xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision a4fe36f1)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: interrupt handling
37  *
38  * These functions provide the basic support for enabling and disabling the
39  * interrupt handling support. There's a lot more functionality in i915_irq.c
40  * and related files, but that will be described in separate chapters.
41  */
42 
43 static const u32 hpd_ibx[HPD_NUM_PINS] = {
44 	[HPD_CRT] = SDE_CRT_HOTPLUG,
45 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
46 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
47 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
48 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
49 };
50 
51 static const u32 hpd_cpt[HPD_NUM_PINS] = {
52 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
53 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
54 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
55 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
56 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
57 };
58 
59 static const u32 hpd_spt[HPD_NUM_PINS] = {
60 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
61 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
62 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
63 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
64 };
65 
66 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
67 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
68 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
69 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
70 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
71 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
72 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
73 };
74 
75 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
76 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
77 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
78 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
79 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
81 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
82 };
83 
84 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
91 };
92 
93 /* BXT hpd list */
94 static const u32 hpd_bxt[HPD_NUM_PINS] = {
95 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
96 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
97 };
98 
99 /* IIR can theoretically queue up two events. Be paranoid. */
100 #define GEN8_IRQ_RESET_NDX(type, which) do { \
101 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
102 	POSTING_READ(GEN8_##type##_IMR(which)); \
103 	I915_WRITE(GEN8_##type##_IER(which), 0); \
104 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105 	POSTING_READ(GEN8_##type##_IIR(which)); \
106 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
107 	POSTING_READ(GEN8_##type##_IIR(which)); \
108 } while (0)
109 
110 #define GEN5_IRQ_RESET(type) do { \
111 	I915_WRITE(type##IMR, 0xffffffff); \
112 	POSTING_READ(type##IMR); \
113 	I915_WRITE(type##IER, 0); \
114 	I915_WRITE(type##IIR, 0xffffffff); \
115 	POSTING_READ(type##IIR); \
116 	I915_WRITE(type##IIR, 0xffffffff); \
117 	POSTING_READ(type##IIR); \
118 } while (0)
119 
120 /*
121  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
122  */
123 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
124 	u32 val = I915_READ(reg); \
125 	if (val) { \
126 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
127 		     (reg), val); \
128 		I915_WRITE((reg), 0xffffffff); \
129 		POSTING_READ(reg); \
130 		I915_WRITE((reg), 0xffffffff); \
131 		POSTING_READ(reg); \
132 	} \
133 } while (0)
134 
135 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
136 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
137 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
138 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
139 	POSTING_READ(GEN8_##type##_IMR(which)); \
140 } while (0)
141 
142 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
143 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
144 	I915_WRITE(type##IER, (ier_val)); \
145 	I915_WRITE(type##IMR, (imr_val)); \
146 	POSTING_READ(type##IMR); \
147 } while (0)
148 
149 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
150 
151 /* For display hotplug interrupt */
152 void
153 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
154 {
155 	assert_spin_locked(&dev_priv->irq_lock);
156 
157 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
158 		return;
159 
160 	if ((dev_priv->irq_mask & mask) != 0) {
161 		dev_priv->irq_mask &= ~mask;
162 		I915_WRITE(DEIMR, dev_priv->irq_mask);
163 		POSTING_READ(DEIMR);
164 	}
165 }
166 
167 void
168 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
169 {
170 	assert_spin_locked(&dev_priv->irq_lock);
171 
172 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
173 		return;
174 
175 	if ((dev_priv->irq_mask & mask) != mask) {
176 		dev_priv->irq_mask |= mask;
177 		I915_WRITE(DEIMR, dev_priv->irq_mask);
178 		POSTING_READ(DEIMR);
179 	}
180 }
181 
182 /**
183  * ilk_update_gt_irq - update GTIMR
184  * @dev_priv: driver private
185  * @interrupt_mask: mask of interrupt bits to update
186  * @enabled_irq_mask: mask of interrupt bits to enable
187  */
188 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
189 			      uint32_t interrupt_mask,
190 			      uint32_t enabled_irq_mask)
191 {
192 	assert_spin_locked(&dev_priv->irq_lock);
193 
194 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
195 
196 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
197 		return;
198 
199 	dev_priv->gt_irq_mask &= ~interrupt_mask;
200 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
201 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
202 	POSTING_READ(GTIMR);
203 }
204 
205 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
206 {
207 	ilk_update_gt_irq(dev_priv, mask, mask);
208 }
209 
210 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
211 {
212 	ilk_update_gt_irq(dev_priv, mask, 0);
213 }
214 
215 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
216 {
217 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
218 }
219 
220 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
221 {
222 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
223 }
224 
225 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
226 {
227 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
228 }
229 
230 /**
231   * snb_update_pm_irq - update GEN6_PMIMR
232   * @dev_priv: driver private
233   * @interrupt_mask: mask of interrupt bits to update
234   * @enabled_irq_mask: mask of interrupt bits to enable
235   */
236 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
237 			      uint32_t interrupt_mask,
238 			      uint32_t enabled_irq_mask)
239 {
240 	uint32_t new_val;
241 
242 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
243 
244 	assert_spin_locked(&dev_priv->irq_lock);
245 
246 	new_val = dev_priv->pm_irq_mask;
247 	new_val &= ~interrupt_mask;
248 	new_val |= (~enabled_irq_mask & interrupt_mask);
249 
250 	if (new_val != dev_priv->pm_irq_mask) {
251 		dev_priv->pm_irq_mask = new_val;
252 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
253 		POSTING_READ(gen6_pm_imr(dev_priv));
254 	}
255 }
256 
257 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
258 {
259 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
260 		return;
261 
262 	snb_update_pm_irq(dev_priv, mask, mask);
263 }
264 
265 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
266 				  uint32_t mask)
267 {
268 	snb_update_pm_irq(dev_priv, mask, 0);
269 }
270 
271 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
274 		return;
275 
276 	__gen6_disable_pm_irq(dev_priv, mask);
277 }
278 
279 void gen6_reset_rps_interrupts(struct drm_device *dev)
280 {
281 	struct drm_i915_private *dev_priv = dev->dev_private;
282 	uint32_t reg = gen6_pm_iir(dev_priv);
283 
284 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
285 	I915_WRITE(reg, dev_priv->pm_rps_events);
286 	I915_WRITE(reg, dev_priv->pm_rps_events);
287 	POSTING_READ(reg);
288 	dev_priv->rps.pm_iir = 0;
289 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
290 }
291 
292 void gen6_enable_rps_interrupts(struct drm_device *dev)
293 {
294 	struct drm_i915_private *dev_priv = dev->dev_private;
295 
296 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
297 
298 	WARN_ON(dev_priv->rps.pm_iir);
299 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
300 	dev_priv->rps.interrupts_enabled = true;
301 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
302 				dev_priv->pm_rps_events);
303 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
304 
305 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
306 }
307 
308 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
309 {
310 	/*
311 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
312 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
313 	 *
314 	 * TODO: verify if this can be reproduced on VLV,CHV.
315 	 */
316 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
317 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
318 
319 	if (INTEL_INFO(dev_priv)->gen >= 8)
320 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
321 
322 	return mask;
323 }
324 
325 void gen6_disable_rps_interrupts(struct drm_device *dev)
326 {
327 	struct drm_i915_private *dev_priv = dev->dev_private;
328 
329 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
330 	dev_priv->rps.interrupts_enabled = false;
331 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
332 
333 	cancel_work_sync(&dev_priv->rps.work);
334 
335 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
336 
337 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
338 
339 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
340 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
341 				~dev_priv->pm_rps_events);
342 
343 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
344 
345 	/* Wait for pending IRQ handlers to complete (on other CPUs) */
346 #if 0
347 	synchronize_irq(dev->irq);
348 #endif
349 }
350 
351 /**
352  * ibx_display_interrupt_update - update SDEIMR
353  * @dev_priv: driver private
354  * @interrupt_mask: mask of interrupt bits to update
355  * @enabled_irq_mask: mask of interrupt bits to enable
356  */
357 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
358 				  uint32_t interrupt_mask,
359 				  uint32_t enabled_irq_mask)
360 {
361 	uint32_t sdeimr = I915_READ(SDEIMR);
362 	sdeimr &= ~interrupt_mask;
363 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
364 
365 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
366 
367 	assert_spin_locked(&dev_priv->irq_lock);
368 
369 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
370 		return;
371 
372 	I915_WRITE(SDEIMR, sdeimr);
373 	POSTING_READ(SDEIMR);
374 }
375 
376 static void
377 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
378 		       u32 enable_mask, u32 status_mask)
379 {
380 	u32 reg = PIPESTAT(pipe);
381 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
382 
383 	assert_spin_locked(&dev_priv->irq_lock);
384 	WARN_ON(!intel_irqs_enabled(dev_priv));
385 
386 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
387 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
388 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
389 		      pipe_name(pipe), enable_mask, status_mask))
390 		return;
391 
392 	if ((pipestat & enable_mask) == enable_mask)
393 		return;
394 
395 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
396 
397 	/* Enable the interrupt, clear any pending status */
398 	pipestat |= enable_mask | status_mask;
399 	I915_WRITE(reg, pipestat);
400 	POSTING_READ(reg);
401 }
402 
403 static void
404 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
405 		        u32 enable_mask, u32 status_mask)
406 {
407 	u32 reg = PIPESTAT(pipe);
408 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
409 
410 	assert_spin_locked(&dev_priv->irq_lock);
411 	WARN_ON(!intel_irqs_enabled(dev_priv));
412 
413 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
414 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
415 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
416 		      pipe_name(pipe), enable_mask, status_mask))
417 		return;
418 
419 	if ((pipestat & enable_mask) == 0)
420 		return;
421 
422 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
423 
424 	pipestat &= ~enable_mask;
425 	I915_WRITE(reg, pipestat);
426 	POSTING_READ(reg);
427 }
428 
429 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
430 {
431 	u32 enable_mask = status_mask << 16;
432 
433 	/*
434 	 * On pipe A we don't support the PSR interrupt yet,
435 	 * on pipe B and C the same bit MBZ.
436 	 */
437 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
438 		return 0;
439 	/*
440 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
441 	 * A the same bit is for perf counters which we don't use either.
442 	 */
443 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
444 		return 0;
445 
446 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
447 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
448 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
449 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
450 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
451 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
452 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
453 
454 	return enable_mask;
455 }
456 
457 void
458 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
459 		     u32 status_mask)
460 {
461 	u32 enable_mask;
462 
463 	if (IS_VALLEYVIEW(dev_priv->dev))
464 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
465 							   status_mask);
466 	else
467 		enable_mask = status_mask << 16;
468 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
469 }
470 
471 void
472 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
473 		      u32 status_mask)
474 {
475 	u32 enable_mask;
476 
477 	if (IS_VALLEYVIEW(dev_priv->dev))
478 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
479 							   status_mask);
480 	else
481 		enable_mask = status_mask << 16;
482 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
483 }
484 
485 /**
486  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
487  */
488 static void i915_enable_asle_pipestat(struct drm_device *dev)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 
492 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
493 		return;
494 
495 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
496 
497 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
498 	if (INTEL_INFO(dev)->gen >= 4)
499 		i915_enable_pipestat(dev_priv, PIPE_A,
500 				     PIPE_LEGACY_BLC_EVENT_STATUS);
501 
502 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
503 }
504 
505 /*
506  * This timing diagram depicts the video signal in and
507  * around the vertical blanking period.
508  *
509  * Assumptions about the fictitious mode used in this example:
510  *  vblank_start >= 3
511  *  vsync_start = vblank_start + 1
512  *  vsync_end = vblank_start + 2
513  *  vtotal = vblank_start + 3
514  *
515  *           start of vblank:
516  *           latch double buffered registers
517  *           increment frame counter (ctg+)
518  *           generate start of vblank interrupt (gen4+)
519  *           |
520  *           |          frame start:
521  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
522  *           |          may be shifted forward 1-3 extra lines via PIPECONF
523  *           |          |
524  *           |          |  start of vsync:
525  *           |          |  generate vsync interrupt
526  *           |          |  |
527  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
528  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
529  * ----va---> <-----------------vb--------------------> <--------va-------------
530  *       |          |       <----vs----->                     |
531  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
532  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
533  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
534  *       |          |                                         |
535  *       last visible pixel                                   first visible pixel
536  *                  |                                         increment frame counter (gen3/4)
537  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
538  *
539  * x  = horizontal active
540  * _  = horizontal blanking
541  * hs = horizontal sync
542  * va = vertical active
543  * vb = vertical blanking
544  * vs = vertical sync
545  * vbs = vblank_start (number)
546  *
547  * Summary:
548  * - most events happen at the start of horizontal sync
549  * - frame start happens at the start of horizontal blank, 1-4 lines
550  *   (depending on PIPECONF settings) after the start of vblank
551  * - gen3/4 pixel and frame counter are synchronized with the start
552  *   of horizontal active on the first line of vertical active
553  */
554 
555 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
556 {
557 	/* Gen2 doesn't have a hardware frame counter */
558 	return 0;
559 }
560 
561 /* Called from drm generic code, passed a 'crtc', which
562  * we use as a pipe index
563  */
564 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
565 {
566 	struct drm_i915_private *dev_priv = dev->dev_private;
567 	unsigned long high_frame;
568 	unsigned long low_frame;
569 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
570 	struct intel_crtc *intel_crtc =
571 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
572 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
573 
574 	htotal = mode->crtc_htotal;
575 	hsync_start = mode->crtc_hsync_start;
576 	vbl_start = mode->crtc_vblank_start;
577 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
578 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
579 
580 	/* Convert to pixel count */
581 	vbl_start *= htotal;
582 
583 	/* Start of vblank event occurs at start of hsync */
584 	vbl_start -= htotal - hsync_start;
585 
586 	high_frame = PIPEFRAME(pipe);
587 	low_frame = PIPEFRAMEPIXEL(pipe);
588 
589 	/*
590 	 * High & low register fields aren't synchronized, so make sure
591 	 * we get a low value that's stable across two reads of the high
592 	 * register.
593 	 */
594 	do {
595 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
596 		low   = I915_READ(low_frame);
597 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
598 	} while (high1 != high2);
599 
600 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
601 	pixel = low & PIPE_PIXEL_MASK;
602 	low >>= PIPE_FRAME_LOW_SHIFT;
603 
604 	/*
605 	 * The frame counter increments at beginning of active.
606 	 * Cook up a vblank counter by also checking the pixel
607 	 * counter against vblank start.
608 	 */
609 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
610 }
611 
612 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
613 {
614 	struct drm_i915_private *dev_priv = dev->dev_private;
615 	int reg = PIPE_FRMCOUNT_GM45(pipe);
616 
617 	return I915_READ(reg);
618 }
619 
620 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
621 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
622 
623 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
624 {
625 	struct drm_device *dev = crtc->base.dev;
626 	struct drm_i915_private *dev_priv = dev->dev_private;
627 	const struct drm_display_mode *mode = &crtc->base.hwmode;
628 	enum i915_pipe pipe = crtc->pipe;
629 	int position, vtotal;
630 
631 	vtotal = mode->crtc_vtotal;
632 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
633 		vtotal /= 2;
634 
635 	if (IS_GEN2(dev))
636 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
637 	else
638 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
639 
640 	/*
641 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
642 	 * read it just before the start of vblank.  So try it again
643 	 * so we don't accidentally end up spanning a vblank frame
644 	 * increment, causing the pipe_update_end() code to squak at us.
