
1955 	}
1956 
1957 	I915_WRITE(GEN7_ERR_INT, err_int);
1958 }
1959 
1960 static void cpt_serr_int_handler(struct drm_device *dev)
1961 {
1962 	struct drm_i915_private *dev_priv = dev->dev_private;
1963 	u32 serr_int = I915_READ(SERR_INT);
1964 
1965 	if (serr_int & SERR_INT_POISON)
1966 		DRM_ERROR("PCH poison interrupt\n");
1967 
1968 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1969 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1970 							  false))
1971 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1972 
1973 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1974 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1975 							  false))
1976 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1977 
1978 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1979 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1980 							  false))
1981 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
1982 
1983 	I915_WRITE(SERR_INT, serr_int);
1984 }
1985 
1986 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1987 {
1988 	struct drm_i915_private *dev_priv = dev->dev_private;
1989 	int pipe;
1990 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1991 
1992 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1993 
1994 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1995 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1996 			       SDE_AUDIO_POWER_SHIFT_CPT);
1997 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1998 				 port_name(port));
1999 	}
2000 
2001 	if (pch_iir & SDE_AUX_MASK_CPT)
2002 		dp_aux_irq_handler(dev);
2003 
2004 	if (pch_iir & SDE_GMBUS_CPT)
2005 		gmbus_irq_handler(dev);
2006 
2007 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2008 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2009 
2010 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2011 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2012 
2013 	if (pch_iir & SDE_FDI_MASK_CPT)
2014 		for_each_pipe(pipe)
2015 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2016 					 pipe_name(pipe),
2017 					 I915_READ(FDI_RX_IIR(pipe)));
2018 
2019 	if (pch_iir & SDE_ERROR_CPT)
2020 		cpt_serr_int_handler(dev);
2021 }
2022 
2023 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2024 {
2025 	struct drm_i915_private *dev_priv = dev->dev_private;
2026 	enum i915_pipe pipe;
2027 
2028 	if (de_iir & DE_AUX_CHANNEL_A)
2029 		dp_aux_irq_handler(dev);
2030 
2031 	if (de_iir & DE_GSE)
2032 		intel_opregion_asle_intr(dev);
2033 
2034 	if (de_iir & DE_POISON)
2035 		DRM_ERROR("Poison interrupt\n");
2036 
2037 	for_each_pipe(pipe) {
2038 		if (de_iir & DE_PIPE_VBLANK(pipe))
2039 			intel_pipe_handle_vblank(dev, pipe);
2040 
2041 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2042 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2043 				DRM_ERROR("Pipe %c FIFO underrun\n",
2044 					  pipe_name(pipe));
2045 
2046 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2047 			i9xx_pipe_crc_irq_handler(dev, pipe);
2048 
2049 		/* plane/pipes map 1:1 on ilk+ */
2050 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2051 			intel_prepare_page_flip(dev, pipe);
2052 			intel_finish_page_flip_plane(dev, pipe);
2053 		}
2054 	}
2055 
2056 	/* check event from PCH */
2057 	if (de_iir & DE_PCH_EVENT) {
2058 		u32 pch_iir = I915_READ(SDEIIR);
2059 
2060 		if (HAS_PCH_CPT(dev))
2061 			cpt_irq_handler(dev, pch_iir);
2062 		else
2063 			ibx_irq_handler(dev, pch_iir);
2064 
2065 		/* should clear PCH hotplug event before clear CPU irq */
2066 		I915_WRITE(SDEIIR, pch_iir);
2067 	}
2068 
2069 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2070 		ironlake_rps_change_irq_handler(dev);
2071 }
2072 
2073 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2074 {
2075 	struct drm_i915_private *dev_priv = dev->dev_private;
2076 	enum i915_pipe pipe;
2077 
2078 	if (de_iir & DE_ERR_INT_IVB)
2079 		ivb_err_int_handler(dev);
2080 
2081 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2082 		dp_aux_irq_handler(dev);
2083 
2084 	if (de_iir & DE_GSE_IVB)
2085 		intel_opregion_asle_intr(dev);
2086 
2087 	for_each_pipe(pipe) {
2088 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2089 			intel_pipe_handle_vblank(dev, pipe);
2090 
2091 		/* plane/pipes map 1:1 on ilk+ */
2092 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2093 			intel_prepare_page_flip(dev, pipe);
2094 			intel_finish_page_flip_plane(dev, pipe);
2095 		}
2096 	}
2097 
2098 	/* check event from PCH */
2099 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2100 		u32 pch_iir = I915_READ(SDEIIR);
2101 
2102 		cpt_irq_handler(dev, pch_iir);
2103 
2104 		/* clear PCH hotplug event before clear CPU irq */
2105 		I915_WRITE(SDEIIR, pch_iir);
2106 	}
2107 }
2108 
2109 static irqreturn_t ironlake_irq_handler(void *arg)
2110 {
2111 	struct drm_device *dev = arg;
2112 	struct drm_i915_private *dev_priv = dev->dev_private;
2113 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2114 
2115 	/* We get interrupts on unclaimed registers, so check for this before we
2116 	 * do any I915_{READ,WRITE}. */
2117 	intel_uncore_check_errors(dev);
2118 
2119 	/* disable master interrupt before clearing iir  */
2120 	de_ier = I915_READ(DEIER);
2121 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2122 	POSTING_READ(DEIER);
2123 
2124 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2125 	 * interrupts will will be stored on its back queue, and then we'll be
2126 	 * able to process them after we restore SDEIER (as soon as we restore
2127 	 * it, we'll get an interrupt if SDEIIR still has something to process
2128 	 * due to its back queue). */
2129 	if (!HAS_PCH_NOP(dev)) {
2130 		sde_ier = I915_READ(SDEIER);
2131 		I915_WRITE(SDEIER, 0);
2132 		POSTING_READ(SDEIER);
2133 	}
2134 
2135 	gt_iir = I915_READ(GTIIR);
2136 	if (gt_iir) {
2137 		if (INTEL_INFO(dev)->gen >= 6)
2138 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2139 		else
2140 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2141 		I915_WRITE(GTIIR, gt_iir);
2142 	}
2143 
2144 	de_iir = I915_READ(DEIIR);
2145 	if (de_iir) {
2146 		if (INTEL_INFO(dev)->gen >= 7)
2147 			ivb_display_irq_handler(dev, de_iir);
2148 		else
2149 			ilk_display_irq_handler(dev, de_iir);
2150 		I915_WRITE(DEIIR, de_iir);
2151 	}
2152 
2153 	if (INTEL_INFO(dev)->gen >= 6) {
2154 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2155 		if (pm_iir) {
2156 			gen6_rps_irq_handler(dev_priv, pm_iir);
2157 			I915_WRITE(GEN6_PMIIR, pm_iir);
2158 		}
2159 	}
2160 
2161 	I915_WRITE(DEIER, de_ier);
2162 	POSTING_READ(DEIER);
2163 	if (!HAS_PCH_NOP(dev)) {
2164 		I915_WRITE(SDEIER, sde_ier);
2165 		POSTING_READ(SDEIER);
2166 	}
2167 
2168 }
2169 
2170 static irqreturn_t gen8_irq_handler(void *arg)
2171 {
2172 	struct drm_device *dev = arg;
2173 	struct drm_i915_private *dev_priv = dev->dev_private;
2174 	u32 master_ctl;
2175 	uint32_t tmp = 0;
2176 	enum i915_pipe pipe;
2177 
2178 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2179 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2180 	if (!master_ctl)
2181 		return;
2182 
2183 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2184 	POSTING_READ(GEN8_MASTER_IRQ);
2185 
2186 	gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2187 
2188 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2189 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2190 		if (tmp & GEN8_DE_MISC_GSE)
2191 			intel_opregion_asle_intr(dev);
2192 		else if (tmp)
2193 			DRM_ERROR("Unexpected DE Misc interrupt\n");
2194 		else
2195 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2196 
2197 		if (tmp) {
2198 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2199 		}
2200 	}
2201 
2202 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2203 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2204 		if (tmp & GEN8_AUX_CHANNEL_A)
2205 			dp_aux_irq_handler(dev);
2206 		else if (tmp)
2207 			DRM_ERROR("Unexpected DE Port interrupt\n");
2208 		else
2209 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2210 
2211 		if (tmp) {
2212 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2213 		}
2214 	}
2215 
2216 	for_each_pipe(pipe) {
2217 		uint32_t pipe_iir;
2218 
2219 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2220 			continue;
2221 
2222 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2223 		if (pipe_iir & GEN8_PIPE_VBLANK)
2224 			intel_pipe_handle_vblank(dev, pipe);
2225 
2226 		if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2227 			intel_prepare_page_flip(dev, pipe);
2228 			intel_finish_page_flip_plane(dev, pipe);
2229 		}
2230 
2231 		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2232 			hsw_pipe_crc_irq_handler(dev, pipe);
2233 
2234 		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2235 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2236 								  false))
2237 				DRM_ERROR("Pipe %c FIFO underrun\n",
2238 					  pipe_name(pipe));
2239 		}
2240 
2241 		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2242 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2243 				  pipe_name(pipe),
2244 				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2245 		}
2246 
2247 		if (pipe_iir) {
2248 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2249 		} else
2250 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2251 	}
2252 
2253 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2254 		/*
2255 		 * FIXME(BDW): Assume for now that the new interrupt handling
2256 		 * scheme also closed the SDE interrupt handling race we've seen
2257 		 * on older pch-split platforms. But this needs testing.
