xref: /dragonfly/sys/dev/drm/i915/i915_perf.c (revision 029e6489)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 
197 #include "i915_drv.h"
198 #include "i915_oa_hsw.h"
199 
200 /* HW requires this to be a power of two, between 128k and 16M, though driver
201  * is currently generally designed assuming the largest 16M size is used such
202  * that the overflow cases are unlikely in normal operation.
203  */
204 #define OA_BUFFER_SIZE		SZ_16M
205 
206 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
207 
208 /* There's a HW race condition between OA unit tail pointer register updates and
209  * writes to memory whereby the tail pointer can sometimes get ahead of what's
210  * been written out to the OA buffer so far.
211  *
212  * Although this can be observed explicitly by checking for a zeroed report-id
213  * field in tail reports, it seems preferable to account for this earlier e.g.
214  * as part of the _oa_buffer_is_empty checks to minimize -EAGAIN polling cycles
215  * in this situation.
216  *
217  * To give time for the most recent reports to land before they may be copied to
218  * userspace, the driver operates as if the tail pointer effectively lags behind
219  * the HW tail pointer by 'tail_margin' bytes. The margin in bytes is calculated
220  * based on this constant in nanoseconds, the current OA sampling exponent
221  * and current report size.
222  *
223  * There is also a fallback check while reading to simply skip over reports with
224  * a zeroed report-id.
225  */
226 #define OA_TAIL_MARGIN_NSEC	100000ULL
227 
228 /* frequency for checking whether the OA unit has written new reports to the
229  * circular OA buffer...
230  */
231 #define POLL_FREQUENCY 200
232 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
233 
234 #if 0
235 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
236 static int zero;
237 static int one = 1;
238 static u32 i915_perf_stream_paranoid = true;
239 
240 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
241  * of the 64bit timestamp bits to trigger reports from) but there's currently
242  * no known use case for sampling as infrequently as once per 47 thousand years.
243  *
244  * Since the timestamps included in OA reports are only 32bits it seems
245  * reasonable to limit the OA exponent where it's still possible to account for
246  * overflow in OA report timestamps.
247  */
248 #define OA_EXPONENT_MAX 31
249 
250 #define INVALID_CTX_ID 0xffffffff
251 
252 
253 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
254  *
255  * 160ns is the smallest sampling period we can theoretically program the OA
256  * unit with on Haswell, corresponding to 6.25MHz.
257  */
258 static int oa_sample_rate_hard_limit = 6250000;
259 
260 /* Theoretically we can program the OA unit to sample every 160ns but don't
261  * allow that by default unless root...
262  *
263  * The default threshold of 100000Hz is based on perf's similar
264  * kernel.perf_event_max_sample_rate sysctl parameter.
265  */
266 static u32 i915_oa_max_sample_rate = 100000;
267 
268 /* XXX: beware if future OA HW adds new report formats that the current
269  * code assumes all reports have a power-of-two size and ~(size - 1) can
270  * be used as a mask to align the OA tail pointer.
271  */
272 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
273 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
274 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
275 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
276 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
277 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
278 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
279 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
280 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
281 };
282 #endif
283 
284 #define SAMPLE_OA_REPORT      (1<<0)
285 
286 /**
287  * struct perf_open_properties - for validated properties given to open a stream
288  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
289  * @single_context: Whether a single or all gpu contexts should be monitored
290  * @ctx_handle: A gem ctx handle for use with @single_context
291  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
292  * @oa_format: An OA unit HW report format
293  * @oa_periodic: Whether to enable periodic OA unit sampling
294  * @oa_period_exponent: The OA unit sampling period is derived from this
295  *
296  * As read_properties_unlocked() enumerates and validates the properties given
297  * to open a stream of metrics the configuration is built up in the structure
298  * which starts out zero initialized.
299  */
300 struct perf_open_properties {
301 	u32 sample_flags;
302 
303 	u64 single_context:1;
304 	u64 ctx_handle;
305 
306 	/* OA sampling state */
307 	int metrics_set;
308 	int oa_format;
309 	bool oa_periodic;
310 	int oa_period_exponent;
311 };
312 
313 #if 0
314 /* NB: This is either called via fops or the poll check hrtimer (atomic ctx)
315  *
316  * It's safe to read OA config state here unlocked, assuming that this is only
317  * called while the stream is enabled, while the global OA configuration can't
318  * be modified.
319  *
320  * Note: we don't lock around the head/tail reads even though there's the slim
321  * possibility of read() fop errors forcing a re-init of the OA buffer
322  * pointers.  A race here could result in a false positive !empty status which
323  * is acceptable.
324  */
325 static bool gen7_oa_buffer_is_empty_fop_unlocked(struct drm_i915_private *dev_priv)
326 {
327 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
328 	u32 oastatus2 = I915_READ(GEN7_OASTATUS2);
329 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
330 	u32 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
331 	u32 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
332 
333 	return OA_TAKEN(tail, head) <
334 		dev_priv->perf.oa.tail_margin + report_size;
335 }
336 
337 /**
338  * append_oa_status - Appends a status record to a userspace read() buffer.
339  * @stream: An i915-perf stream opened for OA metrics
340  * @buf: destination buffer given by userspace
341  * @count: the number of bytes userspace wants to read
342  * @offset: (inout): the current position for writing into @buf
343  * @type: The kind of status to report to userspace
344  *
345  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
346  * into the userspace read() buffer.
347  *
348  * The @buf @offset will only be updated on success.
349  *
350  * Returns: 0 on success, negative error code on failure.
351  */
352 static int append_oa_status(struct i915_perf_stream *stream,
353 			    char __user *buf,
354 			    size_t count,
355 			    size_t *offset,
356 			    enum drm_i915_perf_record_type type)
357 {
358 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
359 
360 	if ((count - *offset) < header.size)
361 		return -ENOSPC;
362 
363 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
364 		return -EFAULT;
365 
366 	(*offset) += header.size;
367 
368 	return 0;
369 }
370 
371 /**
372  * append_oa_sample - Copies single OA report into userspace read() buffer.
373  * @stream: An i915-perf stream opened for OA metrics
374  * @buf: destination buffer given by userspace
375  * @count: the number of bytes userspace wants to read
376  * @offset: (inout): the current position for writing into @buf
377  * @report: A single OA report to (optionally) include as part of the sample
378  *
379  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
380  * properties when opening a stream, tracked as `stream->sample_flags`. This
381  * function copies the requested components of a single sample to the given
382  * read() @buf.
383  *
384  * The @buf @offset will only be updated on success.
385  *
386  * Returns: 0 on success, negative error code on failure.
387  */
388 static int append_oa_sample(struct i915_perf_stream *stream,
389 			    char __user *buf,
390 			    size_t count,
391 			    size_t *offset,
392 			    const u8 *report)
393 {
394 	struct drm_i915_private *dev_priv = stream->dev_priv;
395 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
396 	struct drm_i915_perf_record_header header;
397 	u32 sample_flags = stream->sample_flags;
398 
399 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
400 	header.pad = 0;
401 	header.size = stream->sample_size;
402 
403 	if ((count - *offset) < header.size)
404 		return -ENOSPC;
405 
406 	buf += *offset;
407 	if (copy_to_user(buf, &header, sizeof(header)))
408 		return -EFAULT;
409 	buf += sizeof(header);
410 
411 	if (sample_flags & SAMPLE_OA_REPORT) {
412 		if (copy_to_user(buf, report, report_size))
413 			return -EFAULT;
414 	}
415 
416 	(*offset) += header.size;
417 
418 	return 0;
419 }
420 
421 /**
422  * Copies all buffered OA reports into userspace read() buffer.
423  * @stream: An i915-perf stream opened for OA metrics
424  * @buf: destination buffer given by userspace
425  * @count: the number of bytes userspace wants to read
426  * @offset: (inout): the current position for writing into @buf
427  * @head_ptr: (inout): the current oa buffer cpu read position
428  * @tail: the current oa buffer gpu write position
429  *
430  * Notably any error condition resulting in a short read (-%ENOSPC or
431  * -%EFAULT) will be returned even though one or more records may
432  * have been successfully copied. In this case it's up to the caller
433  * to decide if the error should be squashed before returning to
434  * userspace.