645 	 *
646 	 * The nature of this problem means we can't simply check the ISR
647 	 * bit and return the vblank start value; nor can we use the scanline
648 	 * debug register in the transcoder as it appears to have the same
649 	 * problem.  We may need to extend this to include other platforms,
650 	 * but so far testing only shows the problem on HSW.
651 	 */
652 	if (IS_HASWELL(dev) && !position) {
653 		int i, temp;
654 
655 		for (i = 0; i < 100; i++) {
656 			udelay(1);
657 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
658 				DSL_LINEMASK_GEN3;
659 			if (temp != position) {
660 				position = temp;
661 				break;
662 			}
663 		}
664 	}
665 
666 	/*
667 	 * See update_scanline_offset() for the details on the
668 	 * scanline_offset adjustment.
669 	 */
670 	return (position + crtc->scanline_offset) % vtotal;
671 }
672 
673 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
674 				    unsigned int flags, int *vpos, int *hpos,
675 				    ktime_t *stime, ktime_t *etime)
676 {
677 	struct drm_i915_private *dev_priv = dev->dev_private;
678 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
679 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
680 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
681 	int position;
682 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
683 	bool in_vbl = true;
684 	int ret = 0;
685 
686 	if (WARN_ON(!mode->crtc_clock)) {
687 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
688 				 "pipe %c\n", pipe_name(pipe));
689 		return 0;
690 	}
691 
692 	htotal = mode->crtc_htotal;
693 	hsync_start = mode->crtc_hsync_start;
694 	vtotal = mode->crtc_vtotal;
695 	vbl_start = mode->crtc_vblank_start;
696 	vbl_end = mode->crtc_vblank_end;
697 
698 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
699 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
700 		vbl_end /= 2;
701 		vtotal /= 2;
702 	}
703 
704 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
705 
706 	/*
707 	 * Lock uncore.lock, as we will do multiple timing critical raw
708 	 * register reads, potentially with preemption disabled, so the
709 	 * following code must not block on uncore.lock.
710 	 */
711 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
712 
713 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
714 
715 	/* Get optional system timestamp before query. */
716 	if (stime)
717 		*stime = ktime_get();
718 
719 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
720 		/* No obvious pixelcount register. Only query vertical
721 		 * scanout position from Display scan line register.
722 		 */
723 		position = __intel_get_crtc_scanline(intel_crtc);
724 	} else {
725 		/* Have access to pixelcount since start of frame.
726 		 * We can split this into vertical and horizontal
727 		 * scanout position.
728 		 */
729 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
730 
731 		/* convert to pixel counts */
732 		vbl_start *= htotal;
733 		vbl_end *= htotal;
734 		vtotal *= htotal;
735 
736 		/*
737 		 * In interlaced modes, the pixel counter counts all pixels,
738 		 * so one field will have htotal more pixels. In order to avoid
739 		 * the reported position from jumping backwards when the pixel
740 		 * counter is beyond the length of the shorter field, just
741 		 * clamp the position the length of the shorter field. This
742 		 * matches how the scanline counter based position works since
743 		 * the scanline counter doesn't count the two half lines.
744 		 */
745 		if (position >= vtotal)
746 			position = vtotal - 1;
747 
748 		/*
749 		 * Start of vblank interrupt is triggered at start of hsync,
750 		 * just prior to the first active line of vblank. However we
751 		 * consider lines to start at the leading edge of horizontal
752 		 * active. So, should we get here before we've crossed into
753 		 * the horizontal active of the first line in vblank, we would
754 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
755 		 * always add htotal-hsync_start to the current pixel position.
756 		 */
757 		position = (position + htotal - hsync_start) % vtotal;
758 	}
759 
760 	/* Get optional system timestamp after query. */
761 	if (etime)
762 		*etime = ktime_get();
763 
764 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
765 
766 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
767 
768 	in_vbl = position >= vbl_start && position < vbl_end;
769 
770 	/*
771 	 * While in vblank, position will be negative
772 	 * counting up towards 0 at vbl_end. And outside
773 	 * vblank, position will be positive counting
774 	 * up since vbl_end.
775 	 */
776 	if (position >= vbl_start)
777 		position -= vbl_end;
778 	else
779 		position += vtotal - vbl_end;
780 
781 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
782 		*vpos = position;
783 		*hpos = 0;
784 	} else {
785 		*vpos = position / htotal;
786 		*hpos = position - (*vpos * htotal);
787 	}
788 
789 	/* In vblank? */
790 	if (in_vbl)
791 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
792 
793 	return ret;
794 }
795 
796 int intel_get_crtc_scanline(struct intel_crtc *crtc)
797 {
798 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
799 	int position;
800 
801 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
802 	position = __intel_get_crtc_scanline(crtc);
803 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
804 
805 	return position;
806 }
807 
808 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
809 			      int *max_error,
810 			      struct timeval *vblank_time,
811 			      unsigned flags)
812 {
813 	struct drm_crtc *crtc;
814 
815 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
816 		DRM_ERROR("Invalid crtc %d\n", pipe);
817 		return -EINVAL;
818 	}
819 
820 	/* Get drm_crtc to timestamp: */
821 	crtc = intel_get_crtc_for_pipe(dev, pipe);
822 	if (crtc == NULL) {
823 		DRM_ERROR("Invalid crtc %d\n", pipe);
824 		return -EINVAL;
825 	}
826 
827 	if (!crtc->hwmode.crtc_clock) {
828 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
829 		return -EBUSY;
830 	}
831 
832 	/* Helper routine in DRM core does all the work: */
833 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
834 						     vblank_time, flags,
835 						     crtc,
836 						     &crtc->hwmode);
837 }
838 
839 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
840 {
841 	struct drm_i915_private *dev_priv = dev->dev_private;
842 	u32 busy_up, busy_down, max_avg, min_avg;
843 	u8 new_delay;
844 
845 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
846 
847 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
848 
849 	new_delay = dev_priv->ips.cur_delay;
850 
851 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
852 	busy_up = I915_READ(RCPREVBSYTUPAVG);
853 	busy_down = I915_READ(RCPREVBSYTDNAVG);
854 	max_avg = I915_READ(RCBMAXAVG);
855 	min_avg = I915_READ(RCBMINAVG);
856 
857 	/* Handle RCS change request from hw */
858 	if (busy_up > max_avg) {
859 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
860 			new_delay = dev_priv->ips.cur_delay - 1;
861 		if (new_delay < dev_priv->ips.max_delay)
862 			new_delay = dev_priv->ips.max_delay;
863 	} else if (busy_down < min_avg) {
864 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
865 			new_delay = dev_priv->ips.cur_delay + 1;
866 		if (new_delay > dev_priv->ips.min_delay)
867 			new_delay = dev_priv->ips.min_delay;
868 	}
869 
870 	if (ironlake_set_drps(dev, new_delay))
871 		dev_priv->ips.cur_delay = new_delay;
872 
873 	lockmgr(&mchdev_lock, LK_RELEASE);
874 
875 	return;
876 }
877 
878 static void notify_ring(struct intel_engine_cs *ring)
879 {
880 	if (!intel_ring_initialized(ring))
881 		return;
882 
883 	trace_i915_gem_request_notify(ring);
884 
885 	wake_up_all(&ring->irq_queue);
886 }
887 
888 static void vlv_c0_read(struct drm_i915_private *dev_priv,
889 			struct intel_rps_ei *ei)
890 {
891 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
892 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
893 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
894 }
895 
896 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
897 			 const struct intel_rps_ei *old,
898 			 const struct intel_rps_ei *now,
899 			 int threshold)
900 {
901 	u64 time, c0;
902 
903 	if (old->cz_clock == 0)
904 		return false;
905 
906 	time = now->cz_clock - old->cz_clock;
907 	time *= threshold * dev_priv->mem_freq;
908 
909 	/* Workload can be split between render + media, e.g. SwapBuffers
910 	 * being blitted in X after being rendered in mesa. To account for
911 	 * this we need to combine both engines into our activity counter.
912 	 */
913 	c0 = now->render_c0 - old->render_c0;
914 	c0 += now->media_c0 - old->media_c0;
915 	c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
916 
917 	return c0 >= time;
918 }
919 
920 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
921 {
922 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
923 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
924 }
925 
926 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
927 {
928 	struct intel_rps_ei now;
929 	u32 events = 0;
930 
931 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
932 		return 0;
933 
934 	vlv_c0_read(dev_priv, &now);
935 	if (now.cz_clock == 0)
936 		return 0;
937 
938 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
939 		if (!vlv_c0_above(dev_priv,
940 				  &dev_priv->rps.down_ei, &now,
941 				  dev_priv->rps.down_threshold))
942 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
943 		dev_priv->rps.down_ei = now;
944 	}
945 
946 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
947 		if (vlv_c0_above(dev_priv,
948 				 &dev_priv->rps.up_ei, &now,
949 				 dev_priv->rps.up_threshold))
950 			events |= GEN6_PM_RP_UP_THRESHOLD;
951 		dev_priv->rps.up_ei = now;
952 	}
953 
954 	return events;
955 }
956 
957 static bool any_waiters(struct drm_i915_private *dev_priv)
958 {
959 	struct intel_engine_cs *ring;
960 	int i;
961 
962 	for_each_ring(ring, dev_priv, i)
963 		if (ring->irq_refcount)
964 			return true;
965 
966 	return false;
967 }
968 
969 static void gen6_pm_rps_work(struct work_struct *work)
970 {
971 	struct drm_i915_private *dev_priv =
972 		container_of(work, struct drm_i915_private, rps.work);
973 	bool client_boost;
974 	int new_delay, adj, min, max;
975 	u32 pm_iir;
976 
977 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
978 	/* Speed up work cancelation during disabling rps interrupts. */
979 	if (!dev_priv->rps.interrupts_enabled) {
980 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
981 		return;
982 	}
983 	pm_iir = dev_priv->rps.pm_iir;
984 	dev_priv->rps.pm_iir = 0;
985 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
986 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
987 	client_boost = dev_priv->rps.client_boost;
988 	dev_priv->rps.client_boost = false;
989 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
990 
991 	/* Make sure we didn't queue anything we're not going to process. */
992 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
993 
994 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
995 		return;
996 
997 	mutex_lock(&dev_priv->rps.hw_lock);
998 
999 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1000 
1001 	adj = dev_priv->rps.last_adj;
1002 	new_delay = dev_priv->rps.cur_freq;
1003 	min = dev_priv->rps.min_freq_softlimit;
1004 	max = dev_priv->rps.max_freq_softlimit;
1005 
1006 	if (client_boost) {
1007 		new_delay = dev_priv->rps.max_freq_softlimit;
1008 		adj = 0;
1009 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1010 		if (adj > 0)
1011 			adj *= 2;
1012 		else /* CHV needs even encode values */
1013 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1014 		/*
1015 		 * For better performance, jump directly
1016 		 * to RPe if we're below it.
1017 		 */
1018 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1019 			new_delay = dev_priv->rps.efficient_freq;
1020 			adj = 0;
1021 		}
1022 	} else if (any_waiters(dev_priv)) {
1023 		adj = 0;
1024 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1025 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1026 			new_delay = dev_priv->rps.efficient_freq;
1027 		else
1028 			new_delay = dev_priv->rps.min_freq_softlimit;
1029 		adj = 0;
1030 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1031 		if (adj < 0)
1032 			adj *= 2;
1033 		else /* CHV needs even encode values */
1034 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1035 	} else { /* unknown event */
1036 		adj = 0;
1037 	}
1038 
1039 	dev_priv->rps.last_adj = adj;
1040 
1041 	/* sysfs frequency interfaces may have snuck in while servicing the
1042 	 * interrupt
1043 	 */
1044 	new_delay += adj;
1045 	new_delay = clamp_t(int, new_delay, min, max);
1046 
1047 	intel_set_rps(dev_priv->dev, new_delay);
1048 
1049 	mutex_unlock(&dev_priv->rps.hw_lock);
1050 }
1051 
1052 /**
1053  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1054  * occurred.
1055  * @work: workqueue struct
1056  *
1057  * Doesn't actually do anything except notify userspace. As a consequence of
1058  * this event, userspace should try to remap the bad rows since statistically
1059  * it is likely the same row is more likely to go bad again.
1060  */
1061 static void ivybridge_parity_work(struct work_struct *work)
1062 {
1063 	struct drm_i915_private *dev_priv =
1064 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1065 	u32 error_status, row, bank, subbank;
1066 	char *parity_event[6];
1067 	uint32_t misccpctl;
1068 	uint8_t slice = 0;
1069 
1070 	/* We must turn off DOP level clock gating to access the L3 registers.
1071 	 * In order to prevent a get/put style interface, acquire struct mutex
1072 	 * any time we access those registers.
