xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision 6a3cbbc2)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define KBUILD_MODNAME	"i915"
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/sysrq.h>
34 #include <linux/slab.h>
35 #include <linux/circ_buf.h>
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "intel_drv.h"
41 
42 /**
43  * DOC: interrupt handling
44  *
45  * These functions provide the basic support for enabling and disabling the
46  * interrupt handling support. There's a lot more functionality in i915_irq.c
47  * and related files, but that will be described in separate chapters.
48  */
49 
50 static const u32 hpd_ilk[HPD_NUM_PINS] = {
51 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
52 };
53 
54 static const u32 hpd_ivb[HPD_NUM_PINS] = {
55 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
56 };
57 
58 static const u32 hpd_bdw[HPD_NUM_PINS] = {
59 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
60 };
61 
62 static const u32 hpd_ibx[HPD_NUM_PINS] = {
63 	[HPD_CRT] = SDE_CRT_HOTPLUG,
64 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
65 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
66 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
67 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
68 };
69 
70 static const u32 hpd_cpt[HPD_NUM_PINS] = {
71 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
72 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
73 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
74 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
75 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
76 };
77 
78 static const u32 hpd_spt[HPD_NUM_PINS] = {
79 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
80 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
81 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
82 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
83 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
84 };
85 
86 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
87 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
88 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
89 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
90 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
91 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
92 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
93 };
94 
95 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
96 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
97 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
98 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
99 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
100 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
101 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
102 };
103 
104 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
105 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
106 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
107 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
108 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
109 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
110 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
111 };
112 
113 /* BXT hpd list */
114 static const u32 hpd_bxt[HPD_NUM_PINS] = {
115 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
116 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
117 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
118 };
119 
120 /* IIR can theoretically queue up two events. Be paranoid. */
121 #define GEN8_IRQ_RESET_NDX(type, which) do { \
122 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
123 	POSTING_READ(GEN8_##type##_IMR(which)); \
124 	I915_WRITE(GEN8_##type##_IER(which), 0); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
128 	POSTING_READ(GEN8_##type##_IIR(which)); \
129 } while (0)
130 
131 #define GEN5_IRQ_RESET(type) do { \
132 	I915_WRITE(type##IMR, 0xffffffff); \
133 	POSTING_READ(type##IMR); \
134 	I915_WRITE(type##IER, 0); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 	I915_WRITE(type##IIR, 0xffffffff); \
138 	POSTING_READ(type##IIR); \
139 } while (0)
140 
141 /*
142  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
143  */
144 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
145 				    i915_reg_t reg)
146 {
147 	u32 val = I915_READ(reg);
148 
149 	if (val == 0)
150 		return;
151 
152 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
153 	     i915_mmio_reg_offset(reg), val);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 	I915_WRITE(reg, 0xffffffff);
157 	POSTING_READ(reg);
158 }
159 
160 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
161 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
162 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
163 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
164 	POSTING_READ(GEN8_##type##_IMR(which)); \
165 } while (0)
166 
167 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
168 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
169 	I915_WRITE(type##IER, (ier_val)); \
170 	I915_WRITE(type##IMR, (imr_val)); \
171 	POSTING_READ(type##IMR); \
172 } while (0)
173 
174 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
175 
176 /* For display hotplug interrupt */
177 static inline void
178 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
179 				     uint32_t mask,
180 				     uint32_t bits)
181 {
182 	uint32_t val;
183 
184 	assert_spin_locked(&dev_priv->irq_lock);
185 	WARN_ON(bits & ~mask);
186 
187 	val = I915_READ(PORT_HOTPLUG_EN);
188 	val &= ~mask;
189 	val |= bits;
190 	I915_WRITE(PORT_HOTPLUG_EN, val);
191 }
192 
193 /**
194  * i915_hotplug_interrupt_update - update hotplug interrupt enable
195  * @dev_priv: driver private
196  * @mask: bits to update
197  * @bits: bits to enable
198  * NOTE: the HPD enable bits are modified both inside and outside
199  * of an interrupt context. To avoid that read-modify-write cycles
200  * interfer, these bits are protected by a spinlock. Since this
201  * function is usually not called from a context where the lock is
202  * held already, this function acquires the lock itself. A non-locking
203  * version is also available.
204  */
205 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
206 				   uint32_t mask,
207 				   uint32_t bits)
208 {
209 	spin_lock_irq(&dev_priv->irq_lock);
210 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
211 	spin_unlock_irq(&dev_priv->irq_lock);
212 }
213 
214 /**
215  * ilk_update_display_irq - update DEIMR
216  * @dev_priv: driver private
217  * @interrupt_mask: mask of interrupt bits to update
218  * @enabled_irq_mask: mask of interrupt bits to enable
219  */
220 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
221 			    uint32_t interrupt_mask,
222 			    uint32_t enabled_irq_mask)
223 {
224 	uint32_t new_val;
225 
226 	assert_spin_locked(&dev_priv->irq_lock);
227 
228 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
229 
230 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
231 		return;
232 
233 	new_val = dev_priv->irq_mask;
234 	new_val &= ~interrupt_mask;
235 	new_val |= (~enabled_irq_mask & interrupt_mask);
236 
237 	if (new_val != dev_priv->irq_mask) {
238 		dev_priv->irq_mask = new_val;
239 		I915_WRITE(DEIMR, dev_priv->irq_mask);
240 		POSTING_READ(DEIMR);
241 	}
242 }
243 
244 /**
245  * ilk_update_gt_irq - update GTIMR
246  * @dev_priv: driver private
247  * @interrupt_mask: mask of interrupt bits to update
248  * @enabled_irq_mask: mask of interrupt bits to enable
249  */
250 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
251 			      uint32_t interrupt_mask,
252 			      uint32_t enabled_irq_mask)
253 {
254 	assert_spin_locked(&dev_priv->irq_lock);
255 
256 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
257 
258 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
259 		return;
260 
261 	dev_priv->gt_irq_mask &= ~interrupt_mask;
262 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
263 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
264 }
265 
266 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
267 {
268 	ilk_update_gt_irq(dev_priv, mask, mask);
269 	POSTING_READ_FW(GTIMR);
270 }
271 
272 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
273 {
274 	ilk_update_gt_irq(dev_priv, mask, 0);
275 }
276 
277 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
278 {
279 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
280 }
281 
282 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
283 {
284 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
285 }
286 
287 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
288 {
289 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
290 }
291 
292 /**
293  * snb_update_pm_irq - update GEN6_PMIMR
294  * @dev_priv: driver private
295  * @interrupt_mask: mask of interrupt bits to update
296  * @enabled_irq_mask: mask of interrupt bits to enable
297  */
298 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
299 			      uint32_t interrupt_mask,
300 			      uint32_t enabled_irq_mask)
301 {
302 	uint32_t new_val;
303 
304 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
305 
306 	assert_spin_locked(&dev_priv->irq_lock);
307 
308 	new_val = dev_priv->pm_irq_mask;
309 	new_val &= ~interrupt_mask;
310 	new_val |= (~enabled_irq_mask & interrupt_mask);
311 
312 	if (new_val != dev_priv->pm_irq_mask) {
313 		dev_priv->pm_irq_mask = new_val;
314 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
315 		POSTING_READ(gen6_pm_imr(dev_priv));
316 	}
317 }
318 
319 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
320 {
321 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
322 		return;
323 
324 	snb_update_pm_irq(dev_priv, mask, mask);
325 }
326 
327 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
328 				  uint32_t mask)
329 {
330 	snb_update_pm_irq(dev_priv, mask, 0);
331 }
332 
333 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
334 {
335 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
336 		return;
337 
338 	__gen6_disable_pm_irq(dev_priv, mask);
339 }
340 
341 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
342 {
343 	i915_reg_t reg = gen6_pm_iir(dev_priv);
344 
345 	spin_lock_irq(&dev_priv->irq_lock);
346 	I915_WRITE(reg, dev_priv->pm_rps_events);
347 	I915_WRITE(reg, dev_priv->pm_rps_events);
348 	POSTING_READ(reg);
349 	dev_priv->rps.pm_iir = 0;
350 	spin_unlock_irq(&dev_priv->irq_lock);
351 }
352 
353 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
354 {
355 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
356 		return;
357 
358 	spin_lock_irq(&dev_priv->irq_lock);
359 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
360 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
361 	dev_priv->rps.interrupts_enabled = true;
362 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
363 				dev_priv->pm_rps_events);
364 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
365 
366 	spin_unlock_irq(&dev_priv->irq_lock);
367 }
368 
369 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
370 {
371 	return (mask & ~dev_priv->rps.pm_intr_keep);
372 }
373 
374 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
375 {
376 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
377 		return;
378 
379 	spin_lock_irq(&dev_priv->irq_lock);
380 	dev_priv->rps.interrupts_enabled = false;
381 
382 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
383 
384 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
385 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
386 				~dev_priv->pm_rps_events);
387 
388 	spin_unlock_irq(&dev_priv->irq_lock);
389 	synchronize_irq(dev_priv->drm.irq);
390 
391 	/* Now that we will not be generating any more work, flush any
392 	 * outsanding tasks. As we are called on the RPS idle path,
393 	 * we will reset the GPU to minimum frequencies, so the current
394 	 * state of the worker can be discarded.
395 	 */
396 	cancel_work_sync(&dev_priv->rps.work);
397 	gen6_reset_rps_interrupts(dev_priv);
398 }
399 
400 /**
401  * bdw_update_port_irq - update DE port interrupt
402  * @dev_priv: driver private
403  * @interrupt_mask: mask of interrupt bits to update
404  * @enabled_irq_mask: mask of interrupt bits to enable
405  */
406 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
407 				uint32_t interrupt_mask,
408 				uint32_t enabled_irq_mask)
409 {
410 	uint32_t new_val;
411 	uint32_t old_val;
412 
413 	assert_spin_locked(&dev_priv->irq_lock);
414 
415 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
416 
417 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
418 		return;
419 
420 	old_val = I915_READ(GEN8_DE_PORT_IMR);
421 
422 	new_val = old_val;
423 	new_val &= ~interrupt_mask;
424 	new_val |= (~enabled_irq_mask & interrupt_mask);
425 
426 	if (new_val != old_val) {
427 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
428 		POSTING_READ(GEN8_DE_PORT_IMR);
429 	}
430 }
431 
432 /**
433  * bdw_update_pipe_irq - update DE pipe interrupt
434  * @dev_priv: driver private
435  * @pipe: pipe whose interrupt to update
436  * @interrupt_mask: mask of interrupt bits to update
437  * @enabled_irq_mask: mask of interrupt bits to enable
438  */
439 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
440 			 enum i915_pipe pipe,
441 			 uint32_t interrupt_mask,
442 			 uint32_t enabled_irq_mask)
443 {
444 	uint32_t new_val;
445 
446 	assert_spin_locked(&dev_priv->irq_lock);
447 
448 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
449 
450 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
451 		return;
452 
453 	new_val = dev_priv->de_irq_mask[pipe];
454 	new_val &= ~interrupt_mask;
455 	new_val |= (~enabled_irq_mask & interrupt_mask);
456 
457 	if (new_val != dev_priv->de_irq_mask[pipe]) {
458 		dev_priv->de_irq_mask[pipe] = new_val;
459 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
460 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
461 	}
462 }
463 
464 /**
465  * ibx_display_interrupt_update - update SDEIMR
466  * @dev_priv: driver private
467  * @interrupt_mask: mask of interrupt bits to update
468  * @enabled_irq_mask: mask of interrupt bits to enable
469  */
470 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
471 				  uint32_t interrupt_mask,
472 				  uint32_t enabled_irq_mask)
473 {
474 	uint32_t sdeimr = I915_READ(SDEIMR);
475 	sdeimr &= ~interrupt_mask;
476 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
477 
478 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
479 
480 	assert_spin_locked(&dev_priv->irq_lock);
481 
482 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
483 		return;
484 
485 	I915_WRITE(SDEIMR, sdeimr);
486 	POSTING_READ(SDEIMR);
487 }
488 
489 static void
490 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
491 		       u32 enable_mask, u32 status_mask)
492 {
493 	i915_reg_t reg = PIPESTAT(pipe);
494 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
495 
496 	assert_spin_locked(&dev_priv->irq_lock);
497 	WARN_ON(!intel_irqs_enabled(dev_priv));
498 
499 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
500 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
501 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
502 		      pipe_name(pipe), enable_mask, status_mask))
503 		return;
504 
505 	if ((pipestat & enable_mask) == enable_mask)
506 		return;
507 
508 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
509 
510 	/* Enable the interrupt, clear any pending status */
511 	pipestat |= enable_mask | status_mask;
512 	I915_WRITE(reg, pipestat);
513 	POSTING_READ(reg);
514 }
515 
516 static void
517 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
518 		        u32 enable_mask, u32 status_mask)
519 {
520 	i915_reg_t reg = PIPESTAT(pipe);
521 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
522 
523 	assert_spin_locked(&dev_priv->irq_lock);
524 	WARN_ON(!intel_irqs_enabled(dev_priv));
525 
526 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
527 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
528 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
529 		      pipe_name(pipe), enable_mask, status_mask))
530 		return;
531 
532 	if ((pipestat & enable_mask) == 0)
533 		return;
534 
535 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
536 
537 	pipestat &= ~enable_mask;
538 	I915_WRITE(reg, pipestat);
539 	POSTING_READ(reg);
540 }
541 
542 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
543 {
544 	u32 enable_mask = status_mask << 16;
545 
546 	/*
547 	 * On pipe A we don't support the PSR interrupt yet,
548 	 * on pipe B and C the same bit MBZ.
549 	 */
550 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
551 		return 0;
552 	/*
553 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
554 	 * A the same bit is for perf counters which we don't use either.
555 	 */
556 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
557 		return 0;
558 
559 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
560 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
561 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
562 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
563 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
564 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
565 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
566 
567 	return enable_mask;
568 }
569 
570 void
571 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
572 		     u32 status_mask)
573 {
574 	u32 enable_mask;
575 
576 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
577 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
578 							   status_mask);
579 	else
580 		enable_mask = status_mask << 16;
581 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
582 }
583 
584 void
585 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
586 		      u32 status_mask)
587 {
588 	u32 enable_mask;
589 
590 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
591 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
592 							   status_mask);
593 	else
594 		enable_mask = status_mask << 16;
595 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
596 }
597 
598 /**
599  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
600  * @dev_priv: i915 device private
601  */
602 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
603 {
604 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
605 		return;
606 
607 	spin_lock_irq(&dev_priv->irq_lock);
608 
609 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
610 	if (INTEL_GEN(dev_priv) >= 4)
611 		i915_enable_pipestat(dev_priv, PIPE_A,
612 				     PIPE_LEGACY_BLC_EVENT_STATUS);
613 
614 	spin_unlock_irq(&dev_priv->irq_lock);
615 }
616 
617 /*
618  * This timing diagram depicts the video signal in and
619  * around the vertical blanking period.
620  *
621  * Assumptions about the fictitious mode used in this example:
622  *  vblank_start >= 3
623  *  vsync_start = vblank_start + 1
624  *  vsync_end = vblank_start + 2
625  *  vtotal = vblank_start + 3
626  *
627  *           start of vblank:
628  *           latch double buffered registers
629  *           increment frame counter (ctg+)
630  *           generate start of vblank interrupt (gen4+)
631  *           |
632  *           |          frame start:
633  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
634  *           |          may be shifted forward 1-3 extra lines via PIPECONF
635  *           |          |
636  *           |          |  start of vsync:
637  *           |          |  generate vsync interrupt
638  *           |          |  |
639  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
640  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
641  * ----va---> <-----------------vb--------------------> <--------va-------------
642  *       |          |       <----vs----->                     |
643  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
644  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
645  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
646  *       |          |                                         |
647  *       last visible pixel                                   first visible pixel
648  *                  |                                         increment frame counter (gen3/4)
649  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
650  *
651  * x  = horizontal active
652  * _  = horizontal blanking
653  * hs = horizontal sync
654  * va = vertical active
655  * vb = vertical blanking
656  * vs = vertical sync
657  * vbs = vblank_start (number)
658  *
659  * Summary:
660  * - most events happen at the start of horizontal sync
661  * - frame start happens at the start of horizontal blank, 1-4 lines
662  *   (depending on PIPECONF settings) after the start of vblank
663  * - gen3/4 pixel and frame counter are synchronized with the start
664  *   of horizontal active on the first line of vertical active
665  */
666 
667 /* Called from drm generic code, passed a 'crtc', which
668  * we use as a pipe index
669  */
670 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
671 {
672 	struct drm_i915_private *dev_priv = to_i915(dev);
673 	i915_reg_t high_frame, low_frame;
674 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
675 	struct intel_crtc *intel_crtc =
676 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
677 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
678 
679 	htotal = mode->crtc_htotal;
680 	hsync_start = mode->crtc_hsync_start;
681 	vbl_start = mode->crtc_vblank_start;
682 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
683 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
684 
685 	/* Convert to pixel count */
686 	vbl_start *= htotal;
687 
688 	/* Start of vblank event occurs at start of hsync */
689 	vbl_start -= htotal - hsync_start;
690 
691 	high_frame = PIPEFRAME(pipe);
692 	low_frame = PIPEFRAMEPIXEL(pipe);
693 
694 	/*
695 	 * High & low register fields aren't synchronized, so make sure
696 	 * we get a low value that's stable across two reads of the high
697 	 * register.
