xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision caa7a3ee)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: interrupt handling
37  *
38  * These functions provide the basic support for enabling and disabling the
39  * interrupt handling support. There's a lot more functionality in i915_irq.c
40  * and related files, but that will be described in separate chapters.
41  */
42 
43 static const u32 hpd_ibx[HPD_NUM_PINS] = {
44 	[HPD_CRT] = SDE_CRT_HOTPLUG,
45 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
46 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
47 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
48 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
49 };
50 
51 static const u32 hpd_cpt[HPD_NUM_PINS] = {
52 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
53 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
54 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
55 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
56 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
57 };
58 
59 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
60 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
61 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
62 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
63 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
64 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
65 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
66 };
67 
68 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
69 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
70 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
71 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
72 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
73 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
74 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
75 };
76 
77 static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
78 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
79 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
80 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
81 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
82 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
83 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
84 };
85 
86 /* IIR can theoretically queue up two events. Be paranoid. */
87 #define GEN8_IRQ_RESET_NDX(type, which) do { \
88 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
89 	POSTING_READ(GEN8_##type##_IMR(which)); \
90 	I915_WRITE(GEN8_##type##_IER(which), 0); \
91 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
92 	POSTING_READ(GEN8_##type##_IIR(which)); \
93 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
94 	POSTING_READ(GEN8_##type##_IIR(which)); \
95 } while (0)
96 
97 #define GEN5_IRQ_RESET(type) do { \
98 	I915_WRITE(type##IMR, 0xffffffff); \
99 	POSTING_READ(type##IMR); \
100 	I915_WRITE(type##IER, 0); \
101 	I915_WRITE(type##IIR, 0xffffffff); \
102 	POSTING_READ(type##IIR); \
103 	I915_WRITE(type##IIR, 0xffffffff); \
104 	POSTING_READ(type##IIR); \
105 } while (0)
106 
107 /*
108  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
109  */
110 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
111 	u32 val = I915_READ(reg); \
112 	if (val) { \
113 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
114 		     (reg), val); \
115 		I915_WRITE((reg), 0xffffffff); \
116 		POSTING_READ(reg); \
117 		I915_WRITE((reg), 0xffffffff); \
118 		POSTING_READ(reg); \
119 	} \
120 } while (0)
121 
122 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
123 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
124 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
125 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
126 	POSTING_READ(GEN8_##type##_IMR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
130 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
131 	I915_WRITE(type##IER, (ier_val)); \
132 	I915_WRITE(type##IMR, (imr_val)); \
133 	POSTING_READ(type##IMR); \
134 } while (0)
135 
136 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
137 
138 /* For display hotplug interrupt */
139 void
140 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
141 {
142 	assert_spin_locked(&dev_priv->irq_lock);
143 
144 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
145 		return;
146 
147 	if ((dev_priv->irq_mask & mask) != 0) {
148 		dev_priv->irq_mask &= ~mask;
149 		I915_WRITE(DEIMR, dev_priv->irq_mask);
150 		POSTING_READ(DEIMR);
151 	}
152 }
153 
154 void
155 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
156 {
157 	assert_spin_locked(&dev_priv->irq_lock);
158 
159 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
160 		return;
161 
162 	if ((dev_priv->irq_mask & mask) != mask) {
163 		dev_priv->irq_mask |= mask;
164 		I915_WRITE(DEIMR, dev_priv->irq_mask);
165 		POSTING_READ(DEIMR);
166 	}
167 }
168 
169 /**
170  * ilk_update_gt_irq - update GTIMR
171  * @dev_priv: driver private
172  * @interrupt_mask: mask of interrupt bits to update
173  * @enabled_irq_mask: mask of interrupt bits to enable
174  */
175 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
176 			      uint32_t interrupt_mask,
177 			      uint32_t enabled_irq_mask)
178 {
179 	assert_spin_locked(&dev_priv->irq_lock);
180 
181 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
182 
183 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
184 		return;
185 
186 	dev_priv->gt_irq_mask &= ~interrupt_mask;
187 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
188 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
189 	POSTING_READ(GTIMR);
190 }
191 
192 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
193 {
194 	ilk_update_gt_irq(dev_priv, mask, mask);
195 }
196 
197 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199 	ilk_update_gt_irq(dev_priv, mask, 0);
200 }
201 
202 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
203 {
204 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
205 }
206 
207 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
208 {
209 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
210 }
211 
212 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
213 {
214 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
215 }
216 
217 /**
218   * snb_update_pm_irq - update GEN6_PMIMR
219   * @dev_priv: driver private
220   * @interrupt_mask: mask of interrupt bits to update
221   * @enabled_irq_mask: mask of interrupt bits to enable
222   */
223 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
224 			      uint32_t interrupt_mask,
225 			      uint32_t enabled_irq_mask)
226 {
227 	uint32_t new_val;
228 
229 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
230 
231 	assert_spin_locked(&dev_priv->irq_lock);
232 
233 	new_val = dev_priv->pm_irq_mask;
234 	new_val &= ~interrupt_mask;
235 	new_val |= (~enabled_irq_mask & interrupt_mask);
236 
237 	if (new_val != dev_priv->pm_irq_mask) {
238 		dev_priv->pm_irq_mask = new_val;
239 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
240 		POSTING_READ(gen6_pm_imr(dev_priv));
241 	}
242 }
243 
244 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
245 {
246 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
247 		return;
248 
249 	snb_update_pm_irq(dev_priv, mask, mask);
250 }
251 
252 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
253 				  uint32_t mask)
254 {
255 	snb_update_pm_irq(dev_priv, mask, 0);
256 }
257 
258 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
259 {
260 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
261 		return;
262 
263 	__gen6_disable_pm_irq(dev_priv, mask);
264 }
265 
266 void gen6_reset_rps_interrupts(struct drm_device *dev)
267 {
268 	struct drm_i915_private *dev_priv = dev->dev_private;
269 	uint32_t reg = gen6_pm_iir(dev_priv);
270 
271 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
272 	I915_WRITE(reg, dev_priv->pm_rps_events);
273 	I915_WRITE(reg, dev_priv->pm_rps_events);
274 	POSTING_READ(reg);
275 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
276 }
277 
278 void gen6_enable_rps_interrupts(struct drm_device *dev)
279 {
280 	struct drm_i915_private *dev_priv = dev->dev_private;
281 
282 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
283 
284 	WARN_ON(dev_priv->rps.pm_iir);
285 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
286 	dev_priv->rps.interrupts_enabled = true;
287 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
288 				dev_priv->pm_rps_events);
289 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
290 
291 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
292 }
293 
294 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
295 {
296 	/*
297 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
298 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
299 	 *
300 	 * TODO: verify if this can be reproduced on VLV,CHV.
301 	 */
302 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
303 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
304 
305 	if (INTEL_INFO(dev_priv)->gen >= 8)
306 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
307 
308 	return mask;
309 }
310 
311 void gen6_disable_rps_interrupts(struct drm_device *dev)
312 {
313 	struct drm_i915_private *dev_priv = dev->dev_private;
314 
315 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
316 	dev_priv->rps.interrupts_enabled = false;
317 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
318 
319 	cancel_work_sync(&dev_priv->rps.work);
320 
321 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
322 
323 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
324 
325 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
326 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
327 				~dev_priv->pm_rps_events);
328 	I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
329 	I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
330 
331 	dev_priv->rps.pm_iir = 0;
332 
333 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
334 }
335 
336 /**
337  * ibx_display_interrupt_update - update SDEIMR
338  * @dev_priv: driver private
339  * @interrupt_mask: mask of interrupt bits to update
340  * @enabled_irq_mask: mask of interrupt bits to enable
341  */
342 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
343 				  uint32_t interrupt_mask,
344 				  uint32_t enabled_irq_mask)
345 {
346 	uint32_t sdeimr = I915_READ(SDEIMR);
347 	sdeimr &= ~interrupt_mask;
348 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
349 
350 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
351 
352 	assert_spin_locked(&dev_priv->irq_lock);
353 
354 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
355 		return;
356 
357 	I915_WRITE(SDEIMR, sdeimr);
358 	POSTING_READ(SDEIMR);
359 }
360 
361 static void
362 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
363 		       u32 enable_mask, u32 status_mask)
364 {
365 	u32 reg = PIPESTAT(pipe);
366 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
367 
368 	assert_spin_locked(&dev_priv->irq_lock);
369 	WARN_ON(!intel_irqs_enabled(dev_priv));
370 
371 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
372 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
373 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
374 		      pipe_name(pipe), enable_mask, status_mask))
375 		return;
376 
377 	if ((pipestat & enable_mask) == enable_mask)
378 		return;
379 
380 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
381 
382 	/* Enable the interrupt, clear any pending status */
383 	pipestat |= enable_mask | status_mask;
384 	I915_WRITE(reg, pipestat);
385 	POSTING_READ(reg);
386 }
387 
388 static void
389 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
390 		        u32 enable_mask, u32 status_mask)
391 {
392 	u32 reg = PIPESTAT(pipe);
393 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
394 
395 	assert_spin_locked(&dev_priv->irq_lock);
396 	WARN_ON(!intel_irqs_enabled(dev_priv));
397 
398 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
399 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
400 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
401 		      pipe_name(pipe), enable_mask, status_mask))
402 		return;
403 
404 	if ((pipestat & enable_mask) == 0)
405 		return;
406 
407 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
408 
409 	pipestat &= ~enable_mask;
410 	I915_WRITE(reg, pipestat);
411 	POSTING_READ(reg);
412 }
413 
414 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
415 {
416 	u32 enable_mask = status_mask << 16;
417 
418 	/*
419 	 * On pipe A we don't support the PSR interrupt yet,
420 	 * on pipe B and C the same bit MBZ.
421 	 */
422 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
423 		return 0;
424 	/*
425 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
426 	 * A the same bit is for perf counters which we don't use either.
427 	 */
428 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
429 		return 0;
430 
431 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
432 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
433 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
434 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
435 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
436 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
437 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
438 
439 	return enable_mask;
440 }
441 
442 void
443 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
444 		     u32 status_mask)
445 {
446 	u32 enable_mask;
447 
448 	if (IS_VALLEYVIEW(dev_priv->dev))
449 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
450 							   status_mask);
451 	else
452 		enable_mask = status_mask << 16;
453 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
454 }
455 
456 void
457 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
458 		      u32 status_mask)
459 {
460 	u32 enable_mask;
461 
462 	if (IS_VALLEYVIEW(dev_priv->dev))
463 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
464 							   status_mask);
465 	else
466 		enable_mask = status_mask << 16;
467 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
468 }
469 
470 /**
471  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
472  */
473 static void i915_enable_asle_pipestat(struct drm_device *dev)
474 {
475 	struct drm_i915_private *dev_priv = dev->dev_private;
476 
477 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
478 		return;
479 
480 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
481 
482 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
483 	if (INTEL_INFO(dev)->gen >= 4)
484 		i915_enable_pipestat(dev_priv, PIPE_A,
485 				     PIPE_LEGACY_BLC_EVENT_STATUS);
486 
487 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
488 }
489 
490 /**
491  * i915_pipe_enabled - check if a pipe is enabled
492  * @dev: DRM device
493  * @pipe: pipe to check
494  *
495  * Reading certain registers when the pipe is disabled can hang the chip.
496  * Use this routine to make sure the PLL is running and the pipe is active
497  * before reading such registers if unsure.
498  */
499 static int
500 i915_pipe_enabled(struct drm_device *dev, int pipe)
501 {
502 	struct drm_i915_private *dev_priv = dev->dev_private;
503 
504 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
505 		/* Locking is horribly broken here, but whatever. */
506 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
507 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
508 
509 		return intel_crtc->active;
510 	} else {
511 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
512 	}
513 }
514 
515 /*
516  * This timing diagram depicts the video signal in and
517  * around the vertical blanking period.
518  *
519  * Assumptions about the fictitious mode used in this example:
520  *  vblank_start >= 3
521  *  vsync_start = vblank_start + 1
522  *  vsync_end = vblank_start + 2
523  *  vtotal = vblank_start + 3
524  *
525  *           start of vblank:
526  *           latch double buffered registers
527  *           increment frame counter (ctg+)
528  *           generate start of vblank interrupt (gen4+)
529  *           |
530  *           |          frame start:
531  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
532  *           |          may be shifted forward 1-3 extra lines via PIPECONF
533  *           |          |
534  *           |          |  start of vsync:
535  *           |          |  generate vsync interrupt
536  *           |          |  |
537  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
538  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
539  * ----va---> <-----------------vb--------------------> <--------va-------------
540  *       |          |       <----vs----->                     |
541  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
542  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
543  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
544  *       |          |                                         |
545  *       last visible pixel                                   first visible pixel
546  *                  |                                         increment frame counter (gen3/4)
547  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
548  *
549  * x  = horizontal active
550  * _  = horizontal blanking
551  * hs = horizontal sync
552  * va = vertical active
553  * vb = vertical blanking
554  * vs = vertical sync
555  * vbs = vblank_start (number)
556  *
557  * Summary:
558  * - most events happen at the start of horizontal sync
559  * - frame start happens at the start of horizontal blank, 1-4 lines
560  *   (depending on PIPECONF settings) after the start of vblank
561  * - gen3/4 pixel and frame counter are synchronized with the start
562  *   of horizontal active on the first line of vertical active
563  */
564 
565 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
566 {
567 	/* Gen2 doesn't have a hardware frame counter */
568 	return 0;
569 }
570 
571 /* Called from drm generic code, passed a 'crtc', which
572  * we use as a pipe index
573  */
574 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
575 {
576 	struct drm_i915_private *dev_priv = dev->dev_private;
577 	unsigned long high_frame;
578 	unsigned long low_frame;
579 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
580 
581 	if (!i915_pipe_enabled(dev, pipe)) {
582 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
583 				"pipe %c\n", pipe_name(pipe));
584 		return 0;
585 	}
586 
587 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
588 		struct intel_crtc *intel_crtc =
589 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
590 		const struct drm_display_mode *mode =
591 			&intel_crtc->config->base.adjusted_mode;
592 
593 		htotal = mode->crtc_htotal;
594 		hsync_start = mode->crtc_hsync_start;
595 		vbl_start = mode->crtc_vblank_start;
596 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
597 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
598 	} else {
599 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
600 
601 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
602 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
603 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
604 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
605 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
606 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
607 	}
608 
609 	/* Convert to pixel count */
610 	vbl_start *= htotal;
611 
612 	/* Start of vblank event occurs at start of hsync */
613 	vbl_start -= htotal - hsync_start;
614 
615 	high_frame = PIPEFRAME(pipe);
616 	low_frame = PIPEFRAMEPIXEL(pipe);
617 
618 	/*
619 	 * High & low register fields aren't synchronized, so make sure
620 	 * we get a low value that's stable across two reads of the high
621 	 * register.
622 	 */
623 	do {
624 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
625 		low   = I915_READ(low_frame);
626 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
627 	} while (high1 != high2);
628 
629 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
630 	pixel = low & PIPE_PIXEL_MASK;
631 	low >>= PIPE_FRAME_LOW_SHIFT;
632 
633 	/*
634 	 * The frame counter increments at beginning of active.
635 	 * Cook up a vblank counter by also checking the pixel
636 	 * counter against vblank start.
637 	 */
638 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
639 }
640 
641 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
642 {
643 	struct drm_i915_private *dev_priv = dev->dev_private;
644 	int reg = PIPE_FRMCOUNT_GM45(pipe);
645 
646 	if (!i915_pipe_enabled(dev, pipe)) {
647 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
648 				 "pipe %c\n", pipe_name(pipe));
649 		return 0;
650 	}
651 
652 	return I915_READ(reg);
653 }
654 
655 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
656 #define __raw_i915_read32(dev_priv__, reg__) DRM_READ32(dev_priv__->mmio_map, reg__)
657 
658 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
659 {
660 	struct drm_device *dev = crtc->base.dev;
661 	struct drm_i915_private *dev_priv = dev->dev_private;
662 	const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
663 	enum i915_pipe pipe = crtc->pipe;
664 	int position, vtotal;
665 
666 	vtotal = mode->crtc_vtotal;
667 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
668 		vtotal /= 2;
669 
670 	if (IS_GEN2(dev))
671 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
672 	else
673 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
674 
675 	/*
676 	 * See update_scanline_offset() for the details on the
677 	 * scanline_offset adjustment.
