xref: /dragonfly/sys/dev/drm/i915/intel_ddi.c (revision 0066c2fb)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 
31 struct ddi_buf_trans {
32 	u32 trans1;	/* balance leg enable, de-emph level */
33 	u32 trans2;	/* vref sel, vswing */
34 	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 };
36 
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38  * them for both DP and FDI transports, allowing those ports to
39  * automatically adapt to HDMI connections as well
40  */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 	{ 0x00FFFFFF, 0x0006000E, 0x0 },
43 	{ 0x00D75FFF, 0x0005000A, 0x0 },
44 	{ 0x00C30FFF, 0x00040006, 0x0 },
45 	{ 0x80AAAFFF, 0x000B0000, 0x0 },
46 	{ 0x00FFFFFF, 0x0005000A, 0x0 },
47 	{ 0x00D75FFF, 0x000C0004, 0x0 },
48 	{ 0x80C30FFF, 0x000B0000, 0x0 },
49 	{ 0x00FFFFFF, 0x00040006, 0x0 },
50 	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 };
52 
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 	{ 0x00FFFFFF, 0x0007000E, 0x0 },
55 	{ 0x00D75FFF, 0x000F000A, 0x0 },
56 	{ 0x00C30FFF, 0x00060006, 0x0 },
57 	{ 0x00AAAFFF, 0x001E0000, 0x0 },
58 	{ 0x00FFFFFF, 0x000F000A, 0x0 },
59 	{ 0x00D75FFF, 0x00160004, 0x0 },
60 	{ 0x00C30FFF, 0x001E0000, 0x0 },
61 	{ 0x00FFFFFF, 0x00060006, 0x0 },
62 	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 };
64 
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 					/* Idx	NT mV d	T mV d	db	*/
67 	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
68 	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
69 	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
70 	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
71 	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
72 	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
73 	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
74 	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
75 	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
76 	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
77 	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
78 	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 };
80 
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 	{ 0x00FFFFFF, 0x00000012, 0x0 },
83 	{ 0x00EBAFFF, 0x00020011, 0x0 },
84 	{ 0x00C71FFF, 0x0006000F, 0x0 },
85 	{ 0x00AAAFFF, 0x000E000A, 0x0 },
86 	{ 0x00FFFFFF, 0x00020011, 0x0 },
87 	{ 0x00DB6FFF, 0x0005000F, 0x0 },
88 	{ 0x00BEEFFF, 0x000A000C, 0x0 },
89 	{ 0x00FFFFFF, 0x0005000F, 0x0 },
90 	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 };
92 
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 	{ 0x00FFFFFF, 0x0007000E, 0x0 },
95 	{ 0x00D75FFF, 0x000E000A, 0x0 },
96 	{ 0x00BEFFFF, 0x00140006, 0x0 },
97 	{ 0x80B2CFFF, 0x001B0002, 0x0 },
98 	{ 0x00FFFFFF, 0x000E000A, 0x0 },
99 	{ 0x00DB6FFF, 0x00160005, 0x0 },
100 	{ 0x80C71FFF, 0x001A0002, 0x0 },
101 	{ 0x00F7DFFF, 0x00180004, 0x0 },
102 	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 };
104 
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 	{ 0x00FFFFFF, 0x0001000E, 0x0 },
107 	{ 0x00D75FFF, 0x0004000A, 0x0 },
108 	{ 0x00C30FFF, 0x00070006, 0x0 },
109 	{ 0x00AAAFFF, 0x000C0000, 0x0 },
110 	{ 0x00FFFFFF, 0x0004000A, 0x0 },
111 	{ 0x00D75FFF, 0x00090004, 0x0 },
112 	{ 0x00C30FFF, 0x000C0000, 0x0 },
113 	{ 0x00FFFFFF, 0x00070006, 0x0 },
114 	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 };
116 
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 					/* Idx	NT mV d	T mV df	db	*/
119 	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
120 	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
121 	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
122 	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
123 	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
124 	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
125 	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
126 	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
127 	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
128 	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 };
130 
131 /* Skylake H and S */
132 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 	{ 0x00002016, 0x000000A0, 0x0 },
134 	{ 0x00005012, 0x0000009B, 0x0 },
135 	{ 0x00007011, 0x00000088, 0x0 },
136 	{ 0x80009010, 0x000000C0, 0x1 },
137 	{ 0x00002016, 0x0000009B, 0x0 },
138 	{ 0x00005012, 0x00000088, 0x0 },
139 	{ 0x80007011, 0x000000C0, 0x1 },
140 	{ 0x00002016, 0x000000DF, 0x0 },
141 	{ 0x80005012, 0x000000C0, 0x1 },
142 };
143 
144 /* Skylake U */
145 static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146 	{ 0x0000201B, 0x000000A2, 0x0 },
147 	{ 0x00005012, 0x00000088, 0x0 },
148 	{ 0x80007011, 0x000000CD, 0x1 },
149 	{ 0x80009010, 0x000000C0, 0x1 },
150 	{ 0x0000201B, 0x0000009D, 0x0 },
151 	{ 0x80005012, 0x000000C0, 0x1 },
152 	{ 0x80007011, 0x000000C0, 0x1 },
153 	{ 0x00002016, 0x00000088, 0x0 },
154 	{ 0x80005012, 0x000000C0, 0x1 },
155 };
156 
157 /* Skylake Y */
158 static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 	{ 0x00000018, 0x000000A2, 0x0 },
160 	{ 0x00005012, 0x00000088, 0x0 },
161 	{ 0x80007011, 0x000000CD, 0x3 },
162 	{ 0x80009010, 0x000000C0, 0x3 },
163 	{ 0x00000018, 0x0000009D, 0x0 },
164 	{ 0x80005012, 0x000000C0, 0x3 },
165 	{ 0x80007011, 0x000000C0, 0x3 },
166 	{ 0x00000018, 0x00000088, 0x0 },
167 	{ 0x80005012, 0x000000C0, 0x3 },
168 };
169 
170 /*
171  * Skylake H and S
172  * eDP 1.4 low vswing translation parameters
173  */
174 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 	{ 0x00000018, 0x000000A8, 0x0 },
176 	{ 0x00004013, 0x000000A9, 0x0 },
177 	{ 0x00007011, 0x000000A2, 0x0 },
178 	{ 0x00009010, 0x0000009C, 0x0 },
179 	{ 0x00000018, 0x000000A9, 0x0 },
180 	{ 0x00006013, 0x000000A2, 0x0 },
181 	{ 0x00007011, 0x000000A6, 0x0 },
182 	{ 0x00000018, 0x000000AB, 0x0 },
183 	{ 0x00007013, 0x0000009F, 0x0 },
184 	{ 0x00000018, 0x000000DF, 0x0 },
185 };
186 
187 /*
188  * Skylake U
189  * eDP 1.4 low vswing translation parameters
190  */
191 static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
192 	{ 0x00000018, 0x000000A8, 0x0 },
193 	{ 0x00004013, 0x000000A9, 0x0 },
194 	{ 0x00007011, 0x000000A2, 0x0 },
195 	{ 0x00009010, 0x0000009C, 0x0 },
196 	{ 0x00000018, 0x000000A9, 0x0 },
197 	{ 0x00006013, 0x000000A2, 0x0 },
198 	{ 0x00007011, 0x000000A6, 0x0 },
199 	{ 0x00002016, 0x000000AB, 0x0 },
200 	{ 0x00005013, 0x0000009F, 0x0 },
201 	{ 0x00000018, 0x000000DF, 0x0 },
202 };
203 
204 /*
205  * Skylake Y
206  * eDP 1.4 low vswing translation parameters
207  */
208 static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 	{ 0x00000018, 0x000000A8, 0x0 },
210 	{ 0x00004013, 0x000000AB, 0x0 },
211 	{ 0x00007011, 0x000000A4, 0x0 },
212 	{ 0x00009010, 0x000000DF, 0x0 },
213 	{ 0x00000018, 0x000000AA, 0x0 },
214 	{ 0x00006013, 0x000000A4, 0x0 },
215 	{ 0x00007011, 0x0000009D, 0x0 },
216 	{ 0x00000018, 0x000000A0, 0x0 },
217 	{ 0x00006012, 0x000000DF, 0x0 },
218 	{ 0x00000018, 0x0000008A, 0x0 },
219 };
220 
221 /* Skylake U, H and S */
222 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 	{ 0x00000018, 0x000000AC, 0x0 },
224 	{ 0x00005012, 0x0000009D, 0x0 },
225 	{ 0x00007011, 0x00000088, 0x0 },
226 	{ 0x00000018, 0x000000A1, 0x0 },
227 	{ 0x00000018, 0x00000098, 0x0 },
228 	{ 0x00004013, 0x00000088, 0x0 },
229 	{ 0x80006012, 0x000000CD, 0x1 },
230 	{ 0x00000018, 0x000000DF, 0x0 },
231 	{ 0x80003015, 0x000000CD, 0x1 },	/* Default */
232 	{ 0x80003015, 0x000000C0, 0x1 },
233 	{ 0x80000018, 0x000000C0, 0x1 },
234 };
235 
236 /* Skylake Y */
237 static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 	{ 0x00000018, 0x000000A1, 0x0 },
239 	{ 0x00005012, 0x000000DF, 0x0 },
240 	{ 0x80007011, 0x000000CB, 0x3 },
241 	{ 0x00000018, 0x000000A4, 0x0 },
242 	{ 0x00000018, 0x0000009D, 0x0 },
243 	{ 0x00004013, 0x00000080, 0x0 },
244 	{ 0x80006013, 0x000000C0, 0x3 },
245 	{ 0x00000018, 0x0000008A, 0x0 },
246 	{ 0x80003015, 0x000000C0, 0x3 },	/* Default */
247 	{ 0x80003015, 0x000000C0, 0x3 },
248 	{ 0x80000018, 0x000000C0, 0x3 },
249 };
250 
251 struct bxt_ddi_buf_trans {
252 	u32 margin;	/* swing value */
253 	u32 scale;	/* scale value */
254 	u32 enable;	/* scale enable */
255 	u32 deemphasis;
256 	bool default_index; /* true if the entry represents default value */
257 };
258 
259 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
260 					/* Idx	NT mV diff	db  */
261 	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
262 	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
263 	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
264 	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
265 	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
266 	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
267 	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
268 	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
269 	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
270 	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
271 };
272 
273 static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
274 					/* Idx	NT mV diff	db  */
275 	{ 26, 0, 0, 128, false },	/* 0:	200		0   */
276 	{ 38, 0, 0, 112, false },	/* 1:	200		1.5 */
277 	{ 48, 0, 0, 96,  false },	/* 2:	200		4   */
278 	{ 54, 0, 0, 69,  false },	/* 3:	200		6   */
279 	{ 32, 0, 0, 128, false },	/* 4:	250		0   */
280 	{ 48, 0, 0, 104, false },	/* 5:	250		1.5 */
281 	{ 54, 0, 0, 85,  false },	/* 6:	250		4   */
282 	{ 43, 0, 0, 128, false },	/* 7:	300		0   */
283 	{ 54, 0, 0, 101, false },	/* 8:	300		1.5 */
284 	{ 48, 0, 0, 128, false },	/* 9:	300		0   */
285 };
286 
287 /* BSpec has 2 recommended values - entries 0 and 8.
