xref: /dragonfly/sys/dev/drm/i915/intel_bios.c (revision 335b9e93)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_dp_helper.h>
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 
33 #define _INTEL_BIOS_PRIVATE
34 #include "intel_vbt_defs.h"
35 
36 /**
37  * DOC: Video BIOS Table (VBT)
38  *
39  * The Video BIOS Table, or VBT, provides platform and board specific
40  * configuration information to the driver that is not discoverable or available
41  * through other means. The configuration is mostly related to display
42  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
43  * the PCI ROM.
44  *
45  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
46  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
47  * contain the actual configuration information. The VBT Header, and thus the
48  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
49  * BDB Header. The data blocks are concatenated after the BDB Header. The data
50  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
51  * data. (Block 53, the MIPI Sequence Block is an exception.)
52  *
53  * The driver parses the VBT during load. The relevant information is stored in
54  * driver private data for ease of use, and the actual VBT is not read after
55  * that.
56  */
57 
58 #define	SLAVE_ADDR1	0x70
59 #define	SLAVE_ADDR2	0x72
60 
61 /* Get BDB block size given a pointer to Block ID. */
62 static u32 _get_blocksize(const u8 *block_base)
63 {
64 	/* The MIPI Sequence Block v3+ has a separate size field. */
65 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
66 		return *((const u32 *)(block_base + 4));
67 	else
68 		return *((const u16 *)(block_base + 1));
69 }
70 
71 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
72 static u32 get_blocksize(const void *block_data)
73 {
74 	return _get_blocksize(block_data - 3);
75 }
76 
77 static const void *
78 find_section(const void *_bdb, int section_id)
79 {
80 	const struct bdb_header *bdb = _bdb;
81 	const u8 *base = _bdb;
82 	int index = 0;
83 	u32 total, current_size;
84 	u8 current_id;
85 
86 	/* skip to first section */
87 	index += bdb->header_size;
88 	total = bdb->bdb_size;
89 
90 	/* walk the sections looking for section_id */
91 	while (index + 3 < total) {
92 		current_id = *(base + index);
93 		current_size = _get_blocksize(base + index);
94 		index += 3;
95 
96 		if (index + current_size > total)
97 			return NULL;
98 
99 		if (current_id == section_id)
100 			return base + index;
101 
102 		index += current_size;
103 	}
104 
105 	return NULL;
106 }
107 
108 static void
109 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
110 			const struct lvds_dvo_timing *dvo_timing)
111 {
112 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
113 		dvo_timing->hactive_lo;
114 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
115 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
116 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
117 		dvo_timing->hsync_pulse_width;
118 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
119 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
120 
121 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
122 		dvo_timing->vactive_lo;
123 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
124 		dvo_timing->vsync_off;
125 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
126 		dvo_timing->vsync_pulse_width;
127 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
128 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
129 	panel_fixed_mode->clock = dvo_timing->clock * 10;
130 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
131 
132 	if (dvo_timing->hsync_positive)
133 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
134 	else
135 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
136 
137 	if (dvo_timing->vsync_positive)
138 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
139 	else
140 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
141 
142 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
143 		dvo_timing->himage_lo;
144 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
145 		dvo_timing->vimage_lo;
146 
147 	/* Some VBTs have bogus h/vtotal values */
148 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
149 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
150 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
151 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
152 
153 	drm_mode_set_name(panel_fixed_mode);
154 }
155 
156 static const struct lvds_dvo_timing *
157 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
158 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
159 		    int index)
160 {
161 	/*
162 	 * the size of fp_timing varies on the different platform.
163 	 * So calculate the DVO timing relative offset in LVDS data
164 	 * entry to get the DVO timing entry
165 	 */
166 
167 	int lfp_data_size =
168 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
169 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
170 	int dvo_timing_offset =
171 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
172 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
173 	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
174 
175 	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
176 }
177 
178 /* get lvds_fp_timing entry
179  * this function may return NULL if the corresponding entry is invalid
180  */
181 static const struct lvds_fp_timing *
182 get_lvds_fp_timing(const struct bdb_header *bdb,
183 		   const struct bdb_lvds_lfp_data *data,
184 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
185 		   int index)
186 {
187 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
188 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
189 	size_t ofs;
190 
191 	if (index >= ARRAY_SIZE(ptrs->ptr))
192 		return NULL;
193 	ofs = ptrs->ptr[index].fp_timing_offset;
194 	if (ofs < data_ofs ||
195 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
196 		return NULL;
197 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
198 }
199 
200 /* Try to find integrated panel data */
201 static void
202 parse_lfp_panel_data(struct drm_i915_private *dev_priv,
203 		     const struct bdb_header *bdb)
204 {
205 	const struct bdb_lvds_options *lvds_options;
206 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
207 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
208 	const struct lvds_dvo_timing *panel_dvo_timing;
209 	const struct lvds_fp_timing *fp_timing;
210 	struct drm_display_mode *panel_fixed_mode;
211 	int panel_type;
212 	int drrs_mode;
213 	int ret;
214 
215 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
216 	if (!lvds_options)
217 		return;
218 
219 	dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
220 
221 	ret = intel_opregion_get_panel_type(dev_priv);
222 	if (ret >= 0) {
223 		WARN_ON(ret > 0xf);
224 		panel_type = ret;
225 		DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
226 	} else {
227 		if (lvds_options->panel_type > 0xf) {
228 			DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
229 				      lvds_options->panel_type);
230 			return;
231 		}
232 		panel_type = lvds_options->panel_type;
233 		DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
234 	}
235 
236 	dev_priv->vbt.panel_type = panel_type;
237 
238 	drrs_mode = (lvds_options->dps_panel_type_bits
239 				>> (panel_type * 2)) & MODE_MASK;
240 	/*
241 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
242 	 * The below piece of code is required to adjust vbt.drrs_type
243 	 * to match the enum drrs_support_type.