678 	 */
679 	return (position + crtc->scanline_offset) % vtotal;
680 }
681 
682 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
683 				    unsigned int flags, int *vpos, int *hpos,
684 				    ktime_t *stime, ktime_t *etime)
685 {
686 	struct drm_i915_private *dev_priv = dev->dev_private;
687 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
688 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
689 	const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
690 	int position;
691 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
692 	bool in_vbl = true;
693 	int ret = 0;
694 
695 	if (!intel_crtc->active) {
696 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
697 				 "pipe %c\n", pipe_name(pipe));
698 		return 0;
699 	}
700 
701 	htotal = mode->crtc_htotal;
702 	hsync_start = mode->crtc_hsync_start;
703 	vtotal = mode->crtc_vtotal;
704 	vbl_start = mode->crtc_vblank_start;
705 	vbl_end = mode->crtc_vblank_end;
706 
707 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
708 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
709 		vbl_end /= 2;
710 		vtotal /= 2;
711 	}
712 
713 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
714 
715 	/*
716 	 * Lock uncore.lock, as we will do multiple timing critical raw
717 	 * register reads, potentially with preemption disabled, so the
718 	 * following code must not block on uncore.lock.
719 	 */
720 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
721 
722 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
723 
724 	/* Get optional system timestamp before query. */
725 	if (stime)
726 		*stime = ktime_get();
727 
728 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
729 		/* No obvious pixelcount register. Only query vertical
730 		 * scanout position from Display scan line register.
731 		 */
732 		position = __intel_get_crtc_scanline(intel_crtc);
733 	} else {
734 		/* Have access to pixelcount since start of frame.
735 		 * We can split this into vertical and horizontal
736 		 * scanout position.
737 		 */
738 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
739 
740 		/* convert to pixel counts */
741 		vbl_start *= htotal;
742 		vbl_end *= htotal;
743 		vtotal *= htotal;
744 
745 		/*
746 		 * In interlaced modes, the pixel counter counts all pixels,
747 		 * so one field will have htotal more pixels. In order to avoid
748 		 * the reported position from jumping backwards when the pixel
749 		 * counter is beyond the length of the shorter field, just
750 		 * clamp the position the length of the shorter field. This
751 		 * matches how the scanline counter based position works since
752 		 * the scanline counter doesn't count the two half lines.
753 		 */
754 		if (position >= vtotal)
755 			position = vtotal - 1;
756 
757 		/*
758 		 * Start of vblank interrupt is triggered at start of hsync,
759 		 * just prior to the first active line of vblank. However we
760 		 * consider lines to start at the leading edge of horizontal
761 		 * active. So, should we get here before we've crossed into
762 		 * the horizontal active of the first line in vblank, we would
763 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
764 		 * always add htotal-hsync_start to the current pixel position.
765 		 */
766 		position = (position + htotal - hsync_start) % vtotal;
767 	}
768 
769 	/* Get optional system timestamp after query. */
770 	if (etime)
771 		*etime = ktime_get();
772 
773 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
774 
775 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
776 
777 	in_vbl = position >= vbl_start && position < vbl_end;
778 
779 	/*
780 	 * While in vblank, position will be negative
781 	 * counting up towards 0 at vbl_end. And outside
782 	 * vblank, position will be positive counting
783 	 * up since vbl_end.
784 	 */
785 	if (position >= vbl_start)
786 		position -= vbl_end;
787 	else
788 		position += vtotal - vbl_end;
789 
790 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
791 		*vpos = position;
792 		*hpos = 0;
793 	} else {
794 		*vpos = position / htotal;
795 		*hpos = position - (*vpos * htotal);
796 	}
797 
798 	/* In vblank? */
799 	if (in_vbl)
800 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
801 
802 	return ret;
803 }
804 
805 int intel_get_crtc_scanline(struct intel_crtc *crtc)
806 {
807 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
808 	int position;
809 
810 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
811 	position = __intel_get_crtc_scanline(crtc);
812 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
813 
814 	return position;
815 }
816 
817 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
818 			      int *max_error,
819 			      struct timeval *vblank_time,
820 			      unsigned flags)
821 {
822 	struct drm_crtc *crtc;
823 
824 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
825 		DRM_ERROR("Invalid crtc %d\n", pipe);
826 		return -EINVAL;
827 	}
828 
829 	/* Get drm_crtc to timestamp: */
830 	crtc = intel_get_crtc_for_pipe(dev, pipe);
831 	if (crtc == NULL) {
832 		DRM_ERROR("Invalid crtc %d\n", pipe);
833 		return -EINVAL;
834 	}
835 
836 	if (!crtc->enabled) {
837 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
838 		return -EBUSY;
839 	}
840 
841 	/* Helper routine in DRM core does all the work: */
842 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
843 						     vblank_time, flags,
844 						     crtc,
845 						     &to_intel_crtc(crtc)->config->base.adjusted_mode);
846 }
847 
848 static bool intel_hpd_irq_event(struct drm_device *dev,
849 				struct drm_connector *connector)
850 {
851 	enum drm_connector_status old_status;
852 
853 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
854 	old_status = connector->status;
855 
856 	connector->status = connector->funcs->detect(connector, false);
857 	if (old_status == connector->status)
858 		return false;
859 
860 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
861 		      connector->base.id,
862 		      connector->name,
863 		      drm_get_connector_status_name(old_status),
864 		      drm_get_connector_status_name(connector->status));
865 
866 	return true;
867 }
868 
869 static void i915_digport_work_func(struct work_struct *work)
870 {
871 	struct drm_i915_private *dev_priv =
872 		container_of(work, struct drm_i915_private, dig_port_work);
873 	u32 long_port_mask, short_port_mask;
874 	struct intel_digital_port *intel_dig_port;
875 	int i, ret;
876 	u32 old_bits = 0;
877 
878 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
879 	long_port_mask = dev_priv->long_hpd_port_mask;
880 	dev_priv->long_hpd_port_mask = 0;
881 	short_port_mask = dev_priv->short_hpd_port_mask;
882 	dev_priv->short_hpd_port_mask = 0;
883 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
884 
885 	for (i = 0; i < I915_MAX_PORTS; i++) {
886 		bool valid = false;
887 		bool long_hpd = false;
888 		intel_dig_port = dev_priv->hpd_irq_port[i];
889 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
890 			continue;
891 
892 		if (long_port_mask & (1 << i))  {
893 			valid = true;
894 			long_hpd = true;
895 		} else if (short_port_mask & (1 << i))
896 			valid = true;
897 
898 		if (valid) {
899 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
900 			if (ret == true) {
901 				/* if we get true fallback to old school hpd */
902 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
903 			}
904 		}
905 	}
906 
907 	if (old_bits) {
908 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
909 		dev_priv->hpd_event_bits |= old_bits;
910 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
911 		schedule_work(&dev_priv->hotplug_work);
912 	}
913 }
914 
915 /*
916  * Handle hotplug events outside the interrupt handler proper.
917  */
918 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
919 
920 static void i915_hotplug_work_func(struct work_struct *work)
921 {
922 	struct drm_i915_private *dev_priv =
923 		container_of(work, struct drm_i915_private, hotplug_work);
924 	struct drm_device *dev = dev_priv->dev;
925 	struct drm_mode_config *mode_config = &dev->mode_config;
926 	struct intel_connector *intel_connector;
927 	struct intel_encoder *intel_encoder;
928 	struct drm_connector *connector;
929 	bool hpd_disabled = false;
930 	bool changed = false;
931 	u32 hpd_event_bits;
932 
933 	mutex_lock(&mode_config->mutex);
934 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
935 
936 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
937 
938 	hpd_event_bits = dev_priv->hpd_event_bits;
939 	dev_priv->hpd_event_bits = 0;
940 	list_for_each_entry(connector, &mode_config->connector_list, head) {
941 		intel_connector = to_intel_connector(connector);
942 		if (!intel_connector->encoder)
943 			continue;
944 		intel_encoder = intel_connector->encoder;
945 		if (intel_encoder->hpd_pin > HPD_NONE &&
946 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
947 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
948 			DRM_INFO("HPD interrupt storm detected on connector %s: "
949 				 "switching from hotplug detection to polling\n",
950 				connector->name);
951 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
952 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
953 				| DRM_CONNECTOR_POLL_DISCONNECT;
954 			hpd_disabled = true;
955 		}
956 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
957 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
958 				      connector->name, intel_encoder->hpd_pin);
959 		}
960 	}
961 	 /* if there were no outputs to poll, poll was disabled,
962 	  * therefore make sure it's enabled when disabling HPD on
963 	  * some connectors */
964 	if (hpd_disabled) {
965 		drm_kms_helper_poll_enable(dev);
966 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
967 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
968 	}
969 
970 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
971 
972 	list_for_each_entry(connector, &mode_config->connector_list, head) {
973 		intel_connector = to_intel_connector(connector);
974 		if (!intel_connector->encoder)
975 			continue;
976 		intel_encoder = intel_connector->encoder;
977 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
978 			if (intel_encoder->hot_plug)
979 				intel_encoder->hot_plug(intel_encoder);
980 			if (intel_hpd_irq_event(dev, connector))
981 				changed = true;
982 		}
983 	}
984 	mutex_unlock(&mode_config->mutex);
985 
986 	if (changed)
987 		drm_kms_helper_hotplug_event(dev);
988 }
989 
990 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
991 {
992 	struct drm_i915_private *dev_priv = dev->dev_private;
993 	u32 busy_up, busy_down, max_avg, min_avg;
994 	u8 new_delay;
995 
996 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
997 
998 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
999 
1000 	new_delay = dev_priv->ips.cur_delay;
1001 
1002 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1003 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1004 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1005 	max_avg = I915_READ(RCBMAXAVG);
1006 	min_avg = I915_READ(RCBMINAVG);
1007 
1008 	/* Handle RCS change request from hw */
1009 	if (busy_up > max_avg) {
1010 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1011 			new_delay = dev_priv->ips.cur_delay - 1;
1012 		if (new_delay < dev_priv->ips.max_delay)
1013 			new_delay = dev_priv->ips.max_delay;
1014 	} else if (busy_down < min_avg) {
1015 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1016 			new_delay = dev_priv->ips.cur_delay + 1;
1017 		if (new_delay > dev_priv->ips.min_delay)
1018 			new_delay = dev_priv->ips.min_delay;
1019 	}
1020 
1021 	if (ironlake_set_drps(dev, new_delay))
1022 		dev_priv->ips.cur_delay = new_delay;
1023 
1024 	lockmgr(&mchdev_lock, LK_RELEASE);
1025 
1026 	return;
1027 }
1028 
1029 static void notify_ring(struct drm_device *dev,
1030 			struct intel_engine_cs *ring)
1031 {
1032 	if (!intel_ring_initialized(ring))
1033 		return;
1034 
1035 	trace_i915_gem_request_notify(ring);
1036 
1037 	wake_up_all(&ring->irq_queue);
1038 }
1039 
1040 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1041 			    struct intel_rps_ei *rps_ei)
1042 {
1043 	u32 cz_ts, cz_freq_khz;
1044 	u32 render_count, media_count;
1045 	u32 elapsed_render, elapsed_media, elapsed_time;
1046 	u32 residency = 0;
1047 
1048 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1049 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1050 
1051 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1052 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1053 
1054 	if (rps_ei->cz_clock == 0) {
1055 		rps_ei->cz_clock = cz_ts;
1056 		rps_ei->render_c0 = render_count;
1057 		rps_ei->media_c0 = media_count;
1058 
1059 		return dev_priv->rps.cur_freq;
1060 	}
1061 
1062 	elapsed_time = cz_ts - rps_ei->cz_clock;
1063 	rps_ei->cz_clock = cz_ts;
1064 
1065 	elapsed_render = render_count - rps_ei->render_c0;
1066 	rps_ei->render_c0 = render_count;
1067 
1068 	elapsed_media = media_count - rps_ei->media_c0;
1069 	rps_ei->media_c0 = media_count;
1070 
1071 	/* Convert all the counters into common unit of milli sec */
1072 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1073 	elapsed_render /=  cz_freq_khz;
1074 	elapsed_media /= cz_freq_khz;
1075 
1076 	/*
1077 	 * Calculate overall C0 residency percentage
1078 	 * only if elapsed time is non zero
1079 	 */
1080 	if (elapsed_time) {
1081 		residency =
1082 			((max(elapsed_render, elapsed_media) * 100)
1083 				/ elapsed_time);
1084 	}
1085 
1086 	return residency;
1087 }
1088 
1089 /**
1090  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1091  * busy-ness calculated from C0 counters of render & media power wells
1092  * @dev_priv: DRM device private
1093  *
1094  */
1095 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1096 {
1097 	u32 residency_C0_up = 0, residency_C0_down = 0;
1098 	int new_delay, adj;
1099 
1100 	dev_priv->rps.ei_interrupt_count++;
1101 
1102 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1103 
1104 
1105 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1106 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1107 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1108 		return dev_priv->rps.cur_freq;
1109 	}
1110 
1111 
1112 	/*
1113 	 * To down throttle, C0 residency should be less than down threshold
1114 	 * for continous EI intervals. So calculate down EI counters
1115 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1116 	 */
1117 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1118 
1119 		dev_priv->rps.ei_interrupt_count = 0;
1120 
1121 		residency_C0_down = vlv_c0_residency(dev_priv,
1122 						     &dev_priv->rps.down_ei);
1123 	} else {
1124 		residency_C0_up = vlv_c0_residency(dev_priv,
1125 						   &dev_priv->rps.up_ei);
1126 	}
1127 
1128 	new_delay = dev_priv->rps.cur_freq;
1129 
1130 	adj = dev_priv->rps.last_adj;
1131 	/* C0 residency is greater than UP threshold. Increase Frequency */
1132 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1133 		if (adj > 0)
1134 			adj *= 2;
1135 		else
1136 			adj = 1;
1137 
1138 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1139 			new_delay = dev_priv->rps.cur_freq + adj;
1140 
1141 		/*
1142 		 * For better performance, jump directly
1143 		 * to RPe if we're below it.
1144 		 */
1145 		if (new_delay < dev_priv->rps.efficient_freq)
1146 			new_delay = dev_priv->rps.efficient_freq;
1147 
1148 	} else if (!dev_priv->rps.ei_interrupt_count &&
1149 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1150 		if (adj < 0)
1151 			adj *= 2;
1152 		else
1153 			adj = -1;
1154 		/*
1155 		 * This means, C0 residency is less than down threshold over
1156 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1157 		 */
1158 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1159 			new_delay = dev_priv->rps.cur_freq + adj;
1160 	}
1161 
1162 	return new_delay;
1163 }
1164 
1165 static void gen6_pm_rps_work(struct work_struct *work)
1166 {
1167 	struct drm_i915_private *dev_priv =
1168 		container_of(work, struct drm_i915_private, rps.work);
1169 	u32 pm_iir;
1170 	int new_delay, adj;
1171 
1172 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1173 	/* Speed up work cancelation during disabling rps interrupts. */
1174 	if (!dev_priv->rps.interrupts_enabled) {
1175 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1176 		return;
1177 	}
1178 	pm_iir = dev_priv->rps.pm_iir;
1179 	dev_priv->rps.pm_iir = 0;
1180 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1181 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1182 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1183 
1184 	/* Make sure we didn't queue anything we're not going to process. */
1185 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1186 
1187 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1188 		return;
1189 
1190 	mutex_lock(&dev_priv->rps.hw_lock);
1191 
1192 	adj = dev_priv->rps.last_adj;
1193 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1194 		if (adj > 0)
1195 			adj *= 2;
1196 		else {
1197 			/* CHV needs even encode values */
1198 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1199 		}
1200 		new_delay = dev_priv->rps.cur_freq + adj;
1201 
1202 		/*
1203 		 * For better performance, jump directly
1204 		 * to RPe if we're below it.
1205 		 */
1206 		if (new_delay < dev_priv->rps.efficient_freq)
1207 			new_delay = dev_priv->rps.efficient_freq;
1208 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1209 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1210 			new_delay = dev_priv->rps.efficient_freq;
1211 		else
1212 			new_delay = dev_priv->rps.min_freq_softlimit;
1213 		adj = 0;
1214 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1215 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1216 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1217 		if (adj < 0)
1218 			adj *= 2;
1219 		else {
1220 			/* CHV needs even encode values */
1221 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1222 		}
1223 		new_delay = dev_priv->rps.cur_freq + adj;
1224 	} else { /* unknown event */
1225 		new_delay = dev_priv->rps.cur_freq;
1226 	}
1227 
1228 	/* sysfs frequency interfaces may have snuck in while servicing the
1229 	 * interrupt
1230 	 */
1231 	new_delay = clamp_t(int, new_delay,
1232 			    dev_priv->rps.min_freq_softlimit,
1233 			    dev_priv->rps.max_freq_softlimit);
1234 
1235 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1236 
1237 	if (IS_VALLEYVIEW(dev_priv->dev))
1238 		valleyview_set_rps(dev_priv->dev, new_delay);
1239 	else
1240 		gen6_set_rps(dev_priv->dev, new_delay);
1241 
1242 	mutex_unlock(&dev_priv->rps.hw_lock);
1243 }
1244 
1245 /**
1246  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1247  * occurred.