288  * Using the entry with higher vswing.
289  */
290 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
291 					/* Idx	NT mV diff	db  */
292 	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
293 	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
294 	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
295 	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
296 	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
297 	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
298 	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
299 	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
300 	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
301 	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
302 };
303 
304 static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
305 				    u32 level, enum port port, int type);
306 
307 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
308 				 struct intel_digital_port **dig_port,
309 				 enum port *port)
310 {
311 	struct drm_encoder *encoder = &intel_encoder->base;
312 
313 	switch (intel_encoder->type) {
314 	case INTEL_OUTPUT_DP_MST:
315 		*dig_port = enc_to_mst(encoder)->primary;
316 		*port = (*dig_port)->port;
317 		break;
318 	default:
319 		WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
320 		/* fallthrough and treat as unknown */
321 	case INTEL_OUTPUT_DISPLAYPORT:
322 	case INTEL_OUTPUT_EDP:
323 	case INTEL_OUTPUT_HDMI:
324 	case INTEL_OUTPUT_UNKNOWN:
325 		*dig_port = enc_to_dig_port(encoder);
326 		*port = (*dig_port)->port;
327 		break;
328 	case INTEL_OUTPUT_ANALOG:
329 		*dig_port = NULL;
330 		*port = PORT_E;
331 		break;
332 	}
333 }
334 
335 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
336 {
337 	struct intel_digital_port *dig_port;
338 	enum port port;
339 
340 	ddi_get_encoder_port(intel_encoder, &dig_port, &port);
341 
342 	return port;
343 }
344 
345 static const struct ddi_buf_trans *
346 skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
347 {
348 	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
349 		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
350 		return skl_y_ddi_translations_dp;
351 	} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
352 		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
353 		return skl_u_ddi_translations_dp;
354 	} else {
355 		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
356 		return skl_ddi_translations_dp;
357 	}
358 }
359 
360 static const struct ddi_buf_trans *
361 skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
362 {
363 	if (dev_priv->vbt.edp.low_vswing) {
364 		if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
365 			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
366 			return skl_y_ddi_translations_edp;
367 		} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
368 			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
369 			return skl_u_ddi_translations_edp;
370 		} else {
371 			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
372 			return skl_ddi_translations_edp;
373 		}
374 	}
375 
376 	return skl_get_buf_trans_dp(dev_priv, n_entries);
377 }
378 
379 static const struct ddi_buf_trans *
380 skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
381 {
382 	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
383 		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
384 		return skl_y_ddi_translations_hdmi;
385 	} else {
386 		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
387 		return skl_ddi_translations_hdmi;
388 	}
389 }
390 
391 static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
392 {
393 	int n_hdmi_entries;
394 	int hdmi_level;
395 	int hdmi_default_entry;
396 
397 	hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
398 
399 	if (IS_BROXTON(dev_priv))
400 		return hdmi_level;
401 
402 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
403 		skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
404 		hdmi_default_entry = 8;
405 	} else if (IS_BROADWELL(dev_priv)) {
406 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
407 		hdmi_default_entry = 7;
408 	} else if (IS_HASWELL(dev_priv)) {
409 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
410 		hdmi_default_entry = 6;
411 	} else {
412 		WARN(1, "ddi translation table missing\n");
413 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
414 		hdmi_default_entry = 7;
415 	}
416 
417 	/* Choose a good default if VBT is badly populated */
418 	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
419 	    hdmi_level >= n_hdmi_entries)
420 		hdmi_level = hdmi_default_entry;
421 
422 	return hdmi_level;
423 }
424 
425 /*
426  * Starting with Haswell, DDI port buffers must be programmed with correct
427  * values in advance. The buffer values are different for FDI and DP modes,
428  * but the HDMI/DVI fields are shared among those. So we program the DDI
429  * in either FDI or DP modes only, as HDMI connections will work with both
430  * of those
431  */
432 void intel_prepare_ddi_buffer(struct intel_encoder *encoder)
433 {
434 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
435 	u32 iboost_bit = 0;
436 	int i, n_hdmi_entries, n_dp_entries, n_edp_entries,
437 	    size;
438 	int hdmi_level;
439 	enum port port;
440 	const struct ddi_buf_trans *ddi_translations_fdi;
441 	const struct ddi_buf_trans *ddi_translations_dp;
442 	const struct ddi_buf_trans *ddi_translations_edp;
443 	const struct ddi_buf_trans *ddi_translations_hdmi;
444 	const struct ddi_buf_trans *ddi_translations;
445 
446 	port = intel_ddi_get_encoder_port(encoder);
447 	hdmi_level = intel_ddi_hdmi_level(dev_priv, port);
448 
449 	if (IS_BROXTON(dev_priv)) {
450 		if (encoder->type != INTEL_OUTPUT_HDMI)
451 			return;
452 
453 		/* Vswing programming for HDMI */
454 		bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
455 					INTEL_OUTPUT_HDMI);
456 		return;
457 	}
458 
459 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
460 		ddi_translations_fdi = NULL;
461 		ddi_translations_dp =
462 				skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
463 		ddi_translations_edp =
464 				skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
465 		ddi_translations_hdmi =
466 				skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
467 		/* If we're boosting the current, set bit 31 of trans1 */
468 		if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
469 		    dev_priv->vbt.ddi_port_info[port].dp_boost_level)
470 			iboost_bit = 1<<31;
471 
472 		if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
473 			    port != PORT_A && port != PORT_E &&
474 			    n_edp_entries > 9))
475 			n_edp_entries = 9;
476 	} else if (IS_BROADWELL(dev_priv)) {
477 		ddi_translations_fdi = bdw_ddi_translations_fdi;
478 		ddi_translations_dp = bdw_ddi_translations_dp;
479 
480 		if (dev_priv->vbt.edp.low_vswing) {
481 			ddi_translations_edp = bdw_ddi_translations_edp;
482 			n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
483 		} else {
484 			ddi_translations_edp = bdw_ddi_translations_dp;
485 			n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
486 		}
487 
488 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
489 
490 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
491 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
492 	} else if (IS_HASWELL(dev_priv)) {
493 		ddi_translations_fdi = hsw_ddi_translations_fdi;
494 		ddi_translations_dp = hsw_ddi_translations_dp;
495 		ddi_translations_edp = hsw_ddi_translations_dp;
496 		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
497 		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
498 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
499 	} else {
500 		WARN(1, "ddi translation table missing\n");
501 		ddi_translations_edp = bdw_ddi_translations_dp;
502 		ddi_translations_fdi = bdw_ddi_translations_fdi;
503 		ddi_translations_dp = bdw_ddi_translations_dp;
504 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
505 		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
506 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
507 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
508 	}
509 
510 	switch (encoder->type) {
511 	case INTEL_OUTPUT_EDP:
512 		ddi_translations = ddi_translations_edp;
513 		size = n_edp_entries;
514 		break;
515 	case INTEL_OUTPUT_DISPLAYPORT:
516 	case INTEL_OUTPUT_HDMI:
517 		ddi_translations = ddi_translations_dp;
518 		size = n_dp_entries;
519 		break;
520 	case INTEL_OUTPUT_ANALOG:
521 		ddi_translations = ddi_translations_fdi;
522 		size = n_dp_entries;
523 		break;
524 	default:
525 		BUG();
526 	}
527 
528 	for (i = 0; i < size; i++) {
529 		I915_WRITE(DDI_BUF_TRANS_LO(port, i),
530 			   ddi_translations[i].trans1 | iboost_bit);
531 		I915_WRITE(DDI_BUF_TRANS_HI(port, i),
532 			   ddi_translations[i].trans2);
533 	}
534 
535 	if (encoder->type != INTEL_OUTPUT_HDMI)
536 		return;
537 
538 	/* Entry 9 is for HDMI: */
539 	I915_WRITE(DDI_BUF_TRANS_LO(port, i),
540 		   ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
541 	I915_WRITE(DDI_BUF_TRANS_HI(port, i),
542 		   ddi_translations_hdmi[hdmi_level].trans2);
543 }
544 
545 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
546 				    enum port port)
547 {
548 	i915_reg_t reg = DDI_BUF_CTL(port);
549 	int i;
550 
551 	for (i = 0; i < 16; i++) {
552 		udelay(1);
553 		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
554 			return;
555 	}
556 	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
557 }
558 
559 /* Starting with Haswell, different DDI ports can work in FDI mode for
560  * connection to the PCH-located connectors. For this, it is necessary to train
561  * both the DDI port and PCH receiver for the desired DDI buffer settings.
562  *
563  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
564  * please note that when FDI mode is active on DDI E, it shares 2 lines with
565  * DDI A (which is used for eDP)
566  */
567 
568 void hsw_fdi_link_train(struct drm_crtc *crtc)
569 {
570 	struct drm_device *dev = crtc->dev;
571 	struct drm_i915_private *dev_priv = dev->dev_private;
572 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
573 	struct intel_encoder *encoder;
574 	u32 temp, i, rx_ctl_val;
575 
576 	for_each_encoder_on_crtc(dev, crtc, encoder) {
577 		WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
578 		intel_prepare_ddi_buffer(encoder);
579 	}
580 
581 	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
582 	 * mode set "sequence for CRT port" document:
583 	 * - TP1 to TP2 time with the default value
584 	 * - FDI delay to 90h
585 	 *
586 	 * WaFDIAutoLinkSetTimingOverrride:hsw
587 	 */
588 	I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
589 				  FDI_RX_PWRDN_LANE0_VAL(2) |
590 				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
591 
592 	/* Enable the PCH Receiver FDI PLL */
593 	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
594 		     FDI_RX_PLL_ENABLE |
595 		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
596 	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
597 	POSTING_READ(FDI_RX_CTL(PIPE_A));
598 	udelay(220);
599 
600 	/* Switch from Rawclk to PCDclk */
601 	rx_ctl_val |= FDI_PCDCLK;
602 	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
603 
604 	/* Configure Port Clock Select */
605 	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
606 	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
607 
608 	/* Start the training iterating through available voltages and emphasis,
609 	 * testing each value twice. */
610 	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
611 		/* Configure DP_TP_CTL with auto-training */
612 		I915_WRITE(DP_TP_CTL(PORT_E),
613 					DP_TP_CTL_FDI_AUTOTRAIN |
614 					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
615 					DP_TP_CTL_LINK_TRAIN_PAT1 |
616 					DP_TP_CTL_ENABLE);
617 
618 		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
619 		 * DDI E does not support port reversal, the functionality is
620 		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
621 		 * port reversal bit */
622 		I915_WRITE(DDI_BUF_CTL(PORT_E),
623 			   DDI_BUF_CTL_ENABLE |
624 			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
625 			   DDI_BUF_TRANS_SELECT(i / 2));
626 		POSTING_READ(DDI_BUF_CTL(PORT_E));
627 
628 		udelay(600);
629 
630 		/* Program PCH FDI Receiver TU */
631 		I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
632 
633 		/* Enable PCH FDI Receiver with auto-training */
634 		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
635 		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
636 		POSTING_READ(FDI_RX_CTL(PIPE_A));
637 
638 		/* Wait for FDI receiver lane calibration */
639 		udelay(30);
640 
641 		/* Unset FDI_RX_MISC pwrdn lanes */
642 		temp = I915_READ(FDI_RX_MISC(PIPE_A));
643 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
644 		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
645 		POSTING_READ(FDI_RX_MISC(PIPE_A));
646 
647 		/* Wait for FDI auto training time */
648 		udelay(5);
649 
650 		temp = I915_READ(DP_TP_STATUS(PORT_E));
651 		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
652 			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
653 			break;
654 		}
655 
656 		/*
657 		 * Leave things enabled even if we failed to train FDI.
658 		 * Results in less fireworks from the state checker.
659 		 */
660 		if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
661 			DRM_ERROR("FDI link training failed!\n");
662 			break;
663 		}
664 
665 		rx_ctl_val &= ~FDI_RX_ENABLE;
666 		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
667 		POSTING_READ(FDI_RX_CTL(PIPE_A));
668 
669 		temp = I915_READ(DDI_BUF_CTL(PORT_E));
670 		temp &= ~DDI_BUF_CTL_ENABLE;
671 		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
672 		POSTING_READ(DDI_BUF_CTL(PORT_E));
673 
674 		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
675 		temp = I915_READ(DP_TP_CTL(PORT_E));
676 		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
677 		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
678 		I915_WRITE(DP_TP_CTL(PORT_E), temp);
679 		POSTING_READ(DP_TP_CTL(PORT_E));
680 
681 		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
682 
683 		/* Reset FDI_RX_MISC pwrdn lanes */
684 		temp = I915_READ(FDI_RX_MISC(PIPE_A));
685 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
686 		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
687 		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
688 		POSTING_READ(FDI_RX_MISC(PIPE_A));
689 	}
690 
691 	/* Enable normal pixel sending for FDI */
692 	I915_WRITE(DP_TP_CTL(PORT_E),
693 		   DP_TP_CTL_FDI_AUTOTRAIN |
694 		   DP_TP_CTL_LINK_TRAIN_NORMAL |
695 		   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
696 		   DP_TP_CTL_ENABLE);
697 }
698 
699 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
700 {
701 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
702 	struct intel_digital_port *intel_dig_port =
703 		enc_to_dig_port(&encoder->base);
704 
705 	intel_dp->DP = intel_dig_port->saved_port_bits |
706 		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
707 	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
708 }
709 
710 static struct intel_encoder *
711 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
712 {
713 	struct drm_device *dev = crtc->dev;
714 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
715 	struct intel_encoder *intel_encoder, *ret = NULL;
716 	int num_encoders = 0;
717 
718 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
719 		ret = intel_encoder;
720 		num_encoders++;
721 	}
722 
723 	if (num_encoders != 1)
724 		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
725 		     pipe_name(intel_crtc->pipe));
726 
727 	BUG_ON(ret == NULL);
728 	return ret;
729 }
730 
731 struct intel_encoder *
732 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
733 {
734 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
735 	struct intel_encoder *ret = NULL;
736 	struct drm_atomic_state *state;
737 	struct drm_connector *connector;
738 	struct drm_connector_state *connector_state;
739 	int num_encoders = 0;
740 	int i;
741 
742 	state = crtc_state->base.state;
743 
744 	for_each_connector_in_state(state, connector, connector_state, i) {
745 		if (connector_state->crtc != crtc_state->base.crtc)
746 			continue;
747 
748 		ret = to_intel_encoder(connector_state->best_encoder);
749 		num_encoders++;
750 	}
751 
752 	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
753 	     pipe_name(crtc->pipe));
754 
755 	BUG_ON(ret == NULL);
756 	return ret;
757 }
758 
759 #define LC_FREQ 2700
760 
761 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
762 				   i915_reg_t reg)
763 {
764 	int refclk = LC_FREQ;
765 	int n, p, r;
766 	u32 wrpll;
767 
768 	wrpll = I915_READ(reg);
769 	switch (wrpll & WRPLL_PLL_REF_MASK) {
770 	case WRPLL_PLL_SSC:
771 	case WRPLL_PLL_NON_SSC:
772 		/*
773 		 * We could calculate spread here, but our checking
774 		 * code only cares about 5% accuracy, and spread is a max of
775 		 * 0.5% downspread.
