xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision 9317c2d0)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 				    i915_reg_t reg)
144 {
145 	u32 val = I915_READ(reg);
146 
147 	if (val == 0)
148 		return;
149 
150 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 	     i915_mmio_reg_offset(reg), val);
152 	I915_WRITE(reg, 0xffffffff);
153 	POSTING_READ(reg);
154 	I915_WRITE(reg, 0xffffffff);
155 	POSTING_READ(reg);
156 }
157 
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 	POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164 
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 	I915_WRITE(type##IER, (ier_val)); \
168 	I915_WRITE(type##IMR, (imr_val)); \
169 	POSTING_READ(type##IMR); \
170 } while (0)
171 
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174 
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 				     uint32_t mask,
179 				     uint32_t bits)
180 {
181 	uint32_t val;
182 
183 	assert_spin_locked(&dev_priv->irq_lock);
184 	WARN_ON(bits & ~mask);
185 
186 	val = I915_READ(PORT_HOTPLUG_EN);
187 	val &= ~mask;
188 	val |= bits;
189 	I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191 
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 				   uint32_t mask,
206 				   uint32_t bits)
207 {
208 	spin_lock_irq(&dev_priv->irq_lock);
209 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 	spin_unlock_irq(&dev_priv->irq_lock);
211 }
212 
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 			    uint32_t interrupt_mask,
221 			    uint32_t enabled_irq_mask)
222 {
223 	uint32_t new_val;
224 
225 	assert_spin_locked(&dev_priv->irq_lock);
226 
227 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
228 
229 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 		return;
231 
232 	new_val = dev_priv->irq_mask;
233 	new_val &= ~interrupt_mask;
234 	new_val |= (~enabled_irq_mask & interrupt_mask);
235 
236 	if (new_val != dev_priv->irq_mask) {
237 		dev_priv->irq_mask = new_val;
238 		I915_WRITE(DEIMR, dev_priv->irq_mask);
239 		POSTING_READ(DEIMR);
240 	}
241 }
242 
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 			      uint32_t interrupt_mask,
251 			      uint32_t enabled_irq_mask)
252 {
253 	assert_spin_locked(&dev_priv->irq_lock);
254 
255 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
256 
257 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 		return;
259 
260 	dev_priv->gt_irq_mask &= ~interrupt_mask;
261 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264 
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 	ilk_update_gt_irq(dev_priv, mask, mask);
268 	POSTING_READ_FW(GTIMR);
269 }
270 
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 	ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275 
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280 
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285 
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290 
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 			      uint32_t interrupt_mask,
299 			      uint32_t enabled_irq_mask)
300 {
301 	uint32_t new_val;
302 
303 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
304 
305 	assert_spin_locked(&dev_priv->irq_lock);
306 
307 	new_val = dev_priv->pm_imr;
308 	new_val &= ~interrupt_mask;
309 	new_val |= (~enabled_irq_mask & interrupt_mask);
310 
311 	if (new_val != dev_priv->pm_imr) {
312 		dev_priv->pm_imr = new_val;
313 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 		POSTING_READ(gen6_pm_imr(dev_priv));
315 	}
316 }
317 
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 		return;
322 
323 	snb_update_pm_irq(dev_priv, mask, mask);
324 }
325 
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 	snb_update_pm_irq(dev_priv, mask, 0);
329 }
330 
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 		return;
335 
336 	__gen6_mask_pm_irq(dev_priv, mask);
337 }
338 
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 	i915_reg_t reg = gen6_pm_iir(dev_priv);
342 
343 	assert_spin_locked(&dev_priv->irq_lock);
344 
345 	I915_WRITE(reg, reset_mask);
346 	I915_WRITE(reg, reset_mask);
347 	POSTING_READ(reg);
348 }
349 
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 	assert_spin_locked(&dev_priv->irq_lock);
353 
354 	dev_priv->pm_ier |= enable_mask;
355 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 	gen6_unmask_pm_irq(dev_priv, enable_mask);
357 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359 
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 	assert_spin_locked(&dev_priv->irq_lock);
363 
364 	dev_priv->pm_ier &= ~disable_mask;
365 	__gen6_mask_pm_irq(dev_priv, disable_mask);
366 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 	/* though a barrier is missing here, but don't really need a one */
368 }
369 
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 	spin_lock_irq(&dev_priv->irq_lock);
373 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 	dev_priv->rps.pm_iir = 0;
375 	spin_unlock_irq(&dev_priv->irq_lock);
376 }
377 
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 	if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 		return;
382 
383 	spin_lock_irq(&dev_priv->irq_lock);
384 	WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 	WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 	dev_priv->rps.interrupts_enabled = true;
387 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388 
389 	spin_unlock_irq(&dev_priv->irq_lock);
390 }
391 
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394 	return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396 
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399 	if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400 		return;
401 
402 	spin_lock_irq(&dev_priv->irq_lock);
403 	dev_priv->rps.interrupts_enabled = false;
404 
405 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406 
407 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408 
409 	spin_unlock_irq(&dev_priv->irq_lock);
410 	synchronize_irq(dev_priv->drm.irq);
411 
412 	/* Now that we will not be generating any more work, flush any
413 	 * outsanding tasks. As we are called on the RPS idle path,
414 	 * we will reset the GPU to minimum frequencies, so the current
415 	 * state of the worker can be discarded.
416 	 */
417 	cancel_work_sync(&dev_priv->rps.work);
418 	gen6_reset_rps_interrupts(dev_priv);
419 }
420 
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423 	spin_lock_irq(&dev_priv->irq_lock);
424 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425 	spin_unlock_irq(&dev_priv->irq_lock);
426 }
427 
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430 	spin_lock_irq(&dev_priv->irq_lock);
431 	if (!dev_priv->guc.interrupts_enabled) {
432 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433 				       dev_priv->pm_guc_events);
434 		dev_priv->guc.interrupts_enabled = true;
435 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436 	}
437 	spin_unlock_irq(&dev_priv->irq_lock);
438 }
439 
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442 	spin_lock_irq(&dev_priv->irq_lock);
443 	dev_priv->guc.interrupts_enabled = false;
444 
445 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446 
447 	spin_unlock_irq(&dev_priv->irq_lock);
448 	synchronize_irq(dev_priv->drm.irq);
449 
450 	gen9_reset_guc_interrupts(dev_priv);
451 }
452 
453 /**
454  * bdw_update_port_irq - update DE port interrupt
455  * @dev_priv: driver private
456  * @interrupt_mask: mask of interrupt bits to update
457  * @enabled_irq_mask: mask of interrupt bits to enable
458  */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460 				uint32_t interrupt_mask,
461 				uint32_t enabled_irq_mask)
462 {
463 	uint32_t new_val;
464 	uint32_t old_val;
465 
466 	assert_spin_locked(&dev_priv->irq_lock);
467 
468 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
469 
470 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471 		return;
472 
473 	old_val = I915_READ(GEN8_DE_PORT_IMR);
474 
475 	new_val = old_val;
476 	new_val &= ~interrupt_mask;
477 	new_val |= (~enabled_irq_mask & interrupt_mask);
478 
479 	if (new_val != old_val) {
480 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481 		POSTING_READ(GEN8_DE_PORT_IMR);
482 	}
483 }
484 
485 /**
486  * bdw_update_pipe_irq - update DE pipe interrupt
487  * @dev_priv: driver private
488  * @pipe: pipe whose interrupt to update
489  * @interrupt_mask: mask of interrupt bits to update
490  * @enabled_irq_mask: mask of interrupt bits to enable
491  */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493 			 enum i915_pipe pipe,
494 			 uint32_t interrupt_mask,
495 			 uint32_t enabled_irq_mask)
496 {
497 	uint32_t new_val;
498 
499 	assert_spin_locked(&dev_priv->irq_lock);
500 
501 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
502 
503 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504 		return;
505 
506 	new_val = dev_priv->de_irq_mask[pipe];
507 	new_val &= ~interrupt_mask;
508 	new_val |= (~enabled_irq_mask & interrupt_mask);
509 
510 	if (new_val != dev_priv->de_irq_mask[pipe]) {
511 		dev_priv->de_irq_mask[pipe] = new_val;
512 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514 	}
515 }
516 
517 /**
518  * ibx_display_interrupt_update - update SDEIMR
519  * @dev_priv: driver private
520  * @interrupt_mask: mask of interrupt bits to update
521  * @enabled_irq_mask: mask of interrupt bits to enable
522  */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524 				  uint32_t interrupt_mask,
525 				  uint32_t enabled_irq_mask)
526 {
527 	uint32_t sdeimr = I915_READ(SDEIMR);
528 	sdeimr &= ~interrupt_mask;
529 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
530 
531 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
532 
533 	assert_spin_locked(&dev_priv->irq_lock);
534 
535 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 		return;
537 
538 	I915_WRITE(SDEIMR, sdeimr);
539 	POSTING_READ(SDEIMR);
540 }
541 
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
544 		       u32 enable_mask, u32 status_mask)
545 {
546 	i915_reg_t reg = PIPESTAT(pipe);
547 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548 
549 	assert_spin_locked(&dev_priv->irq_lock);
550 	WARN_ON(!intel_irqs_enabled(dev_priv));
551 
552 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
554 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555 		      pipe_name(pipe), enable_mask, status_mask))
556 		return;
557 
558 	if ((pipestat & enable_mask) == enable_mask)
559 		return;
560 
561 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562 
563 	/* Enable the interrupt, clear any pending status */
564 	pipestat |= enable_mask | status_mask;
565 	I915_WRITE(reg, pipestat);
566 	POSTING_READ(reg);
567 }
568 
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
571 		        u32 enable_mask, u32 status_mask)
572 {
573 	i915_reg_t reg = PIPESTAT(pipe);
574 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575 
576 	assert_spin_locked(&dev_priv->irq_lock);
577 	WARN_ON(!intel_irqs_enabled(dev_priv));
578 
579 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
581 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582 		      pipe_name(pipe), enable_mask, status_mask))
583 		return;
584 
585 	if ((pipestat & enable_mask) == 0)
586 		return;
587 
588 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589 
590 	pipestat &= ~enable_mask;
591 	I915_WRITE(reg, pipestat);
592 	POSTING_READ(reg);
593 }
594 
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597 	u32 enable_mask = status_mask << 16;
598 
599 	/*
600 	 * On pipe A we don't support the PSR interrupt yet,
601 	 * on pipe B and C the same bit MBZ.
602 	 */
603 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604 		return 0;
605 	/*
606 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
607 	 * A the same bit is for perf counters which we don't use either.
608 	 */
609 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610 		return 0;
611 
612 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
614 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
615 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619 
620 	return enable_mask;
621 }
622 
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
625 		     u32 status_mask)
626 {
627 	u32 enable_mask;
628 
629 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631 							   status_mask);
632 	else
633 		enable_mask = status_mask << 16;
634 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636 
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
639 		      u32 status_mask)
640 {
641 	u32 enable_mask;
642 
643 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644 		enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645 							   status_mask);
646 	else
647 		enable_mask = status_mask << 16;
648 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650 
651 /**
652  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653  * @dev_priv: i915 device private
654  */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658 		return;
659 
660 	spin_lock_irq(&dev_priv->irq_lock);
661 
662 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663 	if (INTEL_GEN(dev_priv) >= 4)
664 		i915_enable_pipestat(dev_priv, PIPE_A,
665 				     PIPE_LEGACY_BLC_EVENT_STATUS);
666 
667 	spin_unlock_irq(&dev_priv->irq_lock);
668 }
669 
670 /*
671  * This timing diagram depicts the video signal in and
672  * around the vertical blanking period.
673  *
674  * Assumptions about the fictitious mode used in this example:
675  *  vblank_start >= 3
676  *  vsync_start = vblank_start + 1
677  *  vsync_end = vblank_start + 2
678  *  vtotal = vblank_start + 3
679  *
680  *           start of vblank:
681  *           latch double buffered registers
682  *           increment frame counter (ctg+)
683  *           generate start of vblank interrupt (gen4+)
684  *           |
685  *           |          frame start:
686  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
687  *           |          may be shifted forward 1-3 extra lines via PIPECONF
688  *           |          |
689  *           |          |  start of vsync:
690  *           |          |  generate vsync interrupt
691  *           |          |  |
692  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
693  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
694  * ----va---> <-----------------vb--------------------> <--------va-------------
695  *       |          |       <----vs----->                     |
696  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699  *       |          |                                         |
700  *       last visible pixel                                   first visible pixel
701  *                  |                                         increment frame counter (gen3/4)
702  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
703  *
704  * x  = horizontal active
705  * _  = horizontal blanking
706  * hs = horizontal sync
707  * va = vertical active
708  * vb = vertical blanking
709  * vs = vertical sync
710  * vbs = vblank_start (number)
711  *
712  * Summary:
713  * - most events happen at the start of horizontal sync
714  * - frame start happens at the start of horizontal blank, 1-4 lines
715  *   (depending on PIPECONF settings) after the start of vblank
716  * - gen3/4 pixel and frame counter are synchronized with the start
717  *   of horizontal active on the first line of vertical active
718  */
719 
720 /* Called from drm generic code, passed a 'crtc', which
721  * we use as a pipe index
722  */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725 	struct drm_i915_private *dev_priv = to_i915(dev);
726 	i915_reg_t high_frame, low_frame;
727 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729 								pipe);
730 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731 
732 	htotal = mode->crtc_htotal;
733 	hsync_start = mode->crtc_hsync_start;
734 	vbl_start = mode->crtc_vblank_start;
735 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
737 
738 	/* Convert to pixel count */
739 	vbl_start *= htotal;
740 
741 	/* Start of vblank event occurs at start of hsync */
742 	vbl_start -= htotal - hsync_start;
743 
744 	high_frame = PIPEFRAME(pipe);
745 	low_frame = PIPEFRAMEPIXEL(pipe);
746 
747 	/*
748 	 * High & low register fields aren't synchronized, so make sure
749 	 * we get a low value that's stable across two reads of the high
750 	 * register.
751 	 */
752 	do {
753 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754 		low   = I915_READ(low_frame);
755 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756 	} while (high1 != high2);
757 
758 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 	pixel = low & PIPE_PIXEL_MASK;
760 	low >>= PIPE_FRAME_LOW_SHIFT;
761 
762 	/*
763 	 * The frame counter increments at beginning of active.
764 	 * Cook up a vblank counter by also checking the pixel
765 	 * counter against vblank start.
766 	 */
767 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769 
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772 	struct drm_i915_private *dev_priv = to_i915(dev);
773 
774 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776 
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 	struct drm_device *dev = crtc->base.dev;
781 	struct drm_i915_private *dev_priv = to_i915(dev);
782 	const struct drm_display_mode *mode = &crtc->base.hwmode;
783 	enum i915_pipe pipe = crtc->pipe;
784 	int position, vtotal;
785 
786 	vtotal = mode->crtc_vtotal;
787 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 		vtotal /= 2;
789 
790 	if (IS_GEN2(dev_priv))
791 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792 	else
793 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794 
795 	/*
796 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
797 	 * read it just before the start of vblank.  So try it again
798 	 * so we don't accidentally end up spanning a vblank frame
799 	 * increment, causing the pipe_update_end() code to squak at us.