435  *
436  * Note: reports are consumed from the head, and appended to the
437  * tail, so the head chases the tail?... If you think that's mad
438  * and back-to-front you're not alone, but this follows the
439  * Gen PRM naming convention.
440  *
441  * Returns: 0 on success, negative error code on failure.
442  */
443 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
444 				  char __user *buf,
445 				  size_t count,
446 				  size_t *offset,
447 				  u32 *head_ptr,
448 				  u32 tail)
449 {
450 	struct drm_i915_private *dev_priv = stream->dev_priv;
451 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
452 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
453 	int tail_margin = dev_priv->perf.oa.tail_margin;
454 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
455 	u32 mask = (OA_BUFFER_SIZE - 1);
456 	u32 head;
457 	u32 taken;
458 	int ret = 0;
459 
460 	if (WARN_ON(!stream->enabled))
461 		return -EIO;
462 
463 	head = *head_ptr - gtt_offset;
464 	tail -= gtt_offset;
465 
466 	/* The OA unit is expected to wrap the tail pointer according to the OA
467 	 * buffer size and since we should never write a misaligned head
468 	 * pointer we don't expect to read one back either...
469 	 */
470 	if (tail > OA_BUFFER_SIZE || head > OA_BUFFER_SIZE ||
471 	    head % report_size) {
472 		DRM_ERROR("Inconsistent OA buffer pointer (head = %u, tail = %u): force restart\n",
473 			  head, tail);
474 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
475 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
476 		*head_ptr = I915_READ(GEN7_OASTATUS2) &
477 			GEN7_OASTATUS2_HEAD_MASK;
478 		return -EIO;
479 	}
480 
481 
482 	/* The tail pointer increases in 64 byte increments, not in report_size
483 	 * steps...
484 	 */
485 	tail &= ~(report_size - 1);
486 
487 	/* Move the tail pointer back by the current tail_margin to account for
488 	 * the possibility that the latest reports may not have really landed
489 	 * in memory yet...
490 	 */
491 
492 	if (OA_TAKEN(tail, head) < report_size + tail_margin)
493 		return -EAGAIN;
494 
495 	tail -= tail_margin;
496 	tail &= mask;
497 
498 	for (/* none */;
499 	     (taken = OA_TAKEN(tail, head));
500 	     head = (head + report_size) & mask) {
501 		u8 *report = oa_buf_base + head;
502 		u32 *report32 = (void *)report;
503 
504 		/* All the report sizes factor neatly into the buffer
505 		 * size so we never expect to see a report split
506 		 * between the beginning and end of the buffer.
507 		 *
508 		 * Given the initial alignment check a misalignment
509 		 * here would imply a driver bug that would result
510 		 * in an overrun.
511 		 */
512 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
513 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
514 			break;
515 		}
516 
517 		/* The report-ID field for periodic samples includes
518 		 * some undocumented flags related to what triggered
519 		 * the report and is never expected to be zero so we
520 		 * can check that the report isn't invalid before
521 		 * copying it to userspace...
522 		 */
523 		if (report32[0] == 0) {
524 			DRM_NOTE("Skipping spurious, invalid OA report\n");
525 			continue;
526 		}
527 
528 		ret = append_oa_sample(stream, buf, count, offset, report);
529 		if (ret)
530 			break;
531 
532 		/* The above report-id field sanity check is based on
533 		 * the assumption that the OA buffer is initially
534 		 * zeroed and we reset the field after copying so the
535 		 * check is still meaningful once old reports start
536 		 * being overwritten.
537 		 */
538 		report32[0] = 0;
539 	}
540 
541 	*head_ptr = gtt_offset + head;
542 
543 	return ret;
544 }
545 
546 /**
547  * gen7_oa_read - copy status records then buffered OA reports
548  * @stream: An i915-perf stream opened for OA metrics
549  * @buf: destination buffer given by userspace
550  * @count: the number of bytes userspace wants to read
551  * @offset: (inout): the current position for writing into @buf
552  *
553  * Checks Gen 7 specific OA unit status registers and if necessary appends
554  * corresponding status records for userspace (such as for a buffer full
555  * condition) and then initiate appending any buffered OA reports.
556  *
557  * Updates @offset according to the number of bytes successfully copied into
558  * the userspace buffer.
559  *
560  * Returns: zero on success or a negative error code
561  */
562 static int gen7_oa_read(struct i915_perf_stream *stream,
563 			char __user *buf,
564 			size_t count,
565 			size_t *offset)
566 {
567 	struct drm_i915_private *dev_priv = stream->dev_priv;
568 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
569 	u32 oastatus2;
570 	u32 oastatus1;
571 	u32 head;
572 	u32 tail;
573 	int ret;
574 
575 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
576 		return -EIO;
577 
578 	oastatus2 = I915_READ(GEN7_OASTATUS2);
579 	oastatus1 = I915_READ(GEN7_OASTATUS1);
580 
581 	head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
582 	tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
583 
584 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
585 	 * bits while the OA unit is enabled (while the tail pointer
586 	 * may be updated asynchronously) so we ignore status bits
587 	 * that have already been reported to userspace.
588 	 */
589 	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
590 
591 	/* We treat OABUFFER_OVERFLOW as a significant error:
592 	 *
593 	 * - The status can be interpreted to mean that the buffer is
594 	 *   currently full (with a higher precedence than OA_TAKEN()
595 	 *   which will start to report a near-empty buffer after an
596 	 *   overflow) but it's awkward that we can't clear the status
597 	 *   on Haswell, so without a reset we won't be able to catch
598 	 *   the state again.
599 	 *
600 	 * - Since it also implies the HW has started overwriting old
601 	 *   reports it may also affect our sanity checks for invalid
602 	 *   reports when copying to userspace that assume new reports
603 	 *   are being written to cleared memory.
604 	 *
605 	 * - In the future we may want to introduce a flight recorder
606 	 *   mode where the driver will automatically maintain a safe
607 	 *   guard band between head/tail, avoiding this overflow
608 	 *   condition, but we avoid the added driver complexity for
609 	 *   now.
610 	 */
611 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
612 		ret = append_oa_status(stream, buf, count, offset,
613 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
614 		if (ret)
615 			return ret;
616 
617 		DRM_DEBUG("OA buffer overflow: force restart\n");
618 
619 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
620 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
621 
622 		oastatus2 = I915_READ(GEN7_OASTATUS2);
623 		oastatus1 = I915_READ(GEN7_OASTATUS1);
624 
625 		head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
626 		tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
627 	}
628 
629 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
630 		ret = append_oa_status(stream, buf, count, offset,
631 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
632 		if (ret)
633 			return ret;
634 		dev_priv->perf.oa.gen7_latched_oastatus1 |=
635 			GEN7_OASTATUS1_REPORT_LOST;
636 	}
637 
638 	ret = gen7_append_oa_reports(stream, buf, count, offset,
639 				     &head, tail);
640 
641 	/* All the report sizes are a power of two and the
642 	 * head should always be incremented by some multiple
643 	 * of the report size.
644 	 *
645 	 * A warning here, but notably if we later read back a
646 	 * misaligned pointer we will treat that as a bug since
647 	 * it could lead to a buffer overrun.
648 	 */
649 	WARN_ONCE(head & (report_size - 1),
650 		  "i915: Writing misaligned OA head pointer");
651 
652 	/* Note: we update the head pointer here even if an error
653 	 * was returned since the error may represent a short read
654 	 * where some some reports were successfully copied.
655 	 */
656 	I915_WRITE(GEN7_OASTATUS2,
657 		   ((head & GEN7_OASTATUS2_HEAD_MASK) |
658 		    OA_MEM_SELECT_GGTT));
659 
660 	return ret;
661 }
662 
663 /**
664  * i915_oa_wait_unlocked - handles blocking IO until OA data available
665  * @stream: An i915-perf stream opened for OA metrics
666  *
667  * Called when userspace tries to read() from a blocking stream FD opened
668  * for OA metrics. It waits until the hrtimer callback finds a non-empty
669  * OA buffer and wakes us.