776 		 */
777 		refclk = 135;
778 		break;
779 	case WRPLL_PLL_LCPLL:
780 		refclk = LC_FREQ;
781 		break;
782 	default:
783 		WARN(1, "bad wrpll refclk\n");
784 		return 0;
785 	}
786 
787 	r = wrpll & WRPLL_DIVIDER_REF_MASK;
788 	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
789 	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
790 
791 	/* Convert to KHz, p & r have a fixed point portion */
792 	return (refclk * n * 100) / (p * r);
793 }
794 
795 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
796 			       uint32_t dpll)
797 {
798 	i915_reg_t cfgcr1_reg, cfgcr2_reg;
799 	uint32_t cfgcr1_val, cfgcr2_val;
800 	uint32_t p0, p1, p2, dco_freq;
801 
802 	cfgcr1_reg = DPLL_CFGCR1(dpll);
803 	cfgcr2_reg = DPLL_CFGCR2(dpll);
804 
805 	cfgcr1_val = I915_READ(cfgcr1_reg);
806 	cfgcr2_val = I915_READ(cfgcr2_reg);
807 
808 	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
809 	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
810 
811 	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
812 		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
813 	else
814 		p1 = 1;
815 
816 
817 	switch (p0) {
818 	case DPLL_CFGCR2_PDIV_1:
819 		p0 = 1;
820 		break;
821 	case DPLL_CFGCR2_PDIV_2:
822 		p0 = 2;
823 		break;
824 	case DPLL_CFGCR2_PDIV_3:
825 		p0 = 3;
826 		break;
827 	case DPLL_CFGCR2_PDIV_7:
828 		p0 = 7;
829 		break;
830 	}
831 
832 	switch (p2) {
833 	case DPLL_CFGCR2_KDIV_5:
834 		p2 = 5;
835 		break;
836 	case DPLL_CFGCR2_KDIV_2:
837 		p2 = 2;
838 		break;
839 	case DPLL_CFGCR2_KDIV_3:
840 		p2 = 3;
841 		break;
842 	case DPLL_CFGCR2_KDIV_1:
843 		p2 = 1;
844 		break;
845 	}
846 
847 	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
848 
849 	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
850 		1000) / 0x8000;
851 
852 	return dco_freq / (p0 * p1 * p2 * 5);
853 }
854 
855 static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
856 {
857 	int dotclock;
858 
859 	if (pipe_config->has_pch_encoder)
860 		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
861 						    &pipe_config->fdi_m_n);
862 	else if (pipe_config->has_dp_encoder)
863 		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
864 						    &pipe_config->dp_m_n);
865 	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
866 		dotclock = pipe_config->port_clock * 2 / 3;
867 	else
868 		dotclock = pipe_config->port_clock;
869 
870 	if (pipe_config->pixel_multiplier)
871 		dotclock /= pipe_config->pixel_multiplier;
872 
873 	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
874 }
875 
876 static void skl_ddi_clock_get(struct intel_encoder *encoder,
877 				struct intel_crtc_state *pipe_config)
878 {
879 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
880 	int link_clock = 0;
881 	uint32_t dpll_ctl1, dpll;
882 
883 	dpll = pipe_config->ddi_pll_sel;
884 
885 	dpll_ctl1 = I915_READ(DPLL_CTRL1);
886 
887 	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
888 		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
889 	} else {
890 		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
891 		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
892 
893 		switch (link_clock) {
894 		case DPLL_CTRL1_LINK_RATE_810:
895 			link_clock = 81000;
896 			break;
897 		case DPLL_CTRL1_LINK_RATE_1080:
898 			link_clock = 108000;
899 			break;
900 		case DPLL_CTRL1_LINK_RATE_1350:
901 			link_clock = 135000;
902 			break;
903 		case DPLL_CTRL1_LINK_RATE_1620:
904 			link_clock = 162000;
905 			break;
906 		case DPLL_CTRL1_LINK_RATE_2160:
907 			link_clock = 216000;
908 			break;
909 		case DPLL_CTRL1_LINK_RATE_2700:
910 			link_clock = 270000;
911 			break;
912 		default:
913 			WARN(1, "Unsupported link rate\n");
914 			break;
915 		}
916 		link_clock *= 2;
917 	}
918 
919 	pipe_config->port_clock = link_clock;
920 
921 	ddi_dotclock_get(pipe_config);
922 }
923 
924 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
925 			      struct intel_crtc_state *pipe_config)
926 {
927 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
928 	int link_clock = 0;
929 	u32 val, pll;
930 
931 	val = pipe_config->ddi_pll_sel;
932 	switch (val & PORT_CLK_SEL_MASK) {
933 	case PORT_CLK_SEL_LCPLL_810:
934 		link_clock = 81000;
935 		break;
936 	case PORT_CLK_SEL_LCPLL_1350:
937 		link_clock = 135000;
938 		break;
939 	case PORT_CLK_SEL_LCPLL_2700:
940 		link_clock = 270000;
941 		break;
942 	case PORT_CLK_SEL_WRPLL1:
943 		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
944 		break;
945 	case PORT_CLK_SEL_WRPLL2:
946 		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
947 		break;
948 	case PORT_CLK_SEL_SPLL:
949 		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
950 		if (pll == SPLL_PLL_FREQ_810MHz)
951 			link_clock = 81000;
952 		else if (pll == SPLL_PLL_FREQ_1350MHz)
953 			link_clock = 135000;
954 		else if (pll == SPLL_PLL_FREQ_2700MHz)
955 			link_clock = 270000;
956 		else {
957 			WARN(1, "bad spll freq\n");
958 			return;
959 		}
960 		break;
961 	default:
962 		WARN(1, "bad port clock sel\n");
963 		return;
964 	}
965 
966 	pipe_config->port_clock = link_clock * 2;
967 
968 	ddi_dotclock_get(pipe_config);
969 }
970 
971 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
972 				enum intel_dpll_id dpll)
973 {
974 	struct intel_shared_dpll *pll;
975 	struct intel_dpll_hw_state *state;
976 	intel_clock_t clock;
977 
978 	/* For DDI ports we always use a shared PLL. */
979 	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
980 		return 0;
981 
982 	pll = &dev_priv->shared_dplls[dpll];
983 	state = &pll->config.hw_state;
984 
985 	clock.m1 = 2;
986 	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
987 	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
988 		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
989 	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
990 	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
991 	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
992 
993 	return chv_calc_dpll_params(100000, &clock);
994 }
995 
996 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
997 				struct intel_crtc_state *pipe_config)
998 {
999 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1000 	enum port port = intel_ddi_get_encoder_port(encoder);
1001 	uint32_t dpll = port;
1002 
1003 	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1004 
1005 	ddi_dotclock_get(pipe_config);
1006 }
1007 
1008 void intel_ddi_clock_get(struct intel_encoder *encoder,
1009 			 struct intel_crtc_state *pipe_config)
1010 {
1011 	struct drm_device *dev = encoder->base.dev;
1012 
1013 	if (INTEL_INFO(dev)->gen <= 8)
1014 		hsw_ddi_clock_get(encoder, pipe_config);
1015 	else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1016 		skl_ddi_clock_get(encoder, pipe_config);
1017 	else if (IS_BROXTON(dev))
1018 		bxt_ddi_clock_get(encoder, pipe_config);
1019 }
1020 
1021 static bool
1022 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1023 		   struct intel_crtc_state *crtc_state,
1024 		   struct intel_encoder *intel_encoder)
1025 {
1026 	struct intel_shared_dpll *pll;
1027 
1028 	pll = intel_get_shared_dpll(intel_crtc, crtc_state,
1029 				    intel_encoder);
1030 	if (!pll)
1031 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1032 				 pipe_name(intel_crtc->pipe));
1033 
1034 	return pll;
1035 }
1036 
1037 static bool
1038 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1039 		   struct intel_crtc_state *crtc_state,
1040 		   struct intel_encoder *intel_encoder)
1041 {
1042 	struct intel_shared_dpll *pll;
1043 
1044 	pll = intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
1045 	if (pll == NULL) {
1046 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1047 				 pipe_name(intel_crtc->pipe));
1048 		return false;
1049 	}
1050 
1051 	return true;
1052 }
1053 
1054 static bool
1055 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1056 		   struct intel_crtc_state *crtc_state,
1057 		   struct intel_encoder *intel_encoder)
1058 {
1059 	return !!intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
1060 }
1061 
1062 /*
1063  * Tries to find a *shared* PLL for the CRTC and store it in
1064  * intel_crtc->ddi_pll_sel.
1065  *
1066  * For private DPLLs, compute_config() should do the selection for us. This
1067  * function should be folded into compute_config() eventually.
1068  */
1069 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1070 			  struct intel_crtc_state *crtc_state)
1071 {
1072 	struct drm_device *dev = intel_crtc->base.dev;
1073 	struct intel_encoder *intel_encoder =
1074 		intel_ddi_get_crtc_new_encoder(crtc_state);
1075 
1076 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1077 		return skl_ddi_pll_select(intel_crtc, crtc_state,
1078 					  intel_encoder);
1079 	else if (IS_BROXTON(dev))
1080 		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1081 					  intel_encoder);
1082 	else
1083 		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1084 					  intel_encoder);
1085 }
1086 
1087 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1088 {
1089 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1090 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1092 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1093 	int type = intel_encoder->type;
1094 	uint32_t temp;
1095 
1096 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1097 		WARN_ON(transcoder_is_dsi(cpu_transcoder));
1098 
1099 		temp = TRANS_MSA_SYNC_CLK;
1100 		switch (intel_crtc->config->pipe_bpp) {
1101 		case 18:
1102 			temp |= TRANS_MSA_6_BPC;
1103 			break;
1104 		case 24:
1105 			temp |= TRANS_MSA_8_BPC;
1106 			break;
1107 		case 30:
1108 			temp |= TRANS_MSA_10_BPC;
1109 			break;
1110 		case 36:
1111 			temp |= TRANS_MSA_12_BPC;
1112 			break;
1113 		default:
1114 			BUG();
1115 		}
1116 		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1117 	}
1118 }
1119 
1120 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1121 {
1122 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1123 	struct drm_device *dev = crtc->dev;
1124 	struct drm_i915_private *dev_priv = dev->dev_private;
1125 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1126 	uint32_t temp;
1127 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1128 	if (state == true)
1129 		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1130 	else
1131 		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1132 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1133 }
1134 
1135 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1136 {
1137 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1138 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1139 	struct drm_encoder *encoder = &intel_encoder->base;
1140 	struct drm_device *dev = crtc->dev;
1141 	struct drm_i915_private *dev_priv = dev->dev_private;
1142 	enum i915_pipe pipe = intel_crtc->pipe;
1143 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1144 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1145 	int type = intel_encoder->type;
1146 	uint32_t temp;
1147 
1148 	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1149 	temp = TRANS_DDI_FUNC_ENABLE;
1150 	temp |= TRANS_DDI_SELECT_PORT(port);
1151 