800 	 *
801 	 * The nature of this problem means we can't simply check the ISR
802 	 * bit and return the vblank start value; nor can we use the scanline
803 	 * debug register in the transcoder as it appears to have the same
804 	 * problem.  We may need to extend this to include other platforms,
805 	 * but so far testing only shows the problem on HSW.
806 	 */
807 	if (HAS_DDI(dev_priv) && !position) {
808 		int i, temp;
809 
810 		for (i = 0; i < 100; i++) {
811 			udelay(1);
812 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813 				DSL_LINEMASK_GEN3;
814 			if (temp != position) {
815 				position = temp;
816 				break;
817 			}
818 		}
819 	}
820 
821 	/*
822 	 * See update_scanline_offset() for the details on the
823 	 * scanline_offset adjustment.
824 	 */
825 	return (position + crtc->scanline_offset) % vtotal;
826 }
827 
828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829 				    unsigned int flags, int *vpos, int *hpos,
830 				    ktime_t *stime, ktime_t *etime,
831 				    const struct drm_display_mode *mode)
832 {
833 	struct drm_i915_private *dev_priv = to_i915(dev);
834 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835 								pipe);
836 	int position;
837 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838 	bool in_vbl = true;
839 	int ret = 0;
840 	unsigned long irqflags;
841 
842 	if (WARN_ON(!mode->crtc_clock)) {
843 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844 				 "pipe %c\n", pipe_name(pipe));
845 		return 0;
846 	}
847 
848 	htotal = mode->crtc_htotal;
849 	hsync_start = mode->crtc_hsync_start;
850 	vtotal = mode->crtc_vtotal;
851 	vbl_start = mode->crtc_vblank_start;
852 	vbl_end = mode->crtc_vblank_end;
853 
854 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 		vbl_end /= 2;
857 		vtotal /= 2;
858 	}
859 
860 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861 
862 	/*
863 	 * Lock uncore.lock, as we will do multiple timing critical raw
864 	 * register reads, potentially with preemption disabled, so the
865 	 * following code must not block on uncore.lock.
866 	 */
867 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868 
869 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870 
871 	/* Get optional system timestamp before query. */
872 	if (stime)
873 		*stime = ktime_get();
874 
875 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 		/* No obvious pixelcount register. Only query vertical
877 		 * scanout position from Display scan line register.
878 		 */
879 		position = __intel_get_crtc_scanline(intel_crtc);
880 	} else {
881 		/* Have access to pixelcount since start of frame.
882 		 * We can split this into vertical and horizontal
883 		 * scanout position.
884 		 */
885 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886 
887 		/* convert to pixel counts */
888 		vbl_start *= htotal;
889 		vbl_end *= htotal;
890 		vtotal *= htotal;
891 
892 		/*
893 		 * In interlaced modes, the pixel counter counts all pixels,
894 		 * so one field will have htotal more pixels. In order to avoid
895 		 * the reported position from jumping backwards when the pixel
896 		 * counter is beyond the length of the shorter field, just
897 		 * clamp the position the length of the shorter field. This
898 		 * matches how the scanline counter based position works since
899 		 * the scanline counter doesn't count the two half lines.
900 		 */
901 		if (position >= vtotal)
902 			position = vtotal - 1;
903 
904 		/*
905 		 * Start of vblank interrupt is triggered at start of hsync,
906 		 * just prior to the first active line of vblank. However we
907 		 * consider lines to start at the leading edge of horizontal
908 		 * active. So, should we get here before we've crossed into
909 		 * the horizontal active of the first line in vblank, we would
910 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 		 * always add htotal-hsync_start to the current pixel position.
912 		 */
913 		position = (position + htotal - hsync_start) % vtotal;
914 	}
915 
916 	/* Get optional system timestamp after query. */
917 	if (etime)
918 		*etime = ktime_get();
919 
920 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921 
922 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923 
924 	in_vbl = position >= vbl_start && position < vbl_end;
925 
926 	/*
927 	 * While in vblank, position will be negative
928 	 * counting up towards 0 at vbl_end. And outside
929 	 * vblank, position will be positive counting
930 	 * up since vbl_end.
931 	 */
932 	if (position >= vbl_start)
933 		position -= vbl_end;
934 	else
935 		position += vtotal - vbl_end;
936 
937 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938 		*vpos = position;
939 		*hpos = 0;
940 	} else {
941 		*vpos = position / htotal;
942 		*hpos = position - (*vpos * htotal);
943 	}
944 
945 	/* In vblank? */
946 	if (in_vbl)
947 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
948 
949 	return ret;
950 }
951 
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 	unsigned long irqflags;
956 	int position;
957 
958 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 	position = __intel_get_crtc_scanline(crtc);
960 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961 
962 	return position;
963 }
964 
965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966 			      int *max_error,
967 			      struct timeval *vblank_time,
968 			      unsigned flags)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(dev);
971 	struct intel_crtc *crtc;
972 
973 	if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974 		DRM_ERROR("Invalid crtc %u\n", pipe);
975 		return -EINVAL;
976 	}
977 
978 	/* Get drm_crtc to timestamp: */
979 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980 	if (crtc == NULL) {
981 		DRM_ERROR("Invalid crtc %u\n", pipe);
982 		return -EINVAL;
983 	}
984 
985 	if (!crtc->base.hwmode.crtc_clock) {
986 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987 		return -EBUSY;
988 	}
989 
990 	/* Helper routine in DRM core does all the work: */
991 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992 						     vblank_time, flags,
993 						     &crtc->base.hwmode);
994 }
995 
996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997 {
998 	u32 busy_up, busy_down, max_avg, min_avg;
999 	u8 new_delay;
1000 
1001 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
1002 
1003 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004 
1005 	new_delay = dev_priv->ips.cur_delay;
1006 
1007 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1009 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1010 	max_avg = I915_READ(RCBMAXAVG);
1011 	min_avg = I915_READ(RCBMINAVG);
1012 
1013 	/* Handle RCS change request from hw */
1014 	if (busy_up > max_avg) {
1015 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016 			new_delay = dev_priv->ips.cur_delay - 1;
1017 		if (new_delay < dev_priv->ips.max_delay)
1018 			new_delay = dev_priv->ips.max_delay;
1019 	} else if (busy_down < min_avg) {
1020 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021 			new_delay = dev_priv->ips.cur_delay + 1;
1022 		if (new_delay > dev_priv->ips.min_delay)
1023 			new_delay = dev_priv->ips.min_delay;
1024 	}
1025 
1026 	if (ironlake_set_drps(dev_priv, new_delay))
1027 		dev_priv->ips.cur_delay = new_delay;
1028 
1029 	lockmgr(&mchdev_lock, LK_RELEASE);
1030 
1031 	return;
1032 }
1033 
1034 static void notify_ring(struct intel_engine_cs *engine)
1035 {
1036 	smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037 	if (intel_engine_wakeup(engine))
1038 		trace_i915_gem_request_notify(engine);
1039 }
1040 
1041 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042 			struct intel_rps_ei *ei)
1043 {
1044 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047 }
1048 
1049 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1050 {
1051 	memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1052 }
1053 
1054 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1055 {
1056 	const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1057 	struct intel_rps_ei now;
1058 	u32 events = 0;
1059 
1060 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1061 		return 0;
1062 
1063 	vlv_c0_read(dev_priv, &now);
1064 	if (now.cz_clock == 0)
1065 		return 0;
1066 
1067 	if (prev->cz_clock) {
1068 		u64 time, c0;
1069 		unsigned int mul;
1070 
1071 		mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
1072 		if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1073 			mul <<= 8;
1074 
1075 		time = now.cz_clock - prev->cz_clock;
1076 		time *= dev_priv->czclk_freq;
1077 
1078 		/* Workload can be split between render + media,
1079 		 * e.g. SwapBuffers being blitted in X after being rendered in
1080 		 * mesa. To account for this we need to combine both engines
1081 		 * into our activity counter.
1082 		 */
1083 		c0 = now.render_c0 - prev->render_c0;
1084 		c0 += now.media_c0 - prev->media_c0;
1085 		c0 *= mul;
1086 
1087 		if (c0 > time * dev_priv->rps.up_threshold)
1088 			events = GEN6_PM_RP_UP_THRESHOLD;
1089 		else if (c0 < time * dev_priv->rps.down_threshold)
1090 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1091 	}
1092 
1093 	dev_priv->rps.ei = now;
1094 	return events;
1095 }
1096 
1097 static bool any_waiters(struct drm_i915_private *dev_priv)
1098 {
1099 	struct intel_engine_cs *engine;
1100 	enum intel_engine_id id;
1101 
1102 	for_each_engine(engine, dev_priv, id)
1103 		if (intel_engine_has_waiter(engine))
1104 			return true;
1105 
1106 	return false;
1107 }
1108 
1109 static void gen6_pm_rps_work(struct work_struct *work)
1110 {
1111 	struct drm_i915_private *dev_priv =
1112 		container_of(work, struct drm_i915_private, rps.work);
1113 	bool client_boost;
1114 	int new_delay, adj, min, max;
1115 	u32 pm_iir;
1116 
1117 	spin_lock_irq(&dev_priv->irq_lock);
1118 	/* Speed up work cancelation during disabling rps interrupts. */
1119 	if (!dev_priv->rps.interrupts_enabled) {
1120 		spin_unlock_irq(&dev_priv->irq_lock);
1121 		return;
1122 	}
1123 
1124 	pm_iir = dev_priv->rps.pm_iir;
1125 	dev_priv->rps.pm_iir = 0;
1126 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1127 	gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1128 	client_boost = dev_priv->rps.client_boost;
1129 	dev_priv->rps.client_boost = false;
1130 	spin_unlock_irq(&dev_priv->irq_lock);
1131 
1132 	/* Make sure we didn't queue anything we're not going to process. */
1133 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1134 
1135 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1136 		return;
1137 
1138 	mutex_lock(&dev_priv->rps.hw_lock);
1139 
1140 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1141 
1142 	adj = dev_priv->rps.last_adj;
1143 	new_delay = dev_priv->rps.cur_freq;
1144 	min = dev_priv->rps.min_freq_softlimit;
1145 	max = dev_priv->rps.max_freq_softlimit;
1146 	if (client_boost || any_waiters(dev_priv))
1147 		max = dev_priv->rps.max_freq;
1148 	if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1149 		new_delay = dev_priv->rps.boost_freq;
1150 		adj = 0;
1151 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1152 		if (adj > 0)
1153 			adj *= 2;
1154 		else /* CHV needs even encode values */
1155 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1156 		/*
1157 		 * For better performance, jump directly
1158 		 * to RPe if we're below it.
1159 		 */
1160 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1161 			new_delay = dev_priv->rps.efficient_freq;
1162 			adj = 0;
1163 		}
1164 	} else if (client_boost || any_waiters(dev_priv)) {
1165 		adj = 0;
1166 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1167 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1168 			new_delay = dev_priv->rps.efficient_freq;
1169 		else
1170 			new_delay = dev_priv->rps.min_freq_softlimit;
1171 		adj = 0;
1172 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1173 		if (adj < 0)
1174 			adj *= 2;
1175 		else /* CHV needs even encode values */
1176 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1177 	} else { /* unknown event */
1178 		adj = 0;
1179 	}
1180 
1181 	dev_priv->rps.last_adj = adj;
1182 
1183 	/* sysfs frequency interfaces may have snuck in while servicing the
1184 	 * interrupt
1185 	 */
1186 	new_delay += adj;
1187 	new_delay = clamp_t(int, new_delay, min, max);
1188 
1189 	intel_set_rps(dev_priv, new_delay);
1190 
1191 	mutex_unlock(&dev_priv->rps.hw_lock);
1192 }
1193 
1194 
1195 /**
1196  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1197  * occurred.
1198  * @work: workqueue struct
1199  *
1200  * Doesn't actually do anything except notify userspace. As a consequence of
1201  * this event, userspace should try to remap the bad rows since statistically
1202  * it is likely the same row is more likely to go bad again.
1203  */
1204 static void ivybridge_parity_work(struct work_struct *work)
1205 {
1206 	struct drm_i915_private *dev_priv =
1207 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1208 	u32 error_status, row, bank, subbank;
1209 	char *parity_event[6];
1210 	uint32_t misccpctl;
1211 	uint8_t slice = 0;
1212 
1213 	/* We must turn off DOP level clock gating to access the L3 registers.
1214 	 * In order to prevent a get/put style interface, acquire struct mutex
1215 	 * any time we access those registers.
