xref: /dragonfly/sys/dev/drm/i915/i915_irq.c (revision cad2e385)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 static const u32 hpd_ibx[] = {
36 	[HPD_CRT] = SDE_CRT_HOTPLUG,
37 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
38 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
39 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
40 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
41 };
42 
43 static const u32 hpd_cpt[] = {
44 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
45 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
46 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
47 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
48 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
49 };
50 
51 static const u32 hpd_mask_i915[] = {
52 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
53 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
54 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
55 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
56 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
57 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
58 };
59 
60 static const u32 hpd_status_g4x[] = {
61 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
62 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
63 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
64 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
65 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
66 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
67 };
68 
69 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
70 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
71 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
72 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
73 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
74 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
75 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
76 };
77 
78 /* IIR can theoretically queue up two events. Be paranoid. */
79 #define GEN8_IRQ_RESET_NDX(type, which) do { \
80 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
81 	POSTING_READ(GEN8_##type##_IMR(which)); \
82 	I915_WRITE(GEN8_##type##_IER(which), 0); \
83 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
84 	POSTING_READ(GEN8_##type##_IIR(which)); \
85 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IIR(which)); \
87 } while (0)
88 
89 #define GEN5_IRQ_RESET(type) do { \
90 	I915_WRITE(type##IMR, 0xffffffff); \
91 	POSTING_READ(type##IMR); \
92 	I915_WRITE(type##IER, 0); \
93 	I915_WRITE(type##IIR, 0xffffffff); \
94 	POSTING_READ(type##IIR); \
95 	I915_WRITE(type##IIR, 0xffffffff); \
96 	POSTING_READ(type##IIR); \
97 } while (0)
98 
99 /*
100  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
101  */
102 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
103 	u32 val = I915_READ(reg); \
104 	if (val) { \
105 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
106 		     (reg), val); \
107 		I915_WRITE((reg), 0xffffffff); \
108 		POSTING_READ(reg); \
109 		I915_WRITE((reg), 0xffffffff); \
110 		POSTING_READ(reg); \
111 	} \
112 } while (0)
113 
114 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
115 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
116 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
117 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
118 	POSTING_READ(GEN8_##type##_IER(which)); \
119 } while (0)
120 
121 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
122 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
123 	I915_WRITE(type##IMR, (imr_val)); \
124 	I915_WRITE(type##IER, (ier_val)); \
125 	POSTING_READ(type##IER); \
126 } while (0)
127 
128 /* For display hotplug interrupt */
129 static void
130 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
131 {
132 	assert_spin_locked(&dev_priv->irq_lock);
133 
134 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
135 		return;
136 
137 	if ((dev_priv->irq_mask & mask) != 0) {
138 		dev_priv->irq_mask &= ~mask;
139 		I915_WRITE(DEIMR, dev_priv->irq_mask);
140 		POSTING_READ(DEIMR);
141 	}
142 }
143 
144 static void
145 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 	assert_spin_locked(&dev_priv->irq_lock);
148 
149 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150 		return;
151 
152 	if ((dev_priv->irq_mask & mask) != mask) {
153 		dev_priv->irq_mask |= mask;
154 		I915_WRITE(DEIMR, dev_priv->irq_mask);
155 		POSTING_READ(DEIMR);
156 	}
157 }
158 
159 /**
160  * ilk_update_gt_irq - update GTIMR
161  * @dev_priv: driver private
162  * @interrupt_mask: mask of interrupt bits to update
163  * @enabled_irq_mask: mask of interrupt bits to enable
164  */
165 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
166 			      uint32_t interrupt_mask,
167 			      uint32_t enabled_irq_mask)
168 {
169 	assert_spin_locked(&dev_priv->irq_lock);
170 
171 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
172 		return;
173 
174 	dev_priv->gt_irq_mask &= ~interrupt_mask;
175 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
176 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
177 	POSTING_READ(GTIMR);
178 }
179 
180 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
181 {
182 	ilk_update_gt_irq(dev_priv, mask, mask);
183 }
184 
185 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, 0);
188 }
189 
190 /**
191   * snb_update_pm_irq - update GEN6_PMIMR
192   * @dev_priv: driver private
193   * @interrupt_mask: mask of interrupt bits to update
194   * @enabled_irq_mask: mask of interrupt bits to enable
195   */
196 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
197 			      uint32_t interrupt_mask,
198 			      uint32_t enabled_irq_mask)
199 {
200 	uint32_t new_val;
201 
202 	assert_spin_locked(&dev_priv->irq_lock);
203 
204 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
205 		return;
206 
207 	new_val = dev_priv->pm_irq_mask;
208 	new_val &= ~interrupt_mask;
209 	new_val |= (~enabled_irq_mask & interrupt_mask);
210 
211 	if (new_val != dev_priv->pm_irq_mask) {
212 		dev_priv->pm_irq_mask = new_val;
213 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
214 		POSTING_READ(GEN6_PMIMR);
215 	}
216 }
217 
218 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
219 {
220 	snb_update_pm_irq(dev_priv, mask, mask);
221 }
222 
223 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, 0);
226 }
227 
228 static bool ivb_can_enable_err_int(struct drm_device *dev)
229 {
230 	struct drm_i915_private *dev_priv = dev->dev_private;
231 	struct intel_crtc *crtc;
232 	enum i915_pipe pipe;
233 
234 	assert_spin_locked(&dev_priv->irq_lock);
235 
236 	for_each_pipe(dev_priv, pipe) {
237 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
238 
239 		if (crtc->cpu_fifo_underrun_disabled)
240 			return false;
241 	}
242 
243 	return true;
244 }
245 
246 /**
247   * bdw_update_pm_irq - update GT interrupt 2
248   * @dev_priv: driver private
249   * @interrupt_mask: mask of interrupt bits to update
250   * @enabled_irq_mask: mask of interrupt bits to enable
251   *
252   * Copied from the snb function, updated with relevant register offsets
253   */
254 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
255 			      uint32_t interrupt_mask,
256 			      uint32_t enabled_irq_mask)
257 {
258 	uint32_t new_val;
259 
260 	assert_spin_locked(&dev_priv->irq_lock);
261 
262 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263 		return;
264 
265 	new_val = dev_priv->pm_irq_mask;
266 	new_val &= ~interrupt_mask;
267 	new_val |= (~enabled_irq_mask & interrupt_mask);
268 
269 	if (new_val != dev_priv->pm_irq_mask) {
270 		dev_priv->pm_irq_mask = new_val;
271 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
272 		POSTING_READ(GEN8_GT_IMR(2));
273 	}
274 }
275 
276 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 	bdw_update_pm_irq(dev_priv, mask, mask);
279 }
280 
281 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, 0);
284 }
285 
286 static bool cpt_can_enable_serr_int(struct drm_device *dev)
287 {
288 	struct drm_i915_private *dev_priv = dev->dev_private;
289 	enum i915_pipe pipe;
290 	struct intel_crtc *crtc;
291 
292 	assert_spin_locked(&dev_priv->irq_lock);
293 
294 	for_each_pipe(dev_priv, pipe) {
295 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
296 
297 		if (crtc->pch_fifo_underrun_disabled)
298 			return false;
299 	}
300 
301 	return true;
302 }
303 
304 void i9xx_check_fifo_underruns(struct drm_device *dev)
305 {
306 	struct drm_i915_private *dev_priv = dev->dev_private;
307 	struct intel_crtc *crtc;
308 
309 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
310 
311 	for_each_intel_crtc(dev, crtc) {
312 		u32 reg = PIPESTAT(crtc->pipe);
313 		u32 pipestat;
314 
315 		if (crtc->cpu_fifo_underrun_disabled)
316 			continue;
317 
318 		pipestat = I915_READ(reg) & 0xffff0000;
319 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
320 			continue;
321 
322 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
323 		POSTING_READ(reg);
324 
325 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
326 	}
327 
328 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
329 }
330 
331 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
332 					     enum i915_pipe pipe,
333 					     bool enable, bool old)
334 {
335 	struct drm_i915_private *dev_priv = dev->dev_private;
336 	u32 reg = PIPESTAT(pipe);
337 	u32 pipestat = I915_READ(reg) & 0xffff0000;
338 
339 	assert_spin_locked(&dev_priv->irq_lock);
340 
341 	if (enable) {
342 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
343 		POSTING_READ(reg);
344 	} else {
345 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
346 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
347 	}
348 }
349 
350 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
351 						 enum i915_pipe pipe, bool enable)
352 {
353 	struct drm_i915_private *dev_priv = dev->dev_private;
354 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
355 					  DE_PIPEB_FIFO_UNDERRUN;
356 
357 	if (enable)
358 		ironlake_enable_display_irq(dev_priv, bit);
359 	else
360 		ironlake_disable_display_irq(dev_priv, bit);
361 }
362 
363 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
364 						  enum i915_pipe pipe,
365 						  bool enable, bool old)
366 {
367 	struct drm_i915_private *dev_priv = dev->dev_private;
368 	if (enable) {
369 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
370 
371 		if (!ivb_can_enable_err_int(dev))
372 			return;
373 
374 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
375 	} else {
376 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
377 
378 		if (old &&
379 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
380 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
381 				  pipe_name(pipe));
382 		}
383 	}
384 }
385 
386 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
387 						  enum i915_pipe pipe, bool enable)
388 {
389 	struct drm_i915_private *dev_priv = dev->dev_private;
390 
391 	assert_spin_locked(&dev_priv->irq_lock);
392 
393 	if (enable)
394 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
395 	else
396 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
397 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
398 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
399 }
400 
401 /**
402  * ibx_display_interrupt_update - update SDEIMR
403  * @dev_priv: driver private
404  * @interrupt_mask: mask of interrupt bits to update
405  * @enabled_irq_mask: mask of interrupt bits to enable
406  */
407 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
408 					 uint32_t interrupt_mask,
409 					 uint32_t enabled_irq_mask)
410 {
411 	uint32_t sdeimr = I915_READ(SDEIMR);
412 	sdeimr &= ~interrupt_mask;
413 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
414 
415 	assert_spin_locked(&dev_priv->irq_lock);
416 
417 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
418 		return;
419 
420 	I915_WRITE(SDEIMR, sdeimr);
421 	POSTING_READ(SDEIMR);
422 }
423 #define ibx_enable_display_interrupt(dev_priv, bits) \
424 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
425 #define ibx_disable_display_interrupt(dev_priv, bits) \
426 	ibx_display_interrupt_update((dev_priv), (bits), 0)
427 
428 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
429 					    enum transcoder pch_transcoder,
430 					    bool enable)
431 {
432 	struct drm_i915_private *dev_priv = dev->dev_private;
433 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
434 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
435 
436 	if (enable)
437 		ibx_enable_display_interrupt(dev_priv, bit);
438 	else
439 		ibx_disable_display_interrupt(dev_priv, bit);
440 }
441 
442 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
443 					    enum transcoder pch_transcoder,
444 					    bool enable, bool old)
445 {
446 	struct drm_i915_private *dev_priv = dev->dev_private;
447 
448 	if (enable) {
449 		I915_WRITE(SERR_INT,
450 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
451 
452 		if (!cpt_can_enable_serr_int(dev))
453 			return;
454 
455 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
456 	} else {
457 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
458 
459 		if (old && I915_READ(SERR_INT) &
460 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
461 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
462 				  transcoder_name(pch_transcoder));
463 		}
464 	}
465 }
466 
467 /**
468  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
469  * @dev: drm device
470  * @pipe: pipe
471  * @enable: true if we want to report FIFO underrun errors, false otherwise
472  *
473  * This function makes us disable or enable CPU fifo underruns for a specific
474  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
475  * reporting for one pipe may also disable all the other CPU error interruts for
476  * the other pipes, due to the fact that there's just one interrupt mask/enable
477  * bit for all the pipes.
478  *
479  * Returns the previous state of underrun reporting.
480  */
481 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
482 						    enum i915_pipe pipe, bool enable)
483 {
484 	struct drm_i915_private *dev_priv = dev->dev_private;
485 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
486 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
487 	bool old;
488 
489 	assert_spin_locked(&dev_priv->irq_lock);
490 
491 	old = !intel_crtc->cpu_fifo_underrun_disabled;
492 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
493 
494 	if (HAS_GMCH_DISPLAY(dev))
495 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
496 	else if (IS_GEN5(dev) || IS_GEN6(dev))
497 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
498 	else if (IS_GEN7(dev))
499 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
500 	else if (IS_GEN8(dev))
501 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
502 
503 	return old;
504 }
505 
506 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
507 					   enum i915_pipe pipe, bool enable)
508 {
509 	struct drm_i915_private *dev_priv = dev->dev_private;
510 	bool ret;
511 
512 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
513 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
514 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
515 
516 	return ret;
517 }
518 
519 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
520 						  enum i915_pipe pipe)
521 {
522 	struct drm_i915_private *dev_priv = dev->dev_private;
523 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
524 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
525 
526 	return !intel_crtc->cpu_fifo_underrun_disabled;
527 }
528 
529 /**
530  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
531  * @dev: drm device
532  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
533  * @enable: true if we want to report FIFO underrun errors, false otherwise
534  *
535  * This function makes us disable or enable PCH fifo underruns for a specific
536  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
537  * underrun reporting for one transcoder may also disable all the other PCH
538  * error interruts for the other transcoders, due to the fact that there's just
539  * one interrupt mask/enable bit for all the transcoders.
540  *
541  * Returns the previous state of underrun reporting.
542  */
543 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
544 					   enum transcoder pch_transcoder,
545 					   bool enable)
546 {
547 	struct drm_i915_private *dev_priv = dev->dev_private;
548 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
549 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
550 	bool old;
551 
552 	/*
553 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
554 	 * has only one pch transcoder A that all pipes can use. To avoid racy
555 	 * pch transcoder -> pipe lookups from interrupt code simply store the
556 	 * underrun statistics in crtc A. Since we never expose this anywhere
557 	 * nor use it outside of the fifo underrun code here using the "wrong"
558 	 * crtc on LPT won't cause issues.
559 	 */
560 
561 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
562 
563 	old = !intel_crtc->pch_fifo_underrun_disabled;
564 	intel_crtc->pch_fifo_underrun_disabled = !enable;
565 
566 	if (HAS_PCH_IBX(dev))
567 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
568 	else
569 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
570 
571 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
572 	return old;
573 }
574 
575 static void
576 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
577 		       u32 enable_mask, u32 status_mask)
578 {
579 	u32 reg = PIPESTAT(pipe);
580 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
581 
582 	assert_spin_locked(&dev_priv->irq_lock);
583 
584 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
585 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
586 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
587 		      pipe_name(pipe), enable_mask, status_mask))
588 		return;
589 
590 	if ((pipestat & enable_mask) == enable_mask)
591 		return;
592 
593 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
594 
595 	/* Enable the interrupt, clear any pending status */
596 	pipestat |= enable_mask | status_mask;
597 	I915_WRITE(reg, pipestat);
598 	POSTING_READ(reg);
599 }
600 
601 static void
602 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
603 		        u32 enable_mask, u32 status_mask)
604 {
605 	u32 reg = PIPESTAT(pipe);
606 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
607 
608 	assert_spin_locked(&dev_priv->irq_lock);
609 
610 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
611 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
612 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
613 		      pipe_name(pipe), enable_mask, status_mask))
614 		return;
615 
616 	if ((pipestat & enable_mask) == 0)
617 		return;
618 
619 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
620 
621 	pipestat &= ~enable_mask;
622 	I915_WRITE(reg, pipestat);
623 	POSTING_READ(reg);
624 }
625 
626 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
627 {
628 	u32 enable_mask = status_mask << 16;
629 
630 	/*
631 	 * On pipe A we don't support the PSR interrupt yet,
632 	 * on pipe B and C the same bit MBZ.
633 	 */
634 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
635 		return 0;
636 	/*
637 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
638 	 * A the same bit is for perf counters which we don't use either.
639 	 */
640 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
641 		return 0;
642 
643 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
644 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
645 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
646 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
647 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
648 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
649 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
650 
651 	return enable_mask;
652 }
653 
654 void
655 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
656 		     u32 status_mask)
657 {
658 	u32 enable_mask;
659 
660 	if (IS_VALLEYVIEW(dev_priv->dev))
661 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
662 							   status_mask);
663 	else
664 		enable_mask = status_mask << 16;
665 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
666 }
667 
668 void
669 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
670 		      u32 status_mask)
671 {
672 	u32 enable_mask;
673 
674 	if (IS_VALLEYVIEW(dev_priv->dev))
675 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
676 							   status_mask);
677 	else
678 		enable_mask = status_mask << 16;
679 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
680 }
681 
682 /**
683  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
684  */
685 static void i915_enable_asle_pipestat(struct drm_device *dev)
686 {
687 	struct drm_i915_private *dev_priv = dev->dev_private;
688 
689 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
690 		return;
691 
692 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
693 
694 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
695 	if (INTEL_INFO(dev)->gen >= 4)
696 		i915_enable_pipestat(dev_priv, PIPE_A,
697 				     PIPE_LEGACY_BLC_EVENT_STATUS);
698 
699 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
700 }
701 
702 /**
703  * i915_pipe_enabled - check if a pipe is enabled
704  * @dev: DRM device
705  * @pipe: pipe to check
706  *
707  * Reading certain registers when the pipe is disabled can hang the chip.
