xref: /dragonfly/sys/dev/drm/i915/intel_bios.c (revision 62dc643e)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_dp_helper.h>
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 
33 #define _INTEL_BIOS_PRIVATE
34 #include "intel_vbt_defs.h"
35 
36 /**
37  * DOC: Video BIOS Table (VBT)
38  *
39  * The Video BIOS Table, or VBT, provides platform and board specific
40  * configuration information to the driver that is not discoverable or available
41  * through other means. The configuration is mostly related to display
42  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
43  * the PCI ROM.
44  *
45  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
46  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
47  * contain the actual configuration information. The VBT Header, and thus the
48  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
49  * BDB Header. The data blocks are concatenated after the BDB Header. The data
50  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
51  * data. (Block 53, the MIPI Sequence Block is an exception.)
52  *
53  * The driver parses the VBT during load. The relevant information is stored in
54  * driver private data for ease of use, and the actual VBT is not read after
55  * that.
56  */
57 
58 #define	SLAVE_ADDR1	0x70
59 #define	SLAVE_ADDR2	0x72
60 
61 /* Get BDB block size given a pointer to Block ID. */
62 static u32 _get_blocksize(const u8 *block_base)
63 {
64 	/* The MIPI Sequence Block v3+ has a separate size field. */
65 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
66 		return *((const u32 *)(block_base + 4));
67 	else
68 		return *((const u16 *)(block_base + 1));
69 }
70 
71 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
72 static u32 get_blocksize(const void *block_data)
73 {
74 	return _get_blocksize((const char*)block_data - 3);
75 }
76 
77 static const void *
78 find_section(const void *_bdb, int section_id)
79 {
80 	const struct bdb_header *bdb = _bdb;
81 	const u8 *base = _bdb;
82 	int index = 0;
83 	u32 total, current_size;
84 	u8 current_id;
85 
86 	/* skip to first section */
87 	index += bdb->header_size;
88 	total = bdb->bdb_size;
89 
90 	/* walk the sections looking for section_id */
91 	while (index + 3 < total) {
92 		current_id = *(base + index);
93 		current_size = _get_blocksize(base + index);
94 		index += 3;
95 
96 		if (index + current_size > total)
97 			return NULL;
98 
99 		if (current_id == section_id)
100 			return base + index;
101 
102 		index += current_size;
103 	}
104 
105 	return NULL;
106 }
107 
108 static void
109 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
110 			const struct lvds_dvo_timing *dvo_timing)
111 {
112 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
113 		dvo_timing->hactive_lo;
114 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
115 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
116 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
117 		dvo_timing->hsync_pulse_width;
118 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
119 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
120 
121 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
122 		dvo_timing->vactive_lo;
123 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
124 		dvo_timing->vsync_off;
125 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
126 		dvo_timing->vsync_pulse_width;
127 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
128 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
129 	panel_fixed_mode->clock = dvo_timing->clock * 10;
130 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
131 
132 	if (dvo_timing->hsync_positive)
133 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
134 	else
135 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
136 
137 	if (dvo_timing->vsync_positive)
138 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
139 	else
140 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
141 
142 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
143 		dvo_timing->himage_lo;
144 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
145 		dvo_timing->vimage_lo;
146 
147 	/* Some VBTs have bogus h/vtotal values */
148 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
149 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
150 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
151 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
152 
153 	drm_mode_set_name(panel_fixed_mode);
154 }
155 
156 static const struct lvds_dvo_timing *
157 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
158 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
159 		    int index)
160 {
161 	/*
162 	 * the size of fp_timing varies on the different platform.
163 	 * So calculate the DVO timing relative offset in LVDS data
164 	 * entry to get the DVO timing entry
165 	 */
166 
167 	int lfp_data_size =
168 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
169 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
170 	int dvo_timing_offset =
171 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
172 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
173 	const char *entry = (const char *)lvds_lfp_data->data + lfp_data_size * index;
174 
175 	return (const struct lvds_dvo_timing *)(entry + dvo_timing_offset);
176 }
177 
178 /* get lvds_fp_timing entry
179  * this function may return NULL if the corresponding entry is invalid
180  */
181 static const struct lvds_fp_timing *
182 get_lvds_fp_timing(const struct bdb_header *bdb,
183 		   const struct bdb_lvds_lfp_data *data,
184 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
185 		   int index)
186 {
187 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
188 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
189 	size_t ofs;
190 
191 	if (index >= ARRAY_SIZE(ptrs->ptr))
192 		return NULL;
193 	ofs = ptrs->ptr[index].fp_timing_offset;
194 	if (ofs < data_ofs ||
195 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
196 		return NULL;
197 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
198 }
199 
200 /* Try to find integrated panel data */
201 static void
202 parse_lfp_panel_data(struct drm_i915_private *dev_priv,
203 		     const struct bdb_header *bdb)
204 {
205 	const struct bdb_lvds_options *lvds_options;
206 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
207 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
208 	const struct lvds_dvo_timing *panel_dvo_timing;
209 	const struct lvds_fp_timing *fp_timing;
210 	struct drm_display_mode *panel_fixed_mode;
211 	int panel_type;
212 	int drrs_mode;
213 	int ret;
214 
215 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
216 	if (!lvds_options)
217 		return;
218 
219 	dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
220 
221 	ret = intel_opregion_get_panel_type(dev_priv->dev);
222 	if (ret >= 0) {
223 		WARN_ON(ret > 0xf);
224 		panel_type = ret;
225 		DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
226 	} else {
227 		if (lvds_options->panel_type > 0xf) {
228 			DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
229 				      lvds_options->panel_type);
230 			return;
231 		}
232 		panel_type = lvds_options->panel_type;
233 		DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
234 	}
235 
236 	dev_priv->vbt.panel_type = panel_type;
237 
238 	drrs_mode = (lvds_options->dps_panel_type_bits
239 				>> (panel_type * 2)) & MODE_MASK;
240 	/*
241 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
242 	 * The below piece of code is required to adjust vbt.drrs_type
243 	 * to match the enum drrs_support_type.