670  *
671  * Note: it's acceptable to have this return with some false positives
672  * since any subsequent read handling will return -EAGAIN if there isn't
673  * really data ready for userspace yet.
674  *
675  * Returns: zero on success or a negative error code
676  */
677 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
678 {
679 	struct drm_i915_private *dev_priv = stream->dev_priv;
680 
681 	/* We would wait indefinitely if periodic sampling is not enabled */
682 	if (!dev_priv->perf.oa.periodic)
683 		return -EIO;
684 
685 	/* Note: the oa_buffer_is_empty() condition is ok to run unlocked as it
686 	 * just performs mmio reads of the OA buffer head + tail pointers and
687 	 * it's assumed we're handling some operation that implies the stream
688 	 * can't be destroyed until completion (such as a read()) that ensures
689 	 * the device + OA buffer can't disappear
690 	 */
691 	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
692 					!dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv));
693 }
694 
695 /**
696  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
697  * @stream: An i915-perf stream opened for OA metrics
698  * @file: An i915 perf stream file
699  * @wait: poll() state table
700  *
701  * For handling userspace polling on an i915 perf stream opened for OA metrics,
702  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
703  * when it sees data ready to read in the circular OA buffer.
704  */
705 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
706 			      struct file *file,
707 			      poll_table *wait)
708 {
709 	struct drm_i915_private *dev_priv = stream->dev_priv;
710 
711 	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
712 }
713 
714 /**
715  * i915_oa_read - just calls through to &i915_oa_ops->read
716  * @stream: An i915-perf stream opened for OA metrics
717  * @buf: destination buffer given by userspace
718  * @count: the number of bytes userspace wants to read
719  * @offset: (inout): the current position for writing into @buf
720  *
721  * Updates @offset according to the number of bytes successfully copied into
722  * the userspace buffer.
723  *
724  * Returns: zero on success or a negative error code
725  */
726 static int i915_oa_read(struct i915_perf_stream *stream,
727 			char __user *buf,
728 			size_t count,
729 			size_t *offset)
730 {
731 	struct drm_i915_private *dev_priv = stream->dev_priv;
732 
733 	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
734 }
735 
736 /**
737  * oa_get_render_ctx_id - determine and hold ctx hw id
738  * @stream: An i915-perf stream opened for OA metrics
739  *
740  * Determine the render context hw id, and ensure it remains fixed for the
741  * lifetime of the stream. This ensures that we don't have to worry about
742  * updating the context ID in OACONTROL on the fly.
743  *
744  * Returns: zero on success or a negative error code
745  */
746 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
747 {
748 	struct drm_i915_private *dev_priv = stream->dev_priv;
749 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
750 	int ret;
751 
752 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
753 	if (ret)
754 		return ret;
755 
756 	/* As the ID is the gtt offset of the context's vma we pin
757 	 * the vma to ensure the ID remains fixed.
758 	 *
759 	 * NB: implied RCS engine...
760 	 */
761 	ret = engine->context_pin(engine, stream->ctx);
762 	if (ret)
763 		goto unlock;
764 
765 	/* Explicitly track the ID (instead of calling i915_ggtt_offset()
766 	 * on the fly) considering the difference with gen8+ and
767 	 * execlists
768 	 */
769 	dev_priv->perf.oa.specific_ctx_id =
770 		i915_ggtt_offset(stream->ctx->engine[engine->id].state);
771 
772 unlock:
773 	mutex_unlock(&dev_priv->drm.struct_mutex);
774 
775 	return ret;
776 }
777 
778 /**
779  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
780  * @stream: An i915-perf stream opened for OA metrics
781  *
782  * In case anything needed doing to ensure the context HW ID would remain valid
783  * for the lifetime of the stream, then that can be undone here.
784  */
785 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
786 {
787 	struct drm_i915_private *dev_priv = stream->dev_priv;
788 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
789 
790 	mutex_lock(&dev_priv->drm.struct_mutex);
791 
792 	dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
793 	engine->context_unpin(engine, stream->ctx);
794 
795 	mutex_unlock(&dev_priv->drm.struct_mutex);
796 }
797 
798 static void
799 free_oa_buffer(struct drm_i915_private *i915)
800 {
801 	mutex_lock(&i915->drm.struct_mutex);
802 
803 	i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
804 	i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
805 	i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
806 
807 	i915->perf.oa.oa_buffer.vma = NULL;
808 	i915->perf.oa.oa_buffer.vaddr = NULL;
809 
810 	mutex_unlock(&i915->drm.struct_mutex);
811 }
812 
813 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
814 {
815 	struct drm_i915_private *dev_priv = stream->dev_priv;
816 
817 	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
818 
819 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
820 
821 	free_oa_buffer(dev_priv);
822 
823 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
824 	intel_runtime_pm_put(dev_priv);
825 
826 	if (stream->ctx)
827 		oa_put_render_ctx_id(stream);
828 
829 	dev_priv->perf.oa.exclusive_stream = NULL;
830 }
831 
832 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
833 {
834 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
835 
836 	/* Pre-DevBDW: OABUFFER must be set with counters off,
837 	 * before OASTATUS1, but after OASTATUS2
838 	 */
839 	I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
840 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
841 	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
842 
843 	/* On Haswell we have to track which OASTATUS1 flags we've
844 	 * already seen since they can't be cleared while periodic
845 	 * sampling is enabled.
846 	 */
847 	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
848 
849 	/* NB: although the OA buffer will initially be allocated
850 	 * zeroed via shmfs (and so this memset is redundant when
851 	 * first allocating), we may re-init the OA buffer, either
852 	 * when re-enabling a stream or in error/reset paths.
853 	 *
854 	 * The reason we clear the buffer for each re-init is for the
855 	 * sanity check in gen7_append_oa_reports() that looks at the
856 	 * report-id field to make sure it's non-zero which relies on
857 	 * the assumption that new reports are being written to zeroed
858 	 * memory...
859 	 */
860 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
861 
862 	/* Maybe make ->pollin per-stream state if we support multiple
863 	 * concurrent streams in the future.
864 	 */
865 	dev_priv->perf.oa.pollin = false;
866 }
867 
868 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
869 {
870 	struct drm_i915_gem_object *bo;
871 	struct i915_vma *vma;
872 	int ret;
873 
874 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
875 		return -ENODEV;
876 
877 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
878 	if (ret)
879 		return ret;
880 
881 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
882 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
883 
884 	bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
885 	if (IS_ERR(bo)) {
886 		DRM_ERROR("Failed to allocate OA buffer\n");
887 		ret = PTR_ERR(bo);
888 		goto unlock;
889 	}
890 
891 	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
892 	if (ret)
893 		goto err_unref;
894 
895 	/* PreHSW required 512K alignment, HSW requires 16M */
896 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
897 	if (IS_ERR(vma)) {
898 		ret = PTR_ERR(vma);
899 		goto err_unref;
900 	}
901 	dev_priv->perf.oa.oa_buffer.vma = vma;
902 
903 	dev_priv->perf.oa.oa_buffer.vaddr =
904 		i915_gem_object_pin_map(bo, I915_MAP_WB);
905 	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
906 		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
907 		goto err_unpin;
908 	}
909 
910 	dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
911 
912 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
913 			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
914 			 dev_priv->perf.oa.oa_buffer.vaddr);
915 
916 	goto unlock;
917 
918 err_unpin:
919 	__i915_vma_unpin(vma);
920 
921 err_unref:
922 	i915_gem_object_put(bo);
923 
924 	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
925 	dev_priv->perf.oa.oa_buffer.vma = NULL;
926 
927 unlock:
928 	mutex_unlock(&dev_priv->drm.struct_mutex);
929 	return ret;
930 }
931 
932 static void config_oa_regs(struct drm_i915_private *dev_priv,
933 			   const struct i915_oa_reg *regs,
934 			   int n_regs)
935 {
936 	int i;
937 
938 	for (i = 0; i < n_regs; i++) {
939 		const struct i915_oa_reg *reg = regs + i;
940 
941 		I915_WRITE(reg->addr, reg->value);
942 	}
943 }
944 
945 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv)
946 {
947 	int ret = i915_oa_select_metric_set_hsw(dev_priv);
948 
949 	if (ret)
950 		return ret;
951 
952 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) |
953 				      GT_NOA_ENABLE));
954 
955 	/* PRM:
956 	 *
957 	 * OA unit is using “crclk” for its functionality. When trunk
958 	 * level clock gating takes place, OA clock would be gated,
959 	 * unable to count the events from non-render clock domain.
960 	 * Render clock gating must be disabled when OA is enabled to
961 	 * count the events from non-render domain. Unit level clock
962 	 * gating for RCS should also be disabled.
963 	 */
964 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
965 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
966 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
967 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
968 
969 	config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs,
970 		       dev_priv->perf.oa.mux_regs_len);
971 
972 	/* It apparently takes a fairly long time for a new MUX
973 	 * configuration to be be applied after these register writes.
974 	 * This delay duration was derived empirically based on the
975 	 * render_basic config but hopefully it covers the maximum
976 	 * configuration latency.
977 	 *
978 	 * As a fallback, the checks in _append_oa_reports() to skip
979 	 * invalid OA reports do also seem to work to discard reports
980 	 * generated before this config has completed - albeit not
981 	 * silently.
982 	 *
983 	 * Unfortunately this is essentially a magic number, since we
984 	 * don't currently know of a reliable mechanism for predicting
985 	 * how long the MUX config will take to apply and besides
986 	 * seeing invalid reports we don't know of a reliable way to
987 	 * explicitly check that the MUX config has landed.
988 	 *
989 	 * It's even possible we've miss characterized the underlying
990 	 * problem - it just seems like the simplest explanation why
991 	 * a delay at this location would mitigate any invalid reports.
992 	 */
993 	usleep_range(15000, 20000);
994 
995 	config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
996 		       dev_priv->perf.oa.b_counter_regs_len);
997 
998 	return 0;
999 }
1000 
1001 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1002 {
1003 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1004 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1005 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1006 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1007 
1008 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1009 				      ~GT_NOA_ENABLE));
1010 }
1011 
1012 static void gen7_update_oacontrol_locked(struct drm_i915_private *dev_priv)
1013 {
1014 	lockdep_assert_held(&dev_priv->perf.hook_lock);
1015 
1016 	if (dev_priv->perf.oa.exclusive_stream->enabled) {
1017 		struct i915_gem_context *ctx =
1018 			dev_priv->perf.oa.exclusive_stream->ctx;
1019 		u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1020 
1021 		bool periodic = dev_priv->perf.oa.periodic;
1022 		u32 period_exponent = dev_priv->perf.oa.period_exponent;
1023 		u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1024 
1025 		I915_WRITE(GEN7_OACONTROL,
1026 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1027 			   (period_exponent <<
1028 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1029 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1030 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1031 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1032 			   GEN7_OACONTROL_ENABLE);
1033 	} else
1034 		I915_WRITE(GEN7_OACONTROL, 0);
1035 }
1036 
1037 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1038 {
1039 	unsigned long flags;
1040 
1041 	/* Reset buf pointers so we don't forward reports from before now.
1042 	 *
1043 	 * Think carefully if considering trying to avoid this, since it
1044 	 * also ensures status flags and the buffer itself are cleared
1045 	 * in error paths, and we have checks for invalid reports based
1046 	 * on the assumption that certain fields are written to zeroed
1047 	 * memory which this helps maintains.
1048 	 */
1049 	gen7_init_oa_buffer(dev_priv);
1050 
1051 	spin_lock_irqsave(&dev_priv->perf.hook_lock, flags);
1052 	gen7_update_oacontrol_locked(dev_priv);
1053 	spin_unlock_irqrestore(&dev_priv->perf.hook_lock, flags);
1054 }
1055 
1056 /**
1057  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1058  * @stream: An i915 perf stream opened for OA metrics
1059  *
1060  * [Re]enables hardware periodic sampling according to the period configured
1061  * when opening the stream. This also starts a hrtimer that will periodically
1062  * check for data in the circular OA buffer for notifying userspace (e.g.
1063  * during a read() or poll()).
1064  */
1065 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1066 {
1067 	struct drm_i915_private *dev_priv = stream->dev_priv;
1068 
1069 	dev_priv->perf.oa.ops.oa_enable(dev_priv);
1070 
1071 	if (dev_priv->perf.oa.periodic)
1072 		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1073 			      ns_to_ktime(POLL_PERIOD),
1074 			      HRTIMER_MODE_REL_PINNED);
1075 }
1076 
1077 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1078 {
1079 	I915_WRITE(GEN7_OACONTROL, 0);
1080 }
1081 
1082 /**
1083  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1084  * @stream: An i915 perf stream opened for OA metrics
1085  *
1086  * Stops the OA unit from periodically writing counter reports into the
1087  * circular OA buffer. This also stops the hrtimer that periodically checks for
1088  * data in the circular OA buffer, for notifying userspace.
1089  */
1090 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1091 {
1092 	struct drm_i915_private *dev_priv = stream->dev_priv;
1093 
1094 	dev_priv->perf.oa.ops.oa_disable(dev_priv);
1095 
1096 	if (dev_priv->perf.oa.periodic)
1097 		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1098 }
1099 
1100 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
1101 {
1102 	return div_u64(1000000000ULL * (2ULL << exponent),
1103 		       dev_priv->perf.oa.timestamp_frequency);
1104 }
1105 
1106 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1107 	.destroy = i915_oa_stream_destroy,
1108 	.enable = i915_oa_stream_enable,
1109 	.disable = i915_oa_stream_disable,
1110 	.wait_unlocked = i915_oa_wait_unlocked,
1111 	.poll_wait = i915_oa_poll_wait,
1112 	.read = i915_oa_read,
1113 };
1114 
1115 /**
1116  * i915_oa_stream_init - validate combined props for OA stream and init
1117  * @stream: An i915 perf stream
1118  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1119  * @props: The property state that configures stream (individually validated)
1120  *
1121  * While read_properties_unlocked() validates properties in isolation it
1122  * doesn't ensure that the combination necessarily makes sense.
1123  *
1124  * At this point it has been determined that userspace wants a stream of
1125  * OA metrics, but still we need to further validate the combined
1126  * properties are OK.
1127  *
1128  * If the configuration makes sense then we can allocate memory for
1129  * a circular OA buffer and apply the requested metric set configuration.
1130  *
1131  * Returns: zero on success or a negative error code.
1132  */
1133 static int i915_oa_stream_init(struct i915_perf_stream *stream,
1134 			       struct drm_i915_perf_open_param *param,
1135 			       struct perf_open_properties *props)
1136 {
1137 	struct drm_i915_private *dev_priv = stream->dev_priv;
1138 	int format_size;
1139 	int ret;
1140 
1141 	/* If the sysfs metrics/ directory wasn't registered for some
1142 	 * reason then don't let userspace try their luck with config
1143 	 * IDs
1144 	 */
1145 	if (!dev_priv->perf.metrics_kobj) {
1146 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
1147 		return -EINVAL;
1148 	}
1149 
1150 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
1151 		DRM_DEBUG("Only OA report sampling supported\n");
1152 		return -EINVAL;
1153 	}
1154 
1155 	if (!dev_priv->perf.oa.ops.init_oa_buffer) {
1156 		DRM_DEBUG("OA unit not supported\n");
1157 		return -ENODEV;
1158 	}
1159 
1160 	/* To avoid the complexity of having to accurately filter
1161 	 * counter reports and marshal to the appropriate client
1162 	 * we currently only allow exclusive access
1163 	 */
1164 	if (dev_priv->perf.oa.exclusive_stream) {
1165 		DRM_DEBUG("OA unit already in use\n");
1166 		return -EBUSY;
1167 	}
1168 
1169 	if (!props->metrics_set) {
1170 		DRM_DEBUG("OA metric set not specified\n");
1171 		return -EINVAL;
1172 	}
1173 
1174 	if (!props->oa_format) {
1175 		DRM_DEBUG("OA report format not specified\n");
1176 		return -EINVAL;
1177 	}
1178 
1179 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
1180 
1181 	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
1182 
1183 	stream->sample_flags |= SAMPLE_OA_REPORT;
1184 	stream->sample_size += format_size;
1185 
1186 	dev_priv->perf.oa.oa_buffer.format_size = format_size;
1187 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
1188 		return -EINVAL;
1189 
1190 	dev_priv->perf.oa.oa_buffer.format =
1191 		dev_priv->perf.oa.oa_formats[props->oa_format].format;
1192 
1193 	dev_priv->perf.oa.metrics_set = props->metrics_set;
1194 
1195 	dev_priv->perf.oa.periodic = props->oa_periodic;
1196 	if (dev_priv->perf.oa.periodic) {
1197 		u32 tail;
1198 
1199 		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
1200 
1201 		/* See comment for OA_TAIL_MARGIN_NSEC for details
1202 		 * about this tail_margin...
1203 		 */
1204 		tail = div64_u64(OA_TAIL_MARGIN_NSEC,
1205 				 oa_exponent_to_ns(dev_priv,
1206 						   props->oa_period_exponent));
1207 		dev_priv->perf.oa.tail_margin = (tail + 1) * format_size;
1208 	}
1209 
1210 	if (stream->ctx) {
1211 		ret = oa_get_render_ctx_id(stream);
1212 		if (ret)
1213 			return ret;
1214 	}
1215 
1216 	/* PRM - observability performance counters:
1217 	 *
1218 	 *   OACONTROL, performance counter enable, note:
1219 	 *
1220 	 *   "When this bit is set, in order to have coherent counts,
1221 	 *   RC6 power state and trunk clock gating must be disabled.
1222 	 *   This can be achieved by programming MMIO registers as
1223 	 *   0xA094=0 and 0xA090[31]=1"
1224 	 *
1225 	 *   In our case we are expecting that taking pm + FORCEWAKE
1226 	 *   references will effectively disable RC6.
1227 	 */
1228 	intel_runtime_pm_get(dev_priv);
1229 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1230 
1231 	ret = alloc_oa_buffer(dev_priv);
1232 	if (ret)
1233 		goto err_oa_buf_alloc;
1234 
1235 	ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv);
1236 	if (ret)
1237 		goto err_enable;
1238 
1239 	stream->ops = &i915_oa_stream_ops;
1240 
1241 	dev_priv->perf.oa.exclusive_stream = stream;
1242 
1243 	return 0;
1244 
1245 err_enable:
1246 	free_oa_buffer(dev_priv);
1247 
1248 err_oa_buf_alloc:
1249 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1250 	intel_runtime_pm_put(dev_priv);
1251 	if (stream->ctx)
1252 		oa_put_render_ctx_id(stream);
1253 
1254 	return ret;
1255 }
1256 
1257 /**
1258  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
1259  * @stream: An i915 perf stream
1260  * @file: An i915 perf stream file
1261  * @buf: destination buffer given by userspace
1262  * @count: the number of bytes userspace wants to read
1263  * @ppos: (inout) file seek position (unused)
1264  *
1265  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
1266  * ensure that if we've successfully copied any data then reporting that takes
1267  * precedence over any internal error status, so the data isn't lost.
1268  *
1269  * For example ret will be -ENOSPC whenever there is more buffered data than
1270  * can be copied to userspace, but that's only interesting if we weren't able
1271  * to copy some data because it implies the userspace buffer is too small to
1272  * receive a single record (and we never split records).
1273  *
1274  * Another case with ret == -EFAULT is more of a grey area since it would seem
1275  * like bad form for userspace to ask us to overrun its buffer, but the user
1276  * knows best:
1277  *
1278  *   http://yarchive.net/comp/linux/partial_reads_writes.html
1279  *
1280  * Returns: The number of bytes copied or a negative error code on failure.
1281  */
1282 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
1283 				     struct file *file,
1284 				     char __user *buf,
1285 				     size_t count,
1286 				     loff_t *ppos)
1287 {
1288 	/* Note we keep the offset (aka bytes read) separate from any
1289 	 * error status so that the final check for whether we return
1290 	 * the bytes read with a higher precedence than any error (see
1291 	 * comment below) doesn't need to be handled/duplicated in
1292 	 * stream->ops->read() implementations.
1293 	 */
1294 	size_t offset = 0;
1295 	int ret = stream->ops->read(stream, buf, count, &offset);
1296 
1297 	return offset ?: (ret ?: -EAGAIN);
1298 }
1299 
1300 /**
1301  * i915_perf_read - handles read() FOP for i915 perf stream FDs
1302  * @file: An i915 perf stream file
1303  * @buf: destination buffer given by userspace
1304  * @count: the number of bytes userspace wants to read
1305  * @ppos: (inout) file seek position (unused)
1306  *
1307  * The entry point for handling a read() on a stream file descriptor from
1308  * userspace. Most of the work is left to the i915_perf_read_locked() and
1309  * &i915_perf_stream_ops->read but to save having stream implementations (of
1310  * which we might have multiple later) we handle blocking read here.
1311  *
1312  * We can also consistently treat trying to read from a disabled stream
1313  * as an IO error so implementations can assume the stream is enabled
1314  * while reading.
1315  *
1316  * Returns: The number of bytes copied or a negative error code on failure.
1317  */
1318 static ssize_t i915_perf_read(struct file *file,
1319 			      char __user *buf,
1320 			      size_t count,
1321 			      loff_t *ppos)
1322 {
1323 	struct i915_perf_stream *stream = file->private_data;
1324 	struct drm_i915_private *dev_priv = stream->dev_priv;
1325 	ssize_t ret;
1326 
1327 	/* To ensure it's handled consistently we simply treat all reads of a
1328 	 * disabled stream as an error. In particular it might otherwise lead
1329 	 * to a deadlock for blocking file descriptors...
1330 	 */
1331 	if (!stream->enabled)
1332 		return -EIO;
1333 
1334 	if (!(file->f_flags & O_NONBLOCK)) {
1335 		/* There's the small chance of false positives from
1336 		 * stream->ops->wait_unlocked.
1337 		 *
1338 		 * E.g. with single context filtering since we only wait until
1339 		 * oabuffer has >= 1 report we don't immediately know whether
1340 		 * any reports really belong to the current context
1341 		 */
1342 		do {
1343 			ret = stream->ops->wait_unlocked(stream);
1344 			if (ret)
1345 				return ret;
1346 
1347 			mutex_lock(&dev_priv->perf.lock);
1348 			ret = i915_perf_read_locked(stream, file,
1349 						    buf, count, ppos);
1350 			mutex_unlock(&dev_priv->perf.lock);
1351 		} while (ret == -EAGAIN);
1352 	} else {
1353 		mutex_lock(&dev_priv->perf.lock);
1354 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
1355 		mutex_unlock(&dev_priv->perf.lock);
1356 	}
1357 
1358 	if (ret >= 0) {
1359 		/* Maybe make ->pollin per-stream state if we support multiple
1360 		 * concurrent streams in the future.
1361 		 */
1362 		dev_priv->perf.oa.pollin = false;
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
1369 {
1370 	struct drm_i915_private *dev_priv =
1371 		container_of(hrtimer, typeof(*dev_priv),
1372 			     perf.oa.poll_check_timer);
1373 
1374 	if (!dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv)) {
1375 		dev_priv->perf.oa.pollin = true;
1376 		wake_up(&dev_priv->perf.oa.poll_wq);
1377 	}
1378 
1379 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
1380 
1381 	return HRTIMER_RESTART;
1382 }
1383 
1384 /**
1385  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
1386  * @dev_priv: i915 device instance
1387  * @stream: An i915 perf stream
1388  * @file: An i915 perf stream file
1389  * @wait: poll() state table
1390  *
1391  * For handling userspace polling on an i915 perf stream, this calls through to
1392  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
1393  * will be woken for new stream data.
1394  *
1395  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
1396  * with any non-file-operation driver hooks.