708  * Use this routine to make sure the PLL is running and the pipe is active
709  * before reading such registers if unsure.
710  */
711 static int
712 i915_pipe_enabled(struct drm_device *dev, int pipe)
713 {
714 	struct drm_i915_private *dev_priv = dev->dev_private;
715 
716 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
717 		/* Locking is horribly broken here, but whatever. */
718 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
719 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
720 
721 		return intel_crtc->active;
722 	} else {
723 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
724 	}
725 }
726 
727 /*
728  * This timing diagram depicts the video signal in and
729  * around the vertical blanking period.
730  *
731  * Assumptions about the fictitious mode used in this example:
732  *  vblank_start >= 3
733  *  vsync_start = vblank_start + 1
734  *  vsync_end = vblank_start + 2
735  *  vtotal = vblank_start + 3
736  *
737  *           start of vblank:
738  *           latch double buffered registers
739  *           increment frame counter (ctg+)
740  *           generate start of vblank interrupt (gen4+)
741  *           |
742  *           |          frame start:
743  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
744  *           |          may be shifted forward 1-3 extra lines via PIPECONF
745  *           |          |
746  *           |          |  start of vsync:
747  *           |          |  generate vsync interrupt
748  *           |          |  |
749  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
750  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
751  * ----va---> <-----------------vb--------------------> <--------va-------------
752  *       |          |       <----vs----->                     |
753  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
754  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
755  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
756  *       |          |                                         |
757  *       last visible pixel                                   first visible pixel
758  *                  |                                         increment frame counter (gen3/4)
759  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
760  *
761  * x  = horizontal active
762  * _  = horizontal blanking
763  * hs = horizontal sync
764  * va = vertical active
765  * vb = vertical blanking
766  * vs = vertical sync
767  * vbs = vblank_start (number)
768  *
769  * Summary:
770  * - most events happen at the start of horizontal sync
771  * - frame start happens at the start of horizontal blank, 1-4 lines
772  *   (depending on PIPECONF settings) after the start of vblank
773  * - gen3/4 pixel and frame counter are synchronized with the start
774  *   of horizontal active on the first line of vertical active
775  */
776 
777 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
778 {
779 	/* Gen2 doesn't have a hardware frame counter */
780 	return 0;
781 }
782 
783 /* Called from drm generic code, passed a 'crtc', which
784  * we use as a pipe index
785  */
786 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
787 {
788 	struct drm_i915_private *dev_priv = dev->dev_private;
789 	unsigned long high_frame;
790 	unsigned long low_frame;
791 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
792 
793 	if (!i915_pipe_enabled(dev, pipe)) {
794 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
795 				"pipe %c\n", pipe_name(pipe));
796 		return 0;
797 	}
798 
799 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
800 		struct intel_crtc *intel_crtc =
801 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
802 		const struct drm_display_mode *mode =
803 			&intel_crtc->config.adjusted_mode;
804 
805 		htotal = mode->crtc_htotal;
806 		hsync_start = mode->crtc_hsync_start;
807 		vbl_start = mode->crtc_vblank_start;
808 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
809 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
810 	} else {
811 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
812 
813 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
814 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
815 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
816 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
817 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
818 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 	}
820 
821 	/* Convert to pixel count */
822 	vbl_start *= htotal;
823 
824 	/* Start of vblank event occurs at start of hsync */
825 	vbl_start -= htotal - hsync_start;
826 
827 	high_frame = PIPEFRAME(pipe);
828 	low_frame = PIPEFRAMEPIXEL(pipe);
829 
830 	/*
831 	 * High & low register fields aren't synchronized, so make sure
832 	 * we get a low value that's stable across two reads of the high
833 	 * register.
834 	 */
835 	do {
836 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
837 		low   = I915_READ(low_frame);
838 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
839 	} while (high1 != high2);
840 
841 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
842 	pixel = low & PIPE_PIXEL_MASK;
843 	low >>= PIPE_FRAME_LOW_SHIFT;
844 
845 	/*
846 	 * The frame counter increments at beginning of active.
847 	 * Cook up a vblank counter by also checking the pixel
848 	 * counter against vblank start.
849 	 */
850 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
851 }
852 
853 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
854 {
855 	struct drm_i915_private *dev_priv = dev->dev_private;
856 	int reg = PIPE_FRMCOUNT_GM45(pipe);
857 
858 	if (!i915_pipe_enabled(dev, pipe)) {
859 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
860 				 "pipe %c\n", pipe_name(pipe));
861 		return 0;
862 	}
863 
864 	return I915_READ(reg);
865 }
866 
867 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
868 #define __raw_i915_read32(dev_priv__, reg__) DRM_READ32(dev_priv__->mmio_map, reg__)
869 
870 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
871 {
872 	struct drm_device *dev = crtc->base.dev;
873 	struct drm_i915_private *dev_priv = dev->dev_private;
874 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
875 	enum i915_pipe pipe = crtc->pipe;
876 	int position, vtotal;
877 
878 	vtotal = mode->crtc_vtotal;
879 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
880 		vtotal /= 2;
881 
882 	if (IS_GEN2(dev))
883 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
884 	else
885 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
886 
887 	/*
888 	 * See update_scanline_offset() for the details on the
889 	 * scanline_offset adjustment.
890 	 */
891 	return (position + crtc->scanline_offset) % vtotal;
892 }
893 
894 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
895 				    unsigned int flags, int *vpos, int *hpos,
896 				    ktime_t *stime, ktime_t *etime)
897 {
898 	struct drm_i915_private *dev_priv = dev->dev_private;
899 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
900 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
901 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
902 	int position;
903 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
904 	bool in_vbl = true;
905 	int ret = 0;
906 
907 	if (!intel_crtc->active) {
908 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
909 				 "pipe %c\n", pipe_name(pipe));
910 		return 0;
911 	}
912 
913 	htotal = mode->crtc_htotal;
914 	hsync_start = mode->crtc_hsync_start;
915 	vtotal = mode->crtc_vtotal;
916 	vbl_start = mode->crtc_vblank_start;
917 	vbl_end = mode->crtc_vblank_end;
918 
919 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
920 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
921 		vbl_end /= 2;
922 		vtotal /= 2;
923 	}
924 
925 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
926 
927 	/*
928 	 * Lock uncore.lock, as we will do multiple timing critical raw
929 	 * register reads, potentially with preemption disabled, so the
930 	 * following code must not block on uncore.lock.
931 	 */
932 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
933 
934 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
935 
936 	/* Get optional system timestamp before query. */
937 	if (stime)
938 		*stime = ktime_get();
939 
940 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
941 		/* No obvious pixelcount register. Only query vertical
942 		 * scanout position from Display scan line register.
943 		 */
944 		position = __intel_get_crtc_scanline(intel_crtc);
945 	} else {
946 		/* Have access to pixelcount since start of frame.
947 		 * We can split this into vertical and horizontal
948 		 * scanout position.
949 		 */
950 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
951 
952 		/* convert to pixel counts */
953 		vbl_start *= htotal;
954 		vbl_end *= htotal;
955 		vtotal *= htotal;
956 
957 		/*
958 		 * In interlaced modes, the pixel counter counts all pixels,
959 		 * so one field will have htotal more pixels. In order to avoid
960 		 * the reported position from jumping backwards when the pixel
961 		 * counter is beyond the length of the shorter field, just
962 		 * clamp the position the length of the shorter field. This
963 		 * matches how the scanline counter based position works since
964 		 * the scanline counter doesn't count the two half lines.
965 		 */
966 		if (position >= vtotal)
967 			position = vtotal - 1;
968 
969 		/*
970 		 * Start of vblank interrupt is triggered at start of hsync,
971 		 * just prior to the first active line of vblank. However we
972 		 * consider lines to start at the leading edge of horizontal
973 		 * active. So, should we get here before we've crossed into
974 		 * the horizontal active of the first line in vblank, we would
975 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
976 		 * always add htotal-hsync_start to the current pixel position.
977 		 */
978 		position = (position + htotal - hsync_start) % vtotal;
979 	}
980 
981 	/* Get optional system timestamp after query. */
982 	if (etime)
983 		*etime = ktime_get();
984 
985 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
986 
987 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
988 
989 	in_vbl = position >= vbl_start && position < vbl_end;
990 
991 	/*
992 	 * While in vblank, position will be negative
993 	 * counting up towards 0 at vbl_end. And outside
994 	 * vblank, position will be positive counting
995 	 * up since vbl_end.
996 	 */
997 	if (position >= vbl_start)
998 		position -= vbl_end;
999 	else
1000 		position += vtotal - vbl_end;
1001 
1002 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1003 		*vpos = position;
1004 		*hpos = 0;
1005 	} else {
1006 		*vpos = position / htotal;
1007 		*hpos = position - (*vpos * htotal);
1008 	}
1009 
1010 	/* In vblank? */
1011 	if (in_vbl)
1012 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
1013 
1014 	return ret;
1015 }
1016 
1017 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1018 {
1019 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1020 	int position;
1021 
1022 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
1023 	position = __intel_get_crtc_scanline(crtc);
1024 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
1025 
1026 	return position;
1027 }
1028 
1029 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1030 			      int *max_error,
1031 			      struct timeval *vblank_time,
1032 			      unsigned flags)
1033 {
1034 	struct drm_crtc *crtc;
1035 
1036 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1037 		DRM_ERROR("Invalid crtc %d\n", pipe);
1038 		return -EINVAL;
1039 	}
1040 
1041 	/* Get drm_crtc to timestamp: */
1042 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1043 	if (crtc == NULL) {
1044 		DRM_ERROR("Invalid crtc %d\n", pipe);
1045 		return -EINVAL;
1046 	}
1047 
1048 	if (!crtc->enabled) {
1049 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1050 		return -EBUSY;
1051 	}
1052 
1053 	/* Helper routine in DRM core does all the work: */
1054 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1055 						     vblank_time, flags,
1056 						     crtc,
1057 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1058 }
1059 
1060 static bool intel_hpd_irq_event(struct drm_device *dev,
1061 				struct drm_connector *connector)
1062 {
1063 	enum drm_connector_status old_status;
1064 
1065 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1066 	old_status = connector->status;
1067 
1068 	connector->status = connector->funcs->detect(connector, false);
1069 	if (old_status == connector->status)
1070 		return false;
1071 
1072 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1073 		      connector->base.id,
1074 		      connector->name,
1075 		      drm_get_connector_status_name(old_status),
1076 		      drm_get_connector_status_name(connector->status));
1077 
1078 	return true;
1079 }
1080 
1081 static void i915_digport_work_func(struct work_struct *work)
1082 {
1083 	struct drm_i915_private *dev_priv =
1084 		container_of(work, struct drm_i915_private, dig_port_work);
1085 	u32 long_port_mask, short_port_mask;
1086 	struct intel_digital_port *intel_dig_port;
1087 	int i, ret;
1088 	u32 old_bits = 0;
1089 
1090 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1091 	long_port_mask = dev_priv->long_hpd_port_mask;
1092 	dev_priv->long_hpd_port_mask = 0;
1093 	short_port_mask = dev_priv->short_hpd_port_mask;
1094 	dev_priv->short_hpd_port_mask = 0;
1095 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1096 
1097 	for (i = 0; i < I915_MAX_PORTS; i++) {
1098 		bool valid = false;
1099 		bool long_hpd = false;
1100 		intel_dig_port = dev_priv->hpd_irq_port[i];
1101 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1102 			continue;
1103 
1104 		if (long_port_mask & (1 << i))  {
1105 			valid = true;
1106 			long_hpd = true;
1107 		} else if (short_port_mask & (1 << i))
1108 			valid = true;
1109 
1110 		if (valid) {
1111 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1112 			if (ret == true) {
1113 				/* if we get true fallback to old school hpd */
1114 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
1115 			}
1116 		}
1117 	}
1118 
1119 	if (old_bits) {
1120 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1121 		dev_priv->hpd_event_bits |= old_bits;
1122 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1123 		schedule_work(&dev_priv->hotplug_work);
1124 	}
1125 }
1126 
1127 /*
1128  * Handle hotplug events outside the interrupt handler proper.
1129  */
1130 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1131 
1132 static void i915_hotplug_work_func(struct work_struct *work)
1133 {
1134 	struct drm_i915_private *dev_priv =
1135 		container_of(work, struct drm_i915_private, hotplug_work);
1136 	struct drm_device *dev = dev_priv->dev;
1137 	struct drm_mode_config *mode_config = &dev->mode_config;
1138 	struct intel_connector *intel_connector;
1139 	struct intel_encoder *intel_encoder;
1140 	struct drm_connector *connector;
1141 	bool hpd_disabled = false;
1142 	bool changed = false;
1143 	u32 hpd_event_bits;
1144 
1145 	mutex_lock(&mode_config->mutex);
1146 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1147 
1148 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1149 
1150 	hpd_event_bits = dev_priv->hpd_event_bits;
1151 	dev_priv->hpd_event_bits = 0;
1152 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1153 		intel_connector = to_intel_connector(connector);
1154 		if (!intel_connector->encoder)
1155 			continue;
1156 		intel_encoder = intel_connector->encoder;
1157 		if (intel_encoder->hpd_pin > HPD_NONE &&
1158 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1159 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1160 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1161 				 "switching from hotplug detection to polling\n",
1162 				connector->name);
1163 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1164 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1165 				| DRM_CONNECTOR_POLL_DISCONNECT;
1166 			hpd_disabled = true;
1167 		}
1168 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1169 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1170 				      connector->name, intel_encoder->hpd_pin);
1171 		}
1172 	}
1173 	 /* if there were no outputs to poll, poll was disabled,
1174 	  * therefore make sure it's enabled when disabling HPD on
1175 	  * some connectors */
1176 	if (hpd_disabled) {
1177 		drm_kms_helper_poll_enable(dev);
1178 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1179 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1180 	}
1181 
1182 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1183 
1184 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1185 		intel_connector = to_intel_connector(connector);
1186 		if (!intel_connector->encoder)
1187 			continue;
1188 		intel_encoder = intel_connector->encoder;
1189 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1190 			if (intel_encoder->hot_plug)
1191 				intel_encoder->hot_plug(intel_encoder);
1192 			if (intel_hpd_irq_event(dev, connector))
1193 				changed = true;
1194 		}
1195 	}
1196 	mutex_unlock(&mode_config->mutex);
1197 
1198 	if (changed)
1199 		drm_kms_helper_hotplug_event(dev);
1200 }
1201 
1202 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1203 {
1204 	struct drm_i915_private *dev_priv = dev->dev_private;
1205 	u32 busy_up, busy_down, max_avg, min_avg;
1206 	u8 new_delay;
1207 
1208 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
1209 
1210 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1211 
1212 	new_delay = dev_priv->ips.cur_delay;
1213 
1214 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1215 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1216 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1217 	max_avg = I915_READ(RCBMAXAVG);
1218 	min_avg = I915_READ(RCBMINAVG);
1219 
1220 	/* Handle RCS change request from hw */
1221 	if (busy_up > max_avg) {
1222 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1223 			new_delay = dev_priv->ips.cur_delay - 1;
1224 		if (new_delay < dev_priv->ips.max_delay)
1225 			new_delay = dev_priv->ips.max_delay;
1226 	} else if (busy_down < min_avg) {
1227 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1228 			new_delay = dev_priv->ips.cur_delay + 1;
1229 		if (new_delay > dev_priv->ips.min_delay)
1230 			new_delay = dev_priv->ips.min_delay;
1231 	}
1232 
1233 	if (ironlake_set_drps(dev, new_delay))
1234 		dev_priv->ips.cur_delay = new_delay;
1235 
1236 	lockmgr(&mchdev_lock, LK_RELEASE);
1237 
1238 	return;
1239 }
1240 
1241 static void notify_ring(struct drm_device *dev,
1242 			struct intel_engine_cs *ring)
1243 {
1244 	if (!intel_ring_initialized(ring))
1245 		return;
1246 
1247 	trace_i915_gem_request_complete(ring);
1248 
1249 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1250 		intel_notify_mmio_flip(ring);
1251 
1252 	wake_up_all(&ring->irq_queue);
1253 	i915_queue_hangcheck(dev);
1254 }
1255 
1256 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1257 			    struct intel_rps_ei *rps_ei)
1258 {
1259 	u32 cz_ts, cz_freq_khz;
1260 	u32 render_count, media_count;
1261 	u32 elapsed_render, elapsed_media, elapsed_time;
1262 	u32 residency = 0;
1263 
1264 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1265 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1266 
1267 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1268 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1269 
1270 	if (rps_ei->cz_clock == 0) {
1271 		rps_ei->cz_clock = cz_ts;
1272 		rps_ei->render_c0 = render_count;
1273 		rps_ei->media_c0 = media_count;
1274 
1275 		return dev_priv->rps.cur_freq;
1276 	}
1277 
1278 	elapsed_time = cz_ts - rps_ei->cz_clock;
1279 	rps_ei->cz_clock = cz_ts;
1280 
1281 	elapsed_render = render_count - rps_ei->render_c0;
1282 	rps_ei->render_c0 = render_count;
1283 
1284 	elapsed_media = media_count - rps_ei->media_c0;
1285 	rps_ei->media_c0 = media_count;
1286 
1287 	/* Convert all the counters into common unit of milli sec */
1288 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1289 	elapsed_render /=  cz_freq_khz;
1290 	elapsed_media /= cz_freq_khz;
1291 
1292 	/*
1293 	 * Calculate overall C0 residency percentage
1294 	 * only if elapsed time is non zero
1295 	 */
1296 	if (elapsed_time) {
1297 		residency =
1298 			((max(elapsed_render, elapsed_media) * 100)
1299 				/ elapsed_time);
1300 	}
1301 
1302 	return residency;
1303 }
1304 
1305 /**
1306  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1307  * busy-ness calculated from C0 counters of render & media power wells
1308  * @dev_priv: DRM device private
1309  *
1310  */
1311 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1312 {
1313 	u32 residency_C0_up = 0, residency_C0_down = 0;
1314 	int new_delay, adj;
1315 
1316 	dev_priv->rps.ei_interrupt_count++;
1317 
1318 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1319 
1320 
1321 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1322 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1323 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1324 		return dev_priv->rps.cur_freq;
1325 	}
1326 
1327 
1328 	/*
1329 	 * To down throttle, C0 residency should be less than down threshold
1330 	 * for continous EI intervals. So calculate down EI counters
1331 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1332 	 */
1333 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1334 
1335 		dev_priv->rps.ei_interrupt_count = 0;
1336 
1337 		residency_C0_down = vlv_c0_residency(dev_priv,
1338 						     &dev_priv->rps.down_ei);
1339 	} else {
1340 		residency_C0_up = vlv_c0_residency(dev_priv,
1341 						   &dev_priv->rps.up_ei);
1342 	}
1343 
1344 	new_delay = dev_priv->rps.cur_freq;
1345 
1346 	adj = dev_priv->rps.last_adj;
1347 	/* C0 residency is greater than UP threshold. Increase Frequency */
1348 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1349 		if (adj > 0)
1350 			adj *= 2;
1351 		else
1352 			adj = 1;
1353 
1354 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1355 			new_delay = dev_priv->rps.cur_freq + adj;
1356 
1357 		/*
1358 		 * For better performance, jump directly
1359 		 * to RPe if we're below it.