244 	 */
245 	switch (drrs_mode) {
246 	case 0:
247 		dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
248 		DRM_DEBUG_KMS("DRRS supported mode is static\n");
249 		break;
250 	case 2:
251 		dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
252 		DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
253 		break;
254 	default:
255 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
256 		DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
257 		break;
258 	}
259 
260 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
261 	if (!lvds_lfp_data)
262 		return;
263 
264 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
265 	if (!lvds_lfp_data_ptrs)
266 		return;
267 
268 	dev_priv->vbt.lvds_vbt = 1;
269 
270 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
271 					       lvds_lfp_data_ptrs,
272 					       panel_type);
273 
274 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
275 	if (!panel_fixed_mode)
276 		return;
277 
278 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
279 
280 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
281 
282 	DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
283 	drm_mode_debug_printmodeline(panel_fixed_mode);
284 
285 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
286 				       lvds_lfp_data_ptrs,
287 				       panel_type);
288 	if (fp_timing) {
289 		/* check the resolution, just to be sure */
290 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
291 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
292 			dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
293 			DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
294 				      dev_priv->vbt.bios_lvds_val);
295 		}
296 	}
297 }
298 
299 static void
300 parse_lfp_backlight(struct drm_i915_private *dev_priv,
301 		    const struct bdb_header *bdb)
302 {
303 	const struct bdb_lfp_backlight_data *backlight_data;
304 	const struct bdb_lfp_backlight_data_entry *entry;
305 	int panel_type = dev_priv->vbt.panel_type;
306 
307 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
308 	if (!backlight_data)
309 		return;
310 
311 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
312 		DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
313 			      backlight_data->entry_size);
314 		return;
315 	}
316 
317 	entry = &backlight_data->data[panel_type];
318 
319 	dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
320 	if (!dev_priv->vbt.backlight.present) {
321 		DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
322 			      entry->type);
323 		return;
324 	}
325 
326 	dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
327 	if (bdb->version >= 191 &&
328 	    get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
329 		const struct bdb_lfp_backlight_control_method *method;
330 
331 		method = &backlight_data->backlight_control[panel_type];
332 		dev_priv->vbt.backlight.type = method->type;
333 	}
334 
335 	dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
336 	dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
337 	dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
338 	DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
339 		      "active %s, min brightness %u, level %u\n",
340 		      dev_priv->vbt.backlight.pwm_freq_hz,
341 		      dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
342 		      dev_priv->vbt.backlight.min_brightness,
343 		      backlight_data->level[panel_type]);
344 }
345 
346 /* Try to find sdvo panel data */
347 static void
348 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
349 		      const struct bdb_header *bdb)
350 {
351 	const struct lvds_dvo_timing *dvo_timing;
352 	struct drm_display_mode *panel_fixed_mode;
353 	int index;
354 
355 	index = i915.vbt_sdvo_panel_type;
356 	if (index == -2) {
357 		DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
358 		return;
359 	}
360 
361 	if (index == -1) {
362 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
363 
364 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
365 		if (!sdvo_lvds_options)
366 			return;
367 
368 		index = sdvo_lvds_options->panel_type;
369 	}
370 
371 	dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
372 	if (!dvo_timing)
373 		return;
374 
375 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
376 	if (!panel_fixed_mode)
377 		return;
378 
379 	fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
380 
381 	dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
382 
383 	DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
384 	drm_mode_debug_printmodeline(panel_fixed_mode);
385 }
386 
387 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
388 				    bool alternate)
389 {
390 	switch (INTEL_INFO(dev_priv)->gen) {
391 	case 2:
392 		return alternate ? 66667 : 48000;
393 	case 3:
394 	case 4:
395 		return alternate ? 100000 : 96000;
396 	default:
397 		return alternate ? 100000 : 120000;
398 	}
399 }
400 
401 static void
402 parse_general_features(struct drm_i915_private *dev_priv,
403 		       const struct bdb_header *bdb)
404 {
405 	const struct bdb_general_features *general;
406 
407 	general = find_section(bdb, BDB_GENERAL_FEATURES);
408 	if (!general)
409 		return;
410 
411 	dev_priv->vbt.int_tv_support = general->int_tv_support;
412 	/* int_crt_support can't be trusted on earlier platforms */
413 	if (bdb->version >= 155 &&
414 	    (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
415 		dev_priv->vbt.int_crt_support = general->int_crt_support;
416 	dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
417 	dev_priv->vbt.lvds_ssc_freq =
418 		intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
419 	dev_priv->vbt.display_clock_mode = general->display_clock_mode;
420 	dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
421 	DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
422 		      dev_priv->vbt.int_tv_support,
423 		      dev_priv->vbt.int_crt_support,
424 		      dev_priv->vbt.lvds_use_ssc,
425 		      dev_priv->vbt.lvds_ssc_freq,
426 		      dev_priv->vbt.display_clock_mode,
427 		      dev_priv->vbt.fdi_rx_polarity_inverted);
428 }
429 
430 static void
431 parse_general_definitions(struct drm_i915_private *dev_priv,
432 			  const struct bdb_header *bdb)
433 {
434 	const struct bdb_general_definitions *general;
435 
436 	general = find_section(bdb, BDB_GENERAL_DEFINITIONS);
437 	if (general) {
438 		u16 block_size = get_blocksize(general);
439 		if (block_size >= sizeof(*general)) {
440 			int bus_pin = general->crt_ddc_gmbus_pin;
441 			DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
442 			if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
443 				dev_priv->vbt.crt_ddc_pin = bus_pin;
444 		} else {
445 			DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n",
446 				      block_size);
447 		}
448 	}
449 }
450 
451 static const union child_device_config *
452 child_device_ptr(const struct bdb_general_definitions *p_defs, int i)
453 {
454 	return (const void *) &p_defs->devices[i * p_defs->child_dev_size];
455 }
456 
457 static void
458 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv,
459 			  const struct bdb_header *bdb)
460 {
461 	struct sdvo_device_mapping *p_mapping;
462 	const struct bdb_general_definitions *p_defs;
463 	const struct old_child_dev_config *child; /* legacy */
464 	int i, child_device_num, count;
465 	u16	block_size;
466 
467 	p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
468 	if (!p_defs) {
469 		DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n");
470 		return;
471 	}
472 
473 	/*
474 	 * Only parse SDVO mappings when the general definitions block child
475 	 * device size matches that of the *legacy* child device config
476 	 * struct. Thus, SDVO mapping will be skipped for newer VBT.
477 	 */
478 	if (p_defs->child_dev_size != sizeof(*child)) {
479 		DRM_DEBUG_KMS("Unsupported child device size for SDVO mapping.\n");
480 		return;
481 	}
482 	/* get the block size of general definitions */
483 	block_size = get_blocksize(p_defs);
484 	/* get the number of child device */
485 	child_device_num = (block_size - sizeof(*p_defs)) /
486 		p_defs->child_dev_size;
487 	count = 0;
488 	for (i = 0; i < child_device_num; i++) {
489 		child = &child_device_ptr(p_defs, i)->old;
490 		if (!child->device_type) {
491 			/* skip the device block if device type is invalid */
492 			continue;
493 		}
494 		if (child->slave_addr != SLAVE_ADDR1 &&
495 		    child->slave_addr != SLAVE_ADDR2) {
496 			/*
497 			 * If the slave address is neither 0x70 nor 0x72,
498 			 * it is not a SDVO device. Skip it.
499 			 */
500 			continue;
501 		}
502 		if (child->dvo_port != DEVICE_PORT_DVOB &&
503 		    child->dvo_port != DEVICE_PORT_DVOC) {
504 			/* skip the incorrect SDVO port */
505 			DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
506 			continue;
507 		}
508 		DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
509 			      " %s port\n",
510 			      child->slave_addr,
511 			      (child->dvo_port == DEVICE_PORT_DVOB) ?