2258 		 */
2259 		u32 pch_iir = I915_READ(SDEIIR);
2260 
2261 		cpt_irq_handler(dev, pch_iir);
2262 
2263 		if (pch_iir) {
2264 			I915_WRITE(SDEIIR, pch_iir);
2265 		}
2266 	}
2267 
2268 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2269 	POSTING_READ(GEN8_MASTER_IRQ);
2270 
2271 }
2272 
2273 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2274 			       bool reset_completed)
2275 {
2276 	struct intel_engine_cs *ring;
2277 	int i;
2278 
2279 	/*
2280 	 * Notify all waiters for GPU completion events that reset state has
2281 	 * been changed, and that they need to restart their wait after
2282 	 * checking for potential errors (and bail out to drop locks if there is
2283 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2284 	 */
2285 
2286 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2287 	for_each_ring(ring, dev_priv, i)
2288 		wake_up_all(&ring->irq_queue);
2289 
2290 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2291 	wake_up_all(&dev_priv->pending_flip_queue);
2292 
2293 	/*
2294 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2295 	 * reset state is cleared.
2296 	 */
2297 	if (reset_completed)
2298 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2299 }
2300 
2301 /**
2302  * i915_error_work_func - do process context error handling work
2303  * @work: work struct
2304  *
2305  * Fire an error uevent so userspace can see that a hang or error
2306  * was detected.
2307  */
2308 static void i915_error_work_func(struct work_struct *work)
2309 {
2310 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2311 						    work);
2312 	struct drm_i915_private *dev_priv =
2313 		container_of(error, struct drm_i915_private, gpu_error);
2314 	struct drm_device *dev = dev_priv->dev;
2315 #if 0
2316 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2317 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2318 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2319 #endif
2320 	int ret;
2321 
2322 	/* kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event); */
2323 
2324 	/*
2325 	 * Note that there's only one work item which does gpu resets, so we
2326 	 * need not worry about concurrent gpu resets potentially incrementing
2327 	 * error->reset_counter twice. We only need to take care of another
2328 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2329 	 * quick check for that is good enough: schedule_work ensures the
2330 	 * correct ordering between hang detection and this work item, and since
2331 	 * the reset in-progress bit is only ever set by code outside of this
2332 	 * work we don't need to worry about any other races.
2333 	 */
2334 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2335 		DRM_DEBUG_DRIVER("resetting chip\n");
2336 #if 0
2337 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2338 				   reset_event);
2339 #endif
2340 
2341 		/*
2342 		 * In most cases it's guaranteed that we get here with an RPM
2343 		 * reference held, for example because there is a pending GPU
2344 		 * request that won't finish until the reset is done. This
2345 		 * isn't the case at least when we get here by doing a
2346 		 * simulated reset via debugs, so get an RPM reference.
2347 		 */
2348 		intel_runtime_pm_get(dev_priv);
2349 		/*
2350 		 * All state reset _must_ be completed before we update the
2351 		 * reset counter, for otherwise waiters might miss the reset
2352 		 * pending state and not properly drop locks, resulting in
2353 		 * deadlocks with the reset work.
2354 		 */
2355 		ret = i915_reset(dev);
2356 
2357 		intel_display_handle_reset(dev);
2358 
2359 		intel_runtime_pm_put(dev_priv);
2360 
2361 		if (ret == 0) {
2362 			/*
2363 			 * After all the gem state is reset, increment the reset
2364 			 * counter and wake up everyone waiting for the reset to
2365 			 * complete.
2366 			 *
2367 			 * Since unlock operations are a one-sided barrier only,
2368 			 * we need to insert a barrier here to order any seqno
2369 			 * updates before
2370 			 * the counter increment.
2371 			 */
2372 			smp_mb__before_atomic();
2373 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2374 
2375 #if 0
2376 			kobject_uevent_env(&dev->primary->kdev->kobj,
2377 					   KOBJ_CHANGE, reset_done_event);
2378 #endif
2379 		} else {
2380 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2381 		}
2382 
2383 		/*
2384 		 * Note: The wake_up also serves as a memory barrier so that
2385 		 * waiters see the update value of the reset counter atomic_t.
2386 		 */
2387 		i915_error_wake_up(dev_priv, true);
2388 	}
2389 }
2390 
2391 static void i915_report_and_clear_eir(struct drm_device *dev)
2392 {
2393 	struct drm_i915_private *dev_priv = dev->dev_private;
2394 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2395 	u32 eir = I915_READ(EIR);
2396 	int pipe, i;
2397 
2398 	if (!eir)
2399 		return;
2400 
2401 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2402 
2403 #if 0
2404 	i915_get_extra_instdone(dev, instdone);
2405 #endif
2406 
2407 	if (IS_G4X(dev)) {
2408 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2409 			u32 ipeir = I915_READ(IPEIR_I965);
2410 
2411 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2412 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2413 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2414 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2415 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2416 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2417 			I915_WRITE(IPEIR_I965, ipeir);
2418 			POSTING_READ(IPEIR_I965);
2419 		}
2420 		if (eir & GM45_ERROR_PAGE_TABLE) {
2421 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2422 			pr_err("page table error\n");
2423 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2424 			I915_WRITE(PGTBL_ER, pgtbl_err);
2425 			POSTING_READ(PGTBL_ER);
2426 		}
2427 	}
2428 
2429 	if (!IS_GEN2(dev)) {
2430 		if (eir & I915_ERROR_PAGE_TABLE) {
2431 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2432 			pr_err("page table error\n");
2433 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2434 			I915_WRITE(PGTBL_ER, pgtbl_err);
2435 			POSTING_READ(PGTBL_ER);
2436 		}
2437 	}
2438 
2439 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2440 		pr_err("memory refresh error:\n");
2441 		for_each_pipe(pipe)
2442 			pr_err("pipe %c stat: 0x%08x\n",
2443 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2444 		/* pipestat has already been acked */
2445 	}
2446 	if (eir & I915_ERROR_INSTRUCTION) {
2447 		pr_err("instruction error\n");
2448 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2449 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2450 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2451 		if (INTEL_INFO(dev)->gen < 4) {
2452 			u32 ipeir = I915_READ(IPEIR);
2453 
2454 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2455 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2456 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2457 			I915_WRITE(IPEIR, ipeir);
2458 			POSTING_READ(IPEIR);
2459 		} else {
2460 			u32 ipeir = I915_READ(IPEIR_I965);
2461 
2462 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2463 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2464 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2465 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2466 			I915_WRITE(IPEIR_I965, ipeir);
2467 			POSTING_READ(IPEIR_I965);
2468 		}
2469 	}
2470 
2471 	I915_WRITE(EIR, eir);
2472 	POSTING_READ(EIR);
2473 	eir = I915_READ(EIR);
2474 	if (eir) {
2475 		/*
2476 		 * some errors might have become stuck,
2477 		 * mask them.
2478 		 */
2479 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2480 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2481 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2482 	}
2483 }
2484 
2485 /**
2486  * i915_handle_error - handle an error interrupt
2487  * @dev: drm device
2488  *
2489  * Do some basic checking of regsiter state at error interrupt time and
2490  * dump it to the syslog.  Also call i915_capture_error_state() to make
2491  * sure we get a record and make it available in debugfs.  Fire a uevent
2492  * so userspace knows something bad happened (should trigger collection
2493  * of a ring dump etc.).
2494  */
2495 void i915_handle_error(struct drm_device *dev, bool wedged,
2496 		       const char *fmt, ...)
2497 {
2498 	struct drm_i915_private *dev_priv = dev->dev_private;
2499 #if 0
2500 	va_list args;
2501 	char error_msg[80];
2502 
2503 	va_start(args, fmt);
2504 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2505 	va_end(args);
2506 
2507 	i915_capture_error_state(dev, wedged, error_msg);
2508 #endif
2509 	i915_report_and_clear_eir(dev);
2510 
2511 	if (wedged) {
2512 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2513 				&dev_priv->gpu_error.reset_counter);
2514 
2515 		/*
2516 		 * Wakeup waiting processes so that the reset work function
2517 		 * i915_error_work_func doesn't deadlock trying to grab various
2518 		 * locks. By bumping the reset counter first, the woken
2519 		 * processes will see a reset in progress and back off,
2520 		 * releasing their locks and then wait for the reset completion.
2521 		 * We must do this for _all_ gpu waiters that might hold locks
2522 		 * that the reset work needs to acquire.
2523 		 *
2524 		 * Note: The wake_up serves as the required memory barrier to
2525 		 * ensure that the waiters see the updated value of the reset
2526 		 * counter atomic_t.
2527 		 */
2528 		i915_error_wake_up(dev_priv, false);
2529 	}
2530 
2531 	/*
2532 	 * Our reset work can grab modeset locks (since it needs to reset the
2533 	 * state of outstanding pagelips). Hence it must not be run on our own
2534 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2535 	 * code will deadlock.