1152 	switch (intel_crtc->config->pipe_bpp) {
1153 	case 18:
1154 		temp |= TRANS_DDI_BPC_6;
1155 		break;
1156 	case 24:
1157 		temp |= TRANS_DDI_BPC_8;
1158 		break;
1159 	case 30:
1160 		temp |= TRANS_DDI_BPC_10;
1161 		break;
1162 	case 36:
1163 		temp |= TRANS_DDI_BPC_12;
1164 		break;
1165 	default:
1166 		BUG();
1167 	}
1168 
1169 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1170 		temp |= TRANS_DDI_PVSYNC;
1171 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1172 		temp |= TRANS_DDI_PHSYNC;
1173 
1174 	if (cpu_transcoder == TRANSCODER_EDP) {
1175 		switch (pipe) {
1176 		case PIPE_A:
1177 			/* On Haswell, can only use the always-on power well for
1178 			 * eDP when not using the panel fitter, and when not
1179 			 * using motion blur mitigation (which we don't
1180 			 * support). */
1181 			if (IS_HASWELL(dev) &&
1182 			    (intel_crtc->config->pch_pfit.enabled ||
1183 			     intel_crtc->config->pch_pfit.force_thru))
1184 				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1185 			else
1186 				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1187 			break;
1188 		case PIPE_B:
1189 			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1190 			break;
1191 		case PIPE_C:
1192 			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1193 			break;
1194 		default:
1195 			BUG();
1196 			break;
1197 		}
1198 	}
1199 
1200 	if (type == INTEL_OUTPUT_HDMI) {
1201 		if (intel_crtc->config->has_hdmi_sink)
1202 			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1203 		else
1204 			temp |= TRANS_DDI_MODE_SELECT_DVI;
1205 
1206 	} else if (type == INTEL_OUTPUT_ANALOG) {
1207 		temp |= TRANS_DDI_MODE_SELECT_FDI;
1208 		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1209 
1210 	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1211 		   type == INTEL_OUTPUT_EDP) {
1212 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1213 
1214 		if (intel_dp->is_mst) {
1215 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1216 		} else
1217 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1218 
1219 		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1220 	} else if (type == INTEL_OUTPUT_DP_MST) {
1221 		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1222 
1223 		if (intel_dp->is_mst) {
1224 			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1225 		} else
1226 			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1227 
1228 		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1229 	} else {
1230 		WARN(1, "Invalid encoder type %d for pipe %c\n",
1231 		     intel_encoder->type, pipe_name(pipe));
1232 	}
1233 
1234 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1235 }
1236 
1237 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1238 				       enum transcoder cpu_transcoder)
1239 {
1240 	i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1241 	uint32_t val = I915_READ(reg);
1242 
1243 	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1244 	val |= TRANS_DDI_PORT_NONE;
1245 	I915_WRITE(reg, val);
1246 }
1247 
1248 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1249 {
1250 	struct drm_device *dev = intel_connector->base.dev;
1251 	struct drm_i915_private *dev_priv = dev->dev_private;
1252 	struct intel_encoder *intel_encoder = intel_connector->encoder;
1253 	int type = intel_connector->base.connector_type;
1254 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1255 	enum i915_pipe pipe = 0;
1256 	enum transcoder cpu_transcoder;
1257 	enum intel_display_power_domain power_domain;
1258 	uint32_t tmp;
1259 	bool ret;
1260 
1261 	power_domain = intel_display_port_power_domain(intel_encoder);
1262 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1263 		return false;
1264 
1265 	if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
1266 		ret = false;
1267 		goto out;
1268 	}
1269 
1270 	if (port == PORT_A)
1271 		cpu_transcoder = TRANSCODER_EDP;
1272 	else
1273 		cpu_transcoder = (enum transcoder) pipe;
1274 
1275 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1276 
1277 	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1278 	case TRANS_DDI_MODE_SELECT_HDMI:
1279 	case TRANS_DDI_MODE_SELECT_DVI:
1280 		ret = type == DRM_MODE_CONNECTOR_HDMIA;
1281 		break;
1282 
1283 	case TRANS_DDI_MODE_SELECT_DP_SST:
1284 		ret = type == DRM_MODE_CONNECTOR_eDP ||
1285 		      type == DRM_MODE_CONNECTOR_DisplayPort;
1286 		break;
1287 
1288 	case TRANS_DDI_MODE_SELECT_DP_MST:
1289 		/* if the transcoder is in MST state then
1290 		 * connector isn't connected */
1291 		ret = false;
1292 		break;
1293 
1294 	case TRANS_DDI_MODE_SELECT_FDI:
1295 		ret = type == DRM_MODE_CONNECTOR_VGA;
1296 		break;
1297 
1298 	default:
1299 		ret = false;
1300 		break;
1301 	}
1302 
1303 out:
1304 	intel_display_power_put(dev_priv, power_domain);
1305 
1306 	return ret;
1307 }
1308 
1309 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1310 			    enum i915_pipe *pipe)
1311 {
1312 	struct drm_device *dev = encoder->base.dev;
1313 	struct drm_i915_private *dev_priv = dev->dev_private;
1314 	enum port port = intel_ddi_get_encoder_port(encoder);
1315 	enum intel_display_power_domain power_domain;
1316 	u32 tmp;
1317 	int i;
1318 	bool ret;
1319 
1320 	power_domain = intel_display_port_power_domain(encoder);
1321 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1322 		return false;
1323 
1324 	ret = false;
1325 
1326 	tmp = I915_READ(DDI_BUF_CTL(port));
1327 
1328 	if (!(tmp & DDI_BUF_CTL_ENABLE))
1329 		goto out;
1330 
1331 	if (port == PORT_A) {
1332 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1333 
1334 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1335 		case TRANS_DDI_EDP_INPUT_A_ON:
1336 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
1337 			*pipe = PIPE_A;
1338 			break;
1339 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
1340 			*pipe = PIPE_B;
1341 			break;
1342 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
1343 			*pipe = PIPE_C;
1344 			break;
1345 		}
1346 
1347 		ret = true;
1348 
1349 		goto out;
1350 	}
1351 
1352 	for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1353 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1354 
1355 		if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
1356 			if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
1357 			    TRANS_DDI_MODE_SELECT_DP_MST)
1358 				goto out;
1359 
1360 			*pipe = i;
1361 			ret = true;
1362 
1363 			goto out;
1364 		}
1365 	}
1366 
1367 	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1368 
1369 out:
1370 	intel_display_power_put(dev_priv, power_domain);
1371 
1372 	return ret;
1373 }
1374 
1375 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1376 {
1377 	struct drm_crtc *crtc = &intel_crtc->base;
1378 	struct drm_device *dev = crtc->dev;
1379 	struct drm_i915_private *dev_priv = dev->dev_private;
1380 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1381 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1382 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1383 
1384 	if (cpu_transcoder != TRANSCODER_EDP)
1385 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1386 			   TRANS_CLK_SEL_PORT(port));
1387 }
1388 
1389 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1390 {
1391 	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1392 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1393 
1394 	if (cpu_transcoder != TRANSCODER_EDP)
1395 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1396 			   TRANS_CLK_SEL_DISABLED);
1397 }
1398 
1399 static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
1400 				enum port port, uint8_t iboost)
1401 {
1402 	u32 tmp;
1403 
1404 	tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
1405 	tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
1406 	if (iboost)
1407 		tmp |= iboost << BALANCE_LEG_SHIFT(port);
1408 	else
1409 		tmp |= BALANCE_LEG_DISABLE(port);
1410 	I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
1411 }
1412 
1413 static void skl_ddi_set_iboost(struct intel_encoder *encoder, u32 level)
1414 {
1415 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
1416 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
1417 	enum port port = intel_dig_port->port;
1418 	int type = encoder->type;
1419 	const struct ddi_buf_trans *ddi_translations;
1420 	uint8_t iboost;
1421 	uint8_t dp_iboost, hdmi_iboost;
1422 	int n_entries;
1423 
1424 	/* VBT may override standard boost values */
1425 	dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
1426 	hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
1427 
1428 	if (type == INTEL_OUTPUT_DISPLAYPORT) {
1429 		if (dp_iboost) {
1430 			iboost = dp_iboost;
1431 		} else {
1432 			ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
1433 			iboost = ddi_translations[level].i_boost;
1434 		}
1435 	} else if (type == INTEL_OUTPUT_EDP) {
1436 		if (dp_iboost) {
1437 			iboost = dp_iboost;
1438 		} else {
1439 			ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
1440 
1441 			if (WARN_ON(port != PORT_A &&
1442 				    port != PORT_E && n_entries > 9))
1443 				n_entries = 9;
1444 
1445 			iboost = ddi_translations[level].i_boost;
1446 		}
1447 	} else if (type == INTEL_OUTPUT_HDMI) {
1448 		if (hdmi_iboost) {
1449 			iboost = hdmi_iboost;
1450 		} else {
1451 			ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
1452 			iboost = ddi_translations[level].i_boost;
1453 		}
1454 	} else {
1455 		return;
1456 	}
1457 
1458 	/* Make sure that the requested I_boost is valid */
1459 	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
1460 		DRM_ERROR("Invalid I_boost value %u\n", iboost);
1461 		return;
1462 	}
1463 
1464 	_skl_ddi_set_iboost(dev_priv, port, iboost);
1465 
1466 	if (port == PORT_A && intel_dig_port->max_lanes == 4)
1467 		_skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
1468 }
1469 
1470 static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
1471 				    u32 level, enum port port, int type)
1472 {
1473 	const struct bxt_ddi_buf_trans *ddi_translations;
1474 	u32 n_entries, i;
1475 	uint32_t val;
1476 
1477 	if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
1478 		n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
1479 		ddi_translations = bxt_ddi_translations_edp;
1480 	} else if (type == INTEL_OUTPUT_DISPLAYPORT
1481 			|| type == INTEL_OUTPUT_EDP) {
1482 		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
1483 		ddi_translations = bxt_ddi_translations_dp;
1484 	} else if (type == INTEL_OUTPUT_HDMI) {
1485 		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
1486 		ddi_translations = bxt_ddi_translations_hdmi;
1487 	} else {
1488 		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
1489 				type);
1490 		return;
1491 	}
1492 
1493 	/* Check if default value has to be used */
1494 	if (level >= n_entries ||
1495 	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
1496 		for (i = 0; i < n_entries; i++) {
1497 			if (ddi_translations[i].default_index) {
1498 				level = i;
1499 				break;
1500 			}
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * While we write to the group register to program all lanes at once we
1506 	 * can read only lane registers and we pick lanes 0/1 for that.
