xref: /dragonfly/sys/dev/drm/i915/i915_vgpu.c (revision d2de761e)
1 /*
2  * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "intel_drv.h"
25 #include "i915_vgpu.h"
26 
27 /**
28  * DOC: Intel GVT-g guest support
29  *
30  * Intel GVT-g is a graphics virtualization technology which shares the
31  * GPU among multiple virtual machines on a time-sharing basis. Each
32  * virtual machine is presented a virtual GPU (vGPU), which has equivalent
33  * features as the underlying physical GPU (pGPU), so i915 driver can run
34  * seamlessly in a virtual machine. This file provides vGPU specific
35  * optimizations when running in a virtual machine, to reduce the complexity
36  * of vGPU emulation and to improve the overall performance.
37  *
38  * A primary function introduced here is so-called "address space ballooning"
39  * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
40  * so each VM can directly access a portion of the memory without hypervisor's
41  * intervention, e.g. filling textures or queuing commands. However with the
42  * partitioning an unmodified i915 driver would assume a smaller graphics
43  * memory starting from address ZERO, then requires vGPU emulation module to
44  * translate the graphics address between 'guest view' and 'host view', for
45  * all registers and command opcodes which contain a graphics memory address.
46  * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
47  * by telling the exact partitioning knowledge to each guest i915 driver, which
48  * then reserves and prevents non-allocated portions from allocation. Thus vGPU
49  * emulation module only needs to scan and validate graphics addresses without
50  * complexity of address translation.
51  *
52  */
53 
54 /**
55  * i915_check_vgpu - detect virtual GPU
56  * @dev_priv: i915 device private
57  *
58  * This function is called at the initialization stage, to detect whether
59  * running on a vGPU.
60  */
61 void i915_check_vgpu(struct drm_i915_private *dev_priv)
62 {
63 	u64 magic;
64 	u16 version_major;
65 
66 	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
67 
68 	magic = __raw_i915_read64(dev_priv, vgtif_reg(magic));
69 	if (magic != VGT_MAGIC)
70 		return;
71 
72 	version_major = __raw_i915_read16(dev_priv, vgtif_reg(version_major));
73 	if (version_major < VGT_VERSION_MAJOR) {
74 		DRM_INFO("VGT interface version mismatch!\n");
75 		return;
76 	}
77 
78 	dev_priv->vgpu.active = true;
79 	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
80 }
81 
82 struct _balloon_info_ {
83 	/*
84 	 * There are up to 2 regions per mappable/unmappable graphic
85 	 * memory that might be ballooned. Here, index 0/1 is for mappable
86 	 * graphic memory, 2/3 for unmappable graphic memory.
87 	 */
88 	struct drm_mm_node space[4];
89 };
90 
91 static struct _balloon_info_ bl_info;
92 
93 /**
94  * intel_vgt_deballoon - deballoon reserved graphics address trunks
95  * @dev_priv: i915 device private data
96  *
97  * This function is called to deallocate the ballooned-out graphic memory, when
98  * driver is unloaded or when ballooning fails.
99  */
100 void intel_vgt_deballoon(struct drm_i915_private *dev_priv)
101 {
102 	int i;
103 
104 	if (!intel_vgpu_active(dev_priv))
105 		return;
106 
107 	DRM_DEBUG("VGT deballoon.\n");
108 
109 	for (i = 0; i < 4; i++) {
110 		if (bl_info.space[i].allocated)
111 			drm_mm_remove_node(&bl_info.space[i]);
112 	}
113 
114 	memset(&bl_info, 0, sizeof(bl_info));
115 }
116 
117 static int vgt_balloon_space(struct i915_ggtt *ggtt,
118 			     struct drm_mm_node *node,
119 			     unsigned long start, unsigned long end)
120 {
121 	unsigned long size = end - start;
122 
123 	if (start >= end)
124 		return -EINVAL;
125 
126 	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
127 		 start, end, size / 1024);
128 	return i915_gem_gtt_reserve(&ggtt->base, node,
129 				    size, start, I915_COLOR_UNEVICTABLE,
130 				    0);
131 }
132 
133 /**
134  * intel_vgt_balloon - balloon out reserved graphics address trunks
135  * @dev_priv: i915 device private data
136  *
137  * This function is called at the initialization stage, to balloon out the
138  * graphic address space allocated to other vGPUs, by marking these spaces as
139  * reserved. The ballooning related knowledge(starting address and size of
140  * the mappable/unmappable graphic memory) is described in the vgt_if structure
141  * in a reserved mmio range.