512 			      "SDVOB" : "SDVOC");
513 		p_mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
514 		if (!p_mapping->initialized) {
515 			p_mapping->dvo_port = child->dvo_port;
516 			p_mapping->slave_addr = child->slave_addr;
517 			p_mapping->dvo_wiring = child->dvo_wiring;
518 			p_mapping->ddc_pin = child->ddc_pin;
519 			p_mapping->i2c_pin = child->i2c_pin;
520 			p_mapping->initialized = 1;
521 			DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
522 				      p_mapping->dvo_port,
523 				      p_mapping->slave_addr,
524 				      p_mapping->dvo_wiring,
525 				      p_mapping->ddc_pin,
526 				      p_mapping->i2c_pin);
527 		} else {
528 			DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
529 					 "two SDVO device.\n");
530 		}
531 		if (child->slave2_addr) {
532 			/* Maybe this is a SDVO device with multiple inputs */
533 			/* And the mapping info is not added */
534 			DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
535 				" is a SDVO device with multiple inputs.\n");
536 		}
537 		count++;
538 	}
539 
540 	if (!count) {
541 		/* No SDVO device info is found */
542 		DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
543 	}
544 	return;
545 }
546 
547 static void
548 parse_driver_features(struct drm_i915_private *dev_priv,
549 		      const struct bdb_header *bdb)
550 {
551 	const struct bdb_driver_features *driver;
552 
553 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
554 	if (!driver)
555 		return;
556 
557 	if (driver->lvds_config == BDB_DRIVER_FEATURE_EDP)
558 		dev_priv->vbt.edp.support = 1;
559 
560 	DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
561 	/*
562 	 * If DRRS is not supported, drrs_type has to be set to 0.
563 	 * This is because, VBT is configured in such a way that
564 	 * static DRRS is 0 and DRRS not supported is represented by
565 	 * driver->drrs_enabled=false
566 	 */
567 	if (!driver->drrs_enabled)
568 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
569 }
570 
571 static void
572 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
573 {
574 	const struct bdb_edp *edp;
575 	const struct edp_power_seq *edp_pps;
576 	const struct edp_link_params *edp_link_params;
577 	int panel_type = dev_priv->vbt.panel_type;
578 
579 	edp = find_section(bdb, BDB_EDP);
580 	if (!edp) {
581 		if (dev_priv->vbt.edp.support)
582 			DRM_DEBUG_KMS("No eDP BDB found but eDP panel supported.\n");
583 		return;
584 	}
585 
586 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
587 	case EDP_18BPP:
588 		dev_priv->vbt.edp.bpp = 18;
589 		break;
590 	case EDP_24BPP:
591 		dev_priv->vbt.edp.bpp = 24;
592 		break;
593 	case EDP_30BPP:
594 		dev_priv->vbt.edp.bpp = 30;
595 		break;
596 	}
597 
598 	/* Get the eDP sequencing and link info */
599 	edp_pps = &edp->power_seqs[panel_type];
600 	edp_link_params = &edp->link_params[panel_type];
601 
602 	dev_priv->vbt.edp.pps = *edp_pps;
603 
604 	switch (edp_link_params->rate) {
605 	case EDP_RATE_1_62:
606 		dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
607 		break;
608 	case EDP_RATE_2_7:
609 		dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
610 		break;
611 	default:
612 		DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
613 			      edp_link_params->rate);
614 		break;
615 	}
616 
617 	switch (edp_link_params->lanes) {
618 	case EDP_LANE_1:
619 		dev_priv->vbt.edp.lanes = 1;
620 		break;
621 	case EDP_LANE_2:
622 		dev_priv->vbt.edp.lanes = 2;
623 		break;
624 	case EDP_LANE_4:
625 		dev_priv->vbt.edp.lanes = 4;
626 		break;
627 	default:
628 		DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
629 			      edp_link_params->lanes);
630 		break;
631 	}
632 
633 	switch (edp_link_params->preemphasis) {
634 	case EDP_PREEMPHASIS_NONE:
635 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
636 		break;
637 	case EDP_PREEMPHASIS_3_5dB:
638 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
639 		break;
640 	case EDP_PREEMPHASIS_6dB:
641 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
642 		break;
643 	case EDP_PREEMPHASIS_9_5dB:
644 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
645 		break;
646 	default:
647 		DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
648 			      edp_link_params->preemphasis);
649 		break;
650 	}
651 
652 	switch (edp_link_params->vswing) {
653 	case EDP_VSWING_0_4V:
654 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
655 		break;
656 	case EDP_VSWING_0_6V:
657 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
658 		break;
659 	case EDP_VSWING_0_8V:
660 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
661 		break;
662 	case EDP_VSWING_1_2V:
663 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
664 		break;
665 	default:
666 		DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
667 			      edp_link_params->vswing);
668 		break;
669 	}
670 
671 	if (bdb->version >= 173) {
672 		uint8_t vswing;
673 
674 		/* Don't read from VBT if module parameter has valid value*/
675 		if (i915.edp_vswing) {
676 			dev_priv->vbt.edp.low_vswing = i915.edp_vswing == 1;
677 		} else {
678 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
679 			dev_priv->vbt.edp.low_vswing = vswing == 0;
680 		}
681 	}
682 }
683 
684 static void
685 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
686 {
687 	const struct bdb_psr *psr;
688 	const struct psr_table *psr_table;
689 	int panel_type = dev_priv->vbt.panel_type;
690 
691 	psr = find_section(bdb, BDB_PSR);
692 	if (!psr) {
693 		DRM_DEBUG_KMS("No PSR BDB found.\n");
694 		return;
695 	}
696 
697 	psr_table = &psr->psr_table[panel_type];
698 
699 	dev_priv->vbt.psr.full_link = psr_table->full_link;
700 	dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
701 
702 	/* Allowed VBT values goes from 0 to 15 */
703 	dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
704 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
705 
706 	switch (psr_table->lines_to_wait) {
707 	case 0:
708 		dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
709 		break;
710 	case 1:
711 		dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
712 		break;
713 	case 2:
714 		dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
715 		break;
716 	case 3:
717 		dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
718 		break;
719 	default:
720 		DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
721 			      psr_table->lines_to_wait);
722 		break;
723 	}
724 
725 	dev_priv->vbt.psr.tp1_wakeup_time = psr_table->tp1_wakeup_time;
726 	dev_priv->vbt.psr.tp2_tp3_wakeup_time = psr_table->tp2_tp3_wakeup_time;
727 }
728 
729 static void
730 parse_mipi_config(struct drm_i915_private *dev_priv,
731 		  const struct bdb_header *bdb)
732 {
733 	const struct bdb_mipi_config *start;
734 	const struct mipi_config *config;
735 	const struct mipi_pps_data *pps;
736 	int panel_type = dev_priv->vbt.panel_type;
737 
738 	/* parse MIPI blocks only if LFP type is MIPI */
739 	if (!intel_bios_is_dsi_present(dev_priv, NULL))
740 		return;
741 
742 	/* Initialize this to undefined indicating no generic MIPI support */
743 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
744 
745 	/* Block #40 is already parsed and panel_fixed_mode is
746 	 * stored in dev_priv->lfp_lvds_vbt_mode
747 	 * resuse this when needed
748 	 */
749 
750 	/* Parse #52 for panel index used from panel_type already
751 	 * parsed
752 	 */
753 	start = find_section(bdb, BDB_MIPI_CONFIG);
754 	if (!start) {
755 		DRM_DEBUG_KMS("No MIPI config BDB found");
756 		return;
757 	}
758 
759 	DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
760 								panel_type);
761 
762 	/*
763 	 * get hold of the correct configuration block and pps data as per
764 	 * the panel_type as index
765 	 */
766 	config = &start->config[panel_type];
767 	pps = &start->pps[panel_type];
768 
769 	/* store as of now full data. Trim when we realise all is not needed */
770 	dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
771 	if (!dev_priv->vbt.dsi.config)
772 		return;
773 
774 	dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
775 	if (!dev_priv->vbt.dsi.pps) {
776 		kfree(dev_priv->vbt.dsi.config);
777 		return;
778 	}
779 
780 	/*
781 	 * These fields are introduced from the VBT version 197 onwards,
782 	 * so making sure that these bits are set zero in the previous
783 	 * versions.
784 	 */
785 	if (dev_priv->vbt.dsi.config->dual_link && bdb->version < 197) {
786 		dev_priv->vbt.dsi.config->dl_dcs_cabc_ports = 0;
787 		dev_priv->vbt.dsi.config->dl_dcs_backlight_ports = 0;
788 	}
789 
790 	/* We have mandatory mipi config blocks. Initialize as generic panel */
791 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
792 }
793 
794 /* Find the sequence block and size for the given panel. */
795 static const u8 *
796 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
797 			  u16 panel_id, u32 *seq_size)
798 {
799 	u32 total = get_blocksize(sequence);
800 	const u8 *data = &sequence->data[0];
801 	u8 current_id;
802 	u32 current_size;
803 	int header_size = sequence->version >= 3 ? 5 : 3;
804 	int index = 0;
805 	int i;
806 
807 	/* skip new block size */
808 	if (sequence->version >= 3)
809 		data += 4;
810 
811 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
812 		if (index + header_size > total) {
813 			DRM_ERROR("Invalid sequence block (header)\n");
814 			return NULL;
815 		}
816 
817 		current_id = *(data + index);
818 		if (sequence->version >= 3)
819 			current_size = *((const u32 *)(data + index + 1));
820 		else
821 			current_size = *((const u16 *)(data + index + 1));
822 
823 		index += header_size;
824 
825 		if (index + current_size > total) {
826 			DRM_ERROR("Invalid sequence block\n");
827 			return NULL;
828 		}
829 
830 		if (current_id == panel_id) {
831 			*seq_size = current_size;
832 			return data + index;
833 		}
834 
835 		index += current_size;
836 	}
837 
838 	DRM_ERROR("Sequence block detected but no valid configuration\n");
839 
840 	return NULL;
841 }
842 
843 static int goto_next_sequence(const u8 *data, int index, int total)
844 {
845 	u16 len;
846 
847 	/* Skip Sequence Byte. */
848 	for (index = index + 1; index < total; index += len) {
849 		u8 operation_byte = *(data + index);
850 		index++;
851 
852 		switch (operation_byte) {
853 		case MIPI_SEQ_ELEM_END:
854 			return index;
855 		case MIPI_SEQ_ELEM_SEND_PKT:
856 			if (index + 4 > total)
857 				return 0;
858 
859 			len = *((const u16 *)(data + index + 2)) + 4;
860 			break;
861 		case MIPI_SEQ_ELEM_DELAY:
862 			len = 4;
863 			break;
864 		case MIPI_SEQ_ELEM_GPIO:
865 			len = 2;
866 			break;
867 		case MIPI_SEQ_ELEM_I2C:
868 			if (index + 7 > total)
869 				return 0;
870 			len = *(data + index + 6) + 7;
871 			break;
872 		default:
873 			DRM_ERROR("Unknown operation byte\n");
874 			return 0;
875 		}
876 	}
877 
878 	return 0;
879 }
880 
881 static int goto_next_sequence_v3(const u8 *data, int index, int total)
882 {
883 	int seq_end;
884 	u16 len;
885 	u32 size_of_sequence;
886 
887 	/*
888 	 * Could skip sequence based on Size of Sequence alone, but also do some
889 	 * checking on the structure.
890 	 */
891 	if (total < 5) {
892 		DRM_ERROR("Too small sequence size\n");
893 		return 0;
894 	}
895 
896 	/* Skip Sequence Byte. */
897 	index++;
898 
899 	/*
900 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
901 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
902 	 * byte.
903 	 */
904 	size_of_sequence = *((const uint32_t *)(data + index));
905 	index += 4;
906 
907 	seq_end = index + size_of_sequence;
908 	if (seq_end > total) {
909 		DRM_ERROR("Invalid sequence size\n");
910 		return 0;
911 	}
912 
913 	for (; index < total; index += len) {
914 		u8 operation_byte = *(data + index);
915 		index++;
916 
917 		if (operation_byte == MIPI_SEQ_ELEM_END) {
918 			if (index != seq_end) {
919 				DRM_ERROR("Invalid element structure\n");
920 				return 0;
921 			}
922 			return index;
923 		}
924 
925 		len = *(data + index);
926 		index++;
927 
928 		/*
929 		 * FIXME: Would be nice to check elements like for v1/v2 in
930 		 * goto_next_sequence() above.