698 	 */
699 	do {
700 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
701 		low   = I915_READ(low_frame);
702 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
703 	} while (high1 != high2);
704 
705 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
706 	pixel = low & PIPE_PIXEL_MASK;
707 	low >>= PIPE_FRAME_LOW_SHIFT;
708 
709 	/*
710 	 * The frame counter increments at beginning of active.
711 	 * Cook up a vblank counter by also checking the pixel
712 	 * counter against vblank start.
713 	 */
714 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
715 }
716 
717 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
718 {
719 	struct drm_i915_private *dev_priv = to_i915(dev);
720 
721 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
722 }
723 
724 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
725 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
726 {
727 	struct drm_device *dev = crtc->base.dev;
728 	struct drm_i915_private *dev_priv = to_i915(dev);
729 	const struct drm_display_mode *mode = &crtc->base.hwmode;
730 	enum i915_pipe pipe = crtc->pipe;
731 	int position, vtotal;
732 
733 	vtotal = mode->crtc_vtotal;
734 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
735 		vtotal /= 2;
736 
737 	if (IS_GEN2(dev_priv))
738 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
739 	else
740 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
741 
742 	/*
743 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
744 	 * read it just before the start of vblank.  So try it again
745 	 * so we don't accidentally end up spanning a vblank frame
746 	 * increment, causing the pipe_update_end() code to squak at us.
747 	 *
748 	 * The nature of this problem means we can't simply check the ISR
749 	 * bit and return the vblank start value; nor can we use the scanline
750 	 * debug register in the transcoder as it appears to have the same
751 	 * problem.  We may need to extend this to include other platforms,
752 	 * but so far testing only shows the problem on HSW.
753 	 */
754 	if (HAS_DDI(dev_priv) && !position) {
755 		int i, temp;
756 
757 		for (i = 0; i < 100; i++) {
758 			udelay(1);
759 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
760 				DSL_LINEMASK_GEN3;
761 			if (temp != position) {
762 				position = temp;
763 				break;
764 			}
765 		}
766 	}
767 
768 	/*
769 	 * See update_scanline_offset() for the details on the
770 	 * scanline_offset adjustment.
771 	 */
772 	return (position + crtc->scanline_offset) % vtotal;
773 }
774 
775 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
776 				    unsigned int flags, int *vpos, int *hpos,
777 				    ktime_t *stime, ktime_t *etime,
778 				    const struct drm_display_mode *mode)
779 {
780 	struct drm_i915_private *dev_priv = to_i915(dev);
781 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
782 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
783 	int position;
784 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
785 	bool in_vbl = true;
786 	int ret = 0;
787 	unsigned long irqflags;
788 
789 	if (WARN_ON(!mode->crtc_clock)) {
790 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
791 				 "pipe %c\n", pipe_name(pipe));
792 		return 0;
793 	}
794 
795 	htotal = mode->crtc_htotal;
796 	hsync_start = mode->crtc_hsync_start;
797 	vtotal = mode->crtc_vtotal;
798 	vbl_start = mode->crtc_vblank_start;
799 	vbl_end = mode->crtc_vblank_end;
800 
801 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
802 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
803 		vbl_end /= 2;
804 		vtotal /= 2;
805 	}
806 
807 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
808 
809 	/*
810 	 * Lock uncore.lock, as we will do multiple timing critical raw
811 	 * register reads, potentially with preemption disabled, so the
812 	 * following code must not block on uncore.lock.
813 	 */
814 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
815 
816 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
817 
818 	/* Get optional system timestamp before query. */
819 	if (stime)
820 		*stime = ktime_get();
821 
822 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
823 		/* No obvious pixelcount register. Only query vertical
824 		 * scanout position from Display scan line register.
825 		 */
826 		position = __intel_get_crtc_scanline(intel_crtc);
827 	} else {
828 		/* Have access to pixelcount since start of frame.
829 		 * We can split this into vertical and horizontal
830 		 * scanout position.
831 		 */
832 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
833 
834 		/* convert to pixel counts */
835 		vbl_start *= htotal;
836 		vbl_end *= htotal;
837 		vtotal *= htotal;
838 
839 		/*
840 		 * In interlaced modes, the pixel counter counts all pixels,
841 		 * so one field will have htotal more pixels. In order to avoid
842 		 * the reported position from jumping backwards when the pixel
843 		 * counter is beyond the length of the shorter field, just
844 		 * clamp the position the length of the shorter field. This
845 		 * matches how the scanline counter based position works since
846 		 * the scanline counter doesn't count the two half lines.
847 		 */
848 		if (position >= vtotal)
849 			position = vtotal - 1;
850 
851 		/*
852 		 * Start of vblank interrupt is triggered at start of hsync,
853 		 * just prior to the first active line of vblank. However we
854 		 * consider lines to start at the leading edge of horizontal
855 		 * active. So, should we get here before we've crossed into
856 		 * the horizontal active of the first line in vblank, we would
857 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
858 		 * always add htotal-hsync_start to the current pixel position.
859 		 */
860 		position = (position + htotal - hsync_start) % vtotal;
861 	}
862 
863 	/* Get optional system timestamp after query. */
864 	if (etime)
865 		*etime = ktime_get();
866 
867 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
868 
869 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
870 
871 	in_vbl = position >= vbl_start && position < vbl_end;
872 
873 	/*
874 	 * While in vblank, position will be negative
875 	 * counting up towards 0 at vbl_end. And outside
876 	 * vblank, position will be positive counting
877 	 * up since vbl_end.
878 	 */
879 	if (position >= vbl_start)
880 		position -= vbl_end;
881 	else
882 		position += vtotal - vbl_end;
883 
884 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
885 		*vpos = position;
886 		*hpos = 0;
887 	} else {
888 		*vpos = position / htotal;
889 		*hpos = position - (*vpos * htotal);
890 	}
891 
892 	/* In vblank? */
893 	if (in_vbl)
894 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
895 
896 	return ret;
897 }
898 
899 int intel_get_crtc_scanline(struct intel_crtc *crtc)
900 {
901 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
902 	unsigned long irqflags;
903 	int position;
904 
905 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
906 	position = __intel_get_crtc_scanline(crtc);
907 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
908 
909 	return position;
910 }
911 
912 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
913 			      int *max_error,
914 			      struct timeval *vblank_time,
915 			      unsigned flags)
916 {
917 	struct drm_crtc *crtc;
918 
919 	if (pipe >= INTEL_INFO(dev)->num_pipes) {
920 		DRM_ERROR("Invalid crtc %u\n", pipe);
921 		return -EINVAL;
922 	}
923 
924 	/* Get drm_crtc to timestamp: */
925 	crtc = intel_get_crtc_for_pipe(dev, pipe);
926 	if (crtc == NULL) {
927 		DRM_ERROR("Invalid crtc %u\n", pipe);
928 		return -EINVAL;
929 	}
930 
931 	if (!crtc->hwmode.crtc_clock) {
932 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
933 		return -EBUSY;
934 	}
935 
936 	/* Helper routine in DRM core does all the work: */
937 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
938 						     vblank_time, flags,
939 						     &crtc->hwmode);
940 }
941 
942 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
943 {
944 	u32 busy_up, busy_down, max_avg, min_avg;
945 	u8 new_delay;
946 
947 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
948 
949 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
950 
951 	new_delay = dev_priv->ips.cur_delay;
952 
953 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
954 	busy_up = I915_READ(RCPREVBSYTUPAVG);
955 	busy_down = I915_READ(RCPREVBSYTDNAVG);
956 	max_avg = I915_READ(RCBMAXAVG);
957 	min_avg = I915_READ(RCBMINAVG);
958 
959 	/* Handle RCS change request from hw */
960 	if (busy_up > max_avg) {
961 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
962 			new_delay = dev_priv->ips.cur_delay - 1;
963 		if (new_delay < dev_priv->ips.max_delay)
964 			new_delay = dev_priv->ips.max_delay;
965 	} else if (busy_down < min_avg) {
966 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
967 			new_delay = dev_priv->ips.cur_delay + 1;
968 		if (new_delay > dev_priv->ips.min_delay)
969 			new_delay = dev_priv->ips.min_delay;
970 	}
971 
972 	if (ironlake_set_drps(dev_priv, new_delay))
973 		dev_priv->ips.cur_delay = new_delay;
974 
975 	lockmgr(&mchdev_lock, LK_RELEASE);
976 
977 	return;
978 }
979 
980 static void notify_ring(struct intel_engine_cs *engine)
981 {
982 	smp_store_mb(engine->breadcrumbs.irq_posted, true);
983 	if (intel_engine_wakeup(engine))
984 		trace_i915_gem_request_notify(engine);
985 }
986 
987 static void vlv_c0_read(struct drm_i915_private *dev_priv,
988 			struct intel_rps_ei *ei)
989 {
990 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
991 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
992 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
993 }
994 
995 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
996 			 const struct intel_rps_ei *old,
997 			 const struct intel_rps_ei *now,
998 			 int threshold)
999 {
1000 	u64 time, c0;
1001 	unsigned int mul = 100;
1002 
1003 	if (old->cz_clock == 0)
1004 		return false;
1005 
1006 	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1007 		mul <<= 8;
1008 
1009 	time = now->cz_clock - old->cz_clock;
1010 	time *= threshold * dev_priv->czclk_freq;
1011 
1012 	/* Workload can be split between render + media, e.g. SwapBuffers
1013 	 * being blitted in X after being rendered in mesa. To account for
1014 	 * this we need to combine both engines into our activity counter.
1015 	 */
1016 	c0 = now->render_c0 - old->render_c0;
1017 	c0 += now->media_c0 - old->media_c0;
1018 	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1019 
1020 	return c0 >= time;
1021 }
1022 
1023 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1024 {
1025 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1026 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1027 }
1028 
1029 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1030 {
1031 	struct intel_rps_ei now;
1032 	u32 events = 0;
1033 
1034 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1035 		return 0;
1036 
1037 	vlv_c0_read(dev_priv, &now);
1038 	if (now.cz_clock == 0)
1039 		return 0;
1040 
1041 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1042 		if (!vlv_c0_above(dev_priv,
1043 				  &dev_priv->rps.down_ei, &now,
1044 				  dev_priv->rps.down_threshold))
1045 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1046 		dev_priv->rps.down_ei = now;
1047 	}
1048 
1049 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1050 		if (vlv_c0_above(dev_priv,
1051 				 &dev_priv->rps.up_ei, &now,
1052 				 dev_priv->rps.up_threshold))
1053 			events |= GEN6_PM_RP_UP_THRESHOLD;
1054 		dev_priv->rps.up_ei = now;
1055 	}
1056 
1057 	return events;
1058 }
1059 
1060 static bool any_waiters(struct drm_i915_private *dev_priv)
1061 {
1062 	struct intel_engine_cs *engine;
1063 	enum intel_engine_id id;
1064 
1065 	for_each_engine(engine, dev_priv, id)
1066 		if (intel_engine_has_waiter(engine))
1067 			return true;
1068 
1069 	return false;
1070 }
1071 
1072 static void gen6_pm_rps_work(struct work_struct *work)
1073 {
1074 	struct drm_i915_private *dev_priv =
1075 		container_of(work, struct drm_i915_private, rps.work);
1076 	bool client_boost;
1077 	int new_delay, adj, min, max;
1078 	u32 pm_iir;
1079 
1080 	spin_lock_irq(&dev_priv->irq_lock);
1081 	/* Speed up work cancelation during disabling rps interrupts. */
1082 	if (!dev_priv->rps.interrupts_enabled) {
1083 		spin_unlock_irq(&dev_priv->irq_lock);
1084 		return;
1085 	}
1086 
1087 	pm_iir = dev_priv->rps.pm_iir;
1088 	dev_priv->rps.pm_iir = 0;
1089 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1090 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1091 	client_boost = dev_priv->rps.client_boost;
1092 	dev_priv->rps.client_boost = false;
1093 	spin_unlock_irq(&dev_priv->irq_lock);
1094 
1095 	/* Make sure we didn't queue anything we're not going to process. */
1096 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1097 
1098 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1099 		return;
1100 
1101 	mutex_lock(&dev_priv->rps.hw_lock);
1102 
1103 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1104 
1105 	adj = dev_priv->rps.last_adj;
1106 	new_delay = dev_priv->rps.cur_freq;
1107 	min = dev_priv->rps.min_freq_softlimit;
1108 	max = dev_priv->rps.max_freq_softlimit;
1109 	if (client_boost || any_waiters(dev_priv))
1110 		max = dev_priv->rps.max_freq;
1111 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1112 		new_delay = dev_priv->rps.boost_freq;
1113 		adj = 0;
1114 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1115 		if (adj > 0)
1116 			adj *= 2;
1117 		else /* CHV needs even encode values */
1118 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1119 		/*
1120 		 * For better performance, jump directly
1121 		 * to RPe if we're below it.
1122 		 */
1123 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1124 			new_delay = dev_priv->rps.efficient_freq;
1125 			adj = 0;
1126 		}
1127 	} else if (client_boost || any_waiters(dev_priv)) {
1128 		adj = 0;
1129 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1130 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1131 			new_delay = dev_priv->rps.efficient_freq;
1132 		else
1133 			new_delay = dev_priv->rps.min_freq_softlimit;
1134 		adj = 0;
1135 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1136 		if (adj < 0)
1137 			adj *= 2;
1138 		else /* CHV needs even encode values */
1139 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1140 	} else { /* unknown event */
1141 		adj = 0;
1142 	}
1143 
1144 	dev_priv->rps.last_adj = adj;
1145 
1146 	/* sysfs frequency interfaces may have snuck in while servicing the
1147 	 * interrupt
1148 	 */
1149 	new_delay += adj;
1150 	new_delay = clamp_t(int, new_delay, min, max);
1151 
1152 	intel_set_rps(dev_priv, new_delay);
1153 
1154 	mutex_unlock(&dev_priv->rps.hw_lock);
1155 }
1156 
1157 
1158 /**
1159  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1160  * occurred.
1161  * @work: workqueue struct
1162  *
1163  * Doesn't actually do anything except notify userspace. As a consequence of
1164  * this event, userspace should try to remap the bad rows since statistically
1165  * it is likely the same row is more likely to go bad again.
1166  */
1167 static void ivybridge_parity_work(struct work_struct *work)
1168 {
1169 	struct drm_i915_private *dev_priv =
1170 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1171 	u32 error_status, row, bank, subbank;
1172 	char *parity_event[6];
1173 	uint32_t misccpctl;
1174 	uint8_t slice = 0;
1175 
1176 	/* We must turn off DOP level clock gating to access the L3 registers.
1177 	 * In order to prevent a get/put style interface, acquire struct mutex
1178 	 * any time we access those registers.