1360 		 */
1361 		if (new_delay < dev_priv->rps.efficient_freq)
1362 			new_delay = dev_priv->rps.efficient_freq;
1363 
1364 	} else if (!dev_priv->rps.ei_interrupt_count &&
1365 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1366 		if (adj < 0)
1367 			adj *= 2;
1368 		else
1369 			adj = -1;
1370 		/*
1371 		 * This means, C0 residency is less than down threshold over
1372 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1373 		 */
1374 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1375 			new_delay = dev_priv->rps.cur_freq + adj;
1376 	}
1377 
1378 	return new_delay;
1379 }
1380 
1381 static void gen6_pm_rps_work(struct work_struct *work)
1382 {
1383 	struct drm_i915_private *dev_priv =
1384 		container_of(work, struct drm_i915_private, rps.work);
1385 	u32 pm_iir;
1386 	int new_delay, adj;
1387 
1388 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1389 	pm_iir = dev_priv->rps.pm_iir;
1390 	dev_priv->rps.pm_iir = 0;
1391 	if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1392 		gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1393 	else {
1394 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1395 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1396 	}
1397 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1398 
1399 	/* Make sure we didn't queue anything we're not going to process. */
1400 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1401 
1402 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1403 		return;
1404 
1405 	mutex_lock(&dev_priv->rps.hw_lock);
1406 
1407 	adj = dev_priv->rps.last_adj;
1408 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1409 		if (adj > 0)
1410 			adj *= 2;
1411 		else {
1412 			/* CHV needs even encode values */
1413 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1414 		}
1415 		new_delay = dev_priv->rps.cur_freq + adj;
1416 
1417 		/*
1418 		 * For better performance, jump directly
1419 		 * to RPe if we're below it.
1420 		 */
1421 		if (new_delay < dev_priv->rps.efficient_freq)
1422 			new_delay = dev_priv->rps.efficient_freq;
1423 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1424 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1425 			new_delay = dev_priv->rps.efficient_freq;
1426 		else
1427 			new_delay = dev_priv->rps.min_freq_softlimit;
1428 		adj = 0;
1429 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1430 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1431 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1432 		if (adj < 0)
1433 			adj *= 2;
1434 		else {
1435 			/* CHV needs even encode values */
1436 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1437 		}
1438 		new_delay = dev_priv->rps.cur_freq + adj;
1439 	} else { /* unknown event */
1440 		new_delay = dev_priv->rps.cur_freq;
1441 	}
1442 
1443 	/* sysfs frequency interfaces may have snuck in while servicing the
1444 	 * interrupt
1445 	 */
1446 	new_delay = clamp_t(int, new_delay,
1447 			    dev_priv->rps.min_freq_softlimit,
1448 			    dev_priv->rps.max_freq_softlimit);
1449 
1450 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1451 
1452 	if (IS_VALLEYVIEW(dev_priv->dev))
1453 		valleyview_set_rps(dev_priv->dev, new_delay);
1454 	else
1455 		gen6_set_rps(dev_priv->dev, new_delay);
1456 
1457 	mutex_unlock(&dev_priv->rps.hw_lock);
1458 }
1459 
1460 
1461 /**
1462  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1463  * occurred.
1464  * @work: workqueue struct
1465  *
1466  * Doesn't actually do anything except notify userspace. As a consequence of
1467  * this event, userspace should try to remap the bad rows since statistically
1468  * it is likely the same row is more likely to go bad again.
1469  */
1470 static void ivybridge_parity_work(struct work_struct *work)
1471 {
1472 	struct drm_i915_private *dev_priv =
1473 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1474 	u32 error_status, row, bank, subbank;
1475 	char *parity_event[6];
1476 	uint32_t misccpctl;
1477 	uint8_t slice = 0;
1478 
1479 	/* We must turn off DOP level clock gating to access the L3 registers.
1480 	 * In order to prevent a get/put style interface, acquire struct mutex
1481 	 * any time we access those registers.
1482 	 */
1483 	mutex_lock(&dev_priv->dev->struct_mutex);
1484 
1485 	/* If we've screwed up tracking, just let the interrupt fire again */
1486 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1487 		goto out;
1488 
1489 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1490 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1491 	POSTING_READ(GEN7_MISCCPCTL);
1492 
1493 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1494 		u32 reg;
1495 
1496 		slice--;
1497 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1498 			break;
1499 
1500 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1501 
1502 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1503 
1504 		error_status = I915_READ(reg);
1505 		row = GEN7_PARITY_ERROR_ROW(error_status);
1506 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1507 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1508 
1509 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1510 		POSTING_READ(reg);
1511 
1512 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1513 		parity_event[1] = drm_asprintf(GFP_KERNEL, "ROW=%d", row);
1514 		parity_event[2] = drm_asprintf(GFP_KERNEL, "BANK=%d", bank);
1515 		parity_event[3] = drm_asprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1516 		parity_event[4] = drm_asprintf(GFP_KERNEL, "SLICE=%d", slice);
1517 		parity_event[5] = NULL;
1518 
1519 #if 0
1520 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1521 				   KOBJ_CHANGE, parity_event);
1522 #endif
1523 
1524 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1525 			  slice, row, bank, subbank);
1526 
1527 		kfree(parity_event[4]);
1528 		kfree(parity_event[3]);
1529 		kfree(parity_event[2]);
1530 		kfree(parity_event[1]);
1531 	}
1532 
1533 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1534 
1535 out:
1536 	WARN_ON(dev_priv->l3_parity.which_slice);
1537 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1538 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1539 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1540 
1541 	mutex_unlock(&dev_priv->dev->struct_mutex);
1542 }
1543 
1544 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1545 {
1546 	struct drm_i915_private *dev_priv = dev->dev_private;
1547 
1548 	if (!HAS_L3_DPF(dev))
1549 		return;
1550 
1551 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1552 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1553 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1554 
1555 	iir &= GT_PARITY_ERROR(dev);
1556 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1557 		dev_priv->l3_parity.which_slice |= 1 << 1;
1558 
1559 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1560 		dev_priv->l3_parity.which_slice |= 1 << 0;
1561 
1562 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1563 }
1564 
1565 static void ilk_gt_irq_handler(struct drm_device *dev,
1566 			       struct drm_i915_private *dev_priv,
1567 			       u32 gt_iir)
1568 {
1569 	if (gt_iir &
1570 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1571 		notify_ring(dev, &dev_priv->ring[RCS]);
1572 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1573 		notify_ring(dev, &dev_priv->ring[VCS]);
1574 }
1575 
1576 static void snb_gt_irq_handler(struct drm_device *dev,
1577 			       struct drm_i915_private *dev_priv,
1578 			       u32 gt_iir)
1579 {
1580 
1581 	if (gt_iir &
1582 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1583 		notify_ring(dev, &dev_priv->ring[RCS]);
1584 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1585 		notify_ring(dev, &dev_priv->ring[VCS]);
1586 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1587 		notify_ring(dev, &dev_priv->ring[BCS]);
1588 
1589 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1590 		      GT_BSD_CS_ERROR_INTERRUPT |
1591 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1592 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1593 				  gt_iir);
1594 	}
1595 
1596 	if (gt_iir & GT_PARITY_ERROR(dev))
1597 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1598 }
1599 
1600 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1601 {
1602 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1603 		return;
1604 
1605 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1606 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1607 	gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1608 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1609 
1610 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1611 }
1612 
1613 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1614 				       struct drm_i915_private *dev_priv,
1615 				       u32 master_ctl)
1616 {
1617 	struct intel_engine_cs *ring;
1618 	u32 rcs, bcs, vcs;
1619 	uint32_t tmp = 0;
1620 
1621 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1622 		tmp = I915_READ(GEN8_GT_IIR(0));
1623 		if (tmp) {
1624 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1625 
1626 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1627 			ring = &dev_priv->ring[RCS];
1628 			if (rcs & GT_RENDER_USER_INTERRUPT)
1629 				notify_ring(dev, ring);
1630 			if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1631 				intel_execlists_handle_ctx_events(ring);
1632 
1633 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1634 			ring = &dev_priv->ring[BCS];
1635 			if (bcs & GT_RENDER_USER_INTERRUPT)
1636 				notify_ring(dev, ring);
1637 			if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1638 				intel_execlists_handle_ctx_events(ring);
1639 		} else
1640 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1641 	}
1642 
1643 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1644 		tmp = I915_READ(GEN8_GT_IIR(1));
1645 		if (tmp) {
1646 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1647 
1648 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1649 			ring = &dev_priv->ring[VCS];
1650 			if (vcs & GT_RENDER_USER_INTERRUPT)
1651 				notify_ring(dev, ring);
1652 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653 				intel_execlists_handle_ctx_events(ring);
1654 
1655 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1656 			ring = &dev_priv->ring[VCS2];
1657 			if (vcs & GT_RENDER_USER_INTERRUPT)
1658 				notify_ring(dev, ring);
1659 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1660 				intel_execlists_handle_ctx_events(ring);
1661 		} else
1662 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1663 	}
1664 
1665 	if (master_ctl & GEN8_GT_PM_IRQ) {
1666 		tmp = I915_READ(GEN8_GT_IIR(2));
1667 		if (tmp & dev_priv->pm_rps_events) {
1668 			I915_WRITE(GEN8_GT_IIR(2),
1669 				   tmp & dev_priv->pm_rps_events);
1670 			gen8_rps_irq_handler(dev_priv, tmp);
1671 		} else
1672 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1673 	}
1674 
1675 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1676 		tmp = I915_READ(GEN8_GT_IIR(3));
1677 		if (tmp) {
1678 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1679 
1680 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1681 			ring = &dev_priv->ring[VECS];
1682 			if (vcs & GT_RENDER_USER_INTERRUPT)
1683 				notify_ring(dev, ring);
1684 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1685 				intel_execlists_handle_ctx_events(ring);
1686 		} else
1687 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1688 	}
1689 
1690 }
1691 
1692 #define HPD_STORM_DETECT_PERIOD 1000
1693 #define HPD_STORM_THRESHOLD 5
1694 
1695 static int pch_port_to_hotplug_shift(enum port port)
1696 {
1697 	switch (port) {
1698 	case PORT_A:
1699 	case PORT_E:
1700 	default:
1701 		return -1;
1702 	case PORT_B:
1703 		return 0;
1704 	case PORT_C:
1705 		return 8;
1706 	case PORT_D:
1707 		return 16;
1708 	}
1709 }
1710 
1711 static int i915_port_to_hotplug_shift(enum port port)
1712 {
1713 	switch (port) {
1714 	case PORT_A:
1715 	case PORT_E:
1716 	default:
1717 		return -1;
1718 	case PORT_B:
1719 		return 17;
1720 	case PORT_C:
1721 		return 19;
1722 	case PORT_D:
1723 		return 21;
1724 	}
1725 }
1726 
1727 static inline enum port get_port_from_pin(enum hpd_pin pin)
1728 {
1729 	switch (pin) {
1730 	case HPD_PORT_B:
1731 		return PORT_B;
1732 	case HPD_PORT_C:
1733 		return PORT_C;
1734 	case HPD_PORT_D:
1735 		return PORT_D;
1736 	default:
1737 		return PORT_A; /* no hpd */
1738 	}
1739 }
1740 
1741 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1742 					 u32 hotplug_trigger,
1743 					 u32 dig_hotplug_reg,
1744 					 const u32 *hpd)
1745 {
1746 	struct drm_i915_private *dev_priv = dev->dev_private;
1747 	int i;
1748 	enum port port;
1749 	bool storm_detected = false;
1750 	bool queue_dig = false, queue_hp = false;
1751 	u32 dig_shift;
1752 	u32 dig_port_mask = 0;
1753 
1754 	if (!hotplug_trigger)
1755 		return;
1756 
1757 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1758 			 hotplug_trigger, dig_hotplug_reg);
1759 
1760 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1761 	for (i = 1; i < HPD_NUM_PINS; i++) {
1762 		if (!(hpd[i] & hotplug_trigger))
1763 			continue;
1764 
1765 		port = get_port_from_pin(i);
1766 		if (port && dev_priv->hpd_irq_port[port]) {
1767 			bool long_hpd;
1768 
1769 			if (HAS_PCH_SPLIT(dev)) {
1770 				dig_shift = pch_port_to_hotplug_shift(port);
1771 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1772 			} else {
1773 				dig_shift = i915_port_to_hotplug_shift(port);
1774 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1775 			}
1776 
1777 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1778 					 port_name(port),
1779 					 long_hpd ? "long" : "short");
1780 			/* for long HPD pulses we want to have the digital queue happen,
1781 			   but we still want HPD storm detection to function. */
1782 			if (long_hpd) {
1783 				dev_priv->long_hpd_port_mask |= (1 << port);
1784 				dig_port_mask |= hpd[i];
1785 			} else {
1786 				/* for short HPD just trigger the digital queue */
1787 				dev_priv->short_hpd_port_mask |= (1 << port);
1788 				hotplug_trigger &= ~hpd[i];
1789 			}
1790 			queue_dig = true;
1791 		}
1792 	}
1793 
1794 	for (i = 1; i < HPD_NUM_PINS; i++) {
1795 		if (hpd[i] & hotplug_trigger &&
1796 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1797 			/*
1798 			 * On GMCH platforms the interrupt mask bits only
1799 			 * prevent irq generation, not the setting of the
1800 			 * hotplug bits itself. So only WARN about unexpected
1801 			 * interrupts on saner platforms.
1802 			 */
1803 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1804 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1805 				  hotplug_trigger, i, hpd[i]);
1806 
1807 			continue;
1808 		}
1809 
1810 		if (!(hpd[i] & hotplug_trigger) ||
1811 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1812 			continue;
1813 
1814 		if (!(dig_port_mask & hpd[i])) {
1815 			dev_priv->hpd_event_bits |= (1 << i);
1816 			queue_hp = true;
1817 		}
1818 
1819 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1820 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1821 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1822 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1823 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1824 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1825 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1826 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1827 			dev_priv->hpd_event_bits &= ~(1 << i);
1828 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1829 			storm_detected = true;
1830 		} else {
1831 			dev_priv->hpd_stats[i].hpd_cnt++;
1832 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1833 				      dev_priv->hpd_stats[i].hpd_cnt);
1834 		}
1835 	}
1836 
1837 	if (storm_detected)
1838 		dev_priv->display.hpd_irq_setup(dev);
1839 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1840 
1841 	/*
1842 	 * Our hotplug handler can grab modeset locks (by calling down into the
1843 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1844 	 * queue for otherwise the flush_work in the pageflip code will
1845 	 * deadlock.
