xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision 5ca0a96d)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN3_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 #define GEN2_IRQ_RESET(type) do { \
140 	I915_WRITE16(type##IMR, 0xffff); \
141 	POSTING_READ16(type##IMR); \
142 	I915_WRITE16(type##IER, 0); \
143 	I915_WRITE16(type##IIR, 0xffff); \
144 	POSTING_READ16(type##IIR); \
145 	I915_WRITE16(type##IIR, 0xffff); \
146 	POSTING_READ16(type##IIR); \
147 } while (0)
148 
149 /*
150  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
151  */
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153 				    i915_reg_t reg)
154 {
155 	u32 val = I915_READ(reg);
156 
157 	if (val == 0)
158 		return;
159 
160 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161 	     i915_mmio_reg_offset(reg), val);
162 	I915_WRITE(reg, 0xffffffff);
163 	POSTING_READ(reg);
164 	I915_WRITE(reg, 0xffffffff);
165 	POSTING_READ(reg);
166 }
167 
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 				    i915_reg_t reg)
170 {
171 	u16 val = I915_READ16(reg);
172 
173 	if (val == 0)
174 		return;
175 
176 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 	     i915_mmio_reg_offset(reg), val);
178 	I915_WRITE16(reg, 0xffff);
179 	POSTING_READ16(reg);
180 	I915_WRITE16(reg, 0xffff);
181 	POSTING_READ16(reg);
182 }
183 
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185 	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188 	POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
190 
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192 	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193 	I915_WRITE(type##IER, (ier_val)); \
194 	I915_WRITE(type##IMR, (imr_val)); \
195 	POSTING_READ(type##IMR); \
196 } while (0)
197 
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199 	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200 	I915_WRITE16(type##IER, (ier_val)); \
201 	I915_WRITE16(type##IMR, (imr_val)); \
202 	POSTING_READ16(type##IMR); \
203 } while (0)
204 
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
207 
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211 				     uint32_t mask,
212 				     uint32_t bits)
213 {
214 	uint32_t val;
215 
216 	lockdep_assert_held(&dev_priv->irq_lock);
217 	WARN_ON(bits & ~mask);
218 
219 	val = I915_READ(PORT_HOTPLUG_EN);
220 	val &= ~mask;
221 	val |= bits;
222 	I915_WRITE(PORT_HOTPLUG_EN, val);
223 }
224 
225 /**
226  * i915_hotplug_interrupt_update - update hotplug interrupt enable
227  * @dev_priv: driver private
228  * @mask: bits to update
229  * @bits: bits to enable
230  * NOTE: the HPD enable bits are modified both inside and outside
231  * of an interrupt context. To avoid that read-modify-write cycles
232  * interfer, these bits are protected by a spinlock. Since this
233  * function is usually not called from a context where the lock is
234  * held already, this function acquires the lock itself. A non-locking
235  * version is also available.
236  */
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238 				   uint32_t mask,
239 				   uint32_t bits)
240 {
241 	spin_lock_irq(&dev_priv->irq_lock);
242 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243 	spin_unlock_irq(&dev_priv->irq_lock);
244 }
245 
246 /**
247  * ilk_update_display_irq - update DEIMR
248  * @dev_priv: driver private
249  * @interrupt_mask: mask of interrupt bits to update
250  * @enabled_irq_mask: mask of interrupt bits to enable
251  */
252 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
253 			    uint32_t interrupt_mask,
254 			    uint32_t enabled_irq_mask)
255 {
256 	uint32_t new_val;
257 
258 	lockdep_assert_held(&dev_priv->irq_lock);
259 
260 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
261 
262 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263 		return;
264 
265 	new_val = dev_priv->irq_mask;
266 	new_val &= ~interrupt_mask;
267 	new_val |= (~enabled_irq_mask & interrupt_mask);
268 
269 	if (new_val != dev_priv->irq_mask) {
270 		dev_priv->irq_mask = new_val;
271 		I915_WRITE(DEIMR, dev_priv->irq_mask);
272 		POSTING_READ(DEIMR);
273 	}
274 }
275 
276 /**
277  * ilk_update_gt_irq - update GTIMR
278  * @dev_priv: driver private
279  * @interrupt_mask: mask of interrupt bits to update
280  * @enabled_irq_mask: mask of interrupt bits to enable
281  */
282 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
283 			      uint32_t interrupt_mask,
284 			      uint32_t enabled_irq_mask)
285 {
286 	lockdep_assert_held(&dev_priv->irq_lock);
287 
288 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
289 
290 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
291 		return;
292 
293 	dev_priv->gt_irq_mask &= ~interrupt_mask;
294 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
295 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
296 }
297 
298 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
299 {
300 	ilk_update_gt_irq(dev_priv, mask, mask);
301 	POSTING_READ_FW(GTIMR);
302 }
303 
304 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
305 {
306 	ilk_update_gt_irq(dev_priv, mask, 0);
307 }
308 
309 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
310 {
311 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
312 }
313 
314 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
315 {
316 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
317 }
318 
319 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
320 {
321 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
322 }
323 
324 /**
325  * snb_update_pm_irq - update GEN6_PMIMR
326  * @dev_priv: driver private
327  * @interrupt_mask: mask of interrupt bits to update
328  * @enabled_irq_mask: mask of interrupt bits to enable
329  */
330 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
331 			      uint32_t interrupt_mask,
332 			      uint32_t enabled_irq_mask)
333 {
334 	uint32_t new_val;
335 
336 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
337 
338 	lockdep_assert_held(&dev_priv->irq_lock);
339 
340 	new_val = dev_priv->pm_imr;
341 	new_val &= ~interrupt_mask;
342 	new_val |= (~enabled_irq_mask & interrupt_mask);
343 
344 	if (new_val != dev_priv->pm_imr) {
345 		dev_priv->pm_imr = new_val;
346 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
347 		POSTING_READ(gen6_pm_imr(dev_priv));
348 	}
349 }
350 
351 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
352 {
353 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
354 		return;
355 
356 	snb_update_pm_irq(dev_priv, mask, mask);
357 }
358 
359 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
360 {
361 	snb_update_pm_irq(dev_priv, mask, 0);
362 }
363 
364 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
365 {
366 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
367 		return;
368 
369 	__gen6_mask_pm_irq(dev_priv, mask);
370 }
371 
372 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
373 {
374 	i915_reg_t reg = gen6_pm_iir(dev_priv);
375 
376 	lockdep_assert_held(&dev_priv->irq_lock);
377 
378 	I915_WRITE(reg, reset_mask);
379 	I915_WRITE(reg, reset_mask);
380 	POSTING_READ(reg);
381 }
382 
383 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
384 {
385 	lockdep_assert_held(&dev_priv->irq_lock);
386 
387 	dev_priv->pm_ier |= enable_mask;
388 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
389 	gen6_unmask_pm_irq(dev_priv, enable_mask);
390 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
391 }
392 
393 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
394 {
395 	lockdep_assert_held(&dev_priv->irq_lock);
396 
397 	dev_priv->pm_ier &= ~disable_mask;
398 	__gen6_mask_pm_irq(dev_priv, disable_mask);
399 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
400 	/* though a barrier is missing here, but don't really need a one */
401 }
402 
403 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
404 {
405 	spin_lock_irq(&dev_priv->irq_lock);
406 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
407 	dev_priv->gt_pm.rps.pm_iir = 0;
408 	spin_unlock_irq(&dev_priv->irq_lock);
409 }
410 
411 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
412 {
413 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
414 
415 	if (READ_ONCE(rps->interrupts_enabled))
416 		return;
417 
418 	spin_lock_irq(&dev_priv->irq_lock);
419 	WARN_ON_ONCE(rps->pm_iir);
420 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
421 	rps->interrupts_enabled = true;
422 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
423 
424 	spin_unlock_irq(&dev_priv->irq_lock);
425 }
426 
427 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
428 {
429 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
430 
431 	if (!READ_ONCE(rps->interrupts_enabled))
432 		return;
433 
434 	spin_lock_irq(&dev_priv->irq_lock);
435 	rps->interrupts_enabled = false;
436 
437 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
438 
439 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
440 
441 	spin_unlock_irq(&dev_priv->irq_lock);
442 	synchronize_irq(dev_priv->drm.irq);
443 
444 	/* Now that we will not be generating any more work, flush any
445 	 * outstanding tasks. As we are called on the RPS idle path,
446 	 * we will reset the GPU to minimum frequencies, so the current
447 	 * state of the worker can be discarded.
448 	 */
449 	cancel_work_sync(&rps->work);
450 	gen6_reset_rps_interrupts(dev_priv);
451 }
452 
453 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
454 {
455 	spin_lock_irq(&dev_priv->irq_lock);
456 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
457 	spin_unlock_irq(&dev_priv->irq_lock);
458 }
459 
460 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
461 {
462 	spin_lock_irq(&dev_priv->irq_lock);
463 	if (!dev_priv->guc.interrupts_enabled) {
464 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
465 				       dev_priv->pm_guc_events);
466 		dev_priv->guc.interrupts_enabled = true;
467 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
468 	}
469 	spin_unlock_irq(&dev_priv->irq_lock);
470 }
471 
472 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
473 {
474 	spin_lock_irq(&dev_priv->irq_lock);
475 	dev_priv->guc.interrupts_enabled = false;
476 
477 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
478 
479 	spin_unlock_irq(&dev_priv->irq_lock);
480 	synchronize_irq(dev_priv->drm.irq);
481 
482 	gen9_reset_guc_interrupts(dev_priv);
483 }
484 
485 /**
486  * bdw_update_port_irq - update DE port interrupt
487  * @dev_priv: driver private
488  * @interrupt_mask: mask of interrupt bits to update
489  * @enabled_irq_mask: mask of interrupt bits to enable
490  */
491 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
492 				uint32_t interrupt_mask,
493 				uint32_t enabled_irq_mask)
494 {
495 	uint32_t new_val;
496 	uint32_t old_val;
497 
498 	lockdep_assert_held(&dev_priv->irq_lock);
499 
500 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
501 
502 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
503 		return;
504 
505 	old_val = I915_READ(GEN8_DE_PORT_IMR);
506 
507 	new_val = old_val;
508 	new_val &= ~interrupt_mask;
509 	new_val |= (~enabled_irq_mask & interrupt_mask);
510 
511 	if (new_val != old_val) {
512 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
513 		POSTING_READ(GEN8_DE_PORT_IMR);
514 	}
515 }
516 
517 /**
518  * bdw_update_pipe_irq - update DE pipe interrupt
519  * @dev_priv: driver private
520  * @pipe: pipe whose interrupt to update
521  * @interrupt_mask: mask of interrupt bits to update
522  * @enabled_irq_mask: mask of interrupt bits to enable
523  */
524 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
525 			 enum i915_pipe pipe,
526 			 uint32_t interrupt_mask,
527 			 uint32_t enabled_irq_mask)
528 {
529 	uint32_t new_val;
530 
531 	lockdep_assert_held(&dev_priv->irq_lock);
532 
533 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
534 
535 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 		return;
537 
538 	new_val = dev_priv->de_irq_mask[pipe];
539 	new_val &= ~interrupt_mask;
540 	new_val |= (~enabled_irq_mask & interrupt_mask);
541 
542 	if (new_val != dev_priv->de_irq_mask[pipe]) {
543 		dev_priv->de_irq_mask[pipe] = new_val;
544 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
545 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
546 	}
547 }
548 
549 /**
550  * ibx_display_interrupt_update - update SDEIMR
551  * @dev_priv: driver private
552  * @interrupt_mask: mask of interrupt bits to update
553  * @enabled_irq_mask: mask of interrupt bits to enable
554  */
555 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
556 				  uint32_t interrupt_mask,
557 				  uint32_t enabled_irq_mask)
558 {
559 	uint32_t sdeimr = I915_READ(SDEIMR);
560 	sdeimr &= ~interrupt_mask;
561 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
562 
563 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
564 
565 	lockdep_assert_held(&dev_priv->irq_lock);
566 
567 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
568 		return;
569 
570 	I915_WRITE(SDEIMR, sdeimr);
571 	POSTING_READ(SDEIMR);
572 }
573 
574 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
575 			      enum i915_pipe pipe)
576 {
577 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
578 	u32 enable_mask = status_mask << 16;
579 
580 	lockdep_assert_held(&dev_priv->irq_lock);
581 
582 	if (INTEL_GEN(dev_priv) < 5)
583 		goto out;
584 
585 	/*
586 	 * On pipe A we don't support the PSR interrupt yet,
587 	 * on pipe B and C the same bit MBZ.
588 	 */
589 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
590 		return 0;
591 	/*
592 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
593 	 * A the same bit is for perf counters which we don't use either.
594 	 */
595 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
596 		return 0;
597 
598 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
599 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
600 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
601 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
602 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
603 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
604 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
605 
606 out:
607 	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
608 		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
609 		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
610 		  pipe_name(pipe), enable_mask, status_mask);
611 
612 	return enable_mask;
613 }
614 
615 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
616 			  enum i915_pipe pipe, u32 status_mask)
617 {
618 	i915_reg_t reg = PIPESTAT(pipe);
619 	u32 enable_mask;
620 
621 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
622 		  "pipe %c: status_mask=0x%x\n",
623 		  pipe_name(pipe), status_mask);
624 
625 	lockdep_assert_held(&dev_priv->irq_lock);
626 	WARN_ON(!intel_irqs_enabled(dev_priv));
627 
628 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
629 		return;
630 
631 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
632 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
633 
634 	I915_WRITE(reg, enable_mask | status_mask);
635 	POSTING_READ(reg);
636 }
637 
638 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
639 			   enum i915_pipe pipe, u32 status_mask)
640 {
641 	i915_reg_t reg = PIPESTAT(pipe);
642 	u32 enable_mask;
643 
644 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
645 		  "pipe %c: status_mask=0x%x\n",
646 		  pipe_name(pipe), status_mask);
647 
648 	lockdep_assert_held(&dev_priv->irq_lock);
649 	WARN_ON(!intel_irqs_enabled(dev_priv));
650 
651 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
652 		return;
653 
654 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
655 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
656 
657 	I915_WRITE(reg, enable_mask | status_mask);
658 	POSTING_READ(reg);
659 }
660 
661 /**
662  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
663  * @dev_priv: i915 device private
664  */
665 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
666 {
667 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
668 		return;
669 
670 	spin_lock_irq(&dev_priv->irq_lock);
671 
672 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
673 	if (INTEL_GEN(dev_priv) >= 4)
674 		i915_enable_pipestat(dev_priv, PIPE_A,
675 				     PIPE_LEGACY_BLC_EVENT_STATUS);
676 
677 	spin_unlock_irq(&dev_priv->irq_lock);
678 }
679 
680 /*
681  * This timing diagram depicts the video signal in and
682  * around the vertical blanking period.