1507 	 */
1508 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1509 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
1510 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1511 
1512 	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
1513 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
1514 	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
1515 	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
1516 	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
1517 
1518 	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
1519 	val &= ~SCALE_DCOMP_METHOD;
1520 	if (ddi_translations[level].enable)
1521 		val |= SCALE_DCOMP_METHOD;
1522 
1523 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
1524 		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
1525 
1526 	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
1527 
1528 	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
1529 	val &= ~DE_EMPHASIS;
1530 	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
1531 	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
1532 
1533 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1534 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
1535 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1536 }
1537 
1538 static uint32_t translate_signal_level(int signal_levels)
1539 {
1540 	uint32_t level;
1541 
1542 	switch (signal_levels) {
1543 	default:
1544 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
1545 			      signal_levels);
1546 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1547 		level = 0;
1548 		break;
1549 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1550 		level = 1;
1551 		break;
1552 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
1553 		level = 2;
1554 		break;
1555 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
1556 		level = 3;
1557 		break;
1558 
1559 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1560 		level = 4;
1561 		break;
1562 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1563 		level = 5;
1564 		break;
1565 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
1566 		level = 6;
1567 		break;
1568 
1569 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1570 		level = 7;
1571 		break;
1572 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1573 		level = 8;
1574 		break;
1575 
1576 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1577 		level = 9;
1578 		break;
1579 	}
1580 
1581 	return level;
1582 }
1583 
1584 uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
1585 {
1586 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1587 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
1588 	struct intel_encoder *encoder = &dport->base;
1589 	uint8_t train_set = intel_dp->train_set[0];
1590 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1591 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1592 	enum port port = dport->port;
1593 	uint32_t level;
1594 
1595 	level = translate_signal_level(signal_levels);
1596 
1597 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1598 		skl_ddi_set_iboost(encoder, level);
1599 	else if (IS_BROXTON(dev_priv))
1600 		bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
1601 
1602 	return DDI_BUF_TRANS_SELECT(level);
1603 }
1604 
1605 void intel_ddi_clk_select(struct intel_encoder *encoder,
1606 			  const struct intel_crtc_state *pipe_config)
1607 {
1608 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1609 	enum port port = intel_ddi_get_encoder_port(encoder);
1610 
1611 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1612 		uint32_t dpll = pipe_config->ddi_pll_sel;
1613 		uint32_t val;
1614 
1615 		/* DDI -> PLL mapping  */
1616 		val = I915_READ(DPLL_CTRL2);
1617 
1618 		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1619 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1620 		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1621 			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1622 
1623 		I915_WRITE(DPLL_CTRL2, val);
1624 
1625 	} else if (INTEL_INFO(dev_priv)->gen < 9) {
1626 		WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1627 		I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
1628 	}
1629 }
1630 
1631 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1632 {
1633 	struct drm_encoder *encoder = &intel_encoder->base;
1634 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
1635 	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1636 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1637 	int type = intel_encoder->type;
1638 
1639 	if (type == INTEL_OUTPUT_HDMI) {
1640 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1641 
1642 		intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
1643 	}
1644 
1645 	intel_prepare_ddi_buffer(intel_encoder);
1646 
1647 	if (type == INTEL_OUTPUT_EDP) {
1648 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1649 		intel_edp_panel_on(intel_dp);
1650 	}
1651 
1652 	intel_ddi_clk_select(intel_encoder, crtc->config);
1653 
1654 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1655 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1656 
1657 		intel_dp_set_link_params(intel_dp, crtc->config);
1658 
1659 		intel_ddi_init_dp_buf_reg(intel_encoder);
1660 
1661 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1662 		intel_dp_start_link_train(intel_dp);
1663 		if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
1664 			intel_dp_stop_link_train(intel_dp);
1665 	} else if (type == INTEL_OUTPUT_HDMI) {
1666 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1667 		int level = intel_ddi_hdmi_level(dev_priv, port);
1668 
1669 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1670 			skl_ddi_set_iboost(intel_encoder, level);
1671 
1672 		intel_hdmi->set_infoframes(encoder,
1673 					   crtc->config->has_hdmi_sink,
1674 					   &crtc->config->base.adjusted_mode);
1675 	}
1676 }
1677 
1678 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1679 {
1680 	struct drm_encoder *encoder = &intel_encoder->base;
1681 	struct drm_device *dev = encoder->dev;
1682 	struct drm_i915_private *dev_priv = dev->dev_private;
1683 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1684 	int type = intel_encoder->type;
1685 	uint32_t val;
1686 	bool wait = false;
1687 
1688 	val = I915_READ(DDI_BUF_CTL(port));
1689 	if (val & DDI_BUF_CTL_ENABLE) {
1690 		val &= ~DDI_BUF_CTL_ENABLE;
1691 		I915_WRITE(DDI_BUF_CTL(port), val);
1692 		wait = true;
1693 	}
1694 
1695 	val = I915_READ(DP_TP_CTL(port));
1696 	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1697 	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1698 	I915_WRITE(DP_TP_CTL(port), val);
1699 
1700 	if (wait)
1701 		intel_wait_ddi_buf_idle(dev_priv, port);
1702 
1703 	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1704 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1705 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1706 		intel_edp_panel_vdd_on(intel_dp);
1707 		intel_edp_panel_off(intel_dp);
1708 	}
1709 
1710 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1711 		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1712 					DPLL_CTRL2_DDI_CLK_OFF(port)));
1713 	else if (INTEL_INFO(dev)->gen < 9)
1714 		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1715 
1716 	if (type == INTEL_OUTPUT_HDMI) {
1717 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1718 
1719 		intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
1720 	}
1721 }
1722 
1723 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1724 {
1725 	struct drm_encoder *encoder = &intel_encoder->base;
1726 	struct drm_crtc *crtc = encoder->crtc;
1727 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1728 	struct drm_device *dev = encoder->dev;
1729 	struct drm_i915_private *dev_priv = dev->dev_private;
1730 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1731 	int type = intel_encoder->type;
1732 
1733 	if (type == INTEL_OUTPUT_HDMI) {
1734 		struct intel_digital_port *intel_dig_port =
1735 			enc_to_dig_port(encoder);
1736 
1737 		/* In HDMI/DVI mode, the port width, and swing/emphasis values
1738 		 * are ignored so nothing special needs to be done besides
1739 		 * enabling the port.
1740 		 */
1741 		I915_WRITE(DDI_BUF_CTL(port),
1742 			   intel_dig_port->saved_port_bits |
1743 			   DDI_BUF_CTL_ENABLE);
1744 	} else if (type == INTEL_OUTPUT_EDP) {
1745 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1746 
1747 		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1748 			intel_dp_stop_link_train(intel_dp);
1749 
1750 		intel_edp_backlight_on(intel_dp);
1751 		intel_psr_enable(intel_dp);
1752 		intel_edp_drrs_enable(intel_dp);
1753 	}
1754 
1755 	if (intel_crtc->config->has_audio) {
1756 		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1757 		intel_audio_codec_enable(intel_encoder);
1758 	}
1759 }
1760 
1761 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1762 {
1763 	struct drm_encoder *encoder = &intel_encoder->base;
1764 	struct drm_crtc *crtc = encoder->crtc;
1765 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1766 	int type = intel_encoder->type;
1767 	struct drm_device *dev = encoder->dev;
1768 	struct drm_i915_private *dev_priv = dev->dev_private;
1769 
1770 	if (intel_crtc->config->has_audio) {
1771 		intel_audio_codec_disable(intel_encoder);
1772 		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1773 	}
1774 
1775 	if (type == INTEL_OUTPUT_EDP) {
1776 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1777 
1778 		intel_edp_drrs_disable(intel_dp);
1779 		intel_psr_disable(intel_dp);
1780 		intel_edp_backlight_off(intel_dp);
1781 	}
1782 }
1783 
1784 static bool broxton_phy_is_enabled(struct drm_i915_private *dev_priv,
1785 				   enum dpio_phy phy)
1786 {
1787 	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
1788 		return false;
1789 
1790 	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
1791 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
1792 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
1793 				 phy);
1794 
1795 		return false;
1796 	}
1797 
1798 	if (phy == DPIO_PHY1 &&
1799 	    !(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE)) {
1800 		DRM_DEBUG_DRIVER("DDI PHY 1 powered, but GRC isn't done\n");
1801 
1802 		return false;
1803 	}
1804 
1805 	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
1806 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
1807 				 phy);
1808 
1809 		return false;
1810 	}
1811 
1812 	return true;
1813 }
1814 
1815 static u32 broxton_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
1816 {
1817 	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
1818 
1819 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
1820 }
1821 
1822 static void broxton_phy_wait_grc_done(struct drm_i915_private *dev_priv,
1823 				      enum dpio_phy phy)
1824 {
1825 	if (wait_for(I915_READ(BXT_PORT_REF_DW3(phy)) & GRC_DONE, 10))
1826 		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
1827 }
1828 
1829 static bool broxton_phy_verify_state(struct drm_i915_private *dev_priv,
1830 				     enum dpio_phy phy);
1831 
1832 static void broxton_phy_init(struct drm_i915_private *dev_priv,
1833 			     enum dpio_phy phy)
1834 {
1835 	enum port port;
1836 	u32 ports, val;
1837 
1838 	if (broxton_phy_is_enabled(dev_priv, phy)) {
1839 		/* Still read out the GRC value for state verification */
1840 		if (phy == DPIO_PHY0)
1841 			dev_priv->bxt_phy_grc = broxton_get_grc(dev_priv, phy);
1842 
1843 		if (broxton_phy_verify_state(dev_priv, phy)) {
1844 			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
1845 					 "won't reprogram it\n", phy);
1846 
1847 			return;
1848 		}
1849 
1850 		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
1851 				 "force reprogramming it\n", phy);
1852 	} else {
1853 		DRM_DEBUG_DRIVER("DDI PHY %d not enabled, enabling it\n", phy);
1854 	}
1855 
1856 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
1857 	val |= GT_DISPLAY_POWER_ON(phy);
1858 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
1859 
1860 	/*
1861 	 * The PHY registers start out inaccessible and respond to reads with
1862 	 * all 1s.  Eventually they become accessible as they power up, then
1863 	 * the reserved bit will give the default 0.  Poll on the reserved bit
1864 	 * becoming 0 to find when the PHY is accessible.