1846 	 */
1847 	if (queue_dig)
1848 		schedule_work(&dev_priv->dig_port_work);
1849 	if (queue_hp)
1850 		schedule_work(&dev_priv->hotplug_work);
1851 }
1852 
1853 static void gmbus_irq_handler(struct drm_device *dev)
1854 {
1855 	struct drm_i915_private *dev_priv = dev->dev_private;
1856 
1857 	wake_up_all(&dev_priv->gmbus_wait_queue);
1858 }
1859 
1860 static void dp_aux_irq_handler(struct drm_device *dev)
1861 {
1862 	struct drm_i915_private *dev_priv = dev->dev_private;
1863 
1864 	wake_up_all(&dev_priv->gmbus_wait_queue);
1865 }
1866 
1867 #if defined(CONFIG_DEBUG_FS)
1868 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1869 					 uint32_t crc0, uint32_t crc1,
1870 					 uint32_t crc2, uint32_t crc3,
1871 					 uint32_t crc4)
1872 {
1873 	struct drm_i915_private *dev_priv = dev->dev_private;
1874 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1875 	struct intel_pipe_crc_entry *entry;
1876 	int head, tail;
1877 
1878 	spin_lock(&pipe_crc->lock);
1879 
1880 	if (!pipe_crc->entries) {
1881 		spin_unlock(&pipe_crc->lock);
1882 		DRM_ERROR("spurious interrupt\n");
1883 		return;
1884 	}
1885 
1886 	head = pipe_crc->head;
1887 	tail = pipe_crc->tail;
1888 
1889 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1890 		spin_unlock(&pipe_crc->lock);
1891 		DRM_ERROR("CRC buffer overflowing\n");
1892 		return;
1893 	}
1894 
1895 	entry = &pipe_crc->entries[head];
1896 
1897 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1898 	entry->crc[0] = crc0;
1899 	entry->crc[1] = crc1;
1900 	entry->crc[2] = crc2;
1901 	entry->crc[3] = crc3;
1902 	entry->crc[4] = crc4;
1903 
1904 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1905 	pipe_crc->head = head;
1906 
1907 	spin_unlock(&pipe_crc->lock);
1908 
1909 	wake_up_interruptible(&pipe_crc->wq);
1910 }
1911 #else
1912 static inline void
1913 display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1914 			     uint32_t crc0, uint32_t crc1,
1915 			     uint32_t crc2, uint32_t crc3,
1916 			     uint32_t crc4) {}
1917 #endif
1918 
1919 
1920 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1921 {
1922 	struct drm_i915_private *dev_priv = dev->dev_private;
1923 
1924 	display_pipe_crc_irq_handler(dev, pipe,
1925 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1926 				     0, 0, 0, 0);
1927 }
1928 
1929 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1930 {
1931 	struct drm_i915_private *dev_priv = dev->dev_private;
1932 
1933 	display_pipe_crc_irq_handler(dev, pipe,
1934 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1935 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1936 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1937 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1938 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1939 }
1940 
1941 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1942 {
1943 	struct drm_i915_private *dev_priv = dev->dev_private;
1944 	uint32_t res1, res2;
1945 
1946 	if (INTEL_INFO(dev)->gen >= 3)
1947 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1948 	else
1949 		res1 = 0;
1950 
1951 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1952 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1953 	else
1954 		res2 = 0;
1955 
1956 	display_pipe_crc_irq_handler(dev, pipe,
1957 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1958 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1959 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1960 				     res1, res2);
1961 }
1962 
1963 /* The RPS events need forcewake, so we add them to a work queue and mask their
1964  * IMR bits until the work is done. Other interrupts can be processed without
1965  * the work queue. */
1966 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1967 {
1968 	if (pm_iir & dev_priv->pm_rps_events) {
1969 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1970 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1971 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1972 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1973 
1974 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1975 	}
1976 
1977 	if (HAS_VEBOX(dev_priv->dev)) {
1978 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1979 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1980 
1981 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1982 			i915_handle_error(dev_priv->dev, false,
1983 					  "VEBOX CS error interrupt 0x%08x",
1984 					  pm_iir);
1985 		}
1986 	}
1987 }
1988 
1989 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum i915_pipe pipe)
1990 {
1991 	if (!drm_handle_vblank(dev, pipe))
1992 		return false;
1993 
1994 	return true;
1995 }
1996 
1997 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1998 {
1999 	struct drm_i915_private *dev_priv = dev->dev_private;
2000 	u32 pipe_stats[I915_MAX_PIPES] = { };
2001 	int pipe;
2002 
2003 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2004 	for_each_pipe(dev_priv, pipe) {
2005 		int reg;
2006 		u32 mask, iir_bit = 0;
2007 
2008 		/*
2009 		 * PIPESTAT bits get signalled even when the interrupt is
2010 		 * disabled with the mask bits, and some of the status bits do
2011 		 * not generate interrupts at all (like the underrun bit). Hence
2012 		 * we need to be careful that we only handle what we want to
2013 		 * handle.
2014 		 */
2015 		mask = 0;
2016 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2017 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
2018 
2019 		switch (pipe) {
2020 		case PIPE_A:
2021 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2022 			break;
2023 		case PIPE_B:
2024 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2025 			break;
2026 		case PIPE_C:
2027 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2028 			break;
2029 		}
2030 		if (iir & iir_bit)
2031 			mask |= dev_priv->pipestat_irq_mask[pipe];
2032 
2033 		if (!mask)
2034 			continue;
2035 
2036 		reg = PIPESTAT(pipe);
2037 		mask |= PIPESTAT_INT_ENABLE_MASK;
2038 		pipe_stats[pipe] = I915_READ(reg) & mask;
2039 
2040 		/*
2041 		 * Clear the PIPE*STAT regs before the IIR
2042 		 */
2043 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2044 					PIPESTAT_INT_STATUS_MASK))
2045 			I915_WRITE(reg, pipe_stats[pipe]);
2046 	}
2047 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2048 
2049 	for_each_pipe(dev_priv, pipe) {
2050 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2051 		    intel_pipe_handle_vblank(dev, pipe))
2052 			intel_check_page_flip(dev, pipe);
2053 
2054 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2055 			intel_prepare_page_flip(dev, pipe);
2056 			intel_finish_page_flip(dev, pipe);
2057 		}
2058 
2059 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2060 			i9xx_pipe_crc_irq_handler(dev, pipe);
2061 
2062 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2063 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2064 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2065 	}
2066 
2067 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2068 		gmbus_irq_handler(dev);
2069 }
2070 
2071 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2072 {
2073 	struct drm_i915_private *dev_priv = dev->dev_private;
2074 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2075 
2076 	if (hotplug_status) {
2077 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2078 		/*
2079 		 * Make sure hotplug status is cleared before we clear IIR, or else we
2080 		 * may miss hotplug events.
2081 		 */
2082 		POSTING_READ(PORT_HOTPLUG_STAT);
2083 
2084 		if (IS_G4X(dev)) {
2085 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2086 
2087 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2088 		} else {
2089 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2090 
2091 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2092 		}
2093 
2094 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2095 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2096 			dp_aux_irq_handler(dev);
2097 	}
2098 }
2099 
2100 static irqreturn_t valleyview_irq_handler(void *arg)
2101 {
2102 	struct drm_device *dev = arg;
2103 	struct drm_i915_private *dev_priv = dev->dev_private;
2104 	u32 iir, gt_iir, pm_iir;
2105 
2106 	while (true) {
2107 		/* Find, clear, then process each source of interrupt */
2108 
2109 		gt_iir = I915_READ(GTIIR);
2110 		if (gt_iir)
2111 			I915_WRITE(GTIIR, gt_iir);
2112 
2113 		pm_iir = I915_READ(GEN6_PMIIR);
2114 		if (pm_iir)
2115 			I915_WRITE(GEN6_PMIIR, pm_iir);
2116 
2117 		iir = I915_READ(VLV_IIR);
2118 		if (iir) {
2119 			/* Consume port before clearing IIR or we'll miss events */
2120 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2121 				i9xx_hpd_irq_handler(dev);
2122 			I915_WRITE(VLV_IIR, iir);
2123 		}
2124 
2125 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2126 			goto out;
2127 
2128 		if (gt_iir)
2129 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2130 		if (pm_iir)
2131 			gen6_rps_irq_handler(dev_priv, pm_iir);
2132 		/* Call regardless, as some status bits might not be
2133 		 * signalled in iir */
2134 		valleyview_pipestat_irq_handler(dev, iir);
2135 	}
2136 
2137 out:
2138 	return;
2139 }
2140 
2141 static irqreturn_t cherryview_irq_handler(void *arg)
2142 {
2143 	struct drm_device *dev = arg;
2144 	struct drm_i915_private *dev_priv = dev->dev_private;
2145 	u32 master_ctl, iir;
2146 
2147 	for (;;) {
2148 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2149 		iir = I915_READ(VLV_IIR);
2150 
2151 		if (master_ctl == 0 && iir == 0)
2152 			break;
2153 
2154 
2155 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2156 
2157 		/* Find, clear, then process each source of interrupt */
2158 
2159 		if (iir) {
2160 			/* Consume port before clearing IIR or we'll miss events */
2161 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2162 				i9xx_hpd_irq_handler(dev);
2163 			I915_WRITE(VLV_IIR, iir);
2164 		}
2165 
2166 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2167 
2168 		/* Call regardless, as some status bits might not be
2169 		 * signalled in iir */
2170 		valleyview_pipestat_irq_handler(dev, iir);
2171 
2172 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2173 		POSTING_READ(GEN8_MASTER_IRQ);
2174 	}
2175 
2176 }
2177 
2178 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2179 {
2180 	struct drm_i915_private *dev_priv = dev->dev_private;
2181 	int pipe;
2182 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2183 	u32 dig_hotplug_reg;
2184 
2185 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2186 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2187 
2188 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2189 
2190 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2191 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2192 			       SDE_AUDIO_POWER_SHIFT);
2193 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2194 				 port_name(port));
2195 	}
2196 
2197 	if (pch_iir & SDE_AUX_MASK)
2198 		dp_aux_irq_handler(dev);
2199 
2200 	if (pch_iir & SDE_GMBUS)
2201 		gmbus_irq_handler(dev);
2202 
2203 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2204 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2205 
2206 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2207 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2208 
2209 	if (pch_iir & SDE_POISON)
2210 		DRM_ERROR("PCH poison interrupt\n");
2211 
2212 	if (pch_iir & SDE_FDI_MASK)
2213 		for_each_pipe(dev_priv, pipe)
2214 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2215 					 pipe_name(pipe),
2216 					 I915_READ(FDI_RX_IIR(pipe)));
2217 
2218 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2219 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2220 
2221 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2222 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2223 
2224 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2225 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2226 							  false))
2227 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2228 
2229 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2230 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2231 							  false))
2232 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2233 }
2234 
2235 static void ivb_err_int_handler(struct drm_device *dev)
2236 {
2237 	struct drm_i915_private *dev_priv = dev->dev_private;
2238 	u32 err_int = I915_READ(GEN7_ERR_INT);
2239 	enum i915_pipe pipe;
2240 
2241 	if (err_int & ERR_INT_POISON)
2242 		DRM_ERROR("Poison interrupt\n");
2243 
2244 	for_each_pipe(dev_priv, pipe) {
2245 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2246 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2247 								  false))
2248 				DRM_ERROR("Pipe %c FIFO underrun\n",
2249 					  pipe_name(pipe));
2250 		}
2251 
2252 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2253 			if (IS_IVYBRIDGE(dev))
2254 				ivb_pipe_crc_irq_handler(dev, pipe);
2255 			else
2256 				hsw_pipe_crc_irq_handler(dev, pipe);
2257 		}
2258 	}
2259 
2260 	I915_WRITE(GEN7_ERR_INT, err_int);
2261 }
2262 
2263 static void cpt_serr_int_handler(struct drm_device *dev)
2264 {
2265 	struct drm_i915_private *dev_priv = dev->dev_private;
2266 	u32 serr_int = I915_READ(SERR_INT);
2267 
2268 	if (serr_int & SERR_INT_POISON)
2269 		DRM_ERROR("PCH poison interrupt\n");
2270 
2271 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2272 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2273 							  false))
2274 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2275 
2276 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2277 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2278 							  false))
2279 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2280 
2281 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2282 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2283 							  false))
2284 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
2285 
2286 	I915_WRITE(SERR_INT, serr_int);
2287 }
2288 
2289 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2290 {
2291 	struct drm_i915_private *dev_priv = dev->dev_private;
2292 	int pipe;
2293 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2294 	u32 dig_hotplug_reg;
2295 
2296 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2297 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2298 
2299 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2300 
2301 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2302 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2303 			       SDE_AUDIO_POWER_SHIFT_CPT);
2304 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2305 				 port_name(port));
2306 	}
2307 
2308 	if (pch_iir & SDE_AUX_MASK_CPT)
2309 		dp_aux_irq_handler(dev);
2310 
2311 	if (pch_iir & SDE_GMBUS_CPT)
2312 		gmbus_irq_handler(dev);
2313 
2314 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2315 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2316 
2317 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2318 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2319 
2320 	if (pch_iir & SDE_FDI_MASK_CPT)
2321 		for_each_pipe(dev_priv, pipe)
2322 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2323 					 pipe_name(pipe),
2324 					 I915_READ(FDI_RX_IIR(pipe)));
2325 
2326 	if (pch_iir & SDE_ERROR_CPT)
2327 		cpt_serr_int_handler(dev);
2328 }
2329 
2330 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2331 {
2332 	struct drm_i915_private *dev_priv = dev->dev_private;
2333 	enum i915_pipe pipe;
2334 
2335 	if (de_iir & DE_AUX_CHANNEL_A)
2336 		dp_aux_irq_handler(dev);
2337 
2338 	if (de_iir & DE_GSE)
2339 		intel_opregion_asle_intr(dev);
2340 
2341 	if (de_iir & DE_POISON)
2342 		DRM_ERROR("Poison interrupt\n");
2343 
2344 	for_each_pipe(dev_priv, pipe) {
2345 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2346 		    intel_pipe_handle_vblank(dev, pipe))
2347 			intel_check_page_flip(dev, pipe);
2348 
2349 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2350 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2351 				DRM_ERROR("Pipe %c FIFO underrun\n",
2352 					  pipe_name(pipe));
2353 
2354 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2355 			i9xx_pipe_crc_irq_handler(dev, pipe);
2356 
2357 		/* plane/pipes map 1:1 on ilk+ */
2358 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2359 			intel_prepare_page_flip(dev, pipe);
2360 			intel_finish_page_flip_plane(dev, pipe);
2361 		}
2362 	}
2363 
2364 	/* check event from PCH */
2365 	if (de_iir & DE_PCH_EVENT) {
2366 		u32 pch_iir = I915_READ(SDEIIR);
2367 
2368 		if (HAS_PCH_CPT(dev))
2369 			cpt_irq_handler(dev, pch_iir);
2370 		else
2371 			ibx_irq_handler(dev, pch_iir);
2372 
2373 		/* should clear PCH hotplug event before clear CPU irq */
2374 		I915_WRITE(SDEIIR, pch_iir);
2375 	}
2376 
2377 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2378 		ironlake_rps_change_irq_handler(dev);
2379 }
2380 
2381 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2382 {
2383 	struct drm_i915_private *dev_priv = dev->dev_private;
2384 	enum i915_pipe pipe;
2385 
2386 	if (de_iir & DE_ERR_INT_IVB)
2387 		ivb_err_int_handler(dev);
2388 
2389 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2390 		dp_aux_irq_handler(dev);
2391 
2392 	if (de_iir & DE_GSE_IVB)
2393 		intel_opregion_asle_intr(dev);
2394 
2395 	for_each_pipe(dev_priv, pipe) {
2396 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2397 		    intel_pipe_handle_vblank(dev, pipe))
2398 			intel_check_page_flip(dev, pipe);
2399 
2400 		/* plane/pipes map 1:1 on ilk+ */
2401 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2402 			intel_prepare_page_flip(dev, pipe);
2403 			intel_finish_page_flip_plane(dev, pipe);
2404 		}
2405 	}
2406 
2407 	/* check event from PCH */
2408 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2409 		u32 pch_iir = I915_READ(SDEIIR);
2410 
2411 		cpt_irq_handler(dev, pch_iir);
2412 
2413 		/* clear PCH hotplug event before clear CPU irq */
2414 		I915_WRITE(SDEIIR, pch_iir);
2415 	}
2416 }
2417 
2418 /*
2419  * To handle irqs with the minimum potential races with fresh interrupts, we:
2420  * 1 - Disable Master Interrupt Control.
2421  * 2 - Find the source(s) of the interrupt.
2422  * 3 - Clear the Interrupt Identity bits (IIR).
2423  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2424  * 5 - Re-enable Master Interrupt Control.
