xref: /dragonfly/sys/dev/drm/i915/intel_breadcrumbs.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27 
28 #include "i915_drv.h"
29 
30 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31 {
32 	struct intel_wait *wait;
33 	unsigned int result = 0;
34 
35 	lockdep_assert_held(&b->irq_lock);
36 
37 	wait = b->irq_wait;
38 	if (wait) {
39 		result = ENGINE_WAKEUP_WAITER;
40 		if (wake_up_process(wait->tsk))
41 			result |= ENGINE_WAKEUP_ASLEEP;
42 	}
43 
44 	return result;
45 }
46 
47 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
48 {
49 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
50 	unsigned long flags;
51 	unsigned int result;
52 
53 	spin_lock_irqsave(&b->irq_lock, flags);
54 	result = __intel_breadcrumbs_wakeup(b);
55 	spin_unlock_irqrestore(&b->irq_lock, flags);
56 
57 	return result;
58 }
59 
60 static unsigned long wait_timeout(void)
61 {
62 	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
63 }
64 
65 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
66 {
67 	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s, current seqno=%x, last=%x\n",
68 			 engine->name, __builtin_return_address(0),
69 			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
70 					&engine->irq_posted)),
71 			 intel_engine_get_seqno(engine),
72 			 intel_engine_last_submit(engine));
73 
74 	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
75 }
76 
77 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
78 {
79 	struct intel_engine_cs *engine = from_timer(engine, t,
80 						    breadcrumbs.hangcheck);
81 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
82 
83 	if (!b->irq_armed)
84 		return;
85 
86 	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
87 		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
88 		mod_timer(&b->hangcheck, wait_timeout());
89 		return;
90 	}
91 
92 	/* We keep the hangcheck timer alive until we disarm the irq, even
93 	 * if there are no waiters at present.
94 	 *
95 	 * If the waiter was currently running, assume it hasn't had a chance
96 	 * to process the pending interrupt (e.g, low priority task on a loaded
97 	 * system) and wait until it sleeps before declaring a missed interrupt.
98 	 *
99 	 * If the waiter was asleep (and not even pending a wakeup), then we
100 	 * must have missed an interrupt as the GPU has stopped advancing
101 	 * but we still have a waiter. Assuming all batches complete within
102 	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
103 	 */
104 	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
105 		missed_breadcrumb(engine);
106 		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
107 	} else {
108 		mod_timer(&b->hangcheck, wait_timeout());
109 	}
110 }
111 
112 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
113 {
114 	struct intel_engine_cs *engine = from_timer(engine, t,
115 						    breadcrumbs.fake_irq);
116 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
117 
118 	/* The timer persists in case we cannot enable interrupts,
119 	 * or if we have previously seen seqno/interrupt incoherency
120 	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
121 	 * Here the worker will wake up every jiffie in order to kick the
122 	 * oldest waiter to do the coherent seqno check.
123 	 */
124 
125 	spin_lock_irq(&b->irq_lock);
126 	if (!__intel_breadcrumbs_wakeup(b))
127 		__intel_engine_disarm_breadcrumbs(engine);
128 	spin_unlock_irq(&b->irq_lock);
129 	if (!b->irq_armed)
130 		return;
131 
132 	mod_timer(&b->fake_irq, jiffies + 1);
133 
134 	/* Ensure that even if the GPU hangs, we get woken up.
135 	 *
136 	 * However, note that if no one is waiting, we never notice
137 	 * a gpu hang. Eventually, we will have to wait for a resource
138 	 * held by the GPU and so trigger a hangcheck. In the most
139 	 * pathological case, this will be upon memory starvation! To
140 	 * prevent this, we also queue the hangcheck from the retire
141 	 * worker.
142 	 */
143 	i915_queue_hangcheck(engine->i915);
144 }
145 
146 static void irq_enable(struct intel_engine_cs *engine)
147 {
148 	/* Enabling the IRQ may miss the generation of the interrupt, but
149 	 * we still need to force the barrier before reading the seqno,
150 	 * just in case.
151 	 */
152 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
153 
154 	/* Caller disables interrupts */
155 	lockmgr(&engine->i915->irq_lock, LK_EXCLUSIVE);
156 	engine->irq_enable(engine);
157 	lockmgr(&engine->i915->irq_lock, LK_RELEASE);
158 }
159 
160 static void irq_disable(struct intel_engine_cs *engine)
161 {
162 	/* Caller disables interrupts */
163 	lockmgr(&engine->i915->irq_lock, LK_EXCLUSIVE);
164 	engine->irq_disable(engine);
165 	lockmgr(&engine->i915->irq_lock, LK_RELEASE);
166 }
167 
168 #pragma GCC diagnostic ignored "-Wdiscarded-qualifiers"
169 
170 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
171 {
172 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
173 
174 	lockdep_assert_held(&b->irq_lock);
175 	GEM_BUG_ON(b->irq_wait);
176 
177 	if (b->irq_enabled) {
178 		irq_disable(engine);
179 		b->irq_enabled = false;
180 	}
181 
182 	b->irq_armed = false;
183 }
184 
185 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
186 {
187 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
188 	struct intel_wait *wait, *n, *first;
189 
190 	if (!b->irq_armed)
191 		goto wakeup_signaler;
192 
193 	/* We only disarm the irq when we are idle (all requests completed),
194 	 * so if the bottom-half remains asleep, it missed the request
195 	 * completion.
196 	 */
197 
198 	spin_lock_irq(&b->rb_lock);
199 
200 	lockmgr(&b->irq_lock, LK_EXCLUSIVE);
201 	first = fetch_and_zero(&b->irq_wait);
202 	__intel_engine_disarm_breadcrumbs(engine);
203 	lockmgr(&b->irq_lock, LK_RELEASE);
204 
205 	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
206 		RB_CLEAR_NODE(&wait->node);
207 		if (wake_up_process(wait->tsk) && wait == first)
208 			missed_breadcrumb(engine);
209 	}
210 	b->waiters = LINUX_RB_ROOT;
211 
212 	spin_unlock_irq(&b->rb_lock);
213 
214 	/*
215 	 * The signaling thread may be asleep holding a reference to a request,
216 	 * that had its signaling cancelled prior to being preempted. We need
217 	 * to kick the signaler, just in case, to release any such reference.
218 	 */
219 wakeup_signaler:
220 	wake_up_process(b->signaler);
221 }
222 
223 static bool use_fake_irq(const struct intel_breadcrumbs *b)
224 {
225 	const struct intel_engine_cs *engine =
226 		container_of(b, struct intel_engine_cs, breadcrumbs);
227 
228 	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
229 		return false;
230 
231 	/* Only start with the heavy weight fake irq timer if we have not
232 	 * seen any interrupts since enabling it the first time. If the
233 	 * interrupts are still arriving, it means we made a mistake in our
234 	 * engine->seqno_barrier(), a timing error that should be transient
235 	 * and unlikely to reoccur.
236 	 */
237 	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
238 }
239 
240 static void enable_fake_irq(struct intel_breadcrumbs *b)
241 {
242 	/* Ensure we never sleep indefinitely */
243 	if (!b->irq_enabled || use_fake_irq(b))
244 		mod_timer(&b->fake_irq, jiffies + 1);
245 	else
246 		mod_timer(&b->hangcheck, wait_timeout());
247 }
248 
249 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
250 {
251 	struct intel_engine_cs *engine =
252 		container_of(b, struct intel_engine_cs, breadcrumbs);
253 	struct drm_i915_private *i915 = engine->i915;
254 
255 	lockdep_assert_held(&b->irq_lock);
256 	if (b->irq_armed)
257 		return false;
258 
259 	/* The breadcrumb irq will be disarmed on the interrupt after the
260 	 * waiters are signaled. This gives us a single interrupt window in
261 	 * which we can add a new waiter and avoid the cost of re-enabling
262 	 * the irq.