1865 	 * HW team confirmed that the time to reach phypowergood status is
1866 	 * anywhere between 50 us and 100us.
1867 	 */
1868 	if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
1869 		(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
1870 		DRM_ERROR("timeout during PHY%d power on\n", phy);
1871 	}
1872 
1873 	if (phy == DPIO_PHY0)
1874 		ports = BIT(PORT_B) | BIT(PORT_C);
1875 	else
1876 		ports = BIT(PORT_A);
1877 
1878 	for_each_port_masked(port, ports) {
1879 		int lane;
1880 
1881 		for (lane = 0; lane < 4; lane++) {
1882 			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
1883 			/*
1884 			 * Note that on CHV this flag is called UPAR, but has
1885 			 * the same function.
1886 			 */
1887 			val &= ~LATENCY_OPTIM;
1888 			if (lane != 1)
1889 				val |= LATENCY_OPTIM;
1890 
1891 			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
1892 		}
1893 	}
1894 
1895 	/* Program PLL Rcomp code offset */
1896 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
1897 	val &= ~IREF0RC_OFFSET_MASK;
1898 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
1899 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
1900 
1901 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
1902 	val &= ~IREF1RC_OFFSET_MASK;
1903 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
1904 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
1905 
1906 	/* Program power gating */
1907 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
1908 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
1909 		SUS_CLK_CONFIG;
1910 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
1911 
1912 	if (phy == DPIO_PHY0) {
1913 		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
1914 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
1915 		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
1916 	}
1917 
1918 	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
1919 	val &= ~OCL2_LDOFUSE_PWR_DIS;
1920 	/*
1921 	 * On PHY1 disable power on the second channel, since no port is
1922 	 * connected there. On PHY0 both channels have a port, so leave it
1923 	 * enabled.
1924 	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
1925 	 * power down the second channel on PHY0 as well.
1926 	 *
1927 	 * FIXME: Clarify programming of the following, the register is
1928 	 * read-only with bit 6 fixed at 0 at least in stepping A.
1929 	 */
1930 	if (phy == DPIO_PHY1)
1931 		val |= OCL2_LDOFUSE_PWR_DIS;
1932 	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
1933 
1934 	if (phy == DPIO_PHY0) {
1935 		uint32_t grc_code;
1936 		/*
1937 		 * PHY0 isn't connected to an RCOMP resistor so copy over
1938 		 * the corresponding calibrated value from PHY1, and disable
1939 		 * the automatic calibration on PHY0.
1940 		 */
1941 		broxton_phy_wait_grc_done(dev_priv, DPIO_PHY1);
1942 
1943 		val = dev_priv->bxt_phy_grc = broxton_get_grc(dev_priv,
1944 							      DPIO_PHY1);
1945 		grc_code = val << GRC_CODE_FAST_SHIFT |
1946 			   val << GRC_CODE_SLOW_SHIFT |
1947 			   val;
1948 		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
1949 
1950 		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
1951 		val |= GRC_DIS | GRC_RDY_OVRD;
1952 		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
1953 	}
1954 	/*
1955 	 * During PHY1 init delay waiting for GRC calibration to finish, since
1956 	 * it can happen in parallel with the subsequent PHY0 init.
1957 	 */
1958 
1959 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
1960 	val |= COMMON_RESET_DIS;
1961 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
1962 }
1963 
1964 void broxton_ddi_phy_init(struct drm_i915_private *dev_priv)
1965 {
1966 	/* Enable PHY1 first since it provides Rcomp for PHY0 */
1967 	broxton_phy_init(dev_priv, DPIO_PHY1);
1968 	broxton_phy_init(dev_priv, DPIO_PHY0);
1969 
1970 	/*
1971 	 * If BIOS enabled only PHY0 and not PHY1, we skipped waiting for the
1972 	 * PHY1 GRC calibration to finish, so wait for it here.
1973 	 */
1974 	broxton_phy_wait_grc_done(dev_priv, DPIO_PHY1);
1975 }
1976 
1977 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
1978 			       enum dpio_phy phy)
1979 {
1980 	uint32_t val;
1981 
1982 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
1983 	val &= ~COMMON_RESET_DIS;
1984 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
1985 
1986 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
1987 	val &= ~GT_DISPLAY_POWER_ON(phy);
1988 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
1989 }
1990 
1991 void broxton_ddi_phy_uninit(struct drm_i915_private *dev_priv)
1992 {
1993 	broxton_phy_uninit(dev_priv, DPIO_PHY1);
1994 	broxton_phy_uninit(dev_priv, DPIO_PHY0);
1995 }
1996 
1997 static bool __printf(6, 7)
1998 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1999 		       i915_reg_t reg, u32 mask, u32 expected,
2000 		       const char *reg_fmt, ...)
2001 {
2002 	struct va_format vaf;
2003 	__va_list args;
2004 	u32 val;
2005 
2006 	val = I915_READ(reg);
2007 	if ((val & mask) == expected)
2008 		return true;
2009 
2010 	__va_start(args, reg_fmt);
2011 	vaf.fmt = reg_fmt;
2012 	vaf.va = &args;
2013 
2014 	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
2015 			 "current %08x, expected %08x (mask %08x)\n",
2016 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
2017 			 mask);
2018 
2019 	__va_end(args);
2020 
2021 	return false;
2022 }
2023 
2024 static bool broxton_phy_verify_state(struct drm_i915_private *dev_priv,
2025 				     enum dpio_phy phy)
2026 {
2027 	enum port port;
2028 	u32 ports;
2029 	uint32_t mask;
2030 	bool ok;
2031 
2032 #define _CHK(reg, mask, exp, fmt, ...)					\
2033 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
2034 			       ## __VA_ARGS__)
2035 
2036 	/* We expect the PHY to be always enabled */
2037 	if (!broxton_phy_is_enabled(dev_priv, phy))
2038 		return false;
2039 
2040 	ok = true;
2041 
2042 	if (phy == DPIO_PHY0)
2043 		ports = BIT(PORT_B) | BIT(PORT_C);
2044 	else
2045 		ports = BIT(PORT_A);
2046 
2047 	for_each_port_masked(port, ports) {
2048 		int lane;
2049 
2050 		for (lane = 0; lane < 4; lane++)
2051 			ok &= _CHK(BXT_PORT_TX_DW14_LN(port, lane),
2052 				    LATENCY_OPTIM,
2053 				    lane != 1 ? LATENCY_OPTIM : 0,
2054 				    "BXT_PORT_TX_DW14_LN(%d, %d)", port, lane);
2055 	}
2056 
2057 	/* PLL Rcomp code offset */
2058 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
2059 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
2060 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
2061 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
2062 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
2063 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
2064 
2065 	/* Power gating */
2066 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
2067 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
2068 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
2069 
2070 	if (phy == DPIO_PHY0)
2071 		ok &= _CHK(BXT_PORT_CL2CM_DW6_BC,
2072 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
2073 			   "BXT_PORT_CL2CM_DW6_BC");
2074 
2075 	/*
2076 	 * TODO: Verify BXT_PORT_CL1CM_DW30 bit OCL2_LDOFUSE_PWR_DIS,
2077 	 * at least on stepping A this bit is read-only and fixed at 0.
2078 	 */
2079 
2080 	if (phy == DPIO_PHY0) {
2081 		u32 grc_code = dev_priv->bxt_phy_grc;
2082 
2083 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
2084 			   grc_code << GRC_CODE_SLOW_SHIFT |
2085 			   grc_code;
2086 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
2087 		       GRC_CODE_NOM_MASK;
2088 		ok &= _CHK(BXT_PORT_REF_DW6(DPIO_PHY0), mask, grc_code,
2089 			    "BXT_PORT_REF_DW6(%d)", DPIO_PHY0);
2090 
2091 		mask = GRC_DIS | GRC_RDY_OVRD;
2092 		ok &= _CHK(BXT_PORT_REF_DW8(DPIO_PHY0), mask, mask,
2093 			    "BXT_PORT_REF_DW8(%d)", DPIO_PHY0);
2094 	}
2095 
2096 	return ok;
2097 #undef _CHK
2098 }
2099 
2100 void broxton_ddi_phy_verify_state(struct drm_i915_private *dev_priv)
2101 {
2102 	if (!broxton_phy_verify_state(dev_priv, DPIO_PHY0) ||
2103 	    !broxton_phy_verify_state(dev_priv, DPIO_PHY1))
2104 		i915_report_error(dev_priv, "DDI PHY state mismatch\n");
2105 }
2106 
2107 void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
2108 {
2109 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2110 	struct drm_i915_private *dev_priv =
2111 		to_i915(intel_dig_port->base.base.dev);
2112 	enum port port = intel_dig_port->port;
2113 	uint32_t val;
2114 	bool wait = false;
2115 
2116 	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2117 		val = I915_READ(DDI_BUF_CTL(port));
2118 		if (val & DDI_BUF_CTL_ENABLE) {
2119 			val &= ~DDI_BUF_CTL_ENABLE;
2120 			I915_WRITE(DDI_BUF_CTL(port), val);
2121 			wait = true;
2122 		}
2123 
2124 		val = I915_READ(DP_TP_CTL(port));
2125 		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2126 		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2127 		I915_WRITE(DP_TP_CTL(port), val);
2128 		POSTING_READ(DP_TP_CTL(port));
2129 
2130 		if (wait)
2131 			intel_wait_ddi_buf_idle(dev_priv, port);
2132 	}
2133 
2134 	val = DP_TP_CTL_ENABLE |
2135 	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2136 	if (intel_dp->is_mst)
2137 		val |= DP_TP_CTL_MODE_MST;
2138 	else {
2139 		val |= DP_TP_CTL_MODE_SST;
2140 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2141 			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2142 	}
2143 	I915_WRITE(DP_TP_CTL(port), val);
2144 	POSTING_READ(DP_TP_CTL(port));
2145 
2146 	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2147 	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2148 	POSTING_READ(DDI_BUF_CTL(port));
2149 
2150 	udelay(600);
2151 }
2152 
2153 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
2154 {
2155 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2156 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2157 	uint32_t val;
2158 
2159 	/*
2160 	 * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
2161 	 * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
2162 	 * step 13 is the correct place for it. Step 18 is where it was
2163 	 * originally before the BUN.