683  *
684  * Assumptions about the fictitious mode used in this example:
685  *  vblank_start >= 3
686  *  vsync_start = vblank_start + 1
687  *  vsync_end = vblank_start + 2
688  *  vtotal = vblank_start + 3
689  *
690  *           start of vblank:
691  *           latch double buffered registers
692  *           increment frame counter (ctg+)
693  *           generate start of vblank interrupt (gen4+)
694  *           |
695  *           |          frame start:
696  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
697  *           |          may be shifted forward 1-3 extra lines via PIPECONF
698  *           |          |
699  *           |          |  start of vsync:
700  *           |          |  generate vsync interrupt
701  *           |          |  |
702  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
703  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
704  * ----va---> <-----------------vb--------------------> <--------va-------------
705  *       |          |       <----vs----->                     |
706  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
707  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
708  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
709  *       |          |                                         |
710  *       last visible pixel                                   first visible pixel
711  *                  |                                         increment frame counter (gen3/4)
712  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
713  *
714  * x  = horizontal active
715  * _  = horizontal blanking
716  * hs = horizontal sync
717  * va = vertical active
718  * vb = vertical blanking
719  * vs = vertical sync
720  * vbs = vblank_start (number)
721  *
722  * Summary:
723  * - most events happen at the start of horizontal sync
724  * - frame start happens at the start of horizontal blank, 1-4 lines
725  *   (depending on PIPECONF settings) after the start of vblank
726  * - gen3/4 pixel and frame counter are synchronized with the start
727  *   of horizontal active on the first line of vertical active
728  */
729 
730 /* Called from drm generic code, passed a 'crtc', which
731  * we use as a pipe index
732  */
733 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 	struct drm_i915_private *dev_priv = to_i915(dev);
736 	i915_reg_t high_frame, low_frame;
737 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
738 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
739 	unsigned long irqflags;
740 
741 	htotal = mode->crtc_htotal;
742 	hsync_start = mode->crtc_hsync_start;
743 	vbl_start = mode->crtc_vblank_start;
744 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
745 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
746 
747 	/* Convert to pixel count */
748 	vbl_start *= htotal;
749 
750 	/* Start of vblank event occurs at start of hsync */
751 	vbl_start -= htotal - hsync_start;
752 
753 	high_frame = PIPEFRAME(pipe);
754 	low_frame = PIPEFRAMEPIXEL(pipe);
755 
756 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
757 
758 	/*
759 	 * High & low register fields aren't synchronized, so make sure
760 	 * we get a low value that's stable across two reads of the high
761 	 * register.
762 	 */
763 	do {
764 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
765 		low   = I915_READ_FW(low_frame);
766 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
767 	} while (high1 != high2);
768 
769 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770 
771 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
772 	pixel = low & PIPE_PIXEL_MASK;
773 	low >>= PIPE_FRAME_LOW_SHIFT;
774 
775 	/*
776 	 * The frame counter increments at beginning of active.
777 	 * Cook up a vblank counter by also checking the pixel
778 	 * counter against vblank start.
779 	 */
780 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
781 }
782 
783 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
784 {
785 	struct drm_i915_private *dev_priv = to_i915(dev);
786 
787 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
788 }
789 
790 /*
791  * On certain encoders on certain platforms, pipe
792  * scanline register will not work to get the scanline,
793  * since the timings are driven from the PORT or issues
794  * with scanline register updates.
795  * This function will use Framestamp and current
796  * timestamp registers to calculate the scanline.
797  */
798 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
799 {
800 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
801 	struct drm_vblank_crtc *vblank =
802 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
803 	const struct drm_display_mode *mode = &vblank->hwmode;
804 	u32 vblank_start = mode->crtc_vblank_start;
805 	u32 vtotal = mode->crtc_vtotal;
806 	u32 htotal = mode->crtc_htotal;
807 	u32 clock = mode->crtc_clock;
808 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
809 
810 	/*
811 	 * To avoid the race condition where we might cross into the
812 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
813 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
814 	 * during the same frame.
815 	 */
816 	do {
817 		/*
818 		 * This field provides read back of the display
819 		 * pipe frame time stamp. The time stamp value
820 		 * is sampled at every start of vertical blank.
821 		 */
822 		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
823 
824 		/*
825 		 * The TIMESTAMP_CTR register has the current
826 		 * time stamp value.
827 		 */
828 		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
829 
830 		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
831 	} while (scan_post_time != scan_prev_time);
832 
833 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
834 					clock), 1000 * htotal);
835 	scanline = min(scanline, vtotal - 1);
836 	scanline = (scanline + vblank_start) % vtotal;
837 
838 	return scanline;
839 }
840 
841 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
842 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
843 {
844 	struct drm_device *dev = crtc->base.dev;
845 	struct drm_i915_private *dev_priv = to_i915(dev);
846 	const struct drm_display_mode *mode;
847 	struct drm_vblank_crtc *vblank;
848 	enum i915_pipe pipe = crtc->pipe;
849 	int position, vtotal;
850 
851 	if (!crtc->active)
852 		return -1;
853 
854 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
855 	mode = &vblank->hwmode;
856 
857 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
858 		return __intel_get_crtc_scanline_from_timestamp(crtc);
859 
860 	vtotal = mode->crtc_vtotal;
861 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
862 		vtotal /= 2;
863 
864 	if (IS_GEN2(dev_priv))
865 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
866 	else
867 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
868 
869 	/*
870 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
871 	 * read it just before the start of vblank.  So try it again
872 	 * so we don't accidentally end up spanning a vblank frame
873 	 * increment, causing the pipe_update_end() code to squak at us.
874 	 *
875 	 * The nature of this problem means we can't simply check the ISR
876 	 * bit and return the vblank start value; nor can we use the scanline
877 	 * debug register in the transcoder as it appears to have the same
878 	 * problem.  We may need to extend this to include other platforms,
879 	 * but so far testing only shows the problem on HSW.
880 	 */
881 	if (HAS_DDI(dev_priv) && !position) {
882 		int i, temp;
883 
884 		for (i = 0; i < 100; i++) {
885 			udelay(1);
886 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
887 			if (temp != position) {
888 				position = temp;
889 				break;
890 			}
891 		}
892 	}
893 
894 	/*
895 	 * See update_scanline_offset() for the details on the
896 	 * scanline_offset adjustment.
897 	 */
898 	return (position + crtc->scanline_offset) % vtotal;
899 }
900 
901 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
902 				     bool in_vblank_irq, int *vpos, int *hpos,
903 				     ktime_t *stime, ktime_t *etime,
904 				     const struct drm_display_mode *mode)
905 {
906 	struct drm_i915_private *dev_priv = to_i915(dev);
907 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
908 								pipe);
909 	int position;
910 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
911 	unsigned long irqflags;
912 
913 	if (WARN_ON(!mode->crtc_clock)) {
914 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
915 				 "pipe %c\n", pipe_name(pipe));
916 		return false;
917 	}
918 
919 	htotal = mode->crtc_htotal;
920 	hsync_start = mode->crtc_hsync_start;
921 	vtotal = mode->crtc_vtotal;
922 	vbl_start = mode->crtc_vblank_start;
923 	vbl_end = mode->crtc_vblank_end;
924 
925 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
926 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
927 		vbl_end /= 2;
928 		vtotal /= 2;
929 	}
930 
931 	/*
932 	 * Lock uncore.lock, as we will do multiple timing critical raw
933 	 * register reads, potentially with preemption disabled, so the
934 	 * following code must not block on uncore.lock.
935 	 */
936 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
937 
938 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
939 
940 	/* Get optional system timestamp before query. */
941 	if (stime)
942 		*stime = ktime_get();
943 
944 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
945 		/* No obvious pixelcount register. Only query vertical
946 		 * scanout position from Display scan line register.
947 		 */
948 		position = __intel_get_crtc_scanline(intel_crtc);
949 	} else {
950 		/* Have access to pixelcount since start of frame.
951 		 * We can split this into vertical and horizontal
952 		 * scanout position.
953 		 */
954 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
955 
956 		/* convert to pixel counts */
957 		vbl_start *= htotal;
958 		vbl_end *= htotal;
959 		vtotal *= htotal;
960 
961 		/*
962 		 * In interlaced modes, the pixel counter counts all pixels,
963 		 * so one field will have htotal more pixels. In order to avoid
964 		 * the reported position from jumping backwards when the pixel
965 		 * counter is beyond the length of the shorter field, just
966 		 * clamp the position the length of the shorter field. This
967 		 * matches how the scanline counter based position works since
968 		 * the scanline counter doesn't count the two half lines.
969 		 */
970 		if (position >= vtotal)
971 			position = vtotal - 1;
972 
973 		/*
974 		 * Start of vblank interrupt is triggered at start of hsync,
975 		 * just prior to the first active line of vblank. However we
976 		 * consider lines to start at the leading edge of horizontal
977 		 * active. So, should we get here before we've crossed into
978 		 * the horizontal active of the first line in vblank, we would
979 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
980 		 * always add htotal-hsync_start to the current pixel position.
981 		 */
982 		position = (position + htotal - hsync_start) % vtotal;
983 	}
984 
985 	/* Get optional system timestamp after query. */
986 	if (etime)
987 		*etime = ktime_get();
988 
989 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
990 
991 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
992 
993 	/*
994 	 * While in vblank, position will be negative
995 	 * counting up towards 0 at vbl_end. And outside
996 	 * vblank, position will be positive counting
997 	 * up since vbl_end.
998 	 */
999 	if (position >= vbl_start)
1000 		position -= vbl_end;
1001 	else
1002 		position += vtotal - vbl_end;
1003 
1004 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1005 		*vpos = position;
1006 		*hpos = 0;
1007 	} else {
1008 		*vpos = position / htotal;
1009 		*hpos = position - (*vpos * htotal);
1010 	}
1011 
1012 	return true;
1013 }
1014 
1015 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1016 {
1017 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1018 	unsigned long irqflags;
1019 	int position;
1020 
1021 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1022 	position = __intel_get_crtc_scanline(crtc);
1023 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1024 
1025 	return position;
1026 }
1027 
1028 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1029 {
1030 	u32 busy_up, busy_down, max_avg, min_avg;
1031 	u8 new_delay;
1032 
1033 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
1034 
1035 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1036 
1037 	new_delay = dev_priv->ips.cur_delay;
1038 
1039 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1040 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1041 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1042 	max_avg = I915_READ(RCBMAXAVG);
1043 	min_avg = I915_READ(RCBMINAVG);
1044 
1045 	/* Handle RCS change request from hw */
1046 	if (busy_up > max_avg) {
1047 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1048 			new_delay = dev_priv->ips.cur_delay - 1;
1049 		if (new_delay < dev_priv->ips.max_delay)
1050 			new_delay = dev_priv->ips.max_delay;
1051 	} else if (busy_down < min_avg) {
1052 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1053 			new_delay = dev_priv->ips.cur_delay + 1;
1054 		if (new_delay > dev_priv->ips.min_delay)
1055 			new_delay = dev_priv->ips.min_delay;
1056 	}
1057 
1058 	if (ironlake_set_drps(dev_priv, new_delay))
1059 		dev_priv->ips.cur_delay = new_delay;
1060 
1061 	lockmgr(&mchdev_lock, LK_RELEASE);
1062 
1063 	return;
1064 }
1065 
1066 static void notify_ring(struct intel_engine_cs *engine)
1067 {
1068 	struct drm_i915_gem_request *rq = NULL;
1069 	struct intel_wait *wait;
1070 
1071 	atomic_inc(&engine->irq_count);
1072 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1073 
1074 	lockmgr(&engine->breadcrumbs.irq_lock, LK_EXCLUSIVE);
1075 	wait = engine->breadcrumbs.irq_wait;
1076 	if (wait) {
1077 		bool wakeup = engine->irq_seqno_barrier;
1078 
1079 		/* We use a callback from the dma-fence to submit
1080 		 * requests after waiting on our own requests. To
1081 		 * ensure minimum delay in queuing the next request to
1082 		 * hardware, signal the fence now rather than wait for
1083 		 * the signaler to be woken up. We still wake up the
1084 		 * waiter in order to handle the irq-seqno coherency
1085 		 * issues (we may receive the interrupt before the
1086 		 * seqno is written, see __i915_request_irq_complete())
1087 		 * and to handle coalescing of multiple seqno updates
1088 		 * and many waiters.
1089 		 */
1090 		if (i915_seqno_passed(intel_engine_get_seqno(engine),
1091 				      wait->seqno)) {
1092 			struct drm_i915_gem_request *waiter = wait->request;
1093 
1094 			wakeup = true;
1095 			if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1096 				      &waiter->fence.flags) &&
1097 			    intel_wait_check_request(wait, waiter))
1098 				rq = i915_gem_request_get(waiter);
1099 		}
1100 
1101 		if (wakeup)
1102 			wake_up_process(wait->tsk);
1103 	} else {
1104 		__intel_engine_disarm_breadcrumbs(engine);
1105 	}
1106 	lockmgr(&engine->breadcrumbs.irq_lock, LK_RELEASE);
1107 
1108 	if (rq) {
1109 		dma_fence_signal(&rq->fence);
1110 		i915_gem_request_put(rq);
1111 	}
1112 
1113 	trace_intel_engine_notify(engine, wait);
1114 }
1115 
1116 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117 			struct intel_rps_ei *ei)
1118 {
1119 	ei->ktime = ktime_get_raw();
1120 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122 }
1123 
1124 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125 {
1126 	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127 }
1128 
1129 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130 {
1131 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132 	const struct intel_rps_ei *prev = &rps->ei;
1133 	struct intel_rps_ei now;
1134 	u32 events = 0;
1135 
1136 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137 		return 0;
1138 
1139 	vlv_c0_read(dev_priv, &now);
1140 
1141 	if (prev->ktime) {
1142 		u64 time, c0;
1143 		u32 render, media;
1144 
1145 		time = ktime_us_delta(now.ktime, prev->ktime);
1146 
1147 		time *= dev_priv->czclk_freq;
1148 
1149 		/* Workload can be split between render + media,
1150 		 * e.g. SwapBuffers being blitted in X after being rendered in
1151 		 * mesa. To account for this we need to combine both engines
1152 		 * into our activity counter.