1248  * @work: workqueue struct
1249  *
1250  * Doesn't actually do anything except notify userspace. As a consequence of
1251  * this event, userspace should try to remap the bad rows since statistically
1252  * it is likely the same row is more likely to go bad again.
1253  */
1254 static void ivybridge_parity_work(struct work_struct *work)
1255 {
1256 	struct drm_i915_private *dev_priv =
1257 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1258 	u32 error_status, row, bank, subbank;
1259 	char *parity_event[6];
1260 	uint32_t misccpctl;
1261 	uint8_t slice = 0;
1262 
1263 	/* We must turn off DOP level clock gating to access the L3 registers.
1264 	 * In order to prevent a get/put style interface, acquire struct mutex
1265 	 * any time we access those registers.
1266 	 */
1267 	mutex_lock(&dev_priv->dev->struct_mutex);
1268 
1269 	/* If we've screwed up tracking, just let the interrupt fire again */
1270 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1271 		goto out;
1272 
1273 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1274 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1275 	POSTING_READ(GEN7_MISCCPCTL);
1276 
1277 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1278 		u32 reg;
1279 
1280 		slice--;
1281 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1282 			break;
1283 
1284 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1285 
1286 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1287 
1288 		error_status = I915_READ(reg);
1289 		row = GEN7_PARITY_ERROR_ROW(error_status);
1290 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1291 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1292 
1293 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1294 		POSTING_READ(reg);
1295 
1296 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1297 		parity_event[1] = drm_asprintf(GFP_KERNEL, "ROW=%d", row);
1298 		parity_event[2] = drm_asprintf(GFP_KERNEL, "BANK=%d", bank);
1299 		parity_event[3] = drm_asprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1300 		parity_event[4] = drm_asprintf(GFP_KERNEL, "SLICE=%d", slice);
1301 		parity_event[5] = NULL;
1302 
1303 #if 0
1304 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1305 				   KOBJ_CHANGE, parity_event);
1306 #endif
1307 
1308 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1309 			  slice, row, bank, subbank);
1310 
1311 		kfree(parity_event[4]);
1312 		kfree(parity_event[3]);
1313 		kfree(parity_event[2]);
1314 		kfree(parity_event[1]);
1315 	}
1316 
1317 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1318 
1319 out:
1320 	WARN_ON(dev_priv->l3_parity.which_slice);
1321 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1322 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1323 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1324 
1325 	mutex_unlock(&dev_priv->dev->struct_mutex);
1326 }
1327 
1328 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1329 {
1330 	struct drm_i915_private *dev_priv = dev->dev_private;
1331 
1332 	if (!HAS_L3_DPF(dev))
1333 		return;
1334 
1335 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1336 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1337 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1338 
1339 	iir &= GT_PARITY_ERROR(dev);
1340 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1341 		dev_priv->l3_parity.which_slice |= 1 << 1;
1342 
1343 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1344 		dev_priv->l3_parity.which_slice |= 1 << 0;
1345 
1346 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1347 }
1348 
1349 static void ilk_gt_irq_handler(struct drm_device *dev,
1350 			       struct drm_i915_private *dev_priv,
1351 			       u32 gt_iir)
1352 {
1353 	if (gt_iir &
1354 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1355 		notify_ring(dev, &dev_priv->ring[RCS]);
1356 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1357 		notify_ring(dev, &dev_priv->ring[VCS]);
1358 }
1359 
1360 static void snb_gt_irq_handler(struct drm_device *dev,
1361 			       struct drm_i915_private *dev_priv,
1362 			       u32 gt_iir)
1363 {
1364 
1365 	if (gt_iir &
1366 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1367 		notify_ring(dev, &dev_priv->ring[RCS]);
1368 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1369 		notify_ring(dev, &dev_priv->ring[VCS]);
1370 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1371 		notify_ring(dev, &dev_priv->ring[BCS]);
1372 
1373 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1374 		      GT_BSD_CS_ERROR_INTERRUPT |
1375 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1376 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1377 
1378 	if (gt_iir & GT_PARITY_ERROR(dev))
1379 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1380 }
1381 
1382 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1383 				       struct drm_i915_private *dev_priv,
1384 				       u32 master_ctl)
1385 {
1386 	struct intel_engine_cs *ring;
1387 	u32 rcs, bcs, vcs;
1388 	uint32_t tmp = 0;
1389 
1390 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1391 		tmp = I915_READ(GEN8_GT_IIR(0));
1392 		if (tmp) {
1393 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1394 
1395 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1396 			ring = &dev_priv->ring[RCS];
1397 			if (rcs & GT_RENDER_USER_INTERRUPT)
1398 				notify_ring(dev, ring);
1399 			if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1400 				intel_lrc_irq_handler(ring);
1401 
1402 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1403 			ring = &dev_priv->ring[BCS];
1404 			if (bcs & GT_RENDER_USER_INTERRUPT)
1405 				notify_ring(dev, ring);
1406 			if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1407 				intel_lrc_irq_handler(ring);
1408 		} else
1409 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1410 	}
1411 
1412 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1413 		tmp = I915_READ(GEN8_GT_IIR(1));
1414 		if (tmp) {
1415 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1416 
1417 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1418 			ring = &dev_priv->ring[VCS];
1419 			if (vcs & GT_RENDER_USER_INTERRUPT)
1420 				notify_ring(dev, ring);
1421 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1422 				intel_lrc_irq_handler(ring);
1423 
1424 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1425 			ring = &dev_priv->ring[VCS2];
1426 			if (vcs & GT_RENDER_USER_INTERRUPT)
1427 				notify_ring(dev, ring);
1428 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1429 				intel_lrc_irq_handler(ring);
1430 		} else
1431 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1432 	}
1433 
1434 	if (master_ctl & GEN8_GT_PM_IRQ) {
1435 		tmp = I915_READ(GEN8_GT_IIR(2));
1436 		if (tmp & dev_priv->pm_rps_events) {
1437 			I915_WRITE(GEN8_GT_IIR(2),
1438 				   tmp & dev_priv->pm_rps_events);
1439 			gen6_rps_irq_handler(dev_priv, tmp);
1440 		} else
1441 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1442 	}
1443 
1444 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1445 		tmp = I915_READ(GEN8_GT_IIR(3));
1446 		if (tmp) {
1447 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1448 
1449 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1450 			ring = &dev_priv->ring[VECS];
1451 			if (vcs & GT_RENDER_USER_INTERRUPT)
1452 				notify_ring(dev, ring);
1453 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1454 				intel_lrc_irq_handler(ring);
1455 		} else
1456 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1457 	}
1458 
1459 }
1460 
1461 #define HPD_STORM_DETECT_PERIOD 1000
1462 #define HPD_STORM_THRESHOLD 5
1463 
1464 static int pch_port_to_hotplug_shift(enum port port)
1465 {
1466 	switch (port) {
1467 	case PORT_A:
1468 	case PORT_E:
1469 	default:
1470 		return -1;
1471 	case PORT_B:
1472 		return 0;
1473 	case PORT_C:
1474 		return 8;
1475 	case PORT_D:
1476 		return 16;
1477 	}
1478 }
1479 
1480 static int i915_port_to_hotplug_shift(enum port port)
1481 {
1482 	switch (port) {
1483 	case PORT_A:
1484 	case PORT_E:
1485 	default:
1486 		return -1;
1487 	case PORT_B:
1488 		return 17;
1489 	case PORT_C:
1490 		return 19;
1491 	case PORT_D:
1492 		return 21;
1493 	}
1494 }
1495 
1496 static inline enum port get_port_from_pin(enum hpd_pin pin)
1497 {
1498 	switch (pin) {
1499 	case HPD_PORT_B:
1500 		return PORT_B;
1501 	case HPD_PORT_C:
1502 		return PORT_C;
1503 	case HPD_PORT_D:
1504 		return PORT_D;
1505 	default:
1506 		return PORT_A; /* no hpd */
1507 	}
1508 }
1509 
1510 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1511 					 u32 hotplug_trigger,
1512 					 u32 dig_hotplug_reg,
1513 					 const u32 hpd[HPD_NUM_PINS])
1514 {
1515 	struct drm_i915_private *dev_priv = dev->dev_private;
1516 	int i;
1517 	enum port port;
1518 	bool storm_detected = false;
1519 	bool queue_dig = false, queue_hp = false;
1520 	u32 dig_shift;
1521 	u32 dig_port_mask = 0;
1522 
1523 	if (!hotplug_trigger)
1524 		return;
1525 
1526 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1527 			 hotplug_trigger, dig_hotplug_reg);
1528 
1529 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1530 	for (i = 1; i < HPD_NUM_PINS; i++) {
1531 		if (!(hpd[i] & hotplug_trigger))
1532 			continue;
1533 
1534 		port = get_port_from_pin(i);
1535 		if (port && dev_priv->hpd_irq_port[port]) {
1536 			bool long_hpd;
1537 
1538 			if (HAS_PCH_SPLIT(dev)) {
1539 				dig_shift = pch_port_to_hotplug_shift(port);
1540 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1541 			} else {
1542 				dig_shift = i915_port_to_hotplug_shift(port);
1543 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1544 			}
1545 
1546 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1547 					 port_name(port),
1548 					 long_hpd ? "long" : "short");
1549 			/* for long HPD pulses we want to have the digital queue happen,
1550 			   but we still want HPD storm detection to function. */
1551 			if (long_hpd) {
1552 				dev_priv->long_hpd_port_mask |= (1 << port);
1553 				dig_port_mask |= hpd[i];
1554 			} else {
1555 				/* for short HPD just trigger the digital queue */
1556 				dev_priv->short_hpd_port_mask |= (1 << port);
1557 				hotplug_trigger &= ~hpd[i];
1558 			}
1559 			queue_dig = true;
1560 		}
1561 	}
1562 
1563 	for (i = 1; i < HPD_NUM_PINS; i++) {
1564 		if (hpd[i] & hotplug_trigger &&
1565 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1566 			/*
1567 			 * On GMCH platforms the interrupt mask bits only
1568 			 * prevent irq generation, not the setting of the
1569 			 * hotplug bits itself. So only WARN about unexpected
1570 			 * interrupts on saner platforms.
1571 			 */
1572 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1573 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1574 				  hotplug_trigger, i, hpd[i]);
1575 
1576 			continue;
1577 		}
1578 
1579 		if (!(hpd[i] & hotplug_trigger) ||
1580 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1581 			continue;
1582 
1583 		if (!(dig_port_mask & hpd[i])) {
1584 			dev_priv->hpd_event_bits |= (1 << i);
1585 			queue_hp = true;
1586 		}
1587 
1588 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1589 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1590 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1591 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1592 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1593 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1594 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1595 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1596 			dev_priv->hpd_event_bits &= ~(1 << i);
1597 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1598 			storm_detected = true;
1599 		} else {
1600 			dev_priv->hpd_stats[i].hpd_cnt++;
1601 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1602 				      dev_priv->hpd_stats[i].hpd_cnt);
1603 		}
1604 	}
1605 
1606 	if (storm_detected)
1607 		dev_priv->display.hpd_irq_setup(dev);
1608 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1609 
1610 	/*
1611 	 * Our hotplug handler can grab modeset locks (by calling down into the
1612 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1613 	 * queue for otherwise the flush_work in the pageflip code will
1614 	 * deadlock.
1615 	 */
1616 	if (queue_dig)
1617 		schedule_work(&dev_priv->dig_port_work);
1618 	if (queue_hp)
1619 		schedule_work(&dev_priv->hotplug_work);
1620 }
1621 
1622 static void gmbus_irq_handler(struct drm_device *dev)
1623 {
1624 	struct drm_i915_private *dev_priv = dev->dev_private;
1625 
1626 	wake_up_all(&dev_priv->gmbus_wait_queue);
1627 }
1628 
1629 static void dp_aux_irq_handler(struct drm_device *dev)
1630 {
1631 	struct drm_i915_private *dev_priv = dev->dev_private;
1632 
1633 	wake_up_all(&dev_priv->gmbus_wait_queue);
1634 }
1635 
1636 #if defined(CONFIG_DEBUG_FS)
1637 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1638 					 uint32_t crc0, uint32_t crc1,
1639 					 uint32_t crc2, uint32_t crc3,
1640 					 uint32_t crc4)
1641 {
1642 	struct drm_i915_private *dev_priv = dev->dev_private;
1643 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1644 	struct intel_pipe_crc_entry *entry;
1645 	int head, tail;
1646 
1647 	spin_lock(&pipe_crc->lock);
1648 
1649 	if (!pipe_crc->entries) {
1650 		spin_unlock(&pipe_crc->lock);
1651 		DRM_DEBUG_KMS("spurious interrupt\n");
1652 		return;
1653 	}
1654 
1655 	head = pipe_crc->head;
1656 	tail = pipe_crc->tail;
1657 
1658 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1659 		spin_unlock(&pipe_crc->lock);
1660 		DRM_ERROR("CRC buffer overflowing\n");
1661 		return;
1662 	}
1663 
1664 	entry = &pipe_crc->entries[head];
1665 
1666 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1667 	entry->crc[0] = crc0;
1668 	entry->crc[1] = crc1;
1669 	entry->crc[2] = crc2;
1670 	entry->crc[3] = crc3;
1671 	entry->crc[4] = crc4;
1672 
1673 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1674 	pipe_crc->head = head;
1675 
1676 	spin_unlock(&pipe_crc->lock);
1677 
1678 	wake_up_interruptible(&pipe_crc->wq);
1679 }
1680 #else
1681 static inline void
1682 display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1683 			     uint32_t crc0, uint32_t crc1,
1684 			     uint32_t crc2, uint32_t crc3,
1685 			     uint32_t crc4) {}
1686 #endif
1687 
1688 
1689 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1690 {
1691 	struct drm_i915_private *dev_priv = dev->dev_private;
1692 
1693 	display_pipe_crc_irq_handler(dev, pipe,
1694 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1695 				     0, 0, 0, 0);
1696 }
1697 
1698 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1699 {
1700 	struct drm_i915_private *dev_priv = dev->dev_private;
1701 
1702 	display_pipe_crc_irq_handler(dev, pipe,
1703 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1704 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1705 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1706 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1707 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1708 }
1709 
1710 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1711 {
1712 	struct drm_i915_private *dev_priv = dev->dev_private;
1713 	uint32_t res1, res2;
1714 
1715 	if (INTEL_INFO(dev)->gen >= 3)
1716 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1717 	else
1718 		res1 = 0;
1719 
1720 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1721 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1722 	else
1723 		res2 = 0;
1724 
1725 	display_pipe_crc_irq_handler(dev, pipe,
1726 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1727 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1728 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1729 				     res1, res2);
1730 }
1731 
1732 /* The RPS events need forcewake, so we add them to a work queue and mask their
1733  * IMR bits until the work is done. Other interrupts can be processed without
1734  * the work queue. */
1735 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1736 {
1737 	/* TODO: RPS on GEN9+ is not supported yet. */
1738 	if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1739 		      "GEN9+: unexpected RPS IRQ\n"))
1740 		return;
1741 
1742 	if (pm_iir & dev_priv->pm_rps_events) {
1743 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1744 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1745 		if (dev_priv->rps.interrupts_enabled) {
1746 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1747 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1748 		}
1749 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1750 	}
1751 
1752 	if (INTEL_INFO(dev_priv)->gen >= 8)
1753 		return;
1754 
1755 	if (HAS_VEBOX(dev_priv->dev)) {
1756 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1757 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1758 
1759 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1760 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1761 	}
1762 }
1763 
1764 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum i915_pipe pipe)
1765 {
1766 	if (!drm_handle_vblank(dev, pipe))
1767 		return false;
1768 
1769 	return true;
1770 }
1771 
1772 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1773 {
1774 	struct drm_i915_private *dev_priv = dev->dev_private;
1775 	u32 pipe_stats[I915_MAX_PIPES] = { };
1776 	int pipe;
1777 
1778 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1779 	for_each_pipe(dev_priv, pipe) {
1780 		int reg;
1781 		u32 mask, iir_bit = 0;
1782 
1783 		/*
1784 		 * PIPESTAT bits get signalled even when the interrupt is
1785 		 * disabled with the mask bits, and some of the status bits do
1786 		 * not generate interrupts at all (like the underrun bit). Hence
1787 		 * we need to be careful that we only handle what we want to
1788 		 * handle.