1216 	 */
1217 	mutex_lock(&dev_priv->drm.struct_mutex);
1218 
1219 	/* If we've screwed up tracking, just let the interrupt fire again */
1220 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1221 		goto out;
1222 
1223 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1224 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1225 	POSTING_READ(GEN7_MISCCPCTL);
1226 
1227 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1228 		i915_reg_t reg;
1229 
1230 		slice--;
1231 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1232 			break;
1233 
1234 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1235 
1236 		reg = GEN7_L3CDERRST1(slice);
1237 
1238 		error_status = I915_READ(reg);
1239 		row = GEN7_PARITY_ERROR_ROW(error_status);
1240 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1241 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1242 
1243 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1244 		POSTING_READ(reg);
1245 
1246 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1247 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1248 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1249 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1250 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1251 		parity_event[5] = NULL;
1252 
1253 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1254 				   KOBJ_CHANGE, parity_event);
1255 
1256 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1257 			  slice, row, bank, subbank);
1258 
1259 		kfree(parity_event[4]);
1260 		kfree(parity_event[3]);
1261 		kfree(parity_event[2]);
1262 		kfree(parity_event[1]);
1263 	}
1264 
1265 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1266 
1267 out:
1268 	WARN_ON(dev_priv->l3_parity.which_slice);
1269 	spin_lock_irq(&dev_priv->irq_lock);
1270 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1271 	spin_unlock_irq(&dev_priv->irq_lock);
1272 
1273 	mutex_unlock(&dev_priv->drm.struct_mutex);
1274 }
1275 
1276 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1277 					       u32 iir)
1278 {
1279 	if (!HAS_L3_DPF(dev_priv))
1280 		return;
1281 
1282 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1283 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1284 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1285 
1286 	iir &= GT_PARITY_ERROR(dev_priv);
1287 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1288 		dev_priv->l3_parity.which_slice |= 1 << 1;
1289 
1290 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1291 		dev_priv->l3_parity.which_slice |= 1 << 0;
1292 
1293 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1294 }
1295 
1296 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1297 			       u32 gt_iir)
1298 {
1299 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1300 		notify_ring(dev_priv->engine[RCS]);
1301 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1302 		notify_ring(dev_priv->engine[VCS]);
1303 }
1304 
1305 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1306 			       u32 gt_iir)
1307 {
1308 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1309 		notify_ring(dev_priv->engine[RCS]);
1310 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1311 		notify_ring(dev_priv->engine[VCS]);
1312 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1313 		notify_ring(dev_priv->engine[BCS]);
1314 
1315 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1316 		      GT_BSD_CS_ERROR_INTERRUPT |
1317 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1318 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1319 
1320 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1321 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1322 }
1323 
1324 static __always_inline void
1325 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1326 {
1327 	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1328 		notify_ring(engine);
1329 	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1330 		tasklet_schedule(&engine->irq_tasklet);
1331 }
1332 
1333 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1334 				   u32 master_ctl,
1335 				   u32 gt_iir[4])
1336 {
1337 	irqreturn_t ret = IRQ_NONE;
1338 
1339 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1340 		gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1341 		if (gt_iir[0]) {
1342 			I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1343 			ret = IRQ_HANDLED;
1344 		} else
1345 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1346 	}
1347 
1348 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1349 		gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1350 		if (gt_iir[1]) {
1351 			I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1352 			ret = IRQ_HANDLED;
1353 		} else
1354 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1355 	}
1356 
1357 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1358 		gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1359 		if (gt_iir[3]) {
1360 			I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1361 			ret = IRQ_HANDLED;
1362 		} else
1363 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1364 	}
1365 
1366 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1367 		gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1368 		if (gt_iir[2] & (dev_priv->pm_rps_events |
1369 				 dev_priv->pm_guc_events)) {
1370 			I915_WRITE_FW(GEN8_GT_IIR(2),
1371 				      gt_iir[2] & (dev_priv->pm_rps_events |
1372 						   dev_priv->pm_guc_events));
1373 			ret = IRQ_HANDLED;
1374 		} else
1375 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1376 	}
1377 
1378 	return ret;
1379 }
1380 
1381 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1382 				u32 gt_iir[4])
1383 {
1384 	if (gt_iir[0]) {
1385 		gen8_cs_irq_handler(dev_priv->engine[RCS],
1386 				    gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1387 		gen8_cs_irq_handler(dev_priv->engine[BCS],
1388 				    gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1389 	}
1390 
1391 	if (gt_iir[1]) {
1392 		gen8_cs_irq_handler(dev_priv->engine[VCS],
1393 				    gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1394 		gen8_cs_irq_handler(dev_priv->engine[VCS2],
1395 				    gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1396 	}
1397 
1398 	if (gt_iir[3])
1399 		gen8_cs_irq_handler(dev_priv->engine[VECS],
1400 				    gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1401 
1402 	if (gt_iir[2] & dev_priv->pm_rps_events)
1403 		gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1404 
1405 	if (gt_iir[2] & dev_priv->pm_guc_events)
1406 		gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1407 }
1408 
1409 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1410 {
1411 	switch (port) {
1412 	case PORT_A:
1413 		return val & PORTA_HOTPLUG_LONG_DETECT;
1414 	case PORT_B:
1415 		return val & PORTB_HOTPLUG_LONG_DETECT;
1416 	case PORT_C:
1417 		return val & PORTC_HOTPLUG_LONG_DETECT;
1418 	default:
1419 		return false;
1420 	}
1421 }
1422 
1423 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1424 {
1425 	switch (port) {
1426 	case PORT_E:
1427 		return val & PORTE_HOTPLUG_LONG_DETECT;
1428 	default:
1429 		return false;
1430 	}
1431 }
1432 
1433 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1434 {
1435 	switch (port) {
1436 	case PORT_A:
1437 		return val & PORTA_HOTPLUG_LONG_DETECT;
1438 	case PORT_B:
1439 		return val & PORTB_HOTPLUG_LONG_DETECT;
1440 	case PORT_C:
1441 		return val & PORTC_HOTPLUG_LONG_DETECT;
1442 	case PORT_D:
1443 		return val & PORTD_HOTPLUG_LONG_DETECT;
1444 	default:
1445 		return false;
1446 	}
1447 }
1448 
1449 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1450 {
1451 	switch (port) {
1452 	case PORT_A:
1453 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1454 	default:
1455 		return false;
1456 	}
1457 }
1458 
1459 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1460 {
1461 	switch (port) {
1462 	case PORT_B:
1463 		return val & PORTB_HOTPLUG_LONG_DETECT;
1464 	case PORT_C:
1465 		return val & PORTC_HOTPLUG_LONG_DETECT;
1466 	case PORT_D:
1467 		return val & PORTD_HOTPLUG_LONG_DETECT;
1468 	default:
1469 		return false;
1470 	}
1471 }
1472 
1473 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1474 {
1475 	switch (port) {
1476 	case PORT_B:
1477 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1478 	case PORT_C:
1479 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1480 	case PORT_D:
1481 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1482 	default:
1483 		return false;
1484 	}
1485 }
1486 
1487 /*
1488  * Get a bit mask of pins that have triggered, and which ones may be long.
1489  * This can be called multiple times with the same masks to accumulate
1490  * hotplug detection results from several registers.
1491  *
1492  * Note that the caller is expected to zero out the masks initially.
1493  */
1494 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1495 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1496 			     const u32 hpd[HPD_NUM_PINS],
1497 			     bool long_pulse_detect(enum port port, u32 val))
1498 {
1499 	enum port port;
1500 	int i;
1501 
1502 	for_each_hpd_pin(i) {
1503 		if ((hpd[i] & hotplug_trigger) == 0)
1504 			continue;
1505 
1506 		*pin_mask |= BIT(i);
1507 
1508 		if (!intel_hpd_pin_to_port(i, &port))
1509 			continue;
1510 
1511 		if (long_pulse_detect(port, dig_hotplug_reg))
1512 			*long_mask |= BIT(i);
1513 	}
1514 
1515 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1516 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1517 
1518 }
1519 
1520 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1521 {
1522 	wake_up_all(&dev_priv->gmbus_wait_queue);
1523 }
1524 
1525 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1526 {
1527 	wake_up_all(&dev_priv->gmbus_wait_queue);
1528 }
1529 
1530 #if defined(CONFIG_DEBUG_FS)
1531 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1532 					 enum i915_pipe pipe,
1533 					 uint32_t crc0, uint32_t crc1,
1534 					 uint32_t crc2, uint32_t crc3,
1535 					 uint32_t crc4)
1536 {
1537 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1538 	struct intel_pipe_crc_entry *entry;
1539 	int head, tail;
1540 
1541 	lockmgr(&pipe_crc->lock, LK_EXCLUSIVE);
1542 
1543 	if (!pipe_crc->entries) {
1544 		lockmgr(&pipe_crc->lock, LK_RELEASE);
1545 		DRM_DEBUG_KMS("spurious interrupt\n");
1546 		return;
1547 	}
1548 
1549 	head = pipe_crc->head;
1550 	tail = pipe_crc->tail;
1551 
1552 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1553 		lockmgr(&pipe_crc->lock, LK_RELEASE);
1554 		DRM_ERROR("CRC buffer overflowing\n");
1555 		return;
1556 	}
1557 
1558 	entry = &pipe_crc->entries[head];
1559 
1560 	entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1561 								 pipe);
1562 	entry->crc[0] = crc0;
1563 	entry->crc[1] = crc1;
1564 	entry->crc[2] = crc2;
1565 	entry->crc[3] = crc3;
1566 	entry->crc[4] = crc4;
1567 
1568 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1569 	pipe_crc->head = head;
1570 
1571 	lockmgr(&pipe_crc->lock, LK_RELEASE);
1572 
1573 	wake_up_interruptible(&pipe_crc->wq);
1574 }
1575 #else
1576 static inline void
1577 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1578 			     enum i915_pipe pipe,
1579 			     uint32_t crc0, uint32_t crc1,
1580 			     uint32_t crc2, uint32_t crc3,
1581 			     uint32_t crc4) {}
1582 #endif
1583 
1584 
1585 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1586 				     enum i915_pipe pipe)
1587 {
1588 	display_pipe_crc_irq_handler(dev_priv, pipe,
1589 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1590 				     0, 0, 0, 0);
1591 }
1592 
1593 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1594 				     enum i915_pipe pipe)
1595 {
1596 	display_pipe_crc_irq_handler(dev_priv, pipe,
1597 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1598 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1599 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1600 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1601 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1602 }
1603 
1604 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1605 				      enum i915_pipe pipe)
1606 {
1607 	uint32_t res1, res2;
1608 
1609 	if (INTEL_GEN(dev_priv) >= 3)
1610 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1611 	else
1612 		res1 = 0;
1613 
1614 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1615 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1616 	else
1617 		res2 = 0;
1618 
1619 	display_pipe_crc_irq_handler(dev_priv, pipe,
1620 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1621 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1622 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1623 				     res1, res2);
1624 }
1625 
1626 /* The RPS events need forcewake, so we add them to a work queue and mask their
1627  * IMR bits until the work is done. Other interrupts can be processed without
1628  * the work queue. */
1629 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1630 {
1631 	if (pm_iir & dev_priv->pm_rps_events) {
1632 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1633 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1634 		if (dev_priv->rps.interrupts_enabled) {
1635 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1636 			schedule_work(&dev_priv->rps.work);
1637 		}
1638 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1639 	}
1640 
1641 	if (INTEL_INFO(dev_priv)->gen >= 8)
1642 		return;
1643 
1644 	if (HAS_VEBOX(dev_priv)) {
1645 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1646 			notify_ring(dev_priv->engine[VECS]);
1647 
1648 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1649 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1650 	}
1651 }
1652 
1653 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1654 {
1655 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1656 		/* Sample the log buffer flush related bits & clear them out now
1657 		 * itself from the message identity register to minimize the
1658 		 * probability of losing a flush interrupt, when there are back
1659 		 * to back flush interrupts.
1660 		 * There can be a new flush interrupt, for different log buffer
1661 		 * type (like for ISR), whilst Host is handling one (for DPC).
1662 		 * Since same bit is used in message register for ISR & DPC, it
1663 		 * could happen that GuC sets the bit for 2nd interrupt but Host
1664 		 * clears out the bit on handling the 1st interrupt.
1665 		 */
1666 		u32 msg, flush;
1667 
1668 		msg = I915_READ(SOFT_SCRATCH(15));
1669 		flush = msg & (GUC2HOST_MSG_CRASH_DUMP_POSTED |
1670 			       GUC2HOST_MSG_FLUSH_LOG_BUFFER);
1671 		if (flush) {
1672 			/* Clear the message bits that are handled */
1673 			I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1674 
1675 			/* Handle flush interrupt in bottom half */
1676 			queue_work(dev_priv->guc.log.flush_wq,
1677 				   &dev_priv->guc.log.flush_work);
1678 
1679 			dev_priv->guc.log.flush_interrupt_count++;
1680 		} else {
1681 			/* Not clearing of unhandled event bits won't result in
1682 			 * re-triggering of the interrupt.
1683 			 */
1684 		}
1685 	}
1686 }
1687 
1688 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1689 				     enum i915_pipe pipe)
1690 {
1691 	bool ret;
1692 
1693 	ret = drm_handle_vblank(&dev_priv->drm, pipe);
1694 	if (ret)
1695 		intel_finish_page_flip_mmio(dev_priv, pipe);
1696 
1697 	return ret;
1698 }
1699 
1700 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1701 					u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1702 {
1703 	int pipe;
1704 
1705 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1706 
1707 	if (!dev_priv->display_irqs_enabled) {
1708 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1709 		return;
1710 	}
1711 
1712 	for_each_pipe(dev_priv, pipe) {
1713 		i915_reg_t reg;
1714 		u32 mask, iir_bit = 0;
1715 
1716 		/*
1717 		 * PIPESTAT bits get signalled even when the interrupt is
1718 		 * disabled with the mask bits, and some of the status bits do
1719 		 * not generate interrupts at all (like the underrun bit). Hence
1720 		 * we need to be careful that we only handle what we want to
1721 		 * handle.
1722 		 */
1723 
1724 		/* fifo underruns are filterered in the underrun handler. */
1725 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1726 
1727 		switch (pipe) {
1728 		case PIPE_A:
1729 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1730 			break;
1731 		case PIPE_B:
1732 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1733 			break;
1734 		case PIPE_C:
1735 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1736 			break;
1737 		}
1738 		if (iir & iir_bit)
1739 			mask |= dev_priv->pipestat_irq_mask[pipe];
1740 
1741 		if (!mask)
1742 			continue;
1743 
1744 		reg = PIPESTAT(pipe);
1745 		mask |= PIPESTAT_INT_ENABLE_MASK;
1746 		pipe_stats[pipe] = I915_READ(reg) & mask;
1747 
1748 		/*
1749 		 * Clear the PIPE*STAT regs before the IIR
1750 		 */
1751 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1752 					PIPESTAT_INT_STATUS_MASK))
1753 			I915_WRITE(reg, pipe_stats[pipe]);
1754 	}
1755 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1756 }
1757 
1758 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1759 					    u32 pipe_stats[I915_MAX_PIPES])
1760 {
1761 	enum i915_pipe pipe;
1762 
1763 	for_each_pipe(dev_priv, pipe) {
1764 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1765 		    intel_pipe_handle_vblank(dev_priv, pipe))
1766 			intel_check_page_flip(dev_priv, pipe);
1767 
1768 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1769 			intel_finish_page_flip_cs(dev_priv, pipe);
1770 
1771 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1772 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1773 
1774 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1775 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1776 	}
1777 
1778 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1779 		gmbus_irq_handler(dev_priv);
1780 }
1781 
1782 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1783 {
1784 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1785 
1786 	if (hotplug_status)
1787 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1788 
1789 	return hotplug_status;
1790 }
1791 
1792 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1793 				 u32 hotplug_status)
1794 {
1795 	u32 pin_mask = 0, long_mask = 0;
1796 
1797 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1798 	    IS_CHERRYVIEW(dev_priv)) {
1799 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1800 
1801 		if (hotplug_trigger) {
1802 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1803 					   hotplug_trigger, hpd_status_g4x,
1804 					   i9xx_port_hotplug_long_detect);
1805 
1806 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1807 		}
1808 
1809 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1810 			dp_aux_irq_handler(dev_priv);
1811 	} else {
1812 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1813 
1814 		if (hotplug_trigger) {
1815 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1816 					   hotplug_trigger, hpd_status_i915,
1817 					   i9xx_port_hotplug_long_detect);
1818 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1819 		}
1820 	}
1821 }
1822 
1823 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1824 {
1825 	struct drm_device *dev = arg;
1826 	struct drm_i915_private *dev_priv = to_i915(dev);
1827 	irqreturn_t ret = IRQ_NONE;
1828 
1829 	if (!intel_irqs_enabled(dev_priv))
1830 		return IRQ_NONE;
1831 
1832 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1833 	disable_rpm_wakeref_asserts(dev_priv);
1834 
1835 	do {
1836 		u32 iir, gt_iir, pm_iir;
1837 		u32 pipe_stats[I915_MAX_PIPES] = {};
1838 		u32 hotplug_status = 0;
1839 		u32 ier = 0;
1840 
1841 		gt_iir = I915_READ(GTIIR);
1842 		pm_iir = I915_READ(GEN6_PMIIR);
1843 		iir = I915_READ(VLV_IIR);
1844 
1845 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1846 			break;
1847 
1848 		ret = IRQ_HANDLED;
1849 
1850 		/*
1851 		 * Theory on interrupt generation, based on empirical evidence:
1852 		 *
1853 		 * x = ((VLV_IIR & VLV_IER) ||
1854 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1855 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1856 		 *
1857 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1858 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1859 		 * guarantee the CPU interrupt will be raised again even if we
1860 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1861 		 * bits this time around.