1153 		 */
1154 		render = now.render_c0 - prev->render_c0;
1155 		media = now.media_c0 - prev->media_c0;
1156 		c0 = max(render, media);
1157 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158 
1159 		if (c0 > time * rps->up_threshold)
1160 			events = GEN6_PM_RP_UP_THRESHOLD;
1161 		else if (c0 < time * rps->down_threshold)
1162 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1163 	}
1164 
1165 	rps->ei = now;
1166 	return events;
1167 }
1168 
1169 static void gen6_pm_rps_work(struct work_struct *work)
1170 {
1171 	struct drm_i915_private *dev_priv =
1172 		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1174 	bool client_boost = false;
1175 	int new_delay, adj, min, max;
1176 	u32 pm_iir = 0;
1177 
1178 	spin_lock_irq(&dev_priv->irq_lock);
1179 	if (rps->interrupts_enabled) {
1180 		pm_iir = fetch_and_zero(&rps->pm_iir);
1181 		client_boost = atomic_read(&rps->num_waiters);
1182 	}
1183 	spin_unlock_irq(&dev_priv->irq_lock);
1184 
1185 	/* Make sure we didn't queue anything we're not going to process. */
1186 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1187 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1188 		goto out;
1189 
1190 	mutex_lock(&dev_priv->pcu_lock);
1191 
1192 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1193 
1194 	adj = rps->last_adj;
1195 	new_delay = rps->cur_freq;
1196 	min = rps->min_freq_softlimit;
1197 	max = rps->max_freq_softlimit;
1198 	if (client_boost)
1199 		max = rps->max_freq;
1200 	if (client_boost && new_delay < rps->boost_freq) {
1201 		new_delay = rps->boost_freq;
1202 		adj = 0;
1203 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1204 		if (adj > 0)
1205 			adj *= 2;
1206 		else /* CHV needs even encode values */
1207 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1208 
1209 		if (new_delay >= rps->max_freq_softlimit)
1210 			adj = 0;
1211 	} else if (client_boost) {
1212 		adj = 0;
1213 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1214 		if (rps->cur_freq > rps->efficient_freq)
1215 			new_delay = rps->efficient_freq;
1216 		else if (rps->cur_freq > rps->min_freq_softlimit)
1217 			new_delay = rps->min_freq_softlimit;
1218 		adj = 0;
1219 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1220 		if (adj < 0)
1221 			adj *= 2;
1222 		else /* CHV needs even encode values */
1223 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1224 
1225 		if (new_delay <= rps->min_freq_softlimit)
1226 			adj = 0;
1227 	} else { /* unknown event */
1228 		adj = 0;
1229 	}
1230 
1231 	rps->last_adj = adj;
1232 
1233 	/* sysfs frequency interfaces may have snuck in while servicing the
1234 	 * interrupt
1235 	 */
1236 	new_delay += adj;
1237 	new_delay = clamp_t(int, new_delay, min, max);
1238 
1239 	if (intel_set_rps(dev_priv, new_delay)) {
1240 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1241 		rps->last_adj = 0;
1242 	}
1243 
1244 	mutex_unlock(&dev_priv->pcu_lock);
1245 
1246 out:
1247 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1248 	spin_lock_irq(&dev_priv->irq_lock);
1249 	if (rps->interrupts_enabled)
1250 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1251 	spin_unlock_irq(&dev_priv->irq_lock);
1252 }
1253 
1254 
1255 /**
1256  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1257  * occurred.
1258  * @work: workqueue struct
1259  *
1260  * Doesn't actually do anything except notify userspace. As a consequence of
1261  * this event, userspace should try to remap the bad rows since statistically
1262  * it is likely the same row is more likely to go bad again.
1263  */
1264 static void ivybridge_parity_work(struct work_struct *work)
1265 {
1266 	struct drm_i915_private *dev_priv =
1267 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1268 	u32 error_status, row, bank, subbank;
1269 	char *parity_event[6];
1270 	uint32_t misccpctl;
1271 	uint8_t slice = 0;
1272 
1273 	/* We must turn off DOP level clock gating to access the L3 registers.
1274 	 * In order to prevent a get/put style interface, acquire struct mutex
1275 	 * any time we access those registers.
1276 	 */
1277 	mutex_lock(&dev_priv->drm.struct_mutex);
1278 
1279 	/* If we've screwed up tracking, just let the interrupt fire again */
1280 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1281 		goto out;
1282 
1283 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1284 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1285 	POSTING_READ(GEN7_MISCCPCTL);
1286 
1287 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1288 		i915_reg_t reg;
1289 
1290 		slice--;
1291 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1292 			break;
1293 
1294 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1295 
1296 		reg = GEN7_L3CDERRST1(slice);
1297 
1298 		error_status = I915_READ(reg);
1299 		row = GEN7_PARITY_ERROR_ROW(error_status);
1300 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1301 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1302 
1303 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1304 		POSTING_READ(reg);
1305 
1306 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1307 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1308 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1309 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1310 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1311 		parity_event[5] = NULL;
1312 
1313 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1314 				   KOBJ_CHANGE, parity_event);
1315 
1316 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1317 			  slice, row, bank, subbank);
1318 
1319 		kfree(parity_event[4]);
1320 		kfree(parity_event[3]);
1321 		kfree(parity_event[2]);
1322 		kfree(parity_event[1]);
1323 	}
1324 
1325 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1326 
1327 out:
1328 	WARN_ON(dev_priv->l3_parity.which_slice);
1329 	spin_lock_irq(&dev_priv->irq_lock);
1330 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1331 	spin_unlock_irq(&dev_priv->irq_lock);
1332 
1333 	mutex_unlock(&dev_priv->drm.struct_mutex);
1334 }
1335 
1336 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1337 					       u32 iir)
1338 {
1339 	if (!HAS_L3_DPF(dev_priv))
1340 		return;
1341 
1342 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1343 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1344 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1345 
1346 	iir &= GT_PARITY_ERROR(dev_priv);
1347 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1348 		dev_priv->l3_parity.which_slice |= 1 << 1;
1349 
1350 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1351 		dev_priv->l3_parity.which_slice |= 1 << 0;
1352 
1353 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1354 }
1355 
1356 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1357 			       u32 gt_iir)
1358 {
1359 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1360 		notify_ring(dev_priv->engine[RCS]);
1361 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1362 		notify_ring(dev_priv->engine[VCS]);
1363 }
1364 
1365 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1366 			       u32 gt_iir)
1367 {
1368 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1369 		notify_ring(dev_priv->engine[RCS]);
1370 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1371 		notify_ring(dev_priv->engine[VCS]);
1372 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1373 		notify_ring(dev_priv->engine[BCS]);
1374 
1375 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1376 		      GT_BSD_CS_ERROR_INTERRUPT |
1377 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1378 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1379 
1380 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1381 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1382 }
1383 
1384 static void
1385 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1386 {
1387 	struct intel_engine_execlists * const execlists = &engine->execlists;
1388 	bool tasklet = false;
1389 
1390 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1391 		if (READ_ONCE(engine->execlists.active)) {
1392 			__set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1393 			tasklet = true;
1394 		}
1395 	}
1396 
1397 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1398 		notify_ring(engine);
1399 		tasklet |= i915_modparams.enable_guc_submission;
1400 	}
1401 
1402 	if (tasklet)
1403 		tasklet_hi_schedule(&execlists->irq_tasklet);
1404 }
1405 
1406 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1407 				   u32 master_ctl,
1408 				   u32 gt_iir[4])
1409 {
1410 	irqreturn_t ret = IRQ_NONE;
1411 
1412 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1413 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1414 		if (gt_iir[0]) {
1415 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1416 			ret = IRQ_HANDLED;
1417 		} else
1418 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1419 	}
1420 
1421 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1422 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1423 		if (gt_iir[1]) {
1424 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1425 			ret = IRQ_HANDLED;
1426 		} else
1427 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1428 	}
1429 
1430 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1431 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1432 		if (gt_iir[3]) {
1433 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1434 			ret = IRQ_HANDLED;
1435 		} else
1436 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1437 	}
1438 
1439 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1440 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1441 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1442 				 dev_priv->pm_guc_events)) {
1443 			I915_WRITE_FW(GEN8_GT_IIR(2),
1444 				      gt_iir[2] & (dev_priv->pm_rps_events |
1445 						   dev_priv->pm_guc_events));
1446 			ret = IRQ_HANDLED;
1447 		} else
1448 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1449 	}
1450 
1451 	return ret;
1452 }
1453 
1454 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1455 				u32 gt_iir[4])
1456 {
1457 	if (gt_iir[0]) {
1458 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1459 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1460 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1461 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1462 	}
1463 
1464 	if (gt_iir[1]) {
1465 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1466 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1467 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1468 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1469 	}
1470 
1471 	if (gt_iir[3])
1472 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1473 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1474 
1475 	if (gt_iir[2] & dev_priv->pm_rps_events)
1476 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1477 
1478 	if (gt_iir[2] & dev_priv->pm_guc_events)
1479 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1480 }
1481 
1482 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1483 {
1484 	switch (port) {
1485 	case PORT_A:
1486 		return val & PORTA_HOTPLUG_LONG_DETECT;
1487 	case PORT_B:
1488 		return val & PORTB_HOTPLUG_LONG_DETECT;
1489 	case PORT_C:
1490 		return val & PORTC_HOTPLUG_LONG_DETECT;
1491 	default:
1492 		return false;
1493 	}
1494 }
1495 
1496 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1497 {
1498 	switch (port) {
1499 	case PORT_E:
1500 		return val & PORTE_HOTPLUG_LONG_DETECT;
1501 	default:
1502 		return false;
1503 	}
1504 }
1505 
1506 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1507 {
1508 	switch (port) {
1509 	case PORT_A:
1510 		return val & PORTA_HOTPLUG_LONG_DETECT;
1511 	case PORT_B:
1512 		return val & PORTB_HOTPLUG_LONG_DETECT;
1513 	case PORT_C:
1514 		return val & PORTC_HOTPLUG_LONG_DETECT;
1515 	case PORT_D:
1516 		return val & PORTD_HOTPLUG_LONG_DETECT;
1517 	default:
1518 		return false;
1519 	}
1520 }
1521 
1522 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1523 {
1524 	switch (port) {
1525 	case PORT_A:
1526 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1527 	default:
1528 		return false;
1529 	}
1530 }
1531 
1532 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1533 {
1534 	switch (port) {
1535 	case PORT_B:
1536 		return val & PORTB_HOTPLUG_LONG_DETECT;
1537 	case PORT_C:
1538 		return val & PORTC_HOTPLUG_LONG_DETECT;
1539 	case PORT_D:
1540 		return val & PORTD_HOTPLUG_LONG_DETECT;
1541 	default:
1542 		return false;
1543 	}
1544 }
1545 
1546 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1547 {
1548 	switch (port) {
1549 	case PORT_B:
1550 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1551 	case PORT_C:
1552 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1553 	case PORT_D:
1554 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1555 	default:
1556 		return false;
1557 	}
1558 }
1559 
1560 /*
1561  * Get a bit mask of pins that have triggered, and which ones may be long.
1562  * This can be called multiple times with the same masks to accumulate
1563  * hotplug detection results from several registers.
1564  *
1565  * Note that the caller is expected to zero out the masks initially.
1566  */
1567 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1568 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1569 			     const u32 hpd[HPD_NUM_PINS],
1570 			     bool long_pulse_detect(enum port port, u32 val))
1571 {
1572 	enum port port;
1573 	int i;
1574 
1575 	for_each_hpd_pin(i) {
1576 		if ((hpd[i] & hotplug_trigger) == 0)
1577 			continue;
1578 
1579 		*pin_mask |= BIT(i);
1580 
1581 		port = intel_hpd_pin_to_port(i);
1582 		if (port == PORT_NONE)
1583 			continue;
1584 
1585 		if (long_pulse_detect(port, dig_hotplug_reg))
1586 			*long_mask |= BIT(i);
1587 	}
1588 
1589 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1590 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1591 
1592 }
1593 
1594 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1595 {
1596 	wake_up_all(&dev_priv->gmbus_wait_queue);
1597 }
1598 
1599 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1600 {
1601 	wake_up_all(&dev_priv->gmbus_wait_queue);
1602 }
1603 
1604 #if defined(CONFIG_DEBUG_FS)
1605 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1606 					 enum i915_pipe pipe,
1607 					 uint32_t crc0, uint32_t crc1,
1608 					 uint32_t crc2, uint32_t crc3,
1609 					 uint32_t crc4)
1610 {
1611 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1612 	struct intel_pipe_crc_entry *entry;
1613 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1614 	struct drm_driver *driver = dev_priv->drm.driver;
1615 	uint32_t crcs[5];
1616 	int head, tail;
1617 
1618 	lockmgr(&pipe_crc->lock, LK_EXCLUSIVE);
1619 	if (pipe_crc->source) {
1620 		if (!pipe_crc->entries) {
1621 			lockmgr(&pipe_crc->lock, LK_RELEASE);
1622 			DRM_DEBUG_KMS("spurious interrupt\n");
1623 			return;
1624 		}
1625 
1626 		head = pipe_crc->head;
1627 		tail = pipe_crc->tail;
1628 
1629 		if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1630 			lockmgr(&pipe_crc->lock, LK_RELEASE);
1631 			DRM_ERROR("CRC buffer overflowing\n");
1632 			return;
1633 		}
1634 
1635 		entry = &pipe_crc->entries[head];
1636 
1637 		entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1638 		entry->crc[0] = crc0;
1639 		entry->crc[1] = crc1;
1640 		entry->crc[2] = crc2;
1641 		entry->crc[3] = crc3;
1642 		entry->crc[4] = crc4;
1643 
1644 		head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1645 		pipe_crc->head = head;
1646 
1647 		lockmgr(&pipe_crc->lock, LK_RELEASE);
1648 
1649 		wake_up_interruptible(&pipe_crc->wq);
1650 	} else {
1651 		/*
1652 		 * For some not yet identified reason, the first CRC is
1653 		 * bonkers. So let's just wait for the next vblank and read
1654 		 * out the buggy result.
1655 		 *
1656 		 * On GEN8+ sometimes the second CRC is bonkers as well, so
1657 		 * don't trust that one either.