1789 		 */
1790 
1791 		/* fifo underruns are filterered in the underrun handler. */
1792 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1793 
1794 		switch (pipe) {
1795 		case PIPE_A:
1796 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1797 			break;
1798 		case PIPE_B:
1799 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1800 			break;
1801 		case PIPE_C:
1802 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1803 			break;
1804 		}
1805 		if (iir & iir_bit)
1806 			mask |= dev_priv->pipestat_irq_mask[pipe];
1807 
1808 		if (!mask)
1809 			continue;
1810 
1811 		reg = PIPESTAT(pipe);
1812 		mask |= PIPESTAT_INT_ENABLE_MASK;
1813 		pipe_stats[pipe] = I915_READ(reg) & mask;
1814 
1815 		/*
1816 		 * Clear the PIPE*STAT regs before the IIR
1817 		 */
1818 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1819 					PIPESTAT_INT_STATUS_MASK))
1820 			I915_WRITE(reg, pipe_stats[pipe]);
1821 	}
1822 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1823 
1824 	for_each_pipe(dev_priv, pipe) {
1825 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1826 		    intel_pipe_handle_vblank(dev, pipe))
1827 			intel_check_page_flip(dev, pipe);
1828 
1829 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1830 			intel_prepare_page_flip(dev, pipe);
1831 			intel_finish_page_flip(dev, pipe);
1832 		}
1833 
1834 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1835 			i9xx_pipe_crc_irq_handler(dev, pipe);
1836 
1837 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1838 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1839 	}
1840 
1841 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1842 		gmbus_irq_handler(dev);
1843 }
1844 
1845 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1846 {
1847 	struct drm_i915_private *dev_priv = dev->dev_private;
1848 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1849 
1850 	if (hotplug_status) {
1851 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1852 		/*
1853 		 * Make sure hotplug status is cleared before we clear IIR, or else we
1854 		 * may miss hotplug events.
1855 		 */
1856 		POSTING_READ(PORT_HOTPLUG_STAT);
1857 
1858 		if (IS_G4X(dev)) {
1859 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1860 
1861 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1862 		} else {
1863 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1864 
1865 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1866 		}
1867 
1868 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1869 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1870 			dp_aux_irq_handler(dev);
1871 	}
1872 }
1873 
1874 static irqreturn_t valleyview_irq_handler(void *arg)
1875 {
1876 	struct drm_device *dev = arg;
1877 	struct drm_i915_private *dev_priv = dev->dev_private;
1878 	u32 iir, gt_iir, pm_iir;
1879 
1880 	if (!intel_irqs_enabled(dev_priv))
1881 		return IRQ_NONE;
1882 
1883 	while (true) {
1884 		/* Find, clear, then process each source of interrupt */
1885 
1886 		gt_iir = I915_READ(GTIIR);
1887 		if (gt_iir)
1888 			I915_WRITE(GTIIR, gt_iir);
1889 
1890 		pm_iir = I915_READ(GEN6_PMIIR);
1891 		if (pm_iir)
1892 			I915_WRITE(GEN6_PMIIR, pm_iir);
1893 
1894 		iir = I915_READ(VLV_IIR);
1895 		if (iir) {
1896 			/* Consume port before clearing IIR or we'll miss events */
1897 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1898 				i9xx_hpd_irq_handler(dev);
1899 			I915_WRITE(VLV_IIR, iir);
1900 		}
1901 
1902 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1903 			goto out;
1904 
1905 		if (gt_iir)
1906 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1907 		if (pm_iir)
1908 			gen6_rps_irq_handler(dev_priv, pm_iir);
1909 		/* Call regardless, as some status bits might not be
1910 		 * signalled in iir */
1911 		valleyview_pipestat_irq_handler(dev, iir);
1912 	}
1913 
1914 out:
1915 	return;
1916 }
1917 
1918 static irqreturn_t cherryview_irq_handler(void *arg)
1919 {
1920 	struct drm_device *dev = arg;
1921 	struct drm_i915_private *dev_priv = dev->dev_private;
1922 	u32 master_ctl, iir;
1923 
1924 	if (!intel_irqs_enabled(dev_priv))
1925 		return IRQ_NONE;
1926 
1927 	for (;;) {
1928 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1929 		iir = I915_READ(VLV_IIR);
1930 
1931 		if (master_ctl == 0 && iir == 0)
1932 			break;
1933 
1934 
1935 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1936 
1937 		/* Find, clear, then process each source of interrupt */
1938 
1939 		if (iir) {
1940 			/* Consume port before clearing IIR or we'll miss events */
1941 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1942 				i9xx_hpd_irq_handler(dev);
1943 			I915_WRITE(VLV_IIR, iir);
1944 		}
1945 
1946 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1947 
1948 		/* Call regardless, as some status bits might not be
1949 		 * signalled in iir */
1950 		valleyview_pipestat_irq_handler(dev, iir);
1951 
1952 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1953 		POSTING_READ(GEN8_MASTER_IRQ);
1954 	}
1955 
1956 }
1957 
1958 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1959 {
1960 	struct drm_i915_private *dev_priv = dev->dev_private;
1961 	int pipe;
1962 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1963 	u32 dig_hotplug_reg;
1964 
1965 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1966 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1967 
1968 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1969 
1970 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1971 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1972 			       SDE_AUDIO_POWER_SHIFT);
1973 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1974 				 port_name(port));
1975 	}
1976 
1977 	if (pch_iir & SDE_AUX_MASK)
1978 		dp_aux_irq_handler(dev);
1979 
1980 	if (pch_iir & SDE_GMBUS)
1981 		gmbus_irq_handler(dev);
1982 
1983 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1984 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1985 
1986 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1987 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1988 
1989 	if (pch_iir & SDE_POISON)
1990 		DRM_ERROR("PCH poison interrupt\n");
1991 
1992 	if (pch_iir & SDE_FDI_MASK)
1993 		for_each_pipe(dev_priv, pipe)
1994 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1995 					 pipe_name(pipe),
1996 					 I915_READ(FDI_RX_IIR(pipe)));
1997 
1998 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1999 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2000 
2001 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2002 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2003 
2004 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2005 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2006 
2007 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2008 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2009 }
2010 
2011 static void ivb_err_int_handler(struct drm_device *dev)
2012 {
2013 	struct drm_i915_private *dev_priv = dev->dev_private;
2014 	u32 err_int = I915_READ(GEN7_ERR_INT);
2015 	enum i915_pipe pipe;
2016 
2017 	if (err_int & ERR_INT_POISON)
2018 		DRM_ERROR("Poison interrupt\n");
2019 
2020 	for_each_pipe(dev_priv, pipe) {
2021 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2022 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2023 
2024 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2025 			if (IS_IVYBRIDGE(dev))
2026 				ivb_pipe_crc_irq_handler(dev, pipe);
2027 			else
2028 				hsw_pipe_crc_irq_handler(dev, pipe);
2029 		}
2030 	}
2031 
2032 	I915_WRITE(GEN7_ERR_INT, err_int);
2033 }
2034 
2035 static void cpt_serr_int_handler(struct drm_device *dev)
2036 {
2037 	struct drm_i915_private *dev_priv = dev->dev_private;
2038 	u32 serr_int = I915_READ(SERR_INT);
2039 
2040 	if (serr_int & SERR_INT_POISON)
2041 		DRM_ERROR("PCH poison interrupt\n");
2042 
2043 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2044 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2045 
2046 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2047 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2048 
2049 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2050 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2051 
2052 	I915_WRITE(SERR_INT, serr_int);
2053 }
2054 
2055 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2056 {
2057 	struct drm_i915_private *dev_priv = dev->dev_private;
2058 	int pipe;
2059 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2060 	u32 dig_hotplug_reg;
2061 
2062 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2063 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2064 
2065 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2066 
2067 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2068 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2069 			       SDE_AUDIO_POWER_SHIFT_CPT);
2070 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2071 				 port_name(port));
2072 	}
2073 
2074 	if (pch_iir & SDE_AUX_MASK_CPT)
2075 		dp_aux_irq_handler(dev);
2076 
2077 	if (pch_iir & SDE_GMBUS_CPT)
2078 		gmbus_irq_handler(dev);
2079 
2080 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2081 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2082 
2083 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2084 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2085 
2086 	if (pch_iir & SDE_FDI_MASK_CPT)
2087 		for_each_pipe(dev_priv, pipe)
2088 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2089 					 pipe_name(pipe),
2090 					 I915_READ(FDI_RX_IIR(pipe)));
2091 
2092 	if (pch_iir & SDE_ERROR_CPT)
2093 		cpt_serr_int_handler(dev);
2094 }
2095 
2096 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2097 {
2098 	struct drm_i915_private *dev_priv = dev->dev_private;
2099 	enum i915_pipe pipe;
2100 
2101 	if (de_iir & DE_AUX_CHANNEL_A)
2102 		dp_aux_irq_handler(dev);
2103 
2104 	if (de_iir & DE_GSE)
2105 		intel_opregion_asle_intr(dev);
2106 
2107 	if (de_iir & DE_POISON)
2108 		DRM_ERROR("Poison interrupt\n");
2109 
2110 	for_each_pipe(dev_priv, pipe) {
2111 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2112 		    intel_pipe_handle_vblank(dev, pipe))
2113 			intel_check_page_flip(dev, pipe);
2114 
2115 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2116 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2117 
2118 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2119 			i9xx_pipe_crc_irq_handler(dev, pipe);
2120 
2121 		/* plane/pipes map 1:1 on ilk+ */
2122 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2123 			intel_prepare_page_flip(dev, pipe);
2124 			intel_finish_page_flip_plane(dev, pipe);
2125 		}
2126 	}
2127 
2128 	/* check event from PCH */
2129 	if (de_iir & DE_PCH_EVENT) {
2130 		u32 pch_iir = I915_READ(SDEIIR);
2131 
2132 		if (HAS_PCH_CPT(dev))
2133 			cpt_irq_handler(dev, pch_iir);
2134 		else
2135 			ibx_irq_handler(dev, pch_iir);
2136 
2137 		/* should clear PCH hotplug event before clear CPU irq */
2138 		I915_WRITE(SDEIIR, pch_iir);
2139 	}
2140 
2141 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2142 		ironlake_rps_change_irq_handler(dev);
2143 }
2144 
2145 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2146 {
2147 	struct drm_i915_private *dev_priv = dev->dev_private;
2148 	enum i915_pipe pipe;
2149 
2150 	if (de_iir & DE_ERR_INT_IVB)
2151 		ivb_err_int_handler(dev);
2152 
2153 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2154 		dp_aux_irq_handler(dev);
2155 
2156 	if (de_iir & DE_GSE_IVB)
2157 		intel_opregion_asle_intr(dev);
2158 
2159 	for_each_pipe(dev_priv, pipe) {
2160 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2161 		    intel_pipe_handle_vblank(dev, pipe))
2162 			intel_check_page_flip(dev, pipe);
2163 
2164 		/* plane/pipes map 1:1 on ilk+ */
2165 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2166 			intel_prepare_page_flip(dev, pipe);
2167 			intel_finish_page_flip_plane(dev, pipe);
2168 		}
2169 	}
2170 
2171 	/* check event from PCH */
2172 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2173 		u32 pch_iir = I915_READ(SDEIIR);
2174 
2175 		cpt_irq_handler(dev, pch_iir);
2176 
2177 		/* clear PCH hotplug event before clear CPU irq */
2178 		I915_WRITE(SDEIIR, pch_iir);
2179 	}
2180 }
2181 
2182 /*
2183  * To handle irqs with the minimum potential races with fresh interrupts, we:
2184  * 1 - Disable Master Interrupt Control.
2185  * 2 - Find the source(s) of the interrupt.
2186  * 3 - Clear the Interrupt Identity bits (IIR).
2187  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2188  * 5 - Re-enable Master Interrupt Control.
2189  */
2190 static irqreturn_t ironlake_irq_handler(void *arg)
2191 {
2192 	struct drm_device *dev = arg;
2193 	struct drm_i915_private *dev_priv = dev->dev_private;
2194 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2195 
2196 	if (!intel_irqs_enabled(dev_priv))
2197 		return IRQ_NONE;
2198 
2199 	/* We get interrupts on unclaimed registers, so check for this before we
2200 	 * do any I915_{READ,WRITE}. */
2201 	intel_uncore_check_errors(dev);
2202 
2203 	/* disable master interrupt before clearing iir  */
2204 	de_ier = I915_READ(DEIER);
2205 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2206 	POSTING_READ(DEIER);
2207 
2208 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2209 	 * interrupts will will be stored on its back queue, and then we'll be
2210 	 * able to process them after we restore SDEIER (as soon as we restore
2211 	 * it, we'll get an interrupt if SDEIIR still has something to process
2212 	 * due to its back queue). */
2213 	if (!HAS_PCH_NOP(dev)) {
2214 		sde_ier = I915_READ(SDEIER);
2215 		I915_WRITE(SDEIER, 0);
2216 		POSTING_READ(SDEIER);
2217 	}
2218 
2219 	/* Find, clear, then process each source of interrupt */
2220 
2221 	gt_iir = I915_READ(GTIIR);
2222 	if (gt_iir) {
2223 		I915_WRITE(GTIIR, gt_iir);
2224 		if (INTEL_INFO(dev)->gen >= 6)
2225 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2226 		else
2227 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2228 	}
2229 
2230 	de_iir = I915_READ(DEIIR);
2231 	if (de_iir) {
2232 		I915_WRITE(DEIIR, de_iir);
2233 		if (INTEL_INFO(dev)->gen >= 7)
2234 			ivb_display_irq_handler(dev, de_iir);
2235 		else
2236 			ilk_display_irq_handler(dev, de_iir);
2237 	}
2238 
2239 	if (INTEL_INFO(dev)->gen >= 6) {
2240 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2241 		if (pm_iir) {
2242 			I915_WRITE(GEN6_PMIIR, pm_iir);
2243 			gen6_rps_irq_handler(dev_priv, pm_iir);
2244 		}
2245 	}
2246 
2247 	I915_WRITE(DEIER, de_ier);
2248 	POSTING_READ(DEIER);
2249 	if (!HAS_PCH_NOP(dev)) {
2250 		I915_WRITE(SDEIER, sde_ier);
2251 		POSTING_READ(SDEIER);
2252 	}
2253 
2254 }
2255 
2256 static irqreturn_t gen8_irq_handler(void *arg)
2257 {
2258 	struct drm_device *dev = arg;
2259 	struct drm_i915_private *dev_priv = dev->dev_private;
2260 	u32 master_ctl;
2261 	uint32_t tmp = 0;
2262 	enum i915_pipe pipe;
2263 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2264 
2265 	if (!intel_irqs_enabled(dev_priv))
2266 		return IRQ_NONE;
2267 
2268 	if (IS_GEN9(dev))
2269 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2270 			GEN9_AUX_CHANNEL_D;
2271 
2272 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2273 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2274 	if (!master_ctl)
2275 		return;
2276 
2277 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2278 	POSTING_READ(GEN8_MASTER_IRQ);
2279 
2280 	/* Find, clear, then process each source of interrupt */
2281 
2282 	gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2283 
2284 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2285 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2286 		if (tmp) {
2287 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2288 			if (tmp & GEN8_DE_MISC_GSE)
2289 				intel_opregion_asle_intr(dev);
2290 			else
2291 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2292 		}
2293 		else
2294 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2295 	}
2296 
2297 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2298 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2299 		if (tmp) {
2300 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2301 			if (tmp & aux_mask)
2302 				dp_aux_irq_handler(dev);
2303 			else
2304 				DRM_ERROR("Unexpected DE Port interrupt\n");
2305 		}
2306 		else
2307 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2308 	}
2309 
2310 	for_each_pipe(dev_priv, pipe) {
2311 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2312 
2313 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2314 			continue;
2315 
2316 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2317 		if (pipe_iir) {
2318 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2319 
2320 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2321 			    intel_pipe_handle_vblank(dev, pipe))
2322 				intel_check_page_flip(dev, pipe);
2323 
2324 			if (IS_GEN9(dev))
2325 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2326 			else
2327 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2328 
2329 			if (flip_done) {
2330 				intel_prepare_page_flip(dev, pipe);
2331 				intel_finish_page_flip_plane(dev, pipe);
2332 			}
2333 
2334 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2335 				hsw_pipe_crc_irq_handler(dev, pipe);
2336 
2337 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2338 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2339 								    pipe);
2340 
2341 
2342 			if (IS_GEN9(dev))
2343 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2344 			else
2345 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2346 
2347 			if (fault_errors)
2348 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2349 					  pipe_name(pipe),
2350 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2351 		} else
2352 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2353 	}
2354 
2355 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2356 		/*
2357 		 * FIXME(BDW): Assume for now that the new interrupt handling
2358 		 * scheme also closed the SDE interrupt handling race we've seen
2359 		 * on older pch-split platforms. But this needs testing.