1862 		 */
1863 		I915_WRITE(VLV_MASTER_IER, 0);
1864 		ier = I915_READ(VLV_IER);
1865 		I915_WRITE(VLV_IER, 0);
1866 
1867 		if (gt_iir)
1868 			I915_WRITE(GTIIR, gt_iir);
1869 		if (pm_iir)
1870 			I915_WRITE(GEN6_PMIIR, pm_iir);
1871 
1872 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1873 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1874 
1875 		/* Call regardless, as some status bits might not be
1876 		 * signalled in iir */
1877 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1878 
1879 		/*
1880 		 * VLV_IIR is single buffered, and reflects the level
1881 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1882 		 */
1883 		if (iir)
1884 			I915_WRITE(VLV_IIR, iir);
1885 
1886 		I915_WRITE(VLV_IER, ier);
1887 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1888 		POSTING_READ(VLV_MASTER_IER);
1889 
1890 		if (gt_iir)
1891 			snb_gt_irq_handler(dev_priv, gt_iir);
1892 		if (pm_iir)
1893 			gen6_rps_irq_handler(dev_priv, pm_iir);
1894 
1895 		if (hotplug_status)
1896 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1897 
1898 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1899 	} while (0);
1900 
1901 	enable_rpm_wakeref_asserts(dev_priv);
1902 
1903 	return ret;
1904 }
1905 
1906 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1907 {
1908 	struct drm_device *dev = arg;
1909 	struct drm_i915_private *dev_priv = to_i915(dev);
1910 	irqreturn_t ret = IRQ_NONE;
1911 
1912 	if (!intel_irqs_enabled(dev_priv))
1913 		return IRQ_NONE;
1914 
1915 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1916 	disable_rpm_wakeref_asserts(dev_priv);
1917 
1918 	do {
1919 		u32 master_ctl, iir;
1920 		u32 gt_iir[4] = {};
1921 		u32 pipe_stats[I915_MAX_PIPES] = {};
1922 		u32 hotplug_status = 0;
1923 		u32 ier = 0;
1924 
1925 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1926 		iir = I915_READ(VLV_IIR);
1927 
1928 		if (master_ctl == 0 && iir == 0)
1929 			break;
1930 
1931 		ret = IRQ_HANDLED;
1932 
1933 		/*
1934 		 * Theory on interrupt generation, based on empirical evidence:
1935 		 *
1936 		 * x = ((VLV_IIR & VLV_IER) ||
1937 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1938 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1939 		 *
1940 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1941 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1942 		 * guarantee the CPU interrupt will be raised again even if we
1943 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1944 		 * bits this time around.
1945 		 */
1946 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1947 		ier = I915_READ(VLV_IER);
1948 		I915_WRITE(VLV_IER, 0);
1949 
1950 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1951 
1952 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1953 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1954 
1955 		/* Call regardless, as some status bits might not be
1956 		 * signalled in iir */
1957 		valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1958 
1959 		/*
1960 		 * VLV_IIR is single buffered, and reflects the level
1961 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1962 		 */
1963 		if (iir)
1964 			I915_WRITE(VLV_IIR, iir);
1965 
1966 		I915_WRITE(VLV_IER, ier);
1967 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1968 		POSTING_READ(GEN8_MASTER_IRQ);
1969 
1970 		gen8_gt_irq_handler(dev_priv, gt_iir);
1971 
1972 		if (hotplug_status)
1973 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1974 
1975 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1976 	} while (0);
1977 
1978 	enable_rpm_wakeref_asserts(dev_priv);
1979 
1980 	return ret;
1981 }
1982 
1983 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1984 				u32 hotplug_trigger,
1985 				const u32 hpd[HPD_NUM_PINS])
1986 {
1987 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1988 
1989 	/*
1990 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1991 	 * unless we touch the hotplug register, even if hotplug_trigger is
1992 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1993 	 * errors.
1994 	 */
1995 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1996 	if (!hotplug_trigger) {
1997 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1998 			PORTD_HOTPLUG_STATUS_MASK |
1999 			PORTC_HOTPLUG_STATUS_MASK |
2000 			PORTB_HOTPLUG_STATUS_MASK;
2001 		dig_hotplug_reg &= ~mask;
2002 	}
2003 
2004 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2005 	if (!hotplug_trigger)
2006 		return;
2007 
2008 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2009 			   dig_hotplug_reg, hpd,
2010 			   pch_port_hotplug_long_detect);
2011 
2012 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2013 }
2014 
2015 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2016 {
2017 	int pipe;
2018 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2019 
2020 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2021 
2022 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2023 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2024 			       SDE_AUDIO_POWER_SHIFT);
2025 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2026 				 port_name(port));
2027 	}
2028 
2029 	if (pch_iir & SDE_AUX_MASK)
2030 		dp_aux_irq_handler(dev_priv);
2031 
2032 	if (pch_iir & SDE_GMBUS)
2033 		gmbus_irq_handler(dev_priv);
2034 
2035 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2036 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2037 
2038 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2039 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2040 
2041 	if (pch_iir & SDE_POISON)
2042 		DRM_ERROR("PCH poison interrupt\n");
2043 
2044 	if (pch_iir & SDE_FDI_MASK)
2045 		for_each_pipe(dev_priv, pipe)
2046 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2047 					 pipe_name(pipe),
2048 					 I915_READ(FDI_RX_IIR(pipe)));
2049 
2050 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2051 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2052 
2053 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2054 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2055 
2056 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2057 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2058 
2059 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2060 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2061 }
2062 
2063 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2064 {
2065 	u32 err_int = I915_READ(GEN7_ERR_INT);
2066 	enum i915_pipe pipe;
2067 
2068 	if (err_int & ERR_INT_POISON)
2069 		DRM_ERROR("Poison interrupt\n");
2070 
2071 	for_each_pipe(dev_priv, pipe) {
2072 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2073 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2074 
2075 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2076 			if (IS_IVYBRIDGE(dev_priv))
2077 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2078 			else
2079 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2080 		}
2081 	}
2082 
2083 	I915_WRITE(GEN7_ERR_INT, err_int);
2084 }
2085 
2086 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2087 {
2088 	u32 serr_int = I915_READ(SERR_INT);
2089 
2090 	if (serr_int & SERR_INT_POISON)
2091 		DRM_ERROR("PCH poison interrupt\n");
2092 
2093 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2094 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2095 
2096 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2097 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2098 
2099 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2100 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2101 
2102 	I915_WRITE(SERR_INT, serr_int);
2103 }
2104 
2105 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2106 {
2107 	int pipe;
2108 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2109 
2110 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2111 
2112 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2113 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2114 			       SDE_AUDIO_POWER_SHIFT_CPT);
2115 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2116 				 port_name(port));
2117 	}
2118 
2119 	if (pch_iir & SDE_AUX_MASK_CPT)
2120 		dp_aux_irq_handler(dev_priv);
2121 
2122 	if (pch_iir & SDE_GMBUS_CPT)
2123 		gmbus_irq_handler(dev_priv);
2124 
2125 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2126 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2127 
2128 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2129 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2130 
2131 	if (pch_iir & SDE_FDI_MASK_CPT)
2132 		for_each_pipe(dev_priv, pipe)
2133 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2134 					 pipe_name(pipe),
2135 					 I915_READ(FDI_RX_IIR(pipe)));
2136 
2137 	if (pch_iir & SDE_ERROR_CPT)
2138 		cpt_serr_int_handler(dev_priv);
2139 }
2140 
2141 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2142 {
2143 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2144 		~SDE_PORTE_HOTPLUG_SPT;
2145 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2146 	u32 pin_mask = 0, long_mask = 0;
2147 
2148 	if (hotplug_trigger) {
2149 		u32 dig_hotplug_reg;
2150 
2151 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2152 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2153 
2154 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2155 				   dig_hotplug_reg, hpd_spt,
2156 				   spt_port_hotplug_long_detect);
2157 	}
2158 
2159 	if (hotplug2_trigger) {
2160 		u32 dig_hotplug_reg;
2161 
2162 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2163 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2164 
2165 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2166 				   dig_hotplug_reg, hpd_spt,
2167 				   spt_port_hotplug2_long_detect);
2168 	}
2169 
2170 	if (pin_mask)
2171 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2172 
2173 	if (pch_iir & SDE_GMBUS_CPT)
2174 		gmbus_irq_handler(dev_priv);
2175 }
2176 
2177 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2178 				u32 hotplug_trigger,
2179 				const u32 hpd[HPD_NUM_PINS])
2180 {
2181 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2182 
2183 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2184 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2185 
2186 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2187 			   dig_hotplug_reg, hpd,
2188 			   ilk_port_hotplug_long_detect);
2189 
2190 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2191 }
2192 
2193 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2194 				    u32 de_iir)
2195 {
2196 	enum i915_pipe pipe;
2197 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2198 
2199 	if (hotplug_trigger)
2200 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2201 
2202 	if (de_iir & DE_AUX_CHANNEL_A)
2203 		dp_aux_irq_handler(dev_priv);
2204 
2205 	if (de_iir & DE_GSE)
2206 		intel_opregion_asle_intr(dev_priv);
2207 
2208 	if (de_iir & DE_POISON)
2209 		DRM_ERROR("Poison interrupt\n");
2210 
2211 	for_each_pipe(dev_priv, pipe) {
2212 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2213 		    intel_pipe_handle_vblank(dev_priv, pipe))
2214 			intel_check_page_flip(dev_priv, pipe);
2215 
2216 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2217 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2218 
2219 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2220 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2221 
2222 		/* plane/pipes map 1:1 on ilk+ */
2223 		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2224 			intel_finish_page_flip_cs(dev_priv, pipe);
2225 	}
2226 
2227 	/* check event from PCH */
2228 	if (de_iir & DE_PCH_EVENT) {
2229 		u32 pch_iir = I915_READ(SDEIIR);
2230 
2231 		if (HAS_PCH_CPT(dev_priv))
2232 			cpt_irq_handler(dev_priv, pch_iir);
2233 		else
2234 			ibx_irq_handler(dev_priv, pch_iir);
2235 
2236 		/* should clear PCH hotplug event before clear CPU irq */
2237 		I915_WRITE(SDEIIR, pch_iir);
2238 	}
2239 
2240 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2241 		ironlake_rps_change_irq_handler(dev_priv);
2242 }
2243 
2244 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2245 				    u32 de_iir)
2246 {
2247 	enum i915_pipe pipe;
2248 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2249 
2250 	if (hotplug_trigger)
2251 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2252 
2253 	if (de_iir & DE_ERR_INT_IVB)
2254 		ivb_err_int_handler(dev_priv);
2255 
2256 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2257 		dp_aux_irq_handler(dev_priv);
2258 
2259 	if (de_iir & DE_GSE_IVB)
2260 		intel_opregion_asle_intr(dev_priv);
2261 
2262 	for_each_pipe(dev_priv, pipe) {
2263 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2264 		    intel_pipe_handle_vblank(dev_priv, pipe))
2265 			intel_check_page_flip(dev_priv, pipe);
2266 
2267 		/* plane/pipes map 1:1 on ilk+ */
2268 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2269 			intel_finish_page_flip_cs(dev_priv, pipe);
2270 	}
2271 
2272 	/* check event from PCH */
2273 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2274 		u32 pch_iir = I915_READ(SDEIIR);
2275 
2276 		cpt_irq_handler(dev_priv, pch_iir);
2277 
2278 		/* clear PCH hotplug event before clear CPU irq */
2279 		I915_WRITE(SDEIIR, pch_iir);
2280 	}
2281 }
2282 
2283 /*
2284  * To handle irqs with the minimum potential races with fresh interrupts, we:
2285  * 1 - Disable Master Interrupt Control.
2286  * 2 - Find the source(s) of the interrupt.
2287  * 3 - Clear the Interrupt Identity bits (IIR).
2288  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2289  * 5 - Re-enable Master Interrupt Control.