2425  */
2426 static irqreturn_t ironlake_irq_handler(void *arg)
2427 {
2428 	struct drm_device *dev = arg;
2429 	struct drm_i915_private *dev_priv = dev->dev_private;
2430 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2431 
2432 	/* We get interrupts on unclaimed registers, so check for this before we
2433 	 * do any I915_{READ,WRITE}. */
2434 	intel_uncore_check_errors(dev);
2435 
2436 	/* disable master interrupt before clearing iir  */
2437 	de_ier = I915_READ(DEIER);
2438 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2439 	POSTING_READ(DEIER);
2440 
2441 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2442 	 * interrupts will will be stored on its back queue, and then we'll be
2443 	 * able to process them after we restore SDEIER (as soon as we restore
2444 	 * it, we'll get an interrupt if SDEIIR still has something to process
2445 	 * due to its back queue). */
2446 	if (!HAS_PCH_NOP(dev)) {
2447 		sde_ier = I915_READ(SDEIER);
2448 		I915_WRITE(SDEIER, 0);
2449 		POSTING_READ(SDEIER);
2450 	}
2451 
2452 	/* Find, clear, then process each source of interrupt */
2453 
2454 	gt_iir = I915_READ(GTIIR);
2455 	if (gt_iir) {
2456 		I915_WRITE(GTIIR, gt_iir);
2457 		if (INTEL_INFO(dev)->gen >= 6)
2458 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2459 		else
2460 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2461 	}
2462 
2463 	de_iir = I915_READ(DEIIR);
2464 	if (de_iir) {
2465 		I915_WRITE(DEIIR, de_iir);
2466 		if (INTEL_INFO(dev)->gen >= 7)
2467 			ivb_display_irq_handler(dev, de_iir);
2468 		else
2469 			ilk_display_irq_handler(dev, de_iir);
2470 	}
2471 
2472 	if (INTEL_INFO(dev)->gen >= 6) {
2473 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2474 		if (pm_iir) {
2475 			I915_WRITE(GEN6_PMIIR, pm_iir);
2476 			gen6_rps_irq_handler(dev_priv, pm_iir);
2477 		}
2478 	}
2479 
2480 	I915_WRITE(DEIER, de_ier);
2481 	POSTING_READ(DEIER);
2482 	if (!HAS_PCH_NOP(dev)) {
2483 		I915_WRITE(SDEIER, sde_ier);
2484 		POSTING_READ(SDEIER);
2485 	}
2486 
2487 }
2488 
2489 static irqreturn_t gen8_irq_handler(void *arg)
2490 {
2491 	struct drm_device *dev = arg;
2492 	struct drm_i915_private *dev_priv = dev->dev_private;
2493 	u32 master_ctl;
2494 	uint32_t tmp = 0;
2495 	enum i915_pipe pipe;
2496 
2497 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2498 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2499 	if (!master_ctl)
2500 		return;
2501 
2502 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2503 	POSTING_READ(GEN8_MASTER_IRQ);
2504 
2505 	/* Find, clear, then process each source of interrupt */
2506 
2507 	gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2508 
2509 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2510 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2511 		if (tmp) {
2512 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2513 			if (tmp & GEN8_DE_MISC_GSE)
2514 				intel_opregion_asle_intr(dev);
2515 			else
2516 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2517 		}
2518 		else
2519 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2520 	}
2521 
2522 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2523 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2524 		if (tmp) {
2525 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2526 			if (tmp & GEN8_AUX_CHANNEL_A)
2527 				dp_aux_irq_handler(dev);
2528 			else
2529 				DRM_ERROR("Unexpected DE Port interrupt\n");
2530 		}
2531 		else
2532 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2533 	}
2534 
2535 	for_each_pipe(dev_priv, pipe) {
2536 		uint32_t pipe_iir;
2537 
2538 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2539 			continue;
2540 
2541 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2542 		if (pipe_iir) {
2543 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2544 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2545 			    intel_pipe_handle_vblank(dev, pipe))
2546 				intel_check_page_flip(dev, pipe);
2547 
2548 			if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2549 				intel_prepare_page_flip(dev, pipe);
2550 				intel_finish_page_flip_plane(dev, pipe);
2551 			}
2552 
2553 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2554 				hsw_pipe_crc_irq_handler(dev, pipe);
2555 
2556 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2557 				if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2558 									  false))
2559 					DRM_ERROR("Pipe %c FIFO underrun\n",
2560 						  pipe_name(pipe));
2561 			}
2562 
2563 			if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2564 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2565 					  pipe_name(pipe),
2566 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2567 			}
2568 		} else
2569 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2570 	}
2571 
2572 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2573 		/*
2574 		 * FIXME(BDW): Assume for now that the new interrupt handling
2575 		 * scheme also closed the SDE interrupt handling race we've seen
2576 		 * on older pch-split platforms. But this needs testing.
2577 		 */
2578 		u32 pch_iir = I915_READ(SDEIIR);
2579 		if (pch_iir) {
2580 			I915_WRITE(SDEIIR, pch_iir);
2581 			cpt_irq_handler(dev, pch_iir);
2582 		} else
2583 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2584 
2585 	}
2586 
2587 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2588 	POSTING_READ(GEN8_MASTER_IRQ);
2589 
2590 }
2591 
2592 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2593 			       bool reset_completed)
2594 {
2595 	struct intel_engine_cs *ring;
2596 	int i;
2597 
2598 	/*
2599 	 * Notify all waiters for GPU completion events that reset state has
2600 	 * been changed, and that they need to restart their wait after
2601 	 * checking for potential errors (and bail out to drop locks if there is
2602 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2603 	 */
2604 
2605 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2606 	for_each_ring(ring, dev_priv, i)
2607 		wake_up_all(&ring->irq_queue);
2608 
2609 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2610 	wake_up_all(&dev_priv->pending_flip_queue);
2611 
2612 	/*
2613 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2614 	 * reset state is cleared.
2615 	 */
2616 	if (reset_completed)
2617 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2618 }
2619 
2620 /**
2621  * i915_error_work_func - do process context error handling work
2622  * @work: work struct
2623  *
2624  * Fire an error uevent so userspace can see that a hang or error
2625  * was detected.
2626  */
2627 static void i915_error_work_func(struct work_struct *work)
2628 {
2629 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2630 						    work);
2631 	struct drm_i915_private *dev_priv =
2632 		container_of(error, struct drm_i915_private, gpu_error);
2633 	struct drm_device *dev = dev_priv->dev;
2634 #if 0
2635 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2636 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2637 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2638 #endif
2639 	int ret;
2640 
2641 	/* kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event); */
2642 
2643 	/*
2644 	 * Note that there's only one work item which does gpu resets, so we
2645 	 * need not worry about concurrent gpu resets potentially incrementing
2646 	 * error->reset_counter twice. We only need to take care of another
2647 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2648 	 * quick check for that is good enough: schedule_work ensures the
2649 	 * correct ordering between hang detection and this work item, and since
2650 	 * the reset in-progress bit is only ever set by code outside of this
2651 	 * work we don't need to worry about any other races.
2652 	 */
2653 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2654 		DRM_DEBUG_DRIVER("resetting chip\n");
2655 #if 0
2656 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2657 				   reset_event);
2658 #endif
2659 
2660 		/*
2661 		 * In most cases it's guaranteed that we get here with an RPM
2662 		 * reference held, for example because there is a pending GPU
2663 		 * request that won't finish until the reset is done. This
2664 		 * isn't the case at least when we get here by doing a
2665 		 * simulated reset via debugs, so get an RPM reference.
2666 		 */
2667 		intel_runtime_pm_get(dev_priv);
2668 		/*
2669 		 * All state reset _must_ be completed before we update the
2670 		 * reset counter, for otherwise waiters might miss the reset
2671 		 * pending state and not properly drop locks, resulting in
2672 		 * deadlocks with the reset work.
2673 		 */
2674 		ret = i915_reset(dev);
2675 
2676 		intel_display_handle_reset(dev);
2677 
2678 		intel_runtime_pm_put(dev_priv);
2679 
2680 		if (ret == 0) {
2681 			/*
2682 			 * After all the gem state is reset, increment the reset
2683 			 * counter and wake up everyone waiting for the reset to
2684 			 * complete.
2685 			 *
2686 			 * Since unlock operations are a one-sided barrier only,
2687 			 * we need to insert a barrier here to order any seqno
2688 			 * updates before
2689 			 * the counter increment.
2690 			 */
2691 			smp_mb__before_atomic();
2692 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2693 
2694 #if 0
2695 			kobject_uevent_env(&dev->primary->kdev->kobj,
2696 					   KOBJ_CHANGE, reset_done_event);
2697 #endif
2698 		} else {
2699 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2700 		}
2701 
2702 		/*
2703 		 * Note: The wake_up also serves as a memory barrier so that
2704 		 * waiters see the update value of the reset counter atomic_t.
2705 		 */
2706 		i915_error_wake_up(dev_priv, true);
2707 	}
2708 }
2709 
2710 static void i915_report_and_clear_eir(struct drm_device *dev)
2711 {
2712 	struct drm_i915_private *dev_priv = dev->dev_private;
2713 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2714 	u32 eir = I915_READ(EIR);
2715 	int pipe, i;
2716 
2717 	if (!eir)
2718 		return;
2719 
2720 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2721 
2722 #if 0
2723 	i915_get_extra_instdone(dev, instdone);
2724 #endif
2725 
2726 	if (IS_G4X(dev)) {
2727 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2728 			u32 ipeir = I915_READ(IPEIR_I965);
2729 
2730 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2731 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2732 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2733 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2734 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2735 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2736 			I915_WRITE(IPEIR_I965, ipeir);
2737 			POSTING_READ(IPEIR_I965);
2738 		}
2739 		if (eir & GM45_ERROR_PAGE_TABLE) {
2740 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2741 			pr_err("page table error\n");
2742 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2743 			I915_WRITE(PGTBL_ER, pgtbl_err);
2744 			POSTING_READ(PGTBL_ER);
2745 		}
2746 	}
2747 
2748 	if (!IS_GEN2(dev)) {
2749 		if (eir & I915_ERROR_PAGE_TABLE) {
2750 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2751 			pr_err("page table error\n");
2752 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2753 			I915_WRITE(PGTBL_ER, pgtbl_err);
2754 			POSTING_READ(PGTBL_ER);
2755 		}
2756 	}
2757 
2758 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2759 		pr_err("memory refresh error:\n");
2760 		for_each_pipe(dev_priv, pipe)
2761 			pr_err("pipe %c stat: 0x%08x\n",
2762 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2763 		/* pipestat has already been acked */
2764 	}
2765 	if (eir & I915_ERROR_INSTRUCTION) {
2766 		pr_err("instruction error\n");
2767 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2768 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2769 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2770 		if (INTEL_INFO(dev)->gen < 4) {
2771 			u32 ipeir = I915_READ(IPEIR);
2772 
2773 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2774 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2775 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2776 			I915_WRITE(IPEIR, ipeir);
2777 			POSTING_READ(IPEIR);
2778 		} else {
2779 			u32 ipeir = I915_READ(IPEIR_I965);
2780 
2781 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2782 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2783 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2784 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2785 			I915_WRITE(IPEIR_I965, ipeir);
2786 			POSTING_READ(IPEIR_I965);
2787 		}
2788 	}
2789 
2790 	I915_WRITE(EIR, eir);
2791 	POSTING_READ(EIR);
2792 	eir = I915_READ(EIR);
2793 	if (eir) {
2794 		/*
2795 		 * some errors might have become stuck,
2796 		 * mask them.
2797 		 */
2798 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2799 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2800 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2801 	}
2802 }
2803 
2804 /**
2805  * i915_handle_error - handle an error interrupt
2806  * @dev: drm device
2807  *
2808  * Do some basic checking of regsiter state at error interrupt time and
2809  * dump it to the syslog.  Also call i915_capture_error_state() to make
2810  * sure we get a record and make it available in debugfs.  Fire a uevent
2811  * so userspace knows something bad happened (should trigger collection
2812  * of a ring dump etc.).
2813  */
2814 void i915_handle_error(struct drm_device *dev, bool wedged,
2815 		       const char *fmt, ...)
2816 {
2817 	struct drm_i915_private *dev_priv = dev->dev_private;
2818 #if 0
2819 	va_list args;
2820 	char error_msg[80];
2821 
2822 	va_start(args, fmt);
2823 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2824 	va_end(args);
2825 
2826 	i915_capture_error_state(dev, wedged, error_msg);
2827 #endif
2828 	i915_report_and_clear_eir(dev);
2829 
2830 	if (wedged) {
2831 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2832 				&dev_priv->gpu_error.reset_counter);
2833 
2834 		/*
2835 		 * Wakeup waiting processes so that the reset work function
2836 		 * i915_error_work_func doesn't deadlock trying to grab various
2837 		 * locks. By bumping the reset counter first, the woken
2838 		 * processes will see a reset in progress and back off,
2839 		 * releasing their locks and then wait for the reset completion.
2840 		 * We must do this for _all_ gpu waiters that might hold locks
2841 		 * that the reset work needs to acquire.
2842 		 *
2843 		 * Note: The wake_up serves as the required memory barrier to
2844 		 * ensure that the waiters see the updated value of the reset
2845 		 * counter atomic_t.
2846 		 */
2847 		i915_error_wake_up(dev_priv, false);
2848 	}
2849 
2850 	/*
2851 	 * Our reset work can grab modeset locks (since it needs to reset the
2852 	 * state of outstanding pagelips). Hence it must not be run on our own
2853 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2854 	 * code will deadlock.
2855 	 */
2856 	schedule_work(&dev_priv->gpu_error.work);
2857 }
2858 
2859 /* Called from drm generic code, passed 'crtc' which
2860  * we use as a pipe index
2861  */
2862 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2863 {
2864 	struct drm_i915_private *dev_priv = dev->dev_private;
2865 
2866 	if (!i915_pipe_enabled(dev, pipe))
2867 		return -EINVAL;
2868 
2869 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2870 	if (INTEL_INFO(dev)->gen >= 4)
2871 		i915_enable_pipestat(dev_priv, pipe,
2872 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2873 	else
2874 		i915_enable_pipestat(dev_priv, pipe,
2875 				     PIPE_VBLANK_INTERRUPT_STATUS);
2876 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2877 
2878 	return 0;
2879 }
2880 
2881 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2882 {
2883 	struct drm_i915_private *dev_priv = dev->dev_private;
2884 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2885 						     DE_PIPE_VBLANK(pipe);
2886 
2887 	if (!i915_pipe_enabled(dev, pipe))
2888 		return -EINVAL;
2889 
2890 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2891 	ironlake_enable_display_irq(dev_priv, bit);
2892 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2893 
2894 	return 0;
2895 }
2896 
2897 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2898 {
2899 	struct drm_i915_private *dev_priv = dev->dev_private;
2900 
2901 	if (!i915_pipe_enabled(dev, pipe))
2902 		return -EINVAL;
2903 
2904 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2905 	i915_enable_pipestat(dev_priv, pipe,
2906 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2907 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2908 
2909 	return 0;
2910 }
2911 
2912 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2913 {
2914 	struct drm_i915_private *dev_priv = dev->dev_private;
2915 
2916 	if (!i915_pipe_enabled(dev, pipe))
2917 		return -EINVAL;
2918 
2919 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2920 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2921 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2922 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2923 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2924 	return 0;
2925 }
2926 
2927 /* Called from drm generic code, passed 'crtc' which
2928  * we use as a pipe index
2929  */
2930 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2931 {
2932 	struct drm_i915_private *dev_priv = dev->dev_private;
2933 
2934 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2935 	i915_disable_pipestat(dev_priv, pipe,
2936 			      PIPE_VBLANK_INTERRUPT_STATUS |
2937 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2938 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2939 }
2940 
2941 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2942 {
2943 	struct drm_i915_private *dev_priv = dev->dev_private;
2944 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2945 						     DE_PIPE_VBLANK(pipe);
2946 
2947 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2948 	ironlake_disable_display_irq(dev_priv, bit);
2949 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2950 }
2951 
2952 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2953 {
2954 	struct drm_i915_private *dev_priv = dev->dev_private;
2955 
2956 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2957 	i915_disable_pipestat(dev_priv, pipe,
2958 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2959 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2960 }
2961 
2962 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2963 {
2964 	struct drm_i915_private *dev_priv = dev->dev_private;
2965 
2966 	if (!i915_pipe_enabled(dev, pipe))
2967 		return;
2968 
2969 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2970 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2971 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2972 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2973 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2974 }
2975 
2976 static u32
2977 ring_last_seqno(struct intel_engine_cs *ring)
2978 {
2979 	return list_entry(ring->request_list.prev,
2980 			  struct drm_i915_gem_request, list)->seqno;
2981 }
2982 
2983 static bool
2984 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2985 {
2986 	return (list_empty(&ring->request_list) ||
2987 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2988 }
2989 
2990 static bool
2991 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2992 {
2993 	if (INTEL_INFO(dev)->gen >= 8) {
2994 		return (ipehr >> 23) == 0x1c;
2995 	} else {
2996 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2997 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2998 				 MI_SEMAPHORE_REGISTER);
2999 	}
3000 }
3001 
3002 static struct intel_engine_cs *
3003 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3004 {
3005 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3006 	struct intel_engine_cs *signaller;
3007 	int i;
3008 
3009 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3010 		for_each_ring(signaller, dev_priv, i) {
3011 			if (ring == signaller)
3012 				continue;
3013 
3014 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
3015 				return signaller;
3016 		}
3017 	} else {
3018 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3019 
3020 		for_each_ring(signaller, dev_priv, i) {
3021 			if(ring == signaller)
3022 				continue;
3023 
3024 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3025 				return signaller;
3026 		}
3027 	}
3028 
3029 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016lx\n",
3030 		  ring->id, ipehr, offset);
3031 
3032 	return NULL;
3033 }
3034 
3035 static struct intel_engine_cs *
3036 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3037 {
3038 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3039 	u32 cmd, ipehr, head;
3040 	u64 offset = 0;
3041 	int i, backwards;
3042 
3043 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3044 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3045 		return NULL;
3046 
3047 	/*
3048 	 * HEAD is likely pointing to the dword after the actual command,
3049 	 * so scan backwards until we find the MBOX. But limit it to just 3
3050 	 * or 4 dwords depending on the semaphore wait command size.
3051 	 * Note that we don't care about ACTHD here since that might
3052 	 * point at at batch, and semaphores are always emitted into the
3053 	 * ringbuffer itself.
3054 	 */
3055 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
3056 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3057 
3058 	for (i = backwards; i; --i) {
3059 		/*
3060 		 * Be paranoid and presume the hw has gone off into the wild -
3061 		 * our ring is smaller than what the hardware (and hence
3062 		 * HEAD_ADDR) allows. Also handles wrap-around.