1397  *
1398  * Returns: any poll events that are ready without sleeping
1399  */
1400 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
1401 					  struct i915_perf_stream *stream,
1402 					  struct file *file,
1403 					  poll_table *wait)
1404 {
1405 	unsigned int events = 0;
1406 
1407 	stream->ops->poll_wait(stream, file, wait);
1408 
1409 	/* Note: we don't explicitly check whether there's something to read
1410 	 * here since this path may be very hot depending on what else
1411 	 * userspace is polling, or on the timeout in use. We rely solely on
1412 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
1413 	 * samples to read.
1414 	 */
1415 	if (dev_priv->perf.oa.pollin)
1416 		events |= POLLIN;
1417 
1418 	return events;
1419 }
1420 
1421 /**
1422  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
1423  * @file: An i915 perf stream file
1424  * @wait: poll() state table
1425  *
1426  * For handling userspace polling on an i915 perf stream, this ensures
1427  * poll_wait() gets called with a wait queue that will be woken for new stream
1428  * data.
1429  *
1430  * Note: Implementation deferred to i915_perf_poll_locked()
1431  *
1432  * Returns: any poll events that are ready without sleeping
1433  */
1434 static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
1435 {
1436 	struct i915_perf_stream *stream = file->private_data;
1437 	struct drm_i915_private *dev_priv = stream->dev_priv;
1438 	int ret;
1439 
1440 	mutex_lock(&dev_priv->perf.lock);
1441 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
1442 	mutex_unlock(&dev_priv->perf.lock);
1443 
1444 	return ret;
1445 }
1446 
1447 /**
1448  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
1449  * @stream: A disabled i915 perf stream
1450  *
1451  * [Re]enables the associated capture of data for this stream.
1452  *
1453  * If a stream was previously enabled then there's currently no intention
1454  * to provide userspace any guarantee about the preservation of previously
1455  * buffered data.
1456  */
1457 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
1458 {
1459 	if (stream->enabled)
1460 		return;
1461 
1462 	/* Allow stream->ops->enable() to refer to this */
1463 	stream->enabled = true;
1464 
1465 	if (stream->ops->enable)
1466 		stream->ops->enable(stream);
1467 }
1468 
1469 /**
1470  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
1471  * @stream: An enabled i915 perf stream
1472  *
1473  * Disables the associated capture of data for this stream.
1474  *
1475  * The intention is that disabling an re-enabling a stream will ideally be
1476  * cheaper than destroying and re-opening a stream with the same configuration,
1477  * though there are no formal guarantees about what state or buffered data
1478  * must be retained between disabling and re-enabling a stream.
1479  *
1480  * Note: while a stream is disabled it's considered an error for userspace
1481  * to attempt to read from the stream (-EIO).
1482  */
1483 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
1484 {
1485 	if (!stream->enabled)
1486 		return;
1487 
1488 	/* Allow stream->ops->disable() to refer to this */
1489 	stream->enabled = false;
1490 
1491 	if (stream->ops->disable)
1492 		stream->ops->disable(stream);
1493 }
1494 
1495 /**
1496  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
1497  * @stream: An i915 perf stream
1498  * @cmd: the ioctl request
1499  * @arg: the ioctl data
1500  *
1501  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
1502  * with any non-file-operation driver hooks.
1503  *
1504  * Returns: zero on success or a negative error code. Returns -EINVAL for
1505  * an unknown ioctl request.
1506  */
1507 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
1508 				   unsigned int cmd,
1509 				   unsigned long arg)
1510 {
1511 	switch (cmd) {
1512 	case I915_PERF_IOCTL_ENABLE:
1513 		i915_perf_enable_locked(stream);
1514 		return 0;
1515 	case I915_PERF_IOCTL_DISABLE:
1516 		i915_perf_disable_locked(stream);
1517 		return 0;
1518 	}
1519 
1520 	return -EINVAL;
1521 }
1522 
1523 /**
1524  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
1525  * @file: An i915 perf stream file
1526  * @cmd: the ioctl request
1527  * @arg: the ioctl data
1528  *
1529  * Implementation deferred to i915_perf_ioctl_locked().
1530  *
1531  * Returns: zero on success or a negative error code. Returns -EINVAL for
1532  * an unknown ioctl request.
1533  */
1534 static long i915_perf_ioctl(struct file *file,
1535 			    unsigned int cmd,
1536 			    unsigned long arg)
1537 {
1538 	struct i915_perf_stream *stream = file->private_data;
1539 	struct drm_i915_private *dev_priv = stream->dev_priv;
1540 	long ret;
1541 
1542 	mutex_lock(&dev_priv->perf.lock);
1543 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
1544 	mutex_unlock(&dev_priv->perf.lock);
1545 
1546 	return ret;
1547 }
1548 
1549 /**
1550  * i915_perf_destroy_locked - destroy an i915 perf stream
1551  * @stream: An i915 perf stream
1552  *
1553  * Frees all resources associated with the given i915 perf @stream, disabling
1554  * any associated data capture in the process.
1555  *
1556  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
1557  * with any non-file-operation driver hooks.
1558  */
1559 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
1560 {
1561 	if (stream->enabled)
1562 		i915_perf_disable_locked(stream);
1563 
1564 	if (stream->ops->destroy)
1565 		stream->ops->destroy(stream);
1566 
1567 	list_del(&stream->link);
1568 
1569 	if (stream->ctx)
1570 		i915_gem_context_put_unlocked(stream->ctx);
1571 
1572 	kfree(stream);
1573 }
1574 
1575 /**
1576  * i915_perf_release - handles userspace close() of a stream file
1577  * @inode: anonymous inode associated with file
1578  * @file: An i915 perf stream file
1579  *
1580  * Cleans up any resources associated with an open i915 perf stream file.
1581  *
1582  * NB: close() can't really fail from the userspace point of view.
1583  *
1584  * Returns: zero on success or a negative error code.
1585  */
1586 static int i915_perf_release(struct inode *inode, struct file *file)
1587 {
1588 	struct i915_perf_stream *stream = file->private_data;
1589 	struct drm_i915_private *dev_priv = stream->dev_priv;
1590 
1591 	mutex_lock(&dev_priv->perf.lock);
1592 	i915_perf_destroy_locked(stream);
1593 	mutex_unlock(&dev_priv->perf.lock);
1594 
1595 	return 0;
1596 }
1597 
1598 
1599 static const struct file_operations fops = {
1600 	.owner		= THIS_MODULE,
1601 	.llseek		= no_llseek,
1602 	.release	= i915_perf_release,
1603 	.poll		= i915_perf_poll,
1604 	.read		= i915_perf_read,
1605 	.unlocked_ioctl	= i915_perf_ioctl,
1606 };
1607 
1608 
1609 static struct i915_gem_context *
1610 lookup_context(struct drm_i915_private *dev_priv,
1611 	       struct drm_i915_file_private *file_priv,
1612 	       u32 ctx_user_handle)
1613 {
1614 	struct i915_gem_context *ctx;
1615 	int ret;
1616 
1617 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1618 	if (ret)
1619 		return ERR_PTR(ret);
1620 
1621 	ctx = i915_gem_context_lookup(file_priv, ctx_user_handle);
1622 	if (!IS_ERR(ctx))
1623 		i915_gem_context_get(ctx);
1624 
1625 	mutex_unlock(&dev_priv->drm.struct_mutex);
1626 
1627 	return ctx;
1628 }
1629 
1630 /**
1631  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
1632  * @dev_priv: i915 device instance
1633  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
1634  * @props: individually validated u64 property value pairs
1635  * @file: drm file
1636  *
1637  * See i915_perf_ioctl_open() for interface details.
1638  *
1639  * Implements further stream config validation and stream initialization on
1640  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
1641  * taken to serialize with any non-file-operation driver hooks.
1642  *
1643  * Note: at this point the @props have only been validated in isolation and
1644  * it's still necessary to validate that the combination of properties makes
1645  * sense.
1646  *
1647  * In the case where userspace is interested in OA unit metrics then further
1648  * config validation and stream initialization details will be handled by
1649  * i915_oa_stream_init(). The code here should only validate config state that
1650  * will be relevant to all stream types / backends.
1651  *
1652  * Returns: zero on success or a negative error code.
1653  */
1654 static int
1655 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
1656 			    struct drm_i915_perf_open_param *param,
1657 			    struct perf_open_properties *props,
1658 			    struct drm_file *file)
1659 {
1660 	struct i915_gem_context *specific_ctx = NULL;
1661 	struct i915_perf_stream *stream = NULL;
1662 	unsigned long f_flags = 0;
1663 	int stream_fd;
1664 	int ret;
1665 
1666 	if (props->single_context) {
1667 		u32 ctx_handle = props->ctx_handle;
1668 		struct drm_i915_file_private *file_priv = file->driver_priv;
1669 
1670 		specific_ctx = lookup_context(dev_priv, file_priv, ctx_handle);
1671 		if (IS_ERR(specific_ctx)) {
1672 			ret = PTR_ERR(specific_ctx);
1673 			if (ret != -EINTR)
1674 				DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
1675 					  ctx_handle);
1676 			goto err;
1677 		}
1678 	}
1679 
1680 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
1681 	 * we check a dev.i915.perf_stream_paranoid sysctl option
1682 	 * to determine if it's ok to access system wide OA counters
1683 	 * without CAP_SYS_ADMIN privileges.
1684 	 */
1685 	if (!specific_ctx &&
1686 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
1687 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
1688 		ret = -EACCES;
1689 		goto err_ctx;
1690 	}
1691 
1692 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
1693 	if (!stream) {
1694 		ret = -ENOMEM;
1695 		goto err_ctx;
1696 	}
1697 
1698 	stream->dev_priv = dev_priv;
1699 	stream->ctx = specific_ctx;
1700 
1701 	ret = i915_oa_stream_init(stream, param, props);
1702 	if (ret)
1703 		goto err_alloc;
1704 
1705 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
1706 	 * to have _stream_init check the combination of sample flags more
1707 	 * thoroughly, but still this is the expected result at this point.
1708 	 */
1709 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
1710 		ret = -ENODEV;
1711 		goto err_flags;
1712 	}
1713 
1714 	list_add(&stream->link, &dev_priv->perf.streams);
1715 
1716 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
1717 		f_flags |= O_CLOEXEC;
1718 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
1719 		f_flags |= O_NONBLOCK;
1720 
1721 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
1722 	if (stream_fd < 0) {
1723 		ret = stream_fd;
1724 		goto err_open;
1725 	}
1726 
1727 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
1728 		i915_perf_enable_locked(stream);
1729 
1730 	return stream_fd;
1731 
1732 err_open:
1733 	list_del(&stream->link);
1734 err_flags:
1735 	if (stream->ops->destroy)
1736 		stream->ops->destroy(stream);
1737 err_alloc:
1738 	kfree(stream);
1739 err_ctx:
1740 	if (specific_ctx)
1741 		i915_gem_context_put_unlocked(specific_ctx);
1742 err:
1743 	return ret;
1744 }
1745 
1746 /**
1747  * read_properties_unlocked - validate + copy userspace stream open properties
1748  * @dev_priv: i915 device instance
1749  * @uprops: The array of u64 key value pairs given by userspace
1750  * @n_props: The number of key value pairs expected in @uprops
1751  * @props: The stream configuration built up while validating properties
1752  *
1753  * Note this function only validates properties in isolation it doesn't
1754  * validate that the combination of properties makes sense or that all
1755  * properties necessary for a particular kind of stream have been set.
1756  *
1757  * Note that there currently aren't any ordering requirements for properties so
1758  * we shouldn't validate or assume anything about ordering here. This doesn't
1759  * rule out defining new properties with ordering requirements in the future.
1760  */
1761 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
1762 				    u64 __user *uprops,
1763 				    u32 n_props,
1764 				    struct perf_open_properties *props)
1765 {
1766 	u64 __user *uprop = uprops;
1767 	int i;
1768 
1769 	memset(props, 0, sizeof(struct perf_open_properties));
1770 
1771 	if (!n_props) {
1772 		DRM_DEBUG("No i915 perf properties given\n");
1773 		return -EINVAL;
1774 	}
1775 
1776 	/* Considering that ID = 0 is reserved and assuming that we don't
1777 	 * (currently) expect any configurations to ever specify duplicate
1778 	 * values for a particular property ID then the last _PROP_MAX value is
1779 	 * one greater than the maximum number of properties we expect to get
1780 	 * from userspace.
1781 	 */
1782 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
1783 		DRM_DEBUG("More i915 perf properties specified than exist\n");
1784 		return -EINVAL;
1785 	}
1786 
1787 	for (i = 0; i < n_props; i++) {
1788 		u64 oa_period, oa_freq_hz;
1789 		u64 id, value;
1790 		int ret;
1791 
1792 		ret = get_user(id, uprop);
1793 		if (ret)
1794 			return ret;
1795 
1796 		ret = get_user(value, uprop + 1);
1797 		if (ret)
1798 			return ret;
1799 
1800 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
1801 			DRM_DEBUG("Unknown i915 perf property ID\n");
1802 			return -EINVAL;
1803 		}
1804 
1805 		switch ((enum drm_i915_perf_property_id)id) {
1806 		case DRM_I915_PERF_PROP_CTX_HANDLE:
1807 			props->single_context = 1;
1808 			props->ctx_handle = value;
1809 			break;
1810 		case DRM_I915_PERF_PROP_SAMPLE_OA:
1811 			props->sample_flags |= SAMPLE_OA_REPORT;
1812 			break;
1813 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
1814 			if (value == 0 ||
1815 			    value > dev_priv->perf.oa.n_builtin_sets) {
1816 				DRM_DEBUG("Unknown OA metric set ID\n");
1817 				return -EINVAL;
1818 			}
1819 			props->metrics_set = value;
1820 			break;
1821 		case DRM_I915_PERF_PROP_OA_FORMAT:
1822 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
1823 				DRM_DEBUG("Invalid OA report format\n");
1824 				return -EINVAL;
1825 			}
1826 			if (!dev_priv->perf.oa.oa_formats[value].size) {
1827 				DRM_DEBUG("Invalid OA report format\n");
1828 				return -EINVAL;
1829 			}
1830 			props->oa_format = value;
1831 			break;
1832 		case DRM_I915_PERF_PROP_OA_EXPONENT:
1833 			if (value > OA_EXPONENT_MAX) {
1834 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
1835 					 OA_EXPONENT_MAX);
1836 				return -EINVAL;
1837 			}
1838 
1839 			/* Theoretically we can program the OA unit to sample
1840 			 * every 160ns but don't allow that by default unless
1841 			 * root.
1842 			 *
1843 			 * On Haswell the period is derived from the exponent
1844 			 * as:
1845 			 *
1846 			 *   period = 80ns * 2^(exponent + 1)
1847 			 */
1848 			BUILD_BUG_ON(sizeof(oa_period) != 8);
1849 			oa_period = 80ull * (2ull << value);
1850 
1851 			/* This check is primarily to ensure that oa_period <=
1852 			 * UINT32_MAX (before passing to do_div which only
1853 			 * accepts a u32 denominator), but we can also skip
1854 			 * checking anything < 1Hz which implicitly can't be
1855 			 * limited via an integer oa_max_sample_rate.
1856 			 */
1857 			if (oa_period <= NSEC_PER_SEC) {
1858 				u64 tmp = NSEC_PER_SEC;
1859 				do_div(tmp, oa_period);
1860 				oa_freq_hz = tmp;
1861 			} else
1862 				oa_freq_hz = 0;
1863 
1864 			if (oa_freq_hz > i915_oa_max_sample_rate &&
1865 			    !capable(CAP_SYS_ADMIN)) {
1866 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
1867 					  i915_oa_max_sample_rate);
1868 				return -EACCES;
1869 			}
1870 
1871 			props->oa_periodic = true;
1872 			props->oa_period_exponent = value;
1873 			break;
1874 		case DRM_I915_PERF_PROP_MAX:
1875 			MISSING_CASE(id);
1876 			return -EINVAL;
1877 		}
1878 
1879 		uprop += 2;
1880 	}
1881 
1882 	return 0;
1883 }
1884 #endif
1885 
1886 /**
1887  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
1888  * @dev: drm device
1889  * @data: ioctl data copied from userspace (unvalidated)
1890  * @file: drm file
1891  *
1892  * Validates the stream open parameters given by userspace including flags
1893  * and an array of u64 key, value pair properties.