1073 	 */
1074 	mutex_lock(&dev_priv->dev->struct_mutex);
1075 
1076 	/* If we've screwed up tracking, just let the interrupt fire again */
1077 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1078 		goto out;
1079 
1080 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1081 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1082 	POSTING_READ(GEN7_MISCCPCTL);
1083 
1084 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1085 		u32 reg;
1086 
1087 		slice--;
1088 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1089 			break;
1090 
1091 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1092 
1093 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1094 
1095 		error_status = I915_READ(reg);
1096 		row = GEN7_PARITY_ERROR_ROW(error_status);
1097 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1098 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1099 
1100 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1101 		POSTING_READ(reg);
1102 
1103 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1104 		parity_event[1] = drm_asprintf(GFP_KERNEL, "ROW=%d", row);
1105 		parity_event[2] = drm_asprintf(GFP_KERNEL, "BANK=%d", bank);
1106 		parity_event[3] = drm_asprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1107 		parity_event[4] = drm_asprintf(GFP_KERNEL, "SLICE=%d", slice);
1108 		parity_event[5] = NULL;
1109 
1110 #if 0
1111 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1112 				   KOBJ_CHANGE, parity_event);
1113 #endif
1114 
1115 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1116 			  slice, row, bank, subbank);
1117 
1118 		kfree(parity_event[4]);
1119 		kfree(parity_event[3]);
1120 		kfree(parity_event[2]);
1121 		kfree(parity_event[1]);
1122 	}
1123 
1124 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1125 
1126 out:
1127 	WARN_ON(dev_priv->l3_parity.which_slice);
1128 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1129 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1130 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1131 
1132 	mutex_unlock(&dev_priv->dev->struct_mutex);
1133 }
1134 
1135 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1136 {
1137 	struct drm_i915_private *dev_priv = dev->dev_private;
1138 
1139 	if (!HAS_L3_DPF(dev))
1140 		return;
1141 
1142 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1143 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1144 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1145 
1146 	iir &= GT_PARITY_ERROR(dev);
1147 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1148 		dev_priv->l3_parity.which_slice |= 1 << 1;
1149 
1150 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1151 		dev_priv->l3_parity.which_slice |= 1 << 0;
1152 
1153 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1154 }
1155 
1156 static void ilk_gt_irq_handler(struct drm_device *dev,
1157 			       struct drm_i915_private *dev_priv,
1158 			       u32 gt_iir)
1159 {
1160 	if (gt_iir &
1161 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1162 		notify_ring(&dev_priv->ring[RCS]);
1163 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1164 		notify_ring(&dev_priv->ring[VCS]);
1165 }
1166 
1167 static void snb_gt_irq_handler(struct drm_device *dev,
1168 			       struct drm_i915_private *dev_priv,
1169 			       u32 gt_iir)
1170 {
1171 
1172 	if (gt_iir &
1173 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1174 		notify_ring(&dev_priv->ring[RCS]);
1175 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1176 		notify_ring(&dev_priv->ring[VCS]);
1177 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1178 		notify_ring(&dev_priv->ring[BCS]);
1179 
1180 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1181 		      GT_BSD_CS_ERROR_INTERRUPT |
1182 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1183 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1184 
1185 	if (gt_iir & GT_PARITY_ERROR(dev))
1186 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1187 }
1188 
1189 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1190 				       u32 master_ctl)
1191 {
1192 
1193 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1194 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1195 		if (tmp) {
1196 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1197 
1198 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1199 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1200 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1201 				notify_ring(&dev_priv->ring[RCS]);
1202 
1203 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1204 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1205 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1206 				notify_ring(&dev_priv->ring[BCS]);
1207 		} else
1208 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1209 	}
1210 
1211 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1212 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1213 		if (tmp) {
1214 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1215 
1216 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1217 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1218 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1219 				notify_ring(&dev_priv->ring[VCS]);
1220 
1221 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1222 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1223 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1224 				notify_ring(&dev_priv->ring[VCS2]);
1225 		} else
1226 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1227 	}
1228 
1229 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1230 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1231 		if (tmp) {
1232 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1233 
1234 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1235 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1236 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1237 				notify_ring(&dev_priv->ring[VECS]);
1238 		} else
1239 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1240 	}
1241 
1242 	if (master_ctl & GEN8_GT_PM_IRQ) {
1243 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1244 		if (tmp & dev_priv->pm_rps_events) {
1245 			I915_WRITE_FW(GEN8_GT_IIR(2),
1246 				      tmp & dev_priv->pm_rps_events);
1247 			gen6_rps_irq_handler(dev_priv, tmp);
1248 		} else
1249 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1250 	}
1251 
1252 }
1253 
1254 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1255 {
1256 	switch (port) {
1257 	case PORT_A:
1258 		return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1259 	case PORT_B:
1260 		return val & PORTB_HOTPLUG_LONG_DETECT;
1261 	case PORT_C:
1262 		return val & PORTC_HOTPLUG_LONG_DETECT;
1263 	case PORT_D:
1264 		return val & PORTD_HOTPLUG_LONG_DETECT;
1265 	default:
1266 		return false;
1267 	}
1268 }
1269 
1270 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1271 {
1272 	switch (port) {
1273 	case PORT_B:
1274 		return val & PORTB_HOTPLUG_LONG_DETECT;
1275 	case PORT_C:
1276 		return val & PORTC_HOTPLUG_LONG_DETECT;
1277 	case PORT_D:
1278 		return val & PORTD_HOTPLUG_LONG_DETECT;
1279 	case PORT_E:
1280 		return val & PORTE_HOTPLUG_LONG_DETECT;
1281 	default:
1282 		return false;
1283 	}
1284 }
1285 
1286 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1287 {
1288 	switch (port) {
1289 	case PORT_B:
1290 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1291 	case PORT_C:
1292 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1293 	case PORT_D:
1294 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1295 	default:
1296 		return false;
1297 	}
1298 }
1299 
1300 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1301 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1302 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1303 			     const u32 hpd[HPD_NUM_PINS],
1304 			     bool long_pulse_detect(enum port port, u32 val))
1305 {
1306 	enum port port;
1307 	int i;
1308 
1309 	*pin_mask = 0;
1310 	*long_mask = 0;
1311 
1312 	for_each_hpd_pin(i) {
1313 		if ((hpd[i] & hotplug_trigger) == 0)
1314 			continue;
1315 
1316 		*pin_mask |= BIT(i);
1317 
1318 		if (!intel_hpd_pin_to_port(i, &port))
1319 			continue;
1320 
1321 		if (long_pulse_detect(port, dig_hotplug_reg))
1322 			*long_mask |= BIT(i);
1323 	}
1324 
1325 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1326 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1327 
1328 }
1329 
1330 static void gmbus_irq_handler(struct drm_device *dev)
1331 {
1332 	struct drm_i915_private *dev_priv = dev->dev_private;
1333 
1334 	wake_up_all(&dev_priv->gmbus_wait_queue);
1335 }
1336 
1337 static void dp_aux_irq_handler(struct drm_device *dev)
1338 {
1339 	struct drm_i915_private *dev_priv = dev->dev_private;
1340 
1341 	wake_up_all(&dev_priv->gmbus_wait_queue);
1342 }
1343 
1344 #if defined(CONFIG_DEBUG_FS)
1345 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1346 					 uint32_t crc0, uint32_t crc1,
1347 					 uint32_t crc2, uint32_t crc3,
1348 					 uint32_t crc4)
1349 {
1350 	struct drm_i915_private *dev_priv = dev->dev_private;
1351 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1352 	struct intel_pipe_crc_entry *entry;
1353 	int head, tail;
1354 
1355 	spin_lock(&pipe_crc->lock);
1356 
1357 	if (!pipe_crc->entries) {
1358 		spin_unlock(&pipe_crc->lock);
1359 		DRM_DEBUG_KMS("spurious interrupt\n");
1360 		return;
1361 	}
1362 
1363 	head = pipe_crc->head;
1364 	tail = pipe_crc->tail;
1365 
1366 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1367 		spin_unlock(&pipe_crc->lock);
1368 		DRM_ERROR("CRC buffer overflowing\n");
1369 		return;
1370 	}
1371 
1372 	entry = &pipe_crc->entries[head];
1373 
1374 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1375 	entry->crc[0] = crc0;
1376 	entry->crc[1] = crc1;
1377 	entry->crc[2] = crc2;
1378 	entry->crc[3] = crc3;
1379 	entry->crc[4] = crc4;
1380 
1381 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1382 	pipe_crc->head = head;
1383 
1384 	spin_unlock(&pipe_crc->lock);
1385 
1386 	wake_up_interruptible(&pipe_crc->wq);
1387 }
1388 #else
1389 static inline void
1390 display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1391 			     uint32_t crc0, uint32_t crc1,
1392 			     uint32_t crc2, uint32_t crc3,
1393 			     uint32_t crc4) {}
1394 #endif
1395 
1396 
1397 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1398 {
1399 	struct drm_i915_private *dev_priv = dev->dev_private;
1400 
1401 	display_pipe_crc_irq_handler(dev, pipe,
1402 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1403 				     0, 0, 0, 0);
1404 }
1405 
1406 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1407 {
1408 	struct drm_i915_private *dev_priv = dev->dev_private;
1409 
1410 	display_pipe_crc_irq_handler(dev, pipe,
1411 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1412 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1413 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1414 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1415 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1416 }
1417 
1418 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1419 {
1420 	struct drm_i915_private *dev_priv = dev->dev_private;
1421 	uint32_t res1, res2;
1422 
1423 	if (INTEL_INFO(dev)->gen >= 3)
1424 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1425 	else
1426 		res1 = 0;
1427 
1428 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1429 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1430 	else
1431 		res2 = 0;
1432 
1433 	display_pipe_crc_irq_handler(dev, pipe,
1434 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1435 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1436 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1437 				     res1, res2);
1438 }
1439 
1440 /* The RPS events need forcewake, so we add them to a work queue and mask their
1441  * IMR bits until the work is done. Other interrupts can be processed without
1442  * the work queue. */
1443 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1444 {
1445 	if (pm_iir & dev_priv->pm_rps_events) {
1446 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1447 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1448 		if (dev_priv->rps.interrupts_enabled) {
1449 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1450 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1451 		}
1452 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1453 	}
1454 
1455 	if (INTEL_INFO(dev_priv)->gen >= 8)
1456 		return;
1457 
1458 	if (HAS_VEBOX(dev_priv->dev)) {
1459 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1460 			notify_ring(&dev_priv->ring[VECS]);
1461 
1462 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1463 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1464 	}
1465 }
1466 
1467 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum i915_pipe pipe)
1468 {
1469 	if (!drm_handle_vblank(dev, pipe))
1470 		return false;
1471 
1472 	return true;
1473 }
1474 
1475 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1476 {
1477 	struct drm_i915_private *dev_priv = dev->dev_private;
1478 	u32 pipe_stats[I915_MAX_PIPES] = { };
1479 	int pipe;
1480 
1481 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1482 	for_each_pipe(dev_priv, pipe) {
1483 		int reg;
1484 		u32 mask, iir_bit = 0;
1485 
1486 		/*
1487 		 * PIPESTAT bits get signalled even when the interrupt is
1488 		 * disabled with the mask bits, and some of the status bits do
1489 		 * not generate interrupts at all (like the underrun bit). Hence
1490 		 * we need to be careful that we only handle what we want to
1491 		 * handle.
1492 		 */
1493 
1494 		/* fifo underruns are filterered in the underrun handler. */
1495 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1496 
1497 		switch (pipe) {
1498 		case PIPE_A:
1499 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1500 			break;
1501 		case PIPE_B:
1502 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1503 			break;
1504 		case PIPE_C:
1505 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1506 			break;
1507 		}
1508 		if (iir & iir_bit)
1509 			mask |= dev_priv->pipestat_irq_mask[pipe];
1510 
1511 		if (!mask)
1512 			continue;
1513 
1514 		reg = PIPESTAT(pipe);
1515 		mask |= PIPESTAT_INT_ENABLE_MASK;
1516 		pipe_stats[pipe] = I915_READ(reg) & mask;
1517 
1518 		/*
1519 		 * Clear the PIPE*STAT regs before the IIR
1520 		 */
1521 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1522 					PIPESTAT_INT_STATUS_MASK))
1523 			I915_WRITE(reg, pipe_stats[pipe]);
1524 	}
1525 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1526 
1527 	for_each_pipe(dev_priv, pipe) {
1528 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1529 		    intel_pipe_handle_vblank(dev, pipe))
1530 			intel_check_page_flip(dev, pipe);
1531 
1532 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1533 			intel_prepare_page_flip(dev, pipe);
1534 			intel_finish_page_flip(dev, pipe);
1535 		}
1536 
1537 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1538 			i9xx_pipe_crc_irq_handler(dev, pipe);
1539 
1540 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1541 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1542 	}
1543 
1544 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1545 		gmbus_irq_handler(dev);
1546 }
1547 
1548 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1549 {
1550 	struct drm_i915_private *dev_priv = dev->dev_private;
1551 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1552 	u32 pin_mask, long_mask;
1553 
1554 	if (!hotplug_status)
1555 		return;
1556 
1557 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1558 	/*
1559 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1560 	 * may miss hotplug events.
1561 	 */
1562 	POSTING_READ(PORT_HOTPLUG_STAT);
1563 
1564 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1565 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1566 
1567 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1568 				   hotplug_trigger, hpd_status_g4x,
1569 				   i9xx_port_hotplug_long_detect);
1570 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1571 
1572 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1573 			dp_aux_irq_handler(dev);
1574 	} else {
1575 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1576 
1577 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1578 				   hotplug_trigger, hpd_status_i915,
1579 				   i9xx_port_hotplug_long_detect);
1580 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1581 	}
1582 }
1583 
1584 static irqreturn_t valleyview_irq_handler(void *arg)
1585 {
1586 	struct drm_device *dev = arg;
1587 	struct drm_i915_private *dev_priv = dev->dev_private;
1588 	u32 iir, gt_iir, pm_iir;
1589 
1590 	if (!intel_irqs_enabled(dev_priv))
1591 		return IRQ_NONE;
1592 
1593 	while (true) {
1594 		/* Find, clear, then process each source of interrupt */
1595 
1596 		gt_iir = I915_READ(GTIIR);
1597 		if (gt_iir)
1598 			I915_WRITE(GTIIR, gt_iir);
1599 
1600 		pm_iir = I915_READ(GEN6_PMIIR);
1601 		if (pm_iir)
1602 			I915_WRITE(GEN6_PMIIR, pm_iir);
1603 
1604 		iir = I915_READ(VLV_IIR);
1605 		if (iir) {
1606 			/* Consume port before clearing IIR or we'll miss events */
1607 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1608 				i9xx_hpd_irq_handler(dev);
1609 			I915_WRITE(VLV_IIR, iir);
1610 		}
1611 
1612 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1613 			goto out;
1614 
1615 		if (gt_iir)
1616 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1617 		if (pm_iir)
1618 			gen6_rps_irq_handler(dev_priv, pm_iir);
1619 		/* Call regardless, as some status bits might not be
1620 		 * signalled in iir */
1621 		valleyview_pipestat_irq_handler(dev, iir);
1622 	}
1623 
1624 out:
1625 	return;
1626 }
1627 
1628 static irqreturn_t cherryview_irq_handler(void *arg)
1629 {
1630 	struct drm_device *dev = arg;
1631 	struct drm_i915_private *dev_priv = dev->dev_private;
1632 	u32 master_ctl, iir;
1633 
1634 	if (!intel_irqs_enabled(dev_priv))
1635 		return IRQ_NONE;
1636 
1637 	for (;;) {
1638 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1639 		iir = I915_READ(VLV_IIR);
1640 
1641 		if (master_ctl == 0 && iir == 0)
1642 			break;
1643 
1644 
1645 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1646 
1647 		/* Find, clear, then process each source of interrupt */
1648 
1649 		if (iir) {
1650 			/* Consume port before clearing IIR or we'll miss events */
1651 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1652 				i9xx_hpd_irq_handler(dev);
1653 			I915_WRITE(VLV_IIR, iir);
1654 		}
1655 
1656 		gen8_gt_irq_handler(dev_priv, master_ctl);
1657 
1658 		/* Call regardless, as some status bits might not be
1659 		 * signalled in iir */
1660 		valleyview_pipestat_irq_handler(dev, iir);
1661 
1662 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1663 		POSTING_READ(GEN8_MASTER_IRQ);
