xref: /dragonfly/sys/dev/drm/i915/i915_vgpu.c (revision 006835dc)
1 /*
2  * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "intel_drv.h"
25 #include "i915_vgpu.h"
26 
27 /**
28  * DOC: Intel GVT-g guest support
29  *
30  * Intel GVT-g is a graphics virtualization technology which shares the
31  * GPU among multiple virtual machines on a time-sharing basis. Each
32  * virtual machine is presented a virtual GPU (vGPU), which has equivalent
33  * features as the underlying physical GPU (pGPU), so i915 driver can run
34  * seamlessly in a virtual machine. This file provides vGPU specific
35  * optimizations when running in a virtual machine, to reduce the complexity
36  * of vGPU emulation and to improve the overall performance.
37  *
38  * A primary function introduced here is so-called "address space ballooning"
39  * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
40  * so each VM can directly access a portion of the memory without hypervisor's
41  * intervention, e.g. filling textures or queuing commands. However with the
42  * partitioning an unmodified i915 driver would assume a smaller graphics
43  * memory starting from address ZERO, then requires vGPU emulation module to
44  * translate the graphics address between 'guest view' and 'host view', for
45  * all registers and command opcodes which contain a graphics memory address.
46  * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
47  * by telling the exact partitioning knowledge to each guest i915 driver, which
48  * then reserves and prevents non-allocated portions from allocation. Thus vGPU
49  * emulation module only needs to scan and validate graphics addresses without
50  * complexity of address translation.
51  *
52  */
53 
54 /**
55  * i915_check_vgpu - detect virtual GPU
56  * @dev: drm device *
57  *
58  * This function is called at the initialization stage, to detect whether
59  * running on a vGPU.
60  */
61 void i915_check_vgpu(struct drm_device *dev)
62 {
63 	struct drm_i915_private *dev_priv = to_i915(dev);
64 	uint64_t magic;
65 	uint32_t version;
66 
67 	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
68 
69 	if (!IS_HASWELL(dev))
70 		return;
71 
72 	magic = __raw_i915_read64(dev_priv, vgtif_reg(magic));
73 	if (magic != VGT_MAGIC)
74 		return;
75 
76 	version = INTEL_VGT_IF_VERSION_ENCODE(
77 		__raw_i915_read16(dev_priv, vgtif_reg(version_major)),
78 		__raw_i915_read16(dev_priv, vgtif_reg(version_minor)));
79 	if (version != INTEL_VGT_IF_VERSION) {
80 		DRM_INFO("VGT interface version mismatch!\n");
81 		return;
82 	}
83 
84 	dev_priv->vgpu.active = true;
85 	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
86 }
87 
88 struct _balloon_info_ {
89 	/*
90 	 * There are up to 2 regions per mappable/unmappable graphic
91 	 * memory that might be ballooned. Here, index 0/1 is for mappable
92 	 * graphic memory, 2/3 for unmappable graphic memory.
93 	 */
94 	struct drm_mm_node space[4];
95 };
96 
97 static struct _balloon_info_ bl_info;
98 
99 /**
100  * intel_vgt_deballoon - deballoon reserved graphics address trunks
101  *
102  * This function is called to deallocate the ballooned-out graphic memory, when
103  * driver is unloaded or when ballooning fails.
104  */
105 void intel_vgt_deballoon(void)
106 {
107 	int i;
108 
109 	DRM_DEBUG("VGT deballoon.\n");
110 
111 	for (i = 0; i < 4; i++) {
112 		if (bl_info.space[i].allocated)
113 			drm_mm_remove_node(&bl_info.space[i]);
114 	}
115 
116 	memset(&bl_info, 0, sizeof(bl_info));
117 }
118 
119 static int vgt_balloon_space(struct drm_mm *mm,
120 			     struct drm_mm_node *node,
121 			     unsigned long start, unsigned long end)
122 {
123 	unsigned long size = end - start;
124 
125 	if (start == end)
126 		return -EINVAL;
127 
128 	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
129 		 start, end, size / 1024);
130 
131 	node->start = start;
132 	node->size = size;
133 
134 	return drm_mm_reserve_node(mm, node);
135 }
136 
137 /**
138  * intel_vgt_balloon - balloon out reserved graphics address trunks
139  * @dev: drm device
140  *
141  * This function is called at the initialization stage, to balloon out the
142  * graphic address space allocated to other vGPUs, by marking these spaces as
143  * reserved. The ballooning related knowledge(starting address and size of
144  * the mappable/unmappable graphic memory) is described in the vgt_if structure
145  * in a reserved mmio range.