2290  */
2291 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2292 {
2293 	struct drm_device *dev = arg;
2294 	struct drm_i915_private *dev_priv = to_i915(dev);
2295 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2296 	irqreturn_t ret = IRQ_NONE;
2297 
2298 	if (!intel_irqs_enabled(dev_priv))
2299 		return IRQ_NONE;
2300 
2301 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2302 	disable_rpm_wakeref_asserts(dev_priv);
2303 
2304 	/* disable master interrupt before clearing iir  */
2305 	de_ier = I915_READ(DEIER);
2306 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2307 	POSTING_READ(DEIER);
2308 
2309 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2310 	 * interrupts will will be stored on its back queue, and then we'll be
2311 	 * able to process them after we restore SDEIER (as soon as we restore
2312 	 * it, we'll get an interrupt if SDEIIR still has something to process
2313 	 * due to its back queue). */
2314 	if (!HAS_PCH_NOP(dev_priv)) {
2315 		sde_ier = I915_READ(SDEIER);
2316 		I915_WRITE(SDEIER, 0);
2317 		POSTING_READ(SDEIER);
2318 	}
2319 
2320 	/* Find, clear, then process each source of interrupt */
2321 
2322 	gt_iir = I915_READ(GTIIR);
2323 	if (gt_iir) {
2324 		I915_WRITE(GTIIR, gt_iir);
2325 		ret = IRQ_HANDLED;
2326 		if (INTEL_GEN(dev_priv) >= 6)
2327 			snb_gt_irq_handler(dev_priv, gt_iir);
2328 		else
2329 			ilk_gt_irq_handler(dev_priv, gt_iir);
2330 	}
2331 
2332 	de_iir = I915_READ(DEIIR);
2333 	if (de_iir) {
2334 		I915_WRITE(DEIIR, de_iir);
2335 		ret = IRQ_HANDLED;
2336 		if (INTEL_GEN(dev_priv) >= 7)
2337 			ivb_display_irq_handler(dev_priv, de_iir);
2338 		else
2339 			ilk_display_irq_handler(dev_priv, de_iir);
2340 	}
2341 
2342 	if (INTEL_GEN(dev_priv) >= 6) {
2343 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2344 		if (pm_iir) {
2345 			I915_WRITE(GEN6_PMIIR, pm_iir);
2346 			ret = IRQ_HANDLED;
2347 			gen6_rps_irq_handler(dev_priv, pm_iir);
2348 		}
2349 	}
2350 
2351 	I915_WRITE(DEIER, de_ier);
2352 	POSTING_READ(DEIER);
2353 	if (!HAS_PCH_NOP(dev_priv)) {
2354 		I915_WRITE(SDEIER, sde_ier);
2355 		POSTING_READ(SDEIER);
2356 	}
2357 
2358 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2359 	enable_rpm_wakeref_asserts(dev_priv);
2360 
2361 	return ret;
2362 }
2363 
2364 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2365 				u32 hotplug_trigger,
2366 				const u32 hpd[HPD_NUM_PINS])
2367 {
2368 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2369 
2370 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2371 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2372 
2373 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2374 			   dig_hotplug_reg, hpd,
2375 			   bxt_port_hotplug_long_detect);
2376 
2377 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2378 }
2379 
2380 static irqreturn_t
2381 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2382 {
2383 	irqreturn_t ret = IRQ_NONE;
2384 	u32 iir;
2385 	enum i915_pipe pipe;
2386 
2387 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2388 		iir = I915_READ(GEN8_DE_MISC_IIR);
2389 		if (iir) {
2390 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2391 			ret = IRQ_HANDLED;
2392 			if (iir & GEN8_DE_MISC_GSE)
2393 				intel_opregion_asle_intr(dev_priv);
2394 			else
2395 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2396 		}
2397 		else
2398 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2399 	}
2400 
2401 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2402 		iir = I915_READ(GEN8_DE_PORT_IIR);
2403 		if (iir) {
2404 			u32 tmp_mask;
2405 			bool found = false;
2406 
2407 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2408 			ret = IRQ_HANDLED;
2409 
2410 			tmp_mask = GEN8_AUX_CHANNEL_A;
2411 			if (INTEL_INFO(dev_priv)->gen >= 9)
2412 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2413 					    GEN9_AUX_CHANNEL_C |
2414 					    GEN9_AUX_CHANNEL_D;
2415 
2416 			if (iir & tmp_mask) {
2417 				dp_aux_irq_handler(dev_priv);
2418 				found = true;
2419 			}
2420 
2421 			if (IS_BROXTON(dev_priv)) {
2422 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2423 				if (tmp_mask) {
2424 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2425 							    hpd_bxt);
2426 					found = true;
2427 				}
2428 			} else if (IS_BROADWELL(dev_priv)) {
2429 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2430 				if (tmp_mask) {
2431 					ilk_hpd_irq_handler(dev_priv,
2432 							    tmp_mask, hpd_bdw);
2433 					found = true;
2434 				}
2435 			}
2436 
2437 			if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2438 				gmbus_irq_handler(dev_priv);
2439 				found = true;
2440 			}
2441 
2442 			if (!found)
2443 				DRM_ERROR("Unexpected DE Port interrupt\n");
2444 		}
2445 		else
2446 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2447 	}
2448 
2449 	for_each_pipe(dev_priv, pipe) {
2450 		u32 flip_done, fault_errors;
2451 
2452 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2453 			continue;
2454 
2455 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2456 		if (!iir) {
2457 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2458 			continue;
2459 		}
2460 
2461 		ret = IRQ_HANDLED;
2462 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2463 
2464 		if (iir & GEN8_PIPE_VBLANK &&
2465 		    intel_pipe_handle_vblank(dev_priv, pipe))
2466 			intel_check_page_flip(dev_priv, pipe);
2467 
2468 		flip_done = iir;
2469 		if (INTEL_INFO(dev_priv)->gen >= 9)
2470 			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2471 		else
2472 			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2473 
2474 		if (flip_done)
2475 			intel_finish_page_flip_cs(dev_priv, pipe);
2476 
2477 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2478 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2479 
2480 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2481 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2482 
2483 		fault_errors = iir;
2484 		if (INTEL_INFO(dev_priv)->gen >= 9)
2485 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2486 		else
2487 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2488 
2489 		if (fault_errors)
2490 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2491 				  pipe_name(pipe),
2492 				  fault_errors);
2493 	}
2494 
2495 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2496 	    master_ctl & GEN8_DE_PCH_IRQ) {
2497 		/*
2498 		 * FIXME(BDW): Assume for now that the new interrupt handling
2499 		 * scheme also closed the SDE interrupt handling race we've seen
2500 		 * on older pch-split platforms. But this needs testing.
2501 		 */
2502 		iir = I915_READ(SDEIIR);
2503 		if (iir) {
2504 			I915_WRITE(SDEIIR, iir);
2505 			ret = IRQ_HANDLED;
2506 
2507 			if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2508 				spt_irq_handler(dev_priv, iir);
2509 			else
2510 				cpt_irq_handler(dev_priv, iir);
2511 		} else {
2512 			/*
2513 			 * Like on previous PCH there seems to be something
2514 			 * fishy going on with forwarding PCH interrupts.
2515 			 */
2516 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2517 		}
2518 	}
2519 
2520 	return ret;
2521 }
2522 
2523 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2524 {
2525 	struct drm_device *dev = arg;
2526 	struct drm_i915_private *dev_priv = to_i915(dev);
2527 	u32 master_ctl;
2528 	u32 gt_iir[4] = {};
2529 	irqreturn_t ret;
2530 
2531 	if (!intel_irqs_enabled(dev_priv))
2532 		return IRQ_NONE;
2533 
2534 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2535 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2536 	if (!master_ctl)
2537 		return IRQ_NONE;
2538 
2539 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2540 
2541 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2542 	disable_rpm_wakeref_asserts(dev_priv);
2543 
2544 	/* Find, clear, then process each source of interrupt */
2545 	ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2546 	gen8_gt_irq_handler(dev_priv, gt_iir);
2547 	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2548 
2549 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2550 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2551 
2552 	enable_rpm_wakeref_asserts(dev_priv);
2553 
2554 	return ret;
2555 }
2556 
2557 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2558 {
2559 	/*
2560 	 * Notify all waiters for GPU completion events that reset state has
2561 	 * been changed, and that they need to restart their wait after
2562 	 * checking for potential errors (and bail out to drop locks if there is
2563 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2564 	 */
2565 
2566 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2567 	wake_up_all(&dev_priv->gpu_error.wait_queue);
2568 
2569 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2570 	wake_up_all(&dev_priv->pending_flip_queue);
2571 }
2572 
2573 /**
2574  * i915_reset_and_wakeup - do process context error handling work
2575  * @dev_priv: i915 device private
2576  *
2577  * Fire an error uevent so userspace can see that a hang or error
2578  * was detected.
2579  */
2580 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2581 {
2582 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2583 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2584 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2585 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2586 
2587 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2588 
2589 	DRM_DEBUG_DRIVER("resetting chip\n");
2590 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2591 
2592 	/*
2593 	 * In most cases it's guaranteed that we get here with an RPM
2594 	 * reference held, for example because there is a pending GPU
2595 	 * request that won't finish until the reset is done. This
2596 	 * isn't the case at least when we get here by doing a
2597 	 * simulated reset via debugs, so get an RPM reference.
2598 	 */
2599 	intel_runtime_pm_get(dev_priv);
2600 	intel_prepare_reset(dev_priv);
2601 
2602 	do {
2603 		/*
2604 		 * All state reset _must_ be completed before we update the
2605 		 * reset counter, for otherwise waiters might miss the reset
2606 		 * pending state and not properly drop locks, resulting in
2607 		 * deadlocks with the reset work.
2608 		 */
2609 		if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2610 			i915_reset(dev_priv);
2611 			mutex_unlock(&dev_priv->drm.struct_mutex);
2612 		}
2613 
2614 		/* We need to wait for anyone holding the lock to wakeup */
2615 	} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2616 				     I915_RESET_IN_PROGRESS,
2617 				     TASK_UNINTERRUPTIBLE,
2618 				     HZ));
2619 
2620 	intel_finish_reset(dev_priv);
2621 	intel_runtime_pm_put(dev_priv);
2622 
2623 	if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2624 		kobject_uevent_env(kobj,
2625 				   KOBJ_CHANGE, reset_done_event);
2626 
2627 	/*
2628 	 * Note: The wake_up also serves as a memory barrier so that
2629 	 * waiters see the updated value of the dev_priv->gpu_error.
2630 	 */
2631 	wake_up_all(&dev_priv->gpu_error.reset_queue);
2632 }
2633 
2634 static inline void
2635 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2636 			struct intel_instdone *instdone)
2637 {
2638 	int slice;
2639 	int subslice;
2640 
2641 	pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2642 
2643 	if (INTEL_GEN(dev_priv) <= 3)
2644 		return;
2645 
2646 	pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2647 
2648 	if (INTEL_GEN(dev_priv) <= 6)
2649 		return;
2650 
2651 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2652 		pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2653 		       slice, subslice, instdone->sampler[slice][subslice]);
2654 
2655 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2656 		pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2657 		       slice, subslice, instdone->row[slice][subslice]);
2658 }
2659 
2660 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2661 {
2662 	u32 eir;
2663 
2664 	if (!IS_GEN2(dev_priv))
2665 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2666 
2667 	if (INTEL_GEN(dev_priv) < 4)
2668 		I915_WRITE(IPEIR, I915_READ(IPEIR));
2669 	else
2670 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2671 
2672 	I915_WRITE(EIR, I915_READ(EIR));
2673 	eir = I915_READ(EIR);
2674 	if (eir) {
2675 		/*
2676 		 * some errors might have become stuck,
2677 		 * mask them.
2678 		 */
2679 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2680 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2681 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2682 	}
2683 }
2684 
2685 /**
2686  * i915_handle_error - handle a gpu error
2687  * @dev_priv: i915 device private
2688  * @engine_mask: mask representing engines that are hung
2689  * Do some basic checking of register state at error time and
2690  * dump it to the syslog.  Also call i915_capture_error_state() to make
2691  * sure we get a record and make it available in debugfs.  Fire a uevent
2692  * so userspace knows something bad happened (should trigger collection
2693  * of a ring dump etc.).
2694  * @fmt: Error message format string
2695  */
2696 void i915_handle_error(struct drm_i915_private *dev_priv,
2697 		       u32 engine_mask,
2698 		       const char *fmt, ...)
2699 {
2700 	va_list args;
2701 	char error_msg[80];
2702 
2703 	va_start(args, fmt);
2704 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2705 	va_end(args);
2706 
2707 	i915_capture_error_state(dev_priv, engine_mask, error_msg);
2708 	i915_clear_error_registers(dev_priv);
2709 
2710 	if (!engine_mask)
2711 		return;
2712 
2713 	if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2714 			     &dev_priv->gpu_error.flags))
2715 		return;
2716 
2717 	/*
2718 	 * Wakeup waiting processes so that the reset function
2719 	 * i915_reset_and_wakeup doesn't deadlock trying to grab
2720 	 * various locks. By bumping the reset counter first, the woken
2721 	 * processes will see a reset in progress and back off,
2722 	 * releasing their locks and then wait for the reset completion.
2723 	 * We must do this for _all_ gpu waiters that might hold locks
2724 	 * that the reset work needs to acquire.
2725 	 *
2726 	 * Note: The wake_up also provides a memory barrier to ensure that the
2727 	 * waiters see the updated value of the reset flags.
2728 	 */
2729 	i915_error_wake_up(dev_priv);
2730 
2731 	i915_reset_and_wakeup(dev_priv);
2732 }
2733 
2734 /* Called from drm generic code, passed 'crtc' which
2735  * we use as a pipe index
2736  */
2737 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2738 {
2739 	struct drm_i915_private *dev_priv = to_i915(dev);
2740 	unsigned long irqflags;
2741 
2742 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2743 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2744 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2745 
2746 	return 0;
2747 }
2748 
2749 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2750 {
2751 	struct drm_i915_private *dev_priv = to_i915(dev);
2752 	unsigned long irqflags;
2753 
2754 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2755 	i915_enable_pipestat(dev_priv, pipe,
2756 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2757 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2758 
2759 	return 0;
2760 }
2761 
2762 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2763 {
2764 	struct drm_i915_private *dev_priv = to_i915(dev);
2765 	unsigned long irqflags;
2766 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2767 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2768 
2769 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2770 	ilk_enable_display_irq(dev_priv, bit);
2771 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772 
2773 	return 0;
2774 }
2775 
2776 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2777 {
2778 	struct drm_i915_private *dev_priv = to_i915(dev);
2779 	unsigned long irqflags;
2780 
2781 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2783 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784 
2785 	return 0;
2786 }
2787 
2788 /* Called from drm generic code, passed 'crtc' which
2789  * we use as a pipe index
2790  */
2791 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2792 {
2793 	struct drm_i915_private *dev_priv = to_i915(dev);
2794 	unsigned long irqflags;
2795 
2796 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2798 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799 }
2800 
2801 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2802 {
2803 	struct drm_i915_private *dev_priv = to_i915(dev);
2804 	unsigned long irqflags;
2805 
2806 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2807 	i915_disable_pipestat(dev_priv, pipe,
2808 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2809 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2810 }
2811 
2812 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2813 {
2814 	struct drm_i915_private *dev_priv = to_i915(dev);
2815 	unsigned long irqflags;
2816 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2817 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2818 
2819 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2820 	ilk_disable_display_irq(dev_priv, bit);
2821 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2822 }
2823 
2824 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2825 {
2826 	struct drm_i915_private *dev_priv = to_i915(dev);
2827 	unsigned long irqflags;
2828 
2829 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2831 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2832 }
2833 
2834 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2835 {
2836 	if (HAS_PCH_NOP(dev_priv))
2837 		return;
2838 
2839 	GEN5_IRQ_RESET(SDE);
2840 
2841 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2842 		I915_WRITE(SERR_INT, 0xffffffff);
2843 }
2844 
2845 /*
2846  * SDEIER is also touched by the interrupt handler to work around missed PCH
2847  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2848  * instead we unconditionally enable all PCH interrupt sources here, but then
2849  * only unmask them as needed with SDEIMR.
2850  *
2851  * This function needs to be called before interrupts are enabled.