1179 	 */
1180 	mutex_lock(&dev_priv->drm.struct_mutex);
1181 
1182 	/* If we've screwed up tracking, just let the interrupt fire again */
1183 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184 		goto out;
1185 
1186 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1187 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188 	POSTING_READ(GEN7_MISCCPCTL);
1189 
1190 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191 		i915_reg_t reg;
1192 
1193 		slice--;
1194 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1195 			break;
1196 
1197 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198 
1199 		reg = GEN7_L3CDERRST1(slice);
1200 
1201 		error_status = I915_READ(reg);
1202 		row = GEN7_PARITY_ERROR_ROW(error_status);
1203 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1204 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205 
1206 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207 		POSTING_READ(reg);
1208 
1209 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214 		parity_event[5] = NULL;
1215 
1216 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1217 				   KOBJ_CHANGE, parity_event);
1218 
1219 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220 			  slice, row, bank, subbank);
1221 
1222 		kfree(parity_event[4]);
1223 		kfree(parity_event[3]);
1224 		kfree(parity_event[2]);
1225 		kfree(parity_event[1]);
1226 	}
1227 
1228 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229 
1230 out:
1231 	WARN_ON(dev_priv->l3_parity.which_slice);
1232 	spin_lock_irq(&dev_priv->irq_lock);
1233 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1234 	spin_unlock_irq(&dev_priv->irq_lock);
1235 
1236 	mutex_unlock(&dev_priv->drm.struct_mutex);
1237 }
1238 
1239 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1240 					       u32 iir)
1241 {
1242 	if (!HAS_L3_DPF(dev_priv))
1243 		return;
1244 
1245 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1246 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1247 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1248 
1249 	iir &= GT_PARITY_ERROR(dev_priv);
1250 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1251 		dev_priv->l3_parity.which_slice |= 1 << 1;
1252 
1253 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1254 		dev_priv->l3_parity.which_slice |= 1 << 0;
1255 
1256 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1257 }
1258 
1259 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1260 			       u32 gt_iir)
1261 {
1262 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1263 		notify_ring(dev_priv->engine[RCS]);
1264 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1265 		notify_ring(dev_priv->engine[VCS]);
1266 }
1267 
1268 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1269 			       u32 gt_iir)
1270 {
1271 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1272 		notify_ring(dev_priv->engine[RCS]);
1273 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1274 		notify_ring(dev_priv->engine[VCS]);
1275 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1276 		notify_ring(dev_priv->engine[BCS]);
1277 
1278 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1279 		      GT_BSD_CS_ERROR_INTERRUPT |
1280 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1281 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1282 
1283 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1284 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1285 }
1286 
1287 static __always_inline void
1288 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1289 {
1290 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1291 		notify_ring(engine);
1292 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1293 		tasklet_schedule(&engine->irq_tasklet);
1294 }
1295 
1296 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1297 				   u32 master_ctl,
1298 				   u32 gt_iir[4])
1299 {
1300 	irqreturn_t ret = IRQ_NONE;
1301 
1302 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1303 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1304 		if (gt_iir[0]) {
1305 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1306 			ret = IRQ_HANDLED;
1307 		} else
1308 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1309 	}
1310 
1311 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1312 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1313 		if (gt_iir[1]) {
1314 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1315 			ret = IRQ_HANDLED;
1316 		} else
1317 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1318 	}
1319 
1320 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1321 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1322 		if (gt_iir[3]) {
1323 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1324 			ret = IRQ_HANDLED;
1325 		} else
1326 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1327 	}
1328 
1329 	if (master_ctl & GEN8_GT_PM_IRQ) {
1330 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1331 		if (gt_iir[2] & dev_priv->pm_rps_events) {
1332 			I915_WRITE_FW(GEN8_GT_IIR(2),
1333 				      gt_iir[2] & dev_priv->pm_rps_events);
1334 			ret = IRQ_HANDLED;
1335 		} else
1336 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1337 	}
1338 
1339 	return ret;
1340 }
1341 
1342 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1343 				u32 gt_iir[4])
1344 {
1345 	if (gt_iir[0]) {
1346 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1347 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1348 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1349 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1350 	}
1351 
1352 	if (gt_iir[1]) {
1353 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1354 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1355 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1356 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1357 	}
1358 
1359 	if (gt_iir[3])
1360 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1361 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1362 
1363 	if (gt_iir[2] & dev_priv->pm_rps_events)
1364 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1365 }
1366 
1367 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1368 {
1369 	switch (port) {
1370 	case PORT_A:
1371 		return val & PORTA_HOTPLUG_LONG_DETECT;
1372 	case PORT_B:
1373 		return val & PORTB_HOTPLUG_LONG_DETECT;
1374 	case PORT_C:
1375 		return val & PORTC_HOTPLUG_LONG_DETECT;
1376 	default:
1377 		return false;
1378 	}
1379 }
1380 
1381 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1382 {
1383 	switch (port) {
1384 	case PORT_E:
1385 		return val & PORTE_HOTPLUG_LONG_DETECT;
1386 	default:
1387 		return false;
1388 	}
1389 }
1390 
1391 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 	switch (port) {
1394 	case PORT_A:
1395 		return val & PORTA_HOTPLUG_LONG_DETECT;
1396 	case PORT_B:
1397 		return val & PORTB_HOTPLUG_LONG_DETECT;
1398 	case PORT_C:
1399 		return val & PORTC_HOTPLUG_LONG_DETECT;
1400 	case PORT_D:
1401 		return val & PORTD_HOTPLUG_LONG_DETECT;
1402 	default:
1403 		return false;
1404 	}
1405 }
1406 
1407 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1408 {
1409 	switch (port) {
1410 	case PORT_A:
1411 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1412 	default:
1413 		return false;
1414 	}
1415 }
1416 
1417 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1418 {
1419 	switch (port) {
1420 	case PORT_B:
1421 		return val & PORTB_HOTPLUG_LONG_DETECT;
1422 	case PORT_C:
1423 		return val & PORTC_HOTPLUG_LONG_DETECT;
1424 	case PORT_D:
1425 		return val & PORTD_HOTPLUG_LONG_DETECT;
1426 	default:
1427 		return false;
1428 	}
1429 }
1430 
1431 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 	switch (port) {
1434 	case PORT_B:
1435 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1436 	case PORT_C:
1437 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1438 	case PORT_D:
1439 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1440 	default:
1441 		return false;
1442 	}
1443 }
1444 
1445 /*
1446  * Get a bit mask of pins that have triggered, and which ones may be long.
1447  * This can be called multiple times with the same masks to accumulate
1448  * hotplug detection results from several registers.
1449  *
1450  * Note that the caller is expected to zero out the masks initially.
1451  */
1452 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1453 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1454 			     const u32 hpd[HPD_NUM_PINS],
1455 			     bool long_pulse_detect(enum port port, u32 val))
1456 {
1457 	enum port port;
1458 	int i;
1459 
1460 	for_each_hpd_pin(i) {
1461 		if ((hpd[i] & hotplug_trigger) == 0)
1462 			continue;
1463 
1464 		*pin_mask |= BIT(i);
1465 
1466 		if (!intel_hpd_pin_to_port(i, &port))
1467 			continue;
1468 
1469 		if (long_pulse_detect(port, dig_hotplug_reg))
1470 			*long_mask |= BIT(i);
1471 	}
1472 
1473 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1474 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1475 
1476 }
1477 
1478 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1479 {
1480 	wake_up_all(&dev_priv->gmbus_wait_queue);
1481 }
1482 
1483 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1484 {
1485 	wake_up_all(&dev_priv->gmbus_wait_queue);
1486 }
1487 
1488 #if defined(CONFIG_DEBUG_FS)
1489 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1490 					 enum i915_pipe pipe,
1491 					 uint32_t crc0, uint32_t crc1,
1492 					 uint32_t crc2, uint32_t crc3,
1493 					 uint32_t crc4)
1494 {
1495 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1496 	struct intel_pipe_crc_entry *entry;
1497 	int head, tail;
1498 
1499 	lockmgr(&pipe_crc->lock, LK_EXCLUSIVE);
1500 
1501 	if (!pipe_crc->entries) {
1502 		lockmgr(&pipe_crc->lock, LK_RELEASE);
1503 		DRM_DEBUG_KMS("spurious interrupt\n");
1504 		return;
1505 	}
1506 
1507 	head = pipe_crc->head;
1508 	tail = pipe_crc->tail;
1509 
1510 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1511 		lockmgr(&pipe_crc->lock, LK_RELEASE);
1512 		DRM_ERROR("CRC buffer overflowing\n");
1513 		return;
1514 	}
1515 
1516 	entry = &pipe_crc->entries[head];
1517 
1518 	entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1519 								 pipe);
1520 	entry->crc[0] = crc0;
1521 	entry->crc[1] = crc1;
1522 	entry->crc[2] = crc2;
1523 	entry->crc[3] = crc3;
1524 	entry->crc[4] = crc4;
1525 
1526 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1527 	pipe_crc->head = head;
1528 
1529 	lockmgr(&pipe_crc->lock, LK_RELEASE);
1530 
1531 	wake_up_interruptible(&pipe_crc->wq);
1532 }
1533 #else
1534 static inline void
1535 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1536 			     enum i915_pipe pipe,
1537 			     uint32_t crc0, uint32_t crc1,
1538 			     uint32_t crc2, uint32_t crc3,
1539 			     uint32_t crc4) {}
1540 #endif
1541 
1542 
1543 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1544 				     enum i915_pipe pipe)
1545 {
1546 	display_pipe_crc_irq_handler(dev_priv, pipe,
1547 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1548 				     0, 0, 0, 0);
1549 }
1550 
1551 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1552 				     enum i915_pipe pipe)
1553 {
1554 	display_pipe_crc_irq_handler(dev_priv, pipe,
1555 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1556 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1557 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1558 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1559 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1560 }
1561 
1562 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1563 				      enum i915_pipe pipe)
1564 {
1565 	uint32_t res1, res2;
1566 
1567 	if (INTEL_GEN(dev_priv) >= 3)
1568 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1569 	else
1570 		res1 = 0;
1571 
1572 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1573 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1574 	else
1575 		res2 = 0;
1576 
1577 	display_pipe_crc_irq_handler(dev_priv, pipe,
1578 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1579 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1580 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1581 				     res1, res2);
1582 }
1583 
1584 /* The RPS events need forcewake, so we add them to a work queue and mask their
1585  * IMR bits until the work is done. Other interrupts can be processed without
1586  * the work queue. */
1587 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1588 {
1589 	if (pm_iir & dev_priv->pm_rps_events) {
1590 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1591 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1592 		if (dev_priv->rps.interrupts_enabled) {
1593 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1594 			schedule_work(&dev_priv->rps.work);
1595 		}
1596 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1597 	}
1598 
1599 	if (INTEL_INFO(dev_priv)->gen >= 8)
1600 		return;
1601 
1602 	if (HAS_VEBOX(dev_priv)) {
1603 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1604 			notify_ring(dev_priv->engine[VECS]);
1605 
1606 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1607 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1608 	}
1609 }
1610 
1611 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1612 				     enum i915_pipe pipe)
1613 {
1614 	bool ret;
1615 
1616 	ret = drm_handle_vblank(&dev_priv->drm, pipe);
1617 	if (ret)
1618 		intel_finish_page_flip_mmio(dev_priv, pipe);
1619 
1620 	return ret;
1621 }
1622 
1623 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1624 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1625 {
1626 	int pipe;
1627 
1628 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1629 
1630 	if (!dev_priv->display_irqs_enabled) {
1631 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1632 		return;
1633 	}
1634 
1635 	for_each_pipe(dev_priv, pipe) {
1636 		i915_reg_t reg;
1637 		u32 mask, iir_bit = 0;
1638 
1639 		/*
1640 		 * PIPESTAT bits get signalled even when the interrupt is
1641 		 * disabled with the mask bits, and some of the status bits do
1642 		 * not generate interrupts at all (like the underrun bit). Hence
1643 		 * we need to be careful that we only handle what we want to
1644 		 * handle.
1645 		 */
1646 
1647 		/* fifo underruns are filterered in the underrun handler. */
1648 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1649 
1650 		switch (pipe) {
1651 		case PIPE_A:
1652 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1653 			break;
1654 		case PIPE_B:
1655 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1656 			break;
1657 		case PIPE_C:
1658 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1659 			break;
1660 		}
1661 		if (iir & iir_bit)
1662 			mask |= dev_priv->pipestat_irq_mask[pipe];
1663 
1664 		if (!mask)
1665 			continue;
1666 
1667 		reg = PIPESTAT(pipe);
1668 		mask |= PIPESTAT_INT_ENABLE_MASK;
1669 		pipe_stats[pipe] = I915_READ(reg) & mask;
1670 
1671 		/*
1672 		 * Clear the PIPE*STAT regs before the IIR
1673 		 */
1674 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1675 					PIPESTAT_INT_STATUS_MASK))
1676 			I915_WRITE(reg, pipe_stats[pipe]);
1677 	}
1678 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1679 }
1680 
1681 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1682 					    u32 pipe_stats[I915_MAX_PIPES])
1683 {
1684 	enum i915_pipe pipe;
1685 
1686 	for_each_pipe(dev_priv, pipe) {
1687 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1688 		    intel_pipe_handle_vblank(dev_priv, pipe))
1689 			intel_check_page_flip(dev_priv, pipe);
1690 
1691 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1692 			intel_finish_page_flip_cs(dev_priv, pipe);
1693 
1694 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1695 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1696 
1697 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1698 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1699 	}
1700 
1701 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1702 		gmbus_irq_handler(dev_priv);
1703 }
1704 
1705 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1706 {
1707 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1708 
1709 	if (hotplug_status)
1710 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1711 
1712 	return hotplug_status;
1713 }
1714 
1715 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1716 				 u32 hotplug_status)
1717 {
1718 	u32 pin_mask = 0, long_mask = 0;
1719 
1720 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1721 	    IS_CHERRYVIEW(dev_priv)) {
1722 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1723 
1724 		if (hotplug_trigger) {
1725 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1726 					   hotplug_trigger, hpd_status_g4x,
1727 					   i9xx_port_hotplug_long_detect);
1728 
1729 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1730 		}
1731 
1732 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1733 			dp_aux_irq_handler(dev_priv);
1734 	} else {
1735 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1736 
1737 		if (hotplug_trigger) {
1738 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1739 					   hotplug_trigger, hpd_status_i915,
1740 					   i9xx_port_hotplug_long_detect);
1741 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1742 		}
1743 	}
1744 }
1745 
1746 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1747 {
1748 	struct drm_device *dev = arg;
1749 	struct drm_i915_private *dev_priv = to_i915(dev);
1750 	irqreturn_t ret = IRQ_NONE;
1751 
1752 	if (!intel_irqs_enabled(dev_priv))
1753 		return IRQ_NONE;
1754 
1755 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1756 	disable_rpm_wakeref_asserts(dev_priv);
1757 
1758 	do {
1759 		u32 iir, gt_iir, pm_iir;
1760 		u32 pipe_stats[I915_MAX_PIPES] = {};
1761 		u32 hotplug_status = 0;
1762 		u32 ier = 0;
1763 
1764 		gt_iir = I915_READ(GTIIR);
1765 		pm_iir = I915_READ(GEN6_PMIIR);
1766 		iir = I915_READ(VLV_IIR);
1767 
1768 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1769 			break;
1770 
1771 		ret = IRQ_HANDLED;
1772 
1773 		/*
1774 		 * Theory on interrupt generation, based on empirical evidence:
1775 		 *
1776 		 * x = ((VLV_IIR & VLV_IER) ||
1777 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1778 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1779 		 *
1780 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1781 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1782 		 * guarantee the CPU interrupt will be raised again even if we
1783 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1784 		 * bits this time around.
1785 		 */
1786 		I915_WRITE(VLV_MASTER_IER, 0);
1787 		ier = I915_READ(VLV_IER);
1788 		I915_WRITE(VLV_IER, 0);
1789 
1790 		if (gt_iir)
1791 			I915_WRITE(GTIIR, gt_iir);
1792 		if (pm_iir)
1793 			I915_WRITE(GEN6_PMIIR, pm_iir);
1794 
1795 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1796 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1797 
1798 		/* Call regardless, as some status bits might not be
1799 		 * signalled in iir */
1800 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1801 
1802 		/*
1803 		 * VLV_IIR is single buffered, and reflects the level
1804 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1805 		 */
1806 		if (iir)
1807 			I915_WRITE(VLV_IIR, iir);
1808 
1809 		I915_WRITE(VLV_IER, ier);
1810 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1811 		POSTING_READ(VLV_MASTER_IER);
1812 
1813 		if (gt_iir)
1814 			snb_gt_irq_handler(dev_priv, gt_iir);
1815 		if (pm_iir)
1816 			gen6_rps_irq_handler(dev_priv, pm_iir);
1817 
1818 		if (hotplug_status)
1819 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1820 
1821 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1822 	} while (0);
1823 
1824 	enable_rpm_wakeref_asserts(dev_priv);
1825 
1826 	return ret;
1827 }
1828 
1829 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1830 {
1831 	struct drm_device *dev = arg;
1832 	struct drm_i915_private *dev_priv = to_i915(dev);
1833 	irqreturn_t ret = IRQ_NONE;
1834 
1835 	if (!intel_irqs_enabled(dev_priv))
1836 		return IRQ_NONE;
1837 
1838 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1839 	disable_rpm_wakeref_asserts(dev_priv);
1840 
1841 	do {
1842 		u32 master_ctl, iir;
1843 		u32 gt_iir[4] = {};
1844 		u32 pipe_stats[I915_MAX_PIPES] = {};
1845 		u32 hotplug_status = 0;
1846 		u32 ier = 0;
1847 
1848 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1849 		iir = I915_READ(VLV_IIR);
1850 
1851 		if (master_ctl == 0 && iir == 0)
1852 			break;
1853 
1854 		ret = IRQ_HANDLED;
1855 
1856 		/*
1857 		 * Theory on interrupt generation, based on empirical evidence:
1858 		 *
1859 		 * x = ((VLV_IIR & VLV_IER) ||
1860 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1861 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1862 		 *
1863 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1864 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1865 		 * guarantee the CPU interrupt will be raised again even if we
1866 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1867 		 * bits this time around.
1868 		 */
1869 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1870 		ier = I915_READ(VLV_IER);
1871 		I915_WRITE(VLV_IER, 0);
1872 
1873 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1874 
1875 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1876 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1877 
1878 		/* Call regardless, as some status bits might not be
1879 		 * signalled in iir */
1880 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1881 
1882 		/*
1883 		 * VLV_IIR is single buffered, and reflects the level
1884 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1885 		 */
1886 		if (iir)
1887 			I915_WRITE(VLV_IIR, iir);
1888 
1889 		I915_WRITE(VLV_IER, ier);
1890 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1891 		POSTING_READ(GEN8_MASTER_IRQ);
1892 
1893 		gen8_gt_irq_handler(dev_priv, gt_iir);
1894 
1895 		if (hotplug_status)
1896 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1897 
1898 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1899 	} while (0);
1900 
1901 	enable_rpm_wakeref_asserts(dev_priv);
1902 
1903 	return ret;
1904 }
1905 
1906 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1907 				u32 hotplug_trigger,
1908 				const u32 hpd[HPD_NUM_PINS])
1909 {
1910 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1911 
1912 	/*
1913 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1914 	 * unless we touch the hotplug register, even if hotplug_trigger is
1915 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1916 	 * errors.