2536 	 */
2537 	schedule_work(&dev_priv->gpu_error.work);
2538 }
2539 
2540 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2541 {
2542 	struct drm_i915_private *dev_priv = dev->dev_private;
2543 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2544 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2545 	struct drm_i915_gem_object *obj;
2546 	struct intel_unpin_work *work;
2547 	bool stall_detected;
2548 
2549 	/* Ignore early vblank irqs */
2550 	if (intel_crtc == NULL)
2551 		return;
2552 
2553 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2554 	work = intel_crtc->unpin_work;
2555 
2556 	if (work == NULL ||
2557 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2558 	    !work->enable_stall_check) {
2559 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2560 		lockmgr(&dev->event_lock, LK_RELEASE);
2561 		return;
2562 	}
2563 
2564 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2565 	obj = work->pending_flip_obj;
2566 	if (INTEL_INFO(dev)->gen >= 4) {
2567 		int dspsurf = DSPSURF(intel_crtc->plane);
2568 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2569 					i915_gem_obj_ggtt_offset(obj);
2570 	} else {
2571 		int dspaddr = DSPADDR(intel_crtc->plane);
2572 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2573 							crtc->y * crtc->primary->fb->pitches[0] +
2574 							crtc->x * crtc->primary->fb->bits_per_pixel/8);
2575 	}
2576 
2577 	lockmgr(&dev->event_lock, LK_RELEASE);
2578 
2579 	if (stall_detected) {
2580 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2581 		intel_prepare_page_flip(dev, intel_crtc->plane);
2582 	}
2583 }
2584 
2585 /* Called from drm generic code, passed 'crtc' which
2586  * we use as a pipe index
2587  */
2588 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2589 {
2590 	struct drm_i915_private *dev_priv = dev->dev_private;
2591 
2592 	if (!i915_pipe_enabled(dev, pipe))
2593 		return -EINVAL;
2594 
2595 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2596 	if (INTEL_INFO(dev)->gen >= 4)
2597 		i915_enable_pipestat(dev_priv, pipe,
2598 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2599 	else
2600 		i915_enable_pipestat(dev_priv, pipe,
2601 				     PIPE_VBLANK_INTERRUPT_STATUS);
2602 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2603 
2604 	return 0;
2605 }
2606 
2607 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2608 {
2609 	struct drm_i915_private *dev_priv = dev->dev_private;
2610 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2611 						     DE_PIPE_VBLANK(pipe);
2612 
2613 	if (!i915_pipe_enabled(dev, pipe))
2614 		return -EINVAL;
2615 
2616 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2617 	ironlake_enable_display_irq(dev_priv, bit);
2618 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2619 
2620 	return 0;
2621 }
2622 
2623 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2624 {
2625 	struct drm_i915_private *dev_priv = dev->dev_private;
2626 
2627 	if (!i915_pipe_enabled(dev, pipe))
2628 		return -EINVAL;
2629 
2630 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2631 	i915_enable_pipestat(dev_priv, pipe,
2632 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2633 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2634 
2635 	return 0;
2636 }
2637 
2638 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2639 {
2640 	struct drm_i915_private *dev_priv = dev->dev_private;
2641 
2642 	if (!i915_pipe_enabled(dev, pipe))
2643 		return -EINVAL;
2644 
2645 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2646 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2647 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2648 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2649 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2650 	return 0;
2651 }
2652 
2653 /* Called from drm generic code, passed 'crtc' which
2654  * we use as a pipe index
2655  */
2656 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2657 {
2658 	struct drm_i915_private *dev_priv = dev->dev_private;
2659 
2660 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2661 	i915_disable_pipestat(dev_priv, pipe,
2662 			      PIPE_VBLANK_INTERRUPT_STATUS |
2663 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2664 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2665 }
2666 
2667 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2668 {
2669 	struct drm_i915_private *dev_priv = dev->dev_private;
2670 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2671 						     DE_PIPE_VBLANK(pipe);
2672 
2673 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2674 	ironlake_disable_display_irq(dev_priv, bit);
2675 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2676 }
2677 
2678 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2679 {
2680 	struct drm_i915_private *dev_priv = dev->dev_private;
2681 
2682 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2683 	i915_disable_pipestat(dev_priv, pipe,
2684 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2685 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2686 }
2687 
2688 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2689 {
2690 	struct drm_i915_private *dev_priv = dev->dev_private;
2691 
2692 	if (!i915_pipe_enabled(dev, pipe))
2693 		return;
2694 
2695 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2696 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2697 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2698 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2699 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2700 }
2701 
2702 static u32
2703 ring_last_seqno(struct intel_engine_cs *ring)
2704 {
2705 	return list_entry(ring->request_list.prev,
2706 			  struct drm_i915_gem_request, list)->seqno;
2707 }
2708 
2709 static bool
2710 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2711 {
2712 	return (list_empty(&ring->request_list) ||
2713 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2714 }
2715 
2716 static bool
2717 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2718 {
2719 	if (INTEL_INFO(dev)->gen >= 8) {
2720 		/*
2721 		 * FIXME: gen8 semaphore support - currently we don't emit
2722 		 * semaphores on bdw anyway, but this needs to be addressed when
2723 		 * we merge that code.
2724 		 */
2725 		return false;
2726 	} else {
2727 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2728 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2729 				 MI_SEMAPHORE_REGISTER);
2730 	}
2731 }
2732 
2733 static struct intel_engine_cs *
2734 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr)
2735 {
2736 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2737 	struct intel_engine_cs *signaller;
2738 	int i;
2739 
2740 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2741 		/*
2742 		 * FIXME: gen8 semaphore support - currently we don't emit
2743 		 * semaphores on bdw anyway, but this needs to be addressed when
2744 		 * we merge that code.
2745 		 */
2746 		return NULL;
2747 	} else {
2748 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2749 
2750 		for_each_ring(signaller, dev_priv, i) {
2751 			if(ring == signaller)
2752 				continue;
2753 
2754 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2755 				return signaller;
2756 		}
2757 	}
2758 
2759 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2760 		  ring->id, ipehr);
2761 
2762 	return NULL;
2763 }
2764 
2765 static struct intel_engine_cs *
2766 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2767 {
2768 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2769 	u32 cmd, ipehr, head;
2770 	int i;
2771 
2772 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2773 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2774 		return NULL;
2775 
2776 	/*
2777 	 * HEAD is likely pointing to the dword after the actual command,
2778 	 * so scan backwards until we find the MBOX. But limit it to just 3
2779 	 * dwords. Note that we don't care about ACTHD here since that might
2780 	 * point at at batch, and semaphores are always emitted into the
2781 	 * ringbuffer itself.
2782 	 */
2783 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2784 
2785 	for (i = 4; i; --i) {
2786 		/*
2787 		 * Be paranoid and presume the hw has gone off into the wild -
2788 		 * our ring is smaller than what the hardware (and hence
2789 		 * HEAD_ADDR) allows. Also handles wrap-around.
2790 		 */
2791 		head &= ring->buffer->size - 1;
2792 
2793 		/* This here seems to blow up */
2794 		cmd = ioread32(ring->buffer->virtual_start + head);
2795 		if (cmd == ipehr)
2796 			break;
2797 
2798 		head -= 4;
2799 	}
2800 
2801 	if (!i)
2802 		return NULL;
2803 
2804 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2805 	return semaphore_wait_to_signaller_ring(ring, ipehr);
2806 }
2807 
2808 static int semaphore_passed(struct intel_engine_cs *ring)
2809 {
2810 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2811 	struct intel_engine_cs *signaller;
2812 	u32 seqno;
2813 
2814 	ring->hangcheck.deadlock++;
2815 
2816 	signaller = semaphore_waits_for(ring, &seqno);
2817 	if (signaller == NULL)
2818 		return -1;
2819 
2820 	/* Prevent pathological recursion due to driver bugs */
2821 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2822 		return -1;
2823 
2824 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2825 		return 1;
2826 
2827 	/* cursory check for an unkickable deadlock */
2828 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2829 	    semaphore_passed(signaller) < 0)
2830 		return -1;
2831 
2832 	return 0;
2833 }
2834 
2835 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2836 {
2837 	struct intel_engine_cs *ring;
2838 	int i;
2839 
2840 	for_each_ring(ring, dev_priv, i)
2841 		ring->hangcheck.deadlock = 0;
2842 }
2843 
2844 static enum intel_ring_hangcheck_action
2845 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2846 {
2847 	struct drm_device *dev = ring->dev;
2848 	struct drm_i915_private *dev_priv = dev->dev_private;
2849 	u32 tmp;
2850 
2851 	if (ring->hangcheck.acthd != acthd)
2852 		return HANGCHECK_ACTIVE;
2853 
2854 	if (IS_GEN2(dev))
2855 		return HANGCHECK_HUNG;
2856 
2857 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2858 	 * If so we can simply poke the RB_WAIT bit
2859 	 * and break the hang. This should work on
2860 	 * all but the second generation chipsets.
2861 	 */
2862 	tmp = I915_READ_CTL(ring);
2863 	if (tmp & RING_WAIT) {
2864 		i915_handle_error(dev, false,
2865 				  "Kicking stuck wait on %s",
2866 				  ring->name);
2867 		I915_WRITE_CTL(ring, tmp);
2868 		return HANGCHECK_KICK;
2869 	}
2870 
2871 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2872 		switch (semaphore_passed(ring)) {
2873 		default:
2874 			return HANGCHECK_HUNG;
2875 		case 1:
2876 			i915_handle_error(dev, false,
2877 					  "Kicking stuck semaphore on %s",
2878 					  ring->name);
2879 			I915_WRITE_CTL(ring, tmp);
2880 			return HANGCHECK_KICK;
2881 		case 0:
2882 			return HANGCHECK_WAIT;
2883 		}
2884 	}
2885 
2886 	return HANGCHECK_HUNG;
2887 }
2888 
2889 /**
2890  * This is called when the chip hasn't reported back with completed
2891  * batchbuffers in a long time. We keep track per ring seqno progress and
2892  * if there are no progress, hangcheck score for that ring is increased.