2852  */
2853 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2854 {
2855 	struct drm_i915_private *dev_priv = to_i915(dev);
2856 
2857 	if (HAS_PCH_NOP(dev_priv))
2858 		return;
2859 
2860 	WARN_ON(I915_READ(SDEIER) != 0);
2861 	I915_WRITE(SDEIER, 0xffffffff);
2862 	POSTING_READ(SDEIER);
2863 }
2864 
2865 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2866 {
2867 	GEN5_IRQ_RESET(GT);
2868 	if (INTEL_GEN(dev_priv) >= 6)
2869 		GEN5_IRQ_RESET(GEN6_PM);
2870 }
2871 
2872 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2873 {
2874 	enum i915_pipe pipe;
2875 
2876 	if (IS_CHERRYVIEW(dev_priv))
2877 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2878 	else
2879 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2880 
2881 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2882 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2883 
2884 	for_each_pipe(dev_priv, pipe) {
2885 		I915_WRITE(PIPESTAT(pipe),
2886 			   PIPE_FIFO_UNDERRUN_STATUS |
2887 			   PIPESTAT_INT_STATUS_MASK);
2888 		dev_priv->pipestat_irq_mask[pipe] = 0;
2889 	}
2890 
2891 	GEN5_IRQ_RESET(VLV_);
2892 	dev_priv->irq_mask = ~0;
2893 }
2894 
2895 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2896 {
2897 	u32 pipestat_mask;
2898 	u32 enable_mask;
2899 	enum i915_pipe pipe;
2900 
2901 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2902 			PIPE_CRC_DONE_INTERRUPT_STATUS;
2903 
2904 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2905 	for_each_pipe(dev_priv, pipe)
2906 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2907 
2908 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2909 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2910 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2911 	if (IS_CHERRYVIEW(dev_priv))
2912 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2913 
2914 	WARN_ON(dev_priv->irq_mask != ~0);
2915 
2916 	dev_priv->irq_mask = ~enable_mask;
2917 
2918 	GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2919 }
2920 
2921 /* drm_dma.h hooks
2922 */
2923 static void ironlake_irq_reset(struct drm_device *dev)
2924 {
2925 	struct drm_i915_private *dev_priv = to_i915(dev);
2926 
2927 	I915_WRITE(HWSTAM, 0xffffffff);
2928 
2929 	GEN5_IRQ_RESET(DE);
2930 	if (IS_GEN7(dev_priv))
2931 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2932 
2933 	gen5_gt_irq_reset(dev_priv);
2934 
2935 	ibx_irq_reset(dev_priv);
2936 }
2937 
2938 static void valleyview_irq_preinstall(struct drm_device *dev)
2939 {
2940 	struct drm_i915_private *dev_priv = to_i915(dev);
2941 
2942 	I915_WRITE(VLV_MASTER_IER, 0);
2943 	POSTING_READ(VLV_MASTER_IER);
2944 
2945 	gen5_gt_irq_reset(dev_priv);
2946 
2947 	spin_lock_irq(&dev_priv->irq_lock);
2948 	if (dev_priv->display_irqs_enabled)
2949 		vlv_display_irq_reset(dev_priv);
2950 	spin_unlock_irq(&dev_priv->irq_lock);
2951 }
2952 
2953 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2954 {
2955 	GEN8_IRQ_RESET_NDX(GT, 0);
2956 	GEN8_IRQ_RESET_NDX(GT, 1);
2957 	GEN8_IRQ_RESET_NDX(GT, 2);
2958 	GEN8_IRQ_RESET_NDX(GT, 3);
2959 }
2960 
2961 static void gen8_irq_reset(struct drm_device *dev)
2962 {
2963 	struct drm_i915_private *dev_priv = to_i915(dev);
2964 	int pipe;
2965 
2966 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2967 	POSTING_READ(GEN8_MASTER_IRQ);
2968 
2969 	gen8_gt_irq_reset(dev_priv);
2970 
2971 	for_each_pipe(dev_priv, pipe)
2972 		if (intel_display_power_is_enabled(dev_priv,
2973 						   POWER_DOMAIN_PIPE(pipe)))
2974 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2975 
2976 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
2977 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
2978 	GEN5_IRQ_RESET(GEN8_PCU_);
2979 
2980 	if (HAS_PCH_SPLIT(dev_priv))
2981 		ibx_irq_reset(dev_priv);
2982 }
2983 
2984 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2985 				     unsigned int pipe_mask)
2986 {
2987 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2988 	enum i915_pipe pipe;
2989 
2990 	spin_lock_irq(&dev_priv->irq_lock);
2991 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2992 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
2993 				  dev_priv->de_irq_mask[pipe],
2994 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2995 	spin_unlock_irq(&dev_priv->irq_lock);
2996 }
2997 
2998 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2999 				     unsigned int pipe_mask)
3000 {
3001 	enum i915_pipe pipe;
3002 
3003 	spin_lock_irq(&dev_priv->irq_lock);
3004 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3005 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3006 	spin_unlock_irq(&dev_priv->irq_lock);
3007 
3008 	/* make sure we're done processing display irqs */
3009 	synchronize_irq(dev_priv->drm.irq);
3010 }
3011 
3012 static void cherryview_irq_preinstall(struct drm_device *dev)
3013 {
3014 	struct drm_i915_private *dev_priv = to_i915(dev);
3015 
3016 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3017 	POSTING_READ(GEN8_MASTER_IRQ);
3018 
3019 	gen8_gt_irq_reset(dev_priv);
3020 
3021 	GEN5_IRQ_RESET(GEN8_PCU_);
3022 
3023 	spin_lock_irq(&dev_priv->irq_lock);
3024 	if (dev_priv->display_irqs_enabled)
3025 		vlv_display_irq_reset(dev_priv);
3026 	spin_unlock_irq(&dev_priv->irq_lock);
3027 }
3028 
3029 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3030 				  const u32 hpd[HPD_NUM_PINS])
3031 {
3032 	struct intel_encoder *encoder;
3033 	u32 enabled_irqs = 0;
3034 
3035 	for_each_intel_encoder(&dev_priv->drm, encoder)
3036 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3037 			enabled_irqs |= hpd[encoder->hpd_pin];
3038 
3039 	return enabled_irqs;
3040 }
3041 
3042 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3043 {
3044 	u32 hotplug_irqs, hotplug, enabled_irqs;
3045 
3046 	if (HAS_PCH_IBX(dev_priv)) {
3047 		hotplug_irqs = SDE_HOTPLUG_MASK;
3048 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3049 	} else {
3050 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3051 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3052 	}
3053 
3054 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3055 
3056 	/*
3057 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3058 	 * duration to 2ms (which is the minimum in the Display Port spec).
3059 	 * The pulse duration bits are reserved on LPT+.
3060 	 */
3061 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3062 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3063 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3064 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3065 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3066 	/*
3067 	 * When CPU and PCH are on the same package, port A
3068 	 * HPD must be enabled in both north and south.
3069 	 */
3070 	if (HAS_PCH_LPT_LP(dev_priv))
3071 		hotplug |= PORTA_HOTPLUG_ENABLE;
3072 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3073 }
3074 
3075 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3076 {
3077 	u32 hotplug;
3078 
3079 	/* Enable digital hotplug on the PCH */
3080 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3081 	hotplug |= PORTA_HOTPLUG_ENABLE |
3082 		   PORTB_HOTPLUG_ENABLE |
3083 		   PORTC_HOTPLUG_ENABLE |
3084 		   PORTD_HOTPLUG_ENABLE;
3085 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3086 
3087 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3088 	hotplug |= PORTE_HOTPLUG_ENABLE;
3089 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3090 }
3091 
3092 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094 	u32 hotplug_irqs, enabled_irqs;
3095 
3096 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3097 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3098 
3099 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3100 
3101 	spt_hpd_detection_setup(dev_priv);
3102 }
3103 
3104 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3105 {
3106 	u32 hotplug_irqs, hotplug, enabled_irqs;
3107 
3108 	if (INTEL_GEN(dev_priv) >= 8) {
3109 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3110 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3111 
3112 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3113 	} else if (INTEL_GEN(dev_priv) >= 7) {
3114 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3115 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3116 
3117 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3118 	} else {
3119 		hotplug_irqs = DE_DP_A_HOTPLUG;
3120 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3121 
3122 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3123 	}
3124 
3125 	/*
3126 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3127 	 * duration to 2ms (which is the minimum in the Display Port spec)
3128 	 * The pulse duration bits are reserved on HSW+.
3129 	 */
3130 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3131 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3132 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3133 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3134 
3135 	ibx_hpd_irq_setup(dev_priv);
3136 }
3137 
3138 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3139 				      u32 enabled_irqs)
3140 {
3141 	u32 hotplug;
3142 
3143 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3144 	hotplug |= PORTA_HOTPLUG_ENABLE |
3145 		   PORTB_HOTPLUG_ENABLE |
3146 		   PORTC_HOTPLUG_ENABLE;
3147 
3148 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3149 		      hotplug, enabled_irqs);
3150 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3151 
3152 	/*
3153 	 * For BXT invert bit has to be set based on AOB design
3154 	 * for HPD detection logic, update it based on VBT fields.
3155 	 */
3156 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3157 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3158 		hotplug |= BXT_DDIA_HPD_INVERT;
3159 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3160 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3161 		hotplug |= BXT_DDIB_HPD_INVERT;
3162 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3163 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3164 		hotplug |= BXT_DDIC_HPD_INVERT;
3165 
3166 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3167 }
3168 
3169 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3170 {
3171 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3172 }
3173 
3174 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3175 {
3176 	u32 hotplug_irqs, enabled_irqs;
3177 
3178 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3179 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3180 
3181 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3182 
3183 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3184 }
3185 
3186 static void ibx_irq_postinstall(struct drm_device *dev)
3187 {
3188 	struct drm_i915_private *dev_priv = to_i915(dev);
3189 	u32 mask;
3190 
3191 	if (HAS_PCH_NOP(dev_priv))
3192 		return;
3193 
3194 	if (HAS_PCH_IBX(dev_priv))
3195 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3196 	else
3197 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3198 
3199 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3200 	I915_WRITE(SDEIMR, ~mask);
3201 
3202 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3203 	    HAS_PCH_LPT(dev_priv))
3204 		; /* TODO: Enable HPD detection on older PCH platforms too */
3205 	else
3206 		spt_hpd_detection_setup(dev_priv);
3207 }
3208 
3209 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3210 {
3211 	struct drm_i915_private *dev_priv = to_i915(dev);
3212 	u32 pm_irqs, gt_irqs;
3213 
3214 	pm_irqs = gt_irqs = 0;
3215 
3216 	dev_priv->gt_irq_mask = ~0;
3217 	if (HAS_L3_DPF(dev_priv)) {
3218 		/* L3 parity interrupt is always unmasked. */
3219 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3220 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
3221 	}
3222 
3223 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3224 	if (IS_GEN5(dev_priv)) {
3225 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
3226 	} else {
3227 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3228 	}
3229 
3230 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3231 
3232 	if (INTEL_GEN(dev_priv) >= 6) {
3233 		/*
3234 		 * RPS interrupts will get enabled/disabled on demand when RPS
3235 		 * itself is enabled/disabled.
3236 		 */
3237 		if (HAS_VEBOX(dev_priv)) {
3238 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3239 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3240 		}
3241 
3242 		dev_priv->pm_imr = 0xffffffff;
3243 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3244 	}
3245 }
3246 
3247 static int ironlake_irq_postinstall(struct drm_device *dev)
3248 {
3249 	struct drm_i915_private *dev_priv = to_i915(dev);
3250 	u32 display_mask, extra_mask;
3251 
3252 	if (INTEL_GEN(dev_priv) >= 7) {
3253 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3254 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3255 				DE_PLANEB_FLIP_DONE_IVB |
3256 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3257 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3258 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3259 			      DE_DP_A_HOTPLUG_IVB);
3260 	} else {
3261 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3262 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3263 				DE_AUX_CHANNEL_A |
3264 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3265 				DE_POISON);
3266 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3267 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3268 			      DE_DP_A_HOTPLUG);
3269 	}
3270 
3271 	dev_priv->irq_mask = ~display_mask;
3272 
3273 	I915_WRITE(HWSTAM, 0xeffe);
3274 
3275 	ibx_irq_pre_postinstall(dev);
3276 
3277 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3278 
3279 	gen5_gt_irq_postinstall(dev);
3280 
3281 	ibx_irq_postinstall(dev);
3282 
3283 	if (IS_IRONLAKE_M(dev_priv)) {
3284 		/* Enable PCU event interrupts
3285 		 *
3286 		 * spinlocking not required here for correctness since interrupt
3287 		 * setup is guaranteed to run in single-threaded context. But we
3288 		 * need it to make the assert_spin_locked happy. */
3289 		spin_lock_irq(&dev_priv->irq_lock);
3290 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3291 		spin_unlock_irq(&dev_priv->irq_lock);
3292 	}
3293 
3294 	return 0;
3295 }
3296 
3297 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3298 {
3299 	assert_spin_locked(&dev_priv->irq_lock);
3300 
3301 	if (dev_priv->display_irqs_enabled)
3302 		return;
3303 
3304 	dev_priv->display_irqs_enabled = true;
3305 
3306 	if (intel_irqs_enabled(dev_priv)) {
3307 		vlv_display_irq_reset(dev_priv);
3308 		vlv_display_irq_postinstall(dev_priv);
3309 	}
3310 }
3311 
3312 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3313 {
3314 	assert_spin_locked(&dev_priv->irq_lock);
3315 
3316 	if (!dev_priv->display_irqs_enabled)
3317 		return;
3318 
3319 	dev_priv->display_irqs_enabled = false;
3320 
3321 	if (intel_irqs_enabled(dev_priv))
3322 		vlv_display_irq_reset(dev_priv);
3323 }
3324 
3325 
3326 static int valleyview_irq_postinstall(struct drm_device *dev)
3327 {
3328 	struct drm_i915_private *dev_priv = to_i915(dev);
3329 
3330 	gen5_gt_irq_postinstall(dev);
3331 
3332 	spin_lock_irq(&dev_priv->irq_lock);
3333 	if (dev_priv->display_irqs_enabled)
3334 		vlv_display_irq_postinstall(dev_priv);
3335 	spin_unlock_irq(&dev_priv->irq_lock);
3336 
3337 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3338 	POSTING_READ(VLV_MASTER_IER);
3339 
3340 	return 0;
3341 }
3342 
3343 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3344 {
3345 	/* These are interrupts we'll toggle with the ring mask register */
3346 	uint32_t gt_interrupts[] = {
3347 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3348 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3349 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3350 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3351 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3352 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3353 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3354 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3355 		0,
3356 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3357 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3358 		};
3359 
3360 	if (HAS_L3_DPF(dev_priv))
3361 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3362 
3363 	dev_priv->pm_ier = 0x0;
3364 	dev_priv->pm_imr = ~dev_priv->pm_ier;
3365 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3366 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3367 	/*
3368 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3369 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
3370 	 */
3371 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3372 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3373 }
3374 
3375 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3376 {
3377 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3378 	uint32_t de_pipe_enables;
3379 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3380 	u32 de_port_enables;
3381 	u32 de_misc_masked = GEN8_DE_MISC_GSE;
3382 	enum i915_pipe pipe;
3383 
3384 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3385 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3386 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3387 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3388 				  GEN9_AUX_CHANNEL_D;
3389 		if (IS_BROXTON(dev_priv))
3390 			de_port_masked |= BXT_DE_PORT_GMBUS;
3391 	} else {
3392 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3393 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3394 	}
3395 
3396 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3397 					   GEN8_PIPE_FIFO_UNDERRUN;
3398 
3399 	de_port_enables = de_port_masked;
3400 	if (IS_BROXTON(dev_priv))
3401 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3402 	else if (IS_BROADWELL(dev_priv))
3403 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3404 
3405 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3406 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3407 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3408 
3409 	for_each_pipe(dev_priv, pipe)
3410 		if (intel_display_power_is_enabled(dev_priv,
3411 				POWER_DOMAIN_PIPE(pipe)))
3412 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3413 					  dev_priv->de_irq_mask[pipe],
3414 					  de_pipe_enables);
3415 
3416 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3417 	GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3418 
3419 	if (IS_BROXTON(dev_priv))
3420 		bxt_hpd_detection_setup(dev_priv);
3421 }
3422 
3423 static int gen8_irq_postinstall(struct drm_device *dev)
3424 {
3425 	struct drm_i915_private *dev_priv = to_i915(dev);
3426 
3427 	if (HAS_PCH_SPLIT(dev_priv))
3428 		ibx_irq_pre_postinstall(dev);
3429 
3430 	gen8_gt_irq_postinstall(dev_priv);
3431 	gen8_de_irq_postinstall(dev_priv);
3432 
3433 	if (HAS_PCH_SPLIT(dev_priv))
3434 		ibx_irq_postinstall(dev);
3435 
3436 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3437 	POSTING_READ(GEN8_MASTER_IRQ);
3438 
3439 	return 0;
3440 }
3441 
3442 static int cherryview_irq_postinstall(struct drm_device *dev)
3443 {
3444 	struct drm_i915_private *dev_priv = to_i915(dev);
3445 
3446 	gen8_gt_irq_postinstall(dev_priv);
3447 
3448 	spin_lock_irq(&dev_priv->irq_lock);
3449 	if (dev_priv->display_irqs_enabled)
3450 		vlv_display_irq_postinstall(dev_priv);
3451 	spin_unlock_irq(&dev_priv->irq_lock);
3452 
3453 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3454 	POSTING_READ(GEN8_MASTER_IRQ);
3455 
3456 	return 0;
3457 }
3458 
3459 static void gen8_irq_uninstall(struct drm_device *dev)
3460 {
3461 	struct drm_i915_private *dev_priv = to_i915(dev);
3462 
3463 	if (!dev_priv)
3464 		return;
3465 
3466 	gen8_irq_reset(dev);
3467 }
3468 
3469 static void valleyview_irq_uninstall(struct drm_device *dev)
3470 {
3471 	struct drm_i915_private *dev_priv = to_i915(dev);
3472 
3473 	if (!dev_priv)
3474 		return;
3475 
3476 	I915_WRITE(VLV_MASTER_IER, 0);
3477 	POSTING_READ(VLV_MASTER_IER);
3478 
3479 	gen5_gt_irq_reset(dev_priv);
3480 
3481 	I915_WRITE(HWSTAM, 0xffffffff);
3482 
3483 	spin_lock_irq(&dev_priv->irq_lock);
3484 	if (dev_priv->display_irqs_enabled)
3485 		vlv_display_irq_reset(dev_priv);
3486 	spin_unlock_irq(&dev_priv->irq_lock);
3487 }
3488 
3489 static void cherryview_irq_uninstall(struct drm_device *dev)
3490 {
3491 	struct drm_i915_private *dev_priv = to_i915(dev);
3492 
3493 	if (!dev_priv)
3494 		return;
3495 
3496 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3497 	POSTING_READ(GEN8_MASTER_IRQ);
3498 
3499 	gen8_gt_irq_reset(dev_priv);
3500 
3501 	GEN5_IRQ_RESET(GEN8_PCU_);
3502 
3503 	spin_lock_irq(&dev_priv->irq_lock);
3504 	if (dev_priv->display_irqs_enabled)
3505 		vlv_display_irq_reset(dev_priv);
3506 	spin_unlock_irq(&dev_priv->irq_lock);
3507 }
3508 
3509 static void ironlake_irq_uninstall(struct drm_device *dev)
3510 {
3511 	struct drm_i915_private *dev_priv = to_i915(dev);
3512 
3513 	if (!dev_priv)
3514 		return;
3515 
3516 	ironlake_irq_reset(dev);
3517 }
3518 
3519 static void i8xx_irq_preinstall(struct drm_device * dev)
3520 {
3521 	struct drm_i915_private *dev_priv = to_i915(dev);
3522 	int pipe;
3523 
3524 	for_each_pipe(dev_priv, pipe)
3525 		I915_WRITE(PIPESTAT(pipe), 0);
3526 	I915_WRITE16(IMR, 0xffff);
3527 	I915_WRITE16(IER, 0x0);
3528 	POSTING_READ16(IER);
3529 }
3530 
3531 static int i8xx_irq_postinstall(struct drm_device *dev)
3532 {
3533 	struct drm_i915_private *dev_priv = to_i915(dev);
3534 
3535 	I915_WRITE16(EMR,
3536 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3537 
3538 	/* Unmask the interrupts that we always want on. */
3539 	dev_priv->irq_mask =
3540 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3541 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3542 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3543 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3544 	I915_WRITE16(IMR, dev_priv->irq_mask);
3545 
3546 	I915_WRITE16(IER,
3547 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3548 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3549 		     I915_USER_INTERRUPT);
3550 	POSTING_READ16(IER);
3551 
3552 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3553 	 * just to make the assert_spin_locked check happy. */
3554 	spin_lock_irq(&dev_priv->irq_lock);
3555 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3556 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3557 	spin_unlock_irq(&dev_priv->irq_lock);
3558 
3559 	return 0;
3560 }
3561 
3562 /*
3563  * Returns true when a page flip has completed.