1664 	}
1665 
1666 }
1667 
1668 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1669 {
1670 	struct drm_i915_private *dev_priv = dev->dev_private;
1671 	int pipe;
1672 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1673 
1674 	if (hotplug_trigger) {
1675 		u32 dig_hotplug_reg, pin_mask, long_mask;
1676 
1677 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1678 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1679 
1680 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1681 				   dig_hotplug_reg, hpd_ibx,
1682 				   pch_port_hotplug_long_detect);
1683 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1684 	}
1685 
1686 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1687 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1688 			       SDE_AUDIO_POWER_SHIFT);
1689 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1690 				 port_name(port));
1691 	}
1692 
1693 	if (pch_iir & SDE_AUX_MASK)
1694 		dp_aux_irq_handler(dev);
1695 
1696 	if (pch_iir & SDE_GMBUS)
1697 		gmbus_irq_handler(dev);
1698 
1699 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1700 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1701 
1702 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1703 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1704 
1705 	if (pch_iir & SDE_POISON)
1706 		DRM_ERROR("PCH poison interrupt\n");
1707 
1708 	if (pch_iir & SDE_FDI_MASK)
1709 		for_each_pipe(dev_priv, pipe)
1710 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1711 					 pipe_name(pipe),
1712 					 I915_READ(FDI_RX_IIR(pipe)));
1713 
1714 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1715 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1716 
1717 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1718 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1719 
1720 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1721 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1722 
1723 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1724 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1725 }
1726 
1727 static void ivb_err_int_handler(struct drm_device *dev)
1728 {
1729 	struct drm_i915_private *dev_priv = dev->dev_private;
1730 	u32 err_int = I915_READ(GEN7_ERR_INT);
1731 	enum i915_pipe pipe;
1732 
1733 	if (err_int & ERR_INT_POISON)
1734 		DRM_ERROR("Poison interrupt\n");
1735 
1736 	for_each_pipe(dev_priv, pipe) {
1737 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1738 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1739 
1740 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1741 			if (IS_IVYBRIDGE(dev))
1742 				ivb_pipe_crc_irq_handler(dev, pipe);
1743 			else
1744 				hsw_pipe_crc_irq_handler(dev, pipe);
1745 		}
1746 	}
1747 
1748 	I915_WRITE(GEN7_ERR_INT, err_int);
1749 }
1750 
1751 static void cpt_serr_int_handler(struct drm_device *dev)
1752 {
1753 	struct drm_i915_private *dev_priv = dev->dev_private;
1754 	u32 serr_int = I915_READ(SERR_INT);
1755 
1756 	if (serr_int & SERR_INT_POISON)
1757 		DRM_ERROR("PCH poison interrupt\n");
1758 
1759 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1760 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1761 
1762 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1763 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1764 
1765 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1766 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1767 
1768 	I915_WRITE(SERR_INT, serr_int);
1769 }
1770 
1771 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1772 {
1773 	struct drm_i915_private *dev_priv = dev->dev_private;
1774 	int pipe;
1775 	u32 hotplug_trigger;
1776 
1777 	if (HAS_PCH_SPT(dev))
1778 		hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT;
1779 	else
1780 		hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1781 
1782 	if (hotplug_trigger) {
1783 		u32 dig_hotplug_reg, pin_mask, long_mask;
1784 
1785 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1786 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1787 
1788 		if (HAS_PCH_SPT(dev)) {
1789 			intel_get_hpd_pins(&pin_mask, &long_mask,
1790 					   hotplug_trigger,
1791 					   dig_hotplug_reg, hpd_spt,
1792 					   pch_port_hotplug_long_detect);
1793 
1794 			/* detect PORTE HP event */
1795 			dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1796 			if (pch_port_hotplug_long_detect(PORT_E,
1797 							 dig_hotplug_reg))
1798 				long_mask |= 1 << HPD_PORT_E;
1799 		} else
1800 			intel_get_hpd_pins(&pin_mask, &long_mask,
1801 					   hotplug_trigger,
1802 					   dig_hotplug_reg, hpd_cpt,
1803 					   pch_port_hotplug_long_detect);
1804 
1805 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1806 	}
1807 
1808 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1809 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1810 			       SDE_AUDIO_POWER_SHIFT_CPT);
1811 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1812 				 port_name(port));
1813 	}
1814 
1815 	if (pch_iir & SDE_AUX_MASK_CPT)
1816 		dp_aux_irq_handler(dev);
1817 
1818 	if (pch_iir & SDE_GMBUS_CPT)
1819 		gmbus_irq_handler(dev);
1820 
1821 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1822 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1823 
1824 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1825 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1826 
1827 	if (pch_iir & SDE_FDI_MASK_CPT)
1828 		for_each_pipe(dev_priv, pipe)
1829 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1830 					 pipe_name(pipe),
1831 					 I915_READ(FDI_RX_IIR(pipe)));
1832 
1833 	if (pch_iir & SDE_ERROR_CPT)
1834 		cpt_serr_int_handler(dev);
1835 }
1836 
1837 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1838 {
1839 	struct drm_i915_private *dev_priv = dev->dev_private;
1840 	enum i915_pipe pipe;
1841 
1842 	if (de_iir & DE_AUX_CHANNEL_A)
1843 		dp_aux_irq_handler(dev);
1844 
1845 	if (de_iir & DE_GSE)
1846 		intel_opregion_asle_intr(dev);
1847 
1848 	if (de_iir & DE_POISON)
1849 		DRM_ERROR("Poison interrupt\n");
1850 
1851 	for_each_pipe(dev_priv, pipe) {
1852 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
1853 		    intel_pipe_handle_vblank(dev, pipe))
1854 			intel_check_page_flip(dev, pipe);
1855 
1856 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1857 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1858 
1859 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1860 			i9xx_pipe_crc_irq_handler(dev, pipe);
1861 
1862 		/* plane/pipes map 1:1 on ilk+ */
1863 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1864 			intel_prepare_page_flip(dev, pipe);
1865 			intel_finish_page_flip_plane(dev, pipe);
1866 		}
1867 	}
1868 
1869 	/* check event from PCH */
1870 	if (de_iir & DE_PCH_EVENT) {
1871 		u32 pch_iir = I915_READ(SDEIIR);
1872 
1873 		if (HAS_PCH_CPT(dev))
1874 			cpt_irq_handler(dev, pch_iir);
1875 		else
1876 			ibx_irq_handler(dev, pch_iir);
1877 
1878 		/* should clear PCH hotplug event before clear CPU irq */
1879 		I915_WRITE(SDEIIR, pch_iir);
1880 	}
1881 
1882 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1883 		ironlake_rps_change_irq_handler(dev);
1884 }
1885 
1886 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1887 {
1888 	struct drm_i915_private *dev_priv = dev->dev_private;
1889 	enum i915_pipe pipe;
1890 
1891 	if (de_iir & DE_ERR_INT_IVB)
1892 		ivb_err_int_handler(dev);
1893 
1894 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1895 		dp_aux_irq_handler(dev);
1896 
1897 	if (de_iir & DE_GSE_IVB)
1898 		intel_opregion_asle_intr(dev);
1899 
1900 	for_each_pipe(dev_priv, pipe) {
1901 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1902 		    intel_pipe_handle_vblank(dev, pipe))
1903 			intel_check_page_flip(dev, pipe);
1904 
1905 		/* plane/pipes map 1:1 on ilk+ */
1906 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1907 			intel_prepare_page_flip(dev, pipe);
1908 			intel_finish_page_flip_plane(dev, pipe);
1909 		}
1910 	}
1911 
1912 	/* check event from PCH */
1913 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1914 		u32 pch_iir = I915_READ(SDEIIR);
1915 
1916 		cpt_irq_handler(dev, pch_iir);
1917 
1918 		/* clear PCH hotplug event before clear CPU irq */
1919 		I915_WRITE(SDEIIR, pch_iir);
1920 	}
1921 }
1922 
1923 /*
1924  * To handle irqs with the minimum potential races with fresh interrupts, we:
1925  * 1 - Disable Master Interrupt Control.
1926  * 2 - Find the source(s) of the interrupt.
1927  * 3 - Clear the Interrupt Identity bits (IIR).
1928  * 4 - Process the interrupt(s) that had bits set in the IIRs.
1929  * 5 - Re-enable Master Interrupt Control.
1930  */
1931 static irqreturn_t ironlake_irq_handler(void *arg)
1932 {
1933 	struct drm_device *dev = arg;
1934 	struct drm_i915_private *dev_priv = dev->dev_private;
1935 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1936 
1937 	if (!intel_irqs_enabled(dev_priv))
1938 		return IRQ_NONE;
1939 
1940 	/* We get interrupts on unclaimed registers, so check for this before we
1941 	 * do any I915_{READ,WRITE}. */
1942 	intel_uncore_check_errors(dev);
1943 
1944 	/* disable master interrupt before clearing iir  */
1945 	de_ier = I915_READ(DEIER);
1946 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1947 	POSTING_READ(DEIER);
1948 
1949 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1950 	 * interrupts will will be stored on its back queue, and then we'll be
1951 	 * able to process them after we restore SDEIER (as soon as we restore
1952 	 * it, we'll get an interrupt if SDEIIR still has something to process
1953 	 * due to its back queue). */
1954 	if (!HAS_PCH_NOP(dev)) {
1955 		sde_ier = I915_READ(SDEIER);
1956 		I915_WRITE(SDEIER, 0);
1957 		POSTING_READ(SDEIER);
1958 	}
1959 
1960 	/* Find, clear, then process each source of interrupt */
1961 
1962 	gt_iir = I915_READ(GTIIR);
1963 	if (gt_iir) {
1964 		I915_WRITE(GTIIR, gt_iir);
1965 		if (INTEL_INFO(dev)->gen >= 6)
1966 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1967 		else
1968 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1969 	}
1970 
1971 	de_iir = I915_READ(DEIIR);
1972 	if (de_iir) {
1973 		I915_WRITE(DEIIR, de_iir);
1974 		if (INTEL_INFO(dev)->gen >= 7)
1975 			ivb_display_irq_handler(dev, de_iir);
1976 		else
1977 			ilk_display_irq_handler(dev, de_iir);
1978 	}
1979 
1980 	if (INTEL_INFO(dev)->gen >= 6) {
1981 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1982 		if (pm_iir) {
1983 			I915_WRITE(GEN6_PMIIR, pm_iir);
1984 			gen6_rps_irq_handler(dev_priv, pm_iir);
1985 		}
1986 	}
1987 
1988 	I915_WRITE(DEIER, de_ier);
1989 	POSTING_READ(DEIER);
1990 	if (!HAS_PCH_NOP(dev)) {
1991 		I915_WRITE(SDEIER, sde_ier);
1992 		POSTING_READ(SDEIER);
1993 	}
1994 
1995 }
1996 
1997 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
1998 {
1999 	struct drm_i915_private *dev_priv = dev->dev_private;
2000 	u32 hp_control, hp_trigger;
2001 	u32 pin_mask, long_mask;
2002 
2003 	/* Get the status */
2004 	hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2005 	hp_control = I915_READ(BXT_HOTPLUG_CTL);
2006 
2007 	/* Hotplug not enabled ? */
2008 	if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2009 		DRM_ERROR("Interrupt when HPD disabled\n");
2010 		return;
2011 	}
2012 
2013 	/* Clear sticky bits in hpd status */
2014 	I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2015 
2016 	intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
2017 			   hpd_bxt, bxt_port_hotplug_long_detect);
2018 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2019 }
2020 
2021 static irqreturn_t gen8_irq_handler(void *arg)
2022 {
2023 	struct drm_device *dev = arg;
2024 	struct drm_i915_private *dev_priv = dev->dev_private;
2025 	u32 master_ctl;
2026 	uint32_t tmp = 0;
2027 	enum i915_pipe pipe;
2028 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2029 
2030 	if (!intel_irqs_enabled(dev_priv))
2031 		return IRQ_NONE;
2032 
2033 	if (IS_GEN9(dev))
2034 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2035 			GEN9_AUX_CHANNEL_D;
2036 
2037 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2038 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2039 	if (!master_ctl)
2040 		return IRQ_NONE;
2041 
2042 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2043 
2044 	/* Find, clear, then process each source of interrupt */
2045 
2046 	gen8_gt_irq_handler(dev_priv, master_ctl);
2047 
2048 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2049 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2050 		if (tmp) {
2051 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2052 			if (tmp & GEN8_DE_MISC_GSE)
2053 				intel_opregion_asle_intr(dev);
2054 			else
2055 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2056 		}
2057 		else
2058 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2059 	}
2060 
2061 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2062 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2063 		if (tmp) {
2064 			bool found = false;
2065 
2066 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2067 
2068 			if (tmp & aux_mask) {
2069 				dp_aux_irq_handler(dev);
2070 				found = true;
2071 			}
2072 
2073 			if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2074 				bxt_hpd_handler(dev, tmp);
2075 				found = true;
2076 			}
2077 
2078 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2079 				gmbus_irq_handler(dev);
2080 				found = true;
2081 			}
2082 
2083 			if (!found)
2084 				DRM_ERROR("Unexpected DE Port interrupt\n");
2085 		}
2086 		else
2087 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2088 	}
2089 
2090 	for_each_pipe(dev_priv, pipe) {
2091 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2092 
2093 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2094 			continue;
2095 
2096 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2097 		if (pipe_iir) {
2098 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2099 
2100 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2101 			    intel_pipe_handle_vblank(dev, pipe))
2102 				intel_check_page_flip(dev, pipe);
2103 
2104 			if (IS_GEN9(dev))
2105 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2106 			else
2107 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2108 
2109 			if (flip_done) {
2110 				intel_prepare_page_flip(dev, pipe);
2111 				intel_finish_page_flip_plane(dev, pipe);
2112 			}
2113 
2114 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2115 				hsw_pipe_crc_irq_handler(dev, pipe);
2116 
2117 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2118 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2119 								    pipe);
2120 
2121 
2122 			if (IS_GEN9(dev))
2123 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2124 			else
2125 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2126 
2127 			if (fault_errors)
2128 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2129 					  pipe_name(pipe),
2130 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2131 		} else
2132 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2133 	}
2134 
2135 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2136 	    master_ctl & GEN8_DE_PCH_IRQ) {
2137 		/*
2138 		 * FIXME(BDW): Assume for now that the new interrupt handling
2139 		 * scheme also closed the SDE interrupt handling race we've seen
2140 		 * on older pch-split platforms. But this needs testing.
2141 		 */
2142 		u32 pch_iir = I915_READ(SDEIIR);
2143 		if (pch_iir) {
2144 			I915_WRITE(SDEIIR, pch_iir);
2145 			cpt_irq_handler(dev, pch_iir);
2146 		} else
2147 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2148 
2149 	}
2150 
2151 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2152 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2153 
2154 }
2155 
2156 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2157 			       bool reset_completed)
2158 {
2159 	struct intel_engine_cs *ring;
2160 	int i;
2161 
2162 	/*
2163 	 * Notify all waiters for GPU completion events that reset state has
2164 	 * been changed, and that they need to restart their wait after
2165 	 * checking for potential errors (and bail out to drop locks if there is
2166 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2167 	 */
2168 
2169 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2170 	for_each_ring(ring, dev_priv, i)
2171 		wake_up_all(&ring->irq_queue);
2172 
2173 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2174 	wake_up_all(&dev_priv->pending_flip_queue);
2175 
2176 	/*
2177 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2178 	 * reset state is cleared.
2179 	 */
2180 	if (reset_completed)
2181 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2182 }
2183 
2184 /**
2185  * i915_reset_and_wakeup - do process context error handling work
2186  *
2187  * Fire an error uevent so userspace can see that a hang or error
2188  * was detected.
2189  */
2190 static void i915_reset_and_wakeup(struct drm_device *dev)
2191 {
2192 	struct drm_i915_private *dev_priv = to_i915(dev);
2193 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2194 #if 0
2195 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2196 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2197 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2198 #endif
2199 	int ret;
2200 
2201 #if 0
2202 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2203 #endif
2204 
2205 	/*
2206 	 * Note that there's only one work item which does gpu resets, so we
2207 	 * need not worry about concurrent gpu resets potentially incrementing
2208 	 * error->reset_counter twice. We only need to take care of another
2209 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2210 	 * quick check for that is good enough: schedule_work ensures the
2211 	 * correct ordering between hang detection and this work item, and since
2212 	 * the reset in-progress bit is only ever set by code outside of this
2213 	 * work we don't need to worry about any other races.
2214 	 */
2215 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2216 		DRM_DEBUG_DRIVER("resetting chip\n");
2217 #if 0
2218 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2219 				   reset_event);
2220 #endif
2221 
2222 		/*
2223 		 * In most cases it's guaranteed that we get here with an RPM
2224 		 * reference held, for example because there is a pending GPU
2225 		 * request that won't finish until the reset is done. This
2226 		 * isn't the case at least when we get here by doing a
2227 		 * simulated reset via debugs, so get an RPM reference.
2228 		 */
2229 		intel_runtime_pm_get(dev_priv);
2230 
2231 		intel_prepare_reset(dev);
2232 
2233 		/*
2234 		 * All state reset _must_ be completed before we update the
2235 		 * reset counter, for otherwise waiters might miss the reset
2236 		 * pending state and not properly drop locks, resulting in
2237 		 * deadlocks with the reset work.
