xref: /dragonfly/sys/dev/drm/i915/intel_display.c (revision 335b9e93)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51 
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 	return work->mmio_work.func;
55 }
56 
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 	DRM_FORMAT_C8,
60 	DRM_FORMAT_RGB565,
61 	DRM_FORMAT_XRGB1555,
62 	DRM_FORMAT_XRGB8888,
63 };
64 
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 	DRM_FORMAT_C8,
68 	DRM_FORMAT_RGB565,
69 	DRM_FORMAT_XRGB8888,
70 	DRM_FORMAT_XBGR8888,
71 	DRM_FORMAT_XRGB2101010,
72 	DRM_FORMAT_XBGR2101010,
73 };
74 
75 static const uint32_t skl_primary_formats[] = {
76 	DRM_FORMAT_C8,
77 	DRM_FORMAT_RGB565,
78 	DRM_FORMAT_XRGB8888,
79 	DRM_FORMAT_XBGR8888,
80 	DRM_FORMAT_ARGB8888,
81 	DRM_FORMAT_ABGR8888,
82 	DRM_FORMAT_XRGB2101010,
83 	DRM_FORMAT_XBGR2101010,
84 	DRM_FORMAT_YUYV,
85 	DRM_FORMAT_YVYU,
86 	DRM_FORMAT_UYVY,
87 	DRM_FORMAT_VYUY,
88 };
89 
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 	DRM_FORMAT_ARGB8888,
93 };
94 
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 				struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 				   struct intel_crtc_state *pipe_config);
99 
100 static int intel_framebuffer_init(struct drm_device *dev,
101 				  struct intel_framebuffer *ifb,
102 				  struct drm_mode_fb_cmd2 *mode_cmd,
103 				  struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108 					 struct intel_link_m_n *m_n,
109 					 struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114 			    const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116 			    const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 	struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128 
129 struct intel_limit {
130 	struct {
131 		int min, max;
132 	} dot, vco, n, m, m1, m2, p, p1;
133 
134 	struct {
135 		int dot_limit;
136 		int p2_slow, p2_fast;
137 	} p2;
138 };
139 
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144 
145 	/* Obtain SKU information */
146 	mutex_lock(&dev_priv->sb_lock);
147 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 		CCK_FUSE_HPLL_FREQ_MASK;
149 	mutex_unlock(&dev_priv->sb_lock);
150 
151 	return vco_freq[hpll_freq] * 1000;
152 }
153 
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 		      const char *name, u32 reg, int ref_freq)
156 {
157 	u32 val;
158 	int divider;
159 
160 	mutex_lock(&dev_priv->sb_lock);
161 	val = vlv_cck_read(dev_priv, reg);
162 	mutex_unlock(&dev_priv->sb_lock);
163 
164 	divider = val & CCK_FREQUENCY_VALUES;
165 
166 	WARN((val & CCK_FREQUENCY_STATUS) !=
167 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 	     "%s change in progress\n", name);
169 
170 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172 
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 				  const char *name, u32 reg)
175 {
176 	if (dev_priv->hpll_freq == 0)
177 		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178 
179 	return vlv_get_cck_clock(dev_priv, name, reg,
180 				 dev_priv->hpll_freq);
181 }
182 
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 	return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188 
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 	/* RAWCLK_FREQ_VLV register updated from power well code */
193 	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 				      CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196 
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 	uint32_t clkcfg;
201 
202 	/* hrawclock is 1/4 the FSB frequency */
203 	clkcfg = I915_READ(CLKCFG);
204 	switch (clkcfg & CLKCFG_FSB_MASK) {
205 	case CLKCFG_FSB_400:
206 		return 100000;
207 	case CLKCFG_FSB_533:
208 		return 133333;
209 	case CLKCFG_FSB_667:
210 		return 166667;
211 	case CLKCFG_FSB_800:
212 		return 200000;
213 	case CLKCFG_FSB_1067:
214 		return 266667;
215 	case CLKCFG_FSB_1333:
216 		return 333333;
217 	/* these two are just a guess; one of them might be right */
218 	case CLKCFG_FSB_1600:
219 	case CLKCFG_FSB_1600_ALT:
220 		return 400000;
221 	default:
222 		return 133333;
223 	}
224 }
225 
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 	if (HAS_PCH_SPLIT(dev_priv))
229 		dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 		dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 	else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 		dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 	else
235 		return; /* no rawclk on other platforms, or no need to know it */
236 
237 	DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239 
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 		return;
244 
245 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 						      CCK_CZ_CLOCK_CONTROL);
247 
248 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250 
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 		    const struct intel_crtc_state *pipe_config)
254 {
255 	if (HAS_DDI(dev_priv))
256 		return pipe_config->port_clock; /* SPLL */
257 	else if (IS_GEN5(dev_priv))
258 		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 	else
260 		return 270000;
261 }
262 
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 	.dot = { .min = 25000, .max = 350000 },
265 	.vco = { .min = 908000, .max = 1512000 },
266 	.n = { .min = 2, .max = 16 },
267 	.m = { .min = 96, .max = 140 },
268 	.m1 = { .min = 18, .max = 26 },
269 	.m2 = { .min = 6, .max = 16 },
270 	.p = { .min = 4, .max = 128 },
271 	.p1 = { .min = 2, .max = 33 },
272 	.p2 = { .dot_limit = 165000,
273 		.p2_slow = 4, .p2_fast = 2 },
274 };
275 
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 	.dot = { .min = 25000, .max = 350000 },
278 	.vco = { .min = 908000, .max = 1512000 },
279 	.n = { .min = 2, .max = 16 },
280 	.m = { .min = 96, .max = 140 },
281 	.m1 = { .min = 18, .max = 26 },
282 	.m2 = { .min = 6, .max = 16 },
283 	.p = { .min = 4, .max = 128 },
284 	.p1 = { .min = 2, .max = 33 },
285 	.p2 = { .dot_limit = 165000,
286 		.p2_slow = 4, .p2_fast = 4 },
287 };
288 
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 	.dot = { .min = 25000, .max = 350000 },
291 	.vco = { .min = 908000, .max = 1512000 },
292 	.n = { .min = 2, .max = 16 },
293 	.m = { .min = 96, .max = 140 },
294 	.m1 = { .min = 18, .max = 26 },
295 	.m2 = { .min = 6, .max = 16 },
296 	.p = { .min = 4, .max = 128 },
297 	.p1 = { .min = 1, .max = 6 },
298 	.p2 = { .dot_limit = 165000,
299 		.p2_slow = 14, .p2_fast = 7 },
300 };
301 
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 	.dot = { .min = 20000, .max = 400000 },
304 	.vco = { .min = 1400000, .max = 2800000 },
305 	.n = { .min = 1, .max = 6 },
306 	.m = { .min = 70, .max = 120 },
307 	.m1 = { .min = 8, .max = 18 },
308 	.m2 = { .min = 3, .max = 7 },
309 	.p = { .min = 5, .max = 80 },
310 	.p1 = { .min = 1, .max = 8 },
311 	.p2 = { .dot_limit = 200000,
312 		.p2_slow = 10, .p2_fast = 5 },
313 };
314 
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 	.dot = { .min = 20000, .max = 400000 },
317 	.vco = { .min = 1400000, .max = 2800000 },
318 	.n = { .min = 1, .max = 6 },
319 	.m = { .min = 70, .max = 120 },
320 	.m1 = { .min = 8, .max = 18 },
321 	.m2 = { .min = 3, .max = 7 },
322 	.p = { .min = 7, .max = 98 },
323 	.p1 = { .min = 1, .max = 8 },
324 	.p2 = { .dot_limit = 112000,
325 		.p2_slow = 14, .p2_fast = 7 },
326 };
327 
328 
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 	.dot = { .min = 25000, .max = 270000 },
331 	.vco = { .min = 1750000, .max = 3500000},
332 	.n = { .min = 1, .max = 4 },
333 	.m = { .min = 104, .max = 138 },
334 	.m1 = { .min = 17, .max = 23 },
335 	.m2 = { .min = 5, .max = 11 },
336 	.p = { .min = 10, .max = 30 },
337 	.p1 = { .min = 1, .max = 3},
338 	.p2 = { .dot_limit = 270000,
339 		.p2_slow = 10,
340 		.p2_fast = 10
341 	},
342 };
343 
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 	.dot = { .min = 22000, .max = 400000 },
346 	.vco = { .min = 1750000, .max = 3500000},
347 	.n = { .min = 1, .max = 4 },
348 	.m = { .min = 104, .max = 138 },
349 	.m1 = { .min = 16, .max = 23 },
350 	.m2 = { .min = 5, .max = 11 },
351 	.p = { .min = 5, .max = 80 },
352 	.p1 = { .min = 1, .max = 8},
353 	.p2 = { .dot_limit = 165000,
354 		.p2_slow = 10, .p2_fast = 5 },
355 };
356 
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 	.dot = { .min = 20000, .max = 115000 },
359 	.vco = { .min = 1750000, .max = 3500000 },
360 	.n = { .min = 1, .max = 3 },
361 	.m = { .min = 104, .max = 138 },
362 	.m1 = { .min = 17, .max = 23 },
363 	.m2 = { .min = 5, .max = 11 },
364 	.p = { .min = 28, .max = 112 },
365 	.p1 = { .min = 2, .max = 8 },
366 	.p2 = { .dot_limit = 0,
367 		.p2_slow = 14, .p2_fast = 14
368 	},
369 };
370 
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 	.dot = { .min = 80000, .max = 224000 },
373 	.vco = { .min = 1750000, .max = 3500000 },
374 	.n = { .min = 1, .max = 3 },
375 	.m = { .min = 104, .max = 138 },
376 	.m1 = { .min = 17, .max = 23 },
377 	.m2 = { .min = 5, .max = 11 },
378 	.p = { .min = 14, .max = 42 },
379 	.p1 = { .min = 2, .max = 6 },
380 	.p2 = { .dot_limit = 0,
381 		.p2_slow = 7, .p2_fast = 7
382 	},
383 };
384 
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 	.dot = { .min = 20000, .max = 400000},
387 	.vco = { .min = 1700000, .max = 3500000 },
388 	/* Pineview's Ncounter is a ring counter */
389 	.n = { .min = 3, .max = 6 },
390 	.m = { .min = 2, .max = 256 },
391 	/* Pineview only has one combined m divider, which we treat as m2. */
392 	.m1 = { .min = 0, .max = 0 },
393 	.m2 = { .min = 0, .max = 254 },
394 	.p = { .min = 5, .max = 80 },
395 	.p1 = { .min = 1, .max = 8 },
396 	.p2 = { .dot_limit = 200000,
397 		.p2_slow = 10, .p2_fast = 5 },
398 };
399 
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 	.dot = { .min = 20000, .max = 400000 },
402 	.vco = { .min = 1700000, .max = 3500000 },
403 	.n = { .min = 3, .max = 6 },
404 	.m = { .min = 2, .max = 256 },
405 	.m1 = { .min = 0, .max = 0 },
406 	.m2 = { .min = 0, .max = 254 },
407 	.p = { .min = 7, .max = 112 },
408 	.p1 = { .min = 1, .max = 8 },
409 	.p2 = { .dot_limit = 112000,
410 		.p2_slow = 14, .p2_fast = 14 },
411 };
412 
413 /* Ironlake / Sandybridge
414  *
415  * We calculate clock using (register_value + 2) for N/M1/M2, so here
416  * the range value for them is (actual_value - 2).
417  */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 	.dot = { .min = 25000, .max = 350000 },
420 	.vco = { .min = 1760000, .max = 3510000 },
421 	.n = { .min = 1, .max = 5 },
422 	.m = { .min = 79, .max = 127 },
423 	.m1 = { .min = 12, .max = 22 },
424 	.m2 = { .min = 5, .max = 9 },
425 	.p = { .min = 5, .max = 80 },
426 	.p1 = { .min = 1, .max = 8 },
427 	.p2 = { .dot_limit = 225000,
428 		.p2_slow = 10, .p2_fast = 5 },
429 };
430 
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 	.dot = { .min = 25000, .max = 350000 },
433 	.vco = { .min = 1760000, .max = 3510000 },
434 	.n = { .min = 1, .max = 3 },
435 	.m = { .min = 79, .max = 118 },
436 	.m1 = { .min = 12, .max = 22 },
437 	.m2 = { .min = 5, .max = 9 },
438 	.p = { .min = 28, .max = 112 },
439 	.p1 = { .min = 2, .max = 8 },
440 	.p2 = { .dot_limit = 225000,
441 		.p2_slow = 14, .p2_fast = 14 },
442 };
443 
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 	.dot = { .min = 25000, .max = 350000 },
446 	.vco = { .min = 1760000, .max = 3510000 },
447 	.n = { .min = 1, .max = 3 },
448 	.m = { .min = 79, .max = 127 },
449 	.m1 = { .min = 12, .max = 22 },
450 	.m2 = { .min = 5, .max = 9 },
451 	.p = { .min = 14, .max = 56 },
452 	.p1 = { .min = 2, .max = 8 },
453 	.p2 = { .dot_limit = 225000,
454 		.p2_slow = 7, .p2_fast = 7 },
455 };
456 
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 	.dot = { .min = 25000, .max = 350000 },
460 	.vco = { .min = 1760000, .max = 3510000 },
461 	.n = { .min = 1, .max = 2 },
462 	.m = { .min = 79, .max = 126 },
463 	.m1 = { .min = 12, .max = 22 },
464 	.m2 = { .min = 5, .max = 9 },
465 	.p = { .min = 28, .max = 112 },
466 	.p1 = { .min = 2, .max = 8 },
467 	.p2 = { .dot_limit = 225000,
468 		.p2_slow = 14, .p2_fast = 14 },
469 };
470 
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 	.dot = { .min = 25000, .max = 350000 },
473 	.vco = { .min = 1760000, .max = 3510000 },
474 	.n = { .min = 1, .max = 3 },
475 	.m = { .min = 79, .max = 126 },
476 	.m1 = { .min = 12, .max = 22 },
477 	.m2 = { .min = 5, .max = 9 },
478 	.p = { .min = 14, .max = 42 },
479 	.p1 = { .min = 2, .max = 6 },
480 	.p2 = { .dot_limit = 225000,
481 		.p2_slow = 7, .p2_fast = 7 },
482 };
483 
484 static const struct intel_limit intel_limits_vlv = {
485 	 /*
486 	  * These are the data rate limits (measured in fast clocks)
487 	  * since those are the strictest limits we have. The fast
488 	  * clock and actual rate limits are more relaxed, so checking
489 	  * them would make no difference.
490 	  */
491 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 	.vco = { .min = 4000000, .max = 6000000 },
493 	.n = { .min = 1, .max = 7 },
494 	.m1 = { .min = 2, .max = 3 },
495 	.m2 = { .min = 11, .max = 156 },
496 	.p1 = { .min = 2, .max = 3 },
497 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499 
500 static const struct intel_limit intel_limits_chv = {
501 	/*
502 	 * These are the data rate limits (measured in fast clocks)
503 	 * since those are the strictest limits we have.  The fast
504 	 * clock and actual rate limits are more relaxed, so checking
505 	 * them would make no difference.
506 	 */
507 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
508 	.vco = { .min = 4800000, .max = 6480000 },
509 	.n = { .min = 1, .max = 1 },
510 	.m1 = { .min = 2, .max = 2 },
511 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
512 	.p1 = { .min = 2, .max = 4 },
513 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
514 };
515 
516 static const struct intel_limit intel_limits_bxt = {
517 	/* FIXME: find real dot limits */
518 	.dot = { .min = 0, .max = INT_MAX },
519 	.vco = { .min = 4800000, .max = 6700000 },
520 	.n = { .min = 1, .max = 1 },
521 	.m1 = { .min = 2, .max = 2 },
522 	/* FIXME: find real m2 limits */
523 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
524 	.p1 = { .min = 2, .max = 4 },
525 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527 
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 	return drm_atomic_crtc_needs_modeset(state);
532 }
533 
534 /*
535  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538  * The helpers' return value is the rate of the clock that is fed to the
539  * display engine's pipe which can be the above fast dot clock rate or a
540  * divided-down version of it.
541  */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 	clock->m = clock->m2 + 2;
546 	clock->p = clock->p1 * clock->p2;
547 	if (WARN_ON(clock->n == 0 || clock->p == 0))
548 		return 0;
549 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551 
552 	return clock->dot;
553 }
554 
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559 
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 	clock->m = i9xx_dpll_compute_m(clock);
563 	clock->p = clock->p1 * clock->p2;
564 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 		return 0;
566 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568 
569 	return clock->dot;
570 }
571 
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 	clock->m = clock->m1 * clock->m2;
575 	clock->p = clock->p1 * clock->p2;
576 	if (WARN_ON(clock->n == 0 || clock->p == 0))
577 		return 0;
578 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580 
581 	return clock->dot / 5;
582 }
583 
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 	clock->m = clock->m1 * clock->m2;
587 	clock->p = clock->p1 * clock->p2;
588 	if (WARN_ON(clock->n == 0 || clock->p == 0))
589 		return 0;
590 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 			clock->n << 22);
592 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593 
594 	return clock->dot / 5;
595 }
596 
597 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599  * Returns whether the given set of divisors are valid for a given refclk with
600  * the given connectors.
601  */
602 
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 			       const struct intel_limit *limit,
605 			       const struct dpll *clock)
606 {
607 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
608 		INTELPllInvalid("n out of range\n");
609 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610 		INTELPllInvalid("p1 out of range\n");
611 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
612 		INTELPllInvalid("m2 out of range\n");
613 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
614 		INTELPllInvalid("m1 out of range\n");
615 
616 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 	    !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618 		if (clock->m1 <= clock->m2)
619 			INTELPllInvalid("m1 <= m2\n");
620 
621 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 	    !IS_BROXTON(dev_priv)) {
623 		if (clock->p < limit->p.min || limit->p.max < clock->p)
624 			INTELPllInvalid("p out of range\n");
625 		if (clock->m < limit->m.min || limit->m.max < clock->m)
626 			INTELPllInvalid("m out of range\n");
627 	}
628 
629 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 		INTELPllInvalid("vco out of range\n");
631 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 	 * connector, etc., rather than just a single range.
633 	 */
634 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 		INTELPllInvalid("dot out of range\n");
636 
637 	return true;
638 }
639 
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 		   const struct intel_crtc_state *crtc_state,
643 		   int target)
644 {
645 	struct drm_device *dev = crtc_state->base.crtc->dev;
646 
647 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 		/*
649 		 * For LVDS just rely on its current settings for dual-channel.
650 		 * We haven't figured out how to reliably set up different
651 		 * single/dual channel state, if we even can.
652 		 */
653 		if (intel_is_dual_link_lvds(dev))
654 			return limit->p2.p2_fast;
655 		else
656 			return limit->p2.p2_slow;
657 	} else {
658 		if (target < limit->p2.dot_limit)
659 			return limit->p2.p2_slow;
660 		else
661 			return limit->p2.p2_fast;
662 	}
663 }
664 
665 /*
666  * Returns a set of divisors for the desired target clock with the given
667  * refclk, or FALSE.  The returned values represent the clock equation:
668  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669  *
670  * Target and reference clocks are specified in kHz.
671  *
672  * If match_clock is provided, then best_clock P divider must match the P
673  * divider from @match_clock used for LVDS downclocking.
674  */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 		    struct intel_crtc_state *crtc_state,
678 		    int target, int refclk, struct dpll *match_clock,
679 		    struct dpll *best_clock)
680 {
681 	struct drm_device *dev = crtc_state->base.crtc->dev;
682 	struct dpll clock;
683 	int err = target;
684 
685 	memset(best_clock, 0, sizeof(*best_clock));
686 
687 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688 
689 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 	     clock.m1++) {
691 		for (clock.m2 = limit->m2.min;
692 		     clock.m2 <= limit->m2.max; clock.m2++) {
693 			if (clock.m2 >= clock.m1)
694 				break;
695 			for (clock.n = limit->n.min;
696 			     clock.n <= limit->n.max; clock.n++) {
697 				for (clock.p1 = limit->p1.min;
698 					clock.p1 <= limit->p1.max; clock.p1++) {
699 					int this_err;
700 
701 					i9xx_calc_dpll_params(refclk, &clock);
702 					if (!intel_PLL_is_valid(to_i915(dev),
703 								limit,
704 								&clock))
705 						continue;
706 					if (match_clock &&
707 					    clock.p != match_clock->p)
708 						continue;
709 
710 					this_err = abs(clock.dot - target);
711 					if (this_err < err) {
712 						*best_clock = clock;
713 						err = this_err;
714 					}
715 				}
716 			}
717 		}
718 	}
719 
720 	return (err != target);
721 }
722 
723 /*
724  * Returns a set of divisors for the desired target clock with the given
725  * refclk, or FALSE.  The returned values represent the clock equation:
726  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727  *
728  * Target and reference clocks are specified in kHz.
729  *
730  * If match_clock is provided, then best_clock P divider must match the P
731  * divider from @match_clock used for LVDS downclocking.
732  */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 		   struct intel_crtc_state *crtc_state,
736 		   int target, int refclk, struct dpll *match_clock,
737 		   struct dpll *best_clock)
738 {
739 	struct drm_device *dev = crtc_state->base.crtc->dev;
740 	struct dpll clock;
741 	int err = target;
742 
743 	memset(best_clock, 0, sizeof(*best_clock));
744 
745 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746 
747 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 	     clock.m1++) {
749 		for (clock.m2 = limit->m2.min;
750 		     clock.m2 <= limit->m2.max; clock.m2++) {
751 			for (clock.n = limit->n.min;
752 			     clock.n <= limit->n.max; clock.n++) {
753 				for (clock.p1 = limit->p1.min;
754 					clock.p1 <= limit->p1.max; clock.p1++) {
755 					int this_err;
756 
757 					pnv_calc_dpll_params(refclk, &clock);
758 					if (!intel_PLL_is_valid(to_i915(dev),
759 								limit,
760 								&clock))
761 						continue;
762 					if (match_clock &&
763 					    clock.p != match_clock->p)
764 						continue;
765 
766 					this_err = abs(clock.dot - target);
767 					if (this_err < err) {
768 						*best_clock = clock;
769 						err = this_err;
770 					}
771 				}
772 			}
773 		}
774 	}
775 
776 	return (err != target);
777 }
778 
779 /*
780  * Returns a set of divisors for the desired target clock with the given
781  * refclk, or FALSE.  The returned values represent the clock equation:
782  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783  *
784  * Target and reference clocks are specified in kHz.
785  *
786  * If match_clock is provided, then best_clock P divider must match the P
787  * divider from @match_clock used for LVDS downclocking.
788  */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 		   struct intel_crtc_state *crtc_state,
792 		   int target, int refclk, struct dpll *match_clock,
793 		   struct dpll *best_clock)
794 {
795 	struct drm_device *dev = crtc_state->base.crtc->dev;
796 	struct dpll clock;
797 	int max_n;
798 	bool found = false;
799 	/* approximately equals target * 0.00585 */
800 	int err_most = (target >> 8) + (target >> 9);
801 
802 	memset(best_clock, 0, sizeof(*best_clock));
803 
804 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805 
806 	max_n = limit->n.max;
807 	/* based on hardware requirement, prefer smaller n to precision */
808 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 		/* based on hardware requirement, prefere larger m1,m2 */
810 		for (clock.m1 = limit->m1.max;
811 		     clock.m1 >= limit->m1.min; clock.m1--) {
812 			for (clock.m2 = limit->m2.max;
813 			     clock.m2 >= limit->m2.min; clock.m2--) {
814 				for (clock.p1 = limit->p1.max;
815 				     clock.p1 >= limit->p1.min; clock.p1--) {
816 					int this_err;
817 
818 					i9xx_calc_dpll_params(refclk, &clock);
819 					if (!intel_PLL_is_valid(to_i915(dev),
820 								limit,
821 								&clock))
822 						continue;
823 
824 					this_err = abs(clock.dot - target);
825 					if (this_err < err_most) {
826 						*best_clock = clock;
827 						err_most = this_err;
828 						max_n = clock.n;
829 						found = true;
830 					}
831 				}
832 			}
833 		}
834 	}
835 	return found;
836 }
837 
838 /*
839  * Check if the calculated PLL configuration is more optimal compared to the
840  * best configuration and error found so far. Return the calculated error.
841  */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 			       const struct dpll *calculated_clock,
844 			       const struct dpll *best_clock,
845 			       unsigned int best_error_ppm,
846 			       unsigned int *error_ppm)
847 {
848 	/*
849 	 * For CHV ignore the error and consider only the P value.
850 	 * Prefer a bigger P value based on HW requirements.
851 	 */
852 	if (IS_CHERRYVIEW(to_i915(dev))) {
853 		*error_ppm = 0;
854 
855 		return calculated_clock->p > best_clock->p;
856 	}
857 
858 	if (WARN_ON_ONCE(!target_freq))
859 		return false;
860 
861 	*error_ppm = div_u64(1000000ULL *
862 				abs(target_freq - calculated_clock->dot),
863 			     target_freq);
864 	/*
865 	 * Prefer a better P value over a better (smaller) error if the error
866 	 * is small. Ensure this preference for future configurations too by
867 	 * setting the error to 0.
868 	 */
869 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 		*error_ppm = 0;
871 
872 		return true;
873 	}
874 
875 	return *error_ppm + 10 < best_error_ppm;
876 }
877 
878 /*
879  * Returns a set of divisors for the desired target clock with the given
880  * refclk, or FALSE.  The returned values represent the clock equation:
881  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882  */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 		   struct intel_crtc_state *crtc_state,
886 		   int target, int refclk, struct dpll *match_clock,
887 		   struct dpll *best_clock)
888 {
889 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 	struct drm_device *dev = crtc->base.dev;
891 	struct dpll clock;
892 	unsigned int bestppm = 1000000;
893 	/* min update 19.2 MHz */
894 	int max_n = min(limit->n.max, refclk / 19200);
895 	bool found = false;
896 
897 	target *= 5; /* fast clock */
898 
899 	memset(best_clock, 0, sizeof(*best_clock));
900 
901 	/* based on hardware requirement, prefer smaller n to precision */
902 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 				clock.p = clock.p1 * clock.p2;
907 				/* based on hardware requirement, prefer bigger m1,m2 values */
908 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 					unsigned int ppm;
910 
911 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 								     refclk * clock.m1);
913 
914 					vlv_calc_dpll_params(refclk, &clock);
915 
916 					if (!intel_PLL_is_valid(to_i915(dev),
917 								limit,
918 								&clock))
919 						continue;
920 
921 					if (!vlv_PLL_is_optimal(dev, target,
922 								&clock,
923 								best_clock,
924 								bestppm, &ppm))
925 						continue;
926 
927 					*best_clock = clock;
928 					bestppm = ppm;
929 					found = true;
930 				}
931 			}
932 		}
933 	}
934 
935 	return found;
936 }
937 
938 /*
939  * Returns a set of divisors for the desired target clock with the given
940  * refclk, or FALSE.  The returned values represent the clock equation:
941  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942  */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 		   struct intel_crtc_state *crtc_state,
946 		   int target, int refclk, struct dpll *match_clock,
947 		   struct dpll *best_clock)
948 {
949 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 	struct drm_device *dev = crtc->base.dev;
951 	unsigned int best_error_ppm;
952 	struct dpll clock;
953 	uint64_t m2;
954 	int found = false;
955 
956 	memset(best_clock, 0, sizeof(*best_clock));
957 	best_error_ppm = 1000000;
958 
959 	/*
960 	 * Based on hardware doc, the n always set to 1, and m1 always
961 	 * set to 2.  If requires to support 200Mhz refclk, we need to
962 	 * revisit this because n may not 1 anymore.
963 	 */
964 	clock.n = 1, clock.m1 = 2;
965 	target *= 5;	/* fast clock */
966 
967 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 		for (clock.p2 = limit->p2.p2_fast;
969 				clock.p2 >= limit->p2.p2_slow;
970 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 			unsigned int error_ppm;
972 
973 			clock.p = clock.p1 * clock.p2;
974 
975 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 					clock.n) << 22, refclk * clock.m1);
977 
978 			if (m2 > INT_MAX/clock.m1)
979 				continue;
980 
981 			clock.m2 = m2;
982 
983 			chv_calc_dpll_params(refclk, &clock);
984 
985 			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 				continue;
987 
988 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 						best_error_ppm, &error_ppm))
990 				continue;
991 
992 			*best_clock = clock;
993 			best_error_ppm = error_ppm;
994 			found = true;
995 		}
996 	}
997 
998 	return found;
999 }
1000 
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 			struct dpll *best_clock)
1003 {
1004 	int refclk = 100000;
1005 	const struct intel_limit *limit = &intel_limits_bxt;
1006 
1007 	return chv_find_best_dpll(limit, crtc_state,
1008 				  target_clock, refclk, NULL, best_clock);
1009 }
1010 
1011 bool intel_crtc_active(struct drm_crtc *crtc)
1012 {
1013 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1014 
1015 	/* Be paranoid as we can arrive here with only partial
1016 	 * state retrieved from the hardware during setup.
1017 	 *
1018 	 * We can ditch the adjusted_mode.crtc_clock check as soon
1019 	 * as Haswell has gained clock readout/fastboot support.
1020 	 *
1021 	 * We can ditch the crtc->primary->fb check as soon as we can
1022 	 * properly reconstruct framebuffers.
1023 	 *
1024 	 * FIXME: The intel_crtc->active here should be switched to
1025 	 * crtc->state->active once we have proper CRTC states wired up
1026 	 * for atomic.
1027 	 */
1028 	return intel_crtc->active && crtc->primary->state->fb &&
1029 		intel_crtc->config->base.adjusted_mode.crtc_clock;
1030 }
1031 
1032 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1033 					     enum i915_pipe pipe)
1034 {
1035 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1036 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1037 
1038 	return intel_crtc->config->cpu_transcoder;
1039 }
1040 
1041 static bool pipe_dsl_stopped(struct drm_device *dev, enum i915_pipe pipe)
1042 {
1043 	struct drm_i915_private *dev_priv = to_i915(dev);
1044 	i915_reg_t reg = PIPEDSL(pipe);
1045 	u32 line1, line2;
1046 	u32 line_mask;
1047 
1048 	if (IS_GEN2(dev_priv))
1049 		line_mask = DSL_LINEMASK_GEN2;
1050 	else
1051 		line_mask = DSL_LINEMASK_GEN3;
1052 
1053 	line1 = I915_READ(reg) & line_mask;
1054 	msleep(5);
1055 	line2 = I915_READ(reg) & line_mask;
1056 
1057 	return line1 == line2;
1058 }
1059 
1060 /*
1061  * intel_wait_for_pipe_off - wait for pipe to turn off
1062  * @crtc: crtc whose pipe to wait for
1063  *
1064  * After disabling a pipe, we can't wait for vblank in the usual way,
1065  * spinning on the vblank interrupt status bit, since we won't actually
1066  * see an interrupt when the pipe is disabled.
1067  *
1068  * On Gen4 and above:
1069  *   wait for the pipe register state bit to turn off
1070  *
1071  * Otherwise:
1072  *   wait for the display line value to settle (it usually
1073  *   ends up stopping at the start of the next frame).
1074  *
1075  */
1076 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1077 {
1078 	struct drm_device *dev = crtc->base.dev;
1079 	struct drm_i915_private *dev_priv = to_i915(dev);
1080 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1081 	enum i915_pipe pipe = crtc->pipe;
1082 
1083 	if (INTEL_INFO(dev)->gen >= 4) {
1084 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1085 
1086 		/* Wait for the Pipe State to go off */
1087 		if (intel_wait_for_register(dev_priv,
1088 					    reg, I965_PIPECONF_ACTIVE, 0,
1089 					    100))
1090 			WARN(1, "pipe_off wait timed out\n");
1091 	} else {
1092 		/* Wait for the display line to settle */
1093 		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1094 			WARN(1, "pipe_off wait timed out\n");
1095 	}
1096 }
1097 
1098 /* Only for pre-ILK configs */
1099 void assert_pll(struct drm_i915_private *dev_priv,
1100 		enum i915_pipe pipe, bool state)
1101 {
1102 	u32 val;
1103 	bool cur_state;
1104 
1105 	val = I915_READ(DPLL(pipe));
1106 	cur_state = !!(val & DPLL_VCO_ENABLE);
1107 	I915_STATE_WARN(cur_state != state,
1108 	     "PLL state assertion failure (expected %s, current %s)\n",
1109 			onoff(state), onoff(cur_state));
1110 }
1111 
1112 /* XXX: the dsi pll is shared between MIPI DSI ports */
1113 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1114 {
1115 	u32 val;
1116 	bool cur_state;
1117 
1118 	mutex_lock(&dev_priv->sb_lock);
1119 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1120 	mutex_unlock(&dev_priv->sb_lock);
1121 
1122 	cur_state = val & DSI_PLL_VCO_EN;
1123 	I915_STATE_WARN(cur_state != state,
1124 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1125 			onoff(state), onoff(cur_state));
1126 }
1127 
1128 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1129 			  enum i915_pipe pipe, bool state)
1130 {
1131 	bool cur_state;
1132 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1133 								      pipe);
1134 
1135 	if (HAS_DDI(dev_priv)) {
1136 		/* DDI does not have a specific FDI_TX register */
1137 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1138 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1139 	} else {
1140 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1141 		cur_state = !!(val & FDI_TX_ENABLE);
1142 	}
1143 	I915_STATE_WARN(cur_state != state,
1144 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1145 			onoff(state), onoff(cur_state));
1146 }
1147 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1148 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1149 
1150 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1151 			  enum i915_pipe pipe, bool state)
1152 {
1153 	u32 val;
1154 	bool cur_state;
1155 
1156 	val = I915_READ(FDI_RX_CTL(pipe));
1157 	cur_state = !!(val & FDI_RX_ENABLE);
1158 	I915_STATE_WARN(cur_state != state,
1159 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1160 			onoff(state), onoff(cur_state));
1161 }
1162 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1163 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1164 
1165 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1166 				      enum i915_pipe pipe)
1167 {
1168 	u32 val;
1169 
1170 	/* ILK FDI PLL is always enabled */
1171 	if (IS_GEN5(dev_priv))
1172 		return;
1173 
1174 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1175 	if (HAS_DDI(dev_priv))
1176 		return;
1177 
1178 	val = I915_READ(FDI_TX_CTL(pipe));
1179 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1180 }
1181 
1182 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1183 		       enum i915_pipe pipe, bool state)
1184 {
1185 	u32 val;
1186 	bool cur_state;
1187 
1188 	val = I915_READ(FDI_RX_CTL(pipe));
1189 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 	I915_STATE_WARN(cur_state != state,
1191 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 			onoff(state), onoff(cur_state));
1193 }
1194 
1195 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1196 {
1197 	i915_reg_t pp_reg;
1198 	u32 val;
1199 	enum i915_pipe panel_pipe = PIPE_A;
1200 	bool locked = true;
1201 
1202 	if (WARN_ON(HAS_DDI(dev_priv)))
1203 		return;
1204 
1205 	if (HAS_PCH_SPLIT(dev_priv)) {
1206 		u32 port_sel;
1207 
1208 		pp_reg = PP_CONTROL(0);
1209 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1210 
1211 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1212 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1213 			panel_pipe = PIPE_B;
1214 		/* XXX: else fix for eDP */
1215 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1216 		/* presumably write lock depends on pipe, not port select */
1217 		pp_reg = PP_CONTROL(pipe);
1218 		panel_pipe = pipe;
1219 	} else {
1220 		pp_reg = PP_CONTROL(0);
1221 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1222 			panel_pipe = PIPE_B;
1223 	}
1224 
1225 	val = I915_READ(pp_reg);
1226 	if (!(val & PANEL_POWER_ON) ||
1227 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1228 		locked = false;
1229 
1230 	I915_STATE_WARN(panel_pipe == pipe && locked,
1231 	     "panel assertion failure, pipe %c regs locked\n",
1232 	     pipe_name(pipe));
1233 }
1234 
1235 static void assert_cursor(struct drm_i915_private *dev_priv,
1236 			  enum i915_pipe pipe, bool state)
1237 {
1238 	bool cur_state;
1239 
1240 	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1241 		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1242 	else
1243 		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1244 
1245 	I915_STATE_WARN(cur_state != state,
1246 	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1247 			pipe_name(pipe), onoff(state), onoff(cur_state));
1248 }
1249 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1250 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1251 
1252 void assert_pipe(struct drm_i915_private *dev_priv,
1253 		 enum i915_pipe pipe, bool state)
1254 {
1255 	bool cur_state;
1256 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1257 								      pipe);
1258 	enum intel_display_power_domain power_domain;
1259 
1260 	/* if we need the pipe quirk it must be always on */
1261 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1262 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1263 		state = true;
1264 
1265 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1266 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1267 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1268 		cur_state = !!(val & PIPECONF_ENABLE);
1269 
1270 		intel_display_power_put(dev_priv, power_domain);
1271 	} else {
1272 		cur_state = false;
1273 	}
1274 
1275 	I915_STATE_WARN(cur_state != state,
1276 	     "pipe %c assertion failure (expected %s, current %s)\n",
1277 			pipe_name(pipe), onoff(state), onoff(cur_state));
1278 }
1279 
1280 static void assert_plane(struct drm_i915_private *dev_priv,
1281 			 enum plane plane, bool state)
1282 {
1283 	u32 val;
1284 	bool cur_state;
1285 
1286 	val = I915_READ(DSPCNTR(plane));
1287 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1288 	I915_STATE_WARN(cur_state != state,
1289 	     "plane %c assertion failure (expected %s, current %s)\n",
1290 			plane_name(plane), onoff(state), onoff(cur_state));
1291 }
1292 
1293 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1294 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1295 
1296 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1297 				   enum i915_pipe pipe)
1298 {
1299 	struct drm_device *dev = &dev_priv->drm;
1300 	int i;
1301 
1302 	/* Primary planes are fixed to pipes on gen4+ */
1303 	if (INTEL_INFO(dev)->gen >= 4) {
1304 		u32 val = I915_READ(DSPCNTR(pipe));
1305 		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1306 		     "plane %c assertion failure, should be disabled but not\n",
1307 		     plane_name(pipe));
1308 		return;
1309 	}
1310 
1311 	/* Need to check both planes against the pipe */
1312 	for_each_pipe(dev_priv, i) {
1313 		u32 val = I915_READ(DSPCNTR(i));
1314 		enum i915_pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1315 			DISPPLANE_SEL_PIPE_SHIFT;
1316 		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1317 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1318 		     plane_name(i), pipe_name(pipe));
1319 	}
1320 }
1321 
1322 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1323 				    enum i915_pipe pipe)
1324 {
1325 	struct drm_device *dev = &dev_priv->drm;
1326 	int sprite;
1327 
1328 	if (INTEL_INFO(dev)->gen >= 9) {
1329 		for_each_sprite(dev_priv, pipe, sprite) {
1330 			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1331 			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1332 			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1333 			     sprite, pipe_name(pipe));
1334 		}
1335 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1336 		for_each_sprite(dev_priv, pipe, sprite) {
1337 			u32 val = I915_READ(SPCNTR(pipe, sprite));
1338 			I915_STATE_WARN(val & SP_ENABLE,
1339 			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1340 			     sprite_name(pipe, sprite), pipe_name(pipe));
1341 		}
1342 	} else if (INTEL_INFO(dev)->gen >= 7) {
1343 		u32 val = I915_READ(SPRCTL(pipe));
1344 		I915_STATE_WARN(val & SPRITE_ENABLE,
1345 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1346 		     plane_name(pipe), pipe_name(pipe));
1347 	} else if (INTEL_INFO(dev)->gen >= 5) {
1348 		u32 val = I915_READ(DVSCNTR(pipe));
1349 		I915_STATE_WARN(val & DVS_ENABLE,
1350 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1351 		     plane_name(pipe), pipe_name(pipe));
1352 	}
1353 }
1354 
1355 static void assert_vblank_disabled(struct drm_crtc *crtc)
1356 {
1357 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1358 		drm_crtc_vblank_put(crtc);
1359 }
1360 
1361 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1362 				    enum i915_pipe pipe)
1363 {
1364 	u32 val;
1365 	bool enabled;
1366 
1367 	val = I915_READ(PCH_TRANSCONF(pipe));
1368 	enabled = !!(val & TRANS_ENABLE);
1369 	I915_STATE_WARN(enabled,
1370 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1371 	     pipe_name(pipe));
1372 }
1373 
1374 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1375 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1376 {
1377 	if ((val & DP_PORT_EN) == 0)
1378 		return false;
1379 
1380 	if (HAS_PCH_CPT(dev_priv)) {
1381 		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1382 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1383 			return false;
1384 	} else if (IS_CHERRYVIEW(dev_priv)) {
1385 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1386 			return false;
1387 	} else {
1388 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1389 			return false;
1390 	}
1391 	return true;
1392 }
1393 
1394 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1395 			      enum i915_pipe pipe, u32 val)
1396 {
1397 	if ((val & SDVO_ENABLE) == 0)
1398 		return false;
1399 
1400 	if (HAS_PCH_CPT(dev_priv)) {
1401 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1402 			return false;
1403 	} else if (IS_CHERRYVIEW(dev_priv)) {
1404 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1405 			return false;
1406 	} else {
1407 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1408 			return false;
1409 	}
1410 	return true;
1411 }
1412 
1413 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1414 			      enum i915_pipe pipe, u32 val)
1415 {
1416 	if ((val & LVDS_PORT_EN) == 0)
1417 		return false;
1418 
1419 	if (HAS_PCH_CPT(dev_priv)) {
1420 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1421 			return false;
1422 	} else {
1423 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1424 			return false;
1425 	}
1426 	return true;
1427 }
1428 
1429 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1430 			      enum i915_pipe pipe, u32 val)
1431 {
1432 	if ((val & ADPA_DAC_ENABLE) == 0)
1433 		return false;
1434 	if (HAS_PCH_CPT(dev_priv)) {
1435 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1436 			return false;
1437 	} else {
1438 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1439 			return false;
1440 	}
1441 	return true;
1442 }
1443 
1444 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1445 				   enum i915_pipe pipe, i915_reg_t reg,
1446 				   u32 port_sel)
1447 {
1448 	u32 val = I915_READ(reg);
1449 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1450 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1451 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1452 
1453 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1454 	     && (val & DP_PIPEB_SELECT),
1455 	     "IBX PCH dp port still using transcoder B\n");
1456 }
1457 
1458 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1459 				     enum i915_pipe pipe, i915_reg_t reg)
1460 {
1461 	u32 val = I915_READ(reg);
1462 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1463 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1464 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1465 
1466 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1467 	     && (val & SDVO_PIPE_B_SELECT),
1468 	     "IBX PCH hdmi port still using transcoder B\n");
1469 }
1470 
1471 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1472 				      enum i915_pipe pipe)
1473 {
1474 	u32 val;
1475 
1476 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1477 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1478 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1479 
1480 	val = I915_READ(PCH_ADPA);
1481 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1482 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1483 	     pipe_name(pipe));
1484 
1485 	val = I915_READ(PCH_LVDS);
1486 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1487 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1488 	     pipe_name(pipe));
1489 
1490 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1491 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1492 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1493 }
1494 
1495 static void _vlv_enable_pll(struct intel_crtc *crtc,
1496 			    const struct intel_crtc_state *pipe_config)
1497 {
1498 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1499 	enum i915_pipe pipe = crtc->pipe;
1500 
1501 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1502 	POSTING_READ(DPLL(pipe));
1503 	udelay(150);
1504 
1505 	if (intel_wait_for_register(dev_priv,
1506 				    DPLL(pipe),
1507 				    DPLL_LOCK_VLV,
1508 				    DPLL_LOCK_VLV,
1509 				    1))
1510 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1511 }
1512 
1513 static void vlv_enable_pll(struct intel_crtc *crtc,
1514 			   const struct intel_crtc_state *pipe_config)
1515 {
1516 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1517 	enum i915_pipe pipe = crtc->pipe;
1518 
1519 	assert_pipe_disabled(dev_priv, pipe);
1520 
1521 	/* PLL is protected by panel, make sure we can write it */
1522 	assert_panel_unlocked(dev_priv, pipe);
1523 
1524 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1525 		_vlv_enable_pll(crtc, pipe_config);
1526 
1527 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1528 	POSTING_READ(DPLL_MD(pipe));
1529 }
1530 
1531 
1532 static void _chv_enable_pll(struct intel_crtc *crtc,
1533 			    const struct intel_crtc_state *pipe_config)
1534 {
1535 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1536 	enum i915_pipe pipe = crtc->pipe;
1537 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1538 	u32 tmp;
1539 
1540 	mutex_lock(&dev_priv->sb_lock);
1541 
1542 	/* Enable back the 10bit clock to display controller */
1543 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1544 	tmp |= DPIO_DCLKP_EN;
1545 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1546 
1547 	mutex_unlock(&dev_priv->sb_lock);
1548 
1549 	/*
1550 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1551 	 */
1552 	udelay(1);
1553 
1554 	/* Enable PLL */
1555 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1556 
1557 	/* Check PLL is locked */
1558 	if (intel_wait_for_register(dev_priv,
1559 				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1560 				    1))
1561 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1562 }
1563 
1564 static void chv_enable_pll(struct intel_crtc *crtc,
1565 			   const struct intel_crtc_state *pipe_config)
1566 {
1567 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1568 	enum i915_pipe pipe = crtc->pipe;
1569 
1570 	assert_pipe_disabled(dev_priv, pipe);
1571 
1572 	/* PLL is protected by panel, make sure we can write it */
1573 	assert_panel_unlocked(dev_priv, pipe);
1574 
1575 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1576 		_chv_enable_pll(crtc, pipe_config);
1577 
1578 	if (pipe != PIPE_A) {
1579 		/*
1580 		 * WaPixelRepeatModeFixForC0:chv
1581 		 *
1582 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1583 		 * the value from DPLLBMD to either pipe B or C.
1584 		 */
1585 		I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1586 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1587 		I915_WRITE(CBR4_VLV, 0);
1588 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1589 
1590 		/*
1591 		 * DPLLB VGA mode also seems to cause problems.
1592 		 * We should always have it disabled.
1593 		 */
1594 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1595 	} else {
1596 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1597 		POSTING_READ(DPLL_MD(pipe));
1598 	}
1599 }
1600 
1601 static int intel_num_dvo_pipes(struct drm_device *dev)
1602 {
1603 	struct intel_crtc *crtc;
1604 	int count = 0;
1605 
1606 	for_each_intel_crtc(dev, crtc) {
1607 		count += crtc->base.state->active &&
1608 			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1609 	}
1610 
1611 	return count;
1612 }
1613 
1614 static void i9xx_enable_pll(struct intel_crtc *crtc)
1615 {
1616 	struct drm_device *dev = crtc->base.dev;
1617 	struct drm_i915_private *dev_priv = to_i915(dev);
1618 	i915_reg_t reg = DPLL(crtc->pipe);
1619 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1620 
1621 	assert_pipe_disabled(dev_priv, crtc->pipe);
1622 
1623 	/* PLL is protected by panel, make sure we can write it */
1624 	if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1625 		assert_panel_unlocked(dev_priv, crtc->pipe);
1626 
1627 	/* Enable DVO 2x clock on both PLLs if necessary */
1628 	if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev) > 0) {
1629 		/*
1630 		 * It appears to be important that we don't enable this
1631 		 * for the current pipe before otherwise configuring the
1632 		 * PLL. No idea how this should be handled if multiple
1633 		 * DVO outputs are enabled simultaneosly.
1634 		 */
1635 		dpll |= DPLL_DVO_2X_MODE;
1636 		I915_WRITE(DPLL(!crtc->pipe),
1637 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1638 	}
1639 
1640 	/*
1641 	 * Apparently we need to have VGA mode enabled prior to changing
1642 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1643 	 * dividers, even though the register value does change.
1644 	 */
1645 	I915_WRITE(reg, 0);
1646 
1647 	I915_WRITE(reg, dpll);
1648 
1649 	/* Wait for the clocks to stabilize. */
1650 	POSTING_READ(reg);
1651 	udelay(150);
1652 
1653 	if (INTEL_INFO(dev)->gen >= 4) {
1654 		I915_WRITE(DPLL_MD(crtc->pipe),
1655 			   crtc->config->dpll_hw_state.dpll_md);
1656 	} else {
1657 		/* The pixel multiplier can only be updated once the
1658 		 * DPLL is enabled and the clocks are stable.
1659 		 *
1660 		 * So write it again.
1661 		 */
1662 		I915_WRITE(reg, dpll);
1663 	}
1664 
1665 	/* We do this three times for luck */
1666 	I915_WRITE(reg, dpll);
1667 	POSTING_READ(reg);
1668 	udelay(150); /* wait for warmup */
1669 	I915_WRITE(reg, dpll);
1670 	POSTING_READ(reg);
1671 	udelay(150); /* wait for warmup */
1672 	I915_WRITE(reg, dpll);
1673 	POSTING_READ(reg);
1674 	udelay(150); /* wait for warmup */
1675 }
1676 
1677 /**
1678  * i9xx_disable_pll - disable a PLL
1679  * @dev_priv: i915 private structure
1680  * @pipe: pipe PLL to disable
1681  *
1682  * Disable the PLL for @pipe, making sure the pipe is off first.
1683  *
1684  * Note!  This is for pre-ILK only.
1685  */
1686 static void i9xx_disable_pll(struct intel_crtc *crtc)
1687 {
1688 	struct drm_device *dev = crtc->base.dev;
1689 	struct drm_i915_private *dev_priv = to_i915(dev);
1690 	enum i915_pipe pipe = crtc->pipe;
1691 
1692 	/* Disable DVO 2x clock on both PLLs if necessary */
1693 	if (IS_I830(dev_priv) &&
1694 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1695 	    !intel_num_dvo_pipes(dev)) {
1696 		I915_WRITE(DPLL(PIPE_B),
1697 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1698 		I915_WRITE(DPLL(PIPE_A),
1699 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1700 	}
1701 
1702 	/* Don't disable pipe or pipe PLLs if needed */
1703 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1704 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1705 		return;
1706 
1707 	/* Make sure the pipe isn't still relying on us */
1708 	assert_pipe_disabled(dev_priv, pipe);
1709 
1710 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1711 	POSTING_READ(DPLL(pipe));
1712 }
1713 
1714 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1715 {
1716 	u32 val;
1717 
1718 	/* Make sure the pipe isn't still relying on us */
1719 	assert_pipe_disabled(dev_priv, pipe);
1720 
1721 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1722 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1723 	if (pipe != PIPE_A)
1724 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1725 
1726 	I915_WRITE(DPLL(pipe), val);
1727 	POSTING_READ(DPLL(pipe));
1728 }
1729 
1730 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1731 {
1732 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1733 	u32 val;
1734 
1735 	/* Make sure the pipe isn't still relying on us */
1736 	assert_pipe_disabled(dev_priv, pipe);
1737 
1738 	val = DPLL_SSC_REF_CLK_CHV |
1739 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1740 	if (pipe != PIPE_A)
1741 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1742 
1743 	I915_WRITE(DPLL(pipe), val);
1744 	POSTING_READ(DPLL(pipe));
1745 
1746 	mutex_lock(&dev_priv->sb_lock);
1747 
1748 	/* Disable 10bit clock to display controller */
1749 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1750 	val &= ~DPIO_DCLKP_EN;
1751 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1752 
1753 	mutex_unlock(&dev_priv->sb_lock);
1754 }
1755 
1756 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1757 			 struct intel_digital_port *dport,
1758 			 unsigned int expected_mask)
1759 {
1760 	u32 port_mask;
1761 	i915_reg_t dpll_reg;
1762 
1763 	switch (dport->port) {
1764 	case PORT_B:
1765 		port_mask = DPLL_PORTB_READY_MASK;
1766 		dpll_reg = DPLL(0);
1767 		break;
1768 	case PORT_C:
1769 		port_mask = DPLL_PORTC_READY_MASK;
1770 		dpll_reg = DPLL(0);
1771 		expected_mask <<= 4;
1772 		break;
1773 	case PORT_D:
1774 		port_mask = DPLL_PORTD_READY_MASK;
1775 		dpll_reg = DPIO_PHY_STATUS;
1776 		break;
1777 	default:
1778 		BUG();
1779 	}
1780 
1781 	if (intel_wait_for_register(dev_priv,
1782 				    dpll_reg, port_mask, expected_mask,
1783 				    1000))
1784 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1785 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1786 }
1787 
1788 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1789 					   enum i915_pipe pipe)
1790 {
1791 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1792 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1793 	i915_reg_t reg;
1794 	uint32_t val, pipeconf_val;
1795 
1796 	/* Make sure PCH DPLL is enabled */
1797 	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1798 
1799 	/* FDI must be feeding us bits for PCH ports */
1800 	assert_fdi_tx_enabled(dev_priv, pipe);
1801 	assert_fdi_rx_enabled(dev_priv, pipe);
1802 
1803 	if (HAS_PCH_CPT(dev_priv)) {
1804 		/* Workaround: Set the timing override bit before enabling the
1805 		 * pch transcoder. */
1806 		reg = TRANS_CHICKEN2(pipe);
1807 		val = I915_READ(reg);
1808 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1809 		I915_WRITE(reg, val);
1810 	}
1811 
1812 	reg = PCH_TRANSCONF(pipe);
1813 	val = I915_READ(reg);
1814 	pipeconf_val = I915_READ(PIPECONF(pipe));
1815 
1816 	if (HAS_PCH_IBX(dev_priv)) {
1817 		/*
1818 		 * Make the BPC in transcoder be consistent with
1819 		 * that in pipeconf reg. For HDMI we must use 8bpc
1820 		 * here for both 8bpc and 12bpc.
1821 		 */
1822 		val &= ~PIPECONF_BPC_MASK;
1823 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1824 			val |= PIPECONF_8BPC;
1825 		else
1826 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1827 	}
1828 
1829 	val &= ~TRANS_INTERLACE_MASK;
1830 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1831 		if (HAS_PCH_IBX(dev_priv) &&
1832 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1833 			val |= TRANS_LEGACY_INTERLACED_ILK;
1834 		else
1835 			val |= TRANS_INTERLACED;
1836 	else
1837 		val |= TRANS_PROGRESSIVE;
1838 
1839 	I915_WRITE(reg, val | TRANS_ENABLE);
1840 	if (intel_wait_for_register(dev_priv,
1841 				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1842 				    100))
1843 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1844 }
1845 
1846 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1847 				      enum transcoder cpu_transcoder)
1848 {
1849 	u32 val, pipeconf_val;
1850 
1851 	/* FDI must be feeding us bits for PCH ports */
1852 	assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
1853 	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1854 
1855 	/* Workaround: set timing override bit. */
1856 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1857 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1858 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1859 
1860 	val = TRANS_ENABLE;
1861 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1862 
1863 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1864 	    PIPECONF_INTERLACED_ILK)
1865 		val |= TRANS_INTERLACED;
1866 	else
1867 		val |= TRANS_PROGRESSIVE;
1868 
1869 	I915_WRITE(LPT_TRANSCONF, val);
1870 	if (intel_wait_for_register(dev_priv,
1871 				    LPT_TRANSCONF,
1872 				    TRANS_STATE_ENABLE,
1873 				    TRANS_STATE_ENABLE,
1874 				    100))
1875 		DRM_ERROR("Failed to enable PCH transcoder\n");
1876 }
1877 
1878 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1879 					    enum i915_pipe pipe)
1880 {
1881 	i915_reg_t reg;
1882 	uint32_t val;
1883 
1884 	/* FDI relies on the transcoder */
1885 	assert_fdi_tx_disabled(dev_priv, pipe);
1886 	assert_fdi_rx_disabled(dev_priv, pipe);
1887 
1888 	/* Ports must be off as well */
1889 	assert_pch_ports_disabled(dev_priv, pipe);
1890 
1891 	reg = PCH_TRANSCONF(pipe);
1892 	val = I915_READ(reg);
1893 	val &= ~TRANS_ENABLE;
1894 	I915_WRITE(reg, val);
1895 	/* wait for PCH transcoder off, transcoder state */
1896 	if (intel_wait_for_register(dev_priv,
1897 				    reg, TRANS_STATE_ENABLE, 0,
1898 				    50))
1899 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900 
1901 	if (HAS_PCH_CPT(dev_priv)) {
1902 		/* Workaround: Clear the timing override chicken bit again. */
1903 		reg = TRANS_CHICKEN2(pipe);
1904 		val = I915_READ(reg);
1905 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 		I915_WRITE(reg, val);
1907 	}
1908 }
1909 
1910 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912 	u32 val;
1913 
1914 	val = I915_READ(LPT_TRANSCONF);
1915 	val &= ~TRANS_ENABLE;
1916 	I915_WRITE(LPT_TRANSCONF, val);
1917 	/* wait for PCH transcoder off, transcoder state */
1918 	if (intel_wait_for_register(dev_priv,
1919 				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 				    50))
1921 		DRM_ERROR("Failed to disable PCH transcoder\n");
1922 
1923 	/* Workaround: clear timing override bit. */
1924 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928 
1929 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1930 {
1931 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1932 
1933 	WARN_ON(!crtc->config->has_pch_encoder);
1934 
1935 	if (HAS_PCH_LPT(dev_priv))
1936 		return TRANSCODER_A;
1937 	else
1938 		return (enum transcoder) crtc->pipe;
1939 }
1940 
1941 /**
1942  * intel_enable_pipe - enable a pipe, asserting requirements
1943  * @crtc: crtc responsible for the pipe
1944  *
1945  * Enable @crtc's pipe, making sure that various hardware specific requirements
1946  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1947  */
1948 static void intel_enable_pipe(struct intel_crtc *crtc)
1949 {
1950 	struct drm_device *dev = crtc->base.dev;
1951 	struct drm_i915_private *dev_priv = to_i915(dev);
1952 	enum i915_pipe pipe = crtc->pipe;
1953 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1954 	i915_reg_t reg;
1955 	u32 val;
1956 
1957 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1958 
1959 	assert_planes_disabled(dev_priv, pipe);
1960 	assert_cursor_disabled(dev_priv, pipe);
1961 	assert_sprites_disabled(dev_priv, pipe);
1962 
1963 	/*
1964 	 * A pipe without a PLL won't actually be able to drive bits from
1965 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1966 	 * need the check.
1967 	 */
1968 	if (HAS_GMCH_DISPLAY(dev_priv)) {
1969 		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1970 			assert_dsi_pll_enabled(dev_priv);
1971 		else
1972 			assert_pll_enabled(dev_priv, pipe);
1973 	} else {
1974 		if (crtc->config->has_pch_encoder) {
1975 			/* if driving the PCH, we need FDI enabled */
1976 			assert_fdi_rx_pll_enabled(dev_priv,
1977 						  (enum i915_pipe) intel_crtc_pch_transcoder(crtc));
1978 			assert_fdi_tx_pll_enabled(dev_priv,
1979 						  (enum i915_pipe) cpu_transcoder);
1980 		}
1981 		/* FIXME: assert CPU port conditions for SNB+ */
1982 	}
1983 
1984 	reg = PIPECONF(cpu_transcoder);
1985 	val = I915_READ(reg);
1986 	if (val & PIPECONF_ENABLE) {
1987 		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1988 			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1989 		return;
1990 	}
1991 
1992 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1993 	POSTING_READ(reg);
1994 
1995 	/*
1996 	 * Until the pipe starts DSL will read as 0, which would cause
1997 	 * an apparent vblank timestamp jump, which messes up also the
1998 	 * frame count when it's derived from the timestamps. So let's
1999 	 * wait for the pipe to start properly before we call
2000 	 * drm_crtc_vblank_on()
2001 	 */
2002 	if (dev->max_vblank_count == 0 &&
2003 	    wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2004 		DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2005 }
2006 
2007 /**
2008  * intel_disable_pipe - disable a pipe, asserting requirements
2009  * @crtc: crtc whose pipes is to be disabled
2010  *
2011  * Disable the pipe of @crtc, making sure that various hardware
2012  * specific requirements are met, if applicable, e.g. plane
2013  * disabled, panel fitter off, etc.
2014  *
2015  * Will wait until the pipe has shut down before returning.
2016  */
2017 static void intel_disable_pipe(struct intel_crtc *crtc)
2018 {
2019 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2020 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2021 	enum i915_pipe pipe = crtc->pipe;
2022 	i915_reg_t reg;
2023 	u32 val;
2024 
2025 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2026 
2027 	/*
2028 	 * Make sure planes won't keep trying to pump pixels to us,
2029 	 * or we might hang the display.
2030 	 */
2031 	assert_planes_disabled(dev_priv, pipe);
2032 	assert_cursor_disabled(dev_priv, pipe);
2033 	assert_sprites_disabled(dev_priv, pipe);
2034 
2035 	reg = PIPECONF(cpu_transcoder);
2036 	val = I915_READ(reg);
2037 	if ((val & PIPECONF_ENABLE) == 0)
2038 		return;
2039 
2040 	/*
2041 	 * Double wide has implications for planes
2042 	 * so best keep it disabled when not needed.
2043 	 */
2044 	if (crtc->config->double_wide)
2045 		val &= ~PIPECONF_DOUBLE_WIDE;
2046 
2047 	/* Don't disable pipe or pipe PLLs if needed */
2048 	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2049 	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2050 		val &= ~PIPECONF_ENABLE;
2051 
2052 	I915_WRITE(reg, val);
2053 	if ((val & PIPECONF_ENABLE) == 0)
2054 		intel_wait_for_pipe_off(crtc);
2055 }
2056 
2057 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2058 {
2059 	return IS_GEN2(dev_priv) ? 2048 : 4096;
2060 }
2061 
2062 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2063 					   uint64_t fb_modifier, unsigned int cpp)
2064 {
2065 	switch (fb_modifier) {
2066 	case DRM_FORMAT_MOD_NONE:
2067 		return cpp;
2068 	case I915_FORMAT_MOD_X_TILED:
2069 		if (IS_GEN2(dev_priv))
2070 			return 128;
2071 		else
2072 			return 512;
2073 	case I915_FORMAT_MOD_Y_TILED:
2074 		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2075 			return 128;
2076 		else
2077 			return 512;
2078 	case I915_FORMAT_MOD_Yf_TILED:
2079 		switch (cpp) {
2080 		case 1:
2081 			return 64;
2082 		case 2:
2083 		case 4:
2084 			return 128;
2085 		case 8:
2086 		case 16:
2087 			return 256;
2088 		default:
2089 			MISSING_CASE(cpp);
2090 			return cpp;
2091 		}
2092 		break;
2093 	default:
2094 		MISSING_CASE(fb_modifier);
2095 		return cpp;
2096 	}
2097 }
2098 
2099 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2100 			       uint64_t fb_modifier, unsigned int cpp)
2101 {
2102 	if (fb_modifier == DRM_FORMAT_MOD_NONE)
2103 		return 1;
2104 	else
2105 		return intel_tile_size(dev_priv) /
2106 			intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2107 }
2108 
2109 /* Return the tile dimensions in pixel units */
2110 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2111 			    unsigned int *tile_width,
2112 			    unsigned int *tile_height,
2113 			    uint64_t fb_modifier,
2114 			    unsigned int cpp)
2115 {
2116 	unsigned int tile_width_bytes =
2117 		intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2118 
2119 	*tile_width = tile_width_bytes / cpp;
2120 	*tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2121 }
2122 
2123 unsigned int
2124 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2125 		      uint32_t pixel_format, uint64_t fb_modifier)
2126 {
2127 	unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2128 	unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2129 
2130 	return ALIGN(height, tile_height);
2131 }
2132 
2133 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2134 {
2135 	unsigned int size = 0;
2136 	int i;
2137 
2138 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2139 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2140 
2141 	return size;
2142 }
2143 
2144 static void
2145 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2146 			struct drm_framebuffer *fb,
2147 			unsigned int rotation)
2148 {
2149 	if (intel_rotation_90_or_270(rotation)) {
2150 		*view = i915_ggtt_view_rotated;
2151 		view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2152 	} else {
2153 		*view = i915_ggtt_view_normal;
2154 	}
2155 }
2156 
2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159 	if (INTEL_INFO(dev_priv)->gen >= 9)
2160 		return 256 * 1024;
2161 	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2162 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163 		return 128 * 1024;
2164 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2165 		return 4 * 1024;
2166 	else
2167 		return 0;
2168 }
2169 
2170 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2171 					 uint64_t fb_modifier)
2172 {
2173 	switch (fb_modifier) {
2174 	case DRM_FORMAT_MOD_NONE:
2175 		return intel_linear_alignment(dev_priv);
2176 	case I915_FORMAT_MOD_X_TILED:
2177 		if (INTEL_INFO(dev_priv)->gen >= 9)
2178 			return 256 * 1024;
2179 		return 0;
2180 	case I915_FORMAT_MOD_Y_TILED:
2181 	case I915_FORMAT_MOD_Yf_TILED:
2182 		return 1 * 1024 * 1024;
2183 	default:
2184 		MISSING_CASE(fb_modifier);
2185 		return 0;
2186 	}
2187 }
2188 
2189 struct i915_vma *
2190 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2191 {
2192 	struct drm_device *dev = fb->dev;
2193 	struct drm_i915_private *dev_priv = to_i915(dev);
2194 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2195 	struct i915_ggtt_view view;
2196 	struct i915_vma *vma;
2197 	u32 alignment;
2198 
2199 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2200 
2201 	alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2202 
2203 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2204 
2205 	/* Note that the w/a also requires 64 PTE of padding following the
2206 	 * bo. We currently fill all unused PTE with the shadow page and so
2207 	 * we should always have valid PTE following the scanout preventing
2208 	 * the VT-d warning.
2209 	 */
2210 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2211 		alignment = 256 * 1024;
2212 
2213 	/*
2214 	 * Global gtt pte registers are special registers which actually forward
2215 	 * writes to a chunk of system memory. Which means that there is no risk
2216 	 * that the register values disappear as soon as we call
2217 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2218 	 * pin/unpin/fence and not more.
2219 	 */
2220 	intel_runtime_pm_get(dev_priv);
2221 
2222 	vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2223 	if (IS_ERR(vma))
2224 		goto err;
2225 
2226 	if (i915_vma_is_map_and_fenceable(vma)) {
2227 		/* Install a fence for tiled scan-out. Pre-i965 always needs a
2228 		 * fence, whereas 965+ only requires a fence if using
2229 		 * framebuffer compression.  For simplicity, we always, when
2230 		 * possible, install a fence as the cost is not that onerous.
2231 		 *
2232 		 * If we fail to fence the tiled scanout, then either the
2233 		 * modeset will reject the change (which is highly unlikely as
2234 		 * the affected systems, all but one, do not have unmappable
2235 		 * space) or we will not be able to enable full powersaving
2236 		 * techniques (also likely not to apply due to various limits
2237 		 * FBC and the like impose on the size of the buffer, which
2238 		 * presumably we violated anyway with this unmappable buffer).
2239 		 * Anyway, it is presumably better to stumble onwards with
2240 		 * something and try to run the system in a "less than optimal"
2241 		 * mode that matches the user configuration.
2242 		 */
2243 		if (i915_vma_get_fence(vma) == 0)
2244 			i915_vma_pin_fence(vma);
2245 	}
2246 
2247 err:
2248 	intel_runtime_pm_put(dev_priv);
2249 	return vma;
2250 }
2251 
2252 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2253 {
2254 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2255 	struct i915_ggtt_view view;
2256 	struct i915_vma *vma;
2257 
2258 	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2259 
2260 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2261 	vma = i915_gem_object_to_ggtt(obj, &view);
2262 
2263 	i915_vma_unpin_fence(vma);
2264 	i915_gem_object_unpin_from_display_plane(vma);
2265 }
2266 
2267 static int intel_fb_pitch(struct drm_framebuffer *fb, int plane,
2268 			  unsigned int rotation)
2269 {
2270 	if (intel_rotation_90_or_270(rotation))
2271 		return to_intel_framebuffer(fb)->rotated[plane].pitch;
2272 	else
2273 		return fb->pitches[plane];
2274 }
2275 
2276 /*
2277  * Convert the x/y offsets into a linear offset.
2278  * Only valid with 0/180 degree rotation, which is fine since linear
2279  * offset is only used with linear buffers on pre-hsw and tiled buffers
2280  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2281  */
2282 u32 intel_fb_xy_to_linear(int x, int y,
2283 			  const struct intel_plane_state *state,
2284 			  int plane)
2285 {
2286 	const struct drm_framebuffer *fb = state->base.fb;
2287 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2288 	unsigned int pitch = fb->pitches[plane];
2289 
2290 	return y * pitch + x * cpp;
2291 }
2292 
2293 /*
2294  * Add the x/y offsets derived from fb->offsets[] to the user
2295  * specified plane src x/y offsets. The resulting x/y offsets
2296  * specify the start of scanout from the beginning of the gtt mapping.
2297  */
2298 void intel_add_fb_offsets(int *x, int *y,
2299 			  const struct intel_plane_state *state,
2300 			  int plane)
2301 
2302 {
2303 	const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2304 	unsigned int rotation = state->base.rotation;
2305 
2306 	if (intel_rotation_90_or_270(rotation)) {
2307 		*x += intel_fb->rotated[plane].x;
2308 		*y += intel_fb->rotated[plane].y;
2309 	} else {
2310 		*x += intel_fb->normal[plane].x;
2311 		*y += intel_fb->normal[plane].y;
2312 	}
2313 }
2314 
2315 /*
2316  * Input tile dimensions and pitch must already be
2317  * rotated to match x and y, and in pixel units.
2318  */
2319 static u32 _intel_adjust_tile_offset(int *x, int *y,
2320 				     unsigned int tile_width,
2321 				     unsigned int tile_height,
2322 				     unsigned int tile_size,
2323 				     unsigned int pitch_tiles,
2324 				     u32 old_offset,
2325 				     u32 new_offset)
2326 {
2327 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2328 	unsigned int tiles;
2329 
2330 	WARN_ON(old_offset & (tile_size - 1));
2331 	WARN_ON(new_offset & (tile_size - 1));
2332 	WARN_ON(new_offset > old_offset);
2333 
2334 	tiles = (old_offset - new_offset) / tile_size;
2335 
2336 	*y += tiles / pitch_tiles * tile_height;
2337 	*x += tiles % pitch_tiles * tile_width;
2338 
2339 	/* minimize x in case it got needlessly big */
2340 	*y += *x / pitch_pixels * tile_height;
2341 	*x %= pitch_pixels;
2342 
2343 	return new_offset;
2344 }
2345 
2346 /*
2347  * Adjust the tile offset by moving the difference into
2348  * the x/y offsets.
2349  */
2350 static u32 intel_adjust_tile_offset(int *x, int *y,
2351 				    const struct intel_plane_state *state, int plane,
2352 				    u32 old_offset, u32 new_offset)
2353 {
2354 	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2355 	struct drm_framebuffer *fb = state->base.fb;
2356 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2357 	unsigned int rotation = state->base.rotation;
2358 	unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2359 
2360 	WARN_ON(new_offset > old_offset);
2361 
2362 	if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2363 		unsigned int tile_size, tile_width, tile_height;
2364 		unsigned int pitch_tiles;
2365 
2366 		tile_size = intel_tile_size(dev_priv);
2367 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2368 				fb->modifier[plane], cpp);
2369 
2370 		if (intel_rotation_90_or_270(rotation)) {
2371 			pitch_tiles = pitch / tile_height;
2372 			swap(tile_width, tile_height);
2373 		} else {
2374 			pitch_tiles = pitch / (tile_width * cpp);
2375 		}
2376 
2377 		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
2378 					  tile_size, pitch_tiles,
2379 					  old_offset, new_offset);
2380 	} else {
2381 		old_offset += *y * pitch + *x * cpp;
2382 
2383 		*y = (old_offset - new_offset) / pitch;
2384 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2385 	}
2386 
2387 	return new_offset;
2388 }
2389 
2390 /*
2391  * Computes the linear offset to the base tile and adjusts
2392  * x, y. bytes per pixel is assumed to be a power-of-two.
2393  *
2394  * In the 90/270 rotated case, x and y are assumed
2395  * to be already rotated to match the rotated GTT view, and
2396  * pitch is the tile_height aligned framebuffer height.
2397  *
2398  * This function is used when computing the derived information
2399  * under intel_framebuffer, so using any of that information
2400  * here is not allowed. Anything under drm_framebuffer can be
2401  * used. This is why the user has to pass in the pitch since it
2402  * is specified in the rotated orientation.
2403  */
2404 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2405 				      int *x, int *y,
2406 				      const struct drm_framebuffer *fb, int plane,
2407 				      unsigned int pitch,
2408 				      unsigned int rotation,
2409 				      u32 alignment)
2410 {
2411 	uint64_t fb_modifier = fb->modifier[plane];
2412 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2413 	u32 offset, offset_aligned;
2414 
2415 	if (alignment)
2416 		alignment--;
2417 
2418 	if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2419 		unsigned int tile_size, tile_width, tile_height;
2420 		unsigned int tile_rows, tiles, pitch_tiles;
2421 
2422 		tile_size = intel_tile_size(dev_priv);
2423 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2424 				fb_modifier, cpp);
2425 
2426 		if (intel_rotation_90_or_270(rotation)) {
2427 			pitch_tiles = pitch / tile_height;
2428 			swap(tile_width, tile_height);
2429 		} else {
2430 			pitch_tiles = pitch / (tile_width * cpp);
2431 		}
2432 
2433 		tile_rows = *y / tile_height;
2434 		*y %= tile_height;
2435 
2436 		tiles = *x / tile_width;
2437 		*x %= tile_width;
2438 
2439 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2440 		offset_aligned = offset & ~alignment;
2441 
2442 		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
2443 					  tile_size, pitch_tiles,
2444 					  offset, offset_aligned);
2445 	} else {
2446 		offset = *y * pitch + *x * cpp;
2447 		offset_aligned = offset & ~alignment;
2448 
2449 		*y = (offset & alignment) / pitch;
2450 		*x = ((offset & alignment) - *y * pitch) / cpp;
2451 	}
2452 
2453 	return offset_aligned;
2454 }
2455 
2456 u32 intel_compute_tile_offset(int *x, int *y,
2457 			      const struct intel_plane_state *state,
2458 			      int plane)
2459 {
2460 	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2461 	struct drm_framebuffer *fb = state->base.fb;
2462 	unsigned int rotation = state->base.rotation;
2463 	int pitch = intel_fb_pitch(fb, plane, rotation);
2464 	u32 alignment;
2465 
2466 	/* AUX_DIST needs only 4K alignment */
2467 	if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2468 		alignment = 4096;
2469 	else
2470 		alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2471 
2472 	return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2473 					  rotation, alignment);
2474 }
2475 
2476 /* Convert the fb->offset[] linear offset into x/y offsets */
2477 static void intel_fb_offset_to_xy(int *x, int *y,
2478 				  const struct drm_framebuffer *fb, int plane)
2479 {
2480 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2481 	unsigned int pitch = fb->pitches[plane];
2482 	u32 linear_offset = fb->offsets[plane];
2483 
2484 	*y = linear_offset / pitch;
2485 	*x = linear_offset % pitch / cpp;
2486 }
2487 
2488 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2489 {
2490 	switch (fb_modifier) {
2491 	case I915_FORMAT_MOD_X_TILED:
2492 		return I915_TILING_X;
2493 	case I915_FORMAT_MOD_Y_TILED:
2494 		return I915_TILING_Y;
2495 	default:
2496 		return I915_TILING_NONE;
2497 	}
2498 }
2499 
2500 static int
2501 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2502 		   struct drm_framebuffer *fb)
2503 {
2504 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2505 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2506 	u32 gtt_offset_rotated = 0;
2507 	unsigned int max_size = 0;
2508 	uint32_t format = fb->pixel_format;
2509 	int i, num_planes = drm_format_num_planes(format);
2510 	unsigned int tile_size = intel_tile_size(dev_priv);
2511 
2512 	for (i = 0; i < num_planes; i++) {
2513 		unsigned int width, height;
2514 		unsigned int cpp, size;
2515 		u32 offset;
2516 		int x, y;
2517 
2518 		cpp = drm_format_plane_cpp(format, i);
2519 		width = drm_format_plane_width(fb->width, format, i);
2520 		height = drm_format_plane_height(fb->height, format, i);
2521 
2522 		intel_fb_offset_to_xy(&x, &y, fb, i);
2523 
2524 		/*
2525 		 * The fence (if used) is aligned to the start of the object
2526 		 * so having the framebuffer wrap around across the edge of the
2527 		 * fenced region doesn't really work. We have no API to configure
2528 		 * the fence start offset within the object (nor could we probably
2529 		 * on gen2/3). So it's just easier if we just require that the
2530 		 * fb layout agrees with the fence layout. We already check that the
2531 		 * fb stride matches the fence stride elsewhere.
2532 		 */
2533 		if (i915_gem_object_is_tiled(intel_fb->obj) &&
2534 		    (x + width) * cpp > fb->pitches[i]) {
2535 			DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2536 				  i, fb->offsets[i]);
2537 			return -EINVAL;
2538 		}
2539 
2540 		/*
2541 		 * First pixel of the framebuffer from
2542 		 * the start of the normal gtt mapping.
2543 		 */
2544 		intel_fb->normal[i].x = x;
2545 		intel_fb->normal[i].y = y;
2546 
2547 		offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2548 						    fb, 0, fb->pitches[i],
2549 						    DRM_ROTATE_0, tile_size);
2550 		offset /= tile_size;
2551 
2552 		if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2553 			unsigned int tile_width, tile_height;
2554 			unsigned int pitch_tiles;
2555 			struct drm_rect r;
2556 
2557 			intel_tile_dims(dev_priv, &tile_width, &tile_height,
2558 					fb->modifier[i], cpp);
2559 
2560 			rot_info->plane[i].offset = offset;
2561 			rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2562 			rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2563 			rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2564 
2565 			intel_fb->rotated[i].pitch =
2566 				rot_info->plane[i].height * tile_height;
2567 
2568 			/* how many tiles does this plane need */
2569 			size = rot_info->plane[i].stride * rot_info->plane[i].height;
2570 			/*
2571 			 * If the plane isn't horizontally tile aligned,
2572 			 * we need one more tile.
2573 			 */
2574 			if (x != 0)
2575 				size++;
2576 
2577 			/* rotate the x/y offsets to match the GTT view */
2578 			r.x1 = x;
2579 			r.y1 = y;
2580 			r.x2 = x + width;
2581 			r.y2 = y + height;
2582 			drm_rect_rotate(&r,
2583 					rot_info->plane[i].width * tile_width,
2584 					rot_info->plane[i].height * tile_height,
2585 					DRM_ROTATE_270);
2586 			x = r.x1;
2587 			y = r.y1;
2588 
2589 			/* rotate the tile dimensions to match the GTT view */
2590 			pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2591 			swap(tile_width, tile_height);
2592 
2593 			/*
2594 			 * We only keep the x/y offsets, so push all of the
2595 			 * gtt offset into the x/y offsets.
2596 			 */
2597 			_intel_adjust_tile_offset(&x, &y, tile_size,
2598 						  tile_width, tile_height, pitch_tiles,
2599 						  gtt_offset_rotated * tile_size, 0);
2600 
2601 			gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2602 
2603 			/*
2604 			 * First pixel of the framebuffer from
2605 			 * the start of the rotated gtt mapping.
2606 			 */
2607 			intel_fb->rotated[i].x = x;
2608 			intel_fb->rotated[i].y = y;
2609 		} else {
2610 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2611 					    x * cpp, tile_size);
2612 		}
2613 
2614 		/* how many tiles in total needed in the bo */
2615 		max_size = max(max_size, offset + size);
2616 	}
2617 
2618 	if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2619 		DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2620 			  max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2621 		return -EINVAL;
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 static int i9xx_format_to_fourcc(int format)
2628 {
2629 	switch (format) {
2630 	case DISPPLANE_8BPP:
2631 		return DRM_FORMAT_C8;
2632 	case DISPPLANE_BGRX555:
2633 		return DRM_FORMAT_XRGB1555;
2634 	case DISPPLANE_BGRX565:
2635 		return DRM_FORMAT_RGB565;
2636 	default:
2637 	case DISPPLANE_BGRX888:
2638 		return DRM_FORMAT_XRGB8888;
2639 	case DISPPLANE_RGBX888:
2640 		return DRM_FORMAT_XBGR8888;
2641 	case DISPPLANE_BGRX101010:
2642 		return DRM_FORMAT_XRGB2101010;
2643 	case DISPPLANE_RGBX101010:
2644 		return DRM_FORMAT_XBGR2101010;
2645 	}
2646 }
2647 
2648 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2649 {
2650 	switch (format) {
2651 	case PLANE_CTL_FORMAT_RGB_565:
2652 		return DRM_FORMAT_RGB565;
2653 	default:
2654 	case PLANE_CTL_FORMAT_XRGB_8888:
2655 		if (rgb_order) {
2656 			if (alpha)
2657 				return DRM_FORMAT_ABGR8888;
2658 			else
2659 				return DRM_FORMAT_XBGR8888;
2660 		} else {
2661 			if (alpha)
2662 				return DRM_FORMAT_ARGB8888;
2663 			else
2664 				return DRM_FORMAT_XRGB8888;
2665 		}
2666 	case PLANE_CTL_FORMAT_XRGB_2101010:
2667 		if (rgb_order)
2668 			return DRM_FORMAT_XBGR2101010;
2669 		else
2670 			return DRM_FORMAT_XRGB2101010;
2671 	}
2672 }
2673 
2674 static bool
2675 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2676 			      struct intel_initial_plane_config *plane_config)
2677 {
2678 	struct drm_device *dev = crtc->base.dev;
2679 	struct drm_i915_private *dev_priv = to_i915(dev);
2680 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2681 	struct drm_i915_gem_object *obj = NULL;
2682 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2683 	struct drm_framebuffer *fb = &plane_config->fb->base;
2684 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2685 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2686 				    PAGE_SIZE);
2687 
2688 	size_aligned -= base_aligned;
2689 
2690 	if (plane_config->size == 0)
2691 		return false;
2692 
2693 	/* If the FB is too big, just don't use it since fbdev is not very
2694 	 * important and we should probably use that space with FBC or other
2695 	 * features. */
2696 	if (size_aligned * 2 > ggtt->stolen_usable_size)
2697 		return false;
2698 
2699 	mutex_lock(&dev->struct_mutex);
2700 
2701 	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2702 							     base_aligned,
2703 							     base_aligned,
2704 							     size_aligned);
2705 	if (!obj) {
2706 		mutex_unlock(&dev->struct_mutex);
2707 		return false;
2708 	}
2709 
2710 	if (plane_config->tiling == I915_TILING_X)
2711 		obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2712 
2713 	mode_cmd.pixel_format = fb->pixel_format;
2714 	mode_cmd.width = fb->width;
2715 	mode_cmd.height = fb->height;
2716 	mode_cmd.pitches[0] = fb->pitches[0];
2717 	mode_cmd.modifier[0] = fb->modifier[0];
2718 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2719 
2720 	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2721 				   &mode_cmd, obj)) {
2722 		DRM_DEBUG_KMS("intel fb init failed\n");
2723 		goto out_unref_obj;
2724 	}
2725 
2726 	mutex_unlock(&dev->struct_mutex);
2727 
2728 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2729 	return true;
2730 
2731 out_unref_obj:
2732 	i915_gem_object_put(obj);
2733 	mutex_unlock(&dev->struct_mutex);
2734 	return false;
2735 }
2736 
2737 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2738 static void
2739 update_state_fb(struct drm_plane *plane)
2740 {
2741 	if (plane->fb == plane->state->fb)
2742 		return;
2743 
2744 	if (plane->state->fb)
2745 		drm_framebuffer_unreference(plane->state->fb);
2746 	plane->state->fb = plane->fb;
2747 	if (plane->state->fb)
2748 		drm_framebuffer_reference(plane->state->fb);
2749 }
2750 
2751 static void
2752 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2753 			     struct intel_initial_plane_config *plane_config)
2754 {
2755 	struct drm_device *dev = intel_crtc->base.dev;
2756 	struct drm_i915_private *dev_priv = to_i915(dev);
2757 	struct drm_crtc *c;
2758 	struct intel_crtc *i;
2759 	struct drm_i915_gem_object *obj;
2760 	struct drm_plane *primary = intel_crtc->base.primary;
2761 	struct drm_plane_state *plane_state = primary->state;
2762 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2763 	struct intel_plane *intel_plane = to_intel_plane(primary);
2764 	struct intel_plane_state *intel_state =
2765 		to_intel_plane_state(plane_state);
2766 	struct drm_framebuffer *fb;
2767 
2768 	if (!plane_config->fb)
2769 		return;
2770 
2771 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2772 		fb = &plane_config->fb->base;
2773 		goto valid_fb;
2774 	}
2775 
2776 	kfree(plane_config->fb);
2777 
2778 	/*
2779 	 * Failed to alloc the obj, check to see if we should share
2780 	 * an fb with another CRTC instead
2781 	 */
2782 	for_each_crtc(dev, c) {
2783 		i = to_intel_crtc(c);
2784 
2785 		if (c == &intel_crtc->base)
2786 			continue;
2787 
2788 		if (!i->active)
2789 			continue;
2790 
2791 		fb = c->primary->fb;
2792 		if (!fb)
2793 			continue;
2794 
2795 		obj = intel_fb_obj(fb);
2796 		if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2797 			drm_framebuffer_reference(fb);
2798 			goto valid_fb;
2799 		}
2800 	}
2801 
2802 	/*
2803 	 * We've failed to reconstruct the BIOS FB.  Current display state
2804 	 * indicates that the primary plane is visible, but has a NULL FB,
2805 	 * which will lead to problems later if we don't fix it up.  The
2806 	 * simplest solution is to just disable the primary plane now and
2807 	 * pretend the BIOS never had it enabled.
2808 	 */
2809 	to_intel_plane_state(plane_state)->base.visible = false;
2810 	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2811 	intel_pre_disable_primary_noatomic(&intel_crtc->base);
2812 	intel_plane->disable_plane(primary, &intel_crtc->base);
2813 
2814 	return;
2815 
2816 valid_fb:
2817 	plane_state->src_x = 0;
2818 	plane_state->src_y = 0;
2819 	plane_state->src_w = fb->width << 16;
2820 	plane_state->src_h = fb->height << 16;
2821 
2822 	plane_state->crtc_x = 0;
2823 	plane_state->crtc_y = 0;
2824 	plane_state->crtc_w = fb->width;
2825 	plane_state->crtc_h = fb->height;
2826 
2827 	intel_state->base.src.x1 = plane_state->src_x;
2828 	intel_state->base.src.y1 = plane_state->src_y;
2829 	intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2830 	intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2831 	intel_state->base.dst.x1 = plane_state->crtc_x;
2832 	intel_state->base.dst.y1 = plane_state->crtc_y;
2833 	intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2834 	intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2835 
2836 	obj = intel_fb_obj(fb);
2837 	if (i915_gem_object_is_tiled(obj))
2838 		dev_priv->preserve_bios_swizzle = true;
2839 
2840 	drm_framebuffer_reference(fb);
2841 	primary->fb = primary->state->fb = fb;
2842 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2843 	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2844 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2845 		  &obj->frontbuffer_bits);
2846 }
2847 
2848 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2849 			       unsigned int rotation)
2850 {
2851 	int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2852 
2853 	switch (fb->modifier[plane]) {
2854 	case DRM_FORMAT_MOD_NONE:
2855 	case I915_FORMAT_MOD_X_TILED:
2856 		switch (cpp) {
2857 		case 8:
2858 			return 4096;
2859 		case 4:
2860 		case 2:
2861 		case 1:
2862 			return 8192;
2863 		default:
2864 			MISSING_CASE(cpp);
2865 			break;
2866 		}
2867 		break;
2868 	case I915_FORMAT_MOD_Y_TILED:
2869 	case I915_FORMAT_MOD_Yf_TILED:
2870 		switch (cpp) {
2871 		case 8:
2872 			return 2048;
2873 		case 4:
2874 			return 4096;
2875 		case 2:
2876 		case 1:
2877 			return 8192;
2878 		default:
2879 			MISSING_CASE(cpp);
2880 			break;
2881 		}
2882 		break;
2883 	default:
2884 		MISSING_CASE(fb->modifier[plane]);
2885 	}
2886 
2887 	return 2048;
2888 }
2889 
2890 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2891 {
2892 	const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2893 	const struct drm_framebuffer *fb = plane_state->base.fb;
2894 	unsigned int rotation = plane_state->base.rotation;
2895 	int x = plane_state->base.src.x1 >> 16;
2896 	int y = plane_state->base.src.y1 >> 16;
2897 	int w = drm_rect_width(&plane_state->base.src) >> 16;
2898 	int h = drm_rect_height(&plane_state->base.src) >> 16;
2899 	int max_width = skl_max_plane_width(fb, 0, rotation);
2900 	int max_height = 4096;
2901 	u32 alignment, offset, aux_offset = plane_state->aux.offset;
2902 
2903 	if (w > max_width || h > max_height) {
2904 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2905 			      w, h, max_width, max_height);
2906 		return -EINVAL;
2907 	}
2908 
2909 	intel_add_fb_offsets(&x, &y, plane_state, 0);
2910 	offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2911 
2912 	alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2913 
2914 	/*
2915 	 * AUX surface offset is specified as the distance from the
2916 	 * main surface offset, and it must be non-negative. Make
2917 	 * sure that is what we will get.
2918 	 */
2919 	if (offset > aux_offset)
2920 		offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2921 						  offset, aux_offset & ~(alignment - 1));
2922 
2923 	/*
2924 	 * When using an X-tiled surface, the plane blows up
2925 	 * if the x offset + width exceed the stride.
2926 	 *
2927 	 * TODO: linear and Y-tiled seem fine, Yf untested,
2928 	 */
2929 	if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2930 		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2931 
2932 		while ((x + w) * cpp > fb->pitches[0]) {
2933 			if (offset == 0) {
2934 				DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2935 				return -EINVAL;
2936 			}
2937 
2938 			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2939 							  offset, offset - alignment);
2940 		}
2941 	}
2942 
2943 	plane_state->main.offset = offset;
2944 	plane_state->main.x = x;
2945 	plane_state->main.y = y;
2946 
2947 	return 0;
2948 }
2949 
2950 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2951 {
2952 	const struct drm_framebuffer *fb = plane_state->base.fb;
2953 	unsigned int rotation = plane_state->base.rotation;
2954 	int max_width = skl_max_plane_width(fb, 1, rotation);
2955 	int max_height = 4096;
2956 	int x = plane_state->base.src.x1 >> 17;
2957 	int y = plane_state->base.src.y1 >> 17;
2958 	int w = drm_rect_width(&plane_state->base.src) >> 17;
2959 	int h = drm_rect_height(&plane_state->base.src) >> 17;
2960 	u32 offset;
2961 
2962 	intel_add_fb_offsets(&x, &y, plane_state, 1);
2963 	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2964 
2965 	/* FIXME not quite sure how/if these apply to the chroma plane */
2966 	if (w > max_width || h > max_height) {
2967 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2968 			      w, h, max_width, max_height);
2969 		return -EINVAL;
2970 	}
2971 
2972 	plane_state->aux.offset = offset;
2973 	plane_state->aux.x = x;
2974 	plane_state->aux.y = y;
2975 
2976 	return 0;
2977 }
2978 
2979 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2980 {
2981 	const struct drm_framebuffer *fb = plane_state->base.fb;
2982 	unsigned int rotation = plane_state->base.rotation;
2983 	int ret;
2984 
2985 	/* Rotate src coordinates to match rotated GTT view */
2986 	if (intel_rotation_90_or_270(rotation))
2987 		drm_rect_rotate(&plane_state->base.src,
2988 				fb->width, fb->height, DRM_ROTATE_270);
2989 
2990 	/*
2991 	 * Handle the AUX surface first since
2992 	 * the main surface setup depends on it.
2993 	 */
2994 	if (fb->pixel_format == DRM_FORMAT_NV12) {
2995 		ret = skl_check_nv12_aux_surface(plane_state);
2996 		if (ret)
2997 			return ret;
2998 	} else {
2999 		plane_state->aux.offset = ~0xfff;
3000 		plane_state->aux.x = 0;
3001 		plane_state->aux.y = 0;
3002 	}
3003 
3004 	ret = skl_check_main_surface(plane_state);
3005 	if (ret)
3006 		return ret;
3007 
3008 	return 0;
3009 }
3010 
3011 static void i9xx_update_primary_plane(struct drm_plane *primary,
3012 				      const struct intel_crtc_state *crtc_state,
3013 				      const struct intel_plane_state *plane_state)
3014 {
3015 	struct drm_device *dev = primary->dev;
3016 	struct drm_i915_private *dev_priv = to_i915(dev);
3017 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3018 	struct drm_framebuffer *fb = plane_state->base.fb;
3019 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3020 	int plane = intel_crtc->plane;
3021 	u32 linear_offset;
3022 	u32 dspcntr;
3023 	i915_reg_t reg = DSPCNTR(plane);
3024 	unsigned int rotation = plane_state->base.rotation;
3025 	int x = plane_state->base.src.x1 >> 16;
3026 	int y = plane_state->base.src.y1 >> 16;
3027 
3028 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3029 
3030 	dspcntr |= DISPLAY_PLANE_ENABLE;
3031 
3032 	if (INTEL_INFO(dev)->gen < 4) {
3033 		if (intel_crtc->pipe == PIPE_B)
3034 			dspcntr |= DISPPLANE_SEL_PIPE_B;
3035 
3036 		/* pipesrc and dspsize control the size that is scaled from,
3037 		 * which should always be the user's requested size.
3038 		 */
3039 		I915_WRITE(DSPSIZE(plane),
3040 			   ((crtc_state->pipe_src_h - 1) << 16) |
3041 			   (crtc_state->pipe_src_w - 1));
3042 		I915_WRITE(DSPPOS(plane), 0);
3043 	} else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3044 		I915_WRITE(PRIMSIZE(plane),
3045 			   ((crtc_state->pipe_src_h - 1) << 16) |
3046 			   (crtc_state->pipe_src_w - 1));
3047 		I915_WRITE(PRIMPOS(plane), 0);
3048 		I915_WRITE(PRIMCNSTALPHA(plane), 0);
3049 	}
3050 
3051 	switch (fb->pixel_format) {
3052 	case DRM_FORMAT_C8:
3053 		dspcntr |= DISPPLANE_8BPP;
3054 		break;
3055 	case DRM_FORMAT_XRGB1555:
3056 		dspcntr |= DISPPLANE_BGRX555;
3057 		break;
3058 	case DRM_FORMAT_RGB565:
3059 		dspcntr |= DISPPLANE_BGRX565;
3060 		break;
3061 	case DRM_FORMAT_XRGB8888:
3062 		dspcntr |= DISPPLANE_BGRX888;
3063 		break;
3064 	case DRM_FORMAT_XBGR8888:
3065 		dspcntr |= DISPPLANE_RGBX888;
3066 		break;
3067 	case DRM_FORMAT_XRGB2101010:
3068 		dspcntr |= DISPPLANE_BGRX101010;
3069 		break;
3070 	case DRM_FORMAT_XBGR2101010:
3071 		dspcntr |= DISPPLANE_RGBX101010;
3072 		break;
3073 	default:
3074 		BUG();
3075 	}
3076 
3077 	if (INTEL_GEN(dev_priv) >= 4 &&
3078 	    fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3079 		dspcntr |= DISPPLANE_TILED;
3080 
3081 	if (IS_G4X(dev_priv))
3082 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3083 
3084 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3085 
3086 	if (INTEL_INFO(dev)->gen >= 4)
3087 		intel_crtc->dspaddr_offset =
3088 			intel_compute_tile_offset(&x, &y, plane_state, 0);
3089 
3090 	if (rotation == DRM_ROTATE_180) {
3091 		dspcntr |= DISPPLANE_ROTATE_180;
3092 
3093 		x += (crtc_state->pipe_src_w - 1);
3094 		y += (crtc_state->pipe_src_h - 1);
3095 	}
3096 
3097 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3098 
3099 	if (INTEL_INFO(dev)->gen < 4)
3100 		intel_crtc->dspaddr_offset = linear_offset;
3101 
3102 	intel_crtc->adjusted_x = x;
3103 	intel_crtc->adjusted_y = y;
3104 
3105 	I915_WRITE(reg, dspcntr);
3106 
3107 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3108 	if (INTEL_INFO(dev)->gen >= 4) {
3109 		I915_WRITE(DSPSURF(plane),
3110 			   intel_fb_gtt_offset(fb, rotation) +
3111 			   intel_crtc->dspaddr_offset);
3112 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3113 		I915_WRITE(DSPLINOFF(plane), linear_offset);
3114 	} else
3115 		I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
3116 	POSTING_READ(reg);
3117 }
3118 
3119 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3120 				       struct drm_crtc *crtc)
3121 {
3122 	struct drm_device *dev = crtc->dev;
3123 	struct drm_i915_private *dev_priv = to_i915(dev);
3124 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125 	int plane = intel_crtc->plane;
3126 
3127 	I915_WRITE(DSPCNTR(plane), 0);
3128 	if (INTEL_INFO(dev_priv)->gen >= 4)
3129 		I915_WRITE(DSPSURF(plane), 0);
3130 	else
3131 		I915_WRITE(DSPADDR(plane), 0);
3132 	POSTING_READ(DSPCNTR(plane));
3133 }
3134 
3135 static void ironlake_update_primary_plane(struct drm_plane *primary,
3136 					  const struct intel_crtc_state *crtc_state,
3137 					  const struct intel_plane_state *plane_state)
3138 {
3139 	struct drm_device *dev = primary->dev;
3140 	struct drm_i915_private *dev_priv = to_i915(dev);
3141 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3142 	struct drm_framebuffer *fb = plane_state->base.fb;
3143 	int plane = intel_crtc->plane;
3144 	u32 linear_offset;
3145 	u32 dspcntr;
3146 	i915_reg_t reg = DSPCNTR(plane);
3147 	unsigned int rotation = plane_state->base.rotation;
3148 	int x = plane_state->base.src.x1 >> 16;
3149 	int y = plane_state->base.src.y1 >> 16;
3150 
3151 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3152 	dspcntr |= DISPLAY_PLANE_ENABLE;
3153 
3154 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3155 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3156 
3157 	switch (fb->pixel_format) {
3158 	case DRM_FORMAT_C8:
3159 		dspcntr |= DISPPLANE_8BPP;
3160 		break;
3161 	case DRM_FORMAT_RGB565:
3162 		dspcntr |= DISPPLANE_BGRX565;
3163 		break;
3164 	case DRM_FORMAT_XRGB8888:
3165 		dspcntr |= DISPPLANE_BGRX888;
3166 		break;
3167 	case DRM_FORMAT_XBGR8888:
3168 		dspcntr |= DISPPLANE_RGBX888;
3169 		break;
3170 	case DRM_FORMAT_XRGB2101010:
3171 		dspcntr |= DISPPLANE_BGRX101010;
3172 		break;
3173 	case DRM_FORMAT_XBGR2101010:
3174 		dspcntr |= DISPPLANE_RGBX101010;
3175 		break;
3176 	default:
3177 		BUG();
3178 	}
3179 
3180 	if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3181 		dspcntr |= DISPPLANE_TILED;
3182 
3183 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3184 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3185 
3186 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3187 
3188 	intel_crtc->dspaddr_offset =
3189 		intel_compute_tile_offset(&x, &y, plane_state, 0);
3190 
3191 	if (rotation == DRM_ROTATE_180) {
3192 		dspcntr |= DISPPLANE_ROTATE_180;
3193 
3194 		if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3195 			x += (crtc_state->pipe_src_w - 1);
3196 			y += (crtc_state->pipe_src_h - 1);
3197 		}
3198 	}
3199 
3200 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3201 
3202 	intel_crtc->adjusted_x = x;
3203 	intel_crtc->adjusted_y = y;
3204 
3205 	I915_WRITE(reg, dspcntr);
3206 
3207 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3208 	I915_WRITE(DSPSURF(plane),
3209 		   intel_fb_gtt_offset(fb, rotation) +
3210 		   intel_crtc->dspaddr_offset);
3211 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3212 		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3213 	} else {
3214 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3215 		I915_WRITE(DSPLINOFF(plane), linear_offset);
3216 	}
3217 	POSTING_READ(reg);
3218 }
3219 
3220 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3221 			      uint64_t fb_modifier, uint32_t pixel_format)
3222 {
3223 	if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3224 		return 64;
3225 	} else {
3226 		int cpp = drm_format_plane_cpp(pixel_format, 0);
3227 
3228 		return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3229 	}
3230 }
3231 
3232 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3233 			unsigned int rotation)
3234 {
3235 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3236 	struct i915_ggtt_view view;
3237 	struct i915_vma *vma;
3238 
3239 	intel_fill_fb_ggtt_view(&view, fb, rotation);
3240 
3241 	vma = i915_gem_object_to_ggtt(obj, &view);
3242 	if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3243 		 view.type))
3244 		return -1;
3245 
3246 	return i915_ggtt_offset(vma);
3247 }
3248 
3249 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3250 {
3251 	struct drm_device *dev = intel_crtc->base.dev;
3252 	struct drm_i915_private *dev_priv = to_i915(dev);
3253 
3254 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3255 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3256 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3257 }
3258 
3259 /*
3260  * This function detaches (aka. unbinds) unused scalers in hardware
3261  */
3262 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3263 {
3264 	struct intel_crtc_scaler_state *scaler_state;
3265 	int i;
3266 
3267 	scaler_state = &intel_crtc->config->scaler_state;
3268 
3269 	/* loop through and disable scalers that aren't in use */
3270 	for (i = 0; i < intel_crtc->num_scalers; i++) {
3271 		if (!scaler_state->scalers[i].in_use)
3272 			skl_detach_scaler(intel_crtc, i);
3273 	}
3274 }
3275 
3276 u32 skl_plane_stride(struct drm_framebuffer *fb, int plane,
3277 		     unsigned int rotation)
3278 {
3279 	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3280 	u32 stride = intel_fb_pitch(fb, plane, rotation);
3281 
3282 	/*
3283 	 * The stride is either expressed as a multiple of 64 bytes chunks for
3284 	 * linear buffers or in number of tiles for tiled buffers.
3285 	 */
3286 	if (intel_rotation_90_or_270(rotation)) {
3287 		int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3288 
3289 		stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3290 	} else {
3291 		stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3292 						    fb->pixel_format);
3293 	}
3294 
3295 	return stride;
3296 }
3297 
3298 u32 skl_plane_ctl_format(uint32_t pixel_format)
3299 {
3300 	switch (pixel_format) {
3301 	case DRM_FORMAT_C8:
3302 		return PLANE_CTL_FORMAT_INDEXED;
3303 	case DRM_FORMAT_RGB565:
3304 		return PLANE_CTL_FORMAT_RGB_565;
3305 	case DRM_FORMAT_XBGR8888:
3306 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3307 	case DRM_FORMAT_XRGB8888:
3308 		return PLANE_CTL_FORMAT_XRGB_8888;
3309 	/*
3310 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3311 	 * to be already pre-multiplied. We need to add a knob (or a different
3312 	 * DRM_FORMAT) for user-space to configure that.
3313 	 */
3314 	case DRM_FORMAT_ABGR8888:
3315 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3316 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3317 	case DRM_FORMAT_ARGB8888:
3318 		return PLANE_CTL_FORMAT_XRGB_8888 |
3319 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3320 	case DRM_FORMAT_XRGB2101010:
3321 		return PLANE_CTL_FORMAT_XRGB_2101010;
3322 	case DRM_FORMAT_XBGR2101010:
3323 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3324 	case DRM_FORMAT_YUYV:
3325 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3326 	case DRM_FORMAT_YVYU:
3327 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3328 	case DRM_FORMAT_UYVY:
3329 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3330 	case DRM_FORMAT_VYUY:
3331 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3332 	default:
3333 		MISSING_CASE(pixel_format);
3334 	}
3335 
3336 	return 0;
3337 }
3338 
3339 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3340 {
3341 	switch (fb_modifier) {
3342 	case DRM_FORMAT_MOD_NONE:
3343 		break;
3344 	case I915_FORMAT_MOD_X_TILED:
3345 		return PLANE_CTL_TILED_X;
3346 	case I915_FORMAT_MOD_Y_TILED:
3347 		return PLANE_CTL_TILED_Y;
3348 	case I915_FORMAT_MOD_Yf_TILED:
3349 		return PLANE_CTL_TILED_YF;
3350 	default:
3351 		MISSING_CASE(fb_modifier);
3352 	}
3353 
3354 	return 0;
3355 }
3356 
3357 u32 skl_plane_ctl_rotation(unsigned int rotation)
3358 {
3359 	switch (rotation) {
3360 	case DRM_ROTATE_0:
3361 		break;
3362 	/*
3363 	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3364 	 * while i915 HW rotation is clockwise, thats why this swapping.
3365 	 */
3366 	case DRM_ROTATE_90:
3367 		return PLANE_CTL_ROTATE_270;
3368 	case DRM_ROTATE_180:
3369 		return PLANE_CTL_ROTATE_180;
3370 	case DRM_ROTATE_270:
3371 		return PLANE_CTL_ROTATE_90;
3372 	default:
3373 		MISSING_CASE(rotation);
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static void skylake_update_primary_plane(struct drm_plane *plane,
3380 					 const struct intel_crtc_state *crtc_state,
3381 					 const struct intel_plane_state *plane_state)
3382 {
3383 	struct drm_device *dev = plane->dev;
3384 	struct drm_i915_private *dev_priv = to_i915(dev);
3385 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3386 	struct drm_framebuffer *fb = plane_state->base.fb;
3387 	const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
3388 	const struct skl_plane_wm *p_wm =
3389 		&crtc_state->wm.skl.optimal.planes[0];
3390 	int pipe = intel_crtc->pipe;
3391 	u32 plane_ctl;
3392 	unsigned int rotation = plane_state->base.rotation;
3393 	u32 stride = skl_plane_stride(fb, 0, rotation);
3394 	u32 surf_addr = plane_state->main.offset;
3395 	int scaler_id = plane_state->scaler_id;
3396 	int src_x = plane_state->main.x;
3397 	int src_y = plane_state->main.y;
3398 	int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3399 	int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3400 	int dst_x = plane_state->base.dst.x1;
3401 	int dst_y = plane_state->base.dst.y1;
3402 	int dst_w = drm_rect_width(&plane_state->base.dst);
3403 	int dst_h = drm_rect_height(&plane_state->base.dst);
3404 
3405 	plane_ctl = PLANE_CTL_ENABLE |
3406 		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3407 		    PLANE_CTL_PIPE_CSC_ENABLE;
3408 
3409 	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3410 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3411 	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3412 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3413 
3414 	/* Sizes are 0 based */
3415 	src_w--;
3416 	src_h--;
3417 	dst_w--;
3418 	dst_h--;
3419 
3420 	intel_crtc->dspaddr_offset = surf_addr;
3421 
3422 	intel_crtc->adjusted_x = src_x;
3423 	intel_crtc->adjusted_y = src_y;
3424 
3425 	if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3426 		skl_write_plane_wm(intel_crtc, p_wm, &wm->ddb, 0);
3427 
3428 	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3429 	I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3430 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3431 	I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3432 
3433 	if (scaler_id >= 0) {
3434 		uint32_t ps_ctrl = 0;
3435 
3436 		WARN_ON(!dst_w || !dst_h);
3437 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3438 			crtc_state->scaler_state.scalers[scaler_id].mode;
3439 		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3440 		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3441 		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3442 		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3443 		I915_WRITE(PLANE_POS(pipe, 0), 0);
3444 	} else {
3445 		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3446 	}
3447 
3448 	I915_WRITE(PLANE_SURF(pipe, 0),
3449 		   intel_fb_gtt_offset(fb, rotation) + surf_addr);
3450 
3451 	POSTING_READ(PLANE_SURF(pipe, 0));
3452 }
3453 
3454 static void skylake_disable_primary_plane(struct drm_plane *primary,
3455 					  struct drm_crtc *crtc)
3456 {
3457 	struct drm_device *dev = crtc->dev;
3458 	struct drm_i915_private *dev_priv = to_i915(dev);
3459 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3460 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3461 	const struct skl_plane_wm *p_wm = &cstate->wm.skl.optimal.planes[0];
3462 	int pipe = intel_crtc->pipe;
3463 
3464 	/*
3465 	 * We only populate skl_results on watermark updates, and if the
3466 	 * plane's visiblity isn't actually changing neither is its watermarks.
3467 	 */
3468 	if (!crtc->primary->state->visible)
3469 		skl_write_plane_wm(intel_crtc, p_wm,
3470 				   &dev_priv->wm.skl_results.ddb, 0);
3471 
3472 	I915_WRITE(PLANE_CTL(pipe, 0), 0);
3473 	I915_WRITE(PLANE_SURF(pipe, 0), 0);
3474 	POSTING_READ(PLANE_SURF(pipe, 0));
3475 }
3476 
3477 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3478 static int
3479 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3480 			   int x, int y, enum mode_set_atomic state)
3481 {
3482 	/* Support for kgdboc is disabled, this needs a major rework. */
3483 	DRM_ERROR("legacy panic handler not supported any more.\n");
3484 
3485 	return -ENODEV;
3486 }
3487 
3488 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3489 {
3490 	struct intel_crtc *crtc;
3491 
3492 	for_each_intel_crtc(&dev_priv->drm, crtc)
3493 		intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3494 }
3495 
3496 static void intel_update_primary_planes(struct drm_device *dev)
3497 {
3498 	struct drm_crtc *crtc;
3499 
3500 	for_each_crtc(dev, crtc) {
3501 		struct intel_plane *plane = to_intel_plane(crtc->primary);
3502 		struct intel_plane_state *plane_state =
3503 			to_intel_plane_state(plane->base.state);
3504 
3505 		if (plane_state->base.visible)
3506 			plane->update_plane(&plane->base,
3507 					    to_intel_crtc_state(crtc->state),
3508 					    plane_state);
3509 	}
3510 }
3511 
3512 static int
3513 __intel_display_resume(struct drm_device *dev,
3514 		       struct drm_atomic_state *state)
3515 {
3516 	struct drm_crtc_state *crtc_state;
3517 	struct drm_crtc *crtc;
3518 	int i, ret;
3519 
3520 	intel_modeset_setup_hw_state(dev);
3521 	i915_redisable_vga(dev);
3522 
3523 	if (!state)
3524 		return 0;
3525 
3526 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
3527 		/*
3528 		 * Force recalculation even if we restore
3529 		 * current state. With fast modeset this may not result
3530 		 * in a modeset when the state is compatible.
3531 		 */
3532 		crtc_state->mode_changed = true;
3533 	}
3534 
3535 	/* ignore any reset values/BIOS leftovers in the WM registers */
3536 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
3537 
3538 	ret = drm_atomic_commit(state);
3539 
3540 	WARN_ON(ret == -EDEADLK);
3541 	return ret;
3542 }
3543 
3544 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3545 {
3546 	return intel_has_gpu_reset(dev_priv) &&
3547 		INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3548 }
3549 
3550 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3551 {
3552 	struct drm_device *dev = &dev_priv->drm;
3553 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3554 	struct drm_atomic_state *state;
3555 	int ret;
3556 
3557 	/*
3558 	 * Need mode_config.mutex so that we don't
3559 	 * trample ongoing ->detect() and whatnot.
3560 	 */
3561 	mutex_lock(&dev->mode_config.mutex);
3562 	drm_modeset_acquire_init(ctx, 0);
3563 	while (1) {
3564 		ret = drm_modeset_lock_all_ctx(dev, ctx);
3565 		if (ret != -EDEADLK)
3566 			break;
3567 
3568 		drm_modeset_backoff(ctx);
3569 	}
3570 
3571 	/* reset doesn't touch the display, but flips might get nuked anyway, */
3572 	if (!i915.force_reset_modeset_test &&
3573 	    !gpu_reset_clobbers_display(dev_priv))
3574 		return;
3575 
3576 	/*
3577 	 * Disabling the crtcs gracefully seems nicer. Also the
3578 	 * g33 docs say we should at least disable all the planes.
3579 	 */
3580 	state = drm_atomic_helper_duplicate_state(dev, ctx);
3581 	if (IS_ERR(state)) {
3582 		ret = PTR_ERR(state);
3583 		state = NULL;
3584 		DRM_ERROR("Duplicating state failed with %i\n", ret);
3585 		goto err;
3586 	}
3587 
3588 	ret = drm_atomic_helper_disable_all(dev, ctx);
3589 	if (ret) {
3590 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3591 		goto err;
3592 	}
3593 
3594 	dev_priv->modeset_restore_state = state;
3595 	state->acquire_ctx = ctx;
3596 	return;
3597 
3598 err:
3599 	drm_atomic_state_free(state);
3600 }
3601 
3602 void intel_finish_reset(struct drm_i915_private *dev_priv)
3603 {
3604 	struct drm_device *dev = &dev_priv->drm;
3605 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3606 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3607 	int ret;
3608 
3609 	/*
3610 	 * Flips in the rings will be nuked by the reset,
3611 	 * so complete all pending flips so that user space
3612 	 * will get its events and not get stuck.
3613 	 */
3614 	intel_complete_page_flips(dev_priv);
3615 
3616 	dev_priv->modeset_restore_state = NULL;
3617 
3618 	/* reset doesn't touch the display */
3619 	if (!gpu_reset_clobbers_display(dev_priv)) {
3620 		if (!state) {
3621 			/*
3622 			 * Flips in the rings have been nuked by the reset,
3623 			 * so update the base address of all primary
3624 			 * planes to the the last fb to make sure we're
3625 			 * showing the correct fb after a reset.
3626 			 *
3627 			 * FIXME: Atomic will make this obsolete since we won't schedule
3628 			 * CS-based flips (which might get lost in gpu resets) any more.
3629 			 */
3630 			intel_update_primary_planes(dev);
3631 		} else {
3632 			ret = __intel_display_resume(dev, state);
3633 			if (ret)
3634 				DRM_ERROR("Restoring old state failed with %i\n", ret);
3635 		}
3636 	} else {
3637 		/*
3638 		 * The display has been reset as well,
3639 		 * so need a full re-initialization.
3640 		 */
3641 		intel_runtime_pm_disable_interrupts(dev_priv);
3642 		intel_runtime_pm_enable_interrupts(dev_priv);
3643 
3644 		intel_pps_unlock_regs_wa(dev_priv);
3645 		intel_modeset_init_hw(dev);
3646 
3647 		spin_lock_irq(&dev_priv->irq_lock);
3648 		if (dev_priv->display.hpd_irq_setup)
3649 			dev_priv->display.hpd_irq_setup(dev_priv);
3650 		spin_unlock_irq(&dev_priv->irq_lock);
3651 
3652 		ret = __intel_display_resume(dev, state);
3653 		if (ret)
3654 			DRM_ERROR("Restoring old state failed with %i\n", ret);
3655 
3656 		intel_hpd_init(dev_priv);
3657 	}
3658 
3659 	drm_modeset_drop_locks(ctx);
3660 	drm_modeset_acquire_fini(ctx);
3661 	mutex_unlock(&dev->mode_config.mutex);
3662 }
3663 
3664 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3665 {
3666 	struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3667 
3668 	if (i915_reset_in_progress(error))
3669 		return true;
3670 
3671 	if (crtc->reset_count != i915_reset_count(error))
3672 		return true;
3673 
3674 	return false;
3675 }
3676 
3677 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3678 {
3679 	struct drm_device *dev = crtc->dev;
3680 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3681 	bool pending;
3682 
3683 	if (abort_flip_on_reset(intel_crtc))
3684 		return false;
3685 
3686 	spin_lock_irq(&dev->event_lock);
3687 	pending = to_intel_crtc(crtc)->flip_work != NULL;
3688 	spin_unlock_irq(&dev->event_lock);
3689 
3690 	return pending;
3691 }
3692 
3693 static void intel_update_pipe_config(struct intel_crtc *crtc,
3694 				     struct intel_crtc_state *old_crtc_state)
3695 {
3696 	struct drm_device *dev = crtc->base.dev;
3697 	struct drm_i915_private *dev_priv = to_i915(dev);
3698 	struct intel_crtc_state *pipe_config =
3699 		to_intel_crtc_state(crtc->base.state);
3700 
3701 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3702 	crtc->base.mode = crtc->base.state->mode;
3703 
3704 	DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3705 		      old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3706 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3707 
3708 	/*
3709 	 * Update pipe size and adjust fitter if needed: the reason for this is
3710 	 * that in compute_mode_changes we check the native mode (not the pfit
3711 	 * mode) to see if we can flip rather than do a full mode set. In the
3712 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3713 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3714 	 * sized surface.
3715 	 */
3716 
3717 	I915_WRITE(PIPESRC(crtc->pipe),
3718 		   ((pipe_config->pipe_src_w - 1) << 16) |
3719 		   (pipe_config->pipe_src_h - 1));
3720 
3721 	/* on skylake this is done by detaching scalers */
3722 	if (INTEL_INFO(dev)->gen >= 9) {
3723 		skl_detach_scalers(crtc);
3724 
3725 		if (pipe_config->pch_pfit.enabled)
3726 			skylake_pfit_enable(crtc);
3727 	} else if (HAS_PCH_SPLIT(dev_priv)) {
3728 		if (pipe_config->pch_pfit.enabled)
3729 			ironlake_pfit_enable(crtc);
3730 		else if (old_crtc_state->pch_pfit.enabled)
3731 			ironlake_pfit_disable(crtc, true);
3732 	}
3733 }
3734 
3735 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3736 {
3737 	struct drm_device *dev = crtc->dev;
3738 	struct drm_i915_private *dev_priv = to_i915(dev);
3739 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740 	int pipe = intel_crtc->pipe;
3741 	i915_reg_t reg;
3742 	u32 temp;
3743 
3744 	/* enable normal train */
3745 	reg = FDI_TX_CTL(pipe);
3746 	temp = I915_READ(reg);
3747 	if (IS_IVYBRIDGE(dev_priv)) {
3748 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3749 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3750 	} else {
3751 		temp &= ~FDI_LINK_TRAIN_NONE;
3752 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3753 	}
3754 	I915_WRITE(reg, temp);
3755 
3756 	reg = FDI_RX_CTL(pipe);
3757 	temp = I915_READ(reg);
3758 	if (HAS_PCH_CPT(dev_priv)) {
3759 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3760 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3761 	} else {
3762 		temp &= ~FDI_LINK_TRAIN_NONE;
3763 		temp |= FDI_LINK_TRAIN_NONE;
3764 	}
3765 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3766 
3767 	/* wait one idle pattern time */
3768 	POSTING_READ(reg);
3769 	udelay(1000);
3770 
3771 	/* IVB wants error correction enabled */
3772 	if (IS_IVYBRIDGE(dev_priv))
3773 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3774 			   FDI_FE_ERRC_ENABLE);
3775 }
3776 
3777 /* The FDI link training functions for ILK/Ibexpeak. */
3778 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3779 {
3780 	struct drm_device *dev = crtc->dev;
3781 	struct drm_i915_private *dev_priv = to_i915(dev);
3782 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3783 	int pipe = intel_crtc->pipe;
3784 	i915_reg_t reg;
3785 	u32 temp, tries;
3786 
3787 	/* FDI needs bits from pipe first */
3788 	assert_pipe_enabled(dev_priv, pipe);
3789 
3790 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3791 	   for train result */
3792 	reg = FDI_RX_IMR(pipe);
3793 	temp = I915_READ(reg);
3794 	temp &= ~FDI_RX_SYMBOL_LOCK;
3795 	temp &= ~FDI_RX_BIT_LOCK;
3796 	I915_WRITE(reg, temp);
3797 	I915_READ(reg);
3798 	udelay(150);
3799 
3800 	/* enable CPU FDI TX and PCH FDI RX */
3801 	reg = FDI_TX_CTL(pipe);
3802 	temp = I915_READ(reg);
3803 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3804 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3805 	temp &= ~FDI_LINK_TRAIN_NONE;
3806 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3807 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3808 
3809 	reg = FDI_RX_CTL(pipe);
3810 	temp = I915_READ(reg);
3811 	temp &= ~FDI_LINK_TRAIN_NONE;
3812 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3813 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3814 
3815 	POSTING_READ(reg);
3816 	udelay(150);
3817 
3818 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3819 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3820 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3821 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3822 
3823 	reg = FDI_RX_IIR(pipe);
3824 	for (tries = 0; tries < 5; tries++) {
3825 		temp = I915_READ(reg);
3826 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3827 
3828 		if ((temp & FDI_RX_BIT_LOCK)) {
3829 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3830 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3831 			break;
3832 		}
3833 	}
3834 	if (tries == 5)
3835 		DRM_ERROR("FDI train 1 fail!\n");
3836 
3837 	/* Train 2 */
3838 	reg = FDI_TX_CTL(pipe);
3839 	temp = I915_READ(reg);
3840 	temp &= ~FDI_LINK_TRAIN_NONE;
3841 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3842 	I915_WRITE(reg, temp);
3843 
3844 	reg = FDI_RX_CTL(pipe);
3845 	temp = I915_READ(reg);
3846 	temp &= ~FDI_LINK_TRAIN_NONE;
3847 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3848 	I915_WRITE(reg, temp);
3849 
3850 	POSTING_READ(reg);
3851 	udelay(150);
3852 
3853 	reg = FDI_RX_IIR(pipe);
3854 	for (tries = 0; tries < 5; tries++) {
3855 		temp = I915_READ(reg);
3856 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3857 
3858 		if (temp & FDI_RX_SYMBOL_LOCK) {
3859 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3860 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3861 			break;
3862 		}
3863 	}
3864 	if (tries == 5)
3865 		DRM_ERROR("FDI train 2 fail!\n");
3866 
3867 	DRM_DEBUG_KMS("FDI train done\n");
3868 
3869 }
3870 
3871 static const int snb_b_fdi_train_param[] = {
3872 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3873 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3874 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3875 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3876 };
3877 
3878 /* The FDI link training functions for SNB/Cougarpoint. */
3879 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3880 {
3881 	struct drm_device *dev = crtc->dev;
3882 	struct drm_i915_private *dev_priv = to_i915(dev);
3883 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3884 	int pipe = intel_crtc->pipe;
3885 	i915_reg_t reg;
3886 	u32 temp, i, retry;
3887 
3888 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3889 	   for train result */
3890 	reg = FDI_RX_IMR(pipe);
3891 	temp = I915_READ(reg);
3892 	temp &= ~FDI_RX_SYMBOL_LOCK;
3893 	temp &= ~FDI_RX_BIT_LOