xref: /dragonfly/sys/dev/drm/i915/intel_breadcrumbs.c (revision 6a3cbbc2)
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/kthread.h>
26 
27 #include "i915_drv.h"
28 
29 static void intel_breadcrumbs_hangcheck(unsigned long data)
30 {
31 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
32 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
33 
34 	if (!b->irq_enabled)
35 		return;
36 
37 	if (time_before(jiffies, b->timeout)) {
38 		mod_timer(&b->hangcheck, b->timeout);
39 		return;
40 	}
41 
42 	DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
43 	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
44 	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
45 
46 	/* Ensure that even if the GPU hangs, we get woken up.
47 	 *
48 	 * However, note that if no one is waiting, we never notice
49 	 * a gpu hang. Eventually, we will have to wait for a resource
50 	 * held by the GPU and so trigger a hangcheck. In the most
51 	 * pathological case, this will be upon memory starvation! To
52 	 * prevent this, we also queue the hangcheck from the retire
53 	 * worker.
54 	 */
55 	i915_queue_hangcheck(engine->i915);
56 }
57 
58 static unsigned long wait_timeout(void)
59 {
60 	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
61 }
62 
63 static void intel_breadcrumbs_fake_irq(unsigned long data)
64 {
65 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
66 
67 	/*
68 	 * The timer persists in case we cannot enable interrupts,
69 	 * or if we have previously seen seqno/interrupt incoherency
70 	 * ("missed interrupt" syndrome). Here the worker will wake up
71 	 * every jiffie in order to kick the oldest waiter to do the
72 	 * coherent seqno check.
73 	 */
74 	if (intel_engine_wakeup(engine))
75 		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
76 }
77 
78 static void irq_enable(struct intel_engine_cs *engine)
79 {
80 	/* Enabling the IRQ may miss the generation of the interrupt, but
81 	 * we still need to force the barrier before reading the seqno,
82 	 * just in case.
83 	 */
84 	engine->breadcrumbs.irq_posted = true;
85 
86 	spin_lock_irq(&engine->i915->irq_lock);
87 	engine->irq_enable(engine);
88 	spin_unlock_irq(&engine->i915->irq_lock);
89 }
90 
91 static void irq_disable(struct intel_engine_cs *engine)
92 {
93 	spin_lock_irq(&engine->i915->irq_lock);
94 	engine->irq_disable(engine);
95 	spin_unlock_irq(&engine->i915->irq_lock);
96 
97 	engine->breadcrumbs.irq_posted = false;
98 }
99 
100 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
101 {
102 	struct intel_engine_cs *engine =
103 		container_of(b, struct intel_engine_cs, breadcrumbs);
104 	struct drm_i915_private *i915 = engine->i915;
105 
106 	assert_spin_locked(&b->lock);
107 	if (b->rpm_wakelock)
108 		return;
109 
110 	/* Since we are waiting on a request, the GPU should be busy
111 	 * and should have its own rpm reference. For completeness,
112 	 * record an rpm reference for ourselves to cover the
113 	 * interrupt we unmask.
114 	 */
115 	intel_runtime_pm_get_noresume(i915);
116 	b->rpm_wakelock = true;
117 
118 	/* No interrupts? Kick the waiter every jiffie! */
119 	if (intel_irqs_enabled(i915)) {
120 		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
121 			irq_enable(engine);
122 		b->irq_enabled = true;
123 	}
124 
125 	if (!b->irq_enabled ||
126 	    test_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
127 		mod_timer(&b->fake_irq, jiffies + 1);
128 	} else {
129 		/* Ensure we never sleep indefinitely */
130 		GEM_BUG_ON(!time_after(b->timeout, jiffies));
131 		mod_timer(&b->hangcheck, b->timeout);
132 	}
133 }
134 
135 static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
136 {
137 	struct intel_engine_cs *engine =
138 		container_of(b, struct intel_engine_cs, breadcrumbs);
139 
140 	assert_spin_locked(&b->lock);
141 	if (!b->rpm_wakelock)
142 		return;
143 
144 	if (b->irq_enabled) {
145 		irq_disable(engine);
146 		b->irq_enabled = false;
147 	}
148 
149 	intel_runtime_pm_put(engine->i915);
150 	b->rpm_wakelock = false;
151 }
152 
153 static inline struct intel_wait *to_wait(struct rb_node *node)
154 {
155 	return container_of(node, struct intel_wait, node);
156 }
157 
158 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
159 					      struct intel_wait *wait)
160 {
161 	assert_spin_locked(&b->lock);
162 
163 	/* This request is completed, so remove it from the tree, mark it as
164 	 * complete, and *then* wake up the associated task.
165 	 */
166 	rb_erase(&wait->node, &b->waiters);
167 	RB_CLEAR_NODE(&wait->node);
168 
169 	wake_up_process(wait->tsk); /* implicit smp_wmb() */
170 }
171 
172 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
173 				    struct intel_wait *wait)
174 {
175 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
176 	struct rb_node **p, *parent, *completed;
177 	bool first;
178 	u32 seqno;
179 
180 	/* Insert the request into the retirement ordered list
181 	 * of waiters by walking the rbtree. If we are the oldest
182 	 * seqno in the tree (the first to be retired), then
183 	 * set ourselves as the bottom-half.
184 	 *
185 	 * As we descend the tree, prune completed branches since we hold the
186 	 * spinlock we know that the first_waiter must be delayed and can
187 	 * reduce some of the sequential wake up latency if we take action
188 	 * ourselves and wake up the completed tasks in parallel. Also, by
189 	 * removing stale elements in the tree, we may be able to reduce the
190 	 * ping-pong between the old bottom-half and ourselves as first-waiter.
191 	 */
192 	first = true;
193 	parent = NULL;
194 	completed = NULL;
195 	seqno = intel_engine_get_seqno(engine);
196 
197 	 /* If the request completed before we managed to grab the spinlock,
198 	  * return now before adding ourselves to the rbtree. We let the
199 	  * current bottom-half handle any pending wakeups and instead
200 	  * try and get out of the way quickly.
201 	  */
202 	if (i915_seqno_passed(seqno, wait->seqno)) {
203 		RB_CLEAR_NODE(&wait->node);
204 		return first;
205 	}
206 
207 	p = &b->waiters.rb_node;
208 	while (*p) {
209 		parent = *p;
210 		if (wait->seqno == to_wait(parent)->seqno) {
211 			/* We have multiple waiters on the same seqno, select
212 			 * the highest priority task (that with the smallest
213 			 * task->prio) to serve as the bottom-half for this
214 			 * group.
215 			 */
216 			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
217 				p = &parent->rb_right;
218 				first = false;
219 			} else {
220 				p = &parent->rb_left;
221 			}
222 		} else if (i915_seqno_passed(wait->seqno,
223 					     to_wait(parent)->seqno)) {
224 			p = &parent->rb_right;
225 			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
226 				completed = parent;
227 			else
228 				first = false;
229 		} else {
230 			p = &parent->rb_left;
231 		}
232 	}
233 	rb_link_node(&wait->node, parent, p);
234 	rb_insert_color(&wait->node, &b->waiters);
235 	GEM_BUG_ON(!first && !rcu_access_pointer(b->irq_seqno_bh));
236 
237 	if (completed) {
238 		struct rb_node *next = rb_next(completed);
239 
240 		GEM_BUG_ON(!next && !first);
241 		if (next && next != &wait->node) {
242 			GEM_BUG_ON(first);
243 			b->timeout = wait_timeout();
244 			b->first_wait = to_wait(next);
245 			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
246 			/* As there is a delay between reading the current
247 			 * seqno, processing the completed tasks and selecting
248 			 * the next waiter, we may have missed the interrupt
249 			 * and so need for the next bottom-half to wakeup.
250 			 *
251 			 * Also as we enable the IRQ, we may miss the
252 			 * interrupt for that seqno, so we have to wake up
253 			 * the next bottom-half in order to do a coherent check
254 			 * in case the seqno passed.
255 			 */
256 			__intel_breadcrumbs_enable_irq(b);
257 			if (READ_ONCE(b->irq_posted))
258 				wake_up_process(to_wait(next)->tsk);
259 		}
260 
261 		do {
262 			struct intel_wait *crumb = to_wait(completed);
263 			completed = rb_prev(completed);
264 			__intel_breadcrumbs_finish(b, crumb);
265 		} while (completed);
266 	}
267 
268 	if (first) {
269 		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
270 		b->timeout = wait_timeout();
271 		b->first_wait = wait;
272 		rcu_assign_pointer(b->irq_seqno_bh, wait->tsk);
273 		/* After assigning ourselves as the new bottom-half, we must
274 		 * perform a cursory check to prevent a missed interrupt.