263 	 */
264 	b->irq_armed = true;
265 	GEM_BUG_ON(b->irq_enabled);
266 
267 	if (I915_SELFTEST_ONLY(b->mock)) {
268 		/* For our mock objects we want to avoid interaction
269 		 * with the real hardware (which is not set up). So
270 		 * we simply pretend we have enabled the powerwell
271 		 * and the irq, and leave it up to the mock
272 		 * implementation to call intel_engine_wakeup()
273 		 * itself when it wants to simulate a user interrupt,
274 		 */
275 		return true;
276 	}
277 
278 	/* Since we are waiting on a request, the GPU should be busy
279 	 * and should have its own rpm reference. This is tracked
280 	 * by i915->gt.awake, we can forgo holding our own wakref
281 	 * for the interrupt as before i915->gt.awake is released (when
282 	 * the driver is idle) we disarm the breadcrumbs.
283 	 */
284 
285 	/* No interrupts? Kick the waiter every jiffie! */
286 	if (intel_irqs_enabled(i915)) {
287 		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
288 			irq_enable(engine);
289 		b->irq_enabled = true;
290 	}
291 
292 	enable_fake_irq(b);
293 	return true;
294 }
295 
296 static inline struct intel_wait *to_wait(struct rb_node *node)
297 {
298 	return rb_entry(node, struct intel_wait, node);
299 }
300 
301 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
302 					      struct intel_wait *wait)
303 {
304 	lockdep_assert_held(&b->rb_lock);
305 	GEM_BUG_ON(b->irq_wait == wait);
306 
307 	/* This request is completed, so remove it from the tree, mark it as
308 	 * complete, and *then* wake up the associated task. N.B. when the
309 	 * task wakes up, it will find the empty rb_node, discern that it
310 	 * has already been removed from the tree and skip the serialisation
311 	 * of the b->rb_lock and b->irq_lock. This means that the destruction
312 	 * of the intel_wait is not serialised with the interrupt handler
313 	 * by the waiter - it must instead be serialised by the caller.
314 	 */
315 	rb_erase(&wait->node, &b->waiters);
316 	RB_CLEAR_NODE(&wait->node);
317 
318 	wake_up_process(wait->tsk); /* implicit smp_wmb() */
319 }
320 
321 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
322 					    struct rb_node *next)
323 {
324 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
325 
326 	lockmgr(&b->irq_lock, LK_EXCLUSIVE);
327 	GEM_BUG_ON(!b->irq_armed);
328 	GEM_BUG_ON(!b->irq_wait);
329 	b->irq_wait = to_wait(next);
330 	lockmgr(&b->irq_lock, LK_RELEASE);
331 
332 	/* We always wake up the next waiter that takes over as the bottom-half
333 	 * as we may delegate not only the irq-seqno barrier to the next waiter
334 	 * but also the task of waking up concurrent waiters.
335 	 */
336 	if (next)
337 		wake_up_process(to_wait(next)->tsk);
338 }
339 
340 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
341 				    struct intel_wait *wait)
342 {
343 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
344 	struct rb_node **p, *parent, *completed;
345 	bool first, armed;
346 	u32 seqno;
347 
348 	/* Insert the request into the retirement ordered list
349 	 * of waiters by walking the rbtree. If we are the oldest
350 	 * seqno in the tree (the first to be retired), then
351 	 * set ourselves as the bottom-half.
352 	 *
353 	 * As we descend the tree, prune completed branches since we hold the
354 	 * spinlock we know that the first_waiter must be delayed and can
355 	 * reduce some of the sequential wake up latency if we take action
356 	 * ourselves and wake up the completed tasks in parallel. Also, by
357 	 * removing stale elements in the tree, we may be able to reduce the
358 	 * ping-pong between the old bottom-half and ourselves as first-waiter.
359 	 */
360 	armed = false;
361 	first = true;
362 	parent = NULL;
363 	completed = NULL;
364 	seqno = intel_engine_get_seqno(engine);
365 
366 	 /* If the request completed before we managed to grab the spinlock,
367 	  * return now before adding ourselves to the rbtree. We let the
368 	  * current bottom-half handle any pending wakeups and instead
369 	  * try and get out of the way quickly.
370 	  */
371 	if (i915_seqno_passed(seqno, wait->seqno)) {
372 		RB_CLEAR_NODE(&wait->node);
373 		return first;
374 	}
375 
376 	p = &b->waiters.rb_node;
377 	while (*p) {
378 		parent = *p;
379 		if (wait->seqno == to_wait(parent)->seqno) {
380 			/* We have multiple waiters on the same seqno, select
381 			 * the highest priority task (that with the smallest
382 			 * task->prio) to serve as the bottom-half for this
383 			 * group.