2238 		 */
2239 		ret = i915_reset(dev);
2240 
2241 		intel_finish_reset(dev);
2242 
2243 		intel_runtime_pm_put(dev_priv);
2244 
2245 		if (ret == 0) {
2246 			/*
2247 			 * After all the gem state is reset, increment the reset
2248 			 * counter and wake up everyone waiting for the reset to
2249 			 * complete.
2250 			 *
2251 			 * Since unlock operations are a one-sided barrier only,
2252 			 * we need to insert a barrier here to order any seqno
2253 			 * updates before
2254 			 * the counter increment.
2255 			 */
2256 			smp_mb__before_atomic();
2257 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2258 
2259 #if 0
2260 			kobject_uevent_env(&dev->primary->kdev->kobj,
2261 					   KOBJ_CHANGE, reset_done_event);
2262 #endif
2263 		} else {
2264 			atomic_or(I915_WEDGED, &error->reset_counter);
2265 		}
2266 
2267 		/*
2268 		 * Note: The wake_up also serves as a memory barrier so that
2269 		 * waiters see the update value of the reset counter atomic_t.
2270 		 */
2271 		i915_error_wake_up(dev_priv, true);
2272 	}
2273 }
2274 
2275 static void i915_report_and_clear_eir(struct drm_device *dev)
2276 {
2277 	struct drm_i915_private *dev_priv = dev->dev_private;
2278 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2279 	u32 eir = I915_READ(EIR);
2280 	int pipe, i;
2281 
2282 	if (!eir)
2283 		return;
2284 
2285 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2286 
2287 #if 0
2288 	i915_get_extra_instdone(dev, instdone);
2289 #endif
2290 
2291 	if (IS_G4X(dev)) {
2292 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2293 			u32 ipeir = I915_READ(IPEIR_I965);
2294 
2295 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2296 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2297 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2298 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2299 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2300 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2301 			I915_WRITE(IPEIR_I965, ipeir);
2302 			POSTING_READ(IPEIR_I965);
2303 		}
2304 		if (eir & GM45_ERROR_PAGE_TABLE) {
2305 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2306 			pr_err("page table error\n");
2307 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2308 			I915_WRITE(PGTBL_ER, pgtbl_err);
2309 			POSTING_READ(PGTBL_ER);
2310 		}
2311 	}
2312 
2313 	if (!IS_GEN2(dev)) {
2314 		if (eir & I915_ERROR_PAGE_TABLE) {
2315 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2316 			pr_err("page table error\n");
2317 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2318 			I915_WRITE(PGTBL_ER, pgtbl_err);
2319 			POSTING_READ(PGTBL_ER);
2320 		}
2321 	}
2322 
2323 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2324 		pr_err("memory refresh error:\n");
2325 		for_each_pipe(dev_priv, pipe)
2326 			pr_err("pipe %c stat: 0x%08x\n",
2327 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2328 		/* pipestat has already been acked */
2329 	}
2330 	if (eir & I915_ERROR_INSTRUCTION) {
2331 		pr_err("instruction error\n");
2332 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2333 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2334 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2335 		if (INTEL_INFO(dev)->gen < 4) {
2336 			u32 ipeir = I915_READ(IPEIR);
2337 
2338 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2339 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2340 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2341 			I915_WRITE(IPEIR, ipeir);
2342 			POSTING_READ(IPEIR);
2343 		} else {
2344 			u32 ipeir = I915_READ(IPEIR_I965);
2345 
2346 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2347 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2348 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2349 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2350 			I915_WRITE(IPEIR_I965, ipeir);
2351 			POSTING_READ(IPEIR_I965);
2352 		}
2353 	}
2354 
2355 	I915_WRITE(EIR, eir);
2356 	POSTING_READ(EIR);
2357 	eir = I915_READ(EIR);
2358 	if (eir) {
2359 		/*
2360 		 * some errors might have become stuck,
2361 		 * mask them.
2362 		 */
2363 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2364 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2365 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2366 	}
2367 }
2368 
2369 /**
2370  * i915_handle_error - handle a gpu error
2371  * @dev: drm device
2372  *
2373  * Do some basic checking of regsiter state at error time and
2374  * dump it to the syslog.  Also call i915_capture_error_state() to make
2375  * sure we get a record and make it available in debugfs.  Fire a uevent
2376  * so userspace knows something bad happened (should trigger collection
2377  * of a ring dump etc.).
2378  */
2379 void i915_handle_error(struct drm_device *dev, bool wedged,
2380 		       const char *fmt, ...)
2381 {
2382 	struct drm_i915_private *dev_priv = dev->dev_private;
2383 #if 0
2384 	va_list args;
2385 	char error_msg[80];
2386 
2387 	va_start(args, fmt);
2388 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2389 	va_end(args);
2390 
2391 	i915_capture_error_state(dev, wedged, error_msg);
2392 #endif
2393 	i915_report_and_clear_eir(dev);
2394 
2395 	if (wedged) {
2396 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2397 				&dev_priv->gpu_error.reset_counter);
2398 
2399 		/*
2400 		 * Wakeup waiting processes so that the reset function
2401 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2402 		 * various locks. By bumping the reset counter first, the woken
2403 		 * processes will see a reset in progress and back off,
2404 		 * releasing their locks and then wait for the reset completion.
2405 		 * We must do this for _all_ gpu waiters that might hold locks
2406 		 * that the reset work needs to acquire.
2407 		 *
2408 		 * Note: The wake_up serves as the required memory barrier to
2409 		 * ensure that the waiters see the updated value of the reset
2410 		 * counter atomic_t.
2411 		 */
2412 		i915_error_wake_up(dev_priv, false);
2413 	}
2414 
2415 	i915_reset_and_wakeup(dev);
2416 }
2417 
2418 /* Called from drm generic code, passed 'crtc' which
2419  * we use as a pipe index
2420  */
2421 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2422 {
2423 	struct drm_i915_private *dev_priv = dev->dev_private;
2424 
2425 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2426 	if (INTEL_INFO(dev)->gen >= 4)
2427 		i915_enable_pipestat(dev_priv, pipe,
2428 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2429 	else
2430 		i915_enable_pipestat(dev_priv, pipe,
2431 				     PIPE_VBLANK_INTERRUPT_STATUS);
2432 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2433 
2434 	return 0;
2435 }
2436 
2437 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2438 {
2439 	struct drm_i915_private *dev_priv = dev->dev_private;
2440 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2441 						     DE_PIPE_VBLANK(pipe);
2442 
2443 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2444 	ironlake_enable_display_irq(dev_priv, bit);
2445 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2446 
2447 	return 0;
2448 }
2449 
2450 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2451 {
2452 	struct drm_i915_private *dev_priv = dev->dev_private;
2453 
2454 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2455 	i915_enable_pipestat(dev_priv, pipe,
2456 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2457 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2458 
2459 	return 0;
2460 }
2461 
2462 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2463 {
2464 	struct drm_i915_private *dev_priv = dev->dev_private;
2465 
2466 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2467 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2468 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2469 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2470 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2471 	return 0;
2472 }
2473 
2474 /* Called from drm generic code, passed 'crtc' which
2475  * we use as a pipe index
2476  */
2477 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2478 {
2479 	struct drm_i915_private *dev_priv = dev->dev_private;
2480 
2481 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2482 	i915_disable_pipestat(dev_priv, pipe,
2483 			      PIPE_VBLANK_INTERRUPT_STATUS |
2484 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2485 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2486 }
2487 
2488 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2489 {
2490 	struct drm_i915_private *dev_priv = dev->dev_private;
2491 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2492 						     DE_PIPE_VBLANK(pipe);
2493 
2494 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2495 	ironlake_disable_display_irq(dev_priv, bit);
2496 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2497 }
2498 
2499 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2500 {
2501 	struct drm_i915_private *dev_priv = dev->dev_private;
2502 
2503 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2504 	i915_disable_pipestat(dev_priv, pipe,
2505 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2506 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2507 }
2508 
2509 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2510 {
2511 	struct drm_i915_private *dev_priv = dev->dev_private;
2512 
2513 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2514 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2515 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2516 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2517 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2518 }
2519 
2520 static bool
2521 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2522 {
2523 	return (list_empty(&ring->request_list) ||
2524 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2525 }
2526 
2527 static bool
2528 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2529 {
2530 	if (INTEL_INFO(dev)->gen >= 8) {
2531 		return (ipehr >> 23) == 0x1c;
2532 	} else {
2533 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2534 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2535 				 MI_SEMAPHORE_REGISTER);
2536 	}
2537 }
2538 
2539 static struct intel_engine_cs *
2540 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2541 {
2542 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2543 	struct intel_engine_cs *signaller;
2544 	int i;
2545 
2546 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2547 		for_each_ring(signaller, dev_priv, i) {
2548 			if (ring == signaller)
2549 				continue;
2550 
2551 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2552 				return signaller;
2553 		}
2554 	} else {
2555 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2556 
2557 		for_each_ring(signaller, dev_priv, i) {
2558 			if(ring == signaller)
2559 				continue;
2560 
2561 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2562 				return signaller;
2563 		}
2564 	}
2565 
2566 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016lx\n",
2567 		  ring->id, ipehr, offset);
2568 
2569 	return NULL;
2570 }
2571 
2572 static struct intel_engine_cs *
2573 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2574 {
2575 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2576 	u32 cmd, ipehr, head;
2577 	u64 offset = 0;
2578 	int i, backwards;
2579 
2580 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2581 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2582 		return NULL;
2583 
2584 	/*
2585 	 * HEAD is likely pointing to the dword after the actual command,
2586 	 * so scan backwards until we find the MBOX. But limit it to just 3
2587 	 * or 4 dwords depending on the semaphore wait command size.
2588 	 * Note that we don't care about ACTHD here since that might
2589 	 * point at at batch, and semaphores are always emitted into the
2590 	 * ringbuffer itself.
2591 	 */
2592 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2593 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2594 
2595 	for (i = backwards; i; --i) {
2596 		/*
2597 		 * Be paranoid and presume the hw has gone off into the wild -
2598 		 * our ring is smaller than what the hardware (and hence
2599 		 * HEAD_ADDR) allows. Also handles wrap-around.
2600 		 */
2601 		head &= ring->buffer->size - 1;
2602 
2603 		/* This here seems to blow up */
2604 		cmd = ioread32(ring->buffer->virtual_start + head);
2605 		if (cmd == ipehr)
2606 			break;
2607 
2608 		head -= 4;
2609 	}
2610 
2611 	if (!i)
2612 		return NULL;
2613 
2614 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2615 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2616 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2617 		offset <<= 32;
2618 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2619 	}
2620 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2621 }
2622 
2623 static int semaphore_passed(struct intel_engine_cs *ring)
2624 {
2625 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2626 	struct intel_engine_cs *signaller;
2627 	u32 seqno;
2628 
2629 	ring->hangcheck.deadlock++;
2630 
2631 	signaller = semaphore_waits_for(ring, &seqno);
2632 	if (signaller == NULL)
2633 		return -1;
2634 
2635 	/* Prevent pathological recursion due to driver bugs */
2636 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2637 		return -1;
2638 
2639 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2640 		return 1;
2641 
2642 	/* cursory check for an unkickable deadlock */
2643 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2644 	    semaphore_passed(signaller) < 0)
2645 		return -1;
2646 
2647 	return 0;
2648 }
2649 
2650 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2651 {
2652 	struct intel_engine_cs *ring;
2653 	int i;
2654 
2655 	for_each_ring(ring, dev_priv, i)
2656 		ring->hangcheck.deadlock = 0;
2657 }
2658 
2659 static enum intel_ring_hangcheck_action
2660 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2661 {
2662 	struct drm_device *dev = ring->dev;
2663 	struct drm_i915_private *dev_priv = dev->dev_private;
2664 	u32 tmp;
2665 
2666 	if (acthd != ring->hangcheck.acthd) {
2667 		if (acthd > ring->hangcheck.max_acthd) {
2668 			ring->hangcheck.max_acthd = acthd;
2669 			return HANGCHECK_ACTIVE;
2670 		}
2671 
2672 		return HANGCHECK_ACTIVE_LOOP;
2673 	}
2674 
2675 	if (IS_GEN2(dev))
2676 		return HANGCHECK_HUNG;
2677 
2678 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2679 	 * If so we can simply poke the RB_WAIT bit
2680 	 * and break the hang. This should work on
2681 	 * all but the second generation chipsets.
2682 	 */
2683 	tmp = I915_READ_CTL(ring);
2684 	if (tmp & RING_WAIT) {
2685 		i915_handle_error(dev, false,
2686 				  "Kicking stuck wait on %s",
2687 				  ring->name);
2688 		I915_WRITE_CTL(ring, tmp);
2689 		return HANGCHECK_KICK;
2690 	}
2691 
2692 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2693 		switch (semaphore_passed(ring)) {
2694 		default:
2695 			return HANGCHECK_HUNG;
2696 		case 1:
2697 			i915_handle_error(dev, false,
2698 					  "Kicking stuck semaphore on %s",
2699 					  ring->name);
2700 			I915_WRITE_CTL(ring, tmp);
2701 			return HANGCHECK_KICK;
2702 		case 0:
2703 			return HANGCHECK_WAIT;
2704 		}
2705 	}
2706 
2707 	return HANGCHECK_HUNG;
2708 }
2709 
2710 /*
2711  * This is called when the chip hasn't reported back with completed
2712  * batchbuffers in a long time. We keep track per ring seqno progress and
2713  * if there are no progress, hangcheck score for that ring is increased.
2714  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2715  * we kick the ring. If we see no progress on three subsequent calls
2716  * we assume chip is wedged and try to fix it by resetting the chip.
2717  */
2718 static void i915_hangcheck_elapsed(struct work_struct *work)
2719 {
2720 	struct drm_i915_private *dev_priv =
2721 		container_of(work, typeof(*dev_priv),
2722 			     gpu_error.hangcheck_work.work);
2723 	struct drm_device *dev = dev_priv->dev;
2724 	struct intel_engine_cs *ring;
2725 	int i;
2726 	int busy_count = 0, rings_hung = 0;
2727 	bool stuck[I915_NUM_RINGS] = { 0 };
2728 #define BUSY 1
2729 #define KICK 5
2730 #define HUNG 20
2731 
2732 	if (!i915.enable_hangcheck)
2733 		return;
2734 
2735 	for_each_ring(ring, dev_priv, i) {
2736 		u64 acthd;
2737 		u32 seqno;
2738 		bool busy = true;
2739 
2740 		semaphore_clear_deadlocks(dev_priv);
2741 
2742 		seqno = ring->get_seqno(ring, false);
2743 		acthd = intel_ring_get_active_head(ring);
2744 
2745 		if (ring->hangcheck.seqno == seqno) {
2746 			if (ring_idle(ring, seqno)) {
2747 				ring->hangcheck.action = HANGCHECK_IDLE;
2748 
2749 				if (waitqueue_active(&ring->irq_queue)) {
2750 					/* Issue a wake-up to catch stuck h/w. */
2751 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2752 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2753 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2754 								  ring->name);
2755 						else
2756 							DRM_INFO("Fake missed irq on %s\n",
2757 								 ring->name);
2758 						wake_up_all(&ring->irq_queue);
2759 					}
2760 					/* Safeguard against driver failure */
2761 					ring->hangcheck.score += BUSY;
2762 				} else
2763 					busy = false;
2764 			} else {
2765 				/* We always increment the hangcheck score
2766 				 * if the ring is busy and still processing
2767 				 * the same request, so that no single request
2768 				 * can run indefinitely (such as a chain of
2769 				 * batches). The only time we do not increment
2770 				 * the hangcheck score on this ring, if this
2771 				 * ring is in a legitimate wait for another
2772 				 * ring. In that case the waiting ring is a
2773 				 * victim and we want to be sure we catch the
2774 				 * right culprit. Then every time we do kick
2775 				 * the ring, add a small increment to the
2776 				 * score so that we can catch a batch that is
2777 				 * being repeatedly kicked and so responsible
2778 				 * for stalling the machine.