2893  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2894  * we kick the ring. If we see no progress on three subsequent calls
2895  * we assume chip is wedged and try to fix it by resetting the chip.
2896  */
2897 static void i915_hangcheck_elapsed(unsigned long data)
2898 {
2899 	struct drm_device *dev = (struct drm_device *)data;
2900 	struct drm_i915_private *dev_priv = dev->dev_private;
2901 	struct intel_engine_cs *ring;
2902 	int i;
2903 	int busy_count = 0, rings_hung = 0;
2904 	bool stuck[I915_NUM_RINGS] = { 0 };
2905 #define BUSY 1
2906 #define KICK 5
2907 #define HUNG 20
2908 
2909 	if (!i915.enable_hangcheck)
2910 		return;
2911 
2912 	for_each_ring(ring, dev_priv, i) {
2913 		u64 acthd;
2914 		u32 seqno;
2915 		bool busy = true;
2916 
2917 		semaphore_clear_deadlocks(dev_priv);
2918 
2919 		seqno = ring->get_seqno(ring, false);
2920 		acthd = intel_ring_get_active_head(ring);
2921 
2922 		if (ring->hangcheck.seqno == seqno) {
2923 			if (ring_idle(ring, seqno)) {
2924 				ring->hangcheck.action = HANGCHECK_IDLE;
2925 
2926 				if (waitqueue_active(&ring->irq_queue)) {
2927 					/* Issue a wake-up to catch stuck h/w. */
2928 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2929 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2930 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2931 								  ring->name);
2932 						else
2933 							DRM_INFO("Fake missed irq on %s\n",
2934 								 ring->name);
2935 						wake_up_all(&ring->irq_queue);
2936 					}
2937 					/* Safeguard against driver failure */
2938 					ring->hangcheck.score += BUSY;
2939 				} else
2940 					busy = false;
2941 			} else {
2942 				/* We always increment the hangcheck score
2943 				 * if the ring is busy and still processing
2944 				 * the same request, so that no single request
2945 				 * can run indefinitely (such as a chain of
2946 				 * batches). The only time we do not increment
2947 				 * the hangcheck score on this ring, if this
2948 				 * ring is in a legitimate wait for another
2949 				 * ring. In that case the waiting ring is a
2950 				 * victim and we want to be sure we catch the
2951 				 * right culprit. Then every time we do kick
2952 				 * the ring, add a small increment to the
2953 				 * score so that we can catch a batch that is
2954 				 * being repeatedly kicked and so responsible
2955 				 * for stalling the machine.
2956 				 */
2957 				ring->hangcheck.action = ring_stuck(ring,
2958 								    acthd);
2959 
2960 				switch (ring->hangcheck.action) {
2961 				case HANGCHECK_IDLE:
2962 				case HANGCHECK_WAIT:
2963 					break;
2964 				case HANGCHECK_ACTIVE:
2965 					ring->hangcheck.score += BUSY;
2966 					break;
2967 				case HANGCHECK_KICK:
2968 					ring->hangcheck.score += KICK;
2969 					break;
2970 				case HANGCHECK_HUNG:
2971 					ring->hangcheck.score += HUNG;
2972 					stuck[i] = true;
2973 					break;
2974 				}
2975 			}
2976 		} else {
2977 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2978 
2979 			/* Gradually reduce the count so that we catch DoS
2980 			 * attempts across multiple batches.
2981 			 */
2982 			if (ring->hangcheck.score > 0)
2983 				ring->hangcheck.score--;
2984 		}
2985 
2986 		ring->hangcheck.seqno = seqno;
2987 		ring->hangcheck.acthd = acthd;
2988 		busy_count += busy;
2989 	}
2990 
2991 	for_each_ring(ring, dev_priv, i) {
2992 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2993 			DRM_INFO("%s on %s\n",
2994 				 stuck[i] ? "stuck" : "no progress",
2995 				 ring->name);
2996 			rings_hung++;
2997 		}
2998 	}
2999 
3000 	if (rings_hung)
3001 		return i915_handle_error(dev, true, "Ring hung");
3002 
3003 	if (busy_count)
3004 		/* Reset timer case chip hangs without another request
3005 		 * being added */
3006 		i915_queue_hangcheck(dev);
3007 }
3008 
3009 void i915_queue_hangcheck(struct drm_device *dev)
3010 {
3011 	struct drm_i915_private *dev_priv = dev->dev_private;
3012 	if (!i915.enable_hangcheck)
3013 		return;
3014 
3015 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3016 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3017 }
3018 
3019 static void ibx_irq_reset(struct drm_device *dev)
3020 {
3021 	struct drm_i915_private *dev_priv = dev->dev_private;
3022 
3023 	if (HAS_PCH_NOP(dev))
3024 		return;
3025 
3026 	GEN5_IRQ_RESET(SDE);
3027 
3028 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3029 		I915_WRITE(SERR_INT, 0xffffffff);
3030 }
3031 
3032 /*
3033  * SDEIER is also touched by the interrupt handler to work around missed PCH
3034  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3035  * instead we unconditionally enable all PCH interrupt sources here, but then
3036  * only unmask them as needed with SDEIMR.
3037  *
3038  * This function needs to be called before interrupts are enabled.
3039  */
3040 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3041 {
3042 	struct drm_i915_private *dev_priv = dev->dev_private;
3043 
3044 	if (HAS_PCH_NOP(dev))
3045 		return;
3046 
3047 	WARN_ON(I915_READ(SDEIER) != 0);
3048 	I915_WRITE(SDEIER, 0xffffffff);
3049 	POSTING_READ(SDEIER);
3050 }
3051 
3052 static void gen5_gt_irq_reset(struct drm_device *dev)
3053 {
3054 	struct drm_i915_private *dev_priv = dev->dev_private;
3055 
3056 	GEN5_IRQ_RESET(GT);
3057 	if (INTEL_INFO(dev)->gen >= 6)
3058 		GEN5_IRQ_RESET(GEN6_PM);
3059 }
3060 
3061 /* drm_dma.h hooks
3062 */
3063 static void ironlake_irq_reset(struct drm_device *dev)
3064 {
3065 	struct drm_i915_private *dev_priv = dev->dev_private;
3066 
3067 	I915_WRITE(HWSTAM, 0xffffffff);
3068 
3069 	GEN5_IRQ_RESET(DE);
3070 	if (IS_GEN7(dev))
3071 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3072 
3073 	gen5_gt_irq_reset(dev);
3074 
3075 	ibx_irq_reset(dev);
3076 }
3077 
3078 static void valleyview_irq_preinstall(struct drm_device *dev)
3079 {
3080 	struct drm_i915_private *dev_priv = dev->dev_private;
3081 	int pipe;
3082 
3083 	/* VLV magic */
3084 	I915_WRITE(VLV_IMR, 0);
3085 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3086 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3087 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3088 
3089 	/* and GT */
3090 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3091 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3092 
3093 	gen5_gt_irq_reset(dev);
3094 
3095 	I915_WRITE(DPINVGTT, 0xff);
3096 
3097 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3098 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3099 	for_each_pipe(pipe)
3100 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3101 	I915_WRITE(VLV_IIR, 0xffffffff);
3102 	I915_WRITE(VLV_IMR, 0xffffffff);
3103 	I915_WRITE(VLV_IER, 0x0);
3104 	POSTING_READ(VLV_IER);
3105 }
3106 
3107 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3108 {
3109 	GEN8_IRQ_RESET_NDX(GT, 0);
3110 	GEN8_IRQ_RESET_NDX(GT, 1);
3111 	GEN8_IRQ_RESET_NDX(GT, 2);
3112 	GEN8_IRQ_RESET_NDX(GT, 3);
3113 }
3114 
3115 static void gen8_irq_reset(struct drm_device *dev)
3116 {
3117 	struct drm_i915_private *dev_priv = dev->dev_private;
3118 	int pipe;
3119 
3120 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3121 	POSTING_READ(GEN8_MASTER_IRQ);
3122 
3123 	gen8_gt_irq_reset(dev_priv);
3124 
3125 	for_each_pipe(pipe)
3126 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3127 
3128 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3129 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3130 	GEN5_IRQ_RESET(GEN8_PCU_);
3131 
3132 	ibx_irq_reset(dev);
3133 }
3134 
3135 static void cherryview_irq_preinstall(struct drm_device *dev)
3136 {
3137 	struct drm_i915_private *dev_priv = dev->dev_private;
3138 	int pipe;
3139 
3140 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3141 	POSTING_READ(GEN8_MASTER_IRQ);
3142 
3143 	gen8_gt_irq_reset(dev_priv);
3144 
3145 	GEN5_IRQ_RESET(GEN8_PCU_);
3146 
3147 	POSTING_READ(GEN8_PCU_IIR);
3148 
3149 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3150 
3151 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3152 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3153 
3154 	for_each_pipe(pipe)
3155 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3156 
3157 	I915_WRITE(VLV_IMR, 0xffffffff);
3158 	I915_WRITE(VLV_IER, 0x0);
3159 	I915_WRITE(VLV_IIR, 0xffffffff);
3160 	POSTING_READ(VLV_IIR);
3161 }
3162 
3163 static void ibx_hpd_irq_setup(struct drm_device *dev)
3164 {
3165 	struct drm_i915_private *dev_priv = dev->dev_private;
3166 	struct drm_mode_config *mode_config = &dev->mode_config;
3167 	struct intel_encoder *intel_encoder;
3168 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3169 
3170 	if (HAS_PCH_IBX(dev)) {
3171 		hotplug_irqs = SDE_HOTPLUG_MASK;
3172 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3173 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3174 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3175 	} else {
3176 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3177 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3178 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3179 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3180 	}
3181 
3182 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3183 
3184 	/*
3185 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3186 	 * duration to 2ms (which is the minimum in the Display Port spec)
3187 	 *
3188 	 * This register is the same on all known PCH chips.
3189 	 */
3190 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3191 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3192 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3193 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3194 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3195 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3196 }
3197 
3198 static void ibx_irq_postinstall(struct drm_device *dev)
3199 {
3200 	struct drm_i915_private *dev_priv = dev->dev_private;
3201 	u32 mask;
3202 
3203 	if (HAS_PCH_NOP(dev))
3204 		return;
3205 
3206 	if (HAS_PCH_IBX(dev))
3207 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3208 	else
3209 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3210 
3211 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3212 	I915_WRITE(SDEIMR, ~mask);
3213 }
3214 
3215 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3216 {
3217 	struct drm_i915_private *dev_priv = dev->dev_private;
3218 	u32 pm_irqs, gt_irqs;
3219 
3220 	pm_irqs = gt_irqs = 0;
3221 
3222 	dev_priv->gt_irq_mask = ~0;
3223 	if (HAS_L3_DPF(dev)) {
3224 		/* L3 parity interrupt is always unmasked. */
3225 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3226 		gt_irqs |= GT_PARITY_ERROR(dev);
3227 	}
3228 
3229 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3230 	if (IS_GEN5(dev)) {
3231 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3232 			   ILK_BSD_USER_INTERRUPT;
3233 	} else {
3234 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3235 	}
3236 
3237 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3238 
3239 	if (INTEL_INFO(dev)->gen >= 6) {
3240 		pm_irqs |= dev_priv->pm_rps_events;
3241 
3242 		if (HAS_VEBOX(dev))
3243 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3244 
3245 		dev_priv->pm_irq_mask = 0xffffffff;
3246 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3247 	}
3248 }
3249 
3250 static int ironlake_irq_postinstall(struct drm_device *dev)
3251 {
3252 	struct drm_i915_private *dev_priv = dev->dev_private;
3253 	u32 display_mask, extra_mask;
3254 
3255 	if (INTEL_INFO(dev)->gen >= 7) {
3256 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3257 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3258 				DE_PLANEB_FLIP_DONE_IVB |
3259 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3260 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3261 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3262 	} else {
3263 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3264 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3265 				DE_AUX_CHANNEL_A |
3266 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3267 				DE_POISON);
3268 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3269 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3270 	}
3271 
3272 	dev_priv->irq_mask = ~display_mask;
3273 
3274 	I915_WRITE(HWSTAM, 0xeffe);
3275 
3276 	ibx_irq_pre_postinstall(dev);
3277 
3278 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3279 
3280 	gen5_gt_irq_postinstall(dev);
3281 
3282 	ibx_irq_postinstall(dev);
3283 
3284 	if (IS_IRONLAKE_M(dev)) {
3285 		/* Enable PCU event interrupts
3286 		 *
3287 		 * spinlocking not required here for correctness since interrupt
3288 		 * setup is guaranteed to run in single-threaded context. But we
3289 		 * need it to make the assert_spin_locked happy. */
3290 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3291 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3292 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3293 	}
3294 
3295 	return 0;
3296 }
3297 
3298 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3299 {
3300 	u32 pipestat_mask;
3301 	u32 iir_mask;
3302 
3303 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3304 			PIPE_FIFO_UNDERRUN_STATUS;
3305 
3306 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3307 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3308 	POSTING_READ(PIPESTAT(PIPE_A));
3309 
3310 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3311 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3312 
3313 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3314 					       PIPE_GMBUS_INTERRUPT_STATUS);
3315 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3316 
3317 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3318 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3319 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3320 	dev_priv->irq_mask &= ~iir_mask;
3321 
3322 	I915_WRITE(VLV_IIR, iir_mask);
3323 	I915_WRITE(VLV_IIR, iir_mask);
3324 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3325 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3326 	POSTING_READ(VLV_IER);
3327 }
3328 
3329 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3330 {
3331 	u32 pipestat_mask;
3332 	u32 iir_mask;
3333 
3334 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3335 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3336 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3337 
3338 	dev_priv->irq_mask |= iir_mask;
3339 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3340 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3341 	I915_WRITE(VLV_IIR, iir_mask);
3342 	I915_WRITE(VLV_IIR, iir_mask);
3343 	POSTING_READ(VLV_IIR);
3344 
3345 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3346 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3347 
3348 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3349 					        PIPE_GMBUS_INTERRUPT_STATUS);
3350 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3351 
3352 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3353 			PIPE_FIFO_UNDERRUN_STATUS;
3354 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3355 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3356 	POSTING_READ(PIPESTAT(PIPE_A));
3357 }
3358 
3359 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3360 {
3361 	assert_spin_locked(&dev_priv->irq_lock);
3362 
3363 	if (dev_priv->display_irqs_enabled)
3364 		return;
3365 
3366 	dev_priv->display_irqs_enabled = true;
3367 
3368 	if (dev_priv->dev->irq_enabled)
3369 		valleyview_display_irqs_install(dev_priv);
3370 }
3371 
3372 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3373 {
3374 	assert_spin_locked(&dev_priv->irq_lock);
3375 
3376 	if (!dev_priv->display_irqs_enabled)
3377 		return;
3378 
3379 	dev_priv->display_irqs_enabled = false;
3380 
3381 	if (dev_priv->dev->irq_enabled)
3382 		valleyview_display_irqs_uninstall(dev_priv);
3383 }
3384 
3385 static int valleyview_irq_postinstall(struct drm_device *dev)
3386 {
3387 	struct drm_i915_private *dev_priv = dev->dev_private;
3388 
3389 	dev_priv->irq_mask = ~0;
3390 
3391 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3392 	POSTING_READ(PORT_HOTPLUG_EN);
3393 
3394 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3395 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3396 	I915_WRITE(VLV_IIR, 0xffffffff);
3397 	POSTING_READ(VLV_IER);
3398 
3399 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3400 	 * just to make the assert_spin_locked check happy. */
3401 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3402 	if (dev_priv->display_irqs_enabled)
3403 		valleyview_display_irqs_install(dev_priv);
3404 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3405 
3406 	I915_WRITE(VLV_IIR, 0xffffffff);
3407 	I915_WRITE(VLV_IIR, 0xffffffff);
3408 
3409 	gen5_gt_irq_postinstall(dev);
3410 
3411 	/* ack & enable invalid PTE error interrupts */
3412 #if 0 /* FIXME: add support to irq handler for checking these bits */
3413 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3414 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3415 #endif
3416 
3417 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3418 
3419 	return 0;
3420 }
3421 
3422 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3423 {
3424 	int i;
3425 
3426 	/* These are interrupts we'll toggle with the ring mask register */
3427 	uint32_t gt_interrupts[] = {
3428 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3429 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3430 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3431 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3432 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3433 		0,
3434 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3435 		};
3436 
3437 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3438 		GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3439 
3440 	dev_priv->pm_irq_mask = 0xffffffff;
3441 }
3442 
3443 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3444 {
3445 	struct drm_device *dev = dev_priv->dev;
3446 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3447 		GEN8_PIPE_CDCLK_CRC_DONE |
3448 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3449 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3450 		GEN8_PIPE_FIFO_UNDERRUN;
3451 	int pipe;
3452 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3453 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3454 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3455 
3456 	for_each_pipe(pipe)
3457 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3458 				  de_pipe_enables);
3459 
3460 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3461 }
3462 
3463 static int gen8_irq_postinstall(struct drm_device *dev)
3464 {
3465 	struct drm_i915_private *dev_priv = dev->dev_private;
3466 
3467 	ibx_irq_pre_postinstall(dev);
3468 
3469 	gen8_gt_irq_postinstall(dev_priv);
3470 	gen8_de_irq_postinstall(dev_priv);
3471 
3472 	ibx_irq_postinstall(dev);
3473 
3474 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3475 	POSTING_READ(GEN8_MASTER_IRQ);
3476 
3477 	return 0;
3478 }
3479 
3480 static int cherryview_irq_postinstall(struct drm_device *dev)
3481 {
3482 	struct drm_i915_private *dev_priv = dev->dev_private;
3483 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3484 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3485 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3486 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3487 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3488 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3489 	int pipe;
3490 
3491 	/*
3492 	 * Leave vblank interrupts masked initially.  enable/disable will
3493 	 * toggle them based on usage.
3494 	 */
3495 	dev_priv->irq_mask = ~enable_mask;
3496 
3497 	for_each_pipe(pipe)
3498 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3499 
3500 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3501 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3502 	for_each_pipe(pipe)
3503 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3504 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3505 
3506 	I915_WRITE(VLV_IIR, 0xffffffff);
3507 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3508 	I915_WRITE(VLV_IER, enable_mask);
3509 
3510 	gen8_gt_irq_postinstall(dev_priv);
3511 
3512 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3513 	POSTING_READ(GEN8_MASTER_IRQ);
3514 
3515 	return 0;
3516 }
3517 
3518 static void gen8_irq_uninstall(struct drm_device *dev)
3519 {
3520 	struct drm_i915_private *dev_priv = dev->dev_private;
3521 
3522 	if (!dev_priv)
3523 		return;
3524 
3525 	intel_hpd_irq_uninstall(dev_priv);
3526 
3527 	gen8_irq_reset(dev);
3528 }
3529 
3530 static void valleyview_irq_uninstall(struct drm_device *dev)
3531 {
3532 	struct drm_i915_private *dev_priv = dev->dev_private;
3533 	int pipe;
3534 
3535 	if (!dev_priv)
3536 		return;
3537 
3538 	I915_WRITE(VLV_MASTER_IER, 0);
3539 
3540 	intel_hpd_irq_uninstall(dev_priv);
3541 
3542 	for_each_pipe(pipe)
3543 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3544 
3545 	I915_WRITE(HWSTAM, 0xffffffff);
3546 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3547 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3548 
3549 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3550 	if (dev_priv->display_irqs_enabled)
3551 		valleyview_display_irqs_uninstall(dev_priv);
3552 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3553 
3554 	dev_priv->irq_mask = 0;
3555 
3556 	I915_WRITE(VLV_IIR, 0xffffffff);
3557 	I915_WRITE(VLV_IMR, 0xffffffff);
3558 	I915_WRITE(VLV_IER, 0x0);
3559 	POSTING_READ(VLV_IER);
3560 }
3561 
3562 static void cherryview_irq_uninstall(struct drm_device *dev)
3563 {
3564 	struct drm_i915_private *dev_priv = dev->dev_private;
3565 	int pipe;
3566 
3567 	if (!dev_priv)
3568 		return;
3569 
3570 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3571 	POSTING_READ(GEN8_MASTER_IRQ);
3572 
3573 #define GEN8_IRQ_FINI_NDX(type, which)				\
3574 do {								\
3575 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3576 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3577 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3578 	POSTING_READ(GEN8_##type##_IIR(which));			\
3579 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3580 } while (0)
3581 
3582 #define GEN8_IRQ_FINI(type)				\
3583 do {							\
3584 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3585 	I915_WRITE(GEN8_##type##_IER, 0);		\
3586 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3587 	POSTING_READ(GEN8_##type##_IIR);		\
3588 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3589 } while (0)
3590 
3591 	GEN8_IRQ_FINI_NDX(GT, 0);
3592 	GEN8_IRQ_FINI_NDX(GT, 1);
3593 	GEN8_IRQ_FINI_NDX(GT, 2);
3594 	GEN8_IRQ_FINI_NDX(GT, 3);
3595 
3596 	GEN8_IRQ_FINI(PCU);
3597 
3598 #undef GEN8_IRQ_FINI
3599 #undef GEN8_IRQ_FINI_NDX
3600 
3601 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3602 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3603 
3604 	for_each_pipe(pipe)
3605 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3606 
3607 	I915_WRITE(VLV_IMR, 0xffffffff);
3608 	I915_WRITE(VLV_IER, 0x0);
3609 	I915_WRITE(VLV_IIR, 0xffffffff);
3610 	POSTING_READ(VLV_IIR);
3611 }
3612 
3613 static void ironlake_irq_uninstall(struct drm_device *dev)
3614 {
3615 	struct drm_i915_private *dev_priv = dev->dev_private;
3616 
3617 	if (!dev_priv)
3618 		return;
3619 
3620 	intel_hpd_irq_uninstall(dev_priv);
3621 
3622 	ironlake_irq_reset(dev);
3623 }
3624 
3625 static void i8xx_irq_preinstall(struct drm_device * dev)
3626 {
3627 	struct drm_i915_private *dev_priv = dev->dev_private;
3628 	int pipe;
3629 
3630 	for_each_pipe(pipe)
3631 		I915_WRITE(PIPESTAT(pipe), 0);
3632 	I915_WRITE16(IMR, 0xffff);
3633 	I915_WRITE16(IER, 0x0);
3634 	POSTING_READ16(IER);
3635 }
3636 
3637 static int i8xx_irq_postinstall(struct drm_device *dev)
3638 {
3639 	struct drm_i915_private *dev_priv = dev->dev_private;
3640 
3641 	I915_WRITE16(EMR,
3642 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3643 
3644 	/* Unmask the interrupts that we always want on. */
3645 	dev_priv->irq_mask =
3646 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3647 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3648 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3649 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3650 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3651 	I915_WRITE16(IMR, dev_priv->irq_mask);
3652 
3653 	I915_WRITE16(IER,
3654 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3655 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3656 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3657 		     I915_USER_INTERRUPT);
3658 	POSTING_READ16(IER);
3659 
3660 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3661 	 * just to make the assert_spin_locked check happy. */
3662 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3663 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3664 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3665 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3666 
3667 	return 0;
3668 }
3669 
3670 /*
3671  * Returns true when a page flip has completed.
3672  */
3673 static bool i8xx_handle_vblank(struct drm_device *dev,
3674 			       int plane, int pipe, u32 iir)
3675 {
3676 	struct drm_i915_private *dev_priv = dev->dev_private;
3677 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3678 
3679 	if (!intel_pipe_handle_vblank(dev, pipe))
3680 		return false;
3681 
3682 	if ((iir & flip_pending) == 0)
3683 		return false;
3684 
3685 	intel_prepare_page_flip(dev, plane);
3686 
3687 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3688 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3689 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3690 	 * the flip is completed (no longer pending). Since this doesn't raise
3691 	 * an interrupt per se, we watch for the change at vblank.
3692 	 */
3693 	if (I915_READ16(ISR) & flip_pending)
3694 		return false;
3695 
3696 	intel_finish_page_flip(dev, pipe);
3697 
3698 	return true;
3699 }
3700 
3701 static irqreturn_t i8xx_irq_handler(void *arg)
3702 {
3703 	struct drm_device *dev = arg;
3704 	struct drm_i915_private *dev_priv = dev->dev_private;
3705 	u16 iir, new_iir;
3706 	u32 pipe_stats[2];
3707 	int pipe;
3708 	u16 flip_mask =
3709 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3710 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3711 
3712 	iir = I915_READ16(IIR);
3713 	if (iir == 0)
3714 		return;
3715 
3716 	while (iir & ~flip_mask) {
3717 		/* Can't rely on pipestat interrupt bit in iir as it might
3718 		 * have been cleared after the pipestat interrupt was received.
3719 		 * It doesn't set the bit in iir again, but it still produces
3720 		 * interrupts (for non-MSI).
3721 		 */
3722 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3723 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3724 			i915_handle_error(dev, false,
3725 					  "Command parser error, iir 0x%08x",
3726 					  iir);
3727 
3728 		for_each_pipe(pipe) {
3729 			int reg = PIPESTAT(pipe);
3730 			pipe_stats[pipe] = I915_READ(reg);
3731 
3732 			/*
3733 			 * Clear the PIPE*STAT regs before the IIR
3734 			 */
3735 			if (pipe_stats[pipe] & 0x8000ffff)
3736 				I915_WRITE(reg, pipe_stats[pipe]);
3737 		}
3738 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3739 
3740 		I915_WRITE16(IIR, iir & ~flip_mask);
3741 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3742 
3743 		i915_update_dri1_breadcrumb(dev);
3744 
3745 		if (iir & I915_USER_INTERRUPT)
3746 			notify_ring(dev, &dev_priv->ring[RCS]);
3747 
3748 		for_each_pipe(pipe) {
3749 			int plane = pipe;
3750 			if (HAS_FBC(dev))
3751 				plane = !plane;
3752 
3753 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3754 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3755 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3756 
3757 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3758 				i9xx_pipe_crc_irq_handler(dev, pipe);
3759 
3760 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3761 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3762 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3763 		}
3764 
3765 		iir = new_iir;
3766 	}
3767 
3768 }
3769 
3770 static void i8xx_irq_uninstall(struct drm_device * dev)
3771 {
3772 	struct drm_i915_private *dev_priv = dev->dev_private;
3773 	int pipe;
3774 
3775 	for_each_pipe(pipe) {
3776 		/* Clear enable bits; then clear status bits */
3777 		I915_WRITE(PIPESTAT(pipe), 0);
3778 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3779 	}
3780 	I915_WRITE16(IMR, 0xffff);
3781 	I915_WRITE16(IER, 0x0);
3782 	I915_WRITE16(IIR, I915_READ16(IIR));
3783 }
3784 
3785 static void i915_irq_preinstall(struct drm_device * dev)
3786 {
3787 	struct drm_i915_private *dev_priv = dev->dev_private;
3788 	int pipe;
3789 
3790 	if (I915_HAS_HOTPLUG(dev)) {
3791 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3792 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3793 	}
3794 
3795 	I915_WRITE16(HWSTAM, 0xeffe);
3796 	for_each_pipe(pipe)
3797 		I915_WRITE(PIPESTAT(pipe), 0);
3798 	I915_WRITE(IMR, 0xffffffff);
3799 	I915_WRITE(IER, 0x0);
3800 	POSTING_READ(IER);
3801 }
3802 
3803 static int i915_irq_postinstall(struct drm_device *dev)
3804 {
3805 	struct drm_i915_private *dev_priv = dev->dev_private;
3806 	u32 enable_mask;
3807 
3808 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3809 
3810 	/* Unmask the interrupts that we always want on. */
3811 	dev_priv->irq_mask =
3812 		~(I915_ASLE_INTERRUPT |
3813 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3814 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3815 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3816 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3817 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3818 
3819 	enable_mask =
3820 		I915_ASLE_INTERRUPT |
3821 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3822 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3823 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3824 		I915_USER_INTERRUPT;
3825 
3826 	if (I915_HAS_HOTPLUG(dev)) {
3827 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3828 		POSTING_READ(PORT_HOTPLUG_EN);
3829 
3830 		/* Enable in IER... */
3831 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3832 		/* and unmask in IMR */
3833 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3834 	}
3835 
3836 	I915_WRITE(IMR, dev_priv->irq_mask);
3837 	I915_WRITE(IER, enable_mask);
3838 	POSTING_READ(IER);
3839 
3840 	i915_enable_asle_pipestat(dev);
3841 
3842 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3843 	 * just to make the assert_spin_locked check happy. */
3844 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3845 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3846 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3847 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3848 
3849 	return 0;
3850 }
3851 
3852 /*
3853  * Returns true when a page flip has completed.
3854  */
3855 static bool i915_handle_vblank(struct drm_device *dev,
3856 			       int plane, int pipe, u32 iir)
3857 {
3858 	struct drm_i915_private *dev_priv = dev->dev_private;
3859 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3860 
3861 	if (!intel_pipe_handle_vblank(dev, pipe))
3862 		return false;
3863 
3864 	if ((iir & flip_pending) == 0)
3865 		return false;
3866 
3867 	intel_prepare_page_flip(dev, plane);
3868 
3869 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3870 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3871 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3872 	 * the flip is completed (no longer pending). Since this doesn't raise
3873 	 * an interrupt per se, we watch for the change at vblank.
3874 	 */
3875 	if (I915_READ(ISR) & flip_pending)
3876 		return false;
3877 
3878 	intel_finish_page_flip(dev, pipe);
3879 
3880 	return true;
3881 }
3882 
3883 static irqreturn_t i915_irq_handler(void *arg)
3884 {
3885 	struct drm_device *dev = arg;
3886 	struct drm_i915_private *dev_priv = dev->dev_private;
3887 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3888 	u32 flip_mask =
3889 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3890 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3891 	int pipe;
3892 
3893 	iir = I915_READ(IIR);
3894 	do {
3895 		bool irq_received = (iir & ~flip_mask) != 0;
3896 		bool blc_event = false;
3897 
3898 		/* Can't rely on pipestat interrupt bit in iir as it might
3899 		 * have been cleared after the pipestat interrupt was received.
3900 		 * It doesn't set the bit in iir again, but it still produces
3901 		 * interrupts (for non-MSI).
3902 		 */
3903 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3904 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3905 			i915_handle_error(dev, false,
3906 					  "Command parser error, iir 0x%08x",
3907 					  iir);
3908 
3909 		for_each_pipe(pipe) {
3910 			int reg = PIPESTAT(pipe);
3911 			pipe_stats[pipe] = I915_READ(reg);
3912 
3913 			/* Clear the PIPE*STAT regs before the IIR */
3914 			if (pipe_stats[pipe] & 0x8000ffff) {
3915 				I915_WRITE(reg, pipe_stats[pipe]);
3916 				irq_received = true;
3917 			}
3918 		}
3919 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3920 
3921 		if (!irq_received)
3922 			break;
3923 
3924 		/* Consume port.  Then clear IIR or we'll miss events */
3925 		if (I915_HAS_HOTPLUG(dev) &&
3926 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3927 			i9xx_hpd_irq_handler(dev);
3928 
3929 		I915_WRITE(IIR, iir & ~flip_mask);
3930 		new_iir = I915_READ(IIR); /* Flush posted writes */
3931 
3932 		if (iir & I915_USER_INTERRUPT)
3933 			notify_ring(dev, &dev_priv->ring[RCS]);
3934 
3935 		for_each_pipe(pipe) {
3936 			int plane = pipe;
3937 			if (HAS_FBC(dev))
3938 				plane = !plane;
3939 
3940 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3941 			    i915_handle_vblank(dev, plane, pipe, iir))
3942 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3943 
3944 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3945 				blc_event = true;
3946 
3947 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3948 				i9xx_pipe_crc_irq_handler(dev, pipe);
3949 
3950 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3951 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3952 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3953 		}
3954 
3955 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3956 			intel_opregion_asle_intr(dev);
3957 
3958 		/* With MSI, interrupts are only generated when iir
3959 		 * transitions from zero to nonzero.  If another bit got
3960 		 * set while we were handling the existing iir bits, then
3961 		 * we would never get another interrupt.
3962 		 *
3963 		 * This is fine on non-MSI as well, as if we hit this path
3964 		 * we avoid exiting the interrupt handler only to generate
3965 		 * another one.
3966 		 *
3967 		 * Note that for MSI this could cause a stray interrupt report
3968 		 * if an interrupt landed in the time between writing IIR and
3969 		 * the posting read.  This should be rare enough to never
3970 		 * trigger the 99% of 100,000 interrupts test for disabling
3971 		 * stray interrupts.
3972 		 */
3973 		iir = new_iir;
3974 	} while (iir & ~flip_mask);
3975 
3976 	i915_update_dri1_breadcrumb(dev);
3977 
3978 }
3979 
3980 static void i915_irq_uninstall(struct drm_device * dev)
3981 {
3982 	struct drm_i915_private *dev_priv = dev->dev_private;
3983 	int pipe;
3984 
3985 	intel_hpd_irq_uninstall(dev_priv);
3986 
3987 	if (I915_HAS_HOTPLUG(dev)) {
3988 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3989 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3990 	}
3991 
3992 	I915_WRITE16(HWSTAM, 0xffff);
3993 	for_each_pipe(pipe) {
3994 		/* Clear enable bits; then clear status bits */
3995 		I915_WRITE(PIPESTAT(pipe), 0);
3996 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3997 	}
3998 	I915_WRITE(IMR, 0xffffffff);
3999 	I915_WRITE(IER, 0x0);
4000 
4001 	I915_WRITE(IIR, I915_READ(IIR));
4002 }
4003 
4004 static void i965_irq_preinstall(struct drm_device * dev)
4005 {
4006 	struct drm_i915_private *dev_priv = dev->dev_private;
4007 	int pipe;
4008 
4009 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4010 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4011 
4012 	I915_WRITE(HWSTAM, 0xeffe);
4013 	for_each_pipe(pipe)
4014 		I915_WRITE(PIPESTAT(pipe), 0);
4015 	I915_WRITE(IMR, 0xffffffff);
4016 	I915_WRITE(IER, 0x0);
4017 	POSTING_READ(IER);
4018 }
4019 
4020 static int i965_irq_postinstall(struct drm_device *dev)
4021 {
4022 	struct drm_i915_private *dev_priv = dev->dev_private;
4023 	u32 enable_mask;
4024 	u32 error_mask;
4025 
4026 	/* Unmask the interrupts that we always want on. */
4027 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4028 			       I915_DISPLAY_PORT_INTERRUPT |
4029 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4030 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4031 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4032 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4033 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4034 
4035 	enable_mask = ~dev_priv->irq_mask;
4036 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4037 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4038 	enable_mask |= I915_USER_INTERRUPT;
4039 
4040 	if (IS_G4X(dev))
4041 		enable_mask |= I915_BSD_USER_INTERRUPT;
4042 
4043 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4044 	 * just to make the assert_spin_locked check happy. */
4045 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4046 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4047 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4048 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4049 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4050 
4051 	/*
4052 	 * Enable some error detection, note the instruction error mask
4053 	 * bit is reserved, so we leave it masked.
4054 	 */
4055 	if (IS_G4X(dev)) {
4056 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4057 			       GM45_ERROR_MEM_PRIV |
4058 			       GM45_ERROR_CP_PRIV |
4059 			       I915_ERROR_MEMORY_REFRESH);
4060 	} else {
4061 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4062 			       I915_ERROR_MEMORY_REFRESH);
4063 	}
4064 	I915_WRITE(EMR, error_mask);
4065 
4066 	I915_WRITE(IMR, dev_priv->irq_mask);
4067 	I915_WRITE(IER, enable_mask);
4068 	POSTING_READ(IER);
4069 
4070 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4071 	POSTING_READ(PORT_HOTPLUG_EN);
4072 
4073 	i915_enable_asle_pipestat(dev);
4074 
4075 	return 0;
4076 }
4077 
4078 static void i915_hpd_irq_setup(struct drm_device *dev)
4079 {
4080 	struct drm_i915_private *dev_priv = dev->dev_private;
4081 	struct drm_mode_config *mode_config = &dev->mode_config;
4082 	struct intel_encoder *intel_encoder;
4083 	u32 hotplug_en;
4084 
4085 	assert_spin_locked(&dev_priv->irq_lock);
4086 
4087 	if (I915_HAS_HOTPLUG(dev)) {
4088 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4089 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4090 		/* Note HDMI and DP share hotplug bits */
4091 		/* enable bits are the same for all generations */
4092 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4093 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4094 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4095 		/* Programming the CRT detection parameters tends
4096 		   to generate a spurious hotplug event about three
4097 		   seconds later.  So just do it once.
4098 		*/
4099 		if (IS_G4X(dev))
4100 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4101 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4102 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4103 
4104 		/* Ignore TV since it's buggy */
4105 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4106 	}
4107 }
4108 
4109 static irqreturn_t i965_irq_handler(void *arg)
4110 {
4111 	struct drm_device *dev = arg;
4112 	struct drm_i915_private *dev_priv = dev->dev_private;
4113 	u32 iir, new_iir;
4114 	u32 pipe_stats[I915_MAX_PIPES];
4115 	int pipe;
4116 	u32 flip_mask =
4117 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4118 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4119 
4120 	iir = I915_READ(IIR);
4121 
4122 	for (;;) {
4123 		bool irq_received = (iir & ~flip_mask) != 0;
4124 		bool blc_event = false;
4125 
4126 		/* Can't rely on pipestat interrupt bit in iir as it might
4127 		 * have been cleared after the pipestat interrupt was received.