1917 	 */
1918 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1919 	if (!hotplug_trigger) {
1920 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1921 			PORTD_HOTPLUG_STATUS_MASK |
1922 			PORTC_HOTPLUG_STATUS_MASK |
1923 			PORTB_HOTPLUG_STATUS_MASK;
1924 		dig_hotplug_reg &= ~mask;
1925 	}
1926 
1927 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1928 	if (!hotplug_trigger)
1929 		return;
1930 
1931 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1932 			   dig_hotplug_reg, hpd,
1933 			   pch_port_hotplug_long_detect);
1934 
1935 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936 }
1937 
1938 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1939 {
1940 	int pipe;
1941 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1942 
1943 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1944 
1945 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1946 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1947 			       SDE_AUDIO_POWER_SHIFT);
1948 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1949 				 port_name(port));
1950 	}
1951 
1952 	if (pch_iir & SDE_AUX_MASK)
1953 		dp_aux_irq_handler(dev_priv);
1954 
1955 	if (pch_iir & SDE_GMBUS)
1956 		gmbus_irq_handler(dev_priv);
1957 
1958 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1959 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1960 
1961 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1962 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1963 
1964 	if (pch_iir & SDE_POISON)
1965 		DRM_ERROR("PCH poison interrupt\n");
1966 
1967 	if (pch_iir & SDE_FDI_MASK)
1968 		for_each_pipe(dev_priv, pipe)
1969 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1970 					 pipe_name(pipe),
1971 					 I915_READ(FDI_RX_IIR(pipe)));
1972 
1973 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1974 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1975 
1976 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1977 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1978 
1979 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1980 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1981 
1982 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1983 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1984 }
1985 
1986 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1987 {
1988 	u32 err_int = I915_READ(GEN7_ERR_INT);
1989 	enum i915_pipe pipe;
1990 
1991 	if (err_int & ERR_INT_POISON)
1992 		DRM_ERROR("Poison interrupt\n");
1993 
1994 	for_each_pipe(dev_priv, pipe) {
1995 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1996 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1997 
1998 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1999 			if (IS_IVYBRIDGE(dev_priv))
2000 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2001 			else
2002 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2003 		}
2004 	}
2005 
2006 	I915_WRITE(GEN7_ERR_INT, err_int);
2007 }
2008 
2009 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2010 {
2011 	u32 serr_int = I915_READ(SERR_INT);
2012 
2013 	if (serr_int & SERR_INT_POISON)
2014 		DRM_ERROR("PCH poison interrupt\n");
2015 
2016 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2017 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2018 
2019 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2020 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2021 
2022 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2023 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2024 
2025 	I915_WRITE(SERR_INT, serr_int);
2026 }
2027 
2028 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2029 {
2030 	int pipe;
2031 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2032 
2033 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2034 
2035 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2036 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2037 			       SDE_AUDIO_POWER_SHIFT_CPT);
2038 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2039 				 port_name(port));
2040 	}
2041 
2042 	if (pch_iir & SDE_AUX_MASK_CPT)
2043 		dp_aux_irq_handler(dev_priv);
2044 
2045 	if (pch_iir & SDE_GMBUS_CPT)
2046 		gmbus_irq_handler(dev_priv);
2047 
2048 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2049 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2050 
2051 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2052 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2053 
2054 	if (pch_iir & SDE_FDI_MASK_CPT)
2055 		for_each_pipe(dev_priv, pipe)
2056 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2057 					 pipe_name(pipe),
2058 					 I915_READ(FDI_RX_IIR(pipe)));
2059 
2060 	if (pch_iir & SDE_ERROR_CPT)
2061 		cpt_serr_int_handler(dev_priv);
2062 }
2063 
2064 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2065 {
2066 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2067 		~SDE_PORTE_HOTPLUG_SPT;
2068 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2069 	u32 pin_mask = 0, long_mask = 0;
2070 
2071 	if (hotplug_trigger) {
2072 		u32 dig_hotplug_reg;
2073 
2074 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2075 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2076 
2077 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2078 				   dig_hotplug_reg, hpd_spt,
2079 				   spt_port_hotplug_long_detect);
2080 	}
2081 
2082 	if (hotplug2_trigger) {
2083 		u32 dig_hotplug_reg;
2084 
2085 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2086 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2087 
2088 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2089 				   dig_hotplug_reg, hpd_spt,
2090 				   spt_port_hotplug2_long_detect);
2091 	}
2092 
2093 	if (pin_mask)
2094 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2095 
2096 	if (pch_iir & SDE_GMBUS_CPT)
2097 		gmbus_irq_handler(dev_priv);
2098 }
2099 
2100 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2101 				u32 hotplug_trigger,
2102 				const u32 hpd[HPD_NUM_PINS])
2103 {
2104 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2105 
2106 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2107 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2108 
2109 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2110 			   dig_hotplug_reg, hpd,
2111 			   ilk_port_hotplug_long_detect);
2112 
2113 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2114 }
2115 
2116 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2117 				    u32 de_iir)
2118 {
2119 	enum i915_pipe pipe;
2120 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2121 
2122 	if (hotplug_trigger)
2123 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2124 
2125 	if (de_iir & DE_AUX_CHANNEL_A)
2126 		dp_aux_irq_handler(dev_priv);
2127 
2128 	if (de_iir & DE_GSE)
2129 		intel_opregion_asle_intr(dev_priv);
2130 
2131 	if (de_iir & DE_POISON)
2132 		DRM_ERROR("Poison interrupt\n");
2133 
2134 	for_each_pipe(dev_priv, pipe) {
2135 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2136 		    intel_pipe_handle_vblank(dev_priv, pipe))
2137 			intel_check_page_flip(dev_priv, pipe);
2138 
2139 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2140 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2141 
2142 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2143 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2144 
2145 		/* plane/pipes map 1:1 on ilk+ */
2146 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2147 			intel_finish_page_flip_cs(dev_priv, pipe);
2148 	}
2149 
2150 	/* check event from PCH */
2151 	if (de_iir & DE_PCH_EVENT) {
2152 		u32 pch_iir = I915_READ(SDEIIR);
2153 
2154 		if (HAS_PCH_CPT(dev_priv))
2155 			cpt_irq_handler(dev_priv, pch_iir);
2156 		else
2157 			ibx_irq_handler(dev_priv, pch_iir);
2158 
2159 		/* should clear PCH hotplug event before clear CPU irq */
2160 		I915_WRITE(SDEIIR, pch_iir);
2161 	}
2162 
2163 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2164 		ironlake_rps_change_irq_handler(dev_priv);
2165 }
2166 
2167 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2168 				    u32 de_iir)
2169 {
2170 	enum i915_pipe pipe;
2171 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2172 
2173 	if (hotplug_trigger)
2174 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2175 
2176 	if (de_iir & DE_ERR_INT_IVB)
2177 		ivb_err_int_handler(dev_priv);
2178 
2179 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2180 		dp_aux_irq_handler(dev_priv);
2181 
2182 	if (de_iir & DE_GSE_IVB)
2183 		intel_opregion_asle_intr(dev_priv);
2184 
2185 	for_each_pipe(dev_priv, pipe) {
2186 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2187 		    intel_pipe_handle_vblank(dev_priv, pipe))
2188 			intel_check_page_flip(dev_priv, pipe);
2189 
2190 		/* plane/pipes map 1:1 on ilk+ */
2191 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2192 			intel_finish_page_flip_cs(dev_priv, pipe);
2193 	}
2194 
2195 	/* check event from PCH */
2196 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2197 		u32 pch_iir = I915_READ(SDEIIR);
2198 
2199 		cpt_irq_handler(dev_priv, pch_iir);
2200 
2201 		/* clear PCH hotplug event before clear CPU irq */
2202 		I915_WRITE(SDEIIR, pch_iir);
2203 	}
2204 }
2205 
2206 /*
2207  * To handle irqs with the minimum potential races with fresh interrupts, we:
2208  * 1 - Disable Master Interrupt Control.
2209  * 2 - Find the source(s) of the interrupt.
2210  * 3 - Clear the Interrupt Identity bits (IIR).
2211  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2212  * 5 - Re-enable Master Interrupt Control.
2213  */
2214 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2215 {
2216 	struct drm_device *dev = arg;
2217 	struct drm_i915_private *dev_priv = to_i915(dev);
2218 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2219 	irqreturn_t ret = IRQ_NONE;
2220 
2221 	if (!intel_irqs_enabled(dev_priv))
2222 		return IRQ_NONE;
2223 
2224 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2225 	disable_rpm_wakeref_asserts(dev_priv);
2226 
2227 	/* disable master interrupt before clearing iir  */
2228 	de_ier = I915_READ(DEIER);
2229 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2230 	POSTING_READ(DEIER);
2231 
2232 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2233 	 * interrupts will will be stored on its back queue, and then we'll be
2234 	 * able to process them after we restore SDEIER (as soon as we restore
2235 	 * it, we'll get an interrupt if SDEIIR still has something to process
2236 	 * due to its back queue). */
2237 	if (!HAS_PCH_NOP(dev_priv)) {
2238 		sde_ier = I915_READ(SDEIER);
2239 		I915_WRITE(SDEIER, 0);
2240 		POSTING_READ(SDEIER);
2241 	}
2242 
2243 	/* Find, clear, then process each source of interrupt */
2244 
2245 	gt_iir = I915_READ(GTIIR);
2246 	if (gt_iir) {
2247 		I915_WRITE(GTIIR, gt_iir);
2248 		ret = IRQ_HANDLED;
2249 		if (INTEL_GEN(dev_priv) >= 6)
2250 			snb_gt_irq_handler(dev_priv, gt_iir);
2251 		else
2252 			ilk_gt_irq_handler(dev_priv, gt_iir);
2253 	}
2254 
2255 	de_iir = I915_READ(DEIIR);
2256 	if (de_iir) {
2257 		I915_WRITE(DEIIR, de_iir);
2258 		ret = IRQ_HANDLED;
2259 		if (INTEL_GEN(dev_priv) >= 7)
2260 			ivb_display_irq_handler(dev_priv, de_iir);
2261 		else
2262 			ilk_display_irq_handler(dev_priv, de_iir);
2263 	}
2264 
2265 	if (INTEL_GEN(dev_priv) >= 6) {
2266 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2267 		if (pm_iir) {
2268 			I915_WRITE(GEN6_PMIIR, pm_iir);
2269 			ret = IRQ_HANDLED;
2270 			gen6_rps_irq_handler(dev_priv, pm_iir);
2271 		}
2272 	}
2273 
2274 	I915_WRITE(DEIER, de_ier);
2275 	POSTING_READ(DEIER);
2276 	if (!HAS_PCH_NOP(dev_priv)) {
2277 		I915_WRITE(SDEIER, sde_ier);
2278 		POSTING_READ(SDEIER);
2279 	}
2280 
2281 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2282 	enable_rpm_wakeref_asserts(dev_priv);
2283 
2284 	return ret;
2285 }
2286 
2287 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2288 				u32 hotplug_trigger,
2289 				const u32 hpd[HPD_NUM_PINS])
2290 {
2291 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2292 
2293 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2294 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2295 
2296 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2297 			   dig_hotplug_reg, hpd,
2298 			   bxt_port_hotplug_long_detect);
2299 
2300 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2301 }
2302 
2303 static irqreturn_t
2304 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2305 {
2306 	irqreturn_t ret = IRQ_NONE;
2307 	u32 iir;
2308 	enum i915_pipe pipe;
2309 
2310 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2311 		iir = I915_READ(GEN8_DE_MISC_IIR);
2312 		if (iir) {
2313 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2314 			ret = IRQ_HANDLED;
2315 			if (iir & GEN8_DE_MISC_GSE)
2316 				intel_opregion_asle_intr(dev_priv);
2317 			else
2318 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2319 		}
2320 		else
2321 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2322 	}
2323 
2324 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2325 		iir = I915_READ(GEN8_DE_PORT_IIR);
2326 		if (iir) {
2327 			u32 tmp_mask;
2328 			bool found = false;
2329 
2330 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2331 			ret = IRQ_HANDLED;
2332 
2333 			tmp_mask = GEN8_AUX_CHANNEL_A;
2334 			if (INTEL_INFO(dev_priv)->gen >= 9)
2335 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2336 					    GEN9_AUX_CHANNEL_C |
2337 					    GEN9_AUX_CHANNEL_D;
2338 
2339 			if (iir & tmp_mask) {
2340 				dp_aux_irq_handler(dev_priv);
2341 				found = true;
2342 			}
2343 
2344 			if (IS_BROXTON(dev_priv)) {
2345 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2346 				if (tmp_mask) {
2347 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2348 							    hpd_bxt);
2349 					found = true;
2350 				}
2351 			} else if (IS_BROADWELL(dev_priv)) {
2352 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2353 				if (tmp_mask) {
2354 					ilk_hpd_irq_handler(dev_priv,
2355 							    tmp_mask, hpd_bdw);
2356 					found = true;
2357 				}
2358 			}
2359 
2360 			if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2361 				gmbus_irq_handler(dev_priv);
2362 				found = true;
2363 			}
2364 
2365 			if (!found)
2366 				DRM_ERROR("Unexpected DE Port interrupt\n");
2367 		}
2368 		else
2369 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2370 	}
2371 
2372 	for_each_pipe(dev_priv, pipe) {
2373 		u32 flip_done, fault_errors;
2374 
2375 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2376 			continue;
2377 
2378 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2379 		if (!iir) {
2380 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2381 			continue;
2382 		}
2383 
2384 		ret = IRQ_HANDLED;
2385 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2386 
2387 		if (iir & GEN8_PIPE_VBLANK &&
2388 		    intel_pipe_handle_vblank(dev_priv, pipe))
2389 			intel_check_page_flip(dev_priv, pipe);
2390 
2391 		flip_done = iir;
2392 		if (INTEL_INFO(dev_priv)->gen >= 9)
2393 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2394 		else
2395 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2396 
2397 		if (flip_done)
2398 			intel_finish_page_flip_cs(dev_priv, pipe);
2399 
2400 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2401 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2402 
2403 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2404 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2405 
2406 		fault_errors = iir;
2407 		if (INTEL_INFO(dev_priv)->gen >= 9)
2408 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2409 		else
2410 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2411 
2412 		if (fault_errors)
2413 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2414 				  pipe_name(pipe),
2415 				  fault_errors);
2416 	}
2417 
2418 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2419 	    master_ctl & GEN8_DE_PCH_IRQ) {
2420 		/*
2421 		 * FIXME(BDW): Assume for now that the new interrupt handling
2422 		 * scheme also closed the SDE interrupt handling race we've seen
2423 		 * on older pch-split platforms. But this needs testing.
2424 		 */
2425 		iir = I915_READ(SDEIIR);
2426 		if (iir) {
2427 			I915_WRITE(SDEIIR, iir);
2428 			ret = IRQ_HANDLED;
2429 
2430 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2431 				spt_irq_handler(dev_priv, iir);
2432 			else
2433 				cpt_irq_handler(dev_priv, iir);
2434 		} else {
2435 			/*
2436 			 * Like on previous PCH there seems to be something
2437 			 * fishy going on with forwarding PCH interrupts.
2438 			 */
2439 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2440 		}
2441 	}
2442 
2443 	return ret;
2444 }
2445 
2446 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2447 {
2448 	struct drm_device *dev = arg;
2449 	struct drm_i915_private *dev_priv = to_i915(dev);
2450 	u32 master_ctl;
2451 	u32 gt_iir[4] = {};
2452 	irqreturn_t ret;
2453 
2454 	if (!intel_irqs_enabled(dev_priv))
2455 		return IRQ_NONE;
2456 
2457 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2458 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2459 	if (!master_ctl)
2460 		return IRQ_NONE;
2461 
2462 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2463 
2464 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2465 	disable_rpm_wakeref_asserts(dev_priv);
2466 
2467 	/* Find, clear, then process each source of interrupt */
2468 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2469 	gen8_gt_irq_handler(dev_priv, gt_iir);
2470 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2471 
2472 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2473 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2474 
2475 	enable_rpm_wakeref_asserts(dev_priv);
2476 
2477 	return ret;
2478 }
2479 
2480 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2481 {
2482 	/*
2483 	 * Notify all waiters for GPU completion events that reset state has
2484 	 * been changed, and that they need to restart their wait after
2485 	 * checking for potential errors (and bail out to drop locks if there is
2486 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2487 	 */
2488 
2489 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2490 	wake_up_all(&dev_priv->gpu_error.wait_queue);
2491 
2492 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2493 	wake_up_all(&dev_priv->pending_flip_queue);
2494 }
2495 
2496 /**
2497  * i915_reset_and_wakeup - do process context error handling work
2498  * @dev_priv: i915 device private
2499  *
2500  * Fire an error uevent so userspace can see that a hang or error
2501  * was detected.