244 	 */
245 	switch (drrs_mode) {
246 	case 0:
247 		dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
248 		DRM_DEBUG_KMS("DRRS supported mode is static\n");
249 		break;
250 	case 2:
251 		dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
252 		DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
253 		break;
254 	default:
255 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
256 		DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
257 		break;
258 	}
259 
260 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
261 	if (!lvds_lfp_data)
262 		return;
263 
264 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
265 	if (!lvds_lfp_data_ptrs)
266 		return;
267 
268 	dev_priv->vbt.lvds_vbt = 1;
269 
270 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
271 					       lvds_lfp_data_ptrs,
272 					       panel_type);
273 
274 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
275 	if (!panel_fixed_mode)
276 		return;
277 
278 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
279 
280 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
281 
282 	DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
283 	drm_mode_debug_printmodeline(panel_fixed_mode);
284 
285 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
286 				       lvds_lfp_data_ptrs,
287 				       panel_type);
288 	if (fp_timing) {
289 		/* check the resolution, just to be sure */
290 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
291 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
292 			dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
293 			DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
294 				      dev_priv->vbt.bios_lvds_val);
295 		}
296 	}
297 }
298 
299 static void
300 parse_lfp_backlight(struct drm_i915_private *dev_priv,
301 		    const struct bdb_header *bdb)
302 {
303 	const struct bdb_lfp_backlight_data *backlight_data;
304 	const struct bdb_lfp_backlight_data_entry *entry;
305 	int panel_type = dev_priv->vbt.panel_type;
306 
307 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
308 	if (!backlight_data)
309 		return;
310 
311 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
312 		DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
313 			      backlight_data->entry_size);
314 		return;
315 	}
316 
317 	entry = &backlight_data->data[panel_type];
318 
319 	dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
320 	if (!dev_priv->vbt.backlight.present) {
321 		DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
322 			      entry->type);
323 		return;
324 	}
325 
326 	dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
327 	dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
328 	dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
329 	DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
330 		      "active %s, min brightness %u, level %u\n",
331 		      dev_priv->vbt.backlight.pwm_freq_hz,
332 		      dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
333 		      dev_priv->vbt.backlight.min_brightness,
334 		      backlight_data->level[panel_type]);
335 }
336 
337 /* Try to find sdvo panel data */
338 static void
339 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
340 		      const struct bdb_header *bdb)
341 {
342 	const struct lvds_dvo_timing *dvo_timing;
343 	struct drm_display_mode *panel_fixed_mode;
344 	int index;
345 
346 	index = i915.vbt_sdvo_panel_type;
347 	if (index == -2) {
348 		DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
349 		return;
350 	}
351 
352 	if (index == -1) {
353 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
354 
355 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
356 		if (!sdvo_lvds_options)
357 			return;
358 
359 		index = sdvo_lvds_options->panel_type;
360 	}
361 
362 	dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
363 	if (!dvo_timing)
364 		return;
365 
366 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
367 	if (!panel_fixed_mode)
368 		return;
369 
370 	fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
371 
372 	dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
373 
374 	DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
375 	drm_mode_debug_printmodeline(panel_fixed_mode);
376 }
377 
378 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
379 				    bool alternate)
380 {
381 	switch (INTEL_INFO(dev_priv)->gen) {
382 	case 2:
383 		return alternate ? 66667 : 48000;
384 	case 3:
385 	case 4:
386 		return alternate ? 100000 : 96000;
387 	default:
388 		return alternate ? 100000 : 120000;
389 	}
390 }
391 
392 static void
393 parse_general_features(struct drm_i915_private *dev_priv,
394 		       const struct bdb_header *bdb)
395 {
396 	const struct bdb_general_features *general;
397 
398 	general = find_section(bdb, BDB_GENERAL_FEATURES);
399 	if (!general)
400 		return;
401 
402 	dev_priv->vbt.int_tv_support = general->int_tv_support;
403 	/* int_crt_support can't be trusted on earlier platforms */
404 	if (bdb->version >= 155 &&
405 	    (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
406 		dev_priv->vbt.int_crt_support = general->int_crt_support;
407 	dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
408 	dev_priv->vbt.lvds_ssc_freq =
409 		intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
410 	dev_priv->vbt.display_clock_mode = general->display_clock_mode;
411 	dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
412 	DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
413 		      dev_priv->vbt.int_tv_support,
414 		      dev_priv->vbt.int_crt_support,
415 		      dev_priv->vbt.lvds_use_ssc,
416 		      dev_priv->vbt.lvds_ssc_freq,
417 		      dev_priv->vbt.display_clock_mode,
418 		      dev_priv->vbt.fdi_rx_polarity_inverted);
419 }
420 
421 static void
422 parse_general_definitions(struct drm_i915_private *dev_priv,
423 			  const struct bdb_header *bdb)
424 {
425 	const struct bdb_general_definitions *general;
426 
427 	general = find_section(bdb, BDB_GENERAL_DEFINITIONS);
428 	if (general) {
429 		u16 block_size = get_blocksize(general);
430 		if (block_size >= sizeof(*general)) {
431 			int bus_pin = general->crt_ddc_gmbus_pin;
432 			DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
433 			if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
434 				dev_priv->vbt.crt_ddc_pin = bus_pin;
435 		} else {
436 			DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n",
437 				      block_size);
438 		}
439 	}
440 }
441 
442 static const union child_device_config *
443 child_device_ptr(const struct bdb_general_definitions *p_defs, int i)
444 {
445 	return (const void *) &p_defs->devices[i * p_defs->child_dev_size];
446 }
447 
448 static void
449 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv,
450 			  const struct bdb_header *bdb)
451 {
452 	struct sdvo_device_mapping *p_mapping;
453 	const struct bdb_general_definitions *p_defs;
454 	const struct old_child_dev_config *child; /* legacy */
455 	int i, child_device_num, count;
456 	u16	block_size;
457 
458 	p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
459 	if (!p_defs) {
460 		DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n");
461 		return;
462 	}
463 
464 	/*
465 	 * Only parse SDVO mappings when the general definitions block child
466 	 * device size matches that of the *legacy* child device config
467 	 * struct. Thus, SDVO mapping will be skipped for newer VBT.
468 	 */
469 	if (p_defs->child_dev_size != sizeof(*child)) {
470 		DRM_DEBUG_KMS("Unsupported child device size for SDVO mapping.\n");
471 		return;
472 	}
473 	/* get the block size of general definitions */
474 	block_size = get_blocksize(p_defs);
475 	/* get the number of child device */
476 	child_device_num = (block_size - sizeof(*p_defs)) /
477 		p_defs->child_dev_size;
478 	count = 0;
479 	for (i = 0; i < child_device_num; i++) {
480 		child = &child_device_ptr(p_defs, i)->old;
481 		if (!child->device_type) {
482 			/* skip the device block if device type is invalid */
483 			continue;
484 		}
485 		if (child->slave_addr != SLAVE_ADDR1 &&
486 		    child->slave_addr != SLAVE_ADDR2) {
487 			/*
488 			 * If the slave address is neither 0x70 nor 0x72,
489 			 * it is not a SDVO device. Skip it.
490 			 */
491 			continue;
492 		}
493 		if (child->dvo_port != DEVICE_PORT_DVOB &&
494 		    child->dvo_port != DEVICE_PORT_DVOC) {
495 			/* skip the incorrect SDVO port */
496 			DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
497 			continue;
498 		}
499 		DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
500 			      " %s port\n",
501 			      child->slave_addr,
502 			      (child->dvo_port == DEVICE_PORT_DVOB) ?