3063 		 */
3064 		head &= ring->buffer->size - 1;
3065 
3066 		/* This here seems to blow up */
3067 		cmd = ioread32(ring->buffer->virtual_start + head);
3068 		if (cmd == ipehr)
3069 			break;
3070 
3071 		head -= 4;
3072 	}
3073 
3074 	if (!i)
3075 		return NULL;
3076 
3077 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3078 	if (INTEL_INFO(ring->dev)->gen >= 8) {
3079 		offset = ioread32(ring->buffer->virtual_start + head + 12);
3080 		offset <<= 32;
3081 		offset = ioread32(ring->buffer->virtual_start + head + 8);
3082 	}
3083 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3084 }
3085 
3086 static int semaphore_passed(struct intel_engine_cs *ring)
3087 {
3088 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3089 	struct intel_engine_cs *signaller;
3090 	u32 seqno;
3091 
3092 	ring->hangcheck.deadlock++;
3093 
3094 	signaller = semaphore_waits_for(ring, &seqno);
3095 	if (signaller == NULL)
3096 		return -1;
3097 
3098 	/* Prevent pathological recursion due to driver bugs */
3099 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3100 		return -1;
3101 
3102 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3103 		return 1;
3104 
3105 	/* cursory check for an unkickable deadlock */
3106 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3107 	    semaphore_passed(signaller) < 0)
3108 		return -1;
3109 
3110 	return 0;
3111 }
3112 
3113 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3114 {
3115 	struct intel_engine_cs *ring;
3116 	int i;
3117 
3118 	for_each_ring(ring, dev_priv, i)
3119 		ring->hangcheck.deadlock = 0;
3120 }
3121 
3122 static enum intel_ring_hangcheck_action
3123 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3124 {
3125 	struct drm_device *dev = ring->dev;
3126 	struct drm_i915_private *dev_priv = dev->dev_private;
3127 	u32 tmp;
3128 
3129 	if (acthd != ring->hangcheck.acthd) {
3130 		if (acthd > ring->hangcheck.max_acthd) {
3131 			ring->hangcheck.max_acthd = acthd;
3132 			return HANGCHECK_ACTIVE;
3133 		}
3134 
3135 		return HANGCHECK_ACTIVE_LOOP;
3136 	}
3137 
3138 	if (IS_GEN2(dev))
3139 		return HANGCHECK_HUNG;
3140 
3141 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3142 	 * If so we can simply poke the RB_WAIT bit
3143 	 * and break the hang. This should work on
3144 	 * all but the second generation chipsets.
3145 	 */
3146 	tmp = I915_READ_CTL(ring);
3147 	if (tmp & RING_WAIT) {
3148 		i915_handle_error(dev, false,
3149 				  "Kicking stuck wait on %s",
3150 				  ring->name);
3151 		I915_WRITE_CTL(ring, tmp);
3152 		return HANGCHECK_KICK;
3153 	}
3154 
3155 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3156 		switch (semaphore_passed(ring)) {
3157 		default:
3158 			return HANGCHECK_HUNG;
3159 		case 1:
3160 			i915_handle_error(dev, false,
3161 					  "Kicking stuck semaphore on %s",
3162 					  ring->name);
3163 			I915_WRITE_CTL(ring, tmp);
3164 			return HANGCHECK_KICK;
3165 		case 0:
3166 			return HANGCHECK_WAIT;
3167 		}
3168 	}
3169 
3170 	return HANGCHECK_HUNG;
3171 }
3172 
3173 /**
3174  * This is called when the chip hasn't reported back with completed
3175  * batchbuffers in a long time. We keep track per ring seqno progress and
3176  * if there are no progress, hangcheck score for that ring is increased.
3177  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3178  * we kick the ring. If we see no progress on three subsequent calls
3179  * we assume chip is wedged and try to fix it by resetting the chip.
3180  */
3181 static void i915_hangcheck_elapsed(unsigned long data)
3182 {
3183 	struct drm_device *dev = (struct drm_device *)data;
3184 	struct drm_i915_private *dev_priv = dev->dev_private;
3185 	struct intel_engine_cs *ring;
3186 	int i;
3187 	int busy_count = 0, rings_hung = 0;
3188 	bool stuck[I915_NUM_RINGS] = { 0 };
3189 #define BUSY 1
3190 #define KICK 5
3191 #define HUNG 20
3192 
3193 	if (!i915.enable_hangcheck)
3194 		return;
3195 
3196 	for_each_ring(ring, dev_priv, i) {
3197 		u64 acthd;
3198 		u32 seqno;
3199 		bool busy = true;
3200 
3201 		semaphore_clear_deadlocks(dev_priv);
3202 
3203 		seqno = ring->get_seqno(ring, false);
3204 		acthd = intel_ring_get_active_head(ring);
3205 
3206 		if (ring->hangcheck.seqno == seqno) {
3207 			if (ring_idle(ring, seqno)) {
3208 				ring->hangcheck.action = HANGCHECK_IDLE;
3209 
3210 				if (waitqueue_active(&ring->irq_queue)) {
3211 					/* Issue a wake-up to catch stuck h/w. */
3212 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3213 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3214 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3215 								  ring->name);
3216 						else
3217 							DRM_INFO("Fake missed irq on %s\n",
3218 								 ring->name);
3219 						wake_up_all(&ring->irq_queue);
3220 					}
3221 					/* Safeguard against driver failure */
3222 					ring->hangcheck.score += BUSY;
3223 				} else
3224 					busy = false;
3225 			} else {
3226 				/* We always increment the hangcheck score
3227 				 * if the ring is busy and still processing
3228 				 * the same request, so that no single request
3229 				 * can run indefinitely (such as a chain of
3230 				 * batches). The only time we do not increment
3231 				 * the hangcheck score on this ring, if this
3232 				 * ring is in a legitimate wait for another
3233 				 * ring. In that case the waiting ring is a
3234 				 * victim and we want to be sure we catch the
3235 				 * right culprit. Then every time we do kick
3236 				 * the ring, add a small increment to the
3237 				 * score so that we can catch a batch that is
3238 				 * being repeatedly kicked and so responsible
3239 				 * for stalling the machine.
3240 				 */
3241 				ring->hangcheck.action = ring_stuck(ring,
3242 								    acthd);
3243 
3244 				switch (ring->hangcheck.action) {
3245 				case HANGCHECK_IDLE:
3246 				case HANGCHECK_WAIT:
3247 				case HANGCHECK_ACTIVE:
3248 					break;
3249 				case HANGCHECK_ACTIVE_LOOP:
3250 					ring->hangcheck.score += BUSY;
3251 					break;
3252 				case HANGCHECK_KICK:
3253 					ring->hangcheck.score += KICK;
3254 					break;
3255 				case HANGCHECK_HUNG:
3256 					ring->hangcheck.score += HUNG;
3257 					stuck[i] = true;
3258 					break;
3259 				}
3260 			}
3261 		} else {
3262 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3263 
3264 			/* Gradually reduce the count so that we catch DoS
3265 			 * attempts across multiple batches.
3266 			 */
3267 			if (ring->hangcheck.score > 0)
3268 				ring->hangcheck.score--;
3269 
3270 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3271 		}
3272 
3273 		ring->hangcheck.seqno = seqno;
3274 		ring->hangcheck.acthd = acthd;
3275 		busy_count += busy;
3276 	}
3277 
3278 	for_each_ring(ring, dev_priv, i) {
3279 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3280 			DRM_INFO("%s on %s\n",
3281 				 stuck[i] ? "stuck" : "no progress",
3282 				 ring->name);
3283 			rings_hung++;
3284 		}
3285 	}
3286 
3287 	if (rings_hung)
3288 		return i915_handle_error(dev, true, "Ring hung");
3289 
3290 	if (busy_count)
3291 		/* Reset timer case chip hangs without another request
3292 		 * being added */
3293 		i915_queue_hangcheck(dev);
3294 }
3295 
3296 void i915_queue_hangcheck(struct drm_device *dev)
3297 {
3298 	struct drm_i915_private *dev_priv = dev->dev_private;
3299 	if (!i915.enable_hangcheck)
3300 		return;
3301 
3302 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3303 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3304 }
3305 
3306 static void ibx_irq_reset(struct drm_device *dev)
3307 {
3308 	struct drm_i915_private *dev_priv = dev->dev_private;
3309 
3310 	if (HAS_PCH_NOP(dev))
3311 		return;
3312 
3313 	GEN5_IRQ_RESET(SDE);
3314 
3315 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3316 		I915_WRITE(SERR_INT, 0xffffffff);
3317 }
3318 
3319 /*
3320  * SDEIER is also touched by the interrupt handler to work around missed PCH
3321  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3322  * instead we unconditionally enable all PCH interrupt sources here, but then
3323  * only unmask them as needed with SDEIMR.
3324  *
3325  * This function needs to be called before interrupts are enabled.
3326  */
3327 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3328 {
3329 	struct drm_i915_private *dev_priv = dev->dev_private;
3330 
3331 	if (HAS_PCH_NOP(dev))
3332 		return;
3333 
3334 	WARN_ON(I915_READ(SDEIER) != 0);
3335 	I915_WRITE(SDEIER, 0xffffffff);
3336 	POSTING_READ(SDEIER);
3337 }
3338 
3339 static void gen5_gt_irq_reset(struct drm_device *dev)
3340 {
3341 	struct drm_i915_private *dev_priv = dev->dev_private;
3342 
3343 	GEN5_IRQ_RESET(GT);
3344 	if (INTEL_INFO(dev)->gen >= 6)
3345 		GEN5_IRQ_RESET(GEN6_PM);
3346 }
3347 
3348 /* drm_dma.h hooks
3349 */
3350 static void ironlake_irq_reset(struct drm_device *dev)
3351 {
3352 	struct drm_i915_private *dev_priv = dev->dev_private;
3353 
3354 	I915_WRITE(HWSTAM, 0xffffffff);
3355 
3356 	GEN5_IRQ_RESET(DE);
3357 	if (IS_GEN7(dev))
3358 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3359 
3360 	gen5_gt_irq_reset(dev);
3361 
3362 	ibx_irq_reset(dev);
3363 }
3364 
3365 static void valleyview_irq_preinstall(struct drm_device *dev)
3366 {
3367 	struct drm_i915_private *dev_priv = dev->dev_private;
3368 	int pipe;
3369 
3370 	/* VLV magic */
3371 	I915_WRITE(VLV_IMR, 0);
3372 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3373 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3374 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3375 
3376 	/* and GT */
3377 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3378 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3379 
3380 	gen5_gt_irq_reset(dev);
3381 
3382 	I915_WRITE(DPINVGTT, 0xff);
3383 
3384 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3385 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3386 	for_each_pipe(dev_priv, pipe)
3387 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3388 	I915_WRITE(VLV_IIR, 0xffffffff);
3389 	I915_WRITE(VLV_IMR, 0xffffffff);
3390 	I915_WRITE(VLV_IER, 0x0);
3391 	POSTING_READ(VLV_IER);
3392 }
3393 
3394 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3395 {
3396 	GEN8_IRQ_RESET_NDX(GT, 0);
3397 	GEN8_IRQ_RESET_NDX(GT, 1);
3398 	GEN8_IRQ_RESET_NDX(GT, 2);
3399 	GEN8_IRQ_RESET_NDX(GT, 3);
3400 }
3401 
3402 static void gen8_irq_reset(struct drm_device *dev)
3403 {
3404 	struct drm_i915_private *dev_priv = dev->dev_private;
3405 	int pipe;
3406 
3407 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3408 	POSTING_READ(GEN8_MASTER_IRQ);
3409 
3410 	gen8_gt_irq_reset(dev_priv);
3411 
3412 	for_each_pipe(dev_priv, pipe)
3413 		if (intel_display_power_enabled(dev_priv,
3414 						POWER_DOMAIN_PIPE(pipe)))
3415 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3416 
3417 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3418 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3419 	GEN5_IRQ_RESET(GEN8_PCU_);
3420 
3421 	ibx_irq_reset(dev);
3422 }
3423 
3424 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3425 {
3426 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3427 
3428 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3429 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3430 			  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3431 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3432 			  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3433 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3434 }
3435 
3436 static void cherryview_irq_preinstall(struct drm_device *dev)
3437 {
3438 	struct drm_i915_private *dev_priv = dev->dev_private;
3439 	int pipe;
3440 
3441 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3442 	POSTING_READ(GEN8_MASTER_IRQ);
3443 
3444 	gen8_gt_irq_reset(dev_priv);
3445 
3446 	GEN5_IRQ_RESET(GEN8_PCU_);
3447 
3448 	POSTING_READ(GEN8_PCU_IIR);
3449 
3450 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3451 
3452 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3453 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3454 
3455 	for_each_pipe(dev_priv, pipe)
3456 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3457 
3458 	I915_WRITE(VLV_IMR, 0xffffffff);
3459 	I915_WRITE(VLV_IER, 0x0);
3460 	I915_WRITE(VLV_IIR, 0xffffffff);
3461 	POSTING_READ(VLV_IIR);
3462 }
3463 
3464 static void ibx_hpd_irq_setup(struct drm_device *dev)
3465 {
3466 	struct drm_i915_private *dev_priv = dev->dev_private;
3467 	struct intel_encoder *intel_encoder;
3468 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3469 
3470 	if (HAS_PCH_IBX(dev)) {
3471 		hotplug_irqs = SDE_HOTPLUG_MASK;
3472 		for_each_intel_encoder(dev, intel_encoder)
3473 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3474 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3475 	} else {
3476 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3477 		for_each_intel_encoder(dev, intel_encoder)
3478 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3479 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3480 	}
3481 
3482 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3483 
3484 	/*
3485 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3486 	 * duration to 2ms (which is the minimum in the Display Port spec)
3487 	 *
3488 	 * This register is the same on all known PCH chips.