2779 				 */
2780 				ring->hangcheck.action = ring_stuck(ring,
2781 								    acthd);
2782 
2783 				switch (ring->hangcheck.action) {
2784 				case HANGCHECK_IDLE:
2785 				case HANGCHECK_WAIT:
2786 				case HANGCHECK_ACTIVE:
2787 					break;
2788 				case HANGCHECK_ACTIVE_LOOP:
2789 					ring->hangcheck.score += BUSY;
2790 					break;
2791 				case HANGCHECK_KICK:
2792 					ring->hangcheck.score += KICK;
2793 					break;
2794 				case HANGCHECK_HUNG:
2795 					ring->hangcheck.score += HUNG;
2796 					stuck[i] = true;
2797 					break;
2798 				}
2799 			}
2800 		} else {
2801 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2802 
2803 			/* Gradually reduce the count so that we catch DoS
2804 			 * attempts across multiple batches.
2805 			 */
2806 			if (ring->hangcheck.score > 0)
2807 				ring->hangcheck.score--;
2808 
2809 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2810 		}
2811 
2812 		ring->hangcheck.seqno = seqno;
2813 		ring->hangcheck.acthd = acthd;
2814 		busy_count += busy;
2815 	}
2816 
2817 	for_each_ring(ring, dev_priv, i) {
2818 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2819 			DRM_INFO("%s on %s\n",
2820 				 stuck[i] ? "stuck" : "no progress",
2821 				 ring->name);
2822 			rings_hung++;
2823 		}
2824 	}
2825 
2826 	if (rings_hung)
2827 		return i915_handle_error(dev, true, "Ring hung");
2828 
2829 	if (busy_count)
2830 		/* Reset timer case chip hangs without another request
2831 		 * being added */
2832 		i915_queue_hangcheck(dev);
2833 }
2834 
2835 void i915_queue_hangcheck(struct drm_device *dev)
2836 {
2837 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2838 
2839 	if (!i915.enable_hangcheck)
2840 		return;
2841 
2842 	/* Don't continually defer the hangcheck so that it is always run at
2843 	 * least once after work has been scheduled on any ring. Otherwise,
2844 	 * we will ignore a hung ring if a second ring is kept busy.
2845 	 */
2846 
2847 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2848 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2849 }
2850 
2851 static void ibx_irq_reset(struct drm_device *dev)
2852 {
2853 	struct drm_i915_private *dev_priv = dev->dev_private;
2854 
2855 	if (HAS_PCH_NOP(dev))
2856 		return;
2857 
2858 	GEN5_IRQ_RESET(SDE);
2859 
2860 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2861 		I915_WRITE(SERR_INT, 0xffffffff);
2862 }
2863 
2864 /*
2865  * SDEIER is also touched by the interrupt handler to work around missed PCH
2866  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2867  * instead we unconditionally enable all PCH interrupt sources here, but then
2868  * only unmask them as needed with SDEIMR.
2869  *
2870  * This function needs to be called before interrupts are enabled.
2871  */
2872 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2873 {
2874 	struct drm_i915_private *dev_priv = dev->dev_private;
2875 
2876 	if (HAS_PCH_NOP(dev))
2877 		return;
2878 
2879 	WARN_ON(I915_READ(SDEIER) != 0);
2880 	I915_WRITE(SDEIER, 0xffffffff);
2881 	POSTING_READ(SDEIER);
2882 }
2883 
2884 static void gen5_gt_irq_reset(struct drm_device *dev)
2885 {
2886 	struct drm_i915_private *dev_priv = dev->dev_private;
2887 
2888 	GEN5_IRQ_RESET(GT);
2889 	if (INTEL_INFO(dev)->gen >= 6)
2890 		GEN5_IRQ_RESET(GEN6_PM);
2891 }
2892 
2893 /* drm_dma.h hooks
2894 */
2895 static void ironlake_irq_reset(struct drm_device *dev)
2896 {
2897 	struct drm_i915_private *dev_priv = dev->dev_private;
2898 
2899 	I915_WRITE(HWSTAM, 0xffffffff);
2900 
2901 	GEN5_IRQ_RESET(DE);
2902 	if (IS_GEN7(dev))
2903 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2904 
2905 	gen5_gt_irq_reset(dev);
2906 
2907 	ibx_irq_reset(dev);
2908 }
2909 
2910 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2911 {
2912 	enum i915_pipe pipe;
2913 
2914 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2915 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2916 
2917 	for_each_pipe(dev_priv, pipe)
2918 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2919 
2920 	GEN5_IRQ_RESET(VLV_);
2921 }
2922 
2923 static void valleyview_irq_preinstall(struct drm_device *dev)
2924 {
2925 	struct drm_i915_private *dev_priv = dev->dev_private;
2926 
2927 	/* VLV magic */
2928 	I915_WRITE(VLV_IMR, 0);
2929 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2930 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2931 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2932 
2933 	gen5_gt_irq_reset(dev);
2934 
2935 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2936 
2937 	vlv_display_irq_reset(dev_priv);
2938 }
2939 
2940 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2941 {
2942 	GEN8_IRQ_RESET_NDX(GT, 0);
2943 	GEN8_IRQ_RESET_NDX(GT, 1);
2944 	GEN8_IRQ_RESET_NDX(GT, 2);
2945 	GEN8_IRQ_RESET_NDX(GT, 3);
2946 }
2947 
2948 static void gen8_irq_reset(struct drm_device *dev)
2949 {
2950 	struct drm_i915_private *dev_priv = dev->dev_private;
2951 	int pipe;
2952 
2953 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2954 	POSTING_READ(GEN8_MASTER_IRQ);
2955 
2956 	gen8_gt_irq_reset(dev_priv);
2957 
2958 	for_each_pipe(dev_priv, pipe)
2959 		if (intel_display_power_is_enabled(dev_priv,
2960 						   POWER_DOMAIN_PIPE(pipe)))
2961 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2962 
2963 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
2964 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
2965 	GEN5_IRQ_RESET(GEN8_PCU_);
2966 
2967 	if (HAS_PCH_SPLIT(dev))
2968 		ibx_irq_reset(dev);
2969 }
2970 
2971 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2972 				     unsigned int pipe_mask)
2973 {
2974 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2975 
2976 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2977 	if (pipe_mask & 1 << PIPE_A)
2978 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
2979 				  dev_priv->de_irq_mask[PIPE_A],
2980 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
2981 	if (pipe_mask & 1 << PIPE_B)
2982 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
2983 				  dev_priv->de_irq_mask[PIPE_B],
2984 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
2985 	if (pipe_mask & 1 << PIPE_C)
2986 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
2987 				  dev_priv->de_irq_mask[PIPE_C],
2988 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
2989 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2990 }
2991 
2992 static void cherryview_irq_preinstall(struct drm_device *dev)
2993 {
2994 	struct drm_i915_private *dev_priv = dev->dev_private;
2995 
2996 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2997 	POSTING_READ(GEN8_MASTER_IRQ);
2998 
2999 	gen8_gt_irq_reset(dev_priv);
3000 
3001 	GEN5_IRQ_RESET(GEN8_PCU_);
3002 
3003 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3004 
3005 	vlv_display_irq_reset(dev_priv);
3006 }
3007 
3008 static void ibx_hpd_irq_setup(struct drm_device *dev)
3009 {
3010 	struct drm_i915_private *dev_priv = dev->dev_private;
3011 	struct intel_encoder *intel_encoder;
3012 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3013 
3014 	if (HAS_PCH_IBX(dev)) {
3015 		hotplug_irqs = SDE_HOTPLUG_MASK;
3016 		for_each_intel_encoder(dev, intel_encoder)
3017 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3018 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3019 	} else if (HAS_PCH_SPT(dev)) {
3020 		hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3021 		for_each_intel_encoder(dev, intel_encoder)
3022 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3023 				enabled_irqs |= hpd_spt[intel_encoder->hpd_pin];
3024 	} else {
3025 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3026 		for_each_intel_encoder(dev, intel_encoder)
3027 			if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3028 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3029 	}
3030 
3031 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3032 
3033 	/*
3034 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3035 	 * duration to 2ms (which is the minimum in the Display Port spec)
3036 	 *
3037 	 * This register is the same on all known PCH chips.
3038 	 */
3039 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3040 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3041 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3042 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3043 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3044 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3045 
3046 	/* enable SPT PORTE hot plug */
3047 	if (HAS_PCH_SPT(dev)) {
3048 		hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3049 		hotplug |= PORTE_HOTPLUG_ENABLE;
3050 		I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3051 	}
3052 }
3053 
3054 static void bxt_hpd_irq_setup(struct drm_device *dev)
3055 {
3056 	struct drm_i915_private *dev_priv = dev->dev_private;
3057 	struct intel_encoder *intel_encoder;
3058 	u32 hotplug_port = 0;
3059 	u32 hotplug_ctrl;
3060 
3061 	/* Now, enable HPD */
3062 	for_each_intel_encoder(dev, intel_encoder) {
3063 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3064 				== HPD_ENABLED)
3065 			hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3066 	}
3067 
3068 	/* Mask all HPD control bits */
3069 	hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3070 
3071 	/* Enable requested port in hotplug control */
3072 	/* TODO: implement (short) HPD support on port A */
3073 	WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3074 	if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3075 		hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3076 	if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3077 		hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3078 	I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3079 
3080 	/* Unmask DDI hotplug in IMR */
3081 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3082 	I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3083 
3084 	/* Enable DDI hotplug in IER */
3085 	hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3086 	I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3087 	POSTING_READ(GEN8_DE_PORT_IER);
3088 }
3089 
3090 static void ibx_irq_postinstall(struct drm_device *dev)
3091 {
3092 	struct drm_i915_private *dev_priv = dev->dev_private;
3093 	u32 mask;
3094 
3095 	if (HAS_PCH_NOP(dev))
3096 		return;
3097 
3098 	if (HAS_PCH_IBX(dev))
3099 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3100 	else
3101 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3102 
3103 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3104 	I915_WRITE(SDEIMR, ~mask);
3105 }
3106 
3107 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3108 {
3109 	struct drm_i915_private *dev_priv = dev->dev_private;
3110 	u32 pm_irqs, gt_irqs;
3111 
3112 	pm_irqs = gt_irqs = 0;
3113 
3114 	dev_priv->gt_irq_mask = ~0;
3115 	if (HAS_L3_DPF(dev)) {
3116 		/* L3 parity interrupt is always unmasked. */
3117 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3118 		gt_irqs |= GT_PARITY_ERROR(dev);
3119 	}
3120 
3121 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3122 	if (IS_GEN5(dev)) {
3123 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3124 			   ILK_BSD_USER_INTERRUPT;
3125 	} else {
3126 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3127 	}
3128 
3129 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3130 
3131 	if (INTEL_INFO(dev)->gen >= 6) {
3132 		/*
3133 		 * RPS interrupts will get enabled/disabled on demand when RPS
3134 		 * itself is enabled/disabled.
3135 		 */
3136 		if (HAS_VEBOX(dev))
3137 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3138 
3139 		dev_priv->pm_irq_mask = 0xffffffff;
3140 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3141 	}
3142 }
3143 
3144 static int ironlake_irq_postinstall(struct drm_device *dev)
3145 {
3146 	struct drm_i915_private *dev_priv = dev->dev_private;
3147 	u32 display_mask, extra_mask;
3148 
3149 	if (INTEL_INFO(dev)->gen >= 7) {
3150 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3151 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3152 				DE_PLANEB_FLIP_DONE_IVB |
3153 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3154 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3155 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3156 	} else {
3157 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3158 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3159 				DE_AUX_CHANNEL_A |
3160 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3161 				DE_POISON);
3162 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3163 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3164 	}
3165 
3166 	dev_priv->irq_mask = ~display_mask;
3167 
3168 	I915_WRITE(HWSTAM, 0xeffe);
3169 
3170 	ibx_irq_pre_postinstall(dev);
3171 
3172 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3173 
3174 	gen5_gt_irq_postinstall(dev);
3175 
3176 	ibx_irq_postinstall(dev);
3177 
3178 	if (IS_IRONLAKE_M(dev)) {
3179 		/* Enable PCU event interrupts
3180 		 *
3181 		 * spinlocking not required here for correctness since interrupt
3182 		 * setup is guaranteed to run in single-threaded context. But we
3183 		 * need it to make the assert_spin_locked happy. */
3184 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3185 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3186 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3193 {
3194 	u32 pipestat_mask;
3195 	u32 iir_mask;
3196 	enum i915_pipe pipe;
3197 
3198 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3199 			PIPE_FIFO_UNDERRUN_STATUS;
3200 
3201 	for_each_pipe(dev_priv, pipe)
3202 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3203 	POSTING_READ(PIPESTAT(PIPE_A));
3204 
3205 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3206 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3207 
3208 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3209 	for_each_pipe(dev_priv, pipe)
3210 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3211 
3212 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3213 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3214 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3215 	if (IS_CHERRYVIEW(dev_priv))
3216 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3217 	dev_priv->irq_mask &= ~iir_mask;
3218 
3219 	I915_WRITE(VLV_IIR, iir_mask);
3220 	I915_WRITE(VLV_IIR, iir_mask);
3221 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3222 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3223 	POSTING_READ(VLV_IMR);
3224 }
3225 
3226 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3227 {
3228 	u32 pipestat_mask;
3229 	u32 iir_mask;
3230 	enum i915_pipe pipe;
3231 
3232 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3233 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3234 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3235 	if (IS_CHERRYVIEW(dev_priv))
3236 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3237 
3238 	dev_priv->irq_mask |= iir_mask;
3239 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3240 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3241 	I915_WRITE(VLV_IIR, iir_mask);
3242 	I915_WRITE(VLV_IIR, iir_mask);
3243 	POSTING_READ(VLV_IIR);
3244 
3245 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3246 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3247 
3248 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3249 	for_each_pipe(dev_priv, pipe)
3250 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3251 
3252 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3253 			PIPE_FIFO_UNDERRUN_STATUS;
3254 
3255 	for_each_pipe(dev_priv, pipe)
3256 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3257 	POSTING_READ(PIPESTAT(PIPE_A));
3258 }
3259 
3260 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3261 {
3262 	assert_spin_locked(&dev_priv->irq_lock);
3263 
3264 	if (dev_priv->display_irqs_enabled)
3265 		return;
3266 
3267 	dev_priv->display_irqs_enabled = true;
3268 
3269 	if (intel_irqs_enabled(dev_priv))
3270 		valleyview_display_irqs_install(dev_priv);
3271 }
3272 
3273 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3274 {
3275 	assert_spin_locked(&dev_priv->irq_lock);
3276 
3277 	if (!dev_priv->display_irqs_enabled)
3278 		return;
3279 
3280 	dev_priv->display_irqs_enabled = false;
3281 
3282 	if (intel_irqs_enabled(dev_priv))
3283 		valleyview_display_irqs_uninstall(dev_priv);
3284 }
3285 
3286 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3287 {
3288 	dev_priv->irq_mask = ~0;
3289 
3290 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3291 	POSTING_READ(PORT_HOTPLUG_EN);
3292 
3293 	I915_WRITE(VLV_IIR, 0xffffffff);
3294 	I915_WRITE(VLV_IIR, 0xffffffff);
3295 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3296 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3297 	POSTING_READ(VLV_IMR);
3298 
3299 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3300 	 * just to make the assert_spin_locked check happy. */
3301 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3302 	if (dev_priv->display_irqs_enabled)
3303 		valleyview_display_irqs_install(dev_priv);
3304 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3305 }
3306 
3307 static int valleyview_irq_postinstall(struct drm_device *dev)
3308 {
3309 	struct drm_i915_private *dev_priv = dev->dev_private;
3310 
3311 	vlv_display_irq_postinstall(dev_priv);
3312 
3313 	gen5_gt_irq_postinstall(dev);
3314 
3315 	/* ack & enable invalid PTE error interrupts */
3316 #if 0 /* FIXME: add support to irq handler for checking these bits */
3317 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3318 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3319 #endif
3320 
3321 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3322 
3323 	return 0;
3324 }
3325 
3326 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3327 {
3328 	/* These are interrupts we'll toggle with the ring mask register */
3329 	uint32_t gt_interrupts[] = {
3330 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3331 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3332 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3333 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3334 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3335 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3336 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3337 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3338 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3339 		0,
3340 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3341 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3342 		};
3343 
3344 	dev_priv->pm_irq_mask = 0xffffffff;
3345 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3346 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3347 	/*
3348 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3349 	 * is enabled/disabled.