2360 		 */
2361 		u32 pch_iir = I915_READ(SDEIIR);
2362 		if (pch_iir) {
2363 			I915_WRITE(SDEIIR, pch_iir);
2364 			cpt_irq_handler(dev, pch_iir);
2365 		} else
2366 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2367 
2368 	}
2369 
2370 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2371 	POSTING_READ(GEN8_MASTER_IRQ);
2372 
2373 }
2374 
2375 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2376 			       bool reset_completed)
2377 {
2378 	struct intel_engine_cs *ring;
2379 	int i;
2380 
2381 	/*
2382 	 * Notify all waiters for GPU completion events that reset state has
2383 	 * been changed, and that they need to restart their wait after
2384 	 * checking for potential errors (and bail out to drop locks if there is
2385 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2386 	 */
2387 
2388 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2389 	for_each_ring(ring, dev_priv, i)
2390 		wake_up_all(&ring->irq_queue);
2391 
2392 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2393 	wake_up_all(&dev_priv->pending_flip_queue);
2394 
2395 	/*
2396 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2397 	 * reset state is cleared.
2398 	 */
2399 	if (reset_completed)
2400 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2401 }
2402 
2403 /**
2404  * i915_reset_and_wakeup - do process context error handling work
2405  *
2406  * Fire an error uevent so userspace can see that a hang or error
2407  * was detected.
2408  */
2409 static void i915_reset_and_wakeup(struct drm_device *dev)
2410 {
2411 	struct drm_i915_private *dev_priv = to_i915(dev);
2412 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2413 #if 0
2414 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2415 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2416 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2417 #endif
2418 	int ret;
2419 
2420 #if 0
2421 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2422 #endif
2423 
2424 	/*
2425 	 * Note that there's only one work item which does gpu resets, so we
2426 	 * need not worry about concurrent gpu resets potentially incrementing
2427 	 * error->reset_counter twice. We only need to take care of another
2428 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2429 	 * quick check for that is good enough: schedule_work ensures the
2430 	 * correct ordering between hang detection and this work item, and since
2431 	 * the reset in-progress bit is only ever set by code outside of this
2432 	 * work we don't need to worry about any other races.
2433 	 */
2434 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2435 		DRM_DEBUG_DRIVER("resetting chip\n");
2436 #if 0
2437 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2438 				   reset_event);
2439 #endif
2440 
2441 		/*
2442 		 * In most cases it's guaranteed that we get here with an RPM
2443 		 * reference held, for example because there is a pending GPU
2444 		 * request that won't finish until the reset is done. This
2445 		 * isn't the case at least when we get here by doing a
2446 		 * simulated reset via debugs, so get an RPM reference.
2447 		 */
2448 		intel_runtime_pm_get(dev_priv);
2449 
2450 		intel_prepare_reset(dev);
2451 
2452 		/*
2453 		 * All state reset _must_ be completed before we update the
2454 		 * reset counter, for otherwise waiters might miss the reset
2455 		 * pending state and not properly drop locks, resulting in
2456 		 * deadlocks with the reset work.
2457 		 */
2458 		ret = i915_reset(dev);
2459 
2460 		intel_finish_reset(dev);
2461 
2462 		intel_runtime_pm_put(dev_priv);
2463 
2464 		if (ret == 0) {
2465 			/*
2466 			 * After all the gem state is reset, increment the reset
2467 			 * counter and wake up everyone waiting for the reset to
2468 			 * complete.
2469 			 *
2470 			 * Since unlock operations are a one-sided barrier only,
2471 			 * we need to insert a barrier here to order any seqno
2472 			 * updates before
2473 			 * the counter increment.
2474 			 */
2475 			smp_mb__before_atomic();
2476 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2477 
2478 #if 0
2479 			kobject_uevent_env(&dev->primary->kdev->kobj,
2480 					   KOBJ_CHANGE, reset_done_event);
2481 #endif
2482 		} else {
2483 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2484 		}
2485 
2486 		/*
2487 		 * Note: The wake_up also serves as a memory barrier so that
2488 		 * waiters see the update value of the reset counter atomic_t.
2489 		 */
2490 		i915_error_wake_up(dev_priv, true);
2491 	}
2492 }
2493 
2494 static void i915_report_and_clear_eir(struct drm_device *dev)
2495 {
2496 	struct drm_i915_private *dev_priv = dev->dev_private;
2497 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2498 	u32 eir = I915_READ(EIR);
2499 	int pipe, i;
2500 
2501 	if (!eir)
2502 		return;
2503 
2504 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2505 
2506 #if 0
2507 	i915_get_extra_instdone(dev, instdone);
2508 #endif
2509 
2510 	if (IS_G4X(dev)) {
2511 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2512 			u32 ipeir = I915_READ(IPEIR_I965);
2513 
2514 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2515 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2516 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2517 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2518 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2519 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2520 			I915_WRITE(IPEIR_I965, ipeir);
2521 			POSTING_READ(IPEIR_I965);
2522 		}
2523 		if (eir & GM45_ERROR_PAGE_TABLE) {
2524 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2525 			pr_err("page table error\n");
2526 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2527 			I915_WRITE(PGTBL_ER, pgtbl_err);
2528 			POSTING_READ(PGTBL_ER);
2529 		}
2530 	}
2531 
2532 	if (!IS_GEN2(dev)) {
2533 		if (eir & I915_ERROR_PAGE_TABLE) {
2534 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2535 			pr_err("page table error\n");
2536 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2537 			I915_WRITE(PGTBL_ER, pgtbl_err);
2538 			POSTING_READ(PGTBL_ER);
2539 		}
2540 	}
2541 
2542 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2543 		pr_err("memory refresh error:\n");
2544 		for_each_pipe(dev_priv, pipe)
2545 			pr_err("pipe %c stat: 0x%08x\n",
2546 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2547 		/* pipestat has already been acked */
2548 	}
2549 	if (eir & I915_ERROR_INSTRUCTION) {
2550 		pr_err("instruction error\n");
2551 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2552 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2553 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2554 		if (INTEL_INFO(dev)->gen < 4) {
2555 			u32 ipeir = I915_READ(IPEIR);
2556 
2557 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2558 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2559 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2560 			I915_WRITE(IPEIR, ipeir);
2561 			POSTING_READ(IPEIR);
2562 		} else {
2563 			u32 ipeir = I915_READ(IPEIR_I965);
2564 
2565 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2566 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2567 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2568 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2569 			I915_WRITE(IPEIR_I965, ipeir);
2570 			POSTING_READ(IPEIR_I965);
2571 		}
2572 	}
2573 
2574 	I915_WRITE(EIR, eir);
2575 	POSTING_READ(EIR);
2576 	eir = I915_READ(EIR);
2577 	if (eir) {
2578 		/*
2579 		 * some errors might have become stuck,
2580 		 * mask them.
2581 		 */
2582 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2583 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2584 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2585 	}
2586 }
2587 
2588 /**
2589  * i915_handle_error - handle a gpu error
2590  * @dev: drm device
2591  *
2592  * Do some basic checking of regsiter state at error time and
2593  * dump it to the syslog.  Also call i915_capture_error_state() to make
2594  * sure we get a record and make it available in debugfs.  Fire a uevent
2595  * so userspace knows something bad happened (should trigger collection
2596  * of a ring dump etc.).
2597  */
2598 void i915_handle_error(struct drm_device *dev, bool wedged,
2599 		       const char *fmt, ...)
2600 {
2601 	struct drm_i915_private *dev_priv = dev->dev_private;
2602 #if 0
2603 	va_list args;
2604 	char error_msg[80];
2605 
2606 	va_start(args, fmt);
2607 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2608 	va_end(args);
2609 
2610 	i915_capture_error_state(dev, wedged, error_msg);
2611 #endif
2612 	i915_report_and_clear_eir(dev);
2613 
2614 	if (wedged) {
2615 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2616 				&dev_priv->gpu_error.reset_counter);
2617 
2618 		/*
2619 		 * Wakeup waiting processes so that the reset function
2620 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2621 		 * various locks. By bumping the reset counter first, the woken
2622 		 * processes will see a reset in progress and back off,
2623 		 * releasing their locks and then wait for the reset completion.
2624 		 * We must do this for _all_ gpu waiters that might hold locks
2625 		 * that the reset work needs to acquire.
2626 		 *
2627 		 * Note: The wake_up serves as the required memory barrier to
2628 		 * ensure that the waiters see the updated value of the reset
2629 		 * counter atomic_t.
2630 		 */
2631 		i915_error_wake_up(dev_priv, false);
2632 	}
2633 
2634 	i915_reset_and_wakeup(dev);
2635 }
2636 
2637 /* Called from drm generic code, passed 'crtc' which
2638  * we use as a pipe index
2639  */
2640 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2641 {
2642 	struct drm_i915_private *dev_priv = dev->dev_private;
2643 
2644 	if (!i915_pipe_enabled(dev, pipe))
2645 		return -EINVAL;
2646 
2647 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2648 	if (INTEL_INFO(dev)->gen >= 4)
2649 		i915_enable_pipestat(dev_priv, pipe,
2650 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2651 	else
2652 		i915_enable_pipestat(dev_priv, pipe,
2653 				     PIPE_VBLANK_INTERRUPT_STATUS);
2654 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2655 
2656 	return 0;
2657 }
2658 
2659 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2660 {
2661 	struct drm_i915_private *dev_priv = dev->dev_private;
2662 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2663 						     DE_PIPE_VBLANK(pipe);
2664 
2665 	if (!i915_pipe_enabled(dev, pipe))
2666 		return -EINVAL;
2667 
2668 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2669 	ironlake_enable_display_irq(dev_priv, bit);
2670 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2671 
2672 	return 0;
2673 }
2674 
2675 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2676 {
2677 	struct drm_i915_private *dev_priv = dev->dev_private;
2678 
2679 	if (!i915_pipe_enabled(dev, pipe))
2680 		return -EINVAL;
2681 
2682 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2683 	i915_enable_pipestat(dev_priv, pipe,
2684 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2685 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2686 
2687 	return 0;
2688 }
2689 
2690 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2691 {
2692 	struct drm_i915_private *dev_priv = dev->dev_private;
2693 
2694 	if (!i915_pipe_enabled(dev, pipe))
2695 		return -EINVAL;
2696 
2697 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2698 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2699 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2700 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2701 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2702 	return 0;
2703 }
2704 
2705 /* Called from drm generic code, passed 'crtc' which
2706  * we use as a pipe index
2707  */
2708 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2709 {
2710 	struct drm_i915_private *dev_priv = dev->dev_private;
2711 
2712 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2713 	i915_disable_pipestat(dev_priv, pipe,
2714 			      PIPE_VBLANK_INTERRUPT_STATUS |
2715 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2716 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2717 }
2718 
2719 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2720 {
2721 	struct drm_i915_private *dev_priv = dev->dev_private;
2722 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2723 						     DE_PIPE_VBLANK(pipe);
2724 
2725 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2726 	ironlake_disable_display_irq(dev_priv, bit);
2727 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2728 }
2729 
2730 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2731 {
2732 	struct drm_i915_private *dev_priv = dev->dev_private;
2733 
2734 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2735 	i915_disable_pipestat(dev_priv, pipe,
2736 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2737 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2738 }
2739 
2740 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2741 {
2742 	struct drm_i915_private *dev_priv = dev->dev_private;
2743 
2744 	if (!i915_pipe_enabled(dev, pipe))
2745 		return;
2746 
2747 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2748 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2749 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2750 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2751 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2752 }
2753 
2754 static struct drm_i915_gem_request *
2755 ring_last_request(struct intel_engine_cs *ring)
2756 {
2757 	return list_entry(ring->request_list.prev,
2758 			  struct drm_i915_gem_request, list);
2759 }
2760 
2761 static bool
2762 ring_idle(struct intel_engine_cs *ring)
2763 {
2764 	return (list_empty(&ring->request_list) ||
2765 		i915_gem_request_completed(ring_last_request(ring), false));
2766 }
2767 
2768 static bool
2769 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2770 {
2771 	if (INTEL_INFO(dev)->gen >= 8) {
2772 		return (ipehr >> 23) == 0x1c;
2773 	} else {
2774 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2775 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2776 				 MI_SEMAPHORE_REGISTER);
2777 	}
2778 }
2779 
2780 static struct intel_engine_cs *
2781 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2782 {
2783 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2784 	struct intel_engine_cs *signaller;
2785 	int i;
2786 
2787 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2788 		for_each_ring(signaller, dev_priv, i) {
2789 			if (ring == signaller)
2790 				continue;
2791 
2792 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2793 				return signaller;
2794 		}
2795 	} else {
2796 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2797 
2798 		for_each_ring(signaller, dev_priv, i) {
2799 			if(ring == signaller)
2800 				continue;
2801 
2802 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2803 				return signaller;
2804 		}
2805 	}
2806 
2807 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016lx\n",
2808 		  ring->id, ipehr, offset);
2809 
2810 	return NULL;
2811 }
2812 
2813 static struct intel_engine_cs *
2814 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2815 {
2816 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2817 	u32 cmd, ipehr, head;
2818 	u64 offset = 0;
2819 	int i, backwards;
2820 
2821 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2822 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2823 		return NULL;
2824 
2825 	/*
2826 	 * HEAD is likely pointing to the dword after the actual command,
2827 	 * so scan backwards until we find the MBOX. But limit it to just 3
2828 	 * or 4 dwords depending on the semaphore wait command size.
2829 	 * Note that we don't care about ACTHD here since that might
2830 	 * point at at batch, and semaphores are always emitted into the
2831 	 * ringbuffer itself.
2832 	 */
2833 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2834 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2835 
2836 	for (i = backwards; i; --i) {
2837 		/*
2838 		 * Be paranoid and presume the hw has gone off into the wild -
2839 		 * our ring is smaller than what the hardware (and hence
2840 		 * HEAD_ADDR) allows. Also handles wrap-around.
2841 		 */
2842 		head &= ring->buffer->size - 1;
2843 
2844 		/* This here seems to blow up */
2845 		cmd = ioread32(ring->buffer->virtual_start + head);
2846 		if (cmd == ipehr)
2847 			break;
2848 
2849 		head -= 4;
2850 	}
2851 
2852 	if (!i)
2853 		return NULL;
2854 
2855 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2856 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2857 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2858 		offset <<= 32;
2859 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2860 	}
2861 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2862 }
2863 
2864 static int semaphore_passed(struct intel_engine_cs *ring)
2865 {
2866 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2867 	struct intel_engine_cs *signaller;
2868 	u32 seqno;
2869 
2870 	ring->hangcheck.deadlock++;
2871 
2872 	signaller = semaphore_waits_for(ring, &seqno);
2873 	if (signaller == NULL)
2874 		return -1;
2875 
2876 	/* Prevent pathological recursion due to driver bugs */
2877 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2878 		return -1;
2879 
2880 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2881 		return 1;
2882 
2883 	/* cursory check for an unkickable deadlock */
2884 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2885 	    semaphore_passed(signaller) < 0)
2886 		return -1;
2887 
2888 	return 0;
2889 }
2890 
2891 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2892 {
2893 	struct intel_engine_cs *ring;
2894 	int i;
2895 
2896 	for_each_ring(ring, dev_priv, i)
2897 		ring->hangcheck.deadlock = 0;
2898 }
2899 
2900 static enum intel_ring_hangcheck_action
2901 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2902 {
2903 	struct drm_device *dev = ring->dev;
2904 	struct drm_i915_private *dev_priv = dev->dev_private;
2905 	u32 tmp;
2906 
2907 	if (acthd != ring->hangcheck.acthd) {
2908 		if (acthd > ring->hangcheck.max_acthd) {
2909 			ring->hangcheck.max_acthd = acthd;
2910 			return HANGCHECK_ACTIVE;
2911 		}
2912 
2913 		return HANGCHECK_ACTIVE_LOOP;
2914 	}
2915 
2916 	if (IS_GEN2(dev))
2917 		return HANGCHECK_HUNG;
2918 
2919 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2920 	 * If so we can simply poke the RB_WAIT bit
2921 	 * and break the hang. This should work on
2922 	 * all but the second generation chipsets.