3489 	 */
3490 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3491 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3492 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3493 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3494 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3495 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3496 }
3497 
3498 static void ibx_irq_postinstall(struct drm_device *dev)
3499 {
3500 	struct drm_i915_private *dev_priv = dev->dev_private;
3501 	u32 mask;
3502 
3503 	if (HAS_PCH_NOP(dev))
3504 		return;
3505 
3506 	if (HAS_PCH_IBX(dev))
3507 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3508 	else
3509 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3510 
3511 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3512 	I915_WRITE(SDEIMR, ~mask);
3513 }
3514 
3515 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3516 {
3517 	struct drm_i915_private *dev_priv = dev->dev_private;
3518 	u32 pm_irqs, gt_irqs;
3519 
3520 	pm_irqs = gt_irqs = 0;
3521 
3522 	dev_priv->gt_irq_mask = ~0;
3523 	if (HAS_L3_DPF(dev)) {
3524 		/* L3 parity interrupt is always unmasked. */
3525 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3526 		gt_irqs |= GT_PARITY_ERROR(dev);
3527 	}
3528 
3529 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3530 	if (IS_GEN5(dev)) {
3531 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3532 			   ILK_BSD_USER_INTERRUPT;
3533 	} else {
3534 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3535 	}
3536 
3537 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3538 
3539 	if (INTEL_INFO(dev)->gen >= 6) {
3540 		pm_irqs |= dev_priv->pm_rps_events;
3541 
3542 		if (HAS_VEBOX(dev))
3543 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3544 
3545 		dev_priv->pm_irq_mask = 0xffffffff;
3546 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3547 	}
3548 }
3549 
3550 static int ironlake_irq_postinstall(struct drm_device *dev)
3551 {
3552 	struct drm_i915_private *dev_priv = dev->dev_private;
3553 	u32 display_mask, extra_mask;
3554 
3555 	if (INTEL_INFO(dev)->gen >= 7) {
3556 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3557 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3558 				DE_PLANEB_FLIP_DONE_IVB |
3559 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3560 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3561 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3562 	} else {
3563 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3564 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3565 				DE_AUX_CHANNEL_A |
3566 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3567 				DE_POISON);
3568 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3569 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3570 	}
3571 
3572 	dev_priv->irq_mask = ~display_mask;
3573 
3574 	I915_WRITE(HWSTAM, 0xeffe);
3575 
3576 	ibx_irq_pre_postinstall(dev);
3577 
3578 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3579 
3580 	gen5_gt_irq_postinstall(dev);
3581 
3582 	ibx_irq_postinstall(dev);
3583 
3584 	if (IS_IRONLAKE_M(dev)) {
3585 		/* Enable PCU event interrupts
3586 		 *
3587 		 * spinlocking not required here for correctness since interrupt
3588 		 * setup is guaranteed to run in single-threaded context. But we
3589 		 * need it to make the assert_spin_locked happy. */
3590 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3591 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3592 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3593 	}
3594 
3595 	return 0;
3596 }
3597 
3598 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3599 {
3600 	u32 pipestat_mask;
3601 	u32 iir_mask;
3602 
3603 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3604 			PIPE_FIFO_UNDERRUN_STATUS;
3605 
3606 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3607 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3608 	POSTING_READ(PIPESTAT(PIPE_A));
3609 
3610 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3611 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3612 
3613 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3614 					       PIPE_GMBUS_INTERRUPT_STATUS);
3615 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3616 
3617 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3618 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3619 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3620 	dev_priv->irq_mask &= ~iir_mask;
3621 
3622 	I915_WRITE(VLV_IIR, iir_mask);
3623 	I915_WRITE(VLV_IIR, iir_mask);
3624 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3625 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3626 	POSTING_READ(VLV_IER);
3627 }
3628 
3629 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3630 {
3631 	u32 pipestat_mask;
3632 	u32 iir_mask;
3633 
3634 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3635 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3636 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3637 
3638 	dev_priv->irq_mask |= iir_mask;
3639 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3640 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3641 	I915_WRITE(VLV_IIR, iir_mask);
3642 	I915_WRITE(VLV_IIR, iir_mask);
3643 	POSTING_READ(VLV_IIR);
3644 
3645 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3646 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3647 
3648 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3649 					        PIPE_GMBUS_INTERRUPT_STATUS);
3650 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3651 
3652 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3653 			PIPE_FIFO_UNDERRUN_STATUS;
3654 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3655 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3656 	POSTING_READ(PIPESTAT(PIPE_A));
3657 }
3658 
3659 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3660 {
3661 	assert_spin_locked(&dev_priv->irq_lock);
3662 
3663 	if (dev_priv->display_irqs_enabled)
3664 		return;
3665 
3666 	dev_priv->display_irqs_enabled = true;
3667 
3668 	if (dev_priv->dev->irq_enabled)
3669 		valleyview_display_irqs_install(dev_priv);
3670 }
3671 
3672 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3673 {
3674 	assert_spin_locked(&dev_priv->irq_lock);
3675 
3676 	if (!dev_priv->display_irqs_enabled)
3677 		return;
3678 
3679 	dev_priv->display_irqs_enabled = false;
3680 
3681 	if (dev_priv->dev->irq_enabled)
3682 		valleyview_display_irqs_uninstall(dev_priv);
3683 }
3684 
3685 static int valleyview_irq_postinstall(struct drm_device *dev)
3686 {
3687 	struct drm_i915_private *dev_priv = dev->dev_private;
3688 
3689 	dev_priv->irq_mask = ~0;
3690 
3691 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3692 	POSTING_READ(PORT_HOTPLUG_EN);
3693 
3694 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3695 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3696 	I915_WRITE(VLV_IIR, 0xffffffff);
3697 	POSTING_READ(VLV_IER);
3698 
3699 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3700 	 * just to make the assert_spin_locked check happy. */
3701 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3702 	if (dev_priv->display_irqs_enabled)
3703 		valleyview_display_irqs_install(dev_priv);
3704 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3705 
3706 	I915_WRITE(VLV_IIR, 0xffffffff);
3707 	I915_WRITE(VLV_IIR, 0xffffffff);
3708 
3709 	gen5_gt_irq_postinstall(dev);
3710 
3711 	/* ack & enable invalid PTE error interrupts */
3712 #if 0 /* FIXME: add support to irq handler for checking these bits */
3713 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3714 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3715 #endif
3716 
3717 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3718 
3719 	return 0;
3720 }
3721 
3722 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3723 {
3724 	/* These are interrupts we'll toggle with the ring mask register */
3725 	uint32_t gt_interrupts[] = {
3726 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3727 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3728 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3729 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3730 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3731 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3732 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3733 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3734 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3735 		0,
3736 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3737 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3738 		};
3739 
3740 	dev_priv->pm_irq_mask = 0xffffffff;
3741 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3742 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3743 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3744 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3745 }
3746 
3747 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3748 {
3749 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3750 		GEN8_PIPE_CDCLK_CRC_DONE |
3751 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3752 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3753 		GEN8_PIPE_FIFO_UNDERRUN;
3754 	int pipe;
3755 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3756 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3757 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3758 
3759 	for_each_pipe(dev_priv, pipe)
3760 		if (intel_display_power_enabled(dev_priv,
3761 				POWER_DOMAIN_PIPE(pipe)))
3762 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3763 					  dev_priv->de_irq_mask[pipe],
3764 					  de_pipe_enables);
3765 
3766 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3767 }
3768 
3769 static int gen8_irq_postinstall(struct drm_device *dev)
3770 {
3771 	struct drm_i915_private *dev_priv = dev->dev_private;
3772 
3773 	ibx_irq_pre_postinstall(dev);
3774 
3775 	gen8_gt_irq_postinstall(dev_priv);
3776 	gen8_de_irq_postinstall(dev_priv);
3777 
3778 	ibx_irq_postinstall(dev);
3779 
3780 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3781 	POSTING_READ(GEN8_MASTER_IRQ);
3782 
3783 	return 0;
3784 }
3785 
3786 static int cherryview_irq_postinstall(struct drm_device *dev)
3787 {
3788 	struct drm_i915_private *dev_priv = dev->dev_private;
3789 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3790 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3791 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3792 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3793 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3794 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3795 	int pipe;
3796 
3797 	/*
3798 	 * Leave vblank interrupts masked initially.  enable/disable will
3799 	 * toggle them based on usage.
3800 	 */
3801 	dev_priv->irq_mask = ~enable_mask;
3802 
3803 	for_each_pipe(dev_priv, pipe)
3804 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3805 
3806 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3807 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3808 	for_each_pipe(dev_priv, pipe)
3809 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3810 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3811 
3812 	I915_WRITE(VLV_IIR, 0xffffffff);
3813 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3814 	I915_WRITE(VLV_IER, enable_mask);
3815 
3816 	gen8_gt_irq_postinstall(dev_priv);
3817 
3818 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3819 	POSTING_READ(GEN8_MASTER_IRQ);
3820 
3821 	return 0;
3822 }
3823 
3824 static void gen8_irq_uninstall(struct drm_device *dev)
3825 {
3826 	struct drm_i915_private *dev_priv = dev->dev_private;
3827 
3828 	if (!dev_priv)
3829 		return;
3830 
3831 	gen8_irq_reset(dev);
3832 }
3833 
3834 static void valleyview_irq_uninstall(struct drm_device *dev)
3835 {
3836 	struct drm_i915_private *dev_priv = dev->dev_private;
3837 	int pipe;
3838 
3839 	if (!dev_priv)
3840 		return;
3841 
3842 	I915_WRITE(VLV_MASTER_IER, 0);
3843 
3844 	for_each_pipe(dev_priv, pipe)
3845 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3846 
3847 	I915_WRITE(HWSTAM, 0xffffffff);
3848 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3849 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3850 
3851 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3852 	if (dev_priv->display_irqs_enabled)
3853 		valleyview_display_irqs_uninstall(dev_priv);
3854 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3855 
3856 	dev_priv->irq_mask = 0;
3857 
3858 	I915_WRITE(VLV_IIR, 0xffffffff);
3859 	I915_WRITE(VLV_IMR, 0xffffffff);
3860 	I915_WRITE(VLV_IER, 0x0);
3861 	POSTING_READ(VLV_IER);
3862 }
3863 
3864 static void cherryview_irq_uninstall(struct drm_device *dev)
3865 {
3866 	struct drm_i915_private *dev_priv = dev->dev_private;
3867 	int pipe;
3868 
3869 	if (!dev_priv)
3870 		return;
3871 
3872 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3873 	POSTING_READ(GEN8_MASTER_IRQ);
3874 
3875 #define GEN8_IRQ_FINI_NDX(type, which)				\
3876 do {								\
3877 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3878 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3879 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3880 	POSTING_READ(GEN8_##type##_IIR(which));			\
3881 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3882 } while (0)
3883 
3884 #define GEN8_IRQ_FINI(type)				\
3885 do {							\
3886 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3887 	I915_WRITE(GEN8_##type##_IER, 0);		\
3888 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3889 	POSTING_READ(GEN8_##type##_IIR);		\
3890 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3891 } while (0)
3892 
3893 	GEN8_IRQ_FINI_NDX(GT, 0);
3894 	GEN8_IRQ_FINI_NDX(GT, 1);
3895 	GEN8_IRQ_FINI_NDX(GT, 2);
3896 	GEN8_IRQ_FINI_NDX(GT, 3);
3897 
3898 	GEN8_IRQ_FINI(PCU);
3899 
3900 #undef GEN8_IRQ_FINI
3901 #undef GEN8_IRQ_FINI_NDX
3902 
3903 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3904 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3905 
3906 	for_each_pipe(dev_priv, pipe)
3907 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3908 
3909 	I915_WRITE(VLV_IMR, 0xffffffff);
3910 	I915_WRITE(VLV_IER, 0x0);
3911 	I915_WRITE(VLV_IIR, 0xffffffff);
3912 	POSTING_READ(VLV_IIR);
3913 }
3914 
3915 static void ironlake_irq_uninstall(struct drm_device *dev)
3916 {
3917 	struct drm_i915_private *dev_priv = dev->dev_private;
3918 
3919 	if (!dev_priv)
3920 		return;
3921 
3922 	ironlake_irq_reset(dev);
3923 }
3924 
3925 static void i8xx_irq_preinstall(struct drm_device * dev)
3926 {
3927 	struct drm_i915_private *dev_priv = dev->dev_private;
3928 	int pipe;
3929 
3930 	for_each_pipe(dev_priv, pipe)
3931 		I915_WRITE(PIPESTAT(pipe), 0);
3932 	I915_WRITE16(IMR, 0xffff);
3933 	I915_WRITE16(IER, 0x0);
3934 	POSTING_READ16(IER);
3935 }
3936 
3937 static int i8xx_irq_postinstall(struct drm_device *dev)
3938 {
3939 	struct drm_i915_private *dev_priv = dev->dev_private;
3940 
3941 	I915_WRITE16(EMR,
3942 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3943 
3944 	/* Unmask the interrupts that we always want on. */
3945 	dev_priv->irq_mask =
3946 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3947 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3948 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3949 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3950 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3951 	I915_WRITE16(IMR, dev_priv->irq_mask);
3952 
3953 	I915_WRITE16(IER,
3954 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3955 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3956 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3957 		     I915_USER_INTERRUPT);
3958 	POSTING_READ16(IER);
3959 
3960 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3961 	 * just to make the assert_spin_locked check happy. */
3962 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3963 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3964 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3965 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3966 
3967 	return 0;
3968 }
3969 
3970 /*
3971  * Returns true when a page flip has completed.
3972  */
3973 static bool i8xx_handle_vblank(struct drm_device *dev,
3974 			       int plane, int pipe, u32 iir)
3975 {
3976 	struct drm_i915_private *dev_priv = dev->dev_private;
3977 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3978 
3979 	if (!intel_pipe_handle_vblank(dev, pipe))
3980 		return false;
3981 
3982 	if ((iir & flip_pending) == 0)
3983 		goto check_page_flip;
3984 
3985 	intel_prepare_page_flip(dev, plane);
3986 
3987 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3988 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3989 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3990 	 * the flip is completed (no longer pending). Since this doesn't raise
3991 	 * an interrupt per se, we watch for the change at vblank.
3992 	 */
3993 	if (I915_READ16(ISR) & flip_pending)
3994 		goto check_page_flip;
3995 
3996 	intel_finish_page_flip(dev, pipe);
3997 	return true;
3998 
3999 check_page_flip:
4000 	intel_check_page_flip(dev, pipe);
4001 	return false;
4002 }
4003 
4004 static irqreturn_t i8xx_irq_handler(void *arg)
4005 {
4006 	struct drm_device *dev = arg;
4007 	struct drm_i915_private *dev_priv = dev->dev_private;
4008 	u16 iir, new_iir;
4009 	u32 pipe_stats[2];
4010 	int pipe;
4011 	u16 flip_mask =
4012 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4013 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4014 
4015 	iir = I915_READ16(IIR);
4016 	if (iir == 0)
4017 		return;
4018 
4019 	while (iir & ~flip_mask) {
4020 		/* Can't rely on pipestat interrupt bit in iir as it might
4021 		 * have been cleared after the pipestat interrupt was received.
4022 		 * It doesn't set the bit in iir again, but it still produces
4023 		 * interrupts (for non-MSI).
4024 		 */
4025 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4026 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4027 			i915_handle_error(dev, false,
4028 					  "Command parser error, iir 0x%08x",
4029 					  iir);
4030 
4031 		for_each_pipe(dev_priv, pipe) {
4032 			int reg = PIPESTAT(pipe);
4033 			pipe_stats[pipe] = I915_READ(reg);
4034 
4035 			/*
4036 			 * Clear the PIPE*STAT regs before the IIR
4037 			 */
4038 			if (pipe_stats[pipe] & 0x8000ffff)
4039 				I915_WRITE(reg, pipe_stats[pipe]);
4040 		}
4041 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4042 
4043 		I915_WRITE16(IIR, iir & ~flip_mask);
4044 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4045 
4046 		i915_update_dri1_breadcrumb(dev);
4047 
4048 		if (iir & I915_USER_INTERRUPT)
4049 			notify_ring(dev, &dev_priv->ring[RCS]);
4050 
4051 		for_each_pipe(dev_priv, pipe) {
4052 			int plane = pipe;
4053 			if (HAS_FBC(dev))
4054 				plane = !plane;
4055 
4056 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4057 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4058 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4059 
4060 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4061 				i9xx_pipe_crc_irq_handler(dev, pipe);
4062 
4063 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4064 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4065 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4066 		}
4067 
4068 		iir = new_iir;
4069 	}
4070 
4071 }
4072 
4073 static void i8xx_irq_uninstall(struct drm_device * dev)
4074 {
4075 	struct drm_i915_private *dev_priv = dev->dev_private;
4076 	int pipe;
4077 
4078 	for_each_pipe(dev_priv, pipe) {
4079 		/* Clear enable bits; then clear status bits */
4080 		I915_WRITE(PIPESTAT(pipe), 0);
4081 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4082 	}
4083 	I915_WRITE16(IMR, 0xffff);
4084 	I915_WRITE16(IER, 0x0);
4085 	I915_WRITE16(IIR, I915_READ16(IIR));
4086 }
4087 
4088 static void i915_irq_preinstall(struct drm_device * dev)
4089 {
4090 	struct drm_i915_private *dev_priv = dev->dev_private;
4091 	int pipe;
4092 
4093 	if (I915_HAS_HOTPLUG(dev)) {
4094 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4095 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4096 	}
4097 
4098 	I915_WRITE16(HWSTAM, 0xeffe);
4099 	for_each_pipe(dev_priv, pipe)
4100 		I915_WRITE(PIPESTAT(pipe), 0);
4101 	I915_WRITE(IMR, 0xffffffff);
4102 	I915_WRITE(IER, 0x0);
4103 	POSTING_READ(IER);
4104 }
4105 
4106 static int i915_irq_postinstall(struct drm_device *dev)
4107 {
4108 	struct drm_i915_private *dev_priv = dev->dev_private;
4109 	u32 enable_mask;
4110 
4111 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4112 
4113 	/* Unmask the interrupts that we always want on. */
4114 	dev_priv->irq_mask =
4115 		~(I915_ASLE_INTERRUPT |
4116 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4117 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4118 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4119 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4120 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4121 
4122 	enable_mask =
4123 		I915_ASLE_INTERRUPT |
4124 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4125 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4126 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4127 		I915_USER_INTERRUPT;
4128 
4129 	if (I915_HAS_HOTPLUG(dev)) {
4130 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4131 		POSTING_READ(PORT_HOTPLUG_EN);
4132 
4133 		/* Enable in IER... */
4134 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4135 		/* and unmask in IMR */
4136 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4137 	}
4138 
4139 	I915_WRITE(IMR, dev_priv->irq_mask);
4140 	I915_WRITE(IER, enable_mask);
4141 	POSTING_READ(IER);
4142 
4143 	i915_enable_asle_pipestat(dev);
4144 
4145 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4146 	 * just to make the assert_spin_locked check happy. */
4147 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4148 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4149 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4151 
4152 	return 0;
4153 }
4154 
4155 /*
4156  * Returns true when a page flip has completed.
4157  */
4158 static bool i915_handle_vblank(struct drm_device *dev,
4159 			       int plane, int pipe, u32 iir)
4160 {
4161 	struct drm_i915_private *dev_priv = dev->dev_private;
4162 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4163 
4164 	if (!intel_pipe_handle_vblank(dev, pipe))
4165 		return false;
4166 
4167 	if ((iir & flip_pending) == 0)
4168 		goto check_page_flip;
4169 
4170 	intel_prepare_page_flip(dev, plane);
4171 
4172 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4173 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4174 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4175 	 * the flip is completed (no longer pending). Since this doesn't raise
4176 	 * an interrupt per se, we watch for the change at vblank.
4177 	 */
4178 	if (I915_READ(ISR) & flip_pending)
4179 		goto check_page_flip;
4180 
4181 	intel_finish_page_flip(dev, pipe);
4182 	return true;
4183 
4184 check_page_flip:
4185 	intel_check_page_flip(dev, pipe);
4186 	return false;
4187 }
4188 
4189 static irqreturn_t i915_irq_handler(void *arg)
4190 {
4191 	struct drm_device *dev = arg;
4192 	struct drm_i915_private *dev_priv = dev->dev_private;
4193 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4194 	u32 flip_mask =
4195 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4196 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4197 	int pipe;
4198 
4199 	iir = I915_READ(IIR);
4200 	do {
4201 		bool irq_received = (iir & ~flip_mask) != 0;
4202 		bool blc_event = false;
4203 
4204 		/* Can't rely on pipestat interrupt bit in iir as it might
4205 		 * have been cleared after the pipestat interrupt was received.
4206 		 * It doesn't set the bit in iir again, but it still produces
4207 		 * interrupts (for non-MSI).