384 			 */
385 			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
386 				p = &parent->rb_right;
387 				first = false;
388 			} else {
389 				p = &parent->rb_left;
390 			}
391 		} else if (i915_seqno_passed(wait->seqno,
392 					     to_wait(parent)->seqno)) {
393 			p = &parent->rb_right;
394 			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
395 				completed = parent;
396 			else
397 				first = false;
398 		} else {
399 			p = &parent->rb_left;
400 		}
401 	}
402 	rb_link_node(&wait->node, parent, p);
403 	rb_insert_color(&wait->node, &b->waiters);
404 
405 	if (first) {
406 		lockmgr(&b->irq_lock, LK_EXCLUSIVE);
407 		b->irq_wait = wait;
408 		/* After assigning ourselves as the new bottom-half, we must
409 		 * perform a cursory check to prevent a missed interrupt.
410 		 * Either we miss the interrupt whilst programming the hardware,
411 		 * or if there was a previous waiter (for a later seqno) they
412 		 * may be woken instead of us (due to the inherent race
413 		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
414 		 * and so we miss the wake up.
415 		 */
416 		armed = __intel_breadcrumbs_enable_irq(b);
417 		lockmgr(&b->irq_lock, LK_RELEASE);
418 	}
419 
420 	if (completed) {
421 		/* Advance the bottom-half (b->irq_wait) before we wake up
422 		 * the waiters who may scribble over their intel_wait
423 		 * just as the interrupt handler is dereferencing it via
424 		 * b->irq_wait.
425 		 */
426 		if (!first) {
427 			struct rb_node *next = rb_next(completed);
428 			GEM_BUG_ON(next == &wait->node);
429 			__intel_breadcrumbs_next(engine, next);
430 		}
431 
432 		do {
433 			struct intel_wait *crumb = to_wait(completed);
434 			completed = rb_prev(completed);
435 			__intel_breadcrumbs_finish(b, crumb);
436 		} while (completed);
437 	}
438 
439 	GEM_BUG_ON(!b->irq_wait);
440 	GEM_BUG_ON(!b->irq_armed);
441 	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
442 
443 	return armed;
444 }
445 
446 bool intel_engine_add_wait(struct intel_engine_cs *engine,
447 			   struct intel_wait *wait)
448 {
449 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
450 	bool armed;
451 
452 	spin_lock_irq(&b->rb_lock);
453 	armed = __intel_engine_add_wait(engine, wait);
454 	spin_unlock_irq(&b->rb_lock);
455 	if (armed)
456 		return armed;
457 
458 	/* Make the caller recheck if its request has already started. */
459 	return i915_seqno_passed(intel_engine_get_seqno(engine),
460 				 wait->seqno - 1);
461 }
462 
463 static inline bool chain_wakeup(struct rb_node *rb, int priority)
464 {
465 	return rb && to_wait(rb)->tsk->prio <= priority;
466 }
467 
468 static inline int wakeup_priority(struct intel_breadcrumbs *b,
469 				  struct task_struct *tsk)
470 {
471 	if (tsk == b->signaler)
472 		return INT_MIN;
473 	else
474 		return tsk->prio;
475 }
476 
477 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
478 				       struct intel_wait *wait)
479 {
480 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
481 
482 	lockdep_assert_held(&b->rb_lock);
483 
484 	if (RB_EMPTY_NODE(&wait->node))
485 		goto out;
486 
487 	if (b->irq_wait == wait) {
488 		const int priority = wakeup_priority(b, wait->tsk);
489 		struct rb_node *next;
490 
491 		/* We are the current bottom-half. Find the next candidate,
492 		 * the first waiter in the queue on the remaining oldest
493 		 * request. As multiple seqnos may complete in the time it
494 		 * takes us to wake up and find the next waiter, we have to
495 		 * wake up that waiter for it to perform its own coherent
496 		 * completion check.