2502  */
2503 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2504 {
2505 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2506 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2507 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2508 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2509 
2510 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2511 
2512 	DRM_DEBUG_DRIVER("resetting chip\n");
2513 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2514 
2515 	/*
2516 	 * In most cases it's guaranteed that we get here with an RPM
2517 	 * reference held, for example because there is a pending GPU
2518 	 * request that won't finish until the reset is done. This
2519 	 * isn't the case at least when we get here by doing a
2520 	 * simulated reset via debugs, so get an RPM reference.
2521 	 */
2522 	intel_runtime_pm_get(dev_priv);
2523 	intel_prepare_reset(dev_priv);
2524 
2525 	do {
2526 		/*
2527 		 * All state reset _must_ be completed before we update the
2528 		 * reset counter, for otherwise waiters might miss the reset
2529 		 * pending state and not properly drop locks, resulting in
2530 		 * deadlocks with the reset work.
2531 		 */
2532 		if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2533 			i915_reset(dev_priv);
2534 			mutex_unlock(&dev_priv->drm.struct_mutex);
2535 		}
2536 
2537 		/* We need to wait for anyone holding the lock to wakeup */
2538 	} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2539 				     I915_RESET_IN_PROGRESS,
2540 				     TASK_UNINTERRUPTIBLE,
2541 				     HZ));
2542 
2543 	intel_finish_reset(dev_priv);
2544 	intel_runtime_pm_put(dev_priv);
2545 
2546 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2547 		kobject_uevent_env(kobj,
2548 				   KOBJ_CHANGE, reset_done_event);
2549 
2550 	/*
2551 	 * Note: The wake_up also serves as a memory barrier so that
2552 	 * waiters see the updated value of the dev_priv->gpu_error.
2553 	 */
2554 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2555 }
2556 
2557 static inline void
2558 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2559 			struct intel_instdone *instdone)
2560 {
2561 	int slice;
2562 	int subslice;
2563 
2564 	pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2565 
2566 	if (INTEL_GEN(dev_priv) <= 3)
2567 		return;
2568 
2569 	pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2570 
2571 	if (INTEL_GEN(dev_priv) <= 6)
2572 		return;
2573 
2574 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2575 		pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2576 		       slice, subslice, instdone->sampler[slice][subslice]);
2577 
2578 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2579 		pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2580 		       slice, subslice, instdone->row[slice][subslice]);
2581 }
2582 
2583 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2584 {
2585 	u32 eir;
2586 
2587 	if (!IS_GEN2(dev_priv))
2588 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2589 
2590 	if (INTEL_GEN(dev_priv) < 4)
2591 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2592 	else
2593 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2594 
2595 	I915_WRITE(EIR, I915_READ(EIR));
2596 	eir = I915_READ(EIR);
2597 	if (eir) {
2598 		/*
2599 		 * some errors might have become stuck,
2600 		 * mask them.
2601 		 */
2602 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2603 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2604 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2605 	}
2606 }
2607 
2608 /**
2609  * i915_handle_error - handle a gpu error
2610  * @dev_priv: i915 device private
2611  * @engine_mask: mask representing engines that are hung
2612  * Do some basic checking of register state at error time and
2613  * dump it to the syslog.  Also call i915_capture_error_state() to make
2614  * sure we get a record and make it available in debugfs.  Fire a uevent
2615  * so userspace knows something bad happened (should trigger collection
2616  * of a ring dump etc.).
2617  * @fmt: Error message format string
2618  */
2619 void i915_handle_error(struct drm_i915_private *dev_priv,
2620 		       u32 engine_mask,
2621 		       const char *fmt, ...)
2622 {
2623 	va_list args;
2624 	char error_msg[80];
2625 
2626 	va_start(args, fmt);
2627 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2628 	va_end(args);
2629 
2630 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2631 	i915_clear_error_registers(dev_priv);
2632 
2633 	if (!engine_mask)
2634 		return;
2635 
2636 	if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2637 			     &dev_priv->gpu_error.flags))
2638 		return;
2639 
2640 	/*
2641 	 * Wakeup waiting processes so that the reset function
2642 	 * i915_reset_and_wakeup doesn't deadlock trying to grab
2643 	 * various locks. By bumping the reset counter first, the woken
2644 	 * processes will see a reset in progress and back off,
2645 	 * releasing their locks and then wait for the reset completion.
2646 	 * We must do this for _all_ gpu waiters that might hold locks
2647 	 * that the reset work needs to acquire.
2648 	 *
2649 	 * Note: The wake_up also provides a memory barrier to ensure that the
2650 	 * waiters see the updated value of the reset flags.
2651 	 */
2652 	i915_error_wake_up(dev_priv);
2653 
2654 	i915_reset_and_wakeup(dev_priv);
2655 }
2656 
2657 /* Called from drm generic code, passed 'crtc' which
2658  * we use as a pipe index
2659  */
2660 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2661 {
2662 	struct drm_i915_private *dev_priv = to_i915(dev);
2663 	unsigned long irqflags;
2664 
2665 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2666 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2667 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2668 
2669 	return 0;
2670 }
2671 
2672 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2673 {
2674 	struct drm_i915_private *dev_priv = to_i915(dev);
2675 	unsigned long irqflags;
2676 
2677 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2678 	i915_enable_pipestat(dev_priv, pipe,
2679 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2680 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2681 
2682 	return 0;
2683 }
2684 
2685 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2686 {
2687 	struct drm_i915_private *dev_priv = to_i915(dev);
2688 	unsigned long irqflags;
2689 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2690 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2691 
2692 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2693 	ilk_enable_display_irq(dev_priv, bit);
2694 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2695 
2696 	return 0;
2697 }
2698 
2699 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2700 {
2701 	struct drm_i915_private *dev_priv = to_i915(dev);
2702 	unsigned long irqflags;
2703 
2704 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2705 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2706 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2707 
2708 	return 0;
2709 }
2710 
2711 /* Called from drm generic code, passed 'crtc' which
2712  * we use as a pipe index
2713  */
2714 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2715 {
2716 	struct drm_i915_private *dev_priv = to_i915(dev);
2717 	unsigned long irqflags;
2718 
2719 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2720 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2721 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2722 }
2723 
2724 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2725 {
2726 	struct drm_i915_private *dev_priv = to_i915(dev);
2727 	unsigned long irqflags;
2728 
2729 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2730 	i915_disable_pipestat(dev_priv, pipe,
2731 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2732 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2733 }
2734 
2735 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2736 {
2737 	struct drm_i915_private *dev_priv = to_i915(dev);
2738 	unsigned long irqflags;
2739 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2740 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2741 
2742 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2743 	ilk_disable_display_irq(dev_priv, bit);
2744 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2745 }
2746 
2747 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2748 {
2749 	struct drm_i915_private *dev_priv = to_i915(dev);
2750 	unsigned long irqflags;
2751 
2752 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755 }
2756 
2757 static bool
2758 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2759 {
2760 	if (INTEL_GEN(engine->i915) >= 8) {
2761 		return (ipehr >> 23) == 0x1c;
2762 	} else {
2763 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2764 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2765 				 MI_SEMAPHORE_REGISTER);
2766 	}
2767 }
2768 
2769 static struct intel_engine_cs *
2770 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2771 				 u64 offset)
2772 {
2773 	struct drm_i915_private *dev_priv = engine->i915;
2774 	struct intel_engine_cs *signaller;
2775 	enum intel_engine_id id;
2776 
2777 	if (INTEL_GEN(dev_priv) >= 8) {
2778 		for_each_engine(signaller, dev_priv, id) {
2779 			if (engine == signaller)
2780 				continue;
2781 
2782 			if (offset == signaller->semaphore.signal_ggtt[engine->hw_id])
2783 				return signaller;
2784 		}
2785 	} else {
2786 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2787 
2788 		for_each_engine(signaller, dev_priv, id) {
2789 			if(engine == signaller)
2790 				continue;
2791 
2792 			if (sync_bits == signaller->semaphore.mbox.wait[engine->hw_id])
2793 				return signaller;
2794 		}
2795 	}
2796 
2797 	DRM_DEBUG_DRIVER("No signaller ring found for %s, ipehr 0x%08x, offset 0x%016llx\n",
2798 			 engine->name, ipehr, offset);
2799 
2800 	return ERR_PTR(-ENODEV);
2801 }
2802 
2803 static struct intel_engine_cs *
2804 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2805 {
2806 	struct drm_i915_private *dev_priv = engine->i915;
2807 	void __iomem *vaddr;
2808 	u32 cmd, ipehr, head;
2809 	u64 offset = 0;
2810 	int i, backwards;
2811 
2812 	/*
2813 	 * This function does not support execlist mode - any attempt to
2814 	 * proceed further into this function will result in a kernel panic
2815 	 * when dereferencing ring->buffer, which is not set up in execlist
2816 	 * mode.
2817 	 *
2818 	 * The correct way of doing it would be to derive the currently
2819 	 * executing ring buffer from the current context, which is derived
2820 	 * from the currently running request. Unfortunately, to get the
2821 	 * current request we would have to grab the struct_mutex before doing
2822 	 * anything else, which would be ill-advised since some other thread
2823 	 * might have grabbed it already and managed to hang itself, causing
2824 	 * the hang checker to deadlock.
2825 	 *
2826 	 * Therefore, this function does not support execlist mode in its
2827 	 * current form. Just return NULL and move on.
2828 	 */
2829 	if (engine->buffer == NULL)
2830 		return NULL;
2831 
2832 	ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2833 	if (!ipehr_is_semaphore_wait(engine, ipehr))
2834 		return NULL;
2835 
2836 	/*
2837 	 * HEAD is likely pointing to the dword after the actual command,
2838 	 * so scan backwards until we find the MBOX. But limit it to just 3
2839 	 * or 4 dwords depending on the semaphore wait command size.
2840 	 * Note that we don't care about ACTHD here since that might
2841 	 * point at at batch, and semaphores are always emitted into the
2842 	 * ringbuffer itself.
2843 	 */
2844 	head = I915_READ_HEAD(engine) & HEAD_ADDR;
2845 	backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2846 	vaddr = (void __iomem *)engine->buffer->vaddr;
2847 
2848 	for (i = backwards; i; --i) {
2849 		/*
2850 		 * Be paranoid and presume the hw has gone off into the wild -
2851 		 * our ring is smaller than what the hardware (and hence
2852 		 * HEAD_ADDR) allows. Also handles wrap-around.
2853 		 */
2854 		head &= engine->buffer->size - 1;
2855 
2856 		/* This here seems to blow up */
2857 		cmd = ioread32(vaddr + head);
2858 		if (cmd == ipehr)
2859 			break;
2860 
2861 		head -= 4;
2862 	}
2863 
2864 	if (!i)
2865 		return NULL;
2866 
2867 	*seqno = ioread32(vaddr + head + 4) + 1;
2868 	if (INTEL_GEN(dev_priv) >= 8) {
2869 		offset = ioread32(vaddr + head + 12);
2870 		offset <<= 32;
2871 		offset |= ioread32(vaddr + head + 8);
2872 	}
2873 	return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2874 }
2875 
2876 static int semaphore_passed(struct intel_engine_cs *engine)
2877 {
2878 	struct drm_i915_private *dev_priv = engine->i915;
2879 	struct intel_engine_cs *signaller;
2880 	u32 seqno;
2881 
2882 	engine->hangcheck.deadlock++;
2883 
2884 	signaller = semaphore_waits_for(engine, &seqno);
2885 	if (signaller == NULL)
2886 		return -1;
2887 
2888 	if (IS_ERR(signaller))
2889 		return 0;
2890 
2891 	/* Prevent pathological recursion due to driver bugs */
2892 	if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2893 		return -1;
2894 
2895 	if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2896 		return 1;
2897 
2898 	/* cursory check for an unkickable deadlock */
2899 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2900 	    semaphore_passed(signaller) < 0)
2901 		return -1;
2902 
2903 	return 0;
2904 }
2905 
2906 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2907 {
2908 	struct intel_engine_cs *engine;
2909 	enum intel_engine_id id;
2910 
2911 	for_each_engine(engine, dev_priv, id)
2912 		engine->hangcheck.deadlock = 0;
2913 }
2914 
2915 static bool instdone_unchanged(u32 current_instdone, u32 *old_instdone)
2916 {
2917 	u32 tmp = current_instdone | *old_instdone;
2918 	bool unchanged;
2919 
2920 	unchanged = tmp == *old_instdone;
2921 	*old_instdone |= tmp;
2922 
2923 	return unchanged;
2924 }
2925 
2926 static bool subunits_stuck(struct intel_engine_cs *engine)
2927 {
2928 	struct drm_i915_private *dev_priv = engine->i915;
2929 	struct intel_instdone instdone;
2930 	struct intel_instdone *accu_instdone = &engine->hangcheck.instdone;
2931 	bool stuck;
2932 	int slice;
2933 	int subslice;
2934 
2935 	if (engine->id != RCS)
2936 		return true;
2937 
2938 	intel_engine_get_instdone(engine, &instdone);
2939 
2940 	/* There might be unstable subunit states even when
2941 	 * actual head is not moving. Filter out the unstable ones by
2942 	 * accumulating the undone -> done transitions and only
2943 	 * consider those as progress.
2944 	 */
2945 	stuck = instdone_unchanged(instdone.instdone,
2946 				   &accu_instdone->instdone);
2947 	stuck &= instdone_unchanged(instdone.slice_common,
2948 				    &accu_instdone->slice_common);
2949 
2950 	for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
2951 		stuck &= instdone_unchanged(instdone.sampler[slice][subslice],
2952 					    &accu_instdone->sampler[slice][subslice]);
2953 		stuck &= instdone_unchanged(instdone.row[slice][subslice],
2954 					    &accu_instdone->row[slice][subslice]);
2955 	}
2956 
2957 	return stuck;
2958 }
2959 
2960 static enum intel_engine_hangcheck_action
2961 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2962 {
2963 	if (acthd != engine->hangcheck.acthd) {
2964 
2965 		/* Clear subunit states on head movement */
2966 		memset(&engine->hangcheck.instdone, 0,
2967 		       sizeof(engine->hangcheck.instdone));
2968 
2969 		return HANGCHECK_ACTIVE;
2970 	}
2971 
2972 	if (!subunits_stuck(engine))
2973 		return HANGCHECK_ACTIVE;
2974 
2975 	return HANGCHECK_HUNG;
2976 }
2977 
2978 static enum intel_engine_hangcheck_action
2979 engine_stuck(struct intel_engine_cs *engine, u64 acthd)
2980 {
2981 	struct drm_i915_private *dev_priv = engine->i915;
2982 	enum intel_engine_hangcheck_action ha;
2983 	u32 tmp;
2984 
2985 	ha = head_stuck(engine, acthd);
2986 	if (ha != HANGCHECK_HUNG)
2987 		return ha;
2988 
2989 	if (IS_GEN2(dev_priv))
2990 		return HANGCHECK_HUNG;
2991 
2992 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2993 	 * If so we can simply poke the RB_WAIT bit
2994 	 * and break the hang. This should work on
2995 	 * all but the second generation chipsets.
2996 	 */
2997 	tmp = I915_READ_CTL(engine);
2998 	if (tmp & RING_WAIT) {
2999 		i915_handle_error(dev_priv, 0,
3000 				  "Kicking stuck wait on %s",
3001 				  engine->name);
3002 		I915_WRITE_CTL(engine, tmp);
3003 		return HANGCHECK_KICK;
3004 	}
3005 
3006 	if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3007 		switch (semaphore_passed(engine)) {
3008 		default:
3009 			return HANGCHECK_HUNG;
3010 		case 1:
3011 			i915_handle_error(dev_priv, 0,
3012 					  "Kicking stuck semaphore on %s",
3013 					  engine->name);
3014 			I915_WRITE_CTL(engine, tmp);
3015 			return HANGCHECK_KICK;
3016 		case 0:
3017 			return HANGCHECK_WAIT;
3018 		}
3019 	}
3020 
3021 	return HANGCHECK_HUNG;
3022 }
3023 
3024 /*
3025  * This is called when the chip hasn't reported back with completed
3026  * batchbuffers in a long time. We keep track per ring seqno progress and
3027  * if there are no progress, hangcheck score for that ring is increased.
3028  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3029  * we kick the ring. If we see no progress on three subsequent calls
3030  * we assume chip is wedged and try to fix it by resetting the chip.