2923 	 */
2924 	tmp = I915_READ_CTL(ring);
2925 	if (tmp & RING_WAIT) {
2926 		i915_handle_error(dev, false,
2927 				  "Kicking stuck wait on %s",
2928 				  ring->name);
2929 		I915_WRITE_CTL(ring, tmp);
2930 		return HANGCHECK_KICK;
2931 	}
2932 
2933 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2934 		switch (semaphore_passed(ring)) {
2935 		default:
2936 			return HANGCHECK_HUNG;
2937 		case 1:
2938 			i915_handle_error(dev, false,
2939 					  "Kicking stuck semaphore on %s",
2940 					  ring->name);
2941 			I915_WRITE_CTL(ring, tmp);
2942 			return HANGCHECK_KICK;
2943 		case 0:
2944 			return HANGCHECK_WAIT;
2945 		}
2946 	}
2947 
2948 	return HANGCHECK_HUNG;
2949 }
2950 
2951 /*
2952  * This is called when the chip hasn't reported back with completed
2953  * batchbuffers in a long time. We keep track per ring seqno progress and
2954  * if there are no progress, hangcheck score for that ring is increased.
2955  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2956  * we kick the ring. If we see no progress on three subsequent calls
2957  * we assume chip is wedged and try to fix it by resetting the chip.
2958  */
2959 static void i915_hangcheck_elapsed(struct work_struct *work)
2960 {
2961 	struct drm_i915_private *dev_priv =
2962 		container_of(work, typeof(*dev_priv),
2963 			     gpu_error.hangcheck_work.work);
2964 	struct drm_device *dev = dev_priv->dev;
2965 	struct intel_engine_cs *ring;
2966 	int i;
2967 	int busy_count = 0, rings_hung = 0;
2968 	bool stuck[I915_NUM_RINGS] = { 0 };
2969 #define BUSY 1
2970 #define KICK 5
2971 #define HUNG 20
2972 
2973 	if (!i915.enable_hangcheck)
2974 		return;
2975 
2976 	for_each_ring(ring, dev_priv, i) {
2977 		u64 acthd;
2978 		u32 seqno;
2979 		bool busy = true;
2980 
2981 		semaphore_clear_deadlocks(dev_priv);
2982 
2983 		seqno = ring->get_seqno(ring, false);
2984 		acthd = intel_ring_get_active_head(ring);
2985 
2986 		if (ring->hangcheck.seqno == seqno) {
2987 			if (ring_idle(ring)) {
2988 				ring->hangcheck.action = HANGCHECK_IDLE;
2989 
2990 				if (waitqueue_active(&ring->irq_queue)) {
2991 					/* Issue a wake-up to catch stuck h/w. */
2992 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2993 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2994 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2995 								  ring->name);
2996 						else
2997 							DRM_INFO("Fake missed irq on %s\n",
2998 								 ring->name);
2999 						wake_up_all(&ring->irq_queue);
3000 					}
3001 					/* Safeguard against driver failure */
3002 					ring->hangcheck.score += BUSY;
3003 				} else
3004 					busy = false;
3005 			} else {
3006 				/* We always increment the hangcheck score
3007 				 * if the ring is busy and still processing
3008 				 * the same request, so that no single request
3009 				 * can run indefinitely (such as a chain of
3010 				 * batches). The only time we do not increment
3011 				 * the hangcheck score on this ring, if this
3012 				 * ring is in a legitimate wait for another
3013 				 * ring. In that case the waiting ring is a
3014 				 * victim and we want to be sure we catch the
3015 				 * right culprit. Then every time we do kick
3016 				 * the ring, add a small increment to the
3017 				 * score so that we can catch a batch that is
3018 				 * being repeatedly kicked and so responsible
3019 				 * for stalling the machine.
3020 				 */
3021 				ring->hangcheck.action = ring_stuck(ring,
3022 								    acthd);
3023 
3024 				switch (ring->hangcheck.action) {
3025 				case HANGCHECK_IDLE:
3026 				case HANGCHECK_WAIT:
3027 				case HANGCHECK_ACTIVE:
3028 					break;
3029 				case HANGCHECK_ACTIVE_LOOP:
3030 					ring->hangcheck.score += BUSY;
3031 					break;
3032 				case HANGCHECK_KICK:
3033 					ring->hangcheck.score += KICK;
3034 					break;
3035 				case HANGCHECK_HUNG:
3036 					ring->hangcheck.score += HUNG;
3037 					stuck[i] = true;
3038 					break;
3039 				}
3040 			}
3041 		} else {
3042 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3043 
3044 			/* Gradually reduce the count so that we catch DoS
3045 			 * attempts across multiple batches.
3046 			 */
3047 			if (ring->hangcheck.score > 0)
3048 				ring->hangcheck.score--;
3049 
3050 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3051 		}
3052 
3053 		ring->hangcheck.seqno = seqno;
3054 		ring->hangcheck.acthd = acthd;
3055 		busy_count += busy;
3056 	}
3057 
3058 	for_each_ring(ring, dev_priv, i) {
3059 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3060 			DRM_INFO("%s on %s\n",
3061 				 stuck[i] ? "stuck" : "no progress",
3062 				 ring->name);
3063 			rings_hung++;
3064 		}
3065 	}
3066 
3067 	if (rings_hung)
3068 		return i915_handle_error(dev, true, "Ring hung");
3069 
3070 	if (busy_count)
3071 		/* Reset timer case chip hangs without another request
3072 		 * being added */
3073 		i915_queue_hangcheck(dev);
3074 }
3075 
3076 void i915_queue_hangcheck(struct drm_device *dev)
3077 {
3078 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3079 
3080 	if (!i915.enable_hangcheck)
3081 		return;
3082 
3083 	/* Don't continually defer the hangcheck so that it is always run at
3084 	 * least once after work has been scheduled on any ring. Otherwise,
3085 	 * we will ignore a hung ring if a second ring is kept busy.
3086 	 */
3087 
3088 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3089 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3090 }
3091 
3092 static void ibx_irq_reset(struct drm_device *dev)
3093 {
3094 	struct drm_i915_private *dev_priv = dev->dev_private;
3095 
3096 	if (HAS_PCH_NOP(dev))
3097 		return;
3098 
3099 	GEN5_IRQ_RESET(SDE);
3100 
3101 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3102 		I915_WRITE(SERR_INT, 0xffffffff);
3103 }
3104 
3105 /*
3106  * SDEIER is also touched by the interrupt handler to work around missed PCH
3107  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3108  * instead we unconditionally enable all PCH interrupt sources here, but then
3109  * only unmask them as needed with SDEIMR.
3110  *
3111  * This function needs to be called before interrupts are enabled.
3112  */
3113 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3114 {
3115 	struct drm_i915_private *dev_priv = dev->dev_private;
3116 
3117 	if (HAS_PCH_NOP(dev))
3118 		return;
3119 
3120 	WARN_ON(I915_READ(SDEIER) != 0);
3121 	I915_WRITE(SDEIER, 0xffffffff);
3122 	POSTING_READ(SDEIER);
3123 }
3124 
3125 static void gen5_gt_irq_reset(struct drm_device *dev)
3126 {
3127 	struct drm_i915_private *dev_priv = dev->dev_private;
3128 
3129 	GEN5_IRQ_RESET(GT);
3130 	if (INTEL_INFO(dev)->gen >= 6)
3131 		GEN5_IRQ_RESET(GEN6_PM);
3132 }
3133 
3134 /* drm_dma.h hooks
3135 */
3136 static void ironlake_irq_reset(struct drm_device *dev)
3137 {
3138 	struct drm_i915_private *dev_priv = dev->dev_private;
3139 
3140 	I915_WRITE(HWSTAM, 0xffffffff);
3141 
3142 	GEN5_IRQ_RESET(DE);
3143 	if (IS_GEN7(dev))
3144 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3145 
3146 	gen5_gt_irq_reset(dev);
3147 
3148 	ibx_irq_reset(dev);
3149 }
3150 
3151 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3152 {
3153 	enum i915_pipe pipe;
3154 
3155 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3156 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3157 
3158 	for_each_pipe(dev_priv, pipe)
3159 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3160 
3161 	GEN5_IRQ_RESET(VLV_);
3162 }
3163 
3164 static void valleyview_irq_preinstall(struct drm_device *dev)
3165 {
3166 	struct drm_i915_private *dev_priv = dev->dev_private;
3167 
3168 	/* VLV magic */
3169 	I915_WRITE(VLV_IMR, 0);
3170 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3171 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3172 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3173 
3174 	gen5_gt_irq_reset(dev);
3175 
3176 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3177 
3178 	vlv_display_irq_reset(dev_priv);
3179 }
3180 
3181 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3182 {
3183 	GEN8_IRQ_RESET_NDX(GT, 0);
3184 	GEN8_IRQ_RESET_NDX(GT, 1);
3185 	GEN8_IRQ_RESET_NDX(GT, 2);
3186 	GEN8_IRQ_RESET_NDX(GT, 3);
3187 }
3188 
3189 static void gen8_irq_reset(struct drm_device *dev)
3190 {
3191 	struct drm_i915_private *dev_priv = dev->dev_private;
3192 	int pipe;
3193 
3194 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3195 	POSTING_READ(GEN8_MASTER_IRQ);
3196 
3197 	gen8_gt_irq_reset(dev_priv);
3198 
3199 	for_each_pipe(dev_priv, pipe)
3200 		if (intel_display_power_is_enabled(dev_priv,
3201 						   POWER_DOMAIN_PIPE(pipe)))
3202 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3203 
3204 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3205 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3206 	GEN5_IRQ_RESET(GEN8_PCU_);
3207 
3208 	ibx_irq_reset(dev);
3209 }
3210 
3211 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3212 {
3213 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3214 
3215 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3216 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3217 			  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3218 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3219 			  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3220 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3221 }
3222 
3223 static void cherryview_irq_preinstall(struct drm_device *dev)
3224 {
3225 	struct drm_i915_private *dev_priv = dev->dev_private;
3226 
3227 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3228 	POSTING_READ(GEN8_MASTER_IRQ);
3229 
3230 	gen8_gt_irq_reset(dev_priv);
3231 
3232 	GEN5_IRQ_RESET(GEN8_PCU_);
3233 
3234 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3235 
3236 	vlv_display_irq_reset(dev_priv);
3237 }
3238 
3239 static void ibx_hpd_irq_setup(struct drm_device *dev)
3240 {
3241 	struct drm_i915_private *dev_priv = dev->dev_private;
3242 	struct intel_encoder *intel_encoder;
3243 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3244 
3245 	if (HAS_PCH_IBX(dev)) {
3246 		hotplug_irqs = SDE_HOTPLUG_MASK;
3247 		for_each_intel_encoder(dev, intel_encoder)
3248 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3249 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3250 	} else {
3251 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3252 		for_each_intel_encoder(dev, intel_encoder)
3253 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3254 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3255 	}
3256 
3257 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3258 
3259 	/*
3260 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3261 	 * duration to 2ms (which is the minimum in the Display Port spec)
3262 	 *
3263 	 * This register is the same on all known PCH chips.
3264 	 */
3265 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3266 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3267 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3268 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3269 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3270 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3271 }
3272 
3273 static void ibx_irq_postinstall(struct drm_device *dev)
3274 {
3275 	struct drm_i915_private *dev_priv = dev->dev_private;
3276 	u32 mask;
3277 
3278 	if (HAS_PCH_NOP(dev))
3279 		return;
3280 
3281 	if (HAS_PCH_IBX(dev))
3282 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3283 	else
3284 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3285 
3286 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3287 	I915_WRITE(SDEIMR, ~mask);
3288 }
3289 
3290 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3291 {
3292 	struct drm_i915_private *dev_priv = dev->dev_private;
3293 	u32 pm_irqs, gt_irqs;
3294 
3295 	pm_irqs = gt_irqs = 0;
3296 
3297 	dev_priv->gt_irq_mask = ~0;
3298 	if (HAS_L3_DPF(dev)) {
3299 		/* L3 parity interrupt is always unmasked. */
3300 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3301 		gt_irqs |= GT_PARITY_ERROR(dev);
3302 	}
3303 
3304 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3305 	if (IS_GEN5(dev)) {
3306 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3307 			   ILK_BSD_USER_INTERRUPT;
3308 	} else {
3309 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3310 	}
3311 
3312 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3313 
3314 	if (INTEL_INFO(dev)->gen >= 6) {
3315 		/*
3316 		 * RPS interrupts will get enabled/disabled on demand when RPS
3317 		 * itself is enabled/disabled.
3318 		 */
3319 		if (HAS_VEBOX(dev))
3320 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3321 
3322 		dev_priv->pm_irq_mask = 0xffffffff;
3323 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3324 	}
3325 }
3326 
3327 static int ironlake_irq_postinstall(struct drm_device *dev)
3328 {
3329 	struct drm_i915_private *dev_priv = dev->dev_private;
3330 	u32 display_mask, extra_mask;
3331 
3332 	if (INTEL_INFO(dev)->gen >= 7) {
3333 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3334 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3335 				DE_PLANEB_FLIP_DONE_IVB |
3336 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3337 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3338 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3339 	} else {
3340 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3341 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3342 				DE_AUX_CHANNEL_A |
3343 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3344 				DE_POISON);
3345 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3346 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3347 	}
3348 
3349 	dev_priv->irq_mask = ~display_mask;
3350 
3351 	I915_WRITE(HWSTAM, 0xeffe);
3352 
3353 	ibx_irq_pre_postinstall(dev);
3354 
3355 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3356 
3357 	gen5_gt_irq_postinstall(dev);
3358 
3359 	ibx_irq_postinstall(dev);
3360 
3361 	if (IS_IRONLAKE_M(dev)) {
3362 		/* Enable PCU event interrupts
3363 		 *
3364 		 * spinlocking not required here for correctness since interrupt
3365 		 * setup is guaranteed to run in single-threaded context. But we
3366 		 * need it to make the assert_spin_locked happy. */
3367 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3368 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3369 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3376 {
3377 	u32 pipestat_mask;
3378 	u32 iir_mask;
3379 	enum i915_pipe pipe;
3380 
3381 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3382 			PIPE_FIFO_UNDERRUN_STATUS;
3383 
3384 	for_each_pipe(dev_priv, pipe)
3385 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3386 	POSTING_READ(PIPESTAT(PIPE_A));
3387 
3388 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3389 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3390 
3391 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3392 	for_each_pipe(dev_priv, pipe)
3393 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3394 
3395 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3396 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3397 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3398 	if (IS_CHERRYVIEW(dev_priv))
3399 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3400 	dev_priv->irq_mask &= ~iir_mask;
3401 
3402 	I915_WRITE(VLV_IIR, iir_mask);
3403 	I915_WRITE(VLV_IIR, iir_mask);
3404 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3405 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3406 	POSTING_READ(VLV_IMR);
3407 }
3408 
3409 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3410 {
3411 	u32 pipestat_mask;
3412 	u32 iir_mask;
3413 	enum i915_pipe pipe;
3414 
3415 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3416 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3417 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3418 	if (IS_CHERRYVIEW(dev_priv))
3419 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3420 
3421 	dev_priv->irq_mask |= iir_mask;
3422 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3423 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3424 	I915_WRITE(VLV_IIR, iir_mask);
3425 	I915_WRITE(VLV_IIR, iir_mask);
3426 	POSTING_READ(VLV_IIR);
3427 
3428 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3429 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3430 
3431 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3432 	for_each_pipe(dev_priv, pipe)
3433 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3434 
3435 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3436 			PIPE_FIFO_UNDERRUN_STATUS;
3437 
3438 	for_each_pipe(dev_priv, pipe)
3439 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3440 	POSTING_READ(PIPESTAT(PIPE_A));
3441 }
3442 
3443 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3444 {
3445 	assert_spin_locked(&dev_priv->irq_lock);
3446 
3447 	if (dev_priv->display_irqs_enabled)
3448 		return;
3449 
3450 	dev_priv->display_irqs_enabled = true;
3451 
3452 	if (intel_irqs_enabled(dev_priv))
3453 		valleyview_display_irqs_install(dev_priv);
3454 }
3455 
3456 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3457 {
3458 	assert_spin_locked(&dev_priv->irq_lock);
3459 
3460 	if (!dev_priv->display_irqs_enabled)
3461 		return;
3462 
3463 	dev_priv->display_irqs_enabled = false;
3464 
3465 	if (intel_irqs_enabled(dev_priv))
3466 		valleyview_display_irqs_uninstall(dev_priv);
3467 }
3468 
3469 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3470 {
3471 	dev_priv->irq_mask = ~0;
3472 
3473 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3474 	POSTING_READ(PORT_HOTPLUG_EN);
3475 
3476 	I915_WRITE(VLV_IIR, 0xffffffff);
3477 	I915_WRITE(VLV_IIR, 0xffffffff);
3478 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3479 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3480 	POSTING_READ(VLV_IMR);
3481 
3482 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3483 	 * just to make the assert_spin_locked check happy. */
3484 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3485 	if (dev_priv->display_irqs_enabled)
3486 		valleyview_display_irqs_install(dev_priv);
3487 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3488 }
3489 
3490 static int valleyview_irq_postinstall(struct drm_device *dev)
3491 {
3492 	struct drm_i915_private *dev_priv = dev->dev_private;
3493 
3494 	vlv_display_irq_postinstall(dev_priv);
3495 
3496 	gen5_gt_irq_postinstall(dev);
3497 
3498 	/* ack & enable invalid PTE error interrupts */
3499 #if 0 /* FIXME: add support to irq handler for checking these bits */
3500 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3501 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3502 #endif
3503 
3504 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3505 
3506 	return 0;
3507 }
3508 
3509 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3510 {
3511 	/* These are interrupts we'll toggle with the ring mask register */
3512 	uint32_t gt_interrupts[] = {
3513 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3514 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3515 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3516 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3517 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3518 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3519 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3520 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3521 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3522 		0,
3523 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3524 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3525 		};
3526 
3527 	dev_priv->pm_irq_mask = 0xffffffff;
3528 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3529 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3530 	/*
3531 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3532 	 * is enabled/disabled.