497 		 */
498 		next = rb_next(&wait->node);
499 		if (chain_wakeup(next, priority)) {
500 			/* If the next waiter is already complete,
501 			 * wake it up and continue onto the next waiter. So
502 			 * if have a small herd, they will wake up in parallel
503 			 * rather than sequentially, which should reduce
504 			 * the overall latency in waking all the completed
505 			 * clients.
506 			 *
507 			 * However, waking up a chain adds extra latency to
508 			 * the first_waiter. This is undesirable if that
509 			 * waiter is a high priority task.
510 			 */
511 			u32 seqno = intel_engine_get_seqno(engine);
512 
513 			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
514 				struct rb_node *n = rb_next(next);
515 
516 				__intel_breadcrumbs_finish(b, to_wait(next));
517 				next = n;
518 				if (!chain_wakeup(next, priority))
519 					break;
520 			}
521 		}
522 
523 		__intel_breadcrumbs_next(engine, next);
524 	} else {
525 		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
526 	}
527 
528 	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
529 	rb_erase(&wait->node, &b->waiters);
530 	RB_CLEAR_NODE(&wait->node);
531 
532 out:
533 	GEM_BUG_ON(b->irq_wait == wait);
534 	GEM_BUG_ON(rb_first(&b->waiters) !=
535 		   (b->irq_wait ? &b->irq_wait->node : NULL));
536 }
537 
538 void intel_engine_remove_wait(struct intel_engine_cs *engine,
539 			      struct intel_wait *wait)
540 {
541 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
542 
543 	/* Quick check to see if this waiter was already decoupled from
544 	 * the tree by the bottom-half to avoid contention on the spinlock
545 	 * by the herd.
546 	 */
547 	if (RB_EMPTY_NODE(&wait->node)) {
548 		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
549 		return;
550 	}
551 
552 	spin_lock_irq(&b->rb_lock);
553 	__intel_engine_remove_wait(engine, wait);
554 	spin_unlock_irq(&b->rb_lock);
555 }
556 
557 static bool signal_complete(const struct drm_i915_gem_request *request)
558 {
559 	if (!request)
560 		return false;
561 
562 	/*
563 	 * Carefully check if the request is complete, giving time for the
564 	 * seqno to be visible or if the GPU hung.
565 	 */
566 	return __i915_request_irq_complete(request);
567 }
568 
569 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
570 {
571 	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
572 }
573 
574 static void signaler_set_rtpriority(void)
575 {
576 	 struct sched_param param = { .sched_priority = 1 };
577 
578 	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
579 }
580 
581 static int intel_breadcrumbs_signaler(void *arg)
582 {
583 	struct intel_engine_cs *engine = arg;
584 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
585 	struct drm_i915_gem_request *request;
586 
587 	/* Install ourselves with high priority to reduce signalling latency */
588 	signaler_set_rtpriority();
589 
590 	do {
591 		bool do_schedule = true;
592 
593 		set_current_state(TASK_INTERRUPTIBLE);
594 
595 		/* We are either woken up by the interrupt bottom-half,
596 		 * or by a client adding a new signaller. In both cases,
597 		 * the GPU seqno may have advanced beyond our oldest signal.
598 		 * If it has, propagate the signal, remove the waiter and
599 		 * check again with the next oldest signal. Otherwise we
600 		 * need to wait for a new interrupt from the GPU or for
601 		 * a new client.
602 		 */
603 		rcu_read_lock();
604 		request = rcu_dereference(b->first_signal);
605 		if (request)
606 			request = i915_gem_request_get_rcu(request);
607 		rcu_read_unlock();
608 		if (signal_complete(request)) {
609 			if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
610 				      &request->fence.flags)) {
611 				local_bh_disable();
612 				dma_fence_signal(&request->fence);
613 				GEM_BUG_ON(!i915_gem_request_completed(request));
614 				local_bh_enable(); /* kick start the tasklets */
615 			}
616 
617 			spin_lock_irq(&b->rb_lock);
618 
619 			/* Wake up all other completed waiters and select the
620 			 * next bottom-half for the next user interrupt.
621 			 */
622 			__intel_engine_remove_wait(engine,
623 						   &request->signaling.wait);
624 
625 			/* Find the next oldest signal. Note that as we have
626 			 * not been holding the lock, another client may
627 			 * have installed an even older signal than the one
628 			 * we just completed - so double check we are still
629 			 * the oldest before picking the next one.