275 		 * Either we miss the interrupt whilst programming the hardware,
276 		 * or if there was a previous waiter (for a later seqno) they
277 		 * may be woken instead of us (due to the inherent race
278 		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
279 		 * and so we miss the wake up.
280 		 */
281 		__intel_breadcrumbs_enable_irq(b);
282 	}
283 	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh));
284 	GEM_BUG_ON(!b->first_wait);
285 	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);
286 
287 	return first;
288 }
289 
290 bool intel_engine_add_wait(struct intel_engine_cs *engine,
291 			   struct intel_wait *wait)
292 {
293 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
294 	bool first;
295 
296 	lockmgr(&b->lock, LK_EXCLUSIVE);
297 	first = __intel_engine_add_wait(engine, wait);
298 	lockmgr(&b->lock, LK_RELEASE);
299 
300 	return first;
301 }
302 
303 static inline bool chain_wakeup(struct rb_node *rb, int priority)
304 {
305 	return rb && to_wait(rb)->tsk->prio <= priority;
306 }
307 
308 static inline int wakeup_priority(struct intel_breadcrumbs *b,
309 				  struct task_struct *tsk)
310 {
311 	if (tsk == b->signaler)
312 		return INT_MIN;
313 	else
314 		return tsk->prio;
315 }
316 
317 void intel_engine_remove_wait(struct intel_engine_cs *engine,
318 			      struct intel_wait *wait)
319 {
320 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
321 
322 	/* Quick check to see if this waiter was already decoupled from
323 	 * the tree by the bottom-half to avoid contention on the spinlock
324 	 * by the herd.
325 	 */
326 	if (RB_EMPTY_NODE(&wait->node))
327 		return;
328 
329 	lockmgr(&b->lock, LK_EXCLUSIVE);
330 
331 	if (RB_EMPTY_NODE(&wait->node))
332 		goto out_unlock;
333 
334 	if (b->first_wait == wait) {
335 		const int priority = wakeup_priority(b, wait->tsk);
336 		struct rb_node *next;
337 
338 		GEM_BUG_ON(rcu_access_pointer(b->irq_seqno_bh) != wait->tsk);
339 
340 		/* We are the current bottom-half. Find the next candidate,
341 		 * the first waiter in the queue on the remaining oldest
342 		 * request. As multiple seqnos may complete in the time it
343 		 * takes us to wake up and find the next waiter, we have to
344 		 * wake up that waiter for it to perform its own coherent
345 		 * completion check.
346 		 */
347 		next = rb_next(&wait->node);
348 		if (chain_wakeup(next, priority)) {
349 			/* If the next waiter is already complete,
350 			 * wake it up and continue onto the next waiter. So
351 			 * if have a small herd, they will wake up in parallel
352 			 * rather than sequentially, which should reduce
353 			 * the overall latency in waking all the completed
354 			 * clients.
355 			 *
356 			 * However, waking up a chain adds extra latency to
357 			 * the first_waiter. This is undesirable if that
358 			 * waiter is a high priority task.
359 			 */
360 			u32 seqno = intel_engine_get_seqno(engine);
361 
362 			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
363 				struct rb_node *n = rb_next(next);
364 
365 				__intel_breadcrumbs_finish(b, to_wait(next));
366 				next = n;
367 				if (!chain_wakeup(next, priority))
368 					break;
369 			}
370 		}
371 
372 		if (next) {
373 			/* In our haste, we may have completed the first waiter
374 			 * before we enabled the interrupt. Do so now as we
375 			 * have a second waiter for a future seqno. Afterwards,
376 			 * we have to wake up that waiter in case we missed
377 			 * the interrupt, or if we have to handle an
378 			 * exception rather than a seqno completion.