3564  */
3565 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3566 			       int plane, int pipe, u32 iir)
3567 {
3568 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3569 
3570 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3571 		return false;
3572 
3573 	if ((iir & flip_pending) == 0)
3574 		goto check_page_flip;
3575 
3576 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3577 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3578 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3579 	 * the flip is completed (no longer pending). Since this doesn't raise
3580 	 * an interrupt per se, we watch for the change at vblank.
3581 	 */
3582 	if (I915_READ16(ISR) & flip_pending)
3583 		goto check_page_flip;
3584 
3585 	intel_finish_page_flip_cs(dev_priv, pipe);
3586 	return true;
3587 
3588 check_page_flip:
3589 	intel_check_page_flip(dev_priv, pipe);
3590 	return false;
3591 }
3592 
3593 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3594 {
3595 	struct drm_device *dev = arg;
3596 	struct drm_i915_private *dev_priv = to_i915(dev);
3597 	u16 iir, new_iir;
3598 	u32 pipe_stats[2];
3599 	int pipe;
3600 	u16 flip_mask =
3601 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3602 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3603 	irqreturn_t ret;
3604 
3605 	if (!intel_irqs_enabled(dev_priv))
3606 		return IRQ_NONE;
3607 
3608 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3609 	disable_rpm_wakeref_asserts(dev_priv);
3610 
3611 	ret = IRQ_NONE;
3612 	iir = I915_READ16(IIR);
3613 	if (iir == 0)
3614 		goto out;
3615 
3616 	while (iir & ~flip_mask) {
3617 		/* Can't rely on pipestat interrupt bit in iir as it might
3618 		 * have been cleared after the pipestat interrupt was received.
3619 		 * It doesn't set the bit in iir again, but it still produces
3620 		 * interrupts (for non-MSI).
3621 		 */
3622 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3623 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3624 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3625 
3626 		for_each_pipe(dev_priv, pipe) {
3627 			i915_reg_t reg = PIPESTAT(pipe);
3628 			pipe_stats[pipe] = I915_READ(reg);
3629 
3630 			/*
3631 			 * Clear the PIPE*STAT regs before the IIR
3632 			 */
3633 			if (pipe_stats[pipe] & 0x8000ffff)
3634 				I915_WRITE(reg, pipe_stats[pipe]);
3635 		}
3636 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3637 
3638 		I915_WRITE16(IIR, iir & ~flip_mask);
3639 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3640 
3641 		if (iir & I915_USER_INTERRUPT)
3642 			notify_ring(dev_priv->engine[RCS]);
3643 
3644 		for_each_pipe(dev_priv, pipe) {
3645 			int plane = pipe;
3646 			if (HAS_FBC(dev_priv))
3647 				plane = !plane;
3648 
3649 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3650 			    i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3651 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3652 
3653 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3654 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3655 
3656 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3657 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3658 								    pipe);
3659 		}
3660 
3661 		iir = new_iir;
3662 	}
3663 	ret = IRQ_HANDLED;
3664 
3665 out:
3666 	enable_rpm_wakeref_asserts(dev_priv);
3667 
3668 	return ret;
3669 }
3670 
3671 static void i8xx_irq_uninstall(struct drm_device * dev)
3672 {
3673 	struct drm_i915_private *dev_priv = to_i915(dev);
3674 	int pipe;
3675 
3676 	for_each_pipe(dev_priv, pipe) {
3677 		/* Clear enable bits; then clear status bits */
3678 		I915_WRITE(PIPESTAT(pipe), 0);
3679 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3680 	}
3681 	I915_WRITE16(IMR, 0xffff);
3682 	I915_WRITE16(IER, 0x0);
3683 	I915_WRITE16(IIR, I915_READ16(IIR));
3684 }
3685 
3686 static void i915_irq_preinstall(struct drm_device * dev)
3687 {
3688 	struct drm_i915_private *dev_priv = to_i915(dev);
3689 	int pipe;
3690 
3691 	if (I915_HAS_HOTPLUG(dev_priv)) {
3692 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3693 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3694 	}
3695 
3696 	I915_WRITE16(HWSTAM, 0xeffe);
3697 	for_each_pipe(dev_priv, pipe)
3698 		I915_WRITE(PIPESTAT(pipe), 0);
3699 	I915_WRITE(IMR, 0xffffffff);
3700 	I915_WRITE(IER, 0x0);
3701 	POSTING_READ(IER);
3702 }
3703 
3704 static int i915_irq_postinstall(struct drm_device *dev)
3705 {
3706 	struct drm_i915_private *dev_priv = to_i915(dev);
3707 	u32 enable_mask;
3708 
3709 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3710 
3711 	/* Unmask the interrupts that we always want on. */
3712 	dev_priv->irq_mask =
3713 		~(I915_ASLE_INTERRUPT |
3714 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3715 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3716 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3717 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3718 
3719 	enable_mask =
3720 		I915_ASLE_INTERRUPT |
3721 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3722 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3723 		I915_USER_INTERRUPT;
3724 
3725 	if (I915_HAS_HOTPLUG(dev_priv)) {
3726 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3727 		POSTING_READ(PORT_HOTPLUG_EN);
3728 
3729 		/* Enable in IER... */
3730 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3731 		/* and unmask in IMR */
3732 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3733 	}
3734 
3735 	I915_WRITE(IMR, dev_priv->irq_mask);
3736 	I915_WRITE(IER, enable_mask);
3737 	POSTING_READ(IER);
3738 
3739 	i915_enable_asle_pipestat(dev_priv);
3740 
3741 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3742 	 * just to make the assert_spin_locked check happy. */
3743 	spin_lock_irq(&dev_priv->irq_lock);
3744 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3745 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3746 	spin_unlock_irq(&dev_priv->irq_lock);
3747 
3748 	return 0;
3749 }
3750 
3751 /*
3752  * Returns true when a page flip has completed.
3753  */
3754 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3755 			       int plane, int pipe, u32 iir)
3756 {
3757 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3758 
3759 	if (!intel_pipe_handle_vblank(dev_priv, pipe))
3760 		return false;
3761 
3762 	if ((iir & flip_pending) == 0)
3763 		goto check_page_flip;
3764 
3765 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3766 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3767 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3768 	 * the flip is completed (no longer pending). Since this doesn't raise
3769 	 * an interrupt per se, we watch for the change at vblank.
3770 	 */
3771 	if (I915_READ(ISR) & flip_pending)
3772 		goto check_page_flip;
3773 
3774 	intel_finish_page_flip_cs(dev_priv, pipe);
3775 	return true;
3776 
3777 check_page_flip:
3778 	intel_check_page_flip(dev_priv, pipe);
3779 	return false;
3780 }
3781 
3782 static irqreturn_t i915_irq_handler(int irq, void *arg)
3783 {
3784 	struct drm_device *dev = arg;
3785 	struct drm_i915_private *dev_priv = to_i915(dev);
3786 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3787 	u32 flip_mask =
3788 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3789 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3790 	int pipe, ret = IRQ_NONE;
3791 
3792 	if (!intel_irqs_enabled(dev_priv))
3793 		return IRQ_NONE;
3794 
3795 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3796 	disable_rpm_wakeref_asserts(dev_priv);
3797 
3798 	iir = I915_READ(IIR);
3799 	do {
3800 		bool irq_received = (iir & ~flip_mask) != 0;
3801 		bool blc_event = false;
3802 
3803 		/* Can't rely on pipestat interrupt bit in iir as it might
3804 		 * have been cleared after the pipestat interrupt was received.
3805 		 * It doesn't set the bit in iir again, but it still produces
3806 		 * interrupts (for non-MSI).
3807 		 */
3808 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3809 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3810 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3811 
3812 		for_each_pipe(dev_priv, pipe) {
3813 			i915_reg_t reg = PIPESTAT(pipe);
3814 			pipe_stats[pipe] = I915_READ(reg);
3815 
3816 			/* Clear the PIPE*STAT regs before the IIR */
3817 			if (pipe_stats[pipe] & 0x8000ffff) {
3818 				I915_WRITE(reg, pipe_stats[pipe]);
3819 				irq_received = true;
3820 			}
3821 		}
3822 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3823 
3824 		if (!irq_received)
3825 			break;
3826 
3827 		/* Consume port.  Then clear IIR or we'll miss events */
3828 		if (I915_HAS_HOTPLUG(dev_priv) &&
3829 		    iir & I915_DISPLAY_PORT_INTERRUPT) {
3830 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3831 			if (hotplug_status)
3832 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3833 		}
3834 
3835 		I915_WRITE(IIR, iir & ~flip_mask);
3836 		new_iir = I915_READ(IIR); /* Flush posted writes */
3837 
3838 		if (iir & I915_USER_INTERRUPT)
3839 			notify_ring(dev_priv->engine[RCS]);
3840 
3841 		for_each_pipe(dev_priv, pipe) {
3842 			int plane = pipe;
3843 			if (HAS_FBC(dev_priv))
3844 				plane = !plane;
3845 
3846 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3847 			    i915_handle_vblank(dev_priv, plane, pipe, iir))
3848 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3849 
3850 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3851 				blc_event = true;
3852 
3853 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3854 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3855 
3856 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3857 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3858 								    pipe);
3859 		}
3860 
3861 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3862 			intel_opregion_asle_intr(dev_priv);
3863 
3864 		/* With MSI, interrupts are only generated when iir
3865 		 * transitions from zero to nonzero.  If another bit got
3866 		 * set while we were handling the existing iir bits, then
3867 		 * we would never get another interrupt.
3868 		 *
3869 		 * This is fine on non-MSI as well, as if we hit this path
3870 		 * we avoid exiting the interrupt handler only to generate
3871 		 * another one.
3872 		 *
3873 		 * Note that for MSI this could cause a stray interrupt report
3874 		 * if an interrupt landed in the time between writing IIR and
3875 		 * the posting read.  This should be rare enough to never
3876 		 * trigger the 99% of 100,000 interrupts test for disabling
3877 		 * stray interrupts.