3533 	 */
3534 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3535 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3536 }
3537 
3538 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3539 {
3540 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3541 	uint32_t de_pipe_enables;
3542 	int pipe;
3543 	u32 aux_en = GEN8_AUX_CHANNEL_A;
3544 
3545 	if (IS_GEN9(dev_priv)) {
3546 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3547 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3548 		aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3549 			GEN9_AUX_CHANNEL_D;
3550 	} else
3551 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3552 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3553 
3554 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3555 					   GEN8_PIPE_FIFO_UNDERRUN;
3556 
3557 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3558 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3559 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3560 
3561 	for_each_pipe(dev_priv, pipe)
3562 		if (intel_display_power_is_enabled(dev_priv,
3563 				POWER_DOMAIN_PIPE(pipe)))
3564 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3565 					  dev_priv->de_irq_mask[pipe],
3566 					  de_pipe_enables);
3567 
3568 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3569 }
3570 
3571 static int gen8_irq_postinstall(struct drm_device *dev)
3572 {
3573 	struct drm_i915_private *dev_priv = dev->dev_private;
3574 
3575 	ibx_irq_pre_postinstall(dev);
3576 
3577 	gen8_gt_irq_postinstall(dev_priv);
3578 	gen8_de_irq_postinstall(dev_priv);
3579 
3580 	ibx_irq_postinstall(dev);
3581 
3582 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3583 	POSTING_READ(GEN8_MASTER_IRQ);
3584 
3585 	return 0;
3586 }
3587 
3588 static int cherryview_irq_postinstall(struct drm_device *dev)
3589 {
3590 	struct drm_i915_private *dev_priv = dev->dev_private;
3591 
3592 	vlv_display_irq_postinstall(dev_priv);
3593 
3594 	gen8_gt_irq_postinstall(dev_priv);
3595 
3596 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3597 	POSTING_READ(GEN8_MASTER_IRQ);
3598 
3599 	return 0;
3600 }
3601 
3602 static void gen8_irq_uninstall(struct drm_device *dev)
3603 {
3604 	struct drm_i915_private *dev_priv = dev->dev_private;
3605 
3606 	if (!dev_priv)
3607 		return;
3608 
3609 	gen8_irq_reset(dev);
3610 }
3611 
3612 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3613 {
3614 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3615 	 * just to make the assert_spin_locked check happy. */
3616 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3617 	if (dev_priv->display_irqs_enabled)
3618 		valleyview_display_irqs_uninstall(dev_priv);
3619 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3620 
3621 	vlv_display_irq_reset(dev_priv);
3622 
3623 	dev_priv->irq_mask = ~0;
3624 }
3625 
3626 static void valleyview_irq_uninstall(struct drm_device *dev)
3627 {
3628 	struct drm_i915_private *dev_priv = dev->dev_private;
3629 
3630 	if (!dev_priv)
3631 		return;
3632 
3633 	I915_WRITE(VLV_MASTER_IER, 0);
3634 
3635 	gen5_gt_irq_reset(dev);
3636 
3637 	I915_WRITE(HWSTAM, 0xffffffff);
3638 
3639 	vlv_display_irq_uninstall(dev_priv);
3640 }
3641 
3642 static void cherryview_irq_uninstall(struct drm_device *dev)
3643 {
3644 	struct drm_i915_private *dev_priv = dev->dev_private;
3645 
3646 	if (!dev_priv)
3647 		return;
3648 
3649 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3650 	POSTING_READ(GEN8_MASTER_IRQ);
3651 
3652 	gen8_gt_irq_reset(dev_priv);
3653 
3654 	GEN5_IRQ_RESET(GEN8_PCU_);
3655 
3656 	vlv_display_irq_uninstall(dev_priv);
3657 }
3658 
3659 static void ironlake_irq_uninstall(struct drm_device *dev)
3660 {
3661 	struct drm_i915_private *dev_priv = dev->dev_private;
3662 
3663 	if (!dev_priv)
3664 		return;
3665 
3666 	ironlake_irq_reset(dev);
3667 }
3668 
3669 static void i8xx_irq_preinstall(struct drm_device * dev)
3670 {
3671 	struct drm_i915_private *dev_priv = dev->dev_private;
3672 	int pipe;
3673 
3674 	for_each_pipe(dev_priv, pipe)
3675 		I915_WRITE(PIPESTAT(pipe), 0);
3676 	I915_WRITE16(IMR, 0xffff);
3677 	I915_WRITE16(IER, 0x0);
3678 	POSTING_READ16(IER);
3679 }
3680 
3681 static int i8xx_irq_postinstall(struct drm_device *dev)
3682 {
3683 	struct drm_i915_private *dev_priv = dev->dev_private;
3684 
3685 	I915_WRITE16(EMR,
3686 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3687 
3688 	/* Unmask the interrupts that we always want on. */
3689 	dev_priv->irq_mask =
3690 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3691 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3692 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3693 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3694 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3695 	I915_WRITE16(IMR, dev_priv->irq_mask);
3696 
3697 	I915_WRITE16(IER,
3698 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3699 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3700 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3701 		     I915_USER_INTERRUPT);
3702 	POSTING_READ16(IER);
3703 
3704 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3705 	 * just to make the assert_spin_locked check happy. */
3706 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3707 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3708 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3709 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3710 
3711 	return 0;
3712 }
3713 
3714 /*
3715  * Returns true when a page flip has completed.
3716  */
3717 static bool i8xx_handle_vblank(struct drm_device *dev,
3718 			       int plane, int pipe, u32 iir)
3719 {
3720 	struct drm_i915_private *dev_priv = dev->dev_private;
3721 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3722 
3723 	if (!intel_pipe_handle_vblank(dev, pipe))
3724 		return false;
3725 
3726 	if ((iir & flip_pending) == 0)
3727 		goto check_page_flip;
3728 
3729 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3730 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3731 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3732 	 * the flip is completed (no longer pending). Since this doesn't raise
3733 	 * an interrupt per se, we watch for the change at vblank.
3734 	 */
3735 	if (I915_READ16(ISR) & flip_pending)
3736 		goto check_page_flip;
3737 
3738 	intel_prepare_page_flip(dev, plane);
3739 	intel_finish_page_flip(dev, pipe);
3740 	return true;
3741 
3742 check_page_flip:
3743 	intel_check_page_flip(dev, pipe);
3744 	return false;
3745 }
3746 
3747 static irqreturn_t i8xx_irq_handler(void *arg)
3748 {
3749 	struct drm_device *dev = arg;
3750 	struct drm_i915_private *dev_priv = dev->dev_private;
3751 	u16 iir, new_iir;
3752 	u32 pipe_stats[2];
3753 	int pipe;
3754 	u16 flip_mask =
3755 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3756 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3757 
3758 	if (!intel_irqs_enabled(dev_priv))
3759 		return IRQ_NONE;
3760 
3761 	iir = I915_READ16(IIR);
3762 	if (iir == 0)
3763 		return;
3764 
3765 	while (iir & ~flip_mask) {
3766 		/* Can't rely on pipestat interrupt bit in iir as it might
3767 		 * have been cleared after the pipestat interrupt was received.
3768 		 * It doesn't set the bit in iir again, but it still produces
3769 		 * interrupts (for non-MSI).
3770 		 */
3771 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3772 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3773 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3774 
3775 		for_each_pipe(dev_priv, pipe) {
3776 			int reg = PIPESTAT(pipe);
3777 			pipe_stats[pipe] = I915_READ(reg);
3778 
3779 			/*
3780 			 * Clear the PIPE*STAT regs before the IIR
3781 			 */
3782 			if (pipe_stats[pipe] & 0x8000ffff)
3783 				I915_WRITE(reg, pipe_stats[pipe]);
3784 		}
3785 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3786 
3787 		I915_WRITE16(IIR, iir & ~flip_mask);
3788 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3789 
3790 		if (iir & I915_USER_INTERRUPT)
3791 			notify_ring(dev, &dev_priv->ring[RCS]);
3792 
3793 		for_each_pipe(dev_priv, pipe) {
3794 			int plane = pipe;
3795 			if (HAS_FBC(dev))
3796 				plane = !plane;
3797 
3798 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3799 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3800 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3801 
3802 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3803 				i9xx_pipe_crc_irq_handler(dev, pipe);
3804 
3805 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3806 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3807 								    pipe);
3808 		}
3809 
3810 		iir = new_iir;
3811 	}
3812 
3813 }
3814 
3815 static void i8xx_irq_uninstall(struct drm_device * dev)
3816 {
3817 	struct drm_i915_private *dev_priv = dev->dev_private;
3818 	int pipe;
3819 
3820 	for_each_pipe(dev_priv, pipe) {
3821 		/* Clear enable bits; then clear status bits */
3822 		I915_WRITE(PIPESTAT(pipe), 0);
3823 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3824 	}
3825 	I915_WRITE16(IMR, 0xffff);
3826 	I915_WRITE16(IER, 0x0);
3827 	I915_WRITE16(IIR, I915_READ16(IIR));
3828 }
3829 
3830 static void i915_irq_preinstall(struct drm_device * dev)
3831 {
3832 	struct drm_i915_private *dev_priv = dev->dev_private;
3833 	int pipe;
3834 
3835 	if (I915_HAS_HOTPLUG(dev)) {
3836 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3837 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3838 	}
3839 
3840 	I915_WRITE16(HWSTAM, 0xeffe);
3841 	for_each_pipe(dev_priv, pipe)
3842 		I915_WRITE(PIPESTAT(pipe), 0);
3843 	I915_WRITE(IMR, 0xffffffff);
3844 	I915_WRITE(IER, 0x0);
3845 	POSTING_READ(IER);
3846 }
3847 
3848 static int i915_irq_postinstall(struct drm_device *dev)
3849 {
3850 	struct drm_i915_private *dev_priv = dev->dev_private;
3851 	u32 enable_mask;
3852 
3853 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3854 
3855 	/* Unmask the interrupts that we always want on. */
3856 	dev_priv->irq_mask =
3857 		~(I915_ASLE_INTERRUPT |
3858 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3859 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3860 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3861 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3862 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3863 
3864 	enable_mask =
3865 		I915_ASLE_INTERRUPT |
3866 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3867 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3868 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3869 		I915_USER_INTERRUPT;
3870 
3871 	if (I915_HAS_HOTPLUG(dev)) {
3872 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3873 		POSTING_READ(PORT_HOTPLUG_EN);
3874 
3875 		/* Enable in IER... */
3876 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3877 		/* and unmask in IMR */
3878 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3879 	}
3880 
3881 	I915_WRITE(IMR, dev_priv->irq_mask);
3882 	I915_WRITE(IER, enable_mask);
3883 	POSTING_READ(IER);
3884 
3885 	i915_enable_asle_pipestat(dev);
3886 
3887 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3888 	 * just to make the assert_spin_locked check happy. */
3889 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3890 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3891 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3892 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3893 
3894 	return 0;
3895 }
3896 
3897 /*
3898  * Returns true when a page flip has completed.
3899  */
3900 static bool i915_handle_vblank(struct drm_device *dev,
3901 			       int plane, int pipe, u32 iir)
3902 {
3903 	struct drm_i915_private *dev_priv = dev->dev_private;
3904 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3905 
3906 	if (!intel_pipe_handle_vblank(dev, pipe))
3907 		return false;
3908 
3909 	if ((iir & flip_pending) == 0)
3910 		goto check_page_flip;
3911 
3912 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3913 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3914 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3915 	 * the flip is completed (no longer pending). Since this doesn't raise
3916 	 * an interrupt per se, we watch for the change at vblank.
3917 	 */
3918 	if (I915_READ(ISR) & flip_pending)
3919 		goto check_page_flip;
3920 
3921 	intel_prepare_page_flip(dev, plane);
3922 	intel_finish_page_flip(dev, pipe);
3923 	return true;
3924 
3925 check_page_flip:
3926 	intel_check_page_flip(dev, pipe);
3927 	return false;
3928 }
3929 
3930 static irqreturn_t i915_irq_handler(void *arg)
3931 {
3932 	struct drm_device *dev = arg;
3933 	struct drm_i915_private *dev_priv = dev->dev_private;
3934 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3935 	u32 flip_mask =
3936 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3937 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3938 	int pipe;
3939 
3940 	if (!intel_irqs_enabled(dev_priv))
3941 		return IRQ_NONE;
3942 
3943 	iir = I915_READ(IIR);
3944 	do {
3945 		bool irq_received = (iir & ~flip_mask) != 0;
3946 		bool blc_event = false;
3947 
3948 		/* Can't rely on pipestat interrupt bit in iir as it might
3949 		 * have been cleared after the pipestat interrupt was received.
3950 		 * It doesn't set the bit in iir again, but it still produces
3951 		 * interrupts (for non-MSI).
3952 		 */
3953 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3954 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3955 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3956 
3957 		for_each_pipe(dev_priv, pipe) {
3958 			int reg = PIPESTAT(pipe);
3959 			pipe_stats[pipe] = I915_READ(reg);
3960 
3961 			/* Clear the PIPE*STAT regs before the IIR */
3962 			if (pipe_stats[pipe] & 0x8000ffff) {
3963 				I915_WRITE(reg, pipe_stats[pipe]);
3964 				irq_received = true;
3965 			}
3966 		}
3967 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3968 
3969 		if (!irq_received)
3970 			break;
3971 
3972 		/* Consume port.  Then clear IIR or we'll miss events */
3973 		if (I915_HAS_HOTPLUG(dev) &&
3974 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3975 			i9xx_hpd_irq_handler(dev);
3976 
3977 		I915_WRITE(IIR, iir & ~flip_mask);
3978 		new_iir = I915_READ(IIR); /* Flush posted writes */
3979 
3980 		if (iir & I915_USER_INTERRUPT)
3981 			notify_ring(dev, &dev_priv->ring[RCS]);
3982 
3983 		for_each_pipe(dev_priv, pipe) {
3984 			int plane = pipe;
3985 			if (HAS_FBC(dev))
3986 				plane = !plane;
3987 
3988 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3989 			    i915_handle_vblank(dev, plane, pipe, iir))
3990 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3991 
3992 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3993 				blc_event = true;
3994 
3995 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3996 				i9xx_pipe_crc_irq_handler(dev, pipe);
3997 
3998 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3999 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4000 								    pipe);
4001 		}
4002 
4003 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4004 			intel_opregion_asle_intr(dev);
4005 
4006 		/* With MSI, interrupts are only generated when iir
4007 		 * transitions from zero to nonzero.  If another bit got
4008 		 * set while we were handling the existing iir bits, then
4009 		 * we would never get another interrupt.
4010 		 *
4011 		 * This is fine on non-MSI as well, as if we hit this path
4012 		 * we avoid exiting the interrupt handler only to generate
4013 		 * another one.
4014 		 *
4015 		 * Note that for MSI this could cause a stray interrupt report
4016 		 * if an interrupt landed in the time between writing IIR and
4017 		 * the posting read.  This should be rare enough to never
4018 		 * trigger the 99% of 100,000 interrupts test for disabling
4019 		 * stray interrupts.