503 			      "SDVOB" : "SDVOC");
504 		p_mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
505 		if (!p_mapping->initialized) {
506 			p_mapping->dvo_port = child->dvo_port;
507 			p_mapping->slave_addr = child->slave_addr;
508 			p_mapping->dvo_wiring = child->dvo_wiring;
509 			p_mapping->ddc_pin = child->ddc_pin;
510 			p_mapping->i2c_pin = child->i2c_pin;
511 			p_mapping->initialized = 1;
512 			DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
513 				      p_mapping->dvo_port,
514 				      p_mapping->slave_addr,
515 				      p_mapping->dvo_wiring,
516 				      p_mapping->ddc_pin,
517 				      p_mapping->i2c_pin);
518 		} else {
519 			DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
520 					 "two SDVO device.\n");
521 		}
522 		if (child->slave2_addr) {
523 			/* Maybe this is a SDVO device with multiple inputs */
524 			/* And the mapping info is not added */
525 			DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
526 				" is a SDVO device with multiple inputs.\n");
527 		}
528 		count++;
529 	}
530 
531 	if (!count) {
532 		/* No SDVO device info is found */
533 		DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
534 	}
535 	return;
536 }
537 
538 static void
539 parse_driver_features(struct drm_i915_private *dev_priv,
540 		      const struct bdb_header *bdb)
541 {
542 	const struct bdb_driver_features *driver;
543 
544 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
545 	if (!driver)
546 		return;
547 
548 	if (driver->lvds_config == BDB_DRIVER_FEATURE_EDP)
549 		dev_priv->vbt.edp.support = 1;
550 
551 	DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
552 	/*
553 	 * If DRRS is not supported, drrs_type has to be set to 0.
554 	 * This is because, VBT is configured in such a way that
555 	 * static DRRS is 0 and DRRS not supported is represented by
556 	 * driver->drrs_enabled=false
557 	 */
558 	if (!driver->drrs_enabled)
559 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
560 }
561 
562 static void
563 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
564 {
565 	const struct bdb_edp *edp;
566 	const struct edp_power_seq *edp_pps;
567 	const struct edp_link_params *edp_link_params;
568 	int panel_type = dev_priv->vbt.panel_type;
569 
570 	edp = find_section(bdb, BDB_EDP);
571 	if (!edp) {
572 		if (dev_priv->vbt.edp.support)
573 			DRM_DEBUG_KMS("No eDP BDB found but eDP panel supported.\n");
574 		return;
575 	}
576 
577 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
578 	case EDP_18BPP:
579 		dev_priv->vbt.edp.bpp = 18;
580 		break;
581 	case EDP_24BPP:
582 		dev_priv->vbt.edp.bpp = 24;
583 		break;
584 	case EDP_30BPP:
585 		dev_priv->vbt.edp.bpp = 30;
586 		break;
587 	}
588 
589 	/* Get the eDP sequencing and link info */
590 	edp_pps = &edp->power_seqs[panel_type];
591 	edp_link_params = &edp->link_params[panel_type];
592 
593 	dev_priv->vbt.edp.pps = *edp_pps;
594 
595 	switch (edp_link_params->rate) {
596 	case EDP_RATE_1_62:
597 		dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
598 		break;
599 	case EDP_RATE_2_7:
600 		dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
601 		break;
602 	default:
603 		DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
604 			      edp_link_params->rate);
605 		break;
606 	}
607 
608 	switch (edp_link_params->lanes) {
609 	case EDP_LANE_1:
610 		dev_priv->vbt.edp.lanes = 1;
611 		break;
612 	case EDP_LANE_2:
613 		dev_priv->vbt.edp.lanes = 2;
614 		break;
615 	case EDP_LANE_4:
616 		dev_priv->vbt.edp.lanes = 4;
617 		break;
618 	default:
619 		DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
620 			      edp_link_params->lanes);
621 		break;
622 	}
623 
624 	switch (edp_link_params->preemphasis) {
625 	case EDP_PREEMPHASIS_NONE:
626 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
627 		break;
628 	case EDP_PREEMPHASIS_3_5dB:
629 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
630 		break;
631 	case EDP_PREEMPHASIS_6dB:
632 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
633 		break;
634 	case EDP_PREEMPHASIS_9_5dB:
635 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
636 		break;
637 	default:
638 		DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
639 			      edp_link_params->preemphasis);
640 		break;
641 	}
642 
643 	switch (edp_link_params->vswing) {
644 	case EDP_VSWING_0_4V:
645 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
646 		break;
647 	case EDP_VSWING_0_6V:
648 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
649 		break;
650 	case EDP_VSWING_0_8V:
651 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
652 		break;
653 	case EDP_VSWING_1_2V:
654 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
655 		break;
656 	default:
657 		DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
658 			      edp_link_params->vswing);
659 		break;
660 	}
661 
662 	if (bdb->version >= 173) {
663 		uint8_t vswing;
664 
665 		/* Don't read from VBT if module parameter has valid value*/
666 		if (i915.edp_vswing) {
667 			dev_priv->vbt.edp.low_vswing = i915.edp_vswing == 1;
668 		} else {
669 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
670 			dev_priv->vbt.edp.low_vswing = vswing == 0;
671 		}
672 	}
673 }
674 
675 static void
676 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
677 {
678 	const struct bdb_psr *psr;
679 	const struct psr_table *psr_table;
680 	int panel_type = dev_priv->vbt.panel_type;
681 
682 	psr = find_section(bdb, BDB_PSR);
683 	if (!psr) {
684 		DRM_DEBUG_KMS("No PSR BDB found.\n");
685 		return;
686 	}
687 
688 	psr_table = &psr->psr_table[panel_type];
689 
690 	dev_priv->vbt.psr.full_link = psr_table->full_link;
691 	dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
692 
693 	/* Allowed VBT values goes from 0 to 15 */
694 	dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
695 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