931 		 */
932 		switch (operation_byte) {
933 		case MIPI_SEQ_ELEM_SEND_PKT:
934 		case MIPI_SEQ_ELEM_DELAY:
935 		case MIPI_SEQ_ELEM_GPIO:
936 		case MIPI_SEQ_ELEM_I2C:
937 		case MIPI_SEQ_ELEM_SPI:
938 		case MIPI_SEQ_ELEM_PMIC:
939 			break;
940 		default:
941 			DRM_ERROR("Unknown operation byte %u\n",
942 				  operation_byte);
943 			break;
944 		}
945 	}
946 
947 	return 0;
948 }
949 
950 static void
951 parse_mipi_sequence(struct drm_i915_private *dev_priv,
952 		    const struct bdb_header *bdb)
953 {
954 	int panel_type = dev_priv->vbt.panel_type;
955 	const struct bdb_mipi_sequence *sequence;
956 	const u8 *seq_data;
957 	u32 seq_size;
958 	u8 *data;
959 	int index = 0;
960 
961 	/* Only our generic panel driver uses the sequence block. */
962 	if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
963 		return;
964 
965 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
966 	if (!sequence) {
967 		DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
968 		return;
969 	}
970 
971 	/* Fail gracefully for forward incompatible sequence block. */
972 	if (sequence->version >= 4) {
973 		DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
974 			  sequence->version);
975 		return;
976 	}
977 
978 	DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
979 
980 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
981 	if (!seq_data)
982 		return;
983 
984 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
985 	if (!data)
986 		return;
987 
988 	/* Parse the sequences, store pointers to each sequence. */
989 	for (;;) {
990 		u8 seq_id = *(data + index);
991 		if (seq_id == MIPI_SEQ_END)
992 			break;
993 
994 		if (seq_id >= MIPI_SEQ_MAX) {
995 			DRM_ERROR("Unknown sequence %u\n", seq_id);
996 			goto err;
997 		}
998 
999 		/* Log about presence of sequences we won't run. */
1000 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1001 			DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
1002 
1003 		dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1004 
1005 		if (sequence->version >= 3)
1006 			index = goto_next_sequence_v3(data, index, seq_size);
1007 		else
1008 			index = goto_next_sequence(data, index, seq_size);
1009 		if (!index) {
1010 			DRM_ERROR("Invalid sequence %u\n", seq_id);
1011 			goto err;
1012 		}
1013 	}
1014 
1015 	dev_priv->vbt.dsi.data = data;
1016 	dev_priv->vbt.dsi.size = seq_size;
1017 	dev_priv->vbt.dsi.seq_version = sequence->version;
1018 
1019 	DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
1020 	return;
1021 
1022 err:
1023 	kfree(data);
1024 	memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1025 }
1026 
1027 static u8 translate_iboost(u8 val)
1028 {
1029 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1030 
1031 	if (val >= ARRAY_SIZE(mapping)) {
1032 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1033 		return 0;
1034 	}
1035 	return mapping[val];
1036 }
1037 
1038 static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port,
1039 			   const struct bdb_header *bdb)
1040 {
1041 	union child_device_config *it, *child = NULL;
1042 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1043 	uint8_t hdmi_level_shift;
1044 	int i, j;
1045 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1046 	uint8_t aux_channel, ddc_pin;
1047 	/* Each DDI port can have more than one value on the "DVO Port" field,
1048 	 * so look for all the possible values for each port and abort if more
1049 	 * than one is found. */
1050 	int dvo_ports[][3] = {
1051 		{DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1052 		{DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1053 		{DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1054 		{DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1055 		{DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1056 	};
1057 
1058 	/* Find the child device to use, abort if more than one found. */
1059 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1060 		it = dev_priv->vbt.child_dev + i;
1061 
1062 		for (j = 0; j < 3; j++) {
1063 			if (dvo_ports[port][j] == -1)
1064 				break;
1065 
1066 			if (it->common.dvo_port == dvo_ports[port][j]) {
1067 				if (child) {
1068 					DRM_DEBUG_KMS("More than one child device for port %c in VBT.\n",
1069 						      port_name(port));
1070 					return;
1071 				}
1072 				child = it;
1073 			}
1074 		}
1075 	}
1076 	if (!child)
1077 		return;
1078 
1079 	aux_channel = child->raw[25];
1080 	ddc_pin = child->common.ddc_pin;
1081 
1082 	is_dvi = child->common.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1083 	is_dp = child->common.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1084 	is_crt = child->common.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1085 	is_hdmi = is_dvi && (child->common.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1086 	is_edp = is_dp && (child->common.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1087 
1088 	info->supports_dvi = is_dvi;
1089 	info->supports_hdmi = is_hdmi;
1090 	info->supports_dp = is_dp;
1091 
1092 	DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d\n",
1093 		      port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt);
1094 
1095 	if (is_edp && is_dvi)
1096 		DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
1097 			      port_name(port));
1098 	if (is_crt && port != PORT_E)
1099 		DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
1100 	if (is_crt && (is_dvi || is_dp))
1101 		DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
1102 			      port_name(port));
1103 	if (is_dvi && (port == PORT_A || port == PORT_E))
1104 		DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
1105 	if (!is_dvi && !is_dp && !is_crt)
1106 		DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
1107 			      port_name(port));
1108 	if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
1109 		DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
1110 
1111 	if (is_dvi) {
1112 		if (port == PORT_E) {
1113 			info->alternate_ddc_pin = ddc_pin;
1114 			/* if DDIE share ddc pin with other port, then
1115 			 * dvi/hdmi couldn't exist on the shared port.
1116 			 * Otherwise they share the same ddc bin and system
1117 			 * couldn't communicate with them seperately. */
1118 			if (ddc_pin == DDC_PIN_B) {
1119 				dev_priv->vbt.ddi_port_info[PORT_B].supports_dvi = 0;
1120 				dev_priv->vbt.ddi_port_info[PORT_B].supports_hdmi = 0;
1121 			} else if (ddc_pin == DDC_PIN_C) {
1122 				dev_priv->vbt.ddi_port_info[PORT_C].supports_dvi = 0;
1123 				dev_priv->vbt.ddi_port_info[PORT_C].supports_hdmi = 0;
1124 			} else if (ddc_pin == DDC_PIN_D) {
1125 				dev_priv->vbt.ddi_port_info[PORT_D].supports_dvi = 0;
1126 				dev_priv->vbt.ddi_port_info[PORT_D].supports_hdmi = 0;
1127 			}
1128 		} else if (ddc_pin == DDC_PIN_B && port != PORT_B)
1129 			DRM_DEBUG_KMS("Unexpected DDC pin for port B\n");
1130 		else if (ddc_pin == DDC_PIN_C && port != PORT_C)
1131 			DRM_DEBUG_KMS("Unexpected DDC pin for port C\n");
1132 		else if (ddc_pin == DDC_PIN_D && port != PORT_D)
1133 			DRM_DEBUG_KMS("Unexpected DDC pin for port D\n");
1134 	}
1135 
1136 	if (is_dp) {
1137 		if (port == PORT_E) {
1138 			info->alternate_aux_channel = aux_channel;
1139 			/* if DDIE share aux channel with other port, then
1140 			 * DP couldn't exist on the shared port. Otherwise
1141 			 * they share the same aux channel and system
1142 			 * couldn't communicate with them seperately. */
1143 			if (aux_channel == DP_AUX_A)
1144 				dev_priv->vbt.ddi_port_info[PORT_A].supports_dp = 0;
1145 			else if (aux_channel == DP_AUX_B)
1146 				dev_priv->vbt.ddi_port_info[PORT_B].supports_dp = 0;
1147 			else if (aux_channel == DP_AUX_C)
1148 				dev_priv->vbt.ddi_port_info[PORT_C].supports_dp = 0;
1149 			else if (aux_channel == DP_AUX_D)
1150 				dev_priv->vbt.ddi_port_info[PORT_D].supports_dp = 0;
1151 		}
1152 		else if (aux_channel == DP_AUX_A && port != PORT_A)
1153 			DRM_DEBUG_KMS("Unexpected AUX channel for port A\n");
1154 		else if (aux_channel == DP_AUX_B && port != PORT_B)
1155 			DRM_DEBUG_KMS("Unexpected AUX channel for port B\n");
1156 		else if (aux_channel == DP_AUX_C && port != PORT_C)
1157 			DRM_DEBUG_KMS("Unexpected AUX channel for port C\n");
1158 		else if (aux_channel == DP_AUX_D && port != PORT_D)
1159 			DRM_DEBUG_KMS("Unexpected AUX channel for port D\n");
1160 	}
1161 
1162 	if (bdb->version >= 158) {
1163 		/* The VBT HDMI level shift values match the table we have. */
1164 		hdmi_level_shift = child->raw[7] & 0xF;
1165 		DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
1166 			      port_name(port),
1167 			      hdmi_level_shift);
1168 		info->hdmi_level_shift = hdmi_level_shift;
1169 	}
1170 
1171 	/* Parse the I_boost config for SKL and above */
1172 	if (bdb->version >= 196 && child->common.iboost) {
1173 		info->dp_boost_level = translate_iboost(child->common.iboost_level & 0xF);
1174 		DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
1175 			      port_name(port), info->dp_boost_level);
1176 		info->hdmi_boost_level = translate_iboost(child->common.iboost_level >> 4);
1177 		DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
1178 			      port_name(port), info->hdmi_boost_level);
1179 	}
1180 }
1181 
1182 static void parse_ddi_ports(struct drm_i915_private *dev_priv,
1183 			    const struct bdb_header *bdb)
1184 {
1185 	enum port port;
1186 
1187 	if (!HAS_DDI(dev_priv))
1188 		return;
1189 
1190 	if (!dev_priv->vbt.child_dev_num)
1191 		return;
1192 
1193 	if (bdb->version < 155)
1194 		return;
1195 
1196 	for (port = PORT_A; port < I915_MAX_PORTS; port++)
1197 		parse_ddi_port(dev_priv, port, bdb);
1198 }
1199 
1200 static void
1201 parse_device_mapping(struct drm_i915_private *dev_priv,
1202 		     const struct bdb_header *bdb)
1203 {
1204 	const struct bdb_general_definitions *p_defs;
1205 	const union child_device_config *p_child;
1206 	union child_device_config *child_dev_ptr;
1207 	int i, child_device_num, count;
1208 	u8 expected_size;
1209 	u16 block_size;
1210 
1211 	p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1212 	if (!p_defs) {
1213 		DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
1214 		return;
1215 	}
1216 	if (bdb->version < 106) {
1217 		expected_size = 22;
1218 	} else if (bdb->version < 111) {
1219 		expected_size = 27;
1220 	} else if (bdb->version < 195) {
1221 		BUILD_BUG_ON(sizeof(struct old_child_dev_config) != 33);
1222 		expected_size = sizeof(struct old_child_dev_config);
1223 	} else if (bdb->version == 195) {
1224 		expected_size = 37;
1225 	} else if (bdb->version <= 197) {
1226 		expected_size = 38;
1227 	} else {
1228 		expected_size = 38;
1229 		BUILD_BUG_ON(sizeof(*p_child) < 38);
1230 		DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
1231 				 bdb->version, expected_size);
1232 	}
1233 
1234 	/* Flag an error for unexpected size, but continue anyway. */
1235 	if (p_defs->child_dev_size != expected_size)
1236 		DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
1237 			  p_defs->child_dev_size, expected_size, bdb->version);
1238 
1239 	/* The legacy sized child device config is the minimum we need. */
1240 	if (p_defs->child_dev_size < sizeof(struct old_child_dev_config)) {
1241 		DRM_DEBUG_KMS("Child device config size %u is too small.\n",
1242 			      p_defs->child_dev_size);
1243 		return;
1244 	}
1245 
1246 	/* get the block size of general definitions */
1247 	block_size = get_blocksize(p_defs);
1248 	/* get the number of child device */
1249 	child_device_num = (block_size - sizeof(*p_defs)) /
1250 				p_defs->child_dev_size;
1251 	count = 0;
1252 	/* get the number of child device that is present */
1253 	for (i = 0; i < child_device_num; i++) {
1254 		p_child = child_device_ptr(p_defs, i);
1255 		if (!p_child->common.device_type) {
1256 			/* skip the device block if device type is invalid */
1257 			continue;
1258 		}
1259 		count++;
1260 	}
1261 	if (!count) {
1262 		DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
1263 		return;
1264 	}
1265 	dev_priv->vbt.child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL);
1266 	if (!dev_priv->vbt.child_dev) {
1267 		DRM_DEBUG_KMS("No memory space for child device\n");
1268 		return;
1269 	}
1270 
1271 	dev_priv->vbt.child_dev_num = count;
1272 	count = 0;
1273 	for (i = 0; i < child_device_num; i++) {
1274 		p_child = child_device_ptr(p_defs, i);
1275 		if (!p_child->common.device_type) {
1276 			/* skip the device block if device type is invalid */
1277 			continue;
1278 		}
1279 
1280 		child_dev_ptr = dev_priv->vbt.child_dev + count;
1281 		count++;
1282 
1283 		/*
1284 		 * Copy as much as we know (sizeof) and is available
1285 		 * (child_dev_size) of the child device. Accessing the data must
1286 		 * depend on VBT version.
1287 		 */
1288 		memcpy(child_dev_ptr, p_child,
1289 		       min_t(size_t, p_defs->child_dev_size, sizeof(*p_child)));
1290 
1291 		/*
1292 		 * copied full block, now init values when they are not
1293 		 * available in current version
1294 		 */
1295 		if (bdb->version < 196) {
1296 			/* Set default values for bits added from v196 */
1297 			child_dev_ptr->common.iboost = 0;
1298 			child_dev_ptr->common.hpd_invert = 0;
1299 		}
1300 
1301 		if (bdb->version < 192)
1302 			child_dev_ptr->common.lspcon = 0;
1303 	}
1304 	return;
1305 }
1306 
1307 static void
1308 init_vbt_defaults(struct drm_i915_private *dev_priv)
1309 {
1310 	enum port port;
1311 
1312 	dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1313 
1314 	/* Default to having backlight */
1315 	dev_priv->vbt.backlight.present = true;
1316 
1317 	/* LFP panel data */
1318 	dev_priv->vbt.lvds_dither = 1;
1319 	dev_priv->vbt.lvds_vbt = 0;
1320 
1321 	/* SDVO panel data */
1322 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1323 
1324 	/* general features */
1325 	dev_priv->vbt.int_tv_support = 1;
1326 	dev_priv->vbt.int_crt_support = 1;
1327 
1328 	/* Default to using SSC */
1329 	dev_priv->vbt.lvds_use_ssc = 1;
1330 	/*
1331 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1332 	 * clock for LVDS.
1333 	 */
1334 	dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1335 			!HAS_PCH_SPLIT(dev_priv));
1336 	DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
1337 
1338 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1339 		struct ddi_vbt_port_info *info =
1340 			&dev_priv->vbt.ddi_port_info[port];
1341 
1342 		info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
1343 
1344 		info->supports_dvi = (port != PORT_A && port != PORT_E);
1345 		info->supports_hdmi = info->supports_dvi;
1346 		info->supports_dp = (port != PORT_E);
1347 	}
1348 }
1349 
1350 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1351 {
1352 	const void *_vbt = vbt;
1353 
1354 	return _vbt + vbt->bdb_offset;
1355 }
1356 
1357 /**
1358  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1359  * @buf:	pointer to a buffer to validate
1360  * @size:	size of the buffer
1361  *
1362  * Returns true on valid VBT.