630 			 */
631 			if (request == rcu_access_pointer(b->first_signal)) {
632 				struct rb_node *rb =
633 					rb_next(&request->signaling.node);
634 				rcu_assign_pointer(b->first_signal,
635 						   rb ? to_signaler(rb) : NULL);
636 			}
637 			rb_erase(&request->signaling.node, &b->signals);
638 			RB_CLEAR_NODE(&request->signaling.node);
639 
640 			spin_unlock_irq(&b->rb_lock);
641 
642 			i915_gem_request_put(request);
643 
644 			/* If the engine is saturated we may be continually
645 			 * processing completed requests. This angers the
646 			 * NMI watchdog if we never let anything else
647 			 * have access to the CPU. Let's pretend to be nice
648 			 * and relinquish the CPU if we burn through the
649 			 * entire RT timeslice!
650 			 */
651 			do_schedule = need_resched();
652 		}
653 
654 		if (unlikely(do_schedule)) {
655 			if (kthread_should_park())
656 				kthread_parkme();
657 
658 			if (unlikely(kthread_should_stop())) {
659 				i915_gem_request_put(request);
660 				break;
661 			}
662 
663 			schedule();
664 		}
665 		i915_gem_request_put(request);
666 	} while (1);
667 	__set_current_state(TASK_RUNNING);
668 
669 	return 0;
670 }
671 
672 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
673 				   bool wakeup)
674 {
675 	struct intel_engine_cs *engine = request->engine;
676 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
677 	u32 seqno;
678 
679 	/* Note that we may be called from an interrupt handler on another
680 	 * device (e.g. nouveau signaling a fence completion causing us
681 	 * to submit a request, and so enable signaling). As such,
682 	 * we need to make sure that all other users of b->rb_lock protect
683 	 * against interrupts, i.e. use spin_lock_irqsave.
684 	 */
685 
686 	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
687 //	GEM_BUG_ON(!irqs_disabled());
688 	lockdep_assert_held(&request->lock);
689 
690 	seqno = i915_gem_request_global_seqno(request);
691 	if (!seqno)
692 		return;
693 
694 	request->signaling.wait.tsk = b->signaler;
695 	request->signaling.wait.request = request;
696 	request->signaling.wait.seqno = seqno;
697 	i915_gem_request_get(request);
698 
699 	lockmgr(&b->rb_lock, LK_EXCLUSIVE);
700 
701 	/* First add ourselves into the list of waiters, but register our
702 	 * bottom-half as the signaller thread. As per usual, only the oldest
703 	 * waiter (not just signaller) is tasked as the bottom-half waking
704 	 * up all completed waiters after the user interrupt.
705 	 *
706 	 * If we are the oldest waiter, enable the irq (after which we
707 	 * must double check that the seqno did not complete).
708 	 */
709 	wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
710 
711 	if (!__i915_gem_request_completed(request, seqno)) {
712 		struct rb_node *parent, **p;
713 		bool first;
714 
715 		/* Now insert ourselves into the retirement ordered list of
716 		 * signals on this engine. We track the oldest seqno as that
717 		 * will be the first signal to complete.