696 
697 	switch (psr_table->lines_to_wait) {
698 	case 0:
699 		dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
700 		break;
701 	case 1:
702 		dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
703 		break;
704 	case 2:
705 		dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
706 		break;
707 	case 3:
708 		dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
709 		break;
710 	default:
711 		DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
712 			      psr_table->lines_to_wait);
713 		break;
714 	}
715 
716 	dev_priv->vbt.psr.tp1_wakeup_time = psr_table->tp1_wakeup_time;
717 	dev_priv->vbt.psr.tp2_tp3_wakeup_time = psr_table->tp2_tp3_wakeup_time;
718 }
719 
720 static void
721 parse_mipi_config(struct drm_i915_private *dev_priv,
722 		  const struct bdb_header *bdb)
723 {
724 	const struct bdb_mipi_config *start;
725 	const struct mipi_config *config;
726 	const struct mipi_pps_data *pps;
727 	int panel_type = dev_priv->vbt.panel_type;
728 
729 	/* parse MIPI blocks only if LFP type is MIPI */
730 	if (!intel_bios_is_dsi_present(dev_priv, NULL))
731 		return;
732 
733 	/* Initialize this to undefined indicating no generic MIPI support */
734 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
735 
736 	/* Block #40 is already parsed and panel_fixed_mode is
737 	 * stored in dev_priv->lfp_lvds_vbt_mode
738 	 * resuse this when needed
739 	 */
740 
741 	/* Parse #52 for panel index used from panel_type already
742 	 * parsed
743 	 */
744 	start = find_section(bdb, BDB_MIPI_CONFIG);
745 	if (!start) {
746 		DRM_DEBUG_KMS("No MIPI config BDB found");
747 		return;
748 	}
749 
750 	DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
751 								panel_type);
752 
753 	/*
754 	 * get hold of the correct configuration block and pps data as per
755 	 * the panel_type as index
756 	 */
757 	config = &start->config[panel_type];
758 	pps = &start->pps[panel_type];
759 
760 	/* store as of now full data. Trim when we realise all is not needed */
761 	dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
762 	if (!dev_priv->vbt.dsi.config)
763 		return;
764 
765 	dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
766 	if (!dev_priv->vbt.dsi.pps) {
767 		kfree(dev_priv->vbt.dsi.config);
768 		return;
769 	}
770 
771 	/* We have mandatory mipi config blocks. Initialize as generic panel */
772 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
773 }
774 
775 /* Find the sequence block and size for the given panel. */
776 static const u8 *
777 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
778 			  u16 panel_id, u32 *seq_size)
779 {
780 	u32 total = get_blocksize(sequence);
781 	const u8 *data = &sequence->data[0];
782 	u8 current_id;
783 	u32 current_size;
784 	int header_size = sequence->version >= 3 ? 5 : 3;
785 	int index = 0;
786 	int i;
787 
788 	/* skip new block size */
789 	if (sequence->version >= 3)
790 		data += 4;
791 
792 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
793 		if (index + header_size > total) {
794 			DRM_ERROR("Invalid sequence block (header)\n");
795 			return NULL;
796 		}
797 
798 		current_id = *(data + index);
799 		if (sequence->version >= 3)
800 			current_size = *((const u32 *)(data + index + 1));
801 		else
802 			current_size = *((const u16 *)(data + index + 1));
803 
804 		index += header_size;
805 
806 		if (index + current_size > total) {
807 			DRM_ERROR("Invalid sequence block\n");
808 			return NULL;
809 		}
810 
811 		if (current_id == panel_id) {
812 			*seq_size = current_size;
813 			return data + index;
814 		}
815 
816 		index += current_size;
817 	}
818 
819 	DRM_ERROR("Sequence block detected but no valid configuration\n");
820 
821 	return NULL;
822 }
823 
824 static int goto_next_sequence(const u8 *data, int index, int total)
825 {
826 	u16 len;
827 
828 	/* Skip Sequence Byte. */
829 	for (index = index + 1; index < total; index += len) {
830 		u8 operation_byte = *(data + index);
831 		index++;
832 
833 		switch (operation_byte) {
834 		case MIPI_SEQ_ELEM_END:
835 			return index;
836 		case MIPI_SEQ_ELEM_SEND_PKT:
837 			if (index + 4 > total)
838 				return 0;
839 
840 			len = *((const u16 *)(data + index + 2)) + 4;
841 			break;
842 		case MIPI_SEQ_ELEM_DELAY:
843 			len = 4;
844 			break;
845 		case MIPI_SEQ_ELEM_GPIO:
846 			len = 2;
847 			break;
848 		case MIPI_SEQ_ELEM_I2C:
849 			if (index + 7 > total)
850 				return 0;
851 			len = *(data + index + 6) + 7;
852 			break;
853 		default:
854 			DRM_ERROR("Unknown operation byte\n");
855 			return 0;
856 		}
857 	}
858 
859 	return 0;
860 }
861 
862 static int goto_next_sequence_v3(const u8 *data, int index, int total)
863 {
864 	int seq_end;
865 	u16 len;
866 	u32 size_of_sequence;
867 
868 	/*
869 	 * Could skip sequence based on Size of Sequence alone, but also do some
870 	 * checking on the structure.
871 	 */
872 	if (total < 5) {
873 		DRM_ERROR("Too small sequence size\n");
874 		return 0;
875 	}
876 
877 	/* Skip Sequence Byte. */
878 	index++;
879 
880 	/*
881 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
882 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
883 	 * byte.
884 	 */
885 	size_of_sequence = *((const uint32_t *)(data + index));
886 	index += 4;
887 
888 	seq_end = index + size_of_sequence;
889 	if (seq_end > total) {
890 		DRM_ERROR("Invalid sequence size\n");
891 		return 0;
892 	}
893 
894 	for (; index < total; index += len) {
895 		u8 operation_byte = *(data + index);
896 		index++;
897 
898 		if (operation_byte == MIPI_SEQ_ELEM_END) {
899 			if (index != seq_end) {
900 				DRM_ERROR("Invalid element structure\n");
901 				return 0;
902 			}
903 			return index;
904 		}
905 
906 		len = *(data + index);
907 		index++;
908 
909 		/*
910 		 * FIXME: Would be nice to check elements like for v1/v2 in
911 		 * goto_next_sequence() above.