3031  */
3032 static void i915_hangcheck_elapsed(struct work_struct *work)
3033 {
3034 	struct drm_i915_private *dev_priv =
3035 		container_of(work, typeof(*dev_priv),
3036 			     gpu_error.hangcheck_work.work);
3037 	struct intel_engine_cs *engine;
3038 	enum intel_engine_id id;
3039 	unsigned int hung = 0, stuck = 0;
3040 	int busy_count = 0;
3041 #define BUSY 1
3042 #define KICK 5
3043 #define HUNG 20
3044 #define ACTIVE_DECAY 15
3045 
3046 	if (!i915.enable_hangcheck)
3047 		return;
3048 
3049 	if (!READ_ONCE(dev_priv->gt.awake))
3050 		return;
3051 
3052 	/* As enabling the GPU requires fairly extensive mmio access,
3053 	 * periodically arm the mmio checker to see if we are triggering
3054 	 * any invalid access.
3055 	 */
3056 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3057 
3058 	for_each_engine(engine, dev_priv, id) {
3059 		bool busy = intel_engine_has_waiter(engine);
3060 		u64 acthd;
3061 		u32 seqno;
3062 		u32 submit;
3063 
3064 		semaphore_clear_deadlocks(dev_priv);
3065 
3066 		/* We don't strictly need an irq-barrier here, as we are not
3067 		 * serving an interrupt request, be paranoid in case the
3068 		 * barrier has side-effects (such as preventing a broken
3069 		 * cacheline snoop) and so be sure that we can see the seqno
3070 		 * advance. If the seqno should stick, due to a stale
3071 		 * cacheline, we would erroneously declare the GPU hung.
3072 		 */
3073 		if (engine->irq_seqno_barrier)
3074 			engine->irq_seqno_barrier(engine);
3075 
3076 		acthd = intel_engine_get_active_head(engine);
3077 		seqno = intel_engine_get_seqno(engine);
3078 		submit = READ_ONCE(engine->last_submitted_seqno);
3079 
3080 		if (engine->hangcheck.seqno == seqno) {
3081 			if (i915_seqno_passed(seqno, submit)) {
3082 				engine->hangcheck.action = HANGCHECK_IDLE;
3083 			} else {
3084 				/* We always increment the hangcheck score
3085 				 * if the engine is busy and still processing
3086 				 * the same request, so that no single request
3087 				 * can run indefinitely (such as a chain of
3088 				 * batches). The only time we do not increment
3089 				 * the hangcheck score on this ring, if this
3090 				 * engine is in a legitimate wait for another
3091 				 * engine. In that case the waiting engine is a
3092 				 * victim and we want to be sure we catch the
3093 				 * right culprit. Then every time we do kick
3094 				 * the ring, add a small increment to the
3095 				 * score so that we can catch a batch that is
3096 				 * being repeatedly kicked and so responsible
3097 				 * for stalling the machine.
3098 				 */
3099 				engine->hangcheck.action =
3100 					engine_stuck(engine, acthd);
3101 
3102 				switch (engine->hangcheck.action) {
3103 				case HANGCHECK_IDLE:
3104 				case HANGCHECK_WAIT:
3105 					break;
3106 				case HANGCHECK_ACTIVE:
3107 					engine->hangcheck.score += BUSY;
3108 					break;
3109 				case HANGCHECK_KICK:
3110 					engine->hangcheck.score += KICK;
3111 					break;
3112 				case HANGCHECK_HUNG:
3113 					engine->hangcheck.score += HUNG;
3114 					break;
3115 				}
3116 			}
3117 
3118 			if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3119 				hung |= intel_engine_flag(engine);
3120 				if (engine->hangcheck.action != HANGCHECK_HUNG)
3121 					stuck |= intel_engine_flag(engine);
3122 			}
3123 		} else {
3124 			engine->hangcheck.action = HANGCHECK_ACTIVE;
3125 
3126 			/* Gradually reduce the count so that we catch DoS
3127 			 * attempts across multiple batches.
3128 			 */
3129 			if (engine->hangcheck.score > 0)
3130 				engine->hangcheck.score -= ACTIVE_DECAY;
3131 			if (engine->hangcheck.score < 0)
3132 				engine->hangcheck.score = 0;
3133 
3134 			/* Clear head and subunit states on seqno movement */
3135 			acthd = 0;
3136 
3137 			memset(&engine->hangcheck.instdone, 0,
3138 			       sizeof(engine->hangcheck.instdone));
3139 		}
3140 
3141 		engine->hangcheck.seqno = seqno;
3142 		engine->hangcheck.acthd = acthd;
3143 		busy_count += busy;
3144 	}
3145 
3146 	if (hung) {
3147 		char msg[80];
3148 		unsigned int tmp;
3149 		int len;
3150 
3151 		/* If some rings hung but others were still busy, only
3152 		 * blame the hanging rings in the synopsis.
3153 		 */
3154 		if (stuck != hung)
3155 			hung &= ~stuck;
3156 		len = scnprintf(msg, sizeof(msg),
3157 				"%s on ", stuck == hung ? "No progress" : "Hang");
3158 		for_each_engine_masked(engine, dev_priv, hung, tmp)
3159 			len += scnprintf(msg + len, sizeof(msg) - len,
3160 					 "%s, ", engine->name);
3161 		msg[len-2] = '\0';
3162 
3163 		return i915_handle_error(dev_priv, hung, msg);
3164 	}
3165 
3166 	/* Reset timer in case GPU hangs without another request being added */
3167 	if (busy_count)
3168 		i915_queue_hangcheck(dev_priv);
3169 }
3170 
3171 static void ibx_irq_reset(struct drm_device *dev)
3172 {
3173 	struct drm_i915_private *dev_priv = to_i915(dev);
3174 
3175 	if (HAS_PCH_NOP(dev_priv))
3176 		return;
3177 
3178 	GEN5_IRQ_RESET(SDE);
3179 
3180 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3181 		I915_WRITE(SERR_INT, 0xffffffff);
3182 }
3183 
3184 /*
3185  * SDEIER is also touched by the interrupt handler to work around missed PCH
3186  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3187  * instead we unconditionally enable all PCH interrupt sources here, but then
3188  * only unmask them as needed with SDEIMR.
3189  *
3190  * This function needs to be called before interrupts are enabled.
3191  */
3192 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3193 {
3194 	struct drm_i915_private *dev_priv = to_i915(dev);
3195 
3196 	if (HAS_PCH_NOP(dev_priv))
3197 		return;
3198 
3199 	WARN_ON(I915_READ(SDEIER) != 0);
3200 	I915_WRITE(SDEIER, 0xffffffff);
3201 	POSTING_READ(SDEIER);
3202 }
3203 
3204 static void gen5_gt_irq_reset(struct drm_device *dev)
3205 {
3206 	struct drm_i915_private *dev_priv = to_i915(dev);
3207 
3208 	GEN5_IRQ_RESET(GT);
3209 	if (INTEL_INFO(dev)->gen >= 6)
3210 		GEN5_IRQ_RESET(GEN6_PM);
3211 }
3212 
3213 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3214 {
3215 	enum i915_pipe pipe;
3216 
3217 	if (IS_CHERRYVIEW(dev_priv))
3218 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3219 	else
3220 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3221 
3222 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3223 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3224 
3225 	for_each_pipe(dev_priv, pipe) {
3226 		I915_WRITE(PIPESTAT(pipe),
3227 			   PIPE_FIFO_UNDERRUN_STATUS |
3228 			   PIPESTAT_INT_STATUS_MASK);
3229 		dev_priv->pipestat_irq_mask[pipe] = 0;
3230 	}
3231 
3232 	GEN5_IRQ_RESET(VLV_);
3233 	dev_priv->irq_mask = ~0;
3234 }
3235 
3236 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3237 {
3238 	u32 pipestat_mask;
3239 	u32 enable_mask;
3240 	enum i915_pipe pipe;
3241 
3242 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3243 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3244 
3245 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3246 	for_each_pipe(dev_priv, pipe)
3247 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3248 
3249 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3250 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3251 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3252 	if (IS_CHERRYVIEW(dev_priv))
3253 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3254 
3255 	WARN_ON(dev_priv->irq_mask != ~0);
3256 
3257 	dev_priv->irq_mask = ~enable_mask;
3258 
3259 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3260 }
3261 
3262 /* drm_dma.h hooks
3263 */
3264 static void ironlake_irq_reset(struct drm_device *dev)
3265 {
3266 	struct drm_i915_private *dev_priv = to_i915(dev);
3267 
3268 	I915_WRITE(HWSTAM, 0xffffffff);
3269 
3270 	GEN5_IRQ_RESET(DE);
3271 	if (IS_GEN7(dev_priv))
3272 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3273 
3274 	gen5_gt_irq_reset(dev);
3275 
3276 	ibx_irq_reset(dev);
3277 }
3278 
3279 static void valleyview_irq_preinstall(struct drm_device *dev)
3280 {
3281 	struct drm_i915_private *dev_priv = to_i915(dev);
3282 
3283 	I915_WRITE(VLV_MASTER_IER, 0);
3284 	POSTING_READ(VLV_MASTER_IER);
3285 
3286 	gen5_gt_irq_reset(dev);
3287 
3288 	spin_lock_irq(&dev_priv->irq_lock);
3289 	if (dev_priv->display_irqs_enabled)
3290 		vlv_display_irq_reset(dev_priv);
3291 	spin_unlock_irq(&dev_priv->irq_lock);
3292 }
3293 
3294 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3295 {
3296 	GEN8_IRQ_RESET_NDX(GT, 0);
3297 	GEN8_IRQ_RESET_NDX(GT, 1);
3298 	GEN8_IRQ_RESET_NDX(GT, 2);
3299 	GEN8_IRQ_RESET_NDX(GT, 3);
3300 }
3301 
3302 static void gen8_irq_reset(struct drm_device *dev)
3303 {
3304 	struct drm_i915_private *dev_priv = to_i915(dev);
3305 	int pipe;
3306 
3307 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3308 	POSTING_READ(GEN8_MASTER_IRQ);
3309 
3310 	gen8_gt_irq_reset(dev_priv);
3311 
3312 	for_each_pipe(dev_priv, pipe)
3313 		if (intel_display_power_is_enabled(dev_priv,
3314 						   POWER_DOMAIN_PIPE(pipe)))
3315 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3316 
3317 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3318 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3319 	GEN5_IRQ_RESET(GEN8_PCU_);
3320 
3321 	if (HAS_PCH_SPLIT(dev_priv))
3322 		ibx_irq_reset(dev);
3323 }
3324 
3325 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3326 				     unsigned int pipe_mask)
3327 {
3328 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3329 	enum i915_pipe pipe;
3330 
3331 	spin_lock_irq(&dev_priv->irq_lock);
3332 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3333 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3334 				  dev_priv->de_irq_mask[pipe],
3335 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3336 	spin_unlock_irq(&dev_priv->irq_lock);
3337 }
3338 
3339 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3340 				     unsigned int pipe_mask)
3341 {
3342 	enum i915_pipe pipe;
3343 
3344 	spin_lock_irq(&dev_priv->irq_lock);
3345 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3346 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3347 	spin_unlock_irq(&dev_priv->irq_lock);
3348 
3349 	/* make sure we're done processing display irqs */
3350 	synchronize_irq(dev_priv->drm.irq);
3351 }
3352 
3353 static void cherryview_irq_preinstall(struct drm_device *dev)
3354 {
3355 	struct drm_i915_private *dev_priv = to_i915(dev);
3356 
3357 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3358 	POSTING_READ(GEN8_MASTER_IRQ);
3359 
3360 	gen8_gt_irq_reset(dev_priv);
3361 
3362 	GEN5_IRQ_RESET(GEN8_PCU_);
3363 
3364 	spin_lock_irq(&dev_priv->irq_lock);
3365 	if (dev_priv->display_irqs_enabled)
3366 		vlv_display_irq_reset(dev_priv);
3367 	spin_unlock_irq(&dev_priv->irq_lock);
3368 }
3369 
3370 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3371 				  const u32 hpd[HPD_NUM_PINS])
3372 {
3373 	struct intel_encoder *encoder;
3374 	u32 enabled_irqs = 0;
3375 
3376 	for_each_intel_encoder(&dev_priv->drm, encoder)
3377 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3378 			enabled_irqs |= hpd[encoder->hpd_pin];
3379 
3380 	return enabled_irqs;
3381 }
3382 
3383 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3384 {
3385 	u32 hotplug_irqs, hotplug, enabled_irqs;
3386 
3387 	if (HAS_PCH_IBX(dev_priv)) {
3388 		hotplug_irqs = SDE_HOTPLUG_MASK;
3389 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3390 	} else {
3391 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3392 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3393 	}
3394 
3395 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3396 
3397 	/*
3398 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3399 	 * duration to 2ms (which is the minimum in the Display Port spec).
3400 	 * The pulse duration bits are reserved on LPT+.
3401 	 */
3402 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3403 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3404 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3405 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3406 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3407 	/*
3408 	 * When CPU and PCH are on the same package, port A
3409 	 * HPD must be enabled in both north and south.
3410 	 */
3411 	if (HAS_PCH_LPT_LP(dev_priv))
3412 		hotplug |= PORTA_HOTPLUG_ENABLE;
3413 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3414 }
3415 
3416 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3417 {
3418 	u32 hotplug_irqs, hotplug, enabled_irqs;
3419 
3420 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3421 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3422 
3423 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3424 
3425 	/* Enable digital hotplug on the PCH */
3426 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3428 		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3429 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3430 
3431 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3432 	hotplug |= PORTE_HOTPLUG_ENABLE;
3433 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3434 }
3435 
3436 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3437 {
3438 	u32 hotplug_irqs, hotplug, enabled_irqs;
3439 
3440 	if (INTEL_GEN(dev_priv) >= 8) {
3441 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3442 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3443 
3444 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3445 	} else if (INTEL_GEN(dev_priv) >= 7) {
3446 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3447 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3448 
3449 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3450 	} else {
3451 		hotplug_irqs = DE_DP_A_HOTPLUG;
3452 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3453 
3454 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3455 	}
3456 
3457 	/*
3458 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3459 	 * duration to 2ms (which is the minimum in the Display Port spec)
3460 	 * The pulse duration bits are reserved on HSW+.
3461 	 */
3462 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3463 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3464 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3465 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3466 
3467 	ibx_hpd_irq_setup(dev_priv);
3468 }
3469 
3470 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3471 {
3472 	u32 hotplug_irqs, hotplug, enabled_irqs;
3473 
3474 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3475 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3476 
3477 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3478 
3479 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3480 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3481 		PORTA_HOTPLUG_ENABLE;
3482 
3483 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3484 		      hotplug, enabled_irqs);
3485 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3486 
3487 	/*
3488 	 * For BXT invert bit has to be set based on AOB design
3489 	 * for HPD detection logic, update it based on VBT fields.
3490 	 */
3491 
3492 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3493 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3494 		hotplug |= BXT_DDIA_HPD_INVERT;
3495 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3496 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3497 		hotplug |= BXT_DDIB_HPD_INVERT;
3498 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3499 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3500 		hotplug |= BXT_DDIC_HPD_INVERT;
3501 
3502 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3503 }
3504 
3505 static void ibx_irq_postinstall(struct drm_device *dev)
3506 {
3507 	struct drm_i915_private *dev_priv = to_i915(dev);
3508 	u32 mask;
3509 
3510 	if (HAS_PCH_NOP(dev_priv))
3511 		return;
3512 
3513 	if (HAS_PCH_IBX(dev_priv))
3514 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3515 	else
3516 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3517 
3518 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3519 	I915_WRITE(SDEIMR, ~mask);
3520 }
3521 
3522 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3523 {
3524 	struct drm_i915_private *dev_priv = to_i915(dev);
3525 	u32 pm_irqs, gt_irqs;
3526 
3527 	pm_irqs = gt_irqs = 0;
3528 
3529 	dev_priv->gt_irq_mask = ~0;
3530 	if (HAS_L3_DPF(dev_priv)) {
3531 		/* L3 parity interrupt is always unmasked. */
3532 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3533 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3534 	}
3535 
3536 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3537 	if (IS_GEN5(dev_priv)) {
3538 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3539 	} else {
3540 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3541 	}
3542 
3543 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3544 
3545 	if (INTEL_INFO(dev)->gen >= 6) {
3546 		/*
3547 		 * RPS interrupts will get enabled/disabled on demand when RPS
3548 		 * itself is enabled/disabled.