1658 		 */
1659 		if (pipe_crc->skipped == 0 ||
1660 		    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1661 			pipe_crc->skipped++;
1662 			lockmgr(&pipe_crc->lock, LK_RELEASE);
1663 			return;
1664 		}
1665 		lockmgr(&pipe_crc->lock, LK_RELEASE);
1666 		crcs[0] = crc0;
1667 		crcs[1] = crc1;
1668 		crcs[2] = crc2;
1669 		crcs[3] = crc3;
1670 		crcs[4] = crc4;
1671 		drm_crtc_add_crc_entry(&crtc->base, true,
1672 				       drm_crtc_accurate_vblank_count(&crtc->base),
1673 				       crcs);
1674 	}
1675 }
1676 #else
1677 static inline void
1678 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1679 			     enum i915_pipe pipe,
1680 			     uint32_t crc0, uint32_t crc1,
1681 			     uint32_t crc2, uint32_t crc3,
1682 			     uint32_t crc4) {}
1683 #endif
1684 
1685 
1686 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1687 				     enum i915_pipe pipe)
1688 {
1689 	display_pipe_crc_irq_handler(dev_priv, pipe,
1690 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1691 				     0, 0, 0, 0);
1692 }
1693 
1694 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1695 				     enum i915_pipe pipe)
1696 {
1697 	display_pipe_crc_irq_handler(dev_priv, pipe,
1698 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1699 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1700 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1701 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1702 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1703 }
1704 
1705 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1706 				      enum i915_pipe pipe)
1707 {
1708 	uint32_t res1, res2;
1709 
1710 	if (INTEL_GEN(dev_priv) >= 3)
1711 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1712 	else
1713 		res1 = 0;
1714 
1715 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1716 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1717 	else
1718 		res2 = 0;
1719 
1720 	display_pipe_crc_irq_handler(dev_priv, pipe,
1721 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1722 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1723 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1724 				     res1, res2);
1725 }
1726 
1727 /* The RPS events need forcewake, so we add them to a work queue and mask their
1728  * IMR bits until the work is done. Other interrupts can be processed without
1729  * the work queue. */
1730 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1731 {
1732 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1733 
1734 	if (pm_iir & dev_priv->pm_rps_events) {
1735 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1736 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1737 		if (rps->interrupts_enabled) {
1738 			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1739 			schedule_work(&rps->work);
1740 		}
1741 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1742 	}
1743 
1744 	if (INTEL_GEN(dev_priv) >= 8)
1745 		return;
1746 
1747 	if (HAS_VEBOX(dev_priv)) {
1748 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1749 			notify_ring(dev_priv->engine[VECS]);
1750 
1751 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1752 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1753 	}
1754 }
1755 
1756 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1757 {
1758 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1759 		/* Sample the log buffer flush related bits & clear them out now
1760 		 * itself from the message identity register to minimize the
1761 		 * probability of losing a flush interrupt, when there are back
1762 		 * to back flush interrupts.
1763 		 * There can be a new flush interrupt, for different log buffer
1764 		 * type (like for ISR), whilst Host is handling one (for DPC).
1765 		 * Since same bit is used in message register for ISR & DPC, it
1766 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1767 		 * clears out the bit on handling the 1st interrupt.
1768 		 */
1769 		u32 msg, flush;
1770 
1771 		msg = I915_READ(SOFT_SCRATCH(15));
1772 		flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1773 			       INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1774 		if (flush) {
1775 			/* Clear the message bits that are handled */
1776 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1777 
1778 			/* Handle flush interrupt in bottom half */
1779 			queue_work(dev_priv->guc.log.runtime.flush_wq,
1780 				   &dev_priv->guc.log.runtime.flush_work);
1781 
1782 			dev_priv->guc.log.flush_interrupt_count++;
1783 		} else {
1784 			/* Not clearing of unhandled event bits won't result in
1785 			 * re-triggering of the interrupt.
1786 			 */
1787 		}
1788 	}
1789 }
1790 
1791 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1792 {
1793 	enum i915_pipe pipe;
1794 
1795 	for_each_pipe(dev_priv, pipe) {
1796 		I915_WRITE(PIPESTAT(pipe),
1797 			   PIPESTAT_INT_STATUS_MASK |
1798 			   PIPE_FIFO_UNDERRUN_STATUS);
1799 
1800 		dev_priv->pipestat_irq_mask[pipe] = 0;
1801 	}
1802 }
1803 
1804 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1805 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1806 {
1807 	int pipe;
1808 
1809 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1810 
1811 	if (!dev_priv->display_irqs_enabled) {
1812 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1813 		return;
1814 	}
1815 
1816 	for_each_pipe(dev_priv, pipe) {
1817 		i915_reg_t reg;
1818 		u32 status_mask, enable_mask, iir_bit = 0;
1819 
1820 		/*
1821 		 * PIPESTAT bits get signalled even when the interrupt is
1822 		 * disabled with the mask bits, and some of the status bits do
1823 		 * not generate interrupts at all (like the underrun bit). Hence
1824 		 * we need to be careful that we only handle what we want to
1825 		 * handle.
1826 		 */
1827 
1828 		/* fifo underruns are filterered in the underrun handler. */
1829 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1830 
1831 		switch (pipe) {
1832 		case PIPE_A:
1833 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1834 			break;
1835 		case PIPE_B:
1836 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1837 			break;
1838 		case PIPE_C:
1839 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1840 			break;
1841 		}
1842 		if (iir & iir_bit)
1843 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1844 
1845 		if (!status_mask)
1846 			continue;
1847 
1848 		reg = PIPESTAT(pipe);
1849 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1850 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1851 
1852 		/*
1853 		 * Clear the PIPE*STAT regs before the IIR
1854 		 */
1855 		if (pipe_stats[pipe])
1856 			I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
1857 	}
1858 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1859 }
1860 
1861 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1862 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1863 {
1864 	enum i915_pipe pipe;
1865 
1866 	for_each_pipe(dev_priv, pipe) {
1867 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1868 			drm_handle_vblank(&dev_priv->drm, pipe);
1869 
1870 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1871 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1872 
1873 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1874 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1875 	}
1876 }
1877 
1878 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1879 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1880 {
1881 	bool blc_event = false;
1882 	enum i915_pipe pipe;
1883 
1884 	for_each_pipe(dev_priv, pipe) {
1885 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1886 			drm_handle_vblank(&dev_priv->drm, pipe);
1887 
1888 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1889 			blc_event = true;
1890 
1891 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1892 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1893 
1894 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1895 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1896 	}
1897 
1898 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1899 		intel_opregion_asle_intr(dev_priv);
1900 }
1901 
1902 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1903 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1904 {
1905 	bool blc_event = false;
1906 	enum i915_pipe pipe;
1907 
1908 	for_each_pipe(dev_priv, pipe) {
1909 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1910 			drm_handle_vblank(&dev_priv->drm, pipe);
1911 
1912 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1913 			blc_event = true;
1914 
1915 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1916 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1917 
1918 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1919 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1920 	}
1921 
1922 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1923 		intel_opregion_asle_intr(dev_priv);
1924 
1925 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1926 		gmbus_irq_handler(dev_priv);
1927 }
1928 
1929 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1930 					    u32 pipe_stats[I915_MAX_PIPES])
1931 {
1932 	enum i915_pipe pipe;
1933 
1934 	for_each_pipe(dev_priv, pipe) {
1935 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1936 			drm_handle_vblank(&dev_priv->drm, pipe);
1937 
1938 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1939 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1940 
1941 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1942 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1943 	}
1944 
1945 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1946 		gmbus_irq_handler(dev_priv);
1947 }
1948 
1949 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1950 {
1951 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1952 
1953 	if (hotplug_status)
1954 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1955 
1956 	return hotplug_status;
1957 }
1958 
1959 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1960 				 u32 hotplug_status)
1961 {
1962 	u32 pin_mask = 0, long_mask = 0;
1963 
1964 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1965 	    IS_CHERRYVIEW(dev_priv)) {
1966 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1967 
1968 		if (hotplug_trigger) {
1969 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1970 					   hotplug_trigger, hpd_status_g4x,
1971 					   i9xx_port_hotplug_long_detect);
1972 
1973 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1974 		}
1975 
1976 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1977 			dp_aux_irq_handler(dev_priv);
1978 	} else {
1979 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1980 
1981 		if (hotplug_trigger) {
1982 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1983 					   hotplug_trigger, hpd_status_i915,
1984 					   i9xx_port_hotplug_long_detect);
1985 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1986 		}
1987 	}
1988 }
1989 
1990 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1991 {
1992 	struct drm_device *dev = arg;
1993 	struct drm_i915_private *dev_priv = to_i915(dev);
1994 	irqreturn_t ret = IRQ_NONE;
1995 
1996 	if (!intel_irqs_enabled(dev_priv))
1997 		return IRQ_NONE;
1998 
1999 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2000 	disable_rpm_wakeref_asserts(dev_priv);
2001 
2002 	do {
2003 		u32 iir, gt_iir, pm_iir;
2004 		u32 pipe_stats[I915_MAX_PIPES] = {};
2005 		u32 hotplug_status = 0;
2006 		u32 ier = 0;
2007 
2008 		gt_iir = I915_READ(GTIIR);
2009 		pm_iir = I915_READ(GEN6_PMIIR);
2010 		iir = I915_READ(VLV_IIR);
2011 
2012 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2013 			break;
2014 
2015 		ret = IRQ_HANDLED;
2016 
2017 		/*
2018 		 * Theory on interrupt generation, based on empirical evidence:
2019 		 *
2020 		 * x = ((VLV_IIR & VLV_IER) ||
2021 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2022 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2023 		 *
2024 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2025 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2026 		 * guarantee the CPU interrupt will be raised again even if we
2027 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2028 		 * bits this time around.
2029 		 */
2030 		I915_WRITE(VLV_MASTER_IER, 0);
2031 		ier = I915_READ(VLV_IER);
2032 		I915_WRITE(VLV_IER, 0);
2033 
2034 		if (gt_iir)
2035 			I915_WRITE(GTIIR, gt_iir);
2036 		if (pm_iir)
2037 			I915_WRITE(GEN6_PMIIR, pm_iir);
2038 
2039 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2040 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2041 
2042 		/* Call regardless, as some status bits might not be
2043 		 * signalled in iir */
2044 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2045 
2046 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2047 			   I915_LPE_PIPE_B_INTERRUPT))
2048 			intel_lpe_audio_irq_handler(dev_priv);
2049 
2050 		/*
2051 		 * VLV_IIR is single buffered, and reflects the level
2052 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2053 		 */
2054 		if (iir)
2055 			I915_WRITE(VLV_IIR, iir);
2056 
2057 		I915_WRITE(VLV_IER, ier);
2058 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2059 		POSTING_READ(VLV_MASTER_IER);
2060 
2061 		if (gt_iir)
2062 			snb_gt_irq_handler(dev_priv, gt_iir);
2063 		if (pm_iir)
2064 			gen6_rps_irq_handler(dev_priv, pm_iir);
2065 
2066 		if (hotplug_status)
2067 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2068 
2069 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2070 	} while (0);
2071 
2072 	enable_rpm_wakeref_asserts(dev_priv);
2073 
2074 	return ret;
2075 }
2076 
2077 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2078 {
2079 	struct drm_device *dev = arg;
2080 	struct drm_i915_private *dev_priv = to_i915(dev);
2081 	irqreturn_t ret = IRQ_NONE;
2082 
2083 	if (!intel_irqs_enabled(dev_priv))
2084 		return IRQ_NONE;
2085 
2086 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2087 	disable_rpm_wakeref_asserts(dev_priv);
2088 
2089 	do {
2090 		u32 master_ctl, iir;
2091 		u32 gt_iir[4] = {};
2092 		u32 pipe_stats[I915_MAX_PIPES] = {};
2093 		u32 hotplug_status = 0;
2094 		u32 ier = 0;
2095 
2096 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2097 		iir = I915_READ(VLV_IIR);
2098 
2099 		if (master_ctl == 0 && iir == 0)
2100 			break;
2101 
2102 		ret = IRQ_HANDLED;
2103 
2104 		/*
2105 		 * Theory on interrupt generation, based on empirical evidence:
2106 		 *
2107 		 * x = ((VLV_IIR & VLV_IER) ||
2108 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2109 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2110 		 *
2111 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2112 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2113 		 * guarantee the CPU interrupt will be raised again even if we
2114 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2115 		 * bits this time around.
2116 		 */
2117 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2118 		ier = I915_READ(VLV_IER);
2119 		I915_WRITE(VLV_IER, 0);
2120 
2121 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2122 
2123 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2124 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2125 
2126 		/* Call regardless, as some status bits might not be
2127 		 * signalled in iir */
2128 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2129 
2130 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2131 			   I915_LPE_PIPE_B_INTERRUPT |
2132 			   I915_LPE_PIPE_C_INTERRUPT))
2133 			intel_lpe_audio_irq_handler(dev_priv);
2134 
2135 		/*
2136 		 * VLV_IIR is single buffered, and reflects the level
2137 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2138 		 */
2139 		if (iir)
2140 			I915_WRITE(VLV_IIR, iir);
2141 
2142 		I915_WRITE(VLV_IER, ier);
2143 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2144 		POSTING_READ(GEN8_MASTER_IRQ);
2145 
2146 		gen8_gt_irq_handler(dev_priv, gt_iir);
2147 
2148 		if (hotplug_status)
2149 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2150 
2151 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2152 	} while (0);
2153 
2154 	enable_rpm_wakeref_asserts(dev_priv);
2155 
2156 	return ret;
2157 }
2158 
2159 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2160 				u32 hotplug_trigger,
2161 				const u32 hpd[HPD_NUM_PINS])
2162 {
2163 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2164 
2165 	/*
2166 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2167 	 * unless we touch the hotplug register, even if hotplug_trigger is
2168 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2169 	 * errors.
2170 	 */
2171 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2172 	if (!hotplug_trigger) {
2173 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2174 			PORTD_HOTPLUG_STATUS_MASK |
2175 			PORTC_HOTPLUG_STATUS_MASK |
2176 			PORTB_HOTPLUG_STATUS_MASK;
2177 		dig_hotplug_reg &= ~mask;
2178 	}
2179 
2180 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2181 	if (!hotplug_trigger)
2182 		return;
2183 
2184 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2185 			   dig_hotplug_reg, hpd,
2186 			   pch_port_hotplug_long_detect);
2187 
2188 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2189 }
2190 
2191 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2192 {
2193 	int pipe;
2194 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2195 
2196 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2197 
2198 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2199 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2200 			       SDE_AUDIO_POWER_SHIFT);
2201 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2202 				 port_name(port));
2203 	}
2204 
2205 	if (pch_iir & SDE_AUX_MASK)
2206 		dp_aux_irq_handler(dev_priv);
2207 
2208 	if (pch_iir & SDE_GMBUS)
2209 		gmbus_irq_handler(dev_priv);
2210 
2211 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2212 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2213 
2214 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2215 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2216 
2217 	if (pch_iir & SDE_POISON)
2218 		DRM_ERROR("PCH poison interrupt\n");
2219 
2220 	if (pch_iir & SDE_FDI_MASK)
2221 		for_each_pipe(dev_priv, pipe)
2222 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2223 					 pipe_name(pipe),
2224 					 I915_READ(FDI_RX_IIR(pipe)));
2225 
2226 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2227 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2228 
2229 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2230 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2231 
2232 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2233 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2234 
2235 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2236 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2237 }
2238 
2239 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2240 {
2241 	u32 err_int = I915_READ(GEN7_ERR_INT);
2242 	enum i915_pipe pipe;
2243 
2244 	if (err_int & ERR_INT_POISON)
2245 		DRM_ERROR("Poison interrupt\n");
2246 
2247 	for_each_pipe(dev_priv, pipe) {
2248 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2249 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2250 
2251 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2252 			if (IS_IVYBRIDGE(dev_priv))
2253 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2254 			else
2255 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2256 		}
2257 	}
2258 
2259 	I915_WRITE(GEN7_ERR_INT, err_int);
2260 }
2261 
2262 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2263 {
2264 	u32 serr_int = I915_READ(SERR_INT);
2265 	enum i915_pipe pipe;
2266 
2267 	if (serr_int & SERR_INT_POISON)
2268 		DRM_ERROR("PCH poison interrupt\n");
2269 
2270 	for_each_pipe(dev_priv, pipe)
2271 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2272 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2273 
2274 	I915_WRITE(SERR_INT, serr_int);
2275 }
2276 
2277 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2278 {
2279 	int pipe;
2280 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2281 
2282 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2283 
2284 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2285 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2286 			       SDE_AUDIO_POWER_SHIFT_CPT);
2287 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2288 				 port_name(port));
2289 	}
2290 
2291 	if (pch_iir & SDE_AUX_MASK_CPT)
2292 		dp_aux_irq_handler(dev_priv);
2293 
2294 	if (pch_iir & SDE_GMBUS_CPT)
2295 		gmbus_irq_handler(dev_priv);
2296 
2297 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2298 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2299 
2300 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2301 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2302 
2303 	if (pch_iir & SDE_FDI_MASK_CPT)
2304 		for_each_pipe(dev_priv, pipe)
2305 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2306 					 pipe_name(pipe),
2307 					 I915_READ(FDI_RX_IIR(pipe)));
2308 
2309 	if (pch_iir & SDE_ERROR_CPT)
2310 		cpt_serr_int_handler(dev_priv);
2311 }
2312 
2313 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2314 {
2315 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2316 		~SDE_PORTE_HOTPLUG_SPT;
2317 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2318 	u32 pin_mask = 0, long_mask = 0;
2319 
2320 	if (hotplug_trigger) {
2321 		u32 dig_hotplug_reg;
2322 
2323 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2324 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2325 
2326 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2327 				   dig_hotplug_reg, hpd_spt,
2328 				   spt_port_hotplug_long_detect);
2329 	}
2330 
2331 	if (hotplug2_trigger) {
2332 		u32 dig_hotplug_reg;
2333 
2334 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2335 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2336 
2337 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2338 				   dig_hotplug_reg, hpd_spt,
2339 				   spt_port_hotplug2_long_detect);
2340 	}
2341 
2342 	if (pin_mask)
2343 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2344 
2345 	if (pch_iir & SDE_GMBUS_CPT)
2346 		gmbus_irq_handler(dev_priv);
2347 }
2348 
2349 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2350 				u32 hotplug_trigger,
2351 				const u32 hpd[HPD_NUM_PINS])
2352 {
2353 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2354 
2355 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2356 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2357 
2358 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2359 			   dig_hotplug_reg, hpd,
2360 			   ilk_port_hotplug_long_detect);
2361 
2362 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2363 }
2364 
2365 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2366 				    u32 de_iir)
2367 {
2368 	enum i915_pipe pipe;
2369 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2370 
2371 	if (hotplug_trigger)
2372 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2373 
2374 	if (de_iir & DE_AUX_CHANNEL_A)
2375 		dp_aux_irq_handler(dev_priv);
2376 
2377 	if (de_iir & DE_GSE)
2378 		intel_opregion_asle_intr(dev_priv);
2379 
2380 	if (de_iir & DE_POISON)
2381 		DRM_ERROR("Poison interrupt\n");
2382 
2383 	for_each_pipe(dev_priv, pipe) {
2384 		if (de_iir & DE_PIPE_VBLANK(pipe))
2385 			drm_handle_vblank(&dev_priv->drm, pipe);
2386 
2387 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2388 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2389 
2390 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2391 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2392 	}
2393 
2394 	/* check event from PCH */
2395 	if (de_iir & DE_PCH_EVENT) {
2396 		u32 pch_iir = I915_READ(SDEIIR);
2397 
2398 		if (HAS_PCH_CPT(dev_priv))
2399 			cpt_irq_handler(dev_priv, pch_iir);
2400 		else
2401 			ibx_irq_handler(dev_priv, pch_iir);
2402 
2403 		/* should clear PCH hotplug event before clear CPU irq */
2404 		I915_WRITE(SDEIIR, pch_iir);
2405 	}
2406 
2407 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2408 		ironlake_rps_change_irq_handler(dev_priv);
2409 }
2410 
2411 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2412 				    u32 de_iir)
2413 {
2414 	enum i915_pipe pipe;
2415 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2416 
2417 	if (hotplug_trigger)
2418 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2419 
2420 	if (de_iir & DE_ERR_INT_IVB)
2421 		ivb_err_int_handler(dev_priv);
2422 
2423 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2424 		dp_aux_irq_handler(dev_priv);
2425 
2426 	if (de_iir & DE_GSE_IVB)
2427 		intel_opregion_asle_intr(dev_priv);
2428 
2429 	for_each_pipe(dev_priv, pipe) {
2430 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2431 			drm_handle_vblank(&dev_priv->drm, pipe);
2432 	}
2433 
2434 	/* check event from PCH */
2435 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2436 		u32 pch_iir = I915_READ(SDEIIR);
2437 
2438 		cpt_irq_handler(dev_priv, pch_iir);
2439 
2440 		/* clear PCH hotplug event before clear CPU irq */
2441 		I915_WRITE(SDEIIR, pch_iir);
2442 	}
2443 }
2444 
2445 /*
2446  * To handle irqs with the minimum potential races with fresh interrupts, we:
2447  * 1 - Disable Master Interrupt Control.
2448  * 2 - Find the source(s) of the interrupt.
2449  * 3 - Clear the Interrupt Identity bits (IIR).
2450  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2451  * 5 - Re-enable Master Interrupt Control.
2452  */
2453 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2454 {
2455 	struct drm_device *dev = arg;
2456 	struct drm_i915_private *dev_priv = to_i915(dev);
2457 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2458 	irqreturn_t ret = IRQ_NONE;
2459 
2460 	if (!intel_irqs_enabled(dev_priv))
2461 		return IRQ_NONE;
2462 
2463 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2464 	disable_rpm_wakeref_asserts(dev_priv);
2465 
2466 	/* disable master interrupt before clearing iir  */
2467 	de_ier = I915_READ(DEIER);
2468 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2469 	POSTING_READ(DEIER);
2470 
2471 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2472 	 * interrupts will will be stored on its back queue, and then we'll be
2473 	 * able to process them after we restore SDEIER (as soon as we restore
2474 	 * it, we'll get an interrupt if SDEIIR still has something to process
2475 	 * due to its back queue). */
2476 	if (!HAS_PCH_NOP(dev_priv)) {
2477 		sde_ier = I915_READ(SDEIER);
2478 		I915_WRITE(SDEIER, 0);
2479 		POSTING_READ(SDEIER);
2480 	}
2481 
2482 	/* Find, clear, then process each source of interrupt */
2483 
2484 	gt_iir = I915_READ(GTIIR);
2485 	if (gt_iir) {
2486 		I915_WRITE(GTIIR, gt_iir);
2487 		ret = IRQ_HANDLED;
2488 		if (INTEL_GEN(dev_priv) >= 6)
2489 			snb_gt_irq_handler(dev_priv, gt_iir);
2490 		else
2491 			ilk_gt_irq_handler(dev_priv, gt_iir);
2492 	}
2493 
2494 	de_iir = I915_READ(DEIIR);
2495 	if (de_iir) {
2496 		I915_WRITE(DEIIR, de_iir);
2497 		ret = IRQ_HANDLED;
2498 		if (INTEL_GEN(dev_priv) >= 7)
2499 			ivb_display_irq_handler(dev_priv, de_iir);
2500 		else
2501 			ilk_display_irq_handler(dev_priv, de_iir);
2502 	}
2503 
2504 	if (INTEL_GEN(dev_priv) >= 6) {
2505 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2506 		if (pm_iir) {
2507 			I915_WRITE(GEN6_PMIIR, pm_iir);
2508 			ret = IRQ_HANDLED;
2509 			gen6_rps_irq_handler(dev_priv, pm_iir);
2510 		}
2511 	}
2512 
2513 	I915_WRITE(DEIER, de_ier);
2514 	POSTING_READ(DEIER);
2515 	if (!HAS_PCH_NOP(dev_priv)) {
2516 		I915_WRITE(SDEIER, sde_ier);
2517 		POSTING_READ(SDEIER);
2518 	}
2519 
2520 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2521 	enable_rpm_wakeref_asserts(dev_priv);
2522 
2523 	return ret;
2524 }
2525 
2526 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2527 				u32 hotplug_trigger,
2528 				const u32 hpd[HPD_NUM_PINS])
2529 {
2530 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2531 
2532 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2533 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2534 
2535 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2536 			   dig_hotplug_reg, hpd,
2537 			   bxt_port_hotplug_long_detect);
2538 
2539 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2540 }
2541 
2542 static irqreturn_t
2543 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2544 {
2545 	irqreturn_t ret = IRQ_NONE;
2546 	u32 iir;
2547 	enum i915_pipe pipe;
2548 
2549 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2550 		iir = I915_READ(GEN8_DE_MISC_IIR);
2551 		if (iir) {
2552 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2553 			ret = IRQ_HANDLED;
2554 			if (iir & GEN8_DE_MISC_GSE)
2555 				intel_opregion_asle_intr(dev_priv);
2556 			else
2557 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2558 		}
2559 		else
2560 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2561 	}
2562 
2563 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2564 		iir = I915_READ(GEN8_DE_PORT_IIR);
2565 		if (iir) {
2566 			u32 tmp_mask;
2567 			bool found = false;
2568 
2569 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2570 			ret = IRQ_HANDLED;
2571 
2572 			tmp_mask = GEN8_AUX_CHANNEL_A;
2573 			if (INTEL_GEN(dev_priv) >= 9)
2574 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2575 					    GEN9_AUX_CHANNEL_C |
2576 					    GEN9_AUX_CHANNEL_D;
2577 
2578 			if (iir & tmp_mask) {
2579 				dp_aux_irq_handler(dev_priv);
2580 				found = true;
2581 			}
2582 
2583 			if (IS_GEN9_LP(dev_priv)) {
2584 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2585 				if (tmp_mask) {
2586 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2587 							    hpd_bxt);
2588 					found = true;
2589 				}
2590 			} else if (IS_BROADWELL(dev_priv)) {
2591 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2592 				if (tmp_mask) {
2593 					ilk_hpd_irq_handler(dev_priv,
2594 							    tmp_mask, hpd_bdw);
2595 					found = true;
2596 				}
2597 			}
2598 
2599 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2600 				gmbus_irq_handler(dev_priv);
2601 				found = true;
2602 			}
2603 
2604 			if (!found)
2605 				DRM_ERROR("Unexpected DE Port interrupt\n");
2606 		}
2607 		else
2608 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2609 	}
2610 
2611 	for_each_pipe(dev_priv, pipe) {
2612 		u32 fault_errors;
2613 
2614 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2615 			continue;
2616 
2617 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2618 		if (!iir) {
2619 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2620 			continue;
2621 		}
2622 
2623 		ret = IRQ_HANDLED;
2624 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2625 
2626 		if (iir & GEN8_PIPE_VBLANK)
2627 			drm_handle_vblank(&dev_priv->drm, pipe);
2628 
2629 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2630 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2631 
2632 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2633 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2634 
2635 		fault_errors = iir;
2636 		if (INTEL_GEN(dev_priv) >= 9)
2637 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2638 		else
2639 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2640 
2641 		if (fault_errors)
2642 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2643 				  pipe_name(pipe),
2644 				  fault_errors);
2645 	}
2646 
2647 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2648 	    master_ctl & GEN8_DE_PCH_IRQ) {
2649 		/*
2650 		 * FIXME(BDW): Assume for now that the new interrupt handling
2651 		 * scheme also closed the SDE interrupt handling race we've seen
2652 		 * on older pch-split platforms. But this needs testing.
2653 		 */
2654 		iir = I915_READ(SDEIIR);
2655 		if (iir) {
2656 			I915_WRITE(SDEIIR, iir);
2657 			ret = IRQ_HANDLED;
2658 
2659 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2660 			    HAS_PCH_CNP(dev_priv))
2661 				spt_irq_handler(dev_priv, iir);
2662 			else
2663 				cpt_irq_handler(dev_priv, iir);
2664 		} else {
2665 			/*
2666 			 * Like on previous PCH there seems to be something
2667 			 * fishy going on with forwarding PCH interrupts.
2668 			 */
2669 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2670 		}
2671 	}
2672 
2673 	return ret;
2674 }
2675 
2676 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2677 {
2678 	struct drm_device *dev = arg;
2679 	struct drm_i915_private *dev_priv = to_i915(dev);
2680 	u32 master_ctl;
2681 	u32 gt_iir[4] = {};
2682 	irqreturn_t ret;
2683 
2684 	if (!intel_irqs_enabled(dev_priv))
2685 		return IRQ_NONE;
2686 
2687 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2688 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2689 	if (!master_ctl)
2690 		return IRQ_NONE;
2691 
2692 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2693 
2694 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2695 	disable_rpm_wakeref_asserts(dev_priv);
2696 
2697 	/* Find, clear, then process each source of interrupt */
2698 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2699 	gen8_gt_irq_handler(dev_priv, gt_iir);
2700 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2701 
2702 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2703 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2704 
2705 	enable_rpm_wakeref_asserts(dev_priv);
2706 
2707 	return ret;
2708 }
2709 
2710 struct wedge_me {
2711 	struct delayed_work work;
2712 	struct drm_i915_private *i915;
2713 	const char *name;
2714 };
2715 
2716 static void wedge_me(struct work_struct *work)
2717 {
2718 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2719 
2720 	dev_err(w->i915->drm.dev,
2721 		"%s timed out, cancelling all in-flight rendering.\n",
2722 		w->name);
2723 	i915_gem_set_wedged(w->i915);
2724 }
2725 
2726 static void __init_wedge(struct wedge_me *w,
2727 			 struct drm_i915_private *i915,
2728 			 long timeout,
2729 			 const char *name)
2730 {
2731 	w->i915 = i915;
2732 	w->name = name;
2733 
2734 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2735 	schedule_delayed_work(&w->work, timeout);
2736 }
2737 
2738 static void __fini_wedge(struct wedge_me *w)
2739 {
2740 	cancel_delayed_work_sync(&w->work);
2741 	destroy_delayed_work_on_stack(&w->work);
2742 	w->i915 = NULL;
2743 }
2744 
2745 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2746 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2747 	     (W)->i915;							\
2748 	     __fini_wedge((W)))
2749 
2750 /**
2751  * i915_reset_device - do process context error handling work
2752  * @dev_priv: i915 device private
2753  *
2754  * Fire an error uevent so userspace can see that a hang or error
2755  * was detected.