912 		 */
913 		switch (operation_byte) {
914 		case MIPI_SEQ_ELEM_SEND_PKT:
915 		case MIPI_SEQ_ELEM_DELAY:
916 		case MIPI_SEQ_ELEM_GPIO:
917 		case MIPI_SEQ_ELEM_I2C:
918 		case MIPI_SEQ_ELEM_SPI:
919 		case MIPI_SEQ_ELEM_PMIC:
920 			break;
921 		default:
922 			DRM_ERROR("Unknown operation byte %u\n",
923 				  operation_byte);
924 			break;
925 		}
926 	}
927 
928 	return 0;
929 }
930 
931 static void
932 parse_mipi_sequence(struct drm_i915_private *dev_priv,
933 		    const struct bdb_header *bdb)
934 {
935 	int panel_type = dev_priv->vbt.panel_type;
936 	const struct bdb_mipi_sequence *sequence;
937 	const u8 *seq_data;
938 	u32 seq_size;
939 	u8 *data;
940 	int index = 0;
941 
942 	/* Only our generic panel driver uses the sequence block. */
943 	if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
944 		return;
945 
946 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
947 	if (!sequence) {
948 		DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
949 		return;
950 	}
951 
952 	/* Fail gracefully for forward incompatible sequence block. */
953 	if (sequence->version >= 4) {
954 		DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
955 			  sequence->version);
956 		return;
957 	}
958 
959 	DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
960 
961 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
962 	if (!seq_data)
963 		return;
964 
965 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
966 	if (!data)
967 		return;
968 
969 	/* Parse the sequences, store pointers to each sequence. */
970 	for (;;) {
971 		u8 seq_id = *(data + index);
972 		if (seq_id == MIPI_SEQ_END)
973 			break;
974 
975 		if (seq_id >= MIPI_SEQ_MAX) {
976 			DRM_ERROR("Unknown sequence %u\n", seq_id);
977 			goto err;
978 		}
979 
980 		dev_priv->vbt.dsi.sequence[seq_id] = data + index;
981 
982 		if (sequence->version >= 3)
983 			index = goto_next_sequence_v3(data, index, seq_size);
984 		else
985 			index = goto_next_sequence(data, index, seq_size);
986 		if (!index) {
987 			DRM_ERROR("Invalid sequence %u\n", seq_id);
988 			goto err;
989 		}
990 	}
991 
992 	dev_priv->vbt.dsi.data = data;
993 	dev_priv->vbt.dsi.size = seq_size;
994 	dev_priv->vbt.dsi.seq_version = sequence->version;
995 
996 	DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
997 	return;
998 
999 err:
1000 	kfree(data);
1001 	memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1002 }
1003 
1004 static u8 translate_iboost(u8 val)
1005 {
1006 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1007 
1008 	if (val >= ARRAY_SIZE(mapping)) {
1009 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1010 		return 0;
1011 	}
1012 	return mapping[val];
1013 }
1014 
1015 static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port,
1016 			   const struct bdb_header *bdb)
1017 {
1018 	union child_device_config *it, *child = NULL;
1019 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1020 	uint8_t hdmi_level_shift;
1021 	int i, j;
1022 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1023 	uint8_t aux_channel, ddc_pin;
1024 	/* Each DDI port can have more than one value on the "DVO Port" field,
1025 	 * so look for all the possible values for each port and abort if more
1026 	 * than one is found. */
1027 	int dvo_ports[][3] = {
1028 		{DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1029 		{DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1030 		{DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1031 		{DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1032 		{DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1033 	};
1034 
1035 	/* Find the child device to use, abort if more than one found. */
1036 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1037 		it = dev_priv->vbt.child_dev + i;
1038 
1039 		for (j = 0; j < 3; j++) {
1040 			if (dvo_ports[port][j] == -1)
1041 				break;
1042 
1043 			if (it->common.dvo_port == dvo_ports[port][j]) {
1044 				if (child) {
1045 					DRM_DEBUG_KMS("More than one child device for port %c in VBT.\n",
1046 						      port_name(port));
1047 					return;
1048 				}
1049 				child = it;
1050 			}
1051 		}
1052 	}
1053 	if (!child)
1054 		return;
1055 
1056 	aux_channel = child->raw[25];
1057 	ddc_pin = child->common.ddc_pin;
1058 
1059 	is_dvi = child->common.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1060 	is_dp = child->common.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1061 	is_crt = child->common.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1062 	is_hdmi = is_dvi && (child->common.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1063 	is_edp = is_dp && (child->common.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1064 
1065 	info->supports_dvi = is_dvi;
1066 	info->supports_hdmi = is_hdmi;
1067 	info->supports_dp = is_dp;
1068 
1069 	DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d\n",
1070 		      port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt);
1071 
1072 	if (is_edp && is_dvi)
1073 		DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
1074 			      port_name(port));
1075 	if (is_crt && port != PORT_E)
1076 		DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
1077 	if (is_crt && (is_dvi || is_dp))
1078 		DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
1079 			      port_name(port));
1080 	if (is_dvi && (port == PORT_A || port == PORT_E))
1081 		DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
1082 	if (!is_dvi && !is_dp && !is_crt)
1083 		DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
1084 			      port_name(port));
1085 	if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
1086 		DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
1087 
1088 	if (is_dvi) {
1089 		if (port == PORT_E) {
1090 			info->alternate_ddc_pin = ddc_pin;
1091 			/* if DDIE share ddc pin with other port, then
1092 			 * dvi/hdmi couldn't exist on the shared port.
1093 			 * Otherwise they share the same ddc bin and system
1094 			 * couldn't communicate with them seperately. */
1095 			if (ddc_pin == DDC_PIN_B) {
1096 				dev_priv->vbt.ddi_port_info[PORT_B].supports_dvi = 0;
1097 				dev_priv->vbt.ddi_port_info[PORT_B].supports_hdmi = 0;
1098 			} else if (ddc_pin == DDC_PIN_C) {
1099 				dev_priv->vbt.ddi_port_info[PORT_C].supports_dvi = 0;
1100 				dev_priv->vbt.ddi_port_info[PORT_C].supports_hdmi = 0;
1101 			} else if (ddc_pin == DDC_PIN_D) {
1102 				dev_priv->vbt.ddi_port_info[PORT_D].supports_dvi = 0;
1103 				dev_priv->vbt.ddi_port_info[PORT_D].supports_hdmi = 0;
1104 			}
1105 		} else if (ddc_pin == DDC_PIN_B && port != PORT_B)
1106 			DRM_DEBUG_KMS("Unexpected DDC pin for port B\n");
1107 		else if (ddc_pin == DDC_PIN_C && port != PORT_C)
1108 			DRM_DEBUG_KMS("Unexpected DDC pin for port C\n");
1109 		else if (ddc_pin == DDC_PIN_D && port != PORT_D)
1110 			DRM_DEBUG_KMS("Unexpected DDC pin for port D\n");
1111 	}
1112 
1113 	if (is_dp) {
1114 		if (port == PORT_E) {
1115 			info->alternate_aux_channel = aux_channel;
1116 			/* if DDIE share aux channel with other port, then
1117 			 * DP couldn't exist on the shared port. Otherwise
1118 			 * they share the same aux channel and system
1119 			 * couldn't communicate with them seperately. */
1120 			if (aux_channel == DP_AUX_A)
1121 				dev_priv->vbt.ddi_port_info[PORT_A].supports_dp = 0;
1122 			else if (aux_channel == DP_AUX_B)
1123 				dev_priv->vbt.ddi_port_info[PORT_B].supports_dp = 0;
1124 			else if (aux_channel == DP_AUX_C)
1125 				dev_priv->vbt.ddi_port_info[PORT_C].supports_dp = 0;
1126 			else if (aux_channel == DP_AUX_D)
1127 				dev_priv->vbt.ddi_port_info[PORT_D].supports_dp = 0;
1128 		}
1129 		else if (aux_channel == DP_AUX_A && port != PORT_A)
1130 			DRM_DEBUG_KMS("Unexpected AUX channel for port A\n");
1131 		else if (aux_channel == DP_AUX_B && port != PORT_B)
1132 			DRM_DEBUG_KMS("Unexpected AUX channel for port B\n");
1133 		else if (aux_channel == DP_AUX_C && port != PORT_C)
1134 			DRM_DEBUG_KMS("Unexpected AUX channel for port C\n");
1135 		else if (aux_channel == DP_AUX_D && port != PORT_D)
1136 			DRM_DEBUG_KMS("Unexpected AUX channel for port D\n");
1137 	}
1138 
1139 	if (bdb->version >= 158) {
1140 		/* The VBT HDMI level shift values match the table we have. */
1141 		hdmi_level_shift = child->raw[7] & 0xF;
1142 		DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
1143 			      port_name(port),
1144 			      hdmi_level_shift);
1145 		info->hdmi_level_shift = hdmi_level_shift;
1146 	}
1147 
1148 	/* Parse the I_boost config for SKL and above */
1149 	if (bdb->version >= 196 && child->common.iboost) {
1150 		info->dp_boost_level = translate_iboost(child->common.iboost_level & 0xF);
1151 		DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
1152 			      port_name(port), info->dp_boost_level);
1153 		info->hdmi_boost_level = translate_iboost(child->common.iboost_level >> 4);
1154 		DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
1155 			      port_name(port), info->hdmi_boost_level);
1156 	}
1157 }
1158 
1159 static void parse_ddi_ports(struct drm_i915_private *dev_priv,
1160 			    const struct bdb_header *bdb)
1161 {
1162 	enum port port;
1163 
1164 	if (!HAS_DDI(dev_priv))
1165 		return;
1166 
1167 	if (!dev_priv->vbt.child_dev_num)
1168 		return;
1169 
1170 	if (bdb->version < 155)
1171 		return;
1172 
1173 	for (port = PORT_A; port < I915_MAX_PORTS; port++)
1174 		parse_ddi_port(dev_priv, port, bdb);
1175 }
1176 
1177 static void
1178 parse_device_mapping(struct drm_i915_private *dev_priv,
1179 		     const struct bdb_header *bdb)
1180 {
1181 	const struct bdb_general_definitions *p_defs;
1182 	const union child_device_config *p_child;
1183 	union child_device_config *child_dev_ptr;
1184 	int i, child_device_num, count;
1185 	u8 expected_size;
1186 	u16 block_size;
1187 
1188 	p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1189 	if (!p_defs) {
1190 		DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
1191 		return;
1192 	}
1193 	if (bdb->version < 106) {
1194 		expected_size = 22;
1195 	} else if (bdb->version < 111) {
1196 		expected_size = 27;
1197 	} else if (bdb->version < 195) {
1198 		BUILD_BUG_ON(sizeof(struct old_child_dev_config) != 33);
1199 		expected_size = sizeof(struct old_child_dev_config);
1200 	} else if (bdb->version == 195) {
1201 		expected_size = 37;
1202 	} else if (bdb->version <= 197) {
1203 		expected_size = 38;
1204 	} else {
1205 		expected_size = 38;
1206 		BUILD_BUG_ON(sizeof(*p_child) < 38);
1207 		DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
1208 				 bdb->version, expected_size);
1209 	}
1210 
1211 	/* Flag an error for unexpected size, but continue anyway. */
1212 	if (p_defs->child_dev_size != expected_size)
1213 		DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
1214 			  p_defs->child_dev_size, expected_size, bdb->version);
1215 
1216 	/* The legacy sized child device config is the minimum we need. */
1217 	if (p_defs->child_dev_size < sizeof(struct old_child_dev_config)) {
1218 		DRM_DEBUG_KMS("Child device config size %u is too small.\n",
1219 			      p_defs->child_dev_size);
1220 		return;
1221 	}
1222 
1223 	/* get the block size of general definitions */
1224 	block_size = get_blocksize(p_defs);
1225 	/* get the number of child device */
1226 	child_device_num = (block_size - sizeof(*p_defs)) /
1227 				p_defs->child_dev_size;
1228 	count = 0;
1229 	/* get the number of child device that is present */
1230 	for (i = 0; i < child_device_num; i++) {
1231 		p_child = child_device_ptr(p_defs, i);
1232 		if (!p_child->common.device_type) {
1233 			/* skip the device block if device type is invalid */
1234 			continue;
1235 		}
1236 		count++;
1237 	}
1238 	if (!count) {
1239 		DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
1240 		return;
1241 	}
1242 	dev_priv->vbt.child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL);
1243 	if (!dev_priv->vbt.child_dev) {
1244 		DRM_DEBUG_KMS("No memory space for child device\n");
1245 		return;
1246 	}
1247 
1248 	dev_priv->vbt.child_dev_num = count;
1249 	count = 0;
1250 	for (i = 0; i < child_device_num; i++) {
1251 		p_child = child_device_ptr(p_defs, i);
1252 		if (!p_child->common.device_type) {
1253 			/* skip the device block if device type is invalid */
1254 			continue;
1255 		}
1256 
1257 		child_dev_ptr = dev_priv->vbt.child_dev + count;
1258 		count++;
1259 
1260 		/*
1261 		 * Copy as much as we know (sizeof) and is available
1262 		 * (child_dev_size) of the child device. Accessing the data must
1263 		 * depend on VBT version.
1264 		 */
1265 		memcpy(child_dev_ptr, p_child,
1266 		       min_t(size_t, p_defs->child_dev_size, sizeof(*p_child)));
1267 
1268 		/*
1269 		 * copied full block, now init values when they are not
1270 		 * available in current version
1271 		 */
1272 		if (bdb->version < 196) {
1273 			/* Set default values for bits added from v196 */
1274 			child_dev_ptr->common.iboost = 0;
1275 			child_dev_ptr->common.hpd_invert = 0;
1276 		}
1277 
1278 		if (bdb->version < 192)
1279 			child_dev_ptr->common.lspcon = 0;
1280 	}
1281 	return;
1282 }
1283 
1284 static void
1285 init_vbt_defaults(struct drm_i915_private *dev_priv)
1286 {
1287 	enum port port;
1288 
1289 	dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1290 
1291 	/* Default to having backlight */
1292 	dev_priv->vbt.backlight.present = true;
1293 
1294 	/* LFP panel data */
1295 	dev_priv->vbt.lvds_dither = 1;
1296 	dev_priv->vbt.lvds_vbt = 0;
1297 
1298 	/* SDVO panel data */
1299 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1300 
1301 	/* general features */
1302 	dev_priv->vbt.int_tv_support = 1;
1303 	dev_priv->vbt.int_crt_support = 1;
1304 
1305 	/* Default to using SSC */
1306 	dev_priv->vbt.lvds_use_ssc = 1;
1307 	/*
1308 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1309 	 * clock for LVDS.