4020 		 */
4021 		iir = new_iir;
4022 	} while (iir & ~flip_mask);
4023 
4024 }
4025 
4026 static void i915_irq_uninstall(struct drm_device * dev)
4027 {
4028 	struct drm_i915_private *dev_priv = dev->dev_private;
4029 	int pipe;
4030 
4031 	if (I915_HAS_HOTPLUG(dev)) {
4032 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4033 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4034 	}
4035 
4036 	I915_WRITE16(HWSTAM, 0xffff);
4037 	for_each_pipe(dev_priv, pipe) {
4038 		/* Clear enable bits; then clear status bits */
4039 		I915_WRITE(PIPESTAT(pipe), 0);
4040 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4041 	}
4042 	I915_WRITE(IMR, 0xffffffff);
4043 	I915_WRITE(IER, 0x0);
4044 
4045 	I915_WRITE(IIR, I915_READ(IIR));
4046 }
4047 
4048 static void i965_irq_preinstall(struct drm_device * dev)
4049 {
4050 	struct drm_i915_private *dev_priv = dev->dev_private;
4051 	int pipe;
4052 
4053 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4054 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4055 
4056 	I915_WRITE(HWSTAM, 0xeffe);
4057 	for_each_pipe(dev_priv, pipe)
4058 		I915_WRITE(PIPESTAT(pipe), 0);
4059 	I915_WRITE(IMR, 0xffffffff);
4060 	I915_WRITE(IER, 0x0);
4061 	POSTING_READ(IER);
4062 }
4063 
4064 static int i965_irq_postinstall(struct drm_device *dev)
4065 {
4066 	struct drm_i915_private *dev_priv = dev->dev_private;
4067 	u32 enable_mask;
4068 	u32 error_mask;
4069 
4070 	/* Unmask the interrupts that we always want on. */
4071 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4072 			       I915_DISPLAY_PORT_INTERRUPT |
4073 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4074 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4075 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4076 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4077 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4078 
4079 	enable_mask = ~dev_priv->irq_mask;
4080 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4081 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4082 	enable_mask |= I915_USER_INTERRUPT;
4083 
4084 	if (IS_G4X(dev))
4085 		enable_mask |= I915_BSD_USER_INTERRUPT;
4086 
4087 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4088 	 * just to make the assert_spin_locked check happy. */
4089 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4090 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4091 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4092 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4093 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4094 
4095 	/*
4096 	 * Enable some error detection, note the instruction error mask
4097 	 * bit is reserved, so we leave it masked.
4098 	 */
4099 	if (IS_G4X(dev)) {
4100 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4101 			       GM45_ERROR_MEM_PRIV |
4102 			       GM45_ERROR_CP_PRIV |
4103 			       I915_ERROR_MEMORY_REFRESH);
4104 	} else {
4105 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4106 			       I915_ERROR_MEMORY_REFRESH);
4107 	}
4108 	I915_WRITE(EMR, error_mask);
4109 
4110 	I915_WRITE(IMR, dev_priv->irq_mask);
4111 	I915_WRITE(IER, enable_mask);
4112 	POSTING_READ(IER);
4113 
4114 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4115 	POSTING_READ(PORT_HOTPLUG_EN);
4116 
4117 	i915_enable_asle_pipestat(dev);
4118 
4119 	return 0;
4120 }
4121 
4122 static void i915_hpd_irq_setup(struct drm_device *dev)
4123 {
4124 	struct drm_i915_private *dev_priv = dev->dev_private;
4125 	struct intel_encoder *intel_encoder;
4126 	u32 hotplug_en;
4127 
4128 	assert_spin_locked(&dev_priv->irq_lock);
4129 
4130 	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4131 	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4132 	/* Note HDMI and DP share hotplug bits */
4133 	/* enable bits are the same for all generations */
4134 	for_each_intel_encoder(dev, intel_encoder)
4135 		if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4136 			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4137 	/* Programming the CRT detection parameters tends
4138 	   to generate a spurious hotplug event about three
4139 	   seconds later.  So just do it once.
4140 	*/
4141 	if (IS_G4X(dev))
4142 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4143 	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4144 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4145 
4146 	/* Ignore TV since it's buggy */
4147 	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4148 }
4149 
4150 static irqreturn_t i965_irq_handler(void *arg)
4151 {
4152 	struct drm_device *dev = arg;
4153 	struct drm_i915_private *dev_priv = dev->dev_private;
4154 	u32 iir, new_iir;
4155 	u32 pipe_stats[I915_MAX_PIPES];
4156 	int pipe;
4157 	u32 flip_mask =
4158 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4159 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4160 
4161 	if (!intel_irqs_enabled(dev_priv))
4162 		return IRQ_NONE;
4163 
4164 	iir = I915_READ(IIR);
4165 
4166 	for (;;) {
4167 		bool irq_received = (iir & ~flip_mask) != 0;
4168 		bool blc_event = false;
4169 
4170 		/* Can't rely on pipestat interrupt bit in iir as it might
4171 		 * have been cleared after the pipestat interrupt was received.
4172 		 * It doesn't set the bit in iir again, but it still produces
4173 		 * interrupts (for non-MSI).
4174 		 */
4175 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4176 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4177 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4178 
4179 		for_each_pipe(dev_priv, pipe) {
4180 			int reg = PIPESTAT(pipe);
4181 			pipe_stats[pipe] = I915_READ(reg);
4182 
4183 			/*
4184 			 * Clear the PIPE*STAT regs before the IIR
4185 			 */
4186 			if (pipe_stats[pipe] & 0x8000ffff) {
4187 				I915_WRITE(reg, pipe_stats[pipe]);
4188 				irq_received = true;
4189 			}
4190 		}
4191 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4192 
4193 		if (!irq_received)
4194 			break;
4195 
4196 		/* Consume port.  Then clear IIR or we'll miss events */
4197 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4198 			i9xx_hpd_irq_handler(dev);
4199 
4200 		I915_WRITE(IIR, iir & ~flip_mask);
4201 		new_iir = I915_READ(IIR); /* Flush posted writes */
4202 
4203 		if (iir & I915_USER_INTERRUPT)
4204 			notify_ring(dev, &dev_priv->ring[RCS]);
4205 		if (iir & I915_BSD_USER_INTERRUPT)
4206 			notify_ring(dev, &dev_priv->ring[VCS]);
4207 
4208 		for_each_pipe(dev_priv, pipe) {
4209 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4210 			    i915_handle_vblank(dev, pipe, pipe, iir))
4211 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4212 
4213 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4214 				blc_event = true;
4215 
4216 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4217 				i9xx_pipe_crc_irq_handler(dev, pipe);
4218 
4219 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4220 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4221 		}
4222 
4223 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4224 			intel_opregion_asle_intr(dev);
4225 
4226 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4227 			gmbus_irq_handler(dev);
4228 
4229 		/* With MSI, interrupts are only generated when iir
4230 		 * transitions from zero to nonzero.  If another bit got
4231 		 * set while we were handling the existing iir bits, then
4232 		 * we would never get another interrupt.
4233 		 *
4234 		 * This is fine on non-MSI as well, as if we hit this path
4235 		 * we avoid exiting the interrupt handler only to generate
4236 		 * another one.
4237 		 *
4238 		 * Note that for MSI this could cause a stray interrupt report
4239 		 * if an interrupt landed in the time between writing IIR and
4240 		 * the posting read.  This should be rare enough to never
4241 		 * trigger the 99% of 100,000 interrupts test for disabling
4242 		 * stray interrupts.
4243 		 */
4244 		iir = new_iir;
4245 	}
4246 
4247 }
4248 
4249 static void i965_irq_uninstall(struct drm_device * dev)
4250 {
4251 	struct drm_i915_private *dev_priv = dev->dev_private;
4252 	int pipe;
4253 
4254 	if (!dev_priv)
4255 		return;
4256 
4257 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4258 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4259 
4260 	I915_WRITE(HWSTAM, 0xffffffff);
4261 	for_each_pipe(dev_priv, pipe)
4262 		I915_WRITE(PIPESTAT(pipe), 0);
4263 	I915_WRITE(IMR, 0xffffffff);
4264 	I915_WRITE(IER, 0x0);
4265 
4266 	for_each_pipe(dev_priv, pipe)
4267 		I915_WRITE(PIPESTAT(pipe),
4268 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4269 	I915_WRITE(IIR, I915_READ(IIR));
4270 }
4271 
4272 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4273 {
4274 	struct drm_i915_private *dev_priv =
4275 		container_of(work, typeof(*dev_priv),
4276 			     hotplug_reenable_work.work);
4277 	struct drm_device *dev = dev_priv->dev;
4278 	struct drm_mode_config *mode_config = &dev->mode_config;
4279 	int i;
4280 
4281 	intel_runtime_pm_get(dev_priv);
4282 
4283 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4284 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4285 		struct drm_connector *connector;
4286 
4287 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4288 			continue;
4289 
4290 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4291 
4292 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4293 			struct intel_connector *intel_connector = to_intel_connector(connector);
4294 
4295 			if (intel_connector->encoder->hpd_pin == i) {
4296 				if (connector->polled != intel_connector->polled)
4297 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4298 							 connector->name);
4299 				connector->polled = intel_connector->polled;
4300 				if (!connector->polled)
4301 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4302 			}
4303 		}
4304 	}
4305 	if (dev_priv->display.hpd_irq_setup)
4306 		dev_priv->display.hpd_irq_setup(dev);
4307 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4308 
4309 	intel_runtime_pm_put(dev_priv);
4310 }
4311 
4312 /**
4313  * intel_irq_init - initializes irq support
4314  * @dev_priv: i915 device instance
4315  *
4316  * This function initializes all the irq support including work items, timers
4317  * and all the vtables. It does not setup the interrupt itself though.
4318  */
4319 void intel_irq_init(struct drm_i915_private *dev_priv)
4320 {
4321 	struct drm_device *dev = dev_priv->dev;
4322 
4323 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4324 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4325 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4326 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4327 
4328 	/* Let's track the enabled rps events */
4329 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4330 		/* WaGsvRC0ResidencyMethod:vlv */
4331 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4332 	else
4333 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4334 
4335 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4336 			  i915_hangcheck_elapsed);
4337 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4338 			  intel_hpd_irq_reenable_work);
4339 
4340 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4341 
4342 	if (IS_GEN2(dev_priv)) {
4343 		dev->max_vblank_count = 0;
4344 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4345 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4346 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4347 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4348 	} else {
4349 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4350 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4351 	}
4352 
4353 	/*
4354 	 * Opt out of the vblank disable timer on everything except gen2.
4355 	 * Gen2 doesn't have a hardware frame counter and so depends on
4356 	 * vblank interrupts to produce sane vblank seuquence numbers.
4357 	 */
4358 	if (!IS_GEN2(dev_priv))
4359 		dev->vblank_disable_immediate = true;
4360 
4361 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4362 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4363 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4364 	}
4365 
4366 	if (IS_CHERRYVIEW(dev_priv)) {
4367 		dev->driver->irq_handler = cherryview_irq_handler;
4368 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4369 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4370 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4371 		dev->driver->enable_vblank = valleyview_enable_vblank;
4372 		dev->driver->disable_vblank = valleyview_disable_vblank;
4373 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4374 	} else if (IS_VALLEYVIEW(dev_priv)) {
4375 		dev->driver->irq_handler = valleyview_irq_handler;
4376 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4377 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4378 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4379 		dev->driver->enable_vblank = valleyview_enable_vblank;
4380 		dev->driver->disable_vblank = valleyview_disable_vblank;
4381 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4382 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4383 		dev->driver->irq_handler = gen8_irq_handler;
4384 		dev->driver->irq_preinstall = gen8_irq_reset;
4385 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4386 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4387 		dev->driver->enable_vblank = gen8_enable_vblank;
4388 		dev->driver->disable_vblank = gen8_disable_vblank;
4389 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4390 	} else if (HAS_PCH_SPLIT(dev)) {
4391 		dev->driver->irq_handler = ironlake_irq_handler;
4392 		dev->driver->irq_preinstall = ironlake_irq_reset;
4393 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4394 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4395 		dev->driver->enable_vblank = ironlake_enable_vblank;
4396 		dev->driver->disable_vblank = ironlake_disable_vblank;
4397 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4398 	} else {
4399 		if (INTEL_INFO(dev_priv)->gen == 2) {
4400 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4401 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4402 			dev->driver->irq_handler = i8xx_irq_handler;
4403 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4404 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4405 			dev->driver->irq_preinstall = i915_irq_preinstall;
4406 			dev->driver->irq_postinstall = i915_irq_postinstall;
4407 			dev->driver->irq_uninstall = i915_irq_uninstall;
4408 			dev->driver->irq_handler = i915_irq_handler;
4409 		} else {
4410 			dev->driver->irq_preinstall = i965_irq_preinstall;
4411 			dev->driver->irq_postinstall = i965_irq_postinstall;
4412 			dev->driver->irq_uninstall = i965_irq_uninstall;
4413 			dev->driver->irq_handler = i965_irq_handler;
4414 		}
4415 		if (I915_HAS_HOTPLUG(dev_priv))
4416 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4417 		dev->driver->enable_vblank = i915_enable_vblank;
4418 		dev->driver->disable_vblank = i915_disable_vblank;
4419 	}
4420 }
4421 
4422 /**
4423  * intel_hpd_init - initializes and enables hpd support
4424  * @dev_priv: i915 device instance
4425  *
4426  * This function enables the hotplug support. It requires that interrupts have
4427  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4428  * poll request can run concurrently to other code, so locking rules must be
4429  * obeyed.
4430  *
4431  * This is a separate step from interrupt enabling to simplify the locking rules
4432  * in the driver load and resume code.
4433  */
4434 void intel_hpd_init(struct drm_i915_private *dev_priv)
4435 {
4436 	struct drm_device *dev = dev_priv->dev;
4437 	struct drm_mode_config *mode_config = &dev->mode_config;
4438 	struct drm_connector *connector;
4439 	int i;
4440 
4441 	for (i = 1; i < HPD_NUM_PINS; i++) {
4442 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4443 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4444 	}
4445 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4446 		struct intel_connector *intel_connector = to_intel_connector(connector);
4447 		connector->polled = intel_connector->polled;
4448 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4449 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4450 	}
4451 
4452 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4453 	 * just to make the assert_spin_locked checks happy. */
4454 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4455 	if (dev_priv->display.hpd_irq_setup)
4456 		dev_priv->display.hpd_irq_setup(dev);
4457 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4458 }
4459 
4460 /**
4461  * intel_irq_install - enables the hardware interrupt
4462  * @dev_priv: i915 device instance
4463  *
4464  * This function enables the hardware interrupt handling, but leaves the hotplug
4465  * handling still disabled. It is called after intel_irq_init().
4466  *
4467  * In the driver load and resume code we need working interrupts in a few places
4468  * but don't want to deal with the hassle of concurrent probe and hotplug
4469  * workers. Hence the split into this two-stage approach.
4470  */
4471 int intel_irq_install(struct drm_i915_private *dev_priv)
4472 {
4473 	/*
4474 	 * We enable some interrupt sources in our postinstall hooks, so mark
4475 	 * interrupts as enabled _before_ actually enabling them to avoid
4476 	 * special cases in our ordering checks.
4477 	 */
4478 	dev_priv->pm.irqs_enabled = true;
4479 
4480 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4481 }
4482 
4483 /**
4484  * intel_irq_uninstall - finilizes all irq handling
4485  * @dev_priv: i915 device instance
4486  *
4487  * This stops interrupt and hotplug handling and unregisters and frees all
4488  * resources acquired in the init functions.
4489  */
4490 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4491 {
4492 	drm_irq_uninstall(dev_priv->dev);
4493 	intel_hpd_cancel_work(dev_priv);
4494 	dev_priv->pm.irqs_enabled = false;
4495 }
4496 
4497 /**
4498  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4499  * @dev_priv: i915 device instance
4500  *
4501  * This function is used to disable interrupts at runtime, both in the runtime
4502  * pm and the system suspend/resume code.
4503  */
4504 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4505 {
4506 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4507 	dev_priv->pm.irqs_enabled = false;
4508 #if 0
4509 	synchronize_irq(dev_priv->dev->irq);
4510 #endif
4511 }
4512 
4513 /**
4514  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4515  * @dev_priv: i915 device instance
4516  *
4517  * This function is used to enable interrupts at runtime, both in the runtime
4518  * pm and the system suspend/resume code.
4519  */
4520 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4521 {
4522 	dev_priv->pm.irqs_enabled = true;
4523 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4524 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4525 }
4526