142  *
143  * To give an example, the drawing below depicts one typical scenario after
144  * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
145  * out each for the mappable and the non-mappable part. From the vGPU1 point of
146  * view, the total size is the same as the physical one, with the start address
147  * of its graphic space being zero. Yet there are some portions ballooned out(
148  * the shadow part, which are marked as reserved by drm allocator). From the
149  * host point of view, the graphic address space is partitioned by multiple
150  * vGPUs in different VMs. ::
151  *
152  *                         vGPU1 view         Host view
153  *              0 ------> +-----------+     +-----------+
154  *                ^       |###########|     |   vGPU3   |
155  *                |       |###########|     +-----------+
156  *                |       |###########|     |   vGPU2   |
157  *                |       +-----------+     +-----------+
158  *         mappable GM    | available | ==> |   vGPU1   |
159  *                |       +-----------+     +-----------+
160  *                |       |###########|     |           |
161  *                v       |###########|     |   Host    |
162  *                +=======+===========+     +===========+
163  *                ^       |###########|     |   vGPU3   |
164  *                |       |###########|     +-----------+
165  *                |       |###########|     |   vGPU2   |
166  *                |       +-----------+     +-----------+
167  *       unmappable GM    | available | ==> |   vGPU1   |
168  *                |       +-----------+     +-----------+
169  *                |       |###########|     |           |
170  *                |       |###########|     |   Host    |
171  *                v       |###########|     |           |
172  *  total GM size ------> +-----------+     +-----------+
173  *
174  * Returns:
175  * zero on success, non-zero if configuration invalid or ballooning failed
176  */
177 int intel_vgt_balloon(struct drm_i915_private *dev_priv)
178 {
179 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
180 	unsigned long ggtt_end = ggtt->base.total;
181 
182 	unsigned long mappable_base, mappable_size, mappable_end;
183 	unsigned long unmappable_base, unmappable_size, unmappable_end;
184 	int ret;
185 
186 	if (!intel_vgpu_active(dev_priv))
187 		return 0;
188 
189 	mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base));
190 	mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size));
191 	unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base));
192 	unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size));
193 
194 	mappable_end = mappable_base + mappable_size;
195 	unmappable_end = unmappable_base + unmappable_size;
196 
197 	DRM_INFO("VGT ballooning configuration:\n");
198 	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
199 		 mappable_base, mappable_size / 1024);
200 	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
201 		 unmappable_base, unmappable_size / 1024);
202 
203 	if (mappable_end > ggtt->mappable_end ||
204 	    unmappable_base < ggtt->mappable_end ||
205 	    unmappable_end > ggtt_end) {
206 		DRM_ERROR("Invalid ballooning configuration!\n");
207 		return -EINVAL;
208 	}
209 
210 	/* Unmappable graphic memory ballooning */
211 	if (unmappable_base > ggtt->mappable_end) {
212 		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
213 					ggtt->mappable_end, unmappable_base);
214 
215 		if (ret)
216 			goto err;
217 	}
218 
219 	if (unmappable_end < ggtt_end) {
220 		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
221 					unmappable_end, ggtt_end);
222 		if (ret)
223 			goto err;
224 	}
225 
226 	/* Mappable graphic memory ballooning */
227 	if (mappable_base) {
228 		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
229 					0, mappable_base);
230 
231 		if (ret)
232 			goto err;
233 	}
234 
235 	if (mappable_end < ggtt->mappable_end) {
236 		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
237 					mappable_end, ggtt->mappable_end);
238 
239 		if (ret)
240 			goto err;
241 	}
242 
243 	DRM_INFO("VGT balloon successfully\n");
244 	return 0;
245 
246 err:
247 	DRM_ERROR("VGT balloon fail\n");
248 	intel_vgt_deballoon(dev_priv);
249 	return ret;
250 }
251