1363  */
1364 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1365 {
1366 	const struct vbt_header *vbt = buf;
1367 	const struct bdb_header *bdb;
1368 
1369 	if (!vbt)
1370 		return false;
1371 
1372 	if (sizeof(struct vbt_header) > size) {
1373 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
1374 		return false;
1375 	}
1376 
1377 	if (memcmp(vbt->signature, "$VBT", 4)) {
1378 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
1379 		return false;
1380 	}
1381 
1382 	if (vbt->bdb_offset + sizeof(struct bdb_header) > size) {
1383 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
1384 		return false;
1385 	}
1386 
1387 	bdb = get_bdb_header(vbt);
1388 	if (vbt->bdb_offset + bdb->bdb_size > size) {
1389 		DRM_DEBUG_DRIVER("BDB incomplete\n");
1390 		return false;
1391 	}
1392 
1393 	return vbt;
1394 }
1395 
1396 static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
1397 {
1398 	size_t i;
1399 
1400 	/* Scour memory looking for the VBT signature. */
1401 	for (i = 0; i + 4 < size; i++) {
1402 		void *vbt;
1403 
1404 		if (ioread32(bios + i) != *((const u32 *) "$VBT"))
1405 			continue;
1406 
1407 		/*
1408 		 * This is the one place where we explicitly discard the address
1409 		 * space (__iomem) of the BIOS/VBT.
1410 		 */
1411 		vbt = (void __force *) bios + i;
1412 		if (intel_bios_is_valid_vbt(vbt, size - i))
1413 			return vbt;
1414 
1415 		break;
1416 	}
1417 
1418 	return NULL;
1419 }
1420 
1421 /**
1422  * intel_bios_init - find VBT and initialize settings from the BIOS
1423  * @dev_priv: i915 device instance
1424  *
1425  * Loads the Video BIOS and checks that the VBT exists.  Sets scratch registers
1426  * to appropriate values.
1427  *
1428  * Returns 0 on success, nonzero on failure.
1429  */
1430 int
1431 intel_bios_init(struct drm_i915_private *dev_priv)
1432 {
1433 	struct pci_dev *pdev = dev_priv->drm.pdev;
1434 	const struct vbt_header *vbt = dev_priv->opregion.vbt;
1435 	const struct bdb_header *bdb;
1436 	u8 __iomem *bios = NULL;
1437 
1438 	if (HAS_PCH_NOP(dev_priv))
1439 		return -ENODEV;
1440 
1441 	init_vbt_defaults(dev_priv);
1442 
1443 	if (!vbt) {
1444 		size_t size;
1445 
1446 		bios = pci_map_rom(pdev, &size);
1447 		if (!bios)
1448 			return -1;
1449 
1450 		vbt = find_vbt(bios, size);
1451 		if (!vbt) {
1452 			pci_unmap_rom(pdev, bios);
1453 			return -1;
1454 		}
1455 
1456 		DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
1457 	}
1458 
1459 	bdb = get_bdb_header(vbt);
1460 
1461 	DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
1462 		      (int)sizeof(vbt->signature), vbt->signature, bdb->version);
1463 
1464 	/* Grab useful general definitions */
1465 	parse_general_features(dev_priv, bdb);
1466 	parse_general_definitions(dev_priv, bdb);
1467 	parse_lfp_panel_data(dev_priv, bdb);
1468 	parse_lfp_backlight(dev_priv, bdb);
1469 	parse_sdvo_panel_data(dev_priv, bdb);
1470 	parse_sdvo_device_mapping(dev_priv, bdb);
1471 	parse_device_mapping(dev_priv, bdb);
1472 	parse_driver_features(dev_priv, bdb);
1473 	parse_edp(dev_priv, bdb);
1474 	parse_psr(dev_priv, bdb);
1475 	parse_mipi_config(dev_priv, bdb);
1476 	parse_mipi_sequence(dev_priv, bdb);
1477 	parse_ddi_ports(dev_priv, bdb);
1478 
1479 	if (bios)
1480 		pci_unmap_rom(pdev, bios);
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * intel_bios_is_tv_present - is integrated TV present in VBT
1487  * @dev_priv:	i915 device instance
1488  *
1489  * Return true if TV is present. If no child devices were parsed from VBT,
1490  * assume TV is present.
1491  */
1492 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
1493 {
1494 	union child_device_config *p_child;
1495 	int i;
1496 
1497 	if (!dev_priv->vbt.int_tv_support)
1498 		return false;
1499 
1500 	if (!dev_priv->vbt.child_dev_num)
1501 		return true;
1502 
1503 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1504 		p_child = dev_priv->vbt.child_dev + i;
1505 		/*
1506 		 * If the device type is not TV, continue.
1507 		 */
1508 		switch (p_child->old.device_type) {
1509 		case DEVICE_TYPE_INT_TV:
1510 		case DEVICE_TYPE_TV:
1511 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
1512 			break;
1513 		default:
1514 			continue;
1515 		}
1516 		/* Only when the addin_offset is non-zero, it is regarded
1517 		 * as present.
1518 		 */
1519 		if (p_child->old.addin_offset)
1520 			return true;
1521 	}
1522 
1523 	return false;
1524 }
1525 
1526 /**
1527  * intel_bios_is_lvds_present - is LVDS present in VBT
1528  * @dev_priv:	i915 device instance
1529  * @i2c_pin:	i2c pin for LVDS if present
1530  *
1531  * Return true if LVDS is present. If no child devices were parsed from VBT,
1532  * assume LVDS is present.
1533  */
1534 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
1535 {
1536 	int i;
1537 
1538 	if (!dev_priv->vbt.child_dev_num)
1539 		return true;
1540 
1541 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1542 		union child_device_config *uchild = dev_priv->vbt.child_dev + i;
1543 		struct old_child_dev_config *child = &uchild->old;
1544 
1545 		/* If the device type is not LFP, continue.
1546 		 * We have to check both the new identifiers as well as the
1547 		 * old for compatibility with some BIOSes.
1548 		 */
1549 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
1550 		    child->device_type != DEVICE_TYPE_LFP)
1551 			continue;
1552 
1553 		if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
1554 			*i2c_pin = child->i2c_pin;
1555 
1556 		/* However, we cannot trust the BIOS writers to populate
1557 		 * the VBT correctly.  Since LVDS requires additional
1558 		 * information from AIM blocks, a non-zero addin offset is
1559 		 * a good indicator that the LVDS is actually present.
1560 		 */
1561 		if (child->addin_offset)
1562 			return true;
1563 
1564 		/* But even then some BIOS writers perform some black magic
1565 		 * and instantiate the device without reference to any
1566 		 * additional data.  Trust that if the VBT was written into
1567 		 * the OpRegion then they have validated the LVDS's existence.