718 		 */
719 		parent = NULL;
720 		first = true;
721 		p = &b->signals.rb_node;
722 		while (*p) {
723 			parent = *p;
724 			if (i915_seqno_passed(seqno,
725 					      to_signaler(parent)->signaling.wait.seqno)) {
726 				p = &parent->rb_right;
727 				first = false;
728 			} else {
729 				p = &parent->rb_left;
730 			}
731 		}
732 		rb_link_node(&request->signaling.node, parent, p);
733 		rb_insert_color(&request->signaling.node, &b->signals);
734 		if (first)
735 			rcu_assign_pointer(b->first_signal, request);
736 	} else {
737 		__intel_engine_remove_wait(engine, &request->signaling.wait);
738 		i915_gem_request_put(request);
739 		wakeup = false;
740 	}
741 
742 	lockmgr(&b->rb_lock, LK_RELEASE);
743 
744 	if (wakeup)
745 		wake_up_process(b->signaler);
746 }
747 
748 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
749 {
750 	struct intel_engine_cs *engine = request->engine;
751 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
752 
753 	GEM_BUG_ON(!irqs_disabled());
754 	lockdep_assert_held(&request->lock);
755 	GEM_BUG_ON(!request->signaling.wait.seqno);
756 
757 	lockmgr(&b->rb_lock, LK_EXCLUSIVE);
758 
759 	if (!RB_EMPTY_NODE(&request->signaling.node)) {
760 		if (request == rcu_access_pointer(b->first_signal)) {
761 			struct rb_node *rb =
762 				rb_next(&request->signaling.node);
763 			rcu_assign_pointer(b->first_signal,
764 					   rb ? to_signaler(rb) : NULL);
765 		}
766 		rb_erase(&request->signaling.node, &b->signals);
767 		RB_CLEAR_NODE(&request->signaling.node);
768 		i915_gem_request_put(request);
769 	}
770 
771 	__intel_engine_remove_wait(engine, &request->signaling.wait);
772 
773 	lockmgr(&b->rb_lock, LK_RELEASE);
774 
775 	request->signaling.wait.seqno = 0;
776 }
777 
778 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
779 {
780 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
781 	struct task_struct *tsk;
782 
783 	lockinit(&b->rb_lock, "i9brbl", 0, 0);
784 	lockinit(&b->irq_lock, "i91bil", 0, 0);
785 
786 	timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
787 	timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
788 
789 	/* Spawn a thread to provide a common bottom-half for all signals.
790 	 * As this is an asynchronous interface we cannot steal the current
791 	 * task for handling the bottom-half to the user interrupt, therefore
792 	 * we create a thread to do the coherent seqno dance after the
793 	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
794 	 */
795 	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
796 			  "i915/signal:%d", engine->id);
797 	if (IS_ERR(tsk))
798 		return PTR_ERR(tsk);
799 
800 	b->signaler = tsk;
801 
802 	return 0;
803 }
804 
805 static void cancel_fake_irq(struct intel_engine_cs *engine)
806 {
807 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
808 
809 	del_timer_sync(&b->hangcheck);
810 	del_timer_sync(&b->fake_irq);
811 	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
812 }
813 
814 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
815 {
816 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
817 
818 	cancel_fake_irq(engine);
819 	spin_lock_irq(&b->irq_lock);
820 
821 	if (b->irq_enabled)
822 		irq_enable(engine);
823 	else
824 		irq_disable(engine);
825 
826 	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
827 	 * GPU is active and may have already executed the MI_USER_INTERRUPT
828 	 * before the CPU is ready to receive. However, the engine is currently
829 	 * idle (we haven't started it yet), there is no possibility for a
830 	 * missed interrupt as we enabled the irq and so we can clear the
831 	 * immediate wakeup (until a real interrupt arrives for the waiter).
832 	 */
833 	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
834 
835 	if (b->irq_armed)
836 		enable_fake_irq(b);
837 
838 	spin_unlock_irq(&b->irq_lock);
839 }
840 
841 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
842 {
843 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
844 
845 	/* The engines should be idle and all requests accounted for! */
846 	WARN_ON(READ_ONCE(b->irq_wait));
847 	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
848 	WARN_ON(rcu_access_pointer(b->first_signal));
849 	WARN_ON(!RB_EMPTY_ROOT(&b->signals));
850 
851 	if (!IS_ERR_OR_NULL(b->signaler))
852 		kthread_stop(b->signaler);
853 
854 	cancel_fake_irq(engine);
855 }
856 
857 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
858 {
859 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
860 	bool busy = false;
861 
862 	spin_lock_irq(&b->rb_lock);
863 
864 	if (b->irq_wait) {
865 		wake_up_process(b->irq_wait->tsk);
866 		busy = true;
867 	}
868 
869 	if (rcu_access_pointer(b->first_signal)) {
870 		wake_up_process(b->signaler);
871 		busy = true;
872 	}
873 
874 	spin_unlock_irq(&b->rb_lock);
875 
876 	return busy;
877 }
878 
879 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
880 #include "selftests/intel_breadcrumbs.c"
881 #endif
882