2756  */
2757 static void i915_reset_device(struct drm_i915_private *dev_priv)
2758 {
2759 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2760 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2761 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2762 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2763 	struct wedge_me w;
2764 
2765 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2766 
2767 	DRM_DEBUG_DRIVER("resetting chip\n");
2768 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2769 
2770 	/* Use a watchdog to ensure that our reset completes */
2771 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2772 		intel_prepare_reset(dev_priv);
2773 
2774 		/* Signal that locked waiters should reset the GPU */
2775 		set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2776 		wake_up_all(&dev_priv->gpu_error.wait_queue);
2777 
2778 		/* Wait for anyone holding the lock to wakeup, without
2779 		 * blocking indefinitely on struct_mutex.
2780 		 */
2781 		do {
2782 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2783 				i915_reset(dev_priv, 0);
2784 				mutex_unlock(&dev_priv->drm.struct_mutex);
2785 			}
2786 		} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2787 					     I915_RESET_HANDOFF,
2788 					     TASK_UNINTERRUPTIBLE,
2789 					     1));
2790 
2791 		intel_finish_reset(dev_priv);
2792 	}
2793 
2794 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2795 		kobject_uevent_env(kobj,
2796 				   KOBJ_CHANGE, reset_done_event);
2797 }
2798 
2799 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2800 {
2801 	u32 eir;
2802 
2803 	if (!IS_GEN2(dev_priv))
2804 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2805 
2806 	if (INTEL_GEN(dev_priv) < 4)
2807 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2808 	else
2809 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2810 
2811 	I915_WRITE(EIR, I915_READ(EIR));
2812 	eir = I915_READ(EIR);
2813 	if (eir) {
2814 		/*
2815 		 * some errors might have become stuck,
2816 		 * mask them.
2817 		 */
2818 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2819 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2820 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2821 	}
2822 }
2823 
2824 /**
2825  * i915_handle_error - handle a gpu error
2826  * @dev_priv: i915 device private
2827  * @engine_mask: mask representing engines that are hung
2828  * @fmt: Error message format string
2829  *
2830  * Do some basic checking of register state at error time and
2831  * dump it to the syslog.  Also call i915_capture_error_state() to make
2832  * sure we get a record and make it available in debugfs.  Fire a uevent
2833  * so userspace knows something bad happened (should trigger collection
2834  * of a ring dump etc.).
2835  */
2836 void i915_handle_error(struct drm_i915_private *dev_priv,
2837 		       u32 engine_mask,
2838 		       const char *fmt, ...)
2839 {
2840 	struct intel_engine_cs *engine;
2841 	unsigned int tmp;
2842 	va_list args;
2843 	char error_msg[80];
2844 
2845 	va_start(args, fmt);
2846 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2847 	va_end(args);
2848 
2849 	/*
2850 	 * In most cases it's guaranteed that we get here with an RPM
2851 	 * reference held, for example because there is a pending GPU
2852 	 * request that won't finish until the reset is done. This
2853 	 * isn't the case at least when we get here by doing a
2854 	 * simulated reset via debugfs, so get an RPM reference.
2855 	 */
2856 	intel_runtime_pm_get(dev_priv);
2857 
2858 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2859 	i915_clear_error_registers(dev_priv);
2860 
2861 	/*
2862 	 * Try engine reset when available. We fall back to full reset if
2863 	 * single reset fails.
2864 	 */
2865 	if (intel_has_reset_engine(dev_priv)) {
2866 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2867 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2868 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2869 					     &dev_priv->gpu_error.flags))
2870 				continue;
2871 
2872 			if (i915_reset_engine(engine, 0) == 0)
2873 				engine_mask &= ~intel_engine_flag(engine);
2874 
2875 			clear_bit(I915_RESET_ENGINE + engine->id,
2876 				  &dev_priv->gpu_error.flags);
2877 			wake_up_bit(&dev_priv->gpu_error.flags,
2878 				    I915_RESET_ENGINE + engine->id);
2879 		}
2880 	}
2881 
2882 	if (!engine_mask)
2883 		goto out;
2884 
2885 	/* Full reset needs the mutex, stop any other user trying to do so. */
2886 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2887 		wait_event(dev_priv->gpu_error.reset_queue,
2888 			   !test_bit(I915_RESET_BACKOFF,
2889 				     &dev_priv->gpu_error.flags));
2890 		goto out;
2891 	}
2892 
2893 	/* Prevent any other reset-engine attempt. */
2894 	for_each_engine(engine, dev_priv, tmp) {
2895 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2896 					&dev_priv->gpu_error.flags))
2897 			wait_on_bit(&dev_priv->gpu_error.flags,
2898 				    I915_RESET_ENGINE + engine->id,
2899 				    TASK_UNINTERRUPTIBLE);
2900 	}
2901 
2902 	i915_reset_device(dev_priv);
2903 
2904 	for_each_engine(engine, dev_priv, tmp) {
2905 		clear_bit(I915_RESET_ENGINE + engine->id,
2906 			  &dev_priv->gpu_error.flags);
2907 	}
2908 
2909 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2910 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2911 
2912 out:
2913 	intel_runtime_pm_put(dev_priv);
2914 }
2915 
2916 /* Called from drm generic code, passed 'crtc' which
2917  * we use as a pipe index
2918  */
2919 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2920 {
2921 	struct drm_i915_private *dev_priv = to_i915(dev);
2922 	unsigned long irqflags;
2923 
2924 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2925 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2926 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2927 
2928 	return 0;
2929 }
2930 
2931 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2932 {
2933 	struct drm_i915_private *dev_priv = to_i915(dev);
2934 	unsigned long irqflags;
2935 
2936 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2937 	i915_enable_pipestat(dev_priv, pipe,
2938 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2939 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2940 
2941 	return 0;
2942 }
2943 
2944 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2945 {
2946 	struct drm_i915_private *dev_priv = to_i915(dev);
2947 	unsigned long irqflags;
2948 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2949 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2950 
2951 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2952 	ilk_enable_display_irq(dev_priv, bit);
2953 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2954 
2955 	return 0;
2956 }
2957 
2958 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2959 {
2960 	struct drm_i915_private *dev_priv = to_i915(dev);
2961 	unsigned long irqflags;
2962 
2963 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2964 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2965 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2966 
2967 	return 0;
2968 }
2969 
2970 /* Called from drm generic code, passed 'crtc' which
2971  * we use as a pipe index
2972  */
2973 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2974 {
2975 	struct drm_i915_private *dev_priv = to_i915(dev);
2976 	unsigned long irqflags;
2977 
2978 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2979 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2980 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2981 }
2982 
2983 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2984 {
2985 	struct drm_i915_private *dev_priv = to_i915(dev);
2986 	unsigned long irqflags;
2987 
2988 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2989 	i915_disable_pipestat(dev_priv, pipe,
2990 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2991 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2992 }
2993 
2994 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2995 {
2996 	struct drm_i915_private *dev_priv = to_i915(dev);
2997 	unsigned long irqflags;
2998 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2999 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3000 
3001 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3002 	ilk_disable_display_irq(dev_priv, bit);
3003 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3004 }
3005 
3006 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3007 {
3008 	struct drm_i915_private *dev_priv = to_i915(dev);
3009 	unsigned long irqflags;
3010 
3011 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3012 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3013 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3014 }
3015 
3016 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3017 {
3018 	if (HAS_PCH_NOP(dev_priv))
3019 		return;
3020 
3021 	GEN3_IRQ_RESET(SDE);
3022 
3023 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3024 		I915_WRITE(SERR_INT, 0xffffffff);
3025 }
3026 
3027 /*
3028  * SDEIER is also touched by the interrupt handler to work around missed PCH
3029  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3030  * instead we unconditionally enable all PCH interrupt sources here, but then
3031  * only unmask them as needed with SDEIMR.
3032  *
3033  * This function needs to be called before interrupts are enabled.
3034  */
3035 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3036 {
3037 	struct drm_i915_private *dev_priv = to_i915(dev);
3038 
3039 	if (HAS_PCH_NOP(dev_priv))
3040 		return;
3041 
3042 	WARN_ON(I915_READ(SDEIER) != 0);
3043 	I915_WRITE(SDEIER, 0xffffffff);
3044 	POSTING_READ(SDEIER);
3045 }
3046 
3047 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3048 {
3049 	GEN3_IRQ_RESET(GT);
3050 	if (INTEL_GEN(dev_priv) >= 6)
3051 		GEN3_IRQ_RESET(GEN6_PM);
3052 }
3053 
3054 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3055 {
3056 	if (IS_CHERRYVIEW(dev_priv))
3057 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3058 	else
3059 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3060 
3061 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3062 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3063 
3064 	i9xx_pipestat_irq_reset(dev_priv);
3065 
3066 	GEN3_IRQ_RESET(VLV_);
3067 	dev_priv->irq_mask = ~0;
3068 }
3069 
3070 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3071 {
3072 	u32 pipestat_mask;
3073 	u32 enable_mask;
3074 	enum i915_pipe pipe;
3075 
3076 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3077 
3078 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3079 	for_each_pipe(dev_priv, pipe)
3080 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3081 
3082 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3083 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3084 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3085 		I915_LPE_PIPE_A_INTERRUPT |
3086 		I915_LPE_PIPE_B_INTERRUPT;
3087 
3088 	if (IS_CHERRYVIEW(dev_priv))
3089 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3090 			I915_LPE_PIPE_C_INTERRUPT;
3091 
3092 	WARN_ON(dev_priv->irq_mask != ~0);
3093 
3094 	dev_priv->irq_mask = ~enable_mask;
3095 
3096 	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3097 }
3098 
3099 /* drm_dma.h hooks
3100 */
3101 static void ironlake_irq_reset(struct drm_device *dev)
3102 {
3103 	struct drm_i915_private *dev_priv = to_i915(dev);
3104 
3105 	if (IS_GEN5(dev_priv))
3106 		I915_WRITE(HWSTAM, 0xffffffff);
3107 
3108 	GEN3_IRQ_RESET(DE);
3109 	if (IS_GEN7(dev_priv))
3110 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3111 
3112 	gen5_gt_irq_reset(dev_priv);
3113 
3114 	ibx_irq_reset(dev_priv);
3115 }
3116 
3117 static void valleyview_irq_reset(struct drm_device *dev)
3118 {
3119 	struct drm_i915_private *dev_priv = to_i915(dev);
3120 
3121 	I915_WRITE(VLV_MASTER_IER, 0);
3122 	POSTING_READ(VLV_MASTER_IER);
3123 
3124 	gen5_gt_irq_reset(dev_priv);
3125 
3126 	spin_lock_irq(&dev_priv->irq_lock);
3127 	if (dev_priv->display_irqs_enabled)
3128 		vlv_display_irq_reset(dev_priv);
3129 	spin_unlock_irq(&dev_priv->irq_lock);
3130 }
3131 
3132 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3133 {
3134 	GEN8_IRQ_RESET_NDX(GT, 0);
3135 	GEN8_IRQ_RESET_NDX(GT, 1);
3136 	GEN8_IRQ_RESET_NDX(GT, 2);
3137 	GEN8_IRQ_RESET_NDX(GT, 3);
3138 }
3139 
3140 static void gen8_irq_reset(struct drm_device *dev)
3141 {
3142 	struct drm_i915_private *dev_priv = to_i915(dev);
3143 	int pipe;
3144 
3145 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3146 	POSTING_READ(GEN8_MASTER_IRQ);
3147 
3148 	gen8_gt_irq_reset(dev_priv);
3149 
3150 	for_each_pipe(dev_priv, pipe)
3151 		if (intel_display_power_is_enabled(dev_priv,
3152 						   POWER_DOMAIN_PIPE(pipe)))
3153 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3154 
3155 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3156 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3157 	GEN3_IRQ_RESET(GEN8_PCU_);
3158 
3159 	if (HAS_PCH_SPLIT(dev_priv))
3160 		ibx_irq_reset(dev_priv);
3161 }
3162 
3163 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3164 				     u8 pipe_mask)
3165 {
3166 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3167 	enum i915_pipe pipe;
3168 
3169 	spin_lock_irq(&dev_priv->irq_lock);
3170 
3171 	if (!intel_irqs_enabled(dev_priv)) {
3172 		spin_unlock_irq(&dev_priv->irq_lock);
3173 		return;
3174 	}
3175 
3176 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3177 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3178 				  dev_priv->de_irq_mask[pipe],
3179 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3180 
3181 	spin_unlock_irq(&dev_priv->irq_lock);
3182 }
3183 
3184 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3185 				     u8 pipe_mask)
3186 {
3187 	enum i915_pipe pipe;
3188 
3189 	spin_lock_irq(&dev_priv->irq_lock);
3190 
3191 	if (!intel_irqs_enabled(dev_priv)) {
3192 		spin_unlock_irq(&dev_priv->irq_lock);
3193 		return;
3194 	}
3195 
3196 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3197 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3198 
3199 	spin_unlock_irq(&dev_priv->irq_lock);
3200 
3201 	/* make sure we're done processing display irqs */
3202 	synchronize_irq(dev_priv->drm.irq);
3203 }
3204 
3205 static void cherryview_irq_reset(struct drm_device *dev)
3206 {
3207 	struct drm_i915_private *dev_priv = to_i915(dev);
3208 
3209 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3210 	POSTING_READ(GEN8_MASTER_IRQ);
3211 
3212 	gen8_gt_irq_reset(dev_priv);
3213 
3214 	GEN3_IRQ_RESET(GEN8_PCU_);
3215 
3216 	spin_lock_irq(&dev_priv->irq_lock);
3217 	if (dev_priv->display_irqs_enabled)
3218 		vlv_display_irq_reset(dev_priv);
3219 	spin_unlock_irq(&dev_priv->irq_lock);
3220 }
3221 
3222 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3223 				  const u32 hpd[HPD_NUM_PINS])
3224 {
3225 	struct intel_encoder *encoder;
3226 	u32 enabled_irqs = 0;
3227 
3228 	for_each_intel_encoder(&dev_priv->drm, encoder)
3229 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3230 			enabled_irqs |= hpd[encoder->hpd_pin];
3231 
3232 	return enabled_irqs;
3233 }
3234 
3235 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3236 {
3237 	u32 hotplug;
3238 
3239 	/*
3240 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3241 	 * duration to 2ms (which is the minimum in the Display Port spec).
3242 	 * The pulse duration bits are reserved on LPT+.
3243 	 */
3244 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3245 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3246 		     PORTC_PULSE_DURATION_MASK |
3247 		     PORTD_PULSE_DURATION_MASK);
3248 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3249 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3250 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3251 	/*
3252 	 * When CPU and PCH are on the same package, port A
3253 	 * HPD must be enabled in both north and south.