3350 	 */
3351 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3352 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3353 }
3354 
3355 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3356 {
3357 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3358 	uint32_t de_pipe_enables;
3359 	int pipe;
3360 	u32 de_port_en = GEN8_AUX_CHANNEL_A;
3361 
3362 	if (IS_GEN9(dev_priv)) {
3363 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3364 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3365 		de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3366 			GEN9_AUX_CHANNEL_D;
3367 
3368 		if (IS_BROXTON(dev_priv))
3369 			de_port_en |= BXT_DE_PORT_GMBUS;
3370 	} else
3371 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3372 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3373 
3374 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3375 					   GEN8_PIPE_FIFO_UNDERRUN;
3376 
3377 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3378 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3379 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3380 
3381 	for_each_pipe(dev_priv, pipe)
3382 		if (intel_display_power_is_enabled(dev_priv,
3383 				POWER_DOMAIN_PIPE(pipe)))
3384 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3385 					  dev_priv->de_irq_mask[pipe],
3386 					  de_pipe_enables);
3387 
3388 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3389 }
3390 
3391 static int gen8_irq_postinstall(struct drm_device *dev)
3392 {
3393 	struct drm_i915_private *dev_priv = dev->dev_private;
3394 
3395 	if (HAS_PCH_SPLIT(dev))
3396 		ibx_irq_pre_postinstall(dev);
3397 
3398 	gen8_gt_irq_postinstall(dev_priv);
3399 	gen8_de_irq_postinstall(dev_priv);
3400 
3401 	if (HAS_PCH_SPLIT(dev))
3402 		ibx_irq_postinstall(dev);
3403 
3404 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3405 	POSTING_READ(GEN8_MASTER_IRQ);
3406 
3407 	return 0;
3408 }
3409 
3410 static int cherryview_irq_postinstall(struct drm_device *dev)
3411 {
3412 	struct drm_i915_private *dev_priv = dev->dev_private;
3413 
3414 	vlv_display_irq_postinstall(dev_priv);
3415 
3416 	gen8_gt_irq_postinstall(dev_priv);
3417 
3418 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3419 	POSTING_READ(GEN8_MASTER_IRQ);
3420 
3421 	return 0;
3422 }
3423 
3424 static void gen8_irq_uninstall(struct drm_device *dev)
3425 {
3426 	struct drm_i915_private *dev_priv = dev->dev_private;
3427 
3428 	if (!dev_priv)
3429 		return;
3430 
3431 	gen8_irq_reset(dev);
3432 }
3433 
3434 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3435 {
3436 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3437 	 * just to make the assert_spin_locked check happy. */
3438 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3439 	if (dev_priv->display_irqs_enabled)
3440 		valleyview_display_irqs_uninstall(dev_priv);
3441 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3442 
3443 	vlv_display_irq_reset(dev_priv);
3444 
3445 	dev_priv->irq_mask = ~0;
3446 }
3447 
3448 static void valleyview_irq_uninstall(struct drm_device *dev)
3449 {
3450 	struct drm_i915_private *dev_priv = dev->dev_private;
3451 
3452 	if (!dev_priv)
3453 		return;
3454 
3455 	I915_WRITE(VLV_MASTER_IER, 0);
3456 
3457 	gen5_gt_irq_reset(dev);
3458 
3459 	I915_WRITE(HWSTAM, 0xffffffff);
3460 
3461 	vlv_display_irq_uninstall(dev_priv);
3462 }
3463 
3464 static void cherryview_irq_uninstall(struct drm_device *dev)
3465 {
3466 	struct drm_i915_private *dev_priv = dev->dev_private;
3467 
3468 	if (!dev_priv)
3469 		return;
3470 
3471 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3472 	POSTING_READ(GEN8_MASTER_IRQ);
3473 
3474 	gen8_gt_irq_reset(dev_priv);
3475 
3476 	GEN5_IRQ_RESET(GEN8_PCU_);
3477 
3478 	vlv_display_irq_uninstall(dev_priv);
3479 }
3480 
3481 static void ironlake_irq_uninstall(struct drm_device *dev)
3482 {
3483 	struct drm_i915_private *dev_priv = dev->dev_private;
3484 
3485 	if (!dev_priv)
3486 		return;
3487 
3488 	ironlake_irq_reset(dev);
3489 }
3490 
3491 static void i8xx_irq_preinstall(struct drm_device * dev)
3492 {
3493 	struct drm_i915_private *dev_priv = dev->dev_private;
3494 	int pipe;
3495 
3496 	for_each_pipe(dev_priv, pipe)
3497 		I915_WRITE(PIPESTAT(pipe), 0);
3498 	I915_WRITE16(IMR, 0xffff);
3499 	I915_WRITE16(IER, 0x0);
3500 	POSTING_READ16(IER);
3501 }
3502 
3503 static int i8xx_irq_postinstall(struct drm_device *dev)
3504 {
3505 	struct drm_i915_private *dev_priv = dev->dev_private;
3506 
3507 	I915_WRITE16(EMR,
3508 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3509 
3510 	/* Unmask the interrupts that we always want on. */
3511 	dev_priv->irq_mask =
3512 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3513 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3514 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3515 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3516 	I915_WRITE16(IMR, dev_priv->irq_mask);
3517 
3518 	I915_WRITE16(IER,
3519 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3520 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3521 		     I915_USER_INTERRUPT);
3522 	POSTING_READ16(IER);
3523 
3524 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3525 	 * just to make the assert_spin_locked check happy. */
3526 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3527 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3528 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3529 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3530 
3531 	return 0;
3532 }
3533 
3534 /*
3535  * Returns true when a page flip has completed.
3536  */
3537 static bool i8xx_handle_vblank(struct drm_device *dev,
3538 			       int plane, int pipe, u32 iir)
3539 {
3540 	struct drm_i915_private *dev_priv = dev->dev_private;
3541 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3542 
3543 	if (!intel_pipe_handle_vblank(dev, pipe))
3544 		return false;
3545 
3546 	if ((iir & flip_pending) == 0)
3547 		goto check_page_flip;
3548 
3549 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3550 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3551 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3552 	 * the flip is completed (no longer pending). Since this doesn't raise
3553 	 * an interrupt per se, we watch for the change at vblank.
3554 	 */
3555 	if (I915_READ16(ISR) & flip_pending)
3556 		goto check_page_flip;
3557 
3558 	intel_prepare_page_flip(dev, plane);
3559 	intel_finish_page_flip(dev, pipe);
3560 	return true;
3561 
3562 check_page_flip:
3563 	intel_check_page_flip(dev, pipe);
3564 	return false;
3565 }
3566 
3567 static irqreturn_t i8xx_irq_handler(void *arg)
3568 {
3569 	struct drm_device *dev = arg;
3570 	struct drm_i915_private *dev_priv = dev->dev_private;
3571 	u16 iir, new_iir;
3572 	u32 pipe_stats[2];
3573 	int pipe;
3574 	u16 flip_mask =
3575 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3576 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3577 
3578 	if (!intel_irqs_enabled(dev_priv))
3579 		return IRQ_NONE;
3580 
3581 	iir = I915_READ16(IIR);
3582 	if (iir == 0)
3583 		return;
3584 
3585 	while (iir & ~flip_mask) {
3586 		/* Can't rely on pipestat interrupt bit in iir as it might
3587 		 * have been cleared after the pipestat interrupt was received.
3588 		 * It doesn't set the bit in iir again, but it still produces
3589 		 * interrupts (for non-MSI).
3590 		 */
3591 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3592 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3593 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3594 
3595 		for_each_pipe(dev_priv, pipe) {
3596 			int reg = PIPESTAT(pipe);
3597 			pipe_stats[pipe] = I915_READ(reg);
3598 
3599 			/*
3600 			 * Clear the PIPE*STAT regs before the IIR
3601 			 */
3602 			if (pipe_stats[pipe] & 0x8000ffff)
3603 				I915_WRITE(reg, pipe_stats[pipe]);
3604 		}
3605 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3606 
3607 		I915_WRITE16(IIR, iir & ~flip_mask);
3608 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3609 
3610 		if (iir & I915_USER_INTERRUPT)
3611 			notify_ring(&dev_priv->ring[RCS]);
3612 
3613 		for_each_pipe(dev_priv, pipe) {
3614 			int plane = pipe;
3615 			if (HAS_FBC(dev))
3616 				plane = !plane;
3617 
3618 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3619 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3620 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3621 
3622 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3623 				i9xx_pipe_crc_irq_handler(dev, pipe);
3624 
3625 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3626 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3627 								    pipe);
3628 		}
3629 
3630 		iir = new_iir;
3631 	}
3632 
3633 }
3634 
3635 static void i8xx_irq_uninstall(struct drm_device * dev)
3636 {
3637 	struct drm_i915_private *dev_priv = dev->dev_private;
3638 	int pipe;
3639 
3640 	for_each_pipe(dev_priv, pipe) {
3641 		/* Clear enable bits; then clear status bits */
3642 		I915_WRITE(PIPESTAT(pipe), 0);
3643 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3644 	}
3645 	I915_WRITE16(IMR, 0xffff);
3646 	I915_WRITE16(IER, 0x0);
3647 	I915_WRITE16(IIR, I915_READ16(IIR));
3648 }
3649 
3650 static void i915_irq_preinstall(struct drm_device * dev)
3651 {
3652 	struct drm_i915_private *dev_priv = dev->dev_private;
3653 	int pipe;
3654 
3655 	if (I915_HAS_HOTPLUG(dev)) {
3656 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3657 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3658 	}
3659 
3660 	I915_WRITE16(HWSTAM, 0xeffe);
3661 	for_each_pipe(dev_priv, pipe)
3662 		I915_WRITE(PIPESTAT(pipe), 0);
3663 	I915_WRITE(IMR, 0xffffffff);
3664 	I915_WRITE(IER, 0x0);
3665 	POSTING_READ(IER);
3666 }
3667 
3668 static int i915_irq_postinstall(struct drm_device *dev)
3669 {
3670 	struct drm_i915_private *dev_priv = dev->dev_private;
3671 	u32 enable_mask;
3672 
3673 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3674 
3675 	/* Unmask the interrupts that we always want on. */
3676 	dev_priv->irq_mask =
3677 		~(I915_ASLE_INTERRUPT |
3678 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3679 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3680 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3681 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3682 
3683 	enable_mask =
3684 		I915_ASLE_INTERRUPT |
3685 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3686 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3687 		I915_USER_INTERRUPT;
3688 
3689 	if (I915_HAS_HOTPLUG(dev)) {
3690 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3691 		POSTING_READ(PORT_HOTPLUG_EN);
3692 
3693 		/* Enable in IER... */
3694 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3695 		/* and unmask in IMR */
3696 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3697 	}
3698 
3699 	I915_WRITE(IMR, dev_priv->irq_mask);
3700 	I915_WRITE(IER, enable_mask);
3701 	POSTING_READ(IER);
3702 
3703 	i915_enable_asle_pipestat(dev);
3704 
3705 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3706 	 * just to make the assert_spin_locked check happy. */
3707 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3708 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3709 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3710 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3711 
3712 	return 0;
3713 }
3714 
3715 /*
3716  * Returns true when a page flip has completed.
3717  */
3718 static bool i915_handle_vblank(struct drm_device *dev,
3719 			       int plane, int pipe, u32 iir)
3720 {
3721 	struct drm_i915_private *dev_priv = dev->dev_private;
3722 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3723 
3724 	if (!intel_pipe_handle_vblank(dev, pipe))
3725 		return false;
3726 
3727 	if ((iir & flip_pending) == 0)
3728 		goto check_page_flip;
3729 
3730 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3731 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3732 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3733 	 * the flip is completed (no longer pending). Since this doesn't raise
3734 	 * an interrupt per se, we watch for the change at vblank.
3735 	 */
3736 	if (I915_READ(ISR) & flip_pending)
3737 		goto check_page_flip;
3738 
3739 	intel_prepare_page_flip(dev, plane);
3740 	intel_finish_page_flip(dev, pipe);
3741 	return true;
3742 
3743 check_page_flip:
3744 	intel_check_page_flip(dev, pipe);
3745 	return false;
3746 }
3747 
3748 static irqreturn_t i915_irq_handler(void *arg)
3749 {
3750 	struct drm_device *dev = arg;
3751 	struct drm_i915_private *dev_priv = dev->dev_private;
3752 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3753 	u32 flip_mask =
3754 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3755 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3756 	int pipe;
3757 
3758 	if (!intel_irqs_enabled(dev_priv))
3759 		return IRQ_NONE;
3760 
3761 	iir = I915_READ(IIR);
3762 	do {
3763 		bool irq_received = (iir & ~flip_mask) != 0;
3764 		bool blc_event = false;
3765 
3766 		/* Can't rely on pipestat interrupt bit in iir as it might
3767 		 * have been cleared after the pipestat interrupt was received.
3768 		 * It doesn't set the bit in iir again, but it still produces
3769 		 * interrupts (for non-MSI).
3770 		 */
3771 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3772 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3773 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3774 
3775 		for_each_pipe(dev_priv, pipe) {
3776 			int reg = PIPESTAT(pipe);
3777 			pipe_stats[pipe] = I915_READ(reg);
3778 
3779 			/* Clear the PIPE*STAT regs before the IIR */
3780 			if (pipe_stats[pipe] & 0x8000ffff) {
3781 				I915_WRITE(reg, pipe_stats[pipe]);
3782 				irq_received = true;
3783 			}
3784 		}
3785 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3786 
3787 		if (!irq_received)
3788 			break;
3789 
3790 		/* Consume port.  Then clear IIR or we'll miss events */
3791 		if (I915_HAS_HOTPLUG(dev) &&
3792 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3793 			i9xx_hpd_irq_handler(dev);
3794 
3795 		I915_WRITE(IIR, iir & ~flip_mask);
3796 		new_iir = I915_READ(IIR); /* Flush posted writes */
3797 
3798 		if (iir & I915_USER_INTERRUPT)
3799 			notify_ring(&dev_priv->ring[RCS]);
3800 
3801 		for_each_pipe(dev_priv, pipe) {
3802 			int plane = pipe;
3803 			if (HAS_FBC(dev))
3804 				plane = !plane;
3805 
3806 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3807 			    i915_handle_vblank(dev, plane, pipe, iir))
3808 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3809 
3810 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3811 				blc_event = true;
3812 
3813 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3814 				i9xx_pipe_crc_irq_handler(dev, pipe);
3815 
3816 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3817 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3818 								    pipe);
3819 		}
3820 
3821 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3822 			intel_opregion_asle_intr(dev);
3823 
3824 		/* With MSI, interrupts are only generated when iir
3825 		 * transitions from zero to nonzero.  If another bit got
3826 		 * set while we were handling the existing iir bits, then
3827 		 * we would never get another interrupt.