1310 	 */
1311 	dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1312 			!HAS_PCH_SPLIT(dev_priv));
1313 	DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
1314 
1315 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1316 		struct ddi_vbt_port_info *info =
1317 			&dev_priv->vbt.ddi_port_info[port];
1318 
1319 		info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
1320 
1321 		info->supports_dvi = (port != PORT_A && port != PORT_E);
1322 		info->supports_hdmi = info->supports_dvi;
1323 		info->supports_dp = (port != PORT_E);
1324 	}
1325 }
1326 
1327 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1328 {
1329 	const char *_vbt = (const char *)vbt;
1330 
1331 	return (const struct bdb_header *)(_vbt + vbt->bdb_offset);
1332 }
1333 
1334 /**
1335  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1336  * @buf:	pointer to a buffer to validate
1337  * @size:	size of the buffer
1338  *
1339  * Returns true on valid VBT.
1340  */
1341 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1342 {
1343 	const struct vbt_header *vbt = buf;
1344 	const struct bdb_header *bdb;
1345 
1346 	if (!vbt)
1347 		return false;
1348 
1349 	if (sizeof(struct vbt_header) > size) {
1350 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
1351 		return false;
1352 	}
1353 
1354 	if (memcmp(vbt->signature, "$VBT", 4)) {
1355 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
1356 		return false;
1357 	}
1358 
1359 	if (vbt->bdb_offset + sizeof(struct bdb_header) > size) {
1360 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
1361 		return false;
1362 	}
1363 
1364 	bdb = get_bdb_header(vbt);
1365 	if (vbt->bdb_offset + bdb->bdb_size > size) {
1366 		DRM_DEBUG_DRIVER("BDB incomplete\n");
1367 		return false;
1368 	}
1369 
1370 	return vbt;
1371 }
1372 
1373 static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
1374 {
1375 	size_t i;
1376 
1377 	/* Scour memory looking for the VBT signature. */
1378 	for (i = 0; i + 4 < size; i++) {
1379 		void *vbt;
1380 
1381 		if (ioread32(bios + i) != *((const u32 *) "$VBT"))
1382 			continue;
1383 
1384 		/*
1385 		 * This is the one place where we explicitly discard the address
1386 		 * space (__iomem) of the BIOS/VBT.
1387 		 */
1388 		vbt = (char __force *) bios + i;
1389 		if (intel_bios_is_valid_vbt(vbt, size - i))
1390 			return vbt;
1391 
1392 		break;
1393 	}
1394 
1395 	return NULL;
1396 }
1397 
1398 /**
1399  * intel_bios_init - find VBT and initialize settings from the BIOS
1400  * @dev_priv: i915 device instance
1401  *
1402  * Loads the Video BIOS and checks that the VBT exists.  Sets scratch registers
1403  * to appropriate values.
1404  *
1405  * Returns 0 on success, nonzero on failure.
1406  */
1407 int
1408 intel_bios_init(struct drm_i915_private *dev_priv)
1409 {
1410 #if 0
1411 	struct pci_dev *pdev = dev_priv->dev->pdev;
1412 #endif
1413 	const struct vbt_header *vbt = dev_priv->opregion.vbt;
1414 	const struct bdb_header *bdb;
1415 	u8 __iomem *bios = NULL;
1416 
1417 	if (HAS_PCH_NOP(dev_priv))
1418 		return -ENODEV;
1419 
1420 	init_vbt_defaults(dev_priv);
1421 
1422 	if (!vbt) {
1423 		size_t size;
1424 
1425 #if 0
1426 		bios = pci_map_rom(pdev, &size);
1427 		if (!bios)
1428 #endif
1429 			return -1;
1430 
1431 		vbt = find_vbt(bios, size);
1432 		if (!vbt) {
1433 #if 0
1434 			pci_unmap_rom(pdev, bios);
1435 #endif
1436 			return -1;
1437 		}
1438 
1439 		DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
1440 	}
1441 
1442 	bdb = get_bdb_header(vbt);
1443 
1444 	DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
1445 		      (int)sizeof(vbt->signature), vbt->signature, bdb->version);
1446 
1447 	/* Grab useful general definitions */
1448 	parse_general_features(dev_priv, bdb);
1449 	parse_general_definitions(dev_priv, bdb);
1450 	parse_lfp_panel_data(dev_priv, bdb);
1451 	parse_lfp_backlight(dev_priv, bdb);
1452 	parse_sdvo_panel_data(dev_priv, bdb);
1453 	parse_sdvo_device_mapping(dev_priv, bdb);
1454 	parse_device_mapping(dev_priv, bdb);
1455 	parse_driver_features(dev_priv, bdb);
1456 	parse_edp(dev_priv, bdb);
1457 	parse_psr(dev_priv, bdb);
1458 	parse_mipi_config(dev_priv, bdb);
1459 	parse_mipi_sequence(dev_priv, bdb);
1460 	parse_ddi_ports(dev_priv, bdb);
1461 
1462 #if 0
1463 	if (bios)
1464 		pci_unmap_rom(pdev, bios);
1465 #endif
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * intel_bios_is_tv_present - is integrated TV present in VBT
1472  * @dev_priv:	i915 device instance
1473  *
1474  * Return true if TV is present. If no child devices were parsed from VBT,
1475  * assume TV is present.
1476  */
1477 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
1478 {
1479 	union child_device_config *p_child;
1480 	int i;
1481 
1482 	if (!dev_priv->vbt.int_tv_support)
1483 		return false;
1484 
1485 	if (!dev_priv->vbt.child_dev_num)
1486 		return true;
1487 
1488 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1489 		p_child = dev_priv->vbt.child_dev + i;
1490 		/*
1491 		 * If the device type is not TV, continue.
1492 		 */
1493 		switch (p_child->old.device_type) {
1494 		case DEVICE_TYPE_INT_TV:
1495 		case DEVICE_TYPE_TV:
1496 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
1497 			break;
1498 		default:
1499 			continue;
1500 		}
1501 		/* Only when the addin_offset is non-zero, it is regarded
1502 		 * as present.
1503 		 */
1504 		if (p_child->old.addin_offset)
1505 			return true;
1506 	}
1507 
1508 	return false;
1509 }
1510 
1511 /**
1512  * intel_bios_is_lvds_present - is LVDS present in VBT
1513  * @dev_priv:	i915 device instance
1514  * @i2c_pin:	i2c pin for LVDS if present
1515  *
1516  * Return true if LVDS is present. If no child devices were parsed from VBT,
1517  * assume LVDS is present.