3254 	 */
3255 	if (HAS_PCH_LPT_LP(dev_priv))
3256 		hotplug |= PORTA_HOTPLUG_ENABLE;
3257 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3258 }
3259 
3260 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3261 {
3262 	u32 hotplug_irqs, enabled_irqs;
3263 
3264 	if (HAS_PCH_IBX(dev_priv)) {
3265 		hotplug_irqs = SDE_HOTPLUG_MASK;
3266 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3267 	} else {
3268 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3269 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3270 	}
3271 
3272 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3273 
3274 	ibx_hpd_detection_setup(dev_priv);
3275 }
3276 
3277 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3278 {
3279 	u32 val, hotplug;
3280 
3281 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3282 	if (HAS_PCH_CNP(dev_priv)) {
3283 		val = I915_READ(SOUTH_CHICKEN1);
3284 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3285 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3286 		I915_WRITE(SOUTH_CHICKEN1, val);
3287 	}
3288 
3289 	/* Enable digital hotplug on the PCH */
3290 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3291 	hotplug |= PORTA_HOTPLUG_ENABLE |
3292 		   PORTB_HOTPLUG_ENABLE |
3293 		   PORTC_HOTPLUG_ENABLE |
3294 		   PORTD_HOTPLUG_ENABLE;
3295 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3296 
3297 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3298 	hotplug |= PORTE_HOTPLUG_ENABLE;
3299 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3300 }
3301 
3302 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3303 {
3304 	u32 hotplug_irqs, enabled_irqs;
3305 
3306 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3307 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3308 
3309 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3310 
3311 	spt_hpd_detection_setup(dev_priv);
3312 }
3313 
3314 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3315 {
3316 	u32 hotplug;
3317 
3318 	/*
3319 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3320 	 * duration to 2ms (which is the minimum in the Display Port spec)
3321 	 * The pulse duration bits are reserved on HSW+.
3322 	 */
3323 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3324 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3325 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3326 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3327 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3328 }
3329 
3330 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3331 {
3332 	u32 hotplug_irqs, enabled_irqs;
3333 
3334 	if (INTEL_GEN(dev_priv) >= 8) {
3335 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3336 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3337 
3338 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3339 	} else if (INTEL_GEN(dev_priv) >= 7) {
3340 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3341 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3342 
3343 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3344 	} else {
3345 		hotplug_irqs = DE_DP_A_HOTPLUG;
3346 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3347 
3348 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3349 	}
3350 
3351 	ilk_hpd_detection_setup(dev_priv);
3352 
3353 	ibx_hpd_irq_setup(dev_priv);
3354 }
3355 
3356 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3357 				      u32 enabled_irqs)
3358 {
3359 	u32 hotplug;
3360 
3361 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3362 	hotplug |= PORTA_HOTPLUG_ENABLE |
3363 		   PORTB_HOTPLUG_ENABLE |
3364 		   PORTC_HOTPLUG_ENABLE;
3365 
3366 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3367 		      hotplug, enabled_irqs);
3368 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3369 
3370 	/*
3371 	 * For BXT invert bit has to be set based on AOB design
3372 	 * for HPD detection logic, update it based on VBT fields.
3373 	 */
3374 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3375 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3376 		hotplug |= BXT_DDIA_HPD_INVERT;
3377 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3378 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3379 		hotplug |= BXT_DDIB_HPD_INVERT;
3380 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3381 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3382 		hotplug |= BXT_DDIC_HPD_INVERT;
3383 
3384 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3385 }
3386 
3387 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3388 {
3389 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3390 }
3391 
3392 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3393 {
3394 	u32 hotplug_irqs, enabled_irqs;
3395 
3396 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3397 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3398 
3399 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3400 
3401 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3402 }
3403 
3404 static void ibx_irq_postinstall(struct drm_device *dev)
3405 {
3406 	struct drm_i915_private *dev_priv = to_i915(dev);
3407 	u32 mask;
3408 
3409 	if (HAS_PCH_NOP(dev_priv))
3410 		return;
3411 
3412 	if (HAS_PCH_IBX(dev_priv))
3413 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3414 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3415 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3416 	else
3417 		mask = SDE_GMBUS_CPT;
3418 
3419 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3420 	I915_WRITE(SDEIMR, ~mask);
3421 
3422 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3423 	    HAS_PCH_LPT(dev_priv))
3424 		ibx_hpd_detection_setup(dev_priv);
3425 	else
3426 		spt_hpd_detection_setup(dev_priv);
3427 }
3428 
3429 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3430 {
3431 	struct drm_i915_private *dev_priv = to_i915(dev);
3432 	u32 pm_irqs, gt_irqs;
3433 
3434 	pm_irqs = gt_irqs = 0;
3435 
3436 	dev_priv->gt_irq_mask = ~0;
3437 	if (HAS_L3_DPF(dev_priv)) {
3438 		/* L3 parity interrupt is always unmasked. */
3439 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3440 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3441 	}
3442 
3443 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3444 	if (IS_GEN5(dev_priv)) {
3445 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3446 	} else {
3447 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3448 	}
3449 
3450 	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3451 
3452 	if (INTEL_GEN(dev_priv) >= 6) {
3453 		/*
3454 		 * RPS interrupts will get enabled/disabled on demand when RPS
3455 		 * itself is enabled/disabled.
3456 		 */
3457 		if (HAS_VEBOX(dev_priv)) {
3458 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3459 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3460 		}
3461 
3462 		dev_priv->pm_imr = 0xffffffff;
3463 		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3464 	}
3465 }
3466 
3467 static int ironlake_irq_postinstall(struct drm_device *dev)
3468 {
3469 	struct drm_i915_private *dev_priv = to_i915(dev);
3470 	u32 display_mask, extra_mask;
3471 
3472 	if (INTEL_GEN(dev_priv) >= 7) {
3473 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3474 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3475 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3476 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3477 			      DE_DP_A_HOTPLUG_IVB);
3478 	} else {
3479 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3480 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3481 				DE_PIPEA_CRC_DONE | DE_POISON);
3482 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3483 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3484 			      DE_DP_A_HOTPLUG);
3485 	}
3486 
3487 	dev_priv->irq_mask = ~display_mask;
3488 
3489 	ibx_irq_pre_postinstall(dev);
3490 
3491 	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3492 
3493 	gen5_gt_irq_postinstall(dev);
3494 
3495 	ilk_hpd_detection_setup(dev_priv);
3496 
3497 	ibx_irq_postinstall(dev);
3498 
3499 	if (IS_IRONLAKE_M(dev_priv)) {
3500 		/* Enable PCU event interrupts
3501 		 *
3502 		 * spinlocking not required here for correctness since interrupt
3503 		 * setup is guaranteed to run in single-threaded context. But we
3504 		 * need it to make the assert_spin_locked happy. */
3505 		spin_lock_irq(&dev_priv->irq_lock);
3506 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3507 		spin_unlock_irq(&dev_priv->irq_lock);
3508 	}
3509 
3510 	return 0;
3511 }
3512 
3513 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3514 {
3515 	lockdep_assert_held(&dev_priv->irq_lock);
3516 
3517 	if (dev_priv->display_irqs_enabled)
3518 		return;
3519 
3520 	dev_priv->display_irqs_enabled = true;
3521 
3522 	if (intel_irqs_enabled(dev_priv)) {
3523 		vlv_display_irq_reset(dev_priv);
3524 		vlv_display_irq_postinstall(dev_priv);
3525 	}
3526 }
3527 
3528 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3529 {
3530 	lockdep_assert_held(&dev_priv->irq_lock);
3531 
3532 	if (!dev_priv->display_irqs_enabled)
3533 		return;
3534 
3535 	dev_priv->display_irqs_enabled = false;
3536 
3537 	if (intel_irqs_enabled(dev_priv))
3538 		vlv_display_irq_reset(dev_priv);
3539 }
3540 
3541 
3542 static int valleyview_irq_postinstall(struct drm_device *dev)
3543 {
3544 	struct drm_i915_private *dev_priv = to_i915(dev);
3545 
3546 	gen5_gt_irq_postinstall(dev);
3547 
3548 	spin_lock_irq(&dev_priv->irq_lock);
3549 	if (dev_priv->display_irqs_enabled)
3550 		vlv_display_irq_postinstall(dev_priv);
3551 	spin_unlock_irq(&dev_priv->irq_lock);
3552 
3553 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3554 	POSTING_READ(VLV_MASTER_IER);
3555 
3556 	return 0;
3557 }
3558 
3559 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561 	/* These are interrupts we'll toggle with the ring mask register */
3562 	uint32_t gt_interrupts[] = {
3563 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3564 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3565 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3566 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3567 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3568 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3569 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3570 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3571 		0,
3572 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3573 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3574 		};
3575 
3576 	if (HAS_L3_DPF(dev_priv))
3577 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3578 
3579 	dev_priv->pm_ier = 0x0;
3580 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3581 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3582 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3583 	/*
3584 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3585 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3586 	 */
3587 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3588 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3589 }
3590 
3591 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3592 {
3593 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3594 	uint32_t de_pipe_enables;
3595 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3596 	u32 de_port_enables;
3597 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3598 	enum i915_pipe pipe;
3599 
3600 	if (INTEL_GEN(dev_priv) >= 9) {
3601 		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3602 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3603 				  GEN9_AUX_CHANNEL_D;
3604 		if (IS_GEN9_LP(dev_priv))
3605 			de_port_masked |= BXT_DE_PORT_GMBUS;
3606 	} else {
3607 		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3608 	}
3609 
3610 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3611 					   GEN8_PIPE_FIFO_UNDERRUN;
3612 
3613 	de_port_enables = de_port_masked;
3614 	if (IS_GEN9_LP(dev_priv))
3615 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3616 	else if (IS_BROADWELL(dev_priv))
3617 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3618 
3619 	for_each_pipe(dev_priv, pipe) {
3620 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3621 
3622 		if (intel_display_power_is_enabled(dev_priv,
3623 				POWER_DOMAIN_PIPE(pipe)))
3624 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3625 					  dev_priv->de_irq_mask[pipe],
3626 					  de_pipe_enables);
3627 	}
3628 
3629 	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3630 	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3631 
3632 	if (IS_GEN9_LP(dev_priv))
3633 		bxt_hpd_detection_setup(dev_priv);
3634 	else if (IS_BROADWELL(dev_priv))
3635 		ilk_hpd_detection_setup(dev_priv);
3636 }
3637 
3638 static int gen8_irq_postinstall(struct drm_device *dev)
3639 {
3640 	struct drm_i915_private *dev_priv = to_i915(dev);
3641 
3642 	if (HAS_PCH_SPLIT(dev_priv))
3643 		ibx_irq_pre_postinstall(dev);
3644 
3645 	gen8_gt_irq_postinstall(dev_priv);
3646 	gen8_de_irq_postinstall(dev_priv);
3647 
3648 	if (HAS_PCH_SPLIT(dev_priv))
3649 		ibx_irq_postinstall(dev);
3650 
3651 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3652 	POSTING_READ(GEN8_MASTER_IRQ);
3653 
3654 	return 0;
3655 }
3656 
3657 static int cherryview_irq_postinstall(struct drm_device *dev)
3658 {
3659 	struct drm_i915_private *dev_priv = to_i915(dev);
3660 
3661 	gen8_gt_irq_postinstall(dev_priv);
3662 
3663 	spin_lock_irq(&dev_priv->irq_lock);
3664 	if (dev_priv->display_irqs_enabled)
3665 		vlv_display_irq_postinstall(dev_priv);
3666 	spin_unlock_irq(&dev_priv->irq_lock);
3667 
3668 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3669 	POSTING_READ(GEN8_MASTER_IRQ);
3670 
3671 	return 0;
3672 }
3673 
3674 static void i8xx_irq_reset(struct drm_device *dev)
3675 {
3676 	struct drm_i915_private *dev_priv = to_i915(dev);
3677 
3678 	i9xx_pipestat_irq_reset(dev_priv);
3679 
3680 	I915_WRITE16(HWSTAM, 0xffff);
3681 
3682 	GEN2_IRQ_RESET();
3683 }
3684 
3685 static int i8xx_irq_postinstall(struct drm_device *dev)
3686 {
3687 	struct drm_i915_private *dev_priv = to_i915(dev);
3688 	u16 enable_mask;
3689 
3690 	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
3691 			    I915_ERROR_MEMORY_REFRESH));
3692 
3693 	/* Unmask the interrupts that we always want on. */
3694 	dev_priv->irq_mask =
3695 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3697 
3698 	enable_mask =
3699 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3700 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3701 		I915_USER_INTERRUPT;
3702 
3703 	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3704 
3705 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3706 	 * just to make the assert_spin_locked check happy. */
3707 	spin_lock_irq(&dev_priv->irq_lock);
3708 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3709 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3710 	spin_unlock_irq(&dev_priv->irq_lock);
3711 
3712 	return 0;
3713 }
3714 
3715 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3716 {
3717 	struct drm_device *dev = arg;
3718 	struct drm_i915_private *dev_priv = to_i915(dev);
3719 	irqreturn_t ret = IRQ_NONE;
3720 
3721 	if (!intel_irqs_enabled(dev_priv))
3722 		return IRQ_NONE;
3723 
3724 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3725 	disable_rpm_wakeref_asserts(dev_priv);
3726 
3727 	do {
3728 		u32 pipe_stats[I915_MAX_PIPES] = {};
3729 		u16 iir;
3730 
3731 		iir = I915_READ16(IIR);
3732 		if (iir == 0)
3733 			break;
3734 
3735 		ret = IRQ_HANDLED;
3736 
3737 		/* Call regardless, as some status bits might not be
3738 		 * signalled in iir */
3739 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3740 
3741 		I915_WRITE16(IIR, iir);
3742 
3743 		if (iir & I915_USER_INTERRUPT)
3744 			notify_ring(dev_priv->engine[RCS]);
3745 
3746 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3747 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3748 
3749 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3750 	} while (0);
3751 
3752 	enable_rpm_wakeref_asserts(dev_priv);
3753 
3754 	return ret;
3755 }
3756 
3757 static void i915_irq_reset(struct drm_device *dev)
3758 {
3759 	struct drm_i915_private *dev_priv = to_i915(dev);
3760 
3761 	if (I915_HAS_HOTPLUG(dev_priv)) {
3762 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3763 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3764 	}
3765 
3766 	i9xx_pipestat_irq_reset(dev_priv);
3767 
3768 	I915_WRITE(HWSTAM, 0xffffffff);
3769 
3770 	GEN3_IRQ_RESET();
3771 }
3772 
3773 static int i915_irq_postinstall(struct drm_device *dev)
3774 {
3775 	struct drm_i915_private *dev_priv = to_i915(dev);
3776 	u32 enable_mask;
3777 
3778 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3779 			  I915_ERROR_MEMORY_REFRESH));
3780 
3781 	/* Unmask the interrupts that we always want on. */
3782 	dev_priv->irq_mask =
3783 		~(I915_ASLE_INTERRUPT |
3784 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3785 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3786 
3787 	enable_mask =
3788 		I915_ASLE_INTERRUPT |
3789 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3790 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3791 		I915_USER_INTERRUPT;
3792 
3793 	if (I915_HAS_HOTPLUG(dev_priv)) {
3794 		/* Enable in IER... */
3795 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3796 		/* and unmask in IMR */
3797 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3798 	}
3799 
3800 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3801 
3802 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3803 	 * just to make the assert_spin_locked check happy. */
3804 	spin_lock_irq(&dev_priv->irq_lock);
3805 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3806 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3807 	spin_unlock_irq(&dev_priv->irq_lock);
3808 
3809 	i915_enable_asle_pipestat(dev_priv);
3810 
3811 	return 0;
3812 }
3813 
3814 static irqreturn_t i915_irq_handler(int irq, void *arg)
3815 {
3816 	struct drm_device *dev = arg;
3817 	struct drm_i915_private *dev_priv = to_i915(dev);
3818 	irqreturn_t ret = IRQ_NONE;
3819 
3820 	if (!intel_irqs_enabled(dev_priv))
3821 		return IRQ_NONE;
3822 
3823 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3824 	disable_rpm_wakeref_asserts(dev_priv);
3825 
3826 	do {
3827 		u32 pipe_stats[I915_MAX_PIPES] = {};
3828 		u32 hotplug_status = 0;
3829 		u32 iir;
3830 
3831 		iir = I915_READ(IIR);
3832 		if (iir == 0)
3833 			break;
3834 
3835 		ret = IRQ_HANDLED;
3836 
3837 		if (I915_HAS_HOTPLUG(dev_priv) &&
3838 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3839 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3840 
3841 		/* Call regardless, as some status bits might not be
3842 		 * signalled in iir */
3843 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3844 
3845 		I915_WRITE(IIR, iir);
3846 
3847 		if (iir & I915_USER_INTERRUPT)
3848 			notify_ring(dev_priv->engine[RCS]);
3849 
3850 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3851 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3852 
3853 		if (hotplug_status)
3854 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3855 
3856 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3857 	} while (0);
3858 
3859 	enable_rpm_wakeref_asserts(dev_priv);
3860 
3861 	return ret;
3862 }
3863 
3864 static void i965_irq_reset(struct drm_device *dev)
3865 {
3866 	struct drm_i915_private *dev_priv = to_i915(dev);
3867 
3868 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3869 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3870 
3871 	i9xx_pipestat_irq_reset(dev_priv);
3872 
3873 	I915_WRITE(HWSTAM, 0xffffffff);
3874 
3875 	GEN3_IRQ_RESET();
3876 }
3877 
3878 static int i965_irq_postinstall(struct drm_device *dev)
3879 {
3880 	struct drm_i915_private *dev_priv = to_i915(dev);
3881 	u32 enable_mask;
3882 	u32 error_mask;
3883 
3884 	/*
3885 	 * Enable some error detection, note the instruction error mask
3886 	 * bit is reserved, so we leave it masked.