3549 		 */
3550 		if (HAS_VEBOX(dev))
3551 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3552 
3553 		dev_priv->pm_irq_mask = 0xffffffff;
3554 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3555 	}
3556 }
3557 
3558 static int ironlake_irq_postinstall(struct drm_device *dev)
3559 {
3560 	struct drm_i915_private *dev_priv = to_i915(dev);
3561 	u32 display_mask, extra_mask;
3562 
3563 	if (INTEL_INFO(dev)->gen >= 7) {
3564 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3565 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3566 				DE_PLANEB_FLIP_DONE_IVB |
3567 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3568 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3569 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3570 			      DE_DP_A_HOTPLUG_IVB);
3571 	} else {
3572 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3573 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3574 				DE_AUX_CHANNEL_A |
3575 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3576 				DE_POISON);
3577 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3578 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3579 			      DE_DP_A_HOTPLUG);
3580 	}
3581 
3582 	dev_priv->irq_mask = ~display_mask;
3583 
3584 	I915_WRITE(HWSTAM, 0xeffe);
3585 
3586 	ibx_irq_pre_postinstall(dev);
3587 
3588 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3589 
3590 	gen5_gt_irq_postinstall(dev);
3591 
3592 	ibx_irq_postinstall(dev);
3593 
3594 	if (IS_IRONLAKE_M(dev_priv)) {
3595 		/* Enable PCU event interrupts
3596 		 *
3597 		 * spinlocking not required here for correctness since interrupt
3598 		 * setup is guaranteed to run in single-threaded context. But we
3599 		 * need it to make the assert_spin_locked happy. */
3600 		spin_lock_irq(&dev_priv->irq_lock);
3601 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3602 		spin_unlock_irq(&dev_priv->irq_lock);
3603 	}
3604 
3605 	return 0;
3606 }
3607 
3608 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3609 {
3610 	assert_spin_locked(&dev_priv->irq_lock);
3611 
3612 	if (dev_priv->display_irqs_enabled)
3613 		return;
3614 
3615 	dev_priv->display_irqs_enabled = true;
3616 
3617 	if (intel_irqs_enabled(dev_priv)) {
3618 		vlv_display_irq_reset(dev_priv);
3619 		vlv_display_irq_postinstall(dev_priv);
3620 	}
3621 }
3622 
3623 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3624 {
3625 	assert_spin_locked(&dev_priv->irq_lock);
3626 
3627 	if (!dev_priv->display_irqs_enabled)
3628 		return;
3629 
3630 	dev_priv->display_irqs_enabled = false;
3631 
3632 	if (intel_irqs_enabled(dev_priv))
3633 		vlv_display_irq_reset(dev_priv);
3634 }
3635 
3636 
3637 static int valleyview_irq_postinstall(struct drm_device *dev)
3638 {
3639 	struct drm_i915_private *dev_priv = to_i915(dev);
3640 
3641 	gen5_gt_irq_postinstall(dev);
3642 
3643 	spin_lock_irq(&dev_priv->irq_lock);
3644 	if (dev_priv->display_irqs_enabled)
3645 		vlv_display_irq_postinstall(dev_priv);
3646 	spin_unlock_irq(&dev_priv->irq_lock);
3647 
3648 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3649 	POSTING_READ(VLV_MASTER_IER);
3650 
3651 	return 0;
3652 }
3653 
3654 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3655 {
3656 	/* These are interrupts we'll toggle with the ring mask register */
3657 	uint32_t gt_interrupts[] = {
3658 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3659 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3660 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3661 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3662 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3663 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3664 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3665 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3666 		0,
3667 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3668 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3669 		};
3670 
3671 	if (HAS_L3_DPF(dev_priv))
3672 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3673 
3674 	dev_priv->pm_irq_mask = 0xffffffff;
3675 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3676 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3677 	/*
3678 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3679 	 * is enabled/disabled.
3680 	 */
3681 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3682 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3683 }
3684 
3685 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3686 {
3687 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3688 	uint32_t de_pipe_enables;
3689 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3690 	u32 de_port_enables;
3691 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3692 	enum i915_pipe pipe;
3693 
3694 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3695 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3696 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3697 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3698 				  GEN9_AUX_CHANNEL_D;
3699 		if (IS_BROXTON(dev_priv))
3700 			de_port_masked |= BXT_DE_PORT_GMBUS;
3701 	} else {
3702 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3703 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3704 	}
3705 
3706 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3707 					   GEN8_PIPE_FIFO_UNDERRUN;
3708 
3709 	de_port_enables = de_port_masked;
3710 	if (IS_BROXTON(dev_priv))
3711 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3712 	else if (IS_BROADWELL(dev_priv))
3713 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3714 
3715 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3716 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3717 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3718 
3719 	for_each_pipe(dev_priv, pipe)
3720 		if (intel_display_power_is_enabled(dev_priv,
3721 				POWER_DOMAIN_PIPE(pipe)))
3722 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3723 					  dev_priv->de_irq_mask[pipe],
3724 					  de_pipe_enables);
3725 
3726 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3727 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3728 }
3729 
3730 static int gen8_irq_postinstall(struct drm_device *dev)
3731 {
3732 	struct drm_i915_private *dev_priv = to_i915(dev);
3733 
3734 	if (HAS_PCH_SPLIT(dev_priv))
3735 		ibx_irq_pre_postinstall(dev);
3736 
3737 	gen8_gt_irq_postinstall(dev_priv);
3738 	gen8_de_irq_postinstall(dev_priv);
3739 
3740 	if (HAS_PCH_SPLIT(dev_priv))
3741 		ibx_irq_postinstall(dev);
3742 
3743 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3744 	POSTING_READ(GEN8_MASTER_IRQ);
3745 
3746 	return 0;
3747 }
3748 
3749 static int cherryview_irq_postinstall(struct drm_device *dev)
3750 {
3751 	struct drm_i915_private *dev_priv = to_i915(dev);
3752 
3753 	gen8_gt_irq_postinstall(dev_priv);
3754 
3755 	spin_lock_irq(&dev_priv->irq_lock);
3756 	if (dev_priv->display_irqs_enabled)
3757 		vlv_display_irq_postinstall(dev_priv);
3758 	spin_unlock_irq(&dev_priv->irq_lock);
3759 
3760 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3761 	POSTING_READ(GEN8_MASTER_IRQ);
3762 
3763 	return 0;
3764 }
3765 
3766 static void gen8_irq_uninstall(struct drm_device *dev)
3767 {
3768 	struct drm_i915_private *dev_priv = to_i915(dev);
3769 
3770 	if (!dev_priv)
3771 		return;
3772 
3773 	gen8_irq_reset(dev);
3774 }
3775 
3776 static void valleyview_irq_uninstall(struct drm_device *dev)
3777 {
3778 	struct drm_i915_private *dev_priv = to_i915(dev);
3779 
3780 	if (!dev_priv)
3781 		return;
3782 
3783 	I915_WRITE(VLV_MASTER_IER, 0);
3784 	POSTING_READ(VLV_MASTER_IER);
3785 
3786 	gen5_gt_irq_reset(dev);
3787 
3788 	I915_WRITE(HWSTAM, 0xffffffff);
3789 
3790 	spin_lock_irq(&dev_priv->irq_lock);
3791 	if (dev_priv->display_irqs_enabled)
3792 		vlv_display_irq_reset(dev_priv);
3793 	spin_unlock_irq(&dev_priv->irq_lock);
3794 }
3795 
3796 static void cherryview_irq_uninstall(struct drm_device *dev)
3797 {
3798 	struct drm_i915_private *dev_priv = to_i915(dev);
3799 
3800 	if (!dev_priv)
3801 		return;
3802 
3803 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3804 	POSTING_READ(GEN8_MASTER_IRQ);
3805 
3806 	gen8_gt_irq_reset(dev_priv);
3807 
3808 	GEN5_IRQ_RESET(GEN8_PCU_);
3809 
3810 	spin_lock_irq(&dev_priv->irq_lock);
3811 	if (dev_priv->display_irqs_enabled)
3812 		vlv_display_irq_reset(dev_priv);
3813 	spin_unlock_irq(&dev_priv->irq_lock);
3814 }
3815 
3816 static void ironlake_irq_uninstall(struct drm_device *dev)
3817 {
3818 	struct drm_i915_private *dev_priv = to_i915(dev);
3819 
3820 	if (!dev_priv)
3821 		return;
3822 
3823 	ironlake_irq_reset(dev);
3824 }
3825 
3826 static void i8xx_irq_preinstall(struct drm_device * dev)
3827 {
3828 	struct drm_i915_private *dev_priv = to_i915(dev);
3829 	int pipe;
3830 
3831 	for_each_pipe(dev_priv, pipe)
3832 		I915_WRITE(PIPESTAT(pipe), 0);
3833 	I915_WRITE16(IMR, 0xffff);
3834 	I915_WRITE16(IER, 0x0);
3835 	POSTING_READ16(IER);
3836 }
3837 
3838 static int i8xx_irq_postinstall(struct drm_device *dev)
3839 {
3840 	struct drm_i915_private *dev_priv = to_i915(dev);
3841 
3842 	I915_WRITE16(EMR,
3843 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3844 
3845 	/* Unmask the interrupts that we always want on. */
3846 	dev_priv->irq_mask =
3847 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3848 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3849 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3850 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3851 	I915_WRITE16(IMR, dev_priv->irq_mask);
3852 
3853 	I915_WRITE16(IER,
3854 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3855 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3856 		     I915_USER_INTERRUPT);
3857 	POSTING_READ16(IER);
3858 
3859 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3860 	 * just to make the assert_spin_locked check happy. */
3861 	spin_lock_irq(&dev_priv->irq_lock);
3862 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3863 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3864 	spin_unlock_irq(&dev_priv->irq_lock);
3865 
3866 	return 0;
3867 }
3868 
3869 /*
3870  * Returns true when a page flip has completed.
3871  */
3872 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3873 			       int plane, int pipe, u32 iir)
3874 {
3875 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3876 
3877 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3878 		return false;
3879 
3880 	if ((iir & flip_pending) == 0)
3881 		goto check_page_flip;
3882 
3883 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3884 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3885 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3886 	 * the flip is completed (no longer pending). Since this doesn't raise
3887 	 * an interrupt per se, we watch for the change at vblank.
3888 	 */
3889 	if (I915_READ16(ISR) & flip_pending)
3890 		goto check_page_flip;
3891 
3892 	intel_finish_page_flip_cs(dev_priv, pipe);
3893 	return true;
3894 
3895 check_page_flip:
3896 	intel_check_page_flip(dev_priv, pipe);
3897 	return false;
3898 }
3899 
3900 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3901 {
3902 	struct drm_device *dev = arg;
3903 	struct drm_i915_private *dev_priv = to_i915(dev);
3904 	u16 iir, new_iir;
3905 	u32 pipe_stats[2];
3906 	int pipe;
3907 	u16 flip_mask =
3908 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3909 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3910 	irqreturn_t ret;
3911 
3912 	if (!intel_irqs_enabled(dev_priv))
3913 		return IRQ_NONE;
3914 
3915 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3916 	disable_rpm_wakeref_asserts(dev_priv);
3917 
3918 	ret = IRQ_NONE;
3919 	iir = I915_READ16(IIR);
3920 	if (iir == 0)
3921 		goto out;
3922 
3923 	while (iir & ~flip_mask) {
3924 		/* Can't rely on pipestat interrupt bit in iir as it might
3925 		 * have been cleared after the pipestat interrupt was received.
3926 		 * It doesn't set the bit in iir again, but it still produces
3927 		 * interrupts (for non-MSI).
3928 		 */
3929 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3930 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3931 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3932 
3933 		for_each_pipe(dev_priv, pipe) {
3934 			i915_reg_t reg = PIPESTAT(pipe);
3935 			pipe_stats[pipe] = I915_READ(reg);
3936 
3937 			/*
3938 			 * Clear the PIPE*STAT regs before the IIR
3939 			 */
3940 			if (pipe_stats[pipe] & 0x8000ffff)
3941 				I915_WRITE(reg, pipe_stats[pipe]);
3942 		}
3943 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3944 
3945 		I915_WRITE16(IIR, iir & ~flip_mask);
3946 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3947 
3948 		if (iir & I915_USER_INTERRUPT)
3949 			notify_ring(dev_priv->engine[RCS]);
3950 
3951 		for_each_pipe(dev_priv, pipe) {
3952 			int plane = pipe;
3953 			if (HAS_FBC(dev_priv))
3954 				plane = !plane;
3955 
3956 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3957 			    i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3958 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3959 
3960 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3961 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3962 
3963 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3964 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3965 								    pipe);
3966 		}
3967 
3968 		iir = new_iir;
3969 	}
3970 	ret = IRQ_HANDLED;
3971 
3972 out:
3973 	enable_rpm_wakeref_asserts(dev_priv);
3974 
3975 	return ret;
3976 }
3977 
3978 static void i8xx_irq_uninstall(struct drm_device * dev)
3979 {
3980 	struct drm_i915_private *dev_priv = to_i915(dev);
3981 	int pipe;
3982 
3983 	for_each_pipe(dev_priv, pipe) {
3984 		/* Clear enable bits; then clear status bits */
3985 		I915_WRITE(PIPESTAT(pipe), 0);
3986 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3987 	}
3988 	I915_WRITE16(IMR, 0xffff);
3989 	I915_WRITE16(IER, 0x0);
3990 	I915_WRITE16(IIR, I915_READ16(IIR));
3991 }
3992 
3993 static void i915_irq_preinstall(struct drm_device * dev)
3994 {
3995 	struct drm_i915_private *dev_priv = to_i915(dev);
3996 	int pipe;
3997 
3998 	if (I915_HAS_HOTPLUG(dev)) {
3999 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4000 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4001 	}
4002 
4003 	I915_WRITE16(HWSTAM, 0xeffe);
4004 	for_each_pipe(dev_priv, pipe)
4005 		I915_WRITE(PIPESTAT(pipe), 0);
4006 	I915_WRITE(IMR, 0xffffffff);
4007 	I915_WRITE(IER, 0x0);
4008 	POSTING_READ(IER);
4009 }
4010 
4011 static int i915_irq_postinstall(struct drm_device *dev)
4012 {
4013 	struct drm_i915_private *dev_priv = to_i915(dev);
4014 	u32 enable_mask;
4015 
4016 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4017 
4018 	/* Unmask the interrupts that we always want on. */
4019 	dev_priv->irq_mask =
4020 		~(I915_ASLE_INTERRUPT |
4021 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4022 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4023 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4024 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4025 
4026 	enable_mask =
4027 		I915_ASLE_INTERRUPT |
4028 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4029 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4030 		I915_USER_INTERRUPT;
4031 
4032 	if (I915_HAS_HOTPLUG(dev)) {
4033 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4034 		POSTING_READ(PORT_HOTPLUG_EN);
4035 
4036 		/* Enable in IER... */
4037 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4038 		/* and unmask in IMR */
4039 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4040 	}
4041 
4042 	I915_WRITE(IMR, dev_priv->irq_mask);
4043 	I915_WRITE(IER, enable_mask);
4044 	POSTING_READ(IER);
4045 
4046 	i915_enable_asle_pipestat(dev_priv);
4047 
4048 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4049 	 * just to make the assert_spin_locked check happy. */
4050 	spin_lock_irq(&dev_priv->irq_lock);
4051 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4052 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4053 	spin_unlock_irq(&dev_priv->irq_lock);
4054 
4055 	return 0;
4056 }
4057 
4058 /*
4059  * Returns true when a page flip has completed.
4060  */
4061 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4062 			       int plane, int pipe, u32 iir)
4063 {
4064 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4065 
4066 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
4067 		return false;
4068 
4069 	if ((iir & flip_pending) == 0)
4070 		goto check_page_flip;
4071 
4072 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4073 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4074 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4075 	 * the flip is completed (no longer pending). Since this doesn't raise
4076 	 * an interrupt per se, we watch for the change at vblank.
4077 	 */
4078 	if (I915_READ(ISR) & flip_pending)
4079 		goto check_page_flip;
4080 
4081 	intel_finish_page_flip_cs(dev_priv, pipe);
4082 	return true;
4083 
4084 check_page_flip:
4085 	intel_check_page_flip(dev_priv, pipe);
4086 	return false;
4087 }
4088 
4089 static irqreturn_t i915_irq_handler(int irq, void *arg)
4090 {
4091 	struct drm_device *dev = arg;
4092 	struct drm_i915_private *dev_priv = to_i915(dev);
4093 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4094 	u32 flip_mask =
4095 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4096 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4097 	int pipe, ret = IRQ_NONE;
4098 
4099 	if (!intel_irqs_enabled(dev_priv))
4100 		return IRQ_NONE;
4101 
4102 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4103 	disable_rpm_wakeref_asserts(dev_priv);
4104 
4105 	iir = I915_READ(IIR);
4106 	do {
4107 		bool irq_received = (iir & ~flip_mask) != 0;
4108 		bool blc_event = false;
4109 
4110 		/* Can't rely on pipestat interrupt bit in iir as it might
4111 		 * have been cleared after the pipestat interrupt was received.
4112 		 * It doesn't set the bit in iir again, but it still produces
4113 		 * interrupts (for non-MSI).