3878 		 */
3879 		ret = IRQ_HANDLED;
3880 		iir = new_iir;
3881 	} while (iir & ~flip_mask);
3882 
3883 	enable_rpm_wakeref_asserts(dev_priv);
3884 
3885 	return ret;
3886 }
3887 
3888 static void i915_irq_uninstall(struct drm_device * dev)
3889 {
3890 	struct drm_i915_private *dev_priv = to_i915(dev);
3891 	int pipe;
3892 
3893 	if (I915_HAS_HOTPLUG(dev_priv)) {
3894 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3895 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3896 	}
3897 
3898 	I915_WRITE16(HWSTAM, 0xffff);
3899 	for_each_pipe(dev_priv, pipe) {
3900 		/* Clear enable bits; then clear status bits */
3901 		I915_WRITE(PIPESTAT(pipe), 0);
3902 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3903 	}
3904 	I915_WRITE(IMR, 0xffffffff);
3905 	I915_WRITE(IER, 0x0);
3906 
3907 	I915_WRITE(IIR, I915_READ(IIR));
3908 }
3909 
3910 static void i965_irq_preinstall(struct drm_device * dev)
3911 {
3912 	struct drm_i915_private *dev_priv = to_i915(dev);
3913 	int pipe;
3914 
3915 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3916 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3917 
3918 	I915_WRITE(HWSTAM, 0xeffe);
3919 	for_each_pipe(dev_priv, pipe)
3920 		I915_WRITE(PIPESTAT(pipe), 0);
3921 	I915_WRITE(IMR, 0xffffffff);
3922 	I915_WRITE(IER, 0x0);
3923 	POSTING_READ(IER);
3924 }
3925 
3926 static int i965_irq_postinstall(struct drm_device *dev)
3927 {
3928 	struct drm_i915_private *dev_priv = to_i915(dev);
3929 	u32 enable_mask;
3930 	u32 error_mask;
3931 
3932 	/* Unmask the interrupts that we always want on. */
3933 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3934 			       I915_DISPLAY_PORT_INTERRUPT |
3935 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3936 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3937 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3938 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3939 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3940 
3941 	enable_mask = ~dev_priv->irq_mask;
3942 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3943 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3944 	enable_mask |= I915_USER_INTERRUPT;
3945 
3946 	if (IS_G4X(dev_priv))
3947 		enable_mask |= I915_BSD_USER_INTERRUPT;
3948 
3949 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3950 	 * just to make the assert_spin_locked check happy. */
3951 	spin_lock_irq(&dev_priv->irq_lock);
3952 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3953 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3954 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3955 	spin_unlock_irq(&dev_priv->irq_lock);
3956 
3957 	/*
3958 	 * Enable some error detection, note the instruction error mask
3959 	 * bit is reserved, so we leave it masked.
3960 	 */
3961 	if (IS_G4X(dev_priv)) {
3962 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3963 			       GM45_ERROR_MEM_PRIV |
3964 			       GM45_ERROR_CP_PRIV |
3965 			       I915_ERROR_MEMORY_REFRESH);
3966 	} else {
3967 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3968 			       I915_ERROR_MEMORY_REFRESH);
3969 	}
3970 	I915_WRITE(EMR, error_mask);
3971 
3972 	I915_WRITE(IMR, dev_priv->irq_mask);
3973 	I915_WRITE(IER, enable_mask);
3974 	POSTING_READ(IER);
3975 
3976 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3977 	POSTING_READ(PORT_HOTPLUG_EN);
3978 
3979 	i915_enable_asle_pipestat(dev_priv);
3980 
3981 	return 0;
3982 }
3983 
3984 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3985 {
3986 	u32 hotplug_en;
3987 
3988 	assert_spin_locked(&dev_priv->irq_lock);
3989 
3990 	/* Note HDMI and DP share hotplug bits */
3991 	/* enable bits are the same for all generations */
3992 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3993 	/* Programming the CRT detection parameters tends
3994 	   to generate a spurious hotplug event about three
3995 	   seconds later.  So just do it once.
3996 	*/
3997 	if (IS_G4X(dev_priv))
3998 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3999 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4000 
4001 	/* Ignore TV since it's buggy */
4002 	i915_hotplug_interrupt_update_locked(dev_priv,
4003 					     HOTPLUG_INT_EN_MASK |
4004 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4005 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4006 					     hotplug_en);
4007 }
4008 
4009 static irqreturn_t i965_irq_handler(int irq, void *arg)
4010 {
4011 	struct drm_device *dev = arg;
4012 	struct drm_i915_private *dev_priv = to_i915(dev);
4013 	u32 iir, new_iir;
4014 	u32 pipe_stats[I915_MAX_PIPES];
4015 	int ret = IRQ_NONE, pipe;
4016 	u32 flip_mask =
4017 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4018 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4019 
4020 	if (!intel_irqs_enabled(dev_priv))
4021 		return IRQ_NONE;
4022 
4023 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4024 	disable_rpm_wakeref_asserts(dev_priv);
4025 
4026 	iir = I915_READ(IIR);
4027 
4028 	for (;;) {
4029 		bool irq_received = (iir & ~flip_mask) != 0;
4030 		bool blc_event = false;
4031 
4032 		/* Can't rely on pipestat interrupt bit in iir as it might
4033 		 * have been cleared after the pipestat interrupt was received.
4034 		 * It doesn't set the bit in iir again, but it still produces
4035 		 * interrupts (for non-MSI).
4036 		 */
4037 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4038 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4039 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4040 
4041 		for_each_pipe(dev_priv, pipe) {
4042 			i915_reg_t reg = PIPESTAT(pipe);
4043 			pipe_stats[pipe] = I915_READ(reg);
4044 
4045 			/*
4046 			 * Clear the PIPE*STAT regs before the IIR
4047 			 */
4048 			if (pipe_stats[pipe] & 0x8000ffff) {
4049 				I915_WRITE(reg, pipe_stats[pipe]);
4050 				irq_received = true;
4051 			}
4052 		}
4053 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4054 
4055 		if (!irq_received)
4056 			break;
4057 
4058 		ret = IRQ_HANDLED;
4059 
4060 		/* Consume port.  Then clear IIR or we'll miss events */
4061 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4062 			u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4063 			if (hotplug_status)
4064 				i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4065 		}
4066 
4067 		I915_WRITE(IIR, iir & ~flip_mask);
4068 		new_iir = I915_READ(IIR); /* Flush posted writes */
4069 
4070 		if (iir & I915_USER_INTERRUPT)
4071 			notify_ring(dev_priv->engine[RCS]);
4072 		if (iir & I915_BSD_USER_INTERRUPT)
4073 			notify_ring(dev_priv->engine[VCS]);
4074 
4075 		for_each_pipe(dev_priv, pipe) {
4076 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4077 			    i915_handle_vblank(dev_priv, pipe, pipe, iir))
4078 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4079 
4080 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4081 				blc_event = true;
4082 
4083 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4084 				i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4085 
4086 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4087 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4088 		}
4089 
4090 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4091 			intel_opregion_asle_intr(dev_priv);
4092 
4093 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4094 			gmbus_irq_handler(dev_priv);
4095 
4096 		/* With MSI, interrupts are only generated when iir
4097 		 * transitions from zero to nonzero.  If another bit got
4098 		 * set while we were handling the existing iir bits, then
4099 		 * we would never get another interrupt.
4100 		 *
4101 		 * This is fine on non-MSI as well, as if we hit this path
4102 		 * we avoid exiting the interrupt handler only to generate
4103 		 * another one.
4104 		 *
4105 		 * Note that for MSI this could cause a stray interrupt report
4106 		 * if an interrupt landed in the time between writing IIR and
4107 		 * the posting read.  This should be rare enough to never
4108 		 * trigger the 99% of 100,000 interrupts test for disabling
4109 		 * stray interrupts.
4110 		 */
4111 		iir = new_iir;
4112 	}
4113 
4114 	enable_rpm_wakeref_asserts(dev_priv);
4115 
4116 	return ret;
4117 }
4118 
4119 static void i965_irq_uninstall(struct drm_device * dev)
4120 {
4121 	struct drm_i915_private *dev_priv = to_i915(dev);
4122 	int pipe;
4123 
4124 	if (!dev_priv)
4125 		return;
4126 
4127 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4128 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4129 
4130 	I915_WRITE(HWSTAM, 0xffffffff);
4131 	for_each_pipe(dev_priv, pipe)
4132 		I915_WRITE(PIPESTAT(pipe), 0);
4133 	I915_WRITE(IMR, 0xffffffff);
4134 	I915_WRITE(IER, 0x0);
4135 
4136 	for_each_pipe(dev_priv, pipe)
4137 		I915_WRITE(PIPESTAT(pipe),
4138 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4139 	I915_WRITE(IIR, I915_READ(IIR));
4140 }
4141 
4142 /**
4143  * intel_irq_init - initializes irq support
4144  * @dev_priv: i915 device instance
4145  *
4146  * This function initializes all the irq support including work items, timers
4147  * and all the vtables. It does not setup the interrupt itself though.
4148  */
4149 void intel_irq_init(struct drm_i915_private *dev_priv)
4150 {
4151 	struct drm_device *dev = &dev_priv->drm;
4152 
4153 	intel_hpd_init_work(dev_priv);
4154 
4155 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4156 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4157 
4158 	if (HAS_GUC_SCHED(dev_priv))
4159 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4160 
4161 	/* Let's track the enabled rps events */
4162 	if (IS_VALLEYVIEW(dev_priv))
4163 		/* WaGsvRC0ResidencyMethod:vlv */
4164 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4165 	else
4166 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4167 
4168 	dev_priv->rps.pm_intr_keep = 0;
4169 
4170 	/*
4171 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4172 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4173 	 *
4174 	 * TODO: verify if this can be reproduced on VLV,CHV.
4175 	 */
4176 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4177 		dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4178 
4179 	if (INTEL_INFO(dev_priv)->gen >= 8)
4180 		dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4181 
4182 	if (IS_GEN2(dev_priv)) {
4183 		/* Gen2 doesn't have a hardware frame counter */
4184 		dev->max_vblank_count = 0;
4185 		dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4186 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4187 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4188 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4189 	} else {
4190 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4191 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4192 	}
4193 
4194 	/*
4195 	 * Opt out of the vblank disable timer on everything except gen2.
4196 	 * Gen2 doesn't have a hardware frame counter and so depends on
4197 	 * vblank interrupts to produce sane vblank seuquence numbers.
4198 	 */
4199 	if (!IS_GEN2(dev_priv))
4200 		dev->vblank_disable_immediate = true;
4201 
4202 	/* Most platforms treat the display irq block as an always-on
4203 	 * power domain. vlv/chv can disable it at runtime and need
4204 	 * special care to avoid writing any of the display block registers
4205 	 * outside of the power domain. We defer setting up the display irqs
4206 	 * in this case to the runtime pm.
4207 	 */
4208 	dev_priv->display_irqs_enabled = true;
4209 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4210 		dev_priv->display_irqs_enabled = false;
4211 
4212 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4213 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4214 
4215 	if (IS_CHERRYVIEW(dev_priv)) {
4216 		dev->driver->irq_handler = cherryview_irq_handler;
4217 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4218 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4219 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4220 		dev->driver->enable_vblank = i965_enable_vblank;
4221 		dev->driver->disable_vblank = i965_disable_vblank;
4222 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4223 	} else if (IS_VALLEYVIEW(dev_priv)) {
4224 		dev->driver->irq_handler = valleyview_irq_handler;
4225 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4226 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4227 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4228 		dev->driver->enable_vblank = i965_enable_vblank;
4229 		dev->driver->disable_vblank = i965_disable_vblank;
4230 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4231 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4232 		dev->driver->irq_handler = gen8_irq_handler;
4233 		dev->driver->irq_preinstall = gen8_irq_reset;
4234 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4235 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4236 		dev->driver->enable_vblank = gen8_enable_vblank;
4237 		dev->driver->disable_vblank = gen8_disable_vblank;
4238 		if (IS_BROXTON(dev_priv))
4239 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4240 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4241 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4242 		else
4243 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4244 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4245 		dev->driver->irq_handler = ironlake_irq_handler;
4246 		dev->driver->irq_preinstall = ironlake_irq_reset;
4247 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4248 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4249 		dev->driver->enable_vblank = ironlake_enable_vblank;
4250 		dev->driver->disable_vblank = ironlake_disable_vblank;
4251 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4252 	} else {
4253 		if (IS_GEN2(dev_priv)) {
4254 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4255 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4256 			dev->driver->irq_handler = i8xx_irq_handler;
4257 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4258 			dev->driver->enable_vblank = i8xx_enable_vblank;
4259 			dev->driver->disable_vblank = i8xx_disable_vblank;
4260 		} else if (IS_GEN3(dev_priv)) {
4261 			dev->driver->irq_preinstall = i915_irq_preinstall;
4262 			dev->driver->irq_postinstall = i915_irq_postinstall;
4263 			dev->driver->irq_uninstall = i915_irq_uninstall;
4264 			dev->driver->irq_handler = i915_irq_handler;
4265 			dev->driver->enable_vblank = i8xx_enable_vblank;
4266 			dev->driver->disable_vblank = i8xx_disable_vblank;
4267 		} else {
4268 			dev->driver->irq_preinstall = i965_irq_preinstall;
4269 			dev->driver->irq_postinstall = i965_irq_postinstall;
4270 			dev->driver->irq_uninstall = i965_irq_uninstall;
4271 			dev->driver->irq_handler = i965_irq_handler;
4272 			dev->driver->enable_vblank = i965_enable_vblank;
4273 			dev->driver->disable_vblank = i965_disable_vblank;
4274 		}
4275 		if (I915_HAS_HOTPLUG(dev_priv))
4276 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4277 	}
4278 }
4279 
4280 /**
4281  * intel_irq_install - enables the hardware interrupt
4282  * @dev_priv: i915 device instance
4283  *
4284  * This function enables the hardware interrupt handling, but leaves the hotplug
4285  * handling still disabled. It is called after intel_irq_init().
4286  *
4287  * In the driver load and resume code we need working interrupts in a few places
4288  * but don't want to deal with the hassle of concurrent probe and hotplug
4289  * workers. Hence the split into this two-stage approach.
4290  */
4291 int intel_irq_install(struct drm_i915_private *dev_priv)
4292 {
4293 	/*
4294 	 * We enable some interrupt sources in our postinstall hooks, so mark
4295 	 * interrupts as enabled _before_ actually enabling them to avoid
4296 	 * special cases in our ordering checks.
4297 	 */
4298 	dev_priv->pm.irqs_enabled = true;
4299 
4300 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4301 }
4302 
4303 /**
4304  * intel_irq_uninstall - finilizes all irq handling
4305  * @dev_priv: i915 device instance
4306  *
4307  * This stops interrupt and hotplug handling and unregisters and frees all
4308  * resources acquired in the init functions.
4309  */
4310 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4311 {
4312 	drm_irq_uninstall(&dev_priv->drm);
4313 	intel_hpd_cancel_work(dev_priv);
4314 	dev_priv->pm.irqs_enabled = false;
4315 }
4316 
4317 /**
4318  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4319  * @dev_priv: i915 device instance
4320  *
4321  * This function is used to disable interrupts at runtime, both in the runtime
4322  * pm and the system suspend/resume code.
4323  */
4324 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4325 {
4326 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4327 	dev_priv->pm.irqs_enabled = false;
4328 	synchronize_irq(dev_priv->drm.irq);
4329 }
4330 
4331 /**
4332  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4333  * @dev_priv: i915 device instance
4334  *
4335  * This function is used to enable interrupts at runtime, both in the runtime
4336  * pm and the system suspend/resume code.
4337  */
4338 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4339 {
4340 	dev_priv->pm.irqs_enabled = true;
4341 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4342 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4343 }
4344