1568 		 */
1569 		if (dev_priv->opregion.vbt)
1570 			return true;
1571 	}
1572 
1573 	return false;
1574 }
1575 
1576 /**
1577  * intel_bios_is_port_present - is the specified digital port present
1578  * @dev_priv:	i915 device instance
1579  * @port:	port to check
1580  *
1581  * Return true if the device in %port is present.
1582  */
1583 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
1584 {
1585 	static const struct {
1586 		u16 dp, hdmi;
1587 	} port_mapping[] = {
1588 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
1589 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
1590 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
1591 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
1592 	};
1593 	int i;
1594 
1595 	/* FIXME maybe deal with port A as well? */
1596 	if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
1597 		return false;
1598 
1599 	if (!dev_priv->vbt.child_dev_num)
1600 		return false;
1601 
1602 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1603 		const union child_device_config *p_child =
1604 			&dev_priv->vbt.child_dev[i];
1605 		if ((p_child->common.dvo_port == port_mapping[port].dp ||
1606 		     p_child->common.dvo_port == port_mapping[port].hdmi) &&
1607 		    (p_child->common.device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
1608 						    DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
1609 			return true;
1610 	}
1611 
1612 	return false;
1613 }
1614 
1615 /**
1616  * intel_bios_is_port_edp - is the device in given port eDP
1617  * @dev_priv:	i915 device instance
1618  * @port:	port to check
1619  *
1620  * Return true if the device in %port is eDP.
1621  */
1622 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
1623 {
1624 	union child_device_config *p_child;
1625 	static const short port_mapping[] = {
1626 		[PORT_B] = DVO_PORT_DPB,
1627 		[PORT_C] = DVO_PORT_DPC,
1628 		[PORT_D] = DVO_PORT_DPD,
1629 		[PORT_E] = DVO_PORT_DPE,
1630 	};
1631 	int i;
1632 
1633 	if (!dev_priv->vbt.child_dev_num)
1634 		return false;
1635 
1636 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1637 		p_child = dev_priv->vbt.child_dev + i;
1638 
1639 		if (p_child->common.dvo_port == port_mapping[port] &&
1640 		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
1641 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
1642 			return true;
1643 	}
1644 
1645 	return false;
1646 }
1647 
1648 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port)
1649 {
1650 	static const struct {
1651 		u16 dp, hdmi;
1652 	} port_mapping[] = {
1653 		/*
1654 		 * Buggy VBTs may declare DP ports as having
1655 		 * HDMI type dvo_port :( So let's check both.
1656 		 */
1657 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
1658 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
1659 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
1660 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
1661 	};
1662 	int i;
1663 
1664 	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
1665 		return false;
1666 
1667 	if (!dev_priv->vbt.child_dev_num)
1668 		return false;
1669 
1670 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1671 		const union child_device_config *p_child =
1672 			&dev_priv->vbt.child_dev[i];
1673 
1674 		if ((p_child->common.dvo_port == port_mapping[port].dp ||
1675 		     p_child->common.dvo_port == port_mapping[port].hdmi) &&
1676 		    (p_child->common.device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) ==
1677 		    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
1678 			return true;
1679 	}
1680 
1681 	return false;
1682 }
1683 
1684 /**
1685  * intel_bios_is_dsi_present - is DSI present in VBT
1686  * @dev_priv:	i915 device instance
1687  * @port:	port for DSI if present
1688  *
1689  * Return true if DSI is present, and return the port in %port.
1690  */
1691 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
1692 			       enum port *port)
1693 {
1694 	union child_device_config *p_child;
1695 	u8 dvo_port;
1696 	int i;
1697 
1698 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1699 		p_child = dev_priv->vbt.child_dev + i;
1700 
1701 		if (!(p_child->common.device_type & DEVICE_TYPE_MIPI_OUTPUT))
1702 			continue;
1703 
1704 		dvo_port = p_child->common.dvo_port;
1705 
1706 		switch (dvo_port) {
1707 		case DVO_PORT_MIPIA:
1708 		case DVO_PORT_MIPIC:
1709 			if (port)
1710 				*port = dvo_port - DVO_PORT_MIPIA;
1711 			return true;
1712 		case DVO_PORT_MIPIB:
1713 		case DVO_PORT_MIPID:
1714 			DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
1715 				      port_name(dvo_port - DVO_PORT_MIPIA));
1716 			break;
1717 		}
1718 	}
1719 
1720 	return false;
1721 }
1722 
1723 /**
1724  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
1725  * @dev_priv:	i915 device instance
1726  * @port:	port to check
1727  *
1728  * Return true if HPD should be inverted for %port.
1729  */
1730 bool
1731 intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
1732 				enum port port)
1733 {
1734 	int i;
1735 
1736 	if (WARN_ON_ONCE(!IS_BROXTON(dev_priv)))
1737 		return false;
1738 
1739 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1740 		if (!dev_priv->vbt.child_dev[i].common.hpd_invert)
1741 			continue;
1742 
1743 		switch (dev_priv->vbt.child_dev[i].common.dvo_port) {
1744 		case DVO_PORT_DPA:
1745 		case DVO_PORT_HDMIA:
1746 			if (port == PORT_A)
1747 				return true;
1748 			break;
1749 		case DVO_PORT_DPB:
1750 		case DVO_PORT_HDMIB:
1751 			if (port == PORT_B)
1752 				return true;
1753 			break;
1754 		case DVO_PORT_DPC:
1755 		case DVO_PORT_HDMIC:
1756 			if (port == PORT_C)
1757 				return true;
1758 			break;
1759 		default:
1760 			break;
1761 		}
1762 	}
1763 
1764 	return false;
1765 }
1766 
1767 /**
1768  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
1769  * @dev_priv:	i915 device instance
1770  * @port:	port to check
1771  *
1772  * Return true if LSPCON is present on this port
1773  */
1774 bool
1775 intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
1776 				enum port port)
1777 {
1778 	int i;
1779 
1780 	if (!HAS_LSPCON(dev_priv))
1781 		return false;
1782 
1783 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1784 		if (!dev_priv->vbt.child_dev[i].common.lspcon)
1785 			continue;
1786 
1787 		switch (dev_priv->vbt.child_dev[i].common.dvo_port) {
1788 		case DVO_PORT_DPA:
1789 		case DVO_PORT_HDMIA:
1790 			if (port == PORT_A)
1791 				return true;
1792 			break;
1793 		case DVO_PORT_DPB:
1794 		case DVO_PORT_HDMIB:
1795 			if (port == PORT_B)
1796 				return true;
1797 			break;
1798 		case DVO_PORT_DPC:
1799 		case DVO_PORT_HDMIC:
1800 			if (port == PORT_C)
1801 				return true;
1802 			break;
1803 		case DVO_PORT_DPD:
1804 		case DVO_PORT_HDMID:
1805 			if (port == PORT_D)
1806 				return true;
1807 			break;
1808 		default:
1809 			break;
1810 		}
1811 	}
1812 
1813 	return false;
1814 }
1815