3828 		 *
3829 		 * This is fine on non-MSI as well, as if we hit this path
3830 		 * we avoid exiting the interrupt handler only to generate
3831 		 * another one.
3832 		 *
3833 		 * Note that for MSI this could cause a stray interrupt report
3834 		 * if an interrupt landed in the time between writing IIR and
3835 		 * the posting read.  This should be rare enough to never
3836 		 * trigger the 99% of 100,000 interrupts test for disabling
3837 		 * stray interrupts.
3838 		 */
3839 		iir = new_iir;
3840 	} while (iir & ~flip_mask);
3841 
3842 }
3843 
3844 static void i915_irq_uninstall(struct drm_device * dev)
3845 {
3846 	struct drm_i915_private *dev_priv = dev->dev_private;
3847 	int pipe;
3848 
3849 	if (I915_HAS_HOTPLUG(dev)) {
3850 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3851 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3852 	}
3853 
3854 	I915_WRITE16(HWSTAM, 0xffff);
3855 	for_each_pipe(dev_priv, pipe) {
3856 		/* Clear enable bits; then clear status bits */
3857 		I915_WRITE(PIPESTAT(pipe), 0);
3858 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3859 	}
3860 	I915_WRITE(IMR, 0xffffffff);
3861 	I915_WRITE(IER, 0x0);
3862 
3863 	I915_WRITE(IIR, I915_READ(IIR));
3864 }
3865 
3866 static void i965_irq_preinstall(struct drm_device * dev)
3867 {
3868 	struct drm_i915_private *dev_priv = dev->dev_private;
3869 	int pipe;
3870 
3871 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3872 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3873 
3874 	I915_WRITE(HWSTAM, 0xeffe);
3875 	for_each_pipe(dev_priv, pipe)
3876 		I915_WRITE(PIPESTAT(pipe), 0);
3877 	I915_WRITE(IMR, 0xffffffff);
3878 	I915_WRITE(IER, 0x0);
3879 	POSTING_READ(IER);
3880 }
3881 
3882 static int i965_irq_postinstall(struct drm_device *dev)
3883 {
3884 	struct drm_i915_private *dev_priv = dev->dev_private;
3885 	u32 enable_mask;
3886 	u32 error_mask;
3887 
3888 	/* Unmask the interrupts that we always want on. */
3889 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3890 			       I915_DISPLAY_PORT_INTERRUPT |
3891 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3892 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3893 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3894 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3895 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3896 
3897 	enable_mask = ~dev_priv->irq_mask;
3898 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3899 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3900 	enable_mask |= I915_USER_INTERRUPT;
3901 
3902 	if (IS_G4X(dev))
3903 		enable_mask |= I915_BSD_USER_INTERRUPT;
3904 
3905 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3906 	 * just to make the assert_spin_locked check happy. */
3907 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3908 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3909 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3911 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3912 
3913 	/*
3914 	 * Enable some error detection, note the instruction error mask
3915 	 * bit is reserved, so we leave it masked.
3916 	 */
3917 	if (IS_G4X(dev)) {
3918 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3919 			       GM45_ERROR_MEM_PRIV |
3920 			       GM45_ERROR_CP_PRIV |
3921 			       I915_ERROR_MEMORY_REFRESH);
3922 	} else {
3923 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3924 			       I915_ERROR_MEMORY_REFRESH);
3925 	}
3926 	I915_WRITE(EMR, error_mask);
3927 
3928 	I915_WRITE(IMR, dev_priv->irq_mask);
3929 	I915_WRITE(IER, enable_mask);
3930 	POSTING_READ(IER);
3931 
3932 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3933 	POSTING_READ(PORT_HOTPLUG_EN);
3934 
3935 	i915_enable_asle_pipestat(dev);
3936 
3937 	return 0;
3938 }
3939 
3940 static void i915_hpd_irq_setup(struct drm_device *dev)
3941 {
3942 	struct drm_i915_private *dev_priv = dev->dev_private;
3943 	struct intel_encoder *intel_encoder;
3944 	u32 hotplug_en;
3945 
3946 	assert_spin_locked(&dev_priv->irq_lock);
3947 
3948 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3949 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3950 	/* Note HDMI and DP share hotplug bits */
3951 	/* enable bits are the same for all generations */
3952 	for_each_intel_encoder(dev, intel_encoder)
3953 		if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3954 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3955 	/* Programming the CRT detection parameters tends
3956 	   to generate a spurious hotplug event about three
3957 	   seconds later.  So just do it once.
3958 	*/
3959 	if (IS_G4X(dev))
3960 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3961 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3962 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3963 
3964 	/* Ignore TV since it's buggy */
3965 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3966 }
3967 
3968 static irqreturn_t i965_irq_handler(void *arg)
3969 {
3970 	struct drm_device *dev = arg;
3971 	struct drm_i915_private *dev_priv = dev->dev_private;
3972 	u32 iir, new_iir;
3973 	u32 pipe_stats[I915_MAX_PIPES];
3974 	int pipe;
3975 	u32 flip_mask =
3976 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3977 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3978 
3979 	if (!intel_irqs_enabled(dev_priv))
3980 		return IRQ_NONE;
3981 
3982 	iir = I915_READ(IIR);
3983 
3984 	for (;;) {
3985 		bool irq_received = (iir & ~flip_mask) != 0;
3986 		bool blc_event = false;
3987 
3988 		/* Can't rely on pipestat interrupt bit in iir as it might
3989 		 * have been cleared after the pipestat interrupt was received.
3990 		 * It doesn't set the bit in iir again, but it still produces
3991 		 * interrupts (for non-MSI).
3992 		 */
3993 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3994 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3995 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3996 
3997 		for_each_pipe(dev_priv, pipe) {
3998 			int reg = PIPESTAT(pipe);
3999 			pipe_stats[pipe] = I915_READ(reg);
4000 
4001 			/*
4002 			 * Clear the PIPE*STAT regs before the IIR
4003 			 */
4004 			if (pipe_stats[pipe] & 0x8000ffff) {
4005 				I915_WRITE(reg, pipe_stats[pipe]);
4006 				irq_received = true;
4007 			}
4008 		}
4009 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4010 
4011 		if (!irq_received)
4012 			break;
4013 
4014 		/* Consume port.  Then clear IIR or we'll miss events */
4015 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4016 			i9xx_hpd_irq_handler(dev);
4017 
4018 		I915_WRITE(IIR, iir & ~flip_mask);
4019 		new_iir = I915_READ(IIR); /* Flush posted writes */
4020 
4021 		if (iir & I915_USER_INTERRUPT)
4022 			notify_ring(&dev_priv->ring[RCS]);
4023 		if (iir & I915_BSD_USER_INTERRUPT)
4024 			notify_ring(&dev_priv->ring[VCS]);
4025 
4026 		for_each_pipe(dev_priv, pipe) {
4027 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4028 			    i915_handle_vblank(dev, pipe, pipe, iir))
4029 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4030 
4031 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4032 				blc_event = true;
4033 
4034 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4035 				i9xx_pipe_crc_irq_handler(dev, pipe);
4036 
4037 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4038 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4039 		}
4040 
4041 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4042 			intel_opregion_asle_intr(dev);
4043 
4044 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4045 			gmbus_irq_handler(dev);
4046 
4047 		/* With MSI, interrupts are only generated when iir
4048 		 * transitions from zero to nonzero.  If another bit got
4049 		 * set while we were handling the existing iir bits, then
4050 		 * we would never get another interrupt.
4051 		 *
4052 		 * This is fine on non-MSI as well, as if we hit this path
4053 		 * we avoid exiting the interrupt handler only to generate
4054 		 * another one.
4055 		 *
4056 		 * Note that for MSI this could cause a stray interrupt report
4057 		 * if an interrupt landed in the time between writing IIR and
4058 		 * the posting read.  This should be rare enough to never
4059 		 * trigger the 99% of 100,000 interrupts test for disabling
4060 		 * stray interrupts.
4061 		 */
4062 		iir = new_iir;
4063 	}
4064 
4065 }
4066 
4067 static void i965_irq_uninstall(struct drm_device * dev)
4068 {
4069 	struct drm_i915_private *dev_priv = dev->dev_private;
4070 	int pipe;
4071 
4072 	if (!dev_priv)
4073 		return;
4074 
4075 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4076 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4077 
4078 	I915_WRITE(HWSTAM, 0xffffffff);
4079 	for_each_pipe(dev_priv, pipe)
4080 		I915_WRITE(PIPESTAT(pipe), 0);
4081 	I915_WRITE(IMR, 0xffffffff);
4082 	I915_WRITE(IER, 0x0);
4083 
4084 	for_each_pipe(dev_priv, pipe)
4085 		I915_WRITE(PIPESTAT(pipe),
4086 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4087 	I915_WRITE(IIR, I915_READ(IIR));
4088 }
4089 
4090 /**
4091  * intel_irq_init - initializes irq support
4092  * @dev_priv: i915 device instance
4093  *
4094  * This function initializes all the irq support including work items, timers
4095  * and all the vtables. It does not setup the interrupt itself though.
4096  */
4097 void intel_irq_init(struct drm_i915_private *dev_priv)
4098 {
4099 	struct drm_device *dev = dev_priv->dev;
4100 
4101 	intel_hpd_init_work(dev_priv);
4102 
4103 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4104 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4105 
4106 	/* Let's track the enabled rps events */
4107 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4108 		/* WaGsvRC0ResidencyMethod:vlv */
4109 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4110 	else
4111 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4112 
4113 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4114 			  i915_hangcheck_elapsed);
4115 
4116 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4117 
4118 	if (IS_GEN2(dev_priv)) {
4119 		dev->max_vblank_count = 0;
4120 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4121 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4122 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4123 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4124 	} else {
4125 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4126 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4127 	}
4128 
4129 	/*
4130 	 * Opt out of the vblank disable timer on everything except gen2.
4131 	 * Gen2 doesn't have a hardware frame counter and so depends on
4132 	 * vblank interrupts to produce sane vblank seuquence numbers.
4133 	 */
4134 	if (!IS_GEN2(dev_priv))
4135 		dev->vblank_disable_immediate = true;
4136 
4137 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4138 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4139 
4140 	if (IS_CHERRYVIEW(dev_priv)) {
4141 		dev->driver->irq_handler = cherryview_irq_handler;
4142 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4143 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4144 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4145 		dev->driver->enable_vblank = valleyview_enable_vblank;
4146 		dev->driver->disable_vblank = valleyview_disable_vblank;
4147 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4148 	} else if (IS_VALLEYVIEW(dev_priv)) {
4149 		dev->driver->irq_handler = valleyview_irq_handler;
4150 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4151 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4152 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4153 		dev->driver->enable_vblank = valleyview_enable_vblank;
4154 		dev->driver->disable_vblank = valleyview_disable_vblank;
4155 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4156 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4157 		dev->driver->irq_handler = gen8_irq_handler;
4158 		dev->driver->irq_preinstall = gen8_irq_reset;
4159 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4160 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4161 		dev->driver->enable_vblank = gen8_enable_vblank;
4162 		dev->driver->disable_vblank = gen8_disable_vblank;
4163 		if (HAS_PCH_SPLIT(dev))
4164 			dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4165 		else
4166 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4167 	} else if (HAS_PCH_SPLIT(dev)) {
4168 		dev->driver->irq_handler = ironlake_irq_handler;
4169 		dev->driver->irq_preinstall = ironlake_irq_reset;
4170 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4171 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4172 		dev->driver->enable_vblank = ironlake_enable_vblank;
4173 		dev->driver->disable_vblank = ironlake_disable_vblank;
4174 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4175 	} else {
4176 		if (INTEL_INFO(dev_priv)->gen == 2) {
4177 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4178 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4179 			dev->driver->irq_handler = i8xx_irq_handler;
4180 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4181 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4182 			dev->driver->irq_preinstall = i915_irq_preinstall;
4183 			dev->driver->irq_postinstall = i915_irq_postinstall;
4184 			dev->driver->irq_uninstall = i915_irq_uninstall;
4185 			dev->driver->irq_handler = i915_irq_handler;
4186 		} else {
4187 			dev->driver->irq_preinstall = i965_irq_preinstall;
4188 			dev->driver->irq_postinstall = i965_irq_postinstall;
4189 			dev->driver->irq_uninstall = i965_irq_uninstall;
4190 			dev->driver->irq_handler = i965_irq_handler;
4191 		}
4192 		if (I915_HAS_HOTPLUG(dev_priv))
4193 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4194 		dev->driver->enable_vblank = i915_enable_vblank;
4195 		dev->driver->disable_vblank = i915_disable_vblank;
4196 	}
4197 }
4198 
4199 /**
4200  * intel_irq_install - enables the hardware interrupt
4201  * @dev_priv: i915 device instance
4202  *
4203  * This function enables the hardware interrupt handling, but leaves the hotplug
4204  * handling still disabled. It is called after intel_irq_init().
4205  *
4206  * In the driver load and resume code we need working interrupts in a few places
4207  * but don't want to deal with the hassle of concurrent probe and hotplug
4208  * workers. Hence the split into this two-stage approach.
4209  */
4210 int intel_irq_install(struct drm_i915_private *dev_priv)
4211 {
4212 	/*
4213 	 * We enable some interrupt sources in our postinstall hooks, so mark
4214 	 * interrupts as enabled _before_ actually enabling them to avoid
4215 	 * special cases in our ordering checks.
4216 	 */
4217 	dev_priv->pm.irqs_enabled = true;
4218 
4219 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4220 }
4221 
4222 /**
4223  * intel_irq_uninstall - finilizes all irq handling
4224  * @dev_priv: i915 device instance
4225  *
4226  * This stops interrupt and hotplug handling and unregisters and frees all
4227  * resources acquired in the init functions.
4228  */
4229 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4230 {
4231 	drm_irq_uninstall(dev_priv->dev);
4232 	intel_hpd_cancel_work(dev_priv);
4233 	dev_priv->pm.irqs_enabled = false;
4234 }
4235 
4236 /**
4237  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4238  * @dev_priv: i915 device instance
4239  *
4240  * This function is used to disable interrupts at runtime, both in the runtime
4241  * pm and the system suspend/resume code.
4242  */
4243 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4244 {
4245 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4246 	dev_priv->pm.irqs_enabled = false;
4247 #if 0
4248 	synchronize_irq(dev_priv->dev->irq);
4249 #endif
4250 }
4251 
4252 /**
4253  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4254  * @dev_priv: i915 device instance
4255  *
4256  * This function is used to enable interrupts at runtime, both in the runtime
4257  * pm and the system suspend/resume code.
4258  */
4259 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4260 {
4261 	dev_priv->pm.irqs_enabled = true;
4262 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4263 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4264 }
4265