1894  *
1895  * Very little is assumed up front about the nature of the stream being
1896  * opened (for instance we don't assume it's for periodic OA unit metrics). An
1897  * i915-perf stream is expected to be a suitable interface for other forms of
1898  * buffered data written by the GPU besides periodic OA metrics.
1899  *
1900  * Note we copy the properties from userspace outside of the i915 perf
1901  * mutex to avoid an awkward lockdep with mmap_sem.
1902  *
1903  * Most of the implementation details are handled by
1904  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
1905  * mutex for serializing with any non-file-operation driver hooks.
1906  *
1907  * Return: A newly opened i915 Perf stream file descriptor or negative
1908  * error code on failure.
1909  */
1910 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
1911 			 struct drm_file *file)
1912 {
1913 #if 0
1914 	struct drm_i915_private *dev_priv = dev->dev_private;
1915 	struct drm_i915_perf_open_param *param = data;
1916 	struct perf_open_properties props;
1917 	u32 known_open_flags;
1918 	int ret;
1919 
1920 	if (!dev_priv->perf.initialized) {
1921 #endif
1922 		DRM_DEBUG("i915 perf interface not available for this system\n");
1923 		return -ENOTSUPP;
1924 #if 0
1925 	}
1926 
1927 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
1928 			   I915_PERF_FLAG_FD_NONBLOCK |
1929 			   I915_PERF_FLAG_DISABLED;
1930 	if (param->flags & ~known_open_flags) {
1931 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
1932 		return -EINVAL;
1933 	}
1934 
1935 	ret = read_properties_unlocked(dev_priv,
1936 				       u64_to_user_ptr(param->properties_ptr),
1937 				       param->num_properties,
1938 				       &props);
1939 	if (ret)
1940 		return ret;
1941 
1942 	mutex_lock(&dev_priv->perf.lock);
1943 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
1944 	mutex_unlock(&dev_priv->perf.lock);
1945 
1946 	return ret;
1947 #endif
1948 }
1949 
1950 /**
1951  * i915_perf_register - exposes i915-perf to userspace
1952  * @dev_priv: i915 device instance
1953  *
1954  * In particular OA metric sets are advertised under a sysfs metrics/
1955  * directory allowing userspace to enumerate valid IDs that can be
1956  * used to open an i915-perf stream.
1957  */
1958 void i915_perf_register(struct drm_i915_private *dev_priv)
1959 {
1960 	if (!IS_HASWELL(dev_priv))
1961 		return;
1962 
1963 	if (!dev_priv->perf.initialized)
1964 		return;
1965 
1966 #if 0
1967 	/* To be sure we're synchronized with an attempted
1968 	 * i915_perf_open_ioctl(); considering that we register after
1969 	 * being exposed to userspace.
1970 	 */
1971 	mutex_lock(&dev_priv->perf.lock);
1972 
1973 	dev_priv->perf.metrics_kobj =
1974 		kobject_create_and_add("metrics",
1975 				       &dev_priv->drm.primary->kdev->kobj);
1976 	if (!dev_priv->perf.metrics_kobj)
1977 		goto exit;
1978 
1979 	if (i915_perf_register_sysfs_hsw(dev_priv)) {
1980 		kobject_put(dev_priv->perf.metrics_kobj);
1981 		dev_priv->perf.metrics_kobj = NULL;
1982 	}
1983 
1984 exit:
1985 	mutex_unlock(&dev_priv->perf.lock);
1986 #endif
1987 }
1988 
1989 /**
1990  * i915_perf_unregister - hide i915-perf from userspace
1991  * @dev_priv: i915 device instance
1992  *
1993  * i915-perf state cleanup is split up into an 'unregister' and
1994  * 'deinit' phase where the interface is first hidden from
1995  * userspace by i915_perf_unregister() before cleaning up
1996  * remaining state in i915_perf_fini().
1997  */
1998 void i915_perf_unregister(struct drm_i915_private *dev_priv)
1999 {
2000 	if (!IS_HASWELL(dev_priv))
2001 		return;
2002 
2003 	if (!dev_priv->perf.metrics_kobj)
2004 		return;
2005 
2006 #if 0
2007 	i915_perf_unregister_sysfs_hsw(dev_priv);
2008 
2009 	kobject_put(dev_priv->perf.metrics_kobj);
2010 	dev_priv->perf.metrics_kobj = NULL;
2011 #endif
2012 }
2013 
2014 #if 0
2015 static struct ctl_table oa_table[] = {
2016 	{
2017 	 .procname = "perf_stream_paranoid",
2018 	 .data = &i915_perf_stream_paranoid,
2019 	 .maxlen = sizeof(i915_perf_stream_paranoid),
2020 	 .mode = 0644,
2021 	 .proc_handler = proc_dointvec_minmax,
2022 	 .extra1 = &zero,
2023 	 .extra2 = &one,
2024 	 },
2025 	{
2026 	 .procname = "oa_max_sample_rate",
2027 	 .data = &i915_oa_max_sample_rate,
2028 	 .maxlen = sizeof(i915_oa_max_sample_rate),
2029 	 .mode = 0644,
2030 	 .proc_handler = proc_dointvec_minmax,
2031 	 .extra1 = &zero,
2032 	 .extra2 = &oa_sample_rate_hard_limit,
2033 	 },
2034 	{}
2035 };
2036 
2037 static struct ctl_table i915_root[] = {
2038 	{
2039 	 .procname = "i915",
2040 	 .maxlen = 0,
2041 	 .mode = 0555,
2042 	 .child = oa_table,
2043 	 },
2044 	{}
2045 };
2046 
2047 static struct ctl_table dev_root[] = {
2048 	{
2049 	 .procname = "dev",
2050 	 .maxlen = 0,
2051 	 .mode = 0555,
2052 	 .child = i915_root,
2053 	 },
2054 	{}
2055 };
2056 #endif
2057 
2058 /**
2059  * i915_perf_init - initialize i915-perf state on module load
2060  * @dev_priv: i915 device instance
2061  *
2062  * Initializes i915-perf state without exposing anything to userspace.
2063  *
2064  * Note: i915-perf initialization is split into an 'init' and 'register'
2065  * phase with the i915_perf_register() exposing state to userspace.
2066  */
2067 void i915_perf_init(struct drm_i915_private *dev_priv)
2068 {
2069 	if (!IS_HASWELL(dev_priv))
2070 		return;
2071 
2072 #if 0
2073 	hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
2074 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2075 	dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
2076 	init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
2077 
2078 	INIT_LIST_HEAD(&dev_priv->perf.streams);
2079 	mutex_init(&dev_priv->perf.lock);
2080 	spin_lock_init(&dev_priv->perf.hook_lock);
2081 
2082 	dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
2083 	dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
2084 	dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
2085 	dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
2086 	dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
2087 	dev_priv->perf.oa.ops.read = gen7_oa_read;
2088 	dev_priv->perf.oa.ops.oa_buffer_is_empty =
2089 		gen7_oa_buffer_is_empty_fop_unlocked;
2090 
2091 	dev_priv->perf.oa.timestamp_frequency = 12500000;
2092 
2093 	dev_priv->perf.oa.oa_formats = hsw_oa_formats;
2094 
2095 	dev_priv->perf.oa.n_builtin_sets =
2096 		i915_oa_n_builtin_metric_sets_hsw;
2097 
2098 	dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
2099 #endif
2100 
2101 	dev_priv->perf.initialized = true;
2102 }
2103 
2104 /**
2105  * i915_perf_fini - Counter part to i915_perf_init()
2106  * @dev_priv: i915 device instance
2107  */
2108 void i915_perf_fini(struct drm_i915_private *dev_priv)
2109 {
2110 	if (!dev_priv->perf.initialized)
2111 		return;
2112 
2113 #if 0
2114 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
2115 
2116 	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
2117 #endif
2118 	dev_priv->perf.initialized = false;
2119 }
2120