3887 	 */
3888 	if (IS_G4X(dev_priv)) {
3889 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3890 			       GM45_ERROR_MEM_PRIV |
3891 			       GM45_ERROR_CP_PRIV |
3892 			       I915_ERROR_MEMORY_REFRESH);
3893 	} else {
3894 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3895 			       I915_ERROR_MEMORY_REFRESH);
3896 	}
3897 	I915_WRITE(EMR, error_mask);
3898 
3899 	/* Unmask the interrupts that we always want on. */
3900 	dev_priv->irq_mask =
3901 		~(I915_ASLE_INTERRUPT |
3902 		  I915_DISPLAY_PORT_INTERRUPT |
3903 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3904 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3905 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3906 
3907 	enable_mask =
3908 		I915_ASLE_INTERRUPT |
3909 		I915_DISPLAY_PORT_INTERRUPT |
3910 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3911 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3912 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3913 		I915_USER_INTERRUPT;
3914 
3915 	if (IS_G4X(dev_priv))
3916 		enable_mask |= I915_BSD_USER_INTERRUPT;
3917 
3918 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3919 
3920 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3921 	 * just to make the assert_spin_locked check happy. */
3922 	spin_lock_irq(&dev_priv->irq_lock);
3923 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3924 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3925 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3926 	spin_unlock_irq(&dev_priv->irq_lock);
3927 
3928 	i915_enable_asle_pipestat(dev_priv);
3929 
3930 	return 0;
3931 }
3932 
3933 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3934 {
3935 	u32 hotplug_en;
3936 
3937 	lockdep_assert_held(&dev_priv->irq_lock);
3938 
3939 	/* Note HDMI and DP share hotplug bits */
3940 	/* enable bits are the same for all generations */
3941 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3942 	/* Programming the CRT detection parameters tends
3943 	   to generate a spurious hotplug event about three
3944 	   seconds later.  So just do it once.
3945 	*/
3946 	if (IS_G4X(dev_priv))
3947 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3948 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3949 
3950 	/* Ignore TV since it's buggy */
3951 	i915_hotplug_interrupt_update_locked(dev_priv,
3952 					     HOTPLUG_INT_EN_MASK |
3953 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3954 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3955 					     hotplug_en);
3956 }
3957 
3958 static irqreturn_t i965_irq_handler(int irq, void *arg)
3959 {
3960 	struct drm_device *dev = arg;
3961 	struct drm_i915_private *dev_priv = to_i915(dev);
3962 	irqreturn_t ret = IRQ_NONE;
3963 
3964 	if (!intel_irqs_enabled(dev_priv))
3965 		return IRQ_NONE;
3966 
3967 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3968 	disable_rpm_wakeref_asserts(dev_priv);
3969 
3970 	do {
3971 		u32 pipe_stats[I915_MAX_PIPES] = {};
3972 		u32 hotplug_status = 0;
3973 		u32 iir;
3974 
3975 		iir = I915_READ(IIR);
3976 		if (iir == 0)
3977 			break;
3978 
3979 		ret = IRQ_HANDLED;
3980 
3981 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3982 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3983 
3984 		/* Call regardless, as some status bits might not be
3985 		 * signalled in iir */
3986 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3987 
3988 		I915_WRITE(IIR, iir);
3989 
3990 		if (iir & I915_USER_INTERRUPT)
3991 			notify_ring(dev_priv->engine[RCS]);
3992 
3993 		if (iir & I915_BSD_USER_INTERRUPT)
3994 			notify_ring(dev_priv->engine[VCS]);
3995 
3996 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3997 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3998 
3999 		if (hotplug_status)
4000 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4001 
4002 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4003 	} while (0);
4004 
4005 	enable_rpm_wakeref_asserts(dev_priv);
4006 
4007 	return ret;
4008 }
4009 
4010 /**
4011  * intel_irq_init - initializes irq support
4012  * @dev_priv: i915 device instance
4013  *
4014  * This function initializes all the irq support including work items, timers
4015  * and all the vtables. It does not setup the interrupt itself though.
4016  */
4017 void intel_irq_init(struct drm_i915_private *dev_priv)
4018 {
4019 	struct drm_device *dev = &dev_priv->drm;
4020 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4021 	int i;
4022 
4023 	intel_hpd_init_work(dev_priv);
4024 
4025 	INIT_WORK(&rps->work, gen6_pm_rps_work);
4026 
4027 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4028 	for (i = 0; i < MAX_L3_SLICES; ++i)
4029 		dev_priv->l3_parity.remap_info[i] = NULL;
4030 
4031 	if (HAS_GUC_SCHED(dev_priv))
4032 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4033 
4034 	/* Let's track the enabled rps events */
4035 	if (IS_VALLEYVIEW(dev_priv))
4036 		/* WaGsvRC0ResidencyMethod:vlv */
4037 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4038 	else
4039 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4040 
4041 	rps->pm_intrmsk_mbz = 0;
4042 
4043 	/*
4044 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4045 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4046 	 *
4047 	 * TODO: verify if this can be reproduced on VLV,CHV.
4048 	 */
4049 	if (INTEL_GEN(dev_priv) <= 7)
4050 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4051 
4052 	if (INTEL_GEN(dev_priv) >= 8)
4053 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4054 
4055 	if (IS_GEN2(dev_priv)) {
4056 		/* Gen2 doesn't have a hardware frame counter */
4057 		dev->max_vblank_count = 0;
4058 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4059 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4060 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4061 	} else {
4062 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4063 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4064 	}
4065 
4066 	/*
4067 	 * Opt out of the vblank disable timer on everything except gen2.
4068 	 * Gen2 doesn't have a hardware frame counter and so depends on
4069 	 * vblank interrupts to produce sane vblank seuquence numbers.
4070 	 */
4071 	if (!IS_GEN2(dev_priv))
4072 		dev->vblank_disable_immediate = true;
4073 
4074 	/* Most platforms treat the display irq block as an always-on
4075 	 * power domain. vlv/chv can disable it at runtime and need
4076 	 * special care to avoid writing any of the display block registers
4077 	 * outside of the power domain. We defer setting up the display irqs
4078 	 * in this case to the runtime pm.
4079 	 */
4080 	dev_priv->display_irqs_enabled = true;
4081 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4082 		dev_priv->display_irqs_enabled = false;
4083 
4084 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4085 
4086 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4087 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4088 
4089 	if (IS_CHERRYVIEW(dev_priv)) {
4090 		dev->driver->irq_handler = cherryview_irq_handler;
4091 		dev->driver->irq_preinstall = cherryview_irq_reset;
4092 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4093 		dev->driver->irq_uninstall = cherryview_irq_reset;
4094 		dev->driver->enable_vblank = i965_enable_vblank;
4095 		dev->driver->disable_vblank = i965_disable_vblank;
4096 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4097 	} else if (IS_VALLEYVIEW(dev_priv)) {
4098 		dev->driver->irq_handler = valleyview_irq_handler;
4099 		dev->driver->irq_preinstall = valleyview_irq_reset;
4100 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4101 		dev->driver->irq_uninstall = valleyview_irq_reset;
4102 		dev->driver->enable_vblank = i965_enable_vblank;
4103 		dev->driver->disable_vblank = i965_disable_vblank;
4104 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4105 	} else if (INTEL_GEN(dev_priv) >= 8) {
4106 		dev->driver->irq_handler = gen8_irq_handler;
4107 		dev->driver->irq_preinstall = gen8_irq_reset;
4108 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4109 		dev->driver->irq_uninstall = gen8_irq_reset;
4110 		dev->driver->enable_vblank = gen8_enable_vblank;
4111 		dev->driver->disable_vblank = gen8_disable_vblank;
4112 		if (IS_GEN9_LP(dev_priv))
4113 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4114 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4115 			 HAS_PCH_CNP(dev_priv))
4116 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4117 		else
4118 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4119 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4120 		dev->driver->irq_handler = ironlake_irq_handler;
4121 		dev->driver->irq_preinstall = ironlake_irq_reset;
4122 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4123 		dev->driver->irq_uninstall = ironlake_irq_reset;
4124 		dev->driver->enable_vblank = ironlake_enable_vblank;
4125 		dev->driver->disable_vblank = ironlake_disable_vblank;
4126 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4127 	} else {
4128 		if (IS_GEN2(dev_priv)) {
4129 			dev->driver->irq_preinstall = i8xx_irq_reset;
4130 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4131 			dev->driver->irq_handler = i8xx_irq_handler;
4132 			dev->driver->irq_uninstall = i8xx_irq_reset;
4133 			dev->driver->enable_vblank = i8xx_enable_vblank;
4134 			dev->driver->disable_vblank = i8xx_disable_vblank;
4135 		} else if (IS_GEN3(dev_priv)) {
4136 			dev->driver->irq_preinstall = i915_irq_reset;
4137 			dev->driver->irq_postinstall = i915_irq_postinstall;
4138 			dev->driver->irq_uninstall = i915_irq_reset;
4139 			dev->driver->irq_handler = i915_irq_handler;
4140 			dev->driver->enable_vblank = i8xx_enable_vblank;
4141 			dev->driver->disable_vblank = i8xx_disable_vblank;
4142 		} else {
4143 			dev->driver->irq_preinstall = i965_irq_reset;
4144 			dev->driver->irq_postinstall = i965_irq_postinstall;
4145 			dev->driver->irq_uninstall = i965_irq_reset;
4146 			dev->driver->irq_handler = i965_irq_handler;
4147 			dev->driver->enable_vblank = i965_enable_vblank;
4148 			dev->driver->disable_vblank = i965_disable_vblank;
4149 		}
4150 		if (I915_HAS_HOTPLUG(dev_priv))
4151 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4152 	}
4153 }
4154 
4155 /**
4156  * intel_irq_fini - deinitializes IRQ support
4157  * @i915: i915 device instance
4158  *
4159  * This function deinitializes all the IRQ support.
4160  */
4161 void intel_irq_fini(struct drm_i915_private *i915)
4162 {
4163 	int i;
4164 
4165 	for (i = 0; i < MAX_L3_SLICES; ++i)
4166 		kfree(i915->l3_parity.remap_info[i]);
4167 }
4168 
4169 /**
4170  * intel_irq_install - enables the hardware interrupt
4171  * @dev_priv: i915 device instance
4172  *
4173  * This function enables the hardware interrupt handling, but leaves the hotplug
4174  * handling still disabled. It is called after intel_irq_init().
4175  *
4176  * In the driver load and resume code we need working interrupts in a few places
4177  * but don't want to deal with the hassle of concurrent probe and hotplug
4178  * workers. Hence the split into this two-stage approach.
4179  */
4180 int intel_irq_install(struct drm_i915_private *dev_priv)
4181 {
4182 	/*
4183 	 * We enable some interrupt sources in our postinstall hooks, so mark
4184 	 * interrupts as enabled _before_ actually enabling them to avoid
4185 	 * special cases in our ordering checks.
4186 	 */
4187 	dev_priv->runtime_pm.irqs_enabled = true;
4188 
4189 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4190 }
4191 
4192 /**
4193  * intel_irq_uninstall - finilizes all irq handling
4194  * @dev_priv: i915 device instance
4195  *
4196  * This stops interrupt and hotplug handling and unregisters and frees all
4197  * resources acquired in the init functions.
4198  */
4199 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4200 {
4201 	drm_irq_uninstall(&dev_priv->drm);
4202 	intel_hpd_cancel_work(dev_priv);
4203 	dev_priv->runtime_pm.irqs_enabled = false;
4204 }
4205 
4206 /**
4207  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4208  * @dev_priv: i915 device instance
4209  *
4210  * This function is used to disable interrupts at runtime, both in the runtime
4211  * pm and the system suspend/resume code.
4212  */
4213 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4214 {
4215 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4216 	dev_priv->runtime_pm.irqs_enabled = false;
4217 	synchronize_irq(dev_priv->drm.irq);
4218 }
4219 
4220 /**
4221  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4222  * @dev_priv: i915 device instance
4223  *
4224  * This function is used to enable interrupts at runtime, both in the runtime
4225  * pm and the system suspend/resume code.
4226  */
4227 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4228 {
4229 	dev_priv->runtime_pm.irqs_enabled = true;
4230 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4231 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4232 }
4233