1518  */
1519 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
1520 {
1521 	int i;
1522 
1523 	if (!dev_priv->vbt.child_dev_num)
1524 		return true;
1525 
1526 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1527 		union child_device_config *uchild = dev_priv->vbt.child_dev + i;
1528 		struct old_child_dev_config *child = &uchild->old;
1529 
1530 		/* If the device type is not LFP, continue.
1531 		 * We have to check both the new identifiers as well as the
1532 		 * old for compatibility with some BIOSes.
1533 		 */
1534 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
1535 		    child->device_type != DEVICE_TYPE_LFP)
1536 			continue;
1537 
1538 		if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
1539 			*i2c_pin = child->i2c_pin;
1540 
1541 		/* However, we cannot trust the BIOS writers to populate
1542 		 * the VBT correctly.  Since LVDS requires additional
1543 		 * information from AIM blocks, a non-zero addin offset is
1544 		 * a good indicator that the LVDS is actually present.
1545 		 */
1546 		if (child->addin_offset)
1547 			return true;
1548 
1549 		/* But even then some BIOS writers perform some black magic
1550 		 * and instantiate the device without reference to any
1551 		 * additional data.  Trust that if the VBT was written into
1552 		 * the OpRegion then they have validated the LVDS's existence.
1553 		 */
1554 		if (dev_priv->opregion.vbt)
1555 			return true;
1556 	}
1557 
1558 	return false;
1559 }
1560 
1561 /**
1562  * intel_bios_is_port_present - is the specified digital port present
1563  * @dev_priv:	i915 device instance
1564  * @port:	port to check
1565  *
1566  * Return true if the device in %port is present.
1567  */
1568 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
1569 {
1570 	static const struct {
1571 		u16 dp, hdmi;
1572 	} port_mapping[] = {
1573 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
1574 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
1575 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
1576 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
1577 	};
1578 	int i;
1579 
1580 	/* FIXME maybe deal with port A as well? */
1581 	if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
1582 		return false;
1583 
1584 	if (!dev_priv->vbt.child_dev_num)
1585 		return false;
1586 
1587 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1588 		const union child_device_config *p_child =
1589 			&dev_priv->vbt.child_dev[i];
1590 		if ((p_child->common.dvo_port == port_mapping[port].dp ||
1591 		     p_child->common.dvo_port == port_mapping[port].hdmi) &&
1592 		    (p_child->common.device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
1593 						    DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
1594 			return true;
1595 	}
1596 
1597 	return false;
1598 }
1599 
1600 /**
1601  * intel_bios_is_port_edp - is the device in given port eDP
1602  * @dev_priv:	i915 device instance
1603  * @port:	port to check
1604  *
1605  * Return true if the device in %port is eDP.
1606  */
1607 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
1608 {
1609 	union child_device_config *p_child;
1610 	static const short port_mapping[] = {
1611 		[PORT_B] = DVO_PORT_DPB,
1612 		[PORT_C] = DVO_PORT_DPC,
1613 		[PORT_D] = DVO_PORT_DPD,
1614 		[PORT_E] = DVO_PORT_DPE,
1615 	};
1616 	int i;
1617 
1618 	if (!dev_priv->vbt.child_dev_num)
1619 		return false;
1620 
1621 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1622 		p_child = dev_priv->vbt.child_dev + i;
1623 
1624 		if (p_child->common.dvo_port == port_mapping[port] &&
1625 		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
1626 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
1627 			return true;
1628 	}
1629 
1630 	return false;
1631 }
1632 
1633 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port)
1634 {
1635 	static const struct {
1636 		u16 dp, hdmi;
1637 	} port_mapping[] = {
1638 		/*
1639 		 * Buggy VBTs may declare DP ports as having
1640 		 * HDMI type dvo_port :( So let's check both.
1641 		 */
1642 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
1643 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
1644 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
1645 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
1646 	};
1647 	int i;
1648 
1649 	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
1650 		return false;
1651 
1652 	if (!dev_priv->vbt.child_dev_num)
1653 		return false;
1654 
1655 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1656 		const union child_device_config *p_child =
1657 			&dev_priv->vbt.child_dev[i];
1658 
1659 		if ((p_child->common.dvo_port == port_mapping[port].dp ||
1660 		     p_child->common.dvo_port == port_mapping[port].hdmi) &&
1661 		    (p_child->common.device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) ==
1662 		    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
1663 			return true;
1664 	}
1665 
1666 	return false;
1667 }
1668 
1669 /**
1670  * intel_bios_is_dsi_present - is DSI present in VBT
1671  * @dev_priv:	i915 device instance
1672  * @port:	port for DSI if present
1673  *
1674  * Return true if DSI is present, and return the port in %port.
1675  */
1676 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
1677 			       enum port *port)
1678 {
1679 	union child_device_config *p_child;
1680 	u8 dvo_port;
1681 	int i;
1682 
1683 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1684 		p_child = dev_priv->vbt.child_dev + i;
1685 
1686 		if (!(p_child->common.device_type & DEVICE_TYPE_MIPI_OUTPUT))
1687 			continue;
1688 
1689 		dvo_port = p_child->common.dvo_port;
1690 
1691 		switch (dvo_port) {
1692 		case DVO_PORT_MIPIA:
1693 		case DVO_PORT_MIPIC:
1694 			if (port)
1695 				*port = dvo_port - DVO_PORT_MIPIA;
1696 			return true;
1697 		case DVO_PORT_MIPIB:
1698 		case DVO_PORT_MIPID:
1699 			DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
1700 				      port_name(dvo_port - DVO_PORT_MIPIA));
1701 			break;
1702 		}
1703 	}
1704 
1705 	return false;
1706 }
1707 
1708 /**
1709  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
1710  * @dev_priv:	i915 device instance
1711  * @port:	port to check
1712  *
1713  * Return true if HPD should be inverted for %port.
1714  */
1715 bool
1716 intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
1717 				enum port port)
1718 {
1719 	int i;
1720 
1721 	if (WARN_ON_ONCE(!IS_BROXTON(dev_priv)))
1722 		return false;
1723 
1724 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1725 		if (!dev_priv->vbt.child_dev[i].common.hpd_invert)
1726 			continue;
1727 
1728 		switch (dev_priv->vbt.child_dev[i].common.dvo_port) {
1729 		case DVO_PORT_DPA:
1730 		case DVO_PORT_HDMIA:
1731 			if (port == PORT_A)
1732 				return true;
1733 			break;
1734 		case DVO_PORT_DPB:
1735 		case DVO_PORT_HDMIB:
1736 			if (port == PORT_B)
1737 				return true;
1738 			break;
1739 		case DVO_PORT_DPC:
1740 		case DVO_PORT_HDMIC:
1741 			if (port == PORT_C)
1742 				return true;
1743 			break;
1744 		default:
1745 			break;
1746 		}
1747 	}
1748 
1749 	return false;
1750 }
1751