2164 	 */
2165 	val = I915_READ(FDI_RX_CTL(PIPE_A));
2166 	val &= ~FDI_RX_ENABLE;
2167 	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2168 
2169 	intel_ddi_post_disable(intel_encoder);
2170 
2171 	val = I915_READ(FDI_RX_MISC(PIPE_A));
2172 	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2173 	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2174 	I915_WRITE(FDI_RX_MISC(PIPE_A), val);
2175 
2176 	val = I915_READ(FDI_RX_CTL(PIPE_A));
2177 	val &= ~FDI_PCDCLK;
2178 	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2179 
2180 	val = I915_READ(FDI_RX_CTL(PIPE_A));
2181 	val &= ~FDI_RX_PLL_ENABLE;
2182 	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2183 }
2184 
2185 void intel_ddi_get_config(struct intel_encoder *encoder,
2186 			  struct intel_crtc_state *pipe_config)
2187 {
2188 	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2189 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2190 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2191 	struct intel_hdmi *intel_hdmi;
2192 	u32 temp, flags = 0;
2193 
2194 	/* XXX: DSI transcoder paranoia */
2195 	if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
2196 		return;
2197 
2198 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2199 	if (temp & TRANS_DDI_PHSYNC)
2200 		flags |= DRM_MODE_FLAG_PHSYNC;
2201 	else
2202 		flags |= DRM_MODE_FLAG_NHSYNC;
2203 	if (temp & TRANS_DDI_PVSYNC)
2204 		flags |= DRM_MODE_FLAG_PVSYNC;
2205 	else
2206 		flags |= DRM_MODE_FLAG_NVSYNC;
2207 
2208 	pipe_config->base.adjusted_mode.flags |= flags;
2209 
2210 	switch (temp & TRANS_DDI_BPC_MASK) {
2211 	case TRANS_DDI_BPC_6:
2212 		pipe_config->pipe_bpp = 18;
2213 		break;
2214 	case TRANS_DDI_BPC_8:
2215 		pipe_config->pipe_bpp = 24;
2216 		break;
2217 	case TRANS_DDI_BPC_10:
2218 		pipe_config->pipe_bpp = 30;
2219 		break;
2220 	case TRANS_DDI_BPC_12:
2221 		pipe_config->pipe_bpp = 36;
2222 		break;
2223 	default:
2224 		break;
2225 	}
2226 
2227 	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2228 	case TRANS_DDI_MODE_SELECT_HDMI:
2229 		pipe_config->has_hdmi_sink = true;
2230 		intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2231 
2232 		if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
2233 			pipe_config->has_infoframe = true;
2234 		/* fall through */
2235 	case TRANS_DDI_MODE_SELECT_DVI:
2236 		pipe_config->lane_count = 4;
2237 		break;
2238 	case TRANS_DDI_MODE_SELECT_FDI:
2239 		break;
2240 	case TRANS_DDI_MODE_SELECT_DP_SST:
2241 	case TRANS_DDI_MODE_SELECT_DP_MST:
2242 		pipe_config->has_dp_encoder = true;
2243 		pipe_config->lane_count =
2244 			((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
2245 		intel_dp_get_m_n(intel_crtc, pipe_config);
2246 		break;
2247 	default:
2248 		break;
2249 	}
2250 
2251 	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2252 		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2253 		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2254 			pipe_config->has_audio = true;
2255 	}
2256 
2257 	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
2258 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2259 		/*
2260 		 * This is a big fat ugly hack.
2261 		 *
2262 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2263 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2264 		 * unknown we fail to light up. Yet the same BIOS boots up with
2265 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2266 		 * max, not what it tells us to use.
2267 		 *
2268 		 * Note: This will still be broken if the eDP panel is not lit
2269 		 * up by the BIOS, and thus we can't get the mode at module
2270 		 * load.
2271 		 */
2272 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2273 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2274 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2275 	}
2276 
2277 	intel_ddi_clock_get(encoder, pipe_config);
2278 }
2279 
2280 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2281 				     struct intel_crtc_state *pipe_config)
2282 {
2283 	int type = encoder->type;
2284 	int port = intel_ddi_get_encoder_port(encoder);
2285 
2286 	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2287 
2288 	if (port == PORT_A)
2289 		pipe_config->cpu_transcoder = TRANSCODER_EDP;
2290 
2291 	if (type == INTEL_OUTPUT_HDMI)
2292 		return intel_hdmi_compute_config(encoder, pipe_config);
2293 	else
2294 		return intel_dp_compute_config(encoder, pipe_config);
2295 }
2296 
2297 static const struct drm_encoder_funcs intel_ddi_funcs = {
2298 	.reset = intel_dp_encoder_reset,
2299 	.destroy = intel_dp_encoder_destroy,
2300 };
2301 
2302 static struct intel_connector *
2303 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2304 {
2305 	struct intel_connector *connector;
2306 	enum port port = intel_dig_port->port;
2307 
2308 	connector = intel_connector_alloc();
2309 	if (!connector)
2310 		return NULL;
2311 
2312 	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2313 	if (!intel_dp_init_connector(intel_dig_port, connector)) {
2314 		kfree(connector);
2315 		return NULL;
2316 	}
2317 
2318 	return connector;
2319 }
2320 
2321 static struct intel_connector *
2322 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2323 {
2324 	struct intel_connector *connector;
2325 	enum port port = intel_dig_port->port;
2326 
2327 	connector = intel_connector_alloc();
2328 	if (!connector)
2329 		return NULL;
2330 
2331 	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2332 	intel_hdmi_init_connector(intel_dig_port, connector);
2333 
2334 	return connector;
2335 }
2336 
2337 void intel_ddi_init(struct drm_device *dev, enum port port)
2338 {
2339 	struct drm_i915_private *dev_priv = dev->dev_private;
2340 	struct intel_digital_port *intel_dig_port;
2341 	struct intel_encoder *intel_encoder;
2342 	struct drm_encoder *encoder;
2343 	bool init_hdmi, init_dp;
2344 	int max_lanes;
2345 
2346 	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
2347 		switch (port) {
2348 		case PORT_A:
2349 			max_lanes = 4;
2350 			break;
2351 		case PORT_E:
2352 			max_lanes = 0;
2353 			break;
2354 		default:
2355 			max_lanes = 4;
2356 			break;
2357 		}
2358 	} else {
2359 		switch (port) {
2360 		case PORT_A:
2361 			max_lanes = 2;
2362 			break;
2363 		case PORT_E:
2364 			max_lanes = 2;
2365 			break;
2366 		default:
2367 			max_lanes = 4;
2368 			break;
2369 		}
2370 	}
2371 
2372 	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2373 		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2374 	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2375 	if (!init_dp && !init_hdmi) {
2376 		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
2377 			      port_name(port));
2378 		return;
2379 	}
2380 
2381 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2382 	if (!intel_dig_port)
2383 		return;
2384 
2385 	intel_encoder = &intel_dig_port->base;
2386 	encoder = &intel_encoder->base;
2387 
2388 	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2389 			 DRM_MODE_ENCODER_TMDS, NULL);
2390 
2391 	intel_encoder->compute_config = intel_ddi_compute_config;
2392 	intel_encoder->enable = intel_enable_ddi;
2393 	intel_encoder->pre_enable = intel_ddi_pre_enable;
2394 	intel_encoder->disable = intel_disable_ddi;
2395 	intel_encoder->post_disable = intel_ddi_post_disable;
2396 	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2397 	intel_encoder->get_config = intel_ddi_get_config;
2398 	intel_encoder->suspend = intel_dp_encoder_suspend;
2399 
2400 	intel_dig_port->port = port;
2401 	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2402 					  (DDI_BUF_PORT_REVERSAL |
2403 					   DDI_A_4_LANES);
2404 
2405 	/*
2406 	 * Bspec says that DDI_A_4_LANES is the only supported configuration
2407 	 * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
2408 	 * wasn't lit up at boot.  Force this bit on in our internal
2409 	 * configuration so that we use the proper lane count for our
2410 	 * calculations.
2411 	 */
2412 	if (IS_BROXTON(dev) && port == PORT_A) {
2413 		if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
2414 			DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
2415 			intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
2416 			max_lanes = 4;
2417 		}
2418 	}
2419 
2420 	intel_dig_port->max_lanes = max_lanes;
2421 
2422 	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2423 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2424 	intel_encoder->cloneable = 0;
2425 
2426 	if (init_dp) {
2427 		if (!intel_ddi_init_dp_connector(intel_dig_port))
2428 			goto err;
2429 
2430 		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2431 		/*
2432 		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2433 		 * interrupts to check the external panel connection.
2434 		 */
2435 		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
2436 			dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
2437 		else
2438 			dev_priv->hotplug.irq_port[port] = intel_dig_port;
2439 	}
2440 
2441 	/* In theory we don't need the encoder->type check, but leave it just in
2442 	 * case we have some really bad VBTs... */
2443 	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2444 		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2445 			goto err;
2446 	}
2447 
2448 	return;
2449 
2450 err:
2451 	drm_encoder_cleanup(encoder);
2452 	kfree(intel_dig_port);
2453 }
2454