4114 		 */
4115 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4116 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4117 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4118 
4119 		for_each_pipe(dev_priv, pipe) {
4120 			i915_reg_t reg = PIPESTAT(pipe);
4121 			pipe_stats[pipe] = I915_READ(reg);
4122 
4123 			/* Clear the PIPE*STAT regs before the IIR */
4124 			if (pipe_stats[pipe] & 0x8000ffff) {
4125 				I915_WRITE(reg, pipe_stats[pipe]);
4126 				irq_received = true;
4127 			}
4128 		}
4129 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4130 
4131 		if (!irq_received)
4132 			break;
4133 
4134 		/* Consume port.  Then clear IIR or we'll miss events */
4135 		if (I915_HAS_HOTPLUG(dev_priv) &&
4136 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
4137 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138 			if (hotplug_status)
4139 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4140 		}
4141 
4142 		I915_WRITE(IIR, iir & ~flip_mask);
4143 		new_iir = I915_READ(IIR); /* Flush posted writes */
4144 
4145 		if (iir & I915_USER_INTERRUPT)
4146 			notify_ring(dev_priv->engine[RCS]);
4147 
4148 		for_each_pipe(dev_priv, pipe) {
4149 			int plane = pipe;
4150 			if (HAS_FBC(dev_priv))
4151 				plane = !plane;
4152 
4153 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4154 			    i915_handle_vblank(dev_priv, plane, pipe, iir))
4155 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4156 
4157 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4158 				blc_event = true;
4159 
4160 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4161 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4162 
4163 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4164 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4165 								    pipe);
4166 		}
4167 
4168 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4169 			intel_opregion_asle_intr(dev_priv);
4170 
4171 		/* With MSI, interrupts are only generated when iir
4172 		 * transitions from zero to nonzero.  If another bit got
4173 		 * set while we were handling the existing iir bits, then
4174 		 * we would never get another interrupt.
4175 		 *
4176 		 * This is fine on non-MSI as well, as if we hit this path
4177 		 * we avoid exiting the interrupt handler only to generate
4178 		 * another one.
4179 		 *
4180 		 * Note that for MSI this could cause a stray interrupt report
4181 		 * if an interrupt landed in the time between writing IIR and
4182 		 * the posting read.  This should be rare enough to never
4183 		 * trigger the 99% of 100,000 interrupts test for disabling
4184 		 * stray interrupts.
4185 		 */
4186 		ret = IRQ_HANDLED;
4187 		iir = new_iir;
4188 	} while (iir & ~flip_mask);
4189 
4190 	enable_rpm_wakeref_asserts(dev_priv);
4191 
4192 	return ret;
4193 }
4194 
4195 static void i915_irq_uninstall(struct drm_device * dev)
4196 {
4197 	struct drm_i915_private *dev_priv = to_i915(dev);
4198 	int pipe;
4199 
4200 	if (I915_HAS_HOTPLUG(dev)) {
4201 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4202 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4203 	}
4204 
4205 	I915_WRITE16(HWSTAM, 0xffff);
4206 	for_each_pipe(dev_priv, pipe) {
4207 		/* Clear enable bits; then clear status bits */
4208 		I915_WRITE(PIPESTAT(pipe), 0);
4209 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4210 	}
4211 	I915_WRITE(IMR, 0xffffffff);
4212 	I915_WRITE(IER, 0x0);
4213 
4214 	I915_WRITE(IIR, I915_READ(IIR));
4215 }
4216 
4217 static void i965_irq_preinstall(struct drm_device * dev)
4218 {
4219 	struct drm_i915_private *dev_priv = to_i915(dev);
4220 	int pipe;
4221 
4222 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4223 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4224 
4225 	I915_WRITE(HWSTAM, 0xeffe);
4226 	for_each_pipe(dev_priv, pipe)
4227 		I915_WRITE(PIPESTAT(pipe), 0);
4228 	I915_WRITE(IMR, 0xffffffff);
4229 	I915_WRITE(IER, 0x0);
4230 	POSTING_READ(IER);
4231 }
4232 
4233 static int i965_irq_postinstall(struct drm_device *dev)
4234 {
4235 	struct drm_i915_private *dev_priv = to_i915(dev);
4236 	u32 enable_mask;
4237 	u32 error_mask;
4238 
4239 	/* Unmask the interrupts that we always want on. */
4240 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4241 			       I915_DISPLAY_PORT_INTERRUPT |
4242 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4243 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4244 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4245 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4246 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4247 
4248 	enable_mask = ~dev_priv->irq_mask;
4249 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4250 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4251 	enable_mask |= I915_USER_INTERRUPT;
4252 
4253 	if (IS_G4X(dev_priv))
4254 		enable_mask |= I915_BSD_USER_INTERRUPT;
4255 
4256 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4257 	 * just to make the assert_spin_locked check happy. */
4258 	spin_lock_irq(&dev_priv->irq_lock);
4259 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4260 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4261 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4262 	spin_unlock_irq(&dev_priv->irq_lock);
4263 
4264 	/*
4265 	 * Enable some error detection, note the instruction error mask
4266 	 * bit is reserved, so we leave it masked.
4267 	 */
4268 	if (IS_G4X(dev_priv)) {
4269 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4270 			       GM45_ERROR_MEM_PRIV |
4271 			       GM45_ERROR_CP_PRIV |
4272 			       I915_ERROR_MEMORY_REFRESH);
4273 	} else {
4274 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4275 			       I915_ERROR_MEMORY_REFRESH);
4276 	}
4277 	I915_WRITE(EMR, error_mask);
4278 
4279 	I915_WRITE(IMR, dev_priv->irq_mask);
4280 	I915_WRITE(IER, enable_mask);
4281 	POSTING_READ(IER);
4282 
4283 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4284 	POSTING_READ(PORT_HOTPLUG_EN);
4285 
4286 	i915_enable_asle_pipestat(dev_priv);
4287 
4288 	return 0;
4289 }
4290 
4291 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4292 {
4293 	u32 hotplug_en;
4294 
4295 	assert_spin_locked(&dev_priv->irq_lock);
4296 
4297 	/* Note HDMI and DP share hotplug bits */
4298 	/* enable bits are the same for all generations */
4299 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4300 	/* Programming the CRT detection parameters tends
4301 	   to generate a spurious hotplug event about three
4302 	   seconds later.  So just do it once.
4303 	*/
4304 	if (IS_G4X(dev_priv))
4305 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4306 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4307 
4308 	/* Ignore TV since it's buggy */
4309 	i915_hotplug_interrupt_update_locked(dev_priv,
4310 					     HOTPLUG_INT_EN_MASK |
4311 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4312 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4313 					     hotplug_en);
4314 }
4315 
4316 static irqreturn_t i965_irq_handler(int irq, void *arg)
4317 {
4318 	struct drm_device *dev = arg;
4319 	struct drm_i915_private *dev_priv = to_i915(dev);
4320 	u32 iir, new_iir;
4321 	u32 pipe_stats[I915_MAX_PIPES];
4322 	int ret = IRQ_NONE, pipe;
4323 	u32 flip_mask =
4324 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4325 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4326 
4327 	if (!intel_irqs_enabled(dev_priv))
4328 		return IRQ_NONE;
4329 
4330 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4331 	disable_rpm_wakeref_asserts(dev_priv);
4332 
4333 	iir = I915_READ(IIR);
4334 
4335 	for (;;) {
4336 		bool irq_received = (iir & ~flip_mask) != 0;
4337 		bool blc_event = false;
4338 
4339 		/* Can't rely on pipestat interrupt bit in iir as it might
4340 		 * have been cleared after the pipestat interrupt was received.
4341 		 * It doesn't set the bit in iir again, but it still produces
4342 		 * interrupts (for non-MSI).
4343 		 */
4344 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4345 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4346 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4347 
4348 		for_each_pipe(dev_priv, pipe) {
4349 			i915_reg_t reg = PIPESTAT(pipe);
4350 			pipe_stats[pipe] = I915_READ(reg);
4351 
4352 			/*
4353 			 * Clear the PIPE*STAT regs before the IIR
4354 			 */
4355 			if (pipe_stats[pipe] & 0x8000ffff) {
4356 				I915_WRITE(reg, pipe_stats[pipe]);
4357 				irq_received = true;
4358 			}
4359 		}
4360 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4361 
4362 		if (!irq_received)
4363 			break;
4364 
4365 		ret = IRQ_HANDLED;
4366 
4367 		/* Consume port.  Then clear IIR or we'll miss events */
4368 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4369 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4370 			if (hotplug_status)
4371 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4372 		}
4373 
4374 		I915_WRITE(IIR, iir & ~flip_mask);
4375 		new_iir = I915_READ(IIR); /* Flush posted writes */
4376 
4377 		if (iir & I915_USER_INTERRUPT)
4378 			notify_ring(dev_priv->engine[RCS]);
4379 		if (iir & I915_BSD_USER_INTERRUPT)
4380 			notify_ring(dev_priv->engine[VCS]);
4381 
4382 		for_each_pipe(dev_priv, pipe) {
4383 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4384 			    i915_handle_vblank(dev_priv, pipe, pipe, iir))
4385 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4386 
4387 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4388 				blc_event = true;
4389 
4390 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4391 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4392 
4393 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4394 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4395 		}
4396 
4397 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4398 			intel_opregion_asle_intr(dev_priv);
4399 
4400 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4401 			gmbus_irq_handler(dev_priv);
4402 
4403 		/* With MSI, interrupts are only generated when iir
4404 		 * transitions from zero to nonzero.  If another bit got
4405 		 * set while we were handling the existing iir bits, then
4406 		 * we would never get another interrupt.
4407 		 *
4408 		 * This is fine on non-MSI as well, as if we hit this path
4409 		 * we avoid exiting the interrupt handler only to generate
4410 		 * another one.
4411 		 *
4412 		 * Note that for MSI this could cause a stray interrupt report
4413 		 * if an interrupt landed in the time between writing IIR and
4414 		 * the posting read.  This should be rare enough to never
4415 		 * trigger the 99% of 100,000 interrupts test for disabling
4416 		 * stray interrupts.
4417 		 */
4418 		iir = new_iir;
4419 	}
4420 
4421 	enable_rpm_wakeref_asserts(dev_priv);
4422 
4423 	return ret;
4424 }
4425 
4426 static void i965_irq_uninstall(struct drm_device * dev)
4427 {
4428 	struct drm_i915_private *dev_priv = to_i915(dev);
4429 	int pipe;
4430 
4431 	if (!dev_priv)
4432 		return;
4433 
4434 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4435 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4436 
4437 	I915_WRITE(HWSTAM, 0xffffffff);
4438 	for_each_pipe(dev_priv, pipe)
4439 		I915_WRITE(PIPESTAT(pipe), 0);
4440 	I915_WRITE(IMR, 0xffffffff);
4441 	I915_WRITE(IER, 0x0);
4442 
4443 	for_each_pipe(dev_priv, pipe)
4444 		I915_WRITE(PIPESTAT(pipe),
4445 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4446 	I915_WRITE(IIR, I915_READ(IIR));
4447 }
4448 
4449 /**
4450  * intel_irq_init - initializes irq support
4451  * @dev_priv: i915 device instance
4452  *
4453  * This function initializes all the irq support including work items, timers
4454  * and all the vtables. It does not setup the interrupt itself though.
4455  */
4456 void intel_irq_init(struct drm_i915_private *dev_priv)
4457 {
4458 	struct drm_device *dev = &dev_priv->drm;
4459 
4460 	intel_hpd_init_work(dev_priv);
4461 
4462 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4463 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4464 
4465 	/* Let's track the enabled rps events */
4466 	if (IS_VALLEYVIEW(dev_priv))
4467 		/* WaGsvRC0ResidencyMethod:vlv */
4468 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4469 	else
4470 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4471 
4472 	dev_priv->rps.pm_intr_keep = 0;
4473 
4474 	/*
4475 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4476 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4477 	 *
4478 	 * TODO: verify if this can be reproduced on VLV,CHV.
4479 	 */
4480 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4481 		dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4482 
4483 	if (INTEL_INFO(dev_priv)->gen >= 8)
4484 		dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4485 
4486 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4487 			  i915_hangcheck_elapsed);
4488 
4489 	if (IS_GEN2(dev_priv)) {
4490 		/* Gen2 doesn't have a hardware frame counter */
4491 		dev->max_vblank_count = 0;
4492 		dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4493 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4494 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4495 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4496 	} else {
4497 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4498 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4499 	}
4500 
4501 	/*
4502 	 * Opt out of the vblank disable timer on everything except gen2.
4503 	 * Gen2 doesn't have a hardware frame counter and so depends on
4504 	 * vblank interrupts to produce sane vblank seuquence numbers.
4505 	 */
4506 	if (!IS_GEN2(dev_priv))
4507 		dev->vblank_disable_immediate = true;
4508 
4509 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4510 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4511 
4512 	if (IS_CHERRYVIEW(dev_priv)) {
4513 		dev->driver->irq_handler = cherryview_irq_handler;
4514 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4515 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4516 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4517 		dev->driver->enable_vblank = i965_enable_vblank;
4518 		dev->driver->disable_vblank = i965_disable_vblank;
4519 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4520 	} else if (IS_VALLEYVIEW(dev_priv)) {
4521 		dev->driver->irq_handler = valleyview_irq_handler;
4522 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4523 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4524 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4525 		dev->driver->enable_vblank = i965_enable_vblank;
4526 		dev->driver->disable_vblank = i965_disable_vblank;
4527 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4528 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4529 		dev->driver->irq_handler = gen8_irq_handler;
4530 		dev->driver->irq_preinstall = gen8_irq_reset;
4531 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4532 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4533 		dev->driver->enable_vblank = gen8_enable_vblank;
4534 		dev->driver->disable_vblank = gen8_disable_vblank;
4535 		if (IS_BROXTON(dev_priv))
4536 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4537 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4538 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4539 		else
4540 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4541 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4542 		dev->driver->irq_handler = ironlake_irq_handler;
4543 		dev->driver->irq_preinstall = ironlake_irq_reset;
4544 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4545 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4546 		dev->driver->enable_vblank = ironlake_enable_vblank;
4547 		dev->driver->disable_vblank = ironlake_disable_vblank;
4548 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4549 	} else {
4550 		if (IS_GEN2(dev_priv)) {
4551 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4552 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4553 			dev->driver->irq_handler = i8xx_irq_handler;
4554 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4555 			dev->driver->enable_vblank = i8xx_enable_vblank;
4556 			dev->driver->disable_vblank = i8xx_disable_vblank;
4557 		} else if (IS_GEN3(dev_priv)) {
4558 			dev->driver->irq_preinstall = i915_irq_preinstall;
4559 			dev->driver->irq_postinstall = i915_irq_postinstall;
4560 			dev->driver->irq_uninstall = i915_irq_uninstall;
4561 			dev->driver->irq_handler = i915_irq_handler;
4562 			dev->driver->enable_vblank = i8xx_enable_vblank;
4563 			dev->driver->disable_vblank = i8xx_disable_vblank;
4564 		} else {
4565 			dev->driver->irq_preinstall = i965_irq_preinstall;
4566 			dev->driver->irq_postinstall = i965_irq_postinstall;
4567 			dev->driver->irq_uninstall = i965_irq_uninstall;
4568 			dev->driver->irq_handler = i965_irq_handler;
4569 			dev->driver->enable_vblank = i965_enable_vblank;
4570 			dev->driver->disable_vblank = i965_disable_vblank;
4571 		}
4572 		if (I915_HAS_HOTPLUG(dev_priv))
4573 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4574 	}
4575 }
4576 
4577 /**
4578  * intel_irq_install - enables the hardware interrupt
4579  * @dev_priv: i915 device instance
4580  *
4581  * This function enables the hardware interrupt handling, but leaves the hotplug
4582  * handling still disabled. It is called after intel_irq_init().
4583  *
4584  * In the driver load and resume code we need working interrupts in a few places
4585  * but don't want to deal with the hassle of concurrent probe and hotplug
4586  * workers. Hence the split into this two-stage approach.
4587  */
4588 int intel_irq_install(struct drm_i915_private *dev_priv)
4589 {
4590 	/*
4591 	 * We enable some interrupt sources in our postinstall hooks, so mark
4592 	 * interrupts as enabled _before_ actually enabling them to avoid
4593 	 * special cases in our ordering checks.
4594 	 */
4595 	dev_priv->pm.irqs_enabled = true;
4596 
4597 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4598 }
4599 
4600 /**
4601  * intel_irq_uninstall - finilizes all irq handling
4602  * @dev_priv: i915 device instance
4603  *
4604  * This stops interrupt and hotplug handling and unregisters and frees all
4605  * resources acquired in the init functions.
4606  */
4607 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4608 {
4609 	drm_irq_uninstall(&dev_priv->drm);
4610 	intel_hpd_cancel_work(dev_priv);
4611 	dev_priv->pm.irqs_enabled = false;
4612 }
4613 
4614 /**
4615  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4616  * @dev_priv: i915 device instance
4617  *
4618  * This function is used to disable interrupts at runtime, both in the runtime
4619  * pm and the system suspend/resume code.
4620  */
4621 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4622 {
4623 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4624 	dev_priv->pm.irqs_enabled = false;
4625 	synchronize_irq(dev_priv->drm.irq);
4626 }
4627 
4628 /**
4629  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4630  * @dev_priv: i915 device instance
4631  *
4632  * This function is used to enable interrupts at runtime, both in the runtime
4633  * pm and the system suspend/resume code.
4634  */
4635 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4636 {
4637 	dev_priv->pm.irqs_enabled = true;
4638 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4639 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4640 }
4641