146  *
147  * To give an example, the drawing below depicts one typical scenario after
148  * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
149  * out each for the mappable and the non-mappable part. From the vGPU1 point of
150  * view, the total size is the same as the physical one, with the start address
151  * of its graphic space being zero. Yet there are some portions ballooned out(
152  * the shadow part, which are marked as reserved by drm allocator). From the
153  * host point of view, the graphic address space is partitioned by multiple
154  * vGPUs in different VMs.
155  *
156  *                        vGPU1 view         Host view
157  *             0 ------> +-----------+     +-----------+
158  *               ^       |///////////|     |   vGPU3   |
159  *               |       |///////////|     +-----------+
160  *               |       |///////////|     |   vGPU2   |
161  *               |       +-----------+     +-----------+
162  *        mappable GM    | available | ==> |   vGPU1   |
163  *               |       +-----------+     +-----------+
164  *               |       |///////////|     |           |
165  *               v       |///////////|     |   Host    |
166  *               +=======+===========+     +===========+
167  *               ^       |///////////|     |   vGPU3   |
168  *               |       |///////////|     +-----------+
169  *               |       |///////////|     |   vGPU2   |
170  *               |       +-----------+     +-----------+
171  *      unmappable GM    | available | ==> |   vGPU1   |
172  *               |       +-----------+     +-----------+
173  *               |       |///////////|     |           |
174  *               |       |///////////|     |   Host    |
175  *               v       |///////////|     |           |
176  * total GM size ------> +-----------+     +-----------+
177  *
178  * Returns:
179  * zero on success, non-zero if configuration invalid or ballooning failed
180  */
181 int intel_vgt_balloon(struct drm_device *dev)
182 {
183 	struct drm_i915_private *dev_priv = to_i915(dev);
184 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
185 	unsigned long ggtt_vm_end = ggtt_vm->start + ggtt_vm->total;
186 
187 	unsigned long mappable_base, mappable_size, mappable_end;
188 	unsigned long unmappable_base, unmappable_size, unmappable_end;
189 	int ret;
190 
191 	mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base));
192 	mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size));
193 	unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base));
194 	unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size));
195 
196 	mappable_end = mappable_base + mappable_size;
197 	unmappable_end = unmappable_base + unmappable_size;
198 
199 	DRM_INFO("VGT ballooning configuration:\n");
200 	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
201 		 mappable_base, mappable_size / 1024);
202 	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
203 		 unmappable_base, unmappable_size / 1024);
204 
205 	if (mappable_base < ggtt_vm->start ||
206 	    mappable_end > dev_priv->gtt.mappable_end ||
207 	    unmappable_base < dev_priv->gtt.mappable_end ||
208 	    unmappable_end > ggtt_vm_end) {
209 		DRM_ERROR("Invalid ballooning configuration!\n");
210 		return -EINVAL;
211 	}
212 
213 	/* Unmappable graphic memory ballooning */
214 	if (unmappable_base > dev_priv->gtt.mappable_end) {
215 		ret = vgt_balloon_space(&ggtt_vm->mm,
216 					&bl_info.space[2],
217 					dev_priv->gtt.mappable_end,
218 					unmappable_base);
219 
220 		if (ret)
221 			goto err;
222 	}
223 
224 	/*
225 	 * No need to partition out the last physical page,
226 	 * because it is reserved to the guard page.
227 	 */
228 	if (unmappable_end < ggtt_vm_end - PAGE_SIZE) {
229 		ret = vgt_balloon_space(&ggtt_vm->mm,
230 					&bl_info.space[3],
231 					unmappable_end,
232 					ggtt_vm_end - PAGE_SIZE);
233 		if (ret)
234 			goto err;
235 	}
236 
237 	/* Mappable graphic memory ballooning */
238 	if (mappable_base > ggtt_vm->start) {
239 		ret = vgt_balloon_space(&ggtt_vm->mm,
240 					&bl_info.space[0],
241 					ggtt_vm->start, mappable_base);
242 
243 		if (ret)
244 			goto err;
245 	}
246 
247 	if (mappable_end < dev_priv->gtt.mappable_end) {
248 		ret = vgt_balloon_space(&ggtt_vm->mm,
249 					&bl_info.space[1],
250 					mappable_end,
251 					dev_priv->gtt.mappable_end);
252 
253 		if (ret)
254 			goto err;
255 	}
256 
257 	DRM_INFO("VGT balloon successfully\n");
258 	return 0;
259 
260 err:
261 	DRM_ERROR("VGT balloon fail\n");
262 	intel_vgt_deballoon();
263 	return ret;
264 }
265