4128 		 * It doesn't set the bit in iir again, but it still produces
4129 		 * interrupts (for non-MSI).
4130 		 */
4131 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4132 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4133 			i915_handle_error(dev, false,
4134 					  "Command parser error, iir 0x%08x",
4135 					  iir);
4136 
4137 		for_each_pipe(pipe) {
4138 			int reg = PIPESTAT(pipe);
4139 			pipe_stats[pipe] = I915_READ(reg);
4140 
4141 			/*
4142 			 * Clear the PIPE*STAT regs before the IIR
4143 			 */
4144 			if (pipe_stats[pipe] & 0x8000ffff) {
4145 				I915_WRITE(reg, pipe_stats[pipe]);
4146 				irq_received = true;
4147 			}
4148 		}
4149 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4150 
4151 		if (!irq_received)
4152 			break;
4153 
4154 		/* Consume port.  Then clear IIR or we'll miss events */
4155 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4156 			i9xx_hpd_irq_handler(dev);
4157 
4158 		I915_WRITE(IIR, iir & ~flip_mask);
4159 		new_iir = I915_READ(IIR); /* Flush posted writes */
4160 
4161 		if (iir & I915_USER_INTERRUPT)
4162 			notify_ring(dev, &dev_priv->ring[RCS]);
4163 		if (iir & I915_BSD_USER_INTERRUPT)
4164 			notify_ring(dev, &dev_priv->ring[VCS]);
4165 
4166 		for_each_pipe(pipe) {
4167 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4168 			    i915_handle_vblank(dev, pipe, pipe, iir))
4169 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4170 
4171 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4172 				blc_event = true;
4173 
4174 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4175 				i9xx_pipe_crc_irq_handler(dev, pipe);
4176 
4177 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4178 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4179 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4180 		}
4181 
4182 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4183 			intel_opregion_asle_intr(dev);
4184 
4185 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4186 			gmbus_irq_handler(dev);
4187 
4188 		/* With MSI, interrupts are only generated when iir
4189 		 * transitions from zero to nonzero.  If another bit got
4190 		 * set while we were handling the existing iir bits, then
4191 		 * we would never get another interrupt.
4192 		 *
4193 		 * This is fine on non-MSI as well, as if we hit this path
4194 		 * we avoid exiting the interrupt handler only to generate
4195 		 * another one.
4196 		 *
4197 		 * Note that for MSI this could cause a stray interrupt report
4198 		 * if an interrupt landed in the time between writing IIR and
4199 		 * the posting read.  This should be rare enough to never
4200 		 * trigger the 99% of 100,000 interrupts test for disabling
4201 		 * stray interrupts.
4202 		 */
4203 		iir = new_iir;
4204 	}
4205 
4206 	i915_update_dri1_breadcrumb(dev);
4207 
4208 }
4209 
4210 static void i965_irq_uninstall(struct drm_device * dev)
4211 {
4212 	struct drm_i915_private *dev_priv = dev->dev_private;
4213 	int pipe;
4214 
4215 	if (!dev_priv)
4216 		return;
4217 
4218 	intel_hpd_irq_uninstall(dev_priv);
4219 
4220 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4221 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4222 
4223 	I915_WRITE(HWSTAM, 0xffffffff);
4224 	for_each_pipe(pipe)
4225 		I915_WRITE(PIPESTAT(pipe), 0);
4226 	I915_WRITE(IMR, 0xffffffff);
4227 	I915_WRITE(IER, 0x0);
4228 
4229 	for_each_pipe(pipe)
4230 		I915_WRITE(PIPESTAT(pipe),
4231 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4232 	I915_WRITE(IIR, I915_READ(IIR));
4233 }
4234 
4235 static void intel_hpd_irq_reenable(unsigned long data)
4236 {
4237 	struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4238 	struct drm_device *dev = dev_priv->dev;
4239 	struct drm_mode_config *mode_config = &dev->mode_config;
4240 	int i;
4241 
4242 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4243 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4244 		struct drm_connector *connector;
4245 
4246 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4247 			continue;
4248 
4249 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4250 
4251 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4252 			struct intel_connector *intel_connector = to_intel_connector(connector);
4253 
4254 			if (intel_connector->encoder->hpd_pin == i) {
4255 				if (connector->polled != intel_connector->polled)
4256 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4257 							 connector->name);
4258 				connector->polled = intel_connector->polled;
4259 				if (!connector->polled)
4260 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4261 			}
4262 		}
4263 	}
4264 	if (dev_priv->display.hpd_irq_setup)
4265 		dev_priv->display.hpd_irq_setup(dev);
4266 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4267 }
4268 
4269 void intel_irq_init(struct drm_device *dev)
4270 {
4271 	struct drm_i915_private *dev_priv = dev->dev_private;
4272 
4273 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4274 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4275 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4276 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4277 
4278 	/* Let's track the enabled rps events */
4279 	dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4280 
4281 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4282 		    i915_hangcheck_elapsed,
4283 		    (unsigned long) dev);
4284 	setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4285 		    (unsigned long) dev_priv);
4286 
4287 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4288 
4289 	if (IS_GEN2(dev)) {
4290 		dev->max_vblank_count = 0;
4291 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4292 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4293 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4294 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4295 	} else {
4296 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4297 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4298 	}
4299 
4300 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4301 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4302 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4303 	}
4304 
4305 	if (IS_CHERRYVIEW(dev)) {
4306 		dev->driver->irq_handler = cherryview_irq_handler;
4307 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4308 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4309 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4310 		dev->driver->enable_vblank = valleyview_enable_vblank;
4311 		dev->driver->disable_vblank = valleyview_disable_vblank;
4312 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4313 	} else if (IS_VALLEYVIEW(dev)) {
4314 		dev->driver->irq_handler = valleyview_irq_handler;
4315 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4316 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4317 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4318 		dev->driver->enable_vblank = valleyview_enable_vblank;
4319 		dev->driver->disable_vblank = valleyview_disable_vblank;
4320 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4321 	} else if (IS_GEN8(dev)) {
4322 		dev->driver->irq_handler = gen8_irq_handler;
4323 		dev->driver->irq_preinstall = gen8_irq_reset;
4324 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4325 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4326 		dev->driver->enable_vblank = gen8_enable_vblank;
4327 		dev->driver->disable_vblank = gen8_disable_vblank;
4328 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4329 	} else if (HAS_PCH_SPLIT(dev)) {
4330 		dev->driver->irq_handler = ironlake_irq_handler;
4331 		dev->driver->irq_preinstall = ironlake_irq_reset;
4332 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4333 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4334 		dev->driver->enable_vblank = ironlake_enable_vblank;
4335 		dev->driver->disable_vblank = ironlake_disable_vblank;
4336 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4337 	} else {
4338 		if (INTEL_INFO(dev)->gen == 2) {
4339 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4340 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4341 			dev->driver->irq_handler = i8xx_irq_handler;
4342 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4343 		} else if (INTEL_INFO(dev)->gen == 3) {
4344 			dev->driver->irq_preinstall = i915_irq_preinstall;
4345 			dev->driver->irq_postinstall = i915_irq_postinstall;
4346 			dev->driver->irq_uninstall = i915_irq_uninstall;
4347 			dev->driver->irq_handler = i915_irq_handler;
4348 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4349 		} else {
4350 			dev->driver->irq_preinstall = i965_irq_preinstall;
4351 			dev->driver->irq_postinstall = i965_irq_postinstall;
4352 			dev->driver->irq_uninstall = i965_irq_uninstall;
4353 			dev->driver->irq_handler = i965_irq_handler;
4354 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4355 		}
4356 		dev->driver->enable_vblank = i915_enable_vblank;
4357 		dev->driver->disable_vblank = i915_disable_vblank;
4358 	}
4359 }
4360 
4361 void intel_hpd_init(struct drm_device *dev)
4362 {
4363 	struct drm_i915_private *dev_priv = dev->dev_private;
4364 	struct drm_mode_config *mode_config = &dev->mode_config;
4365 	struct drm_connector *connector;
4366 	int i;
4367 
4368 	for (i = 1; i < HPD_NUM_PINS; i++) {
4369 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4370 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4371 	}
4372 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4373 		struct intel_connector *intel_connector = to_intel_connector(connector);
4374 		connector->polled = intel_connector->polled;
4375 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4376 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4377 	}
4378 
4379 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4380 	 * just to make the assert_spin_locked checks happy. */
4381 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4382 	if (dev_priv->display.hpd_irq_setup)
4383 		dev_priv->display.hpd_irq_setup(dev);
4384 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4385 }
4386 
4387 /* Disable interrupts so we can allow runtime PM. */
4388 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4389 {
4390 	struct drm_i915_private *dev_priv = dev->dev_private;
4391 
4392 	dev->driver->irq_uninstall(dev);
4393 	dev_priv->pm.irqs_disabled = true;
4394 }
4395 
4396 /* Restore interrupts so we can recover from runtime PM. */
4397 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4398 {
4399 	struct drm_i915_private *dev_priv = dev->dev_private;
4400 
4401 	dev_priv->pm.irqs_disabled = false;
4402 	dev->driver->irq_preinstall(dev);
4403 	dev->driver->irq_postinstall(dev);
4404 }
4405