4208 		 */
4209 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4210 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4211 			i915_handle_error(dev, false,
4212 					  "Command parser error, iir 0x%08x",
4213 					  iir);
4214 
4215 		for_each_pipe(dev_priv, pipe) {
4216 			int reg = PIPESTAT(pipe);
4217 			pipe_stats[pipe] = I915_READ(reg);
4218 
4219 			/* Clear the PIPE*STAT regs before the IIR */
4220 			if (pipe_stats[pipe] & 0x8000ffff) {
4221 				I915_WRITE(reg, pipe_stats[pipe]);
4222 				irq_received = true;
4223 			}
4224 		}
4225 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4226 
4227 		if (!irq_received)
4228 			break;
4229 
4230 		/* Consume port.  Then clear IIR or we'll miss events */
4231 		if (I915_HAS_HOTPLUG(dev) &&
4232 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4233 			i9xx_hpd_irq_handler(dev);
4234 
4235 		I915_WRITE(IIR, iir & ~flip_mask);
4236 		new_iir = I915_READ(IIR); /* Flush posted writes */
4237 
4238 		if (iir & I915_USER_INTERRUPT)
4239 			notify_ring(dev, &dev_priv->ring[RCS]);
4240 
4241 		for_each_pipe(dev_priv, pipe) {
4242 			int plane = pipe;
4243 			if (HAS_FBC(dev))
4244 				plane = !plane;
4245 
4246 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4247 			    i915_handle_vblank(dev, plane, pipe, iir))
4248 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4249 
4250 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4251 				blc_event = true;
4252 
4253 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4254 				i9xx_pipe_crc_irq_handler(dev, pipe);
4255 
4256 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4257 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4258 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4259 		}
4260 
4261 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4262 			intel_opregion_asle_intr(dev);
4263 
4264 		/* With MSI, interrupts are only generated when iir
4265 		 * transitions from zero to nonzero.  If another bit got
4266 		 * set while we were handling the existing iir bits, then
4267 		 * we would never get another interrupt.
4268 		 *
4269 		 * This is fine on non-MSI as well, as if we hit this path
4270 		 * we avoid exiting the interrupt handler only to generate
4271 		 * another one.
4272 		 *
4273 		 * Note that for MSI this could cause a stray interrupt report
4274 		 * if an interrupt landed in the time between writing IIR and
4275 		 * the posting read.  This should be rare enough to never
4276 		 * trigger the 99% of 100,000 interrupts test for disabling
4277 		 * stray interrupts.
4278 		 */
4279 		iir = new_iir;
4280 	} while (iir & ~flip_mask);
4281 
4282 	i915_update_dri1_breadcrumb(dev);
4283 
4284 }
4285 
4286 static void i915_irq_uninstall(struct drm_device * dev)
4287 {
4288 	struct drm_i915_private *dev_priv = dev->dev_private;
4289 	int pipe;
4290 
4291 	if (I915_HAS_HOTPLUG(dev)) {
4292 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4293 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4294 	}
4295 
4296 	I915_WRITE16(HWSTAM, 0xffff);
4297 	for_each_pipe(dev_priv, pipe) {
4298 		/* Clear enable bits; then clear status bits */
4299 		I915_WRITE(PIPESTAT(pipe), 0);
4300 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4301 	}
4302 	I915_WRITE(IMR, 0xffffffff);
4303 	I915_WRITE(IER, 0x0);
4304 
4305 	I915_WRITE(IIR, I915_READ(IIR));
4306 }
4307 
4308 static void i965_irq_preinstall(struct drm_device * dev)
4309 {
4310 	struct drm_i915_private *dev_priv = dev->dev_private;
4311 	int pipe;
4312 
4313 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4314 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4315 
4316 	I915_WRITE(HWSTAM, 0xeffe);
4317 	for_each_pipe(dev_priv, pipe)
4318 		I915_WRITE(PIPESTAT(pipe), 0);
4319 	I915_WRITE(IMR, 0xffffffff);
4320 	I915_WRITE(IER, 0x0);
4321 	POSTING_READ(IER);
4322 }
4323 
4324 static int i965_irq_postinstall(struct drm_device *dev)
4325 {
4326 	struct drm_i915_private *dev_priv = dev->dev_private;
4327 	u32 enable_mask;
4328 	u32 error_mask;
4329 
4330 	/* Unmask the interrupts that we always want on. */
4331 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4332 			       I915_DISPLAY_PORT_INTERRUPT |
4333 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4334 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4335 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4336 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4337 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4338 
4339 	enable_mask = ~dev_priv->irq_mask;
4340 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4341 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4342 	enable_mask |= I915_USER_INTERRUPT;
4343 
4344 	if (IS_G4X(dev))
4345 		enable_mask |= I915_BSD_USER_INTERRUPT;
4346 
4347 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4348 	 * just to make the assert_spin_locked check happy. */
4349 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4350 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4351 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4352 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4353 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4354 
4355 	/*
4356 	 * Enable some error detection, note the instruction error mask
4357 	 * bit is reserved, so we leave it masked.
4358 	 */
4359 	if (IS_G4X(dev)) {
4360 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4361 			       GM45_ERROR_MEM_PRIV |
4362 			       GM45_ERROR_CP_PRIV |
4363 			       I915_ERROR_MEMORY_REFRESH);
4364 	} else {
4365 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4366 			       I915_ERROR_MEMORY_REFRESH);
4367 	}
4368 	I915_WRITE(EMR, error_mask);
4369 
4370 	I915_WRITE(IMR, dev_priv->irq_mask);
4371 	I915_WRITE(IER, enable_mask);
4372 	POSTING_READ(IER);
4373 
4374 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4375 	POSTING_READ(PORT_HOTPLUG_EN);
4376 
4377 	i915_enable_asle_pipestat(dev);
4378 
4379 	return 0;
4380 }
4381 
4382 static void i915_hpd_irq_setup(struct drm_device *dev)
4383 {
4384 	struct drm_i915_private *dev_priv = dev->dev_private;
4385 	struct intel_encoder *intel_encoder;
4386 	u32 hotplug_en;
4387 
4388 	assert_spin_locked(&dev_priv->irq_lock);
4389 
4390 	if (I915_HAS_HOTPLUG(dev)) {
4391 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4392 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4393 		/* Note HDMI and DP share hotplug bits */
4394 		/* enable bits are the same for all generations */
4395 		for_each_intel_encoder(dev, intel_encoder)
4396 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4397 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4398 		/* Programming the CRT detection parameters tends
4399 		   to generate a spurious hotplug event about three
4400 		   seconds later.  So just do it once.
4401 		*/
4402 		if (IS_G4X(dev))
4403 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4405 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4406 
4407 		/* Ignore TV since it's buggy */
4408 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4409 	}
4410 }
4411 
4412 static irqreturn_t i965_irq_handler(void *arg)
4413 {
4414 	struct drm_device *dev = arg;
4415 	struct drm_i915_private *dev_priv = dev->dev_private;
4416 	u32 iir, new_iir;
4417 	u32 pipe_stats[I915_MAX_PIPES];
4418 	int pipe;
4419 	u32 flip_mask =
4420 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4421 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4422 
4423 	iir = I915_READ(IIR);
4424 
4425 	for (;;) {
4426 		bool irq_received = (iir & ~flip_mask) != 0;
4427 		bool blc_event = false;
4428 
4429 		/* Can't rely on pipestat interrupt bit in iir as it might
4430 		 * have been cleared after the pipestat interrupt was received.
4431 		 * It doesn't set the bit in iir again, but it still produces
4432 		 * interrupts (for non-MSI).
4433 		 */
4434 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4435 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4436 			i915_handle_error(dev, false,
4437 					  "Command parser error, iir 0x%08x",
4438 					  iir);
4439 
4440 		for_each_pipe(dev_priv, pipe) {
4441 			int reg = PIPESTAT(pipe);
4442 			pipe_stats[pipe] = I915_READ(reg);
4443 
4444 			/*
4445 			 * Clear the PIPE*STAT regs before the IIR
4446 			 */
4447 			if (pipe_stats[pipe] & 0x8000ffff) {
4448 				I915_WRITE(reg, pipe_stats[pipe]);
4449 				irq_received = true;
4450 			}
4451 		}
4452 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4453 
4454 		if (!irq_received)
4455 			break;
4456 
4457 		/* Consume port.  Then clear IIR or we'll miss events */
4458 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4459 			i9xx_hpd_irq_handler(dev);
4460 
4461 		I915_WRITE(IIR, iir & ~flip_mask);
4462 		new_iir = I915_READ(IIR); /* Flush posted writes */
4463 
4464 		if (iir & I915_USER_INTERRUPT)
4465 			notify_ring(dev, &dev_priv->ring[RCS]);
4466 		if (iir & I915_BSD_USER_INTERRUPT)
4467 			notify_ring(dev, &dev_priv->ring[VCS]);
4468 
4469 		for_each_pipe(dev_priv, pipe) {
4470 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4471 			    i915_handle_vblank(dev, pipe, pipe, iir))
4472 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4473 
4474 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4475 				blc_event = true;
4476 
4477 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4478 				i9xx_pipe_crc_irq_handler(dev, pipe);
4479 
4480 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4481 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4482 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4483 		}
4484 
4485 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4486 			intel_opregion_asle_intr(dev);
4487 
4488 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4489 			gmbus_irq_handler(dev);
4490 
4491 		/* With MSI, interrupts are only generated when iir
4492 		 * transitions from zero to nonzero.  If another bit got
4493 		 * set while we were handling the existing iir bits, then
4494 		 * we would never get another interrupt.
4495 		 *
4496 		 * This is fine on non-MSI as well, as if we hit this path
4497 		 * we avoid exiting the interrupt handler only to generate
4498 		 * another one.
4499 		 *
4500 		 * Note that for MSI this could cause a stray interrupt report
4501 		 * if an interrupt landed in the time between writing IIR and
4502 		 * the posting read.  This should be rare enough to never
4503 		 * trigger the 99% of 100,000 interrupts test for disabling
4504 		 * stray interrupts.
4505 		 */
4506 		iir = new_iir;
4507 	}
4508 
4509 	i915_update_dri1_breadcrumb(dev);
4510 
4511 }
4512 
4513 static void i965_irq_uninstall(struct drm_device * dev)
4514 {
4515 	struct drm_i915_private *dev_priv = dev->dev_private;
4516 	int pipe;
4517 
4518 	if (!dev_priv)
4519 		return;
4520 
4521 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4522 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4523 
4524 	I915_WRITE(HWSTAM, 0xffffffff);
4525 	for_each_pipe(dev_priv, pipe)
4526 		I915_WRITE(PIPESTAT(pipe), 0);
4527 	I915_WRITE(IMR, 0xffffffff);
4528 	I915_WRITE(IER, 0x0);
4529 
4530 	for_each_pipe(dev_priv, pipe)
4531 		I915_WRITE(PIPESTAT(pipe),
4532 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4533 	I915_WRITE(IIR, I915_READ(IIR));
4534 }
4535 
4536 static void intel_hpd_irq_reenable(struct work_struct *work)
4537 {
4538 	struct drm_i915_private *dev_priv =
4539 		container_of(work, typeof(*dev_priv),
4540 			     hotplug_reenable_work.work);
4541 	struct drm_device *dev = dev_priv->dev;
4542 	struct drm_mode_config *mode_config = &dev->mode_config;
4543 	int i;
4544 
4545 	intel_runtime_pm_get(dev_priv);
4546 
4547 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4548 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4549 		struct drm_connector *connector;
4550 
4551 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4552 			continue;
4553 
4554 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4555 
4556 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4557 			struct intel_connector *intel_connector = to_intel_connector(connector);
4558 
4559 			if (intel_connector->encoder->hpd_pin == i) {
4560 				if (connector->polled != intel_connector->polled)
4561 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4562 							 connector->name);
4563 				connector->polled = intel_connector->polled;
4564 				if (!connector->polled)
4565 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4566 			}
4567 		}
4568 	}
4569 	if (dev_priv->display.hpd_irq_setup)
4570 		dev_priv->display.hpd_irq_setup(dev);
4571 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4572 
4573 	intel_runtime_pm_put(dev_priv);
4574 }
4575 
4576 void intel_irq_init(struct drm_device *dev)
4577 {
4578 	struct drm_i915_private *dev_priv = dev->dev_private;
4579 
4580 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4581 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4582 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4583 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4584 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4585 
4586 	/* Let's track the enabled rps events */
4587 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4588 		/* WaGsvRC0ResidencyMethod:vlv */
4589 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4590 	else
4591 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4592 
4593 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4594 		    i915_hangcheck_elapsed,
4595 		    (unsigned long) dev);
4596 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4597 			  intel_hpd_irq_reenable);
4598 
4599 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4600 
4601 	/* Haven't installed the IRQ handler yet */
4602 	dev_priv->pm._irqs_disabled = true;
4603 
4604 	if (IS_GEN2(dev)) {
4605 		dev->max_vblank_count = 0;
4606 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4607 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4608 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4609 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4610 	} else {
4611 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4612 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4613 	}
4614 
4615 	/*
4616 	 * Opt out of the vblank disable timer on everything except gen2.
4617 	 * Gen2 doesn't have a hardware frame counter and so depends on
4618 	 * vblank interrupts to produce sane vblank seuquence numbers.
4619 	 */
4620 	if (!IS_GEN2(dev))
4621 		dev->vblank_disable_immediate = true;
4622 
4623 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4624 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4625 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4626 	}
4627 
4628 	if (IS_CHERRYVIEW(dev)) {
4629 		dev->driver->irq_handler = cherryview_irq_handler;
4630 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4631 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4632 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4633 		dev->driver->enable_vblank = valleyview_enable_vblank;
4634 		dev->driver->disable_vblank = valleyview_disable_vblank;
4635 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4636 	} else if (IS_VALLEYVIEW(dev)) {
4637 		dev->driver->irq_handler = valleyview_irq_handler;
4638 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4639 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4640 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4641 		dev->driver->enable_vblank = valleyview_enable_vblank;
4642 		dev->driver->disable_vblank = valleyview_disable_vblank;
4643 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4644 	} else if (IS_GEN8(dev)) {
4645 		dev->driver->irq_handler = gen8_irq_handler;
4646 		dev->driver->irq_preinstall = gen8_irq_reset;
4647 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4648 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4649 		dev->driver->enable_vblank = gen8_enable_vblank;
4650 		dev->driver->disable_vblank = gen8_disable_vblank;
4651 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4652 	} else if (HAS_PCH_SPLIT(dev)) {
4653 		dev->driver->irq_handler = ironlake_irq_handler;
4654 		dev->driver->irq_preinstall = ironlake_irq_reset;
4655 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4656 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4657 		dev->driver->enable_vblank = ironlake_enable_vblank;
4658 		dev->driver->disable_vblank = ironlake_disable_vblank;
4659 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4660 	} else {
4661 		if (INTEL_INFO(dev)->gen == 2) {
4662 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4663 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4664 			dev->driver->irq_handler = i8xx_irq_handler;
4665 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4666 		} else if (INTEL_INFO(dev)->gen == 3) {
4667 			dev->driver->irq_preinstall = i915_irq_preinstall;
4668 			dev->driver->irq_postinstall = i915_irq_postinstall;
4669 			dev->driver->irq_uninstall = i915_irq_uninstall;
4670 			dev->driver->irq_handler = i915_irq_handler;
4671 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4672 		} else {
4673 			dev->driver->irq_preinstall = i965_irq_preinstall;
4674 			dev->driver->irq_postinstall = i965_irq_postinstall;
4675 			dev->driver->irq_uninstall = i965_irq_uninstall;
4676 			dev->driver->irq_handler = i965_irq_handler;
4677 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4678 		}
4679 		dev->driver->enable_vblank = i915_enable_vblank;
4680 		dev->driver->disable_vblank = i915_disable_vblank;
4681 	}
4682 }
4683 
4684 void intel_hpd_init(struct drm_device *dev)
4685 {
4686 	struct drm_i915_private *dev_priv = dev->dev_private;
4687 	struct drm_mode_config *mode_config = &dev->mode_config;
4688 	struct drm_connector *connector;
4689 	int i;
4690 
4691 	for (i = 1; i < HPD_NUM_PINS; i++) {
4692 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4693 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4694 	}
4695 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4696 		struct intel_connector *intel_connector = to_intel_connector(connector);
4697 		connector->polled = intel_connector->polled;
4698 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4699 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4700 	}
4701 
4702 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4703 	 * just to make the assert_spin_locked checks happy. */
4704 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4705 	if (dev_priv->display.hpd_irq_setup)
4706 		dev_priv->display.hpd_irq_setup(dev);
4707 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4708 }
4709 
4710 /* Disable interrupts so we can allow runtime PM. */
4711 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4712 {
4713 	struct drm_i915_private *dev_priv = dev->dev_private;
4714 
4715 	dev->driver->irq_uninstall(dev);
4716 	dev_priv->pm._irqs_disabled = true;
4717 }
4718 
4719 /* Restore interrupts so we can recover from runtime PM. */
4720 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4721 {
4722 	struct drm_i915_private *dev_priv = dev->dev_private;
4723 
4724 	dev_priv->pm._irqs_disabled = false;
4725 	dev->driver->irq_preinstall(dev);
4726 	dev->driver->irq_postinstall(dev);
4727 }
4728