379 			 */
380 			b->timeout = wait_timeout();
381 			b->first_wait = to_wait(next);
382 			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
383 			if (b->first_wait->seqno != wait->seqno)
384 				__intel_breadcrumbs_enable_irq(b);
385 			wake_up_process(b->first_wait->tsk);
386 		} else {
387 			b->first_wait = NULL;
388 			rcu_assign_pointer(b->irq_seqno_bh, NULL);
389 			__intel_breadcrumbs_disable_irq(b);
390 		}
391 	} else {
392 		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
393 	}
394 
395 	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
396 	rb_erase(&wait->node, &b->waiters);
397 
398 out_unlock:
399 	GEM_BUG_ON(b->first_wait == wait);
400 	GEM_BUG_ON(rb_first(&b->waiters) !=
401 		   (b->first_wait ? &b->first_wait->node : NULL));
402 	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh) ^ RB_EMPTY_ROOT(&b->waiters));
403 	lockmgr(&b->lock, LK_RELEASE);
404 }
405 
406 static bool signal_complete(struct drm_i915_gem_request *request)
407 {
408 	if (!request)
409 		return false;
410 
411 	/* If another process served as the bottom-half it may have already
412 	 * signalled that this wait is already completed.
413 	 */
414 	if (intel_wait_complete(&request->signaling.wait))
415 		return true;
416 
417 	/* Carefully check if the request is complete, giving time for the
418 	 * seqno to be visible or if the GPU hung.
419 	 */
420 	if (__i915_request_irq_complete(request))
421 		return true;
422 
423 	return false;
424 }
425 
426 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
427 {
428 	return container_of(rb, struct drm_i915_gem_request, signaling.node);
429 }
430 
431 static void signaler_set_rtpriority(void)
432 {
433 	 struct sched_param param = { .sched_priority = 1 };
434 
435 	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
436 }
437 
438 static int intel_breadcrumbs_signaler(void *arg)
439 {
440 	struct intel_engine_cs *engine = arg;
441 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
442 	struct drm_i915_gem_request *request;
443 
444 	/* Install ourselves with high priority to reduce signalling latency */
445 	signaler_set_rtpriority();
446 
447 	do {
448 		set_current_state(TASK_INTERRUPTIBLE);
449 
450 		/* We are either woken up by the interrupt bottom-half,
451 		 * or by a client adding a new signaller. In both cases,
452 		 * the GPU seqno may have advanced beyond our oldest signal.
453 		 * If it has, propagate the signal, remove the waiter and
454 		 * check again with the next oldest signal. Otherwise we
455 		 * need to wait for a new interrupt from the GPU or for
456 		 * a new client.
457 		 */
458 		request = READ_ONCE(b->first_signal);
459 		if (signal_complete(request)) {
460 			/* Wake up all other completed waiters and select the
461 			 * next bottom-half for the next user interrupt.
462 			 */
463 			intel_engine_remove_wait(engine,
464 						 &request->signaling.wait);
465 
466 			local_bh_disable();
467 			fence_signal(&request->fence);
468 			local_bh_enable(); /* kick start the tasklets */
469 
470 			/* Find the next oldest signal. Note that as we have
471 			 * not been holding the lock, another client may
472 			 * have installed an even older signal than the one
473 			 * we just completed - so double check we are still
474 			 * the oldest before picking the next one.
475 			 */
476 			lockmgr(&b->lock, LK_EXCLUSIVE);
477 			if (request == b->first_signal) {
478 				struct rb_node *rb =
479 					rb_next(&request->signaling.node);
480 				b->first_signal = rb ? to_signaler(rb) : NULL;
481 			}
482 			rb_erase(&request->signaling.node, &b->signals);
483 			lockmgr(&b->lock, LK_RELEASE);
484 
485 			i915_gem_request_put(request);
486 		} else {
487 			if (kthread_should_stop())
488 				break;
489 
490 			schedule();
491 		}
492 	} while (1);
493 	__set_current_state(TASK_RUNNING);
494 
495 	return 0;
496 }
497 
498 void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
499 {
500 	struct intel_engine_cs *engine = request->engine;
501 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
502 	struct rb_node *parent, **p;
503 	bool first, wakeup;
504 
505 	/* locked by fence_enable_sw_signaling() */
506 	assert_spin_locked(&request->lock);
507 
508 	request->signaling.wait.tsk = b->signaler;
509 	request->signaling.wait.seqno = request->fence.seqno;
510 	i915_gem_request_get(request);
511 
512 	lockmgr(&b->lock, LK_EXCLUSIVE);
513 
514 	/* First add ourselves into the list of waiters, but register our
515 	 * bottom-half as the signaller thread. As per usual, only the oldest
516 	 * waiter (not just signaller) is tasked as the bottom-half waking
517 	 * up all completed waiters after the user interrupt.
518 	 *
519 	 * If we are the oldest waiter, enable the irq (after which we
520 	 * must double check that the seqno did not complete).
521 	 */
522 	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
523 
524 	/* Now insert ourselves into the retirement ordered list of signals
525 	 * on this engine. We track the oldest seqno as that will be the
526 	 * first signal to complete.
527 	 */
528 	parent = NULL;
529 	first = true;
530 	p = &b->signals.rb_node;
531 	while (*p) {
532 		parent = *p;
533 		if (i915_seqno_passed(request->fence.seqno,
534 				      to_signaler(parent)->fence.seqno)) {
535 			p = &parent->rb_right;
536 			first = false;
537 		} else {
538 			p = &parent->rb_left;
539 		}
540 	}
541 	rb_link_node(&request->signaling.node, parent, p);
542 	rb_insert_color(&request->signaling.node, &b->signals);
543 	if (first)
544 		smp_store_mb(b->first_signal, request);
545 
546 	lockmgr(&b->lock, LK_RELEASE);
547 
548 	if (wakeup)
549 		wake_up_process(b->signaler);
550 }
551 
552 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
553 {
554 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
555 	struct task_struct *tsk;
556 
557 	lockinit(&b->lock, "i915_bl", 0, LK_CANRECURSE);
558 	setup_timer(&b->fake_irq,
559 		    intel_breadcrumbs_fake_irq,
560 		    (unsigned long)engine);
561 	setup_timer(&b->hangcheck,
562 		    intel_breadcrumbs_hangcheck,
563 		    (unsigned long)engine);
564 
565 	/* Spawn a thread to provide a common bottom-half for all signals.
566 	 * As this is an asynchronous interface we cannot steal the current
567 	 * task for handling the bottom-half to the user interrupt, therefore
568 	 * we create a thread to do the coherent seqno dance after the
569 	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
570 	 */
571 	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
572 			  "i915/signal:%d", engine->id);
573 	if (IS_ERR(tsk))
574 		return PTR_ERR(tsk);
575 
576 	b->signaler = tsk;
577 
578 	return 0;
579 }
580 
581 static void cancel_fake_irq(struct intel_engine_cs *engine)
582 {
583 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
584 
585 	del_timer_sync(&b->hangcheck);
586 	del_timer_sync(&b->fake_irq);
587 	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
588 }
589 
590 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
591 {
592 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
593 
594 	cancel_fake_irq(engine);
595 	lockmgr(&b->lock, LK_EXCLUSIVE);
596 
597 	__intel_breadcrumbs_disable_irq(b);
598 	if (intel_engine_has_waiter(engine)) {
599 		b->timeout = wait_timeout();
600 		__intel_breadcrumbs_enable_irq(b);
601 		if (READ_ONCE(b->irq_posted))
602 			wake_up_process(b->first_wait->tsk);
603 	} else {
604 		/* sanitize the IMR and unmask any auxiliary interrupts */
605 		irq_disable(engine);
606 	}
607 
608 	lockmgr(&b->lock, LK_RELEASE);
609 }
610 
611 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
612 {
613 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
614 
615 	if (!IS_ERR_OR_NULL(b->signaler))
616 		kthread_stop(b->signaler);
617 
618 	cancel_fake_irq(engine);
619 }
620 
621 unsigned int intel_kick_waiters(struct drm_i915_private *i915)
622 {
623 	struct intel_engine_cs *engine;
624 	enum intel_engine_id id;
625 	unsigned int mask = 0;
626 
627 	/* To avoid the task_struct disappearing beneath us as we wake up
628 	 * the process, we must first inspect the task_struct->state under the
629 	 * RCU lock, i.e. as we call wake_up_process() we must be holding the
630 	 * rcu_read_lock().
631 	 */
632 	for_each_engine(engine, i915, id)
633 		if (unlikely(intel_engine_wakeup(engine)))
634 			mask |= intel_engine_flag(engine);
635 
636 	return mask;
637 }
638 
639 unsigned int intel_kick_signalers(struct drm_i915_private *i915)
640 {
641 	struct intel_engine_cs *engine;
642 	enum intel_engine_id id;
643 	unsigned int mask = 0;
644 
645 	for_each_engine(engine, i915, id) {
646 		if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) {
647 			wake_up_process(engine->breadcrumbs.signaler);
648 			mask |= intel_engine_flag(engine);
649 		}
650 	}
651 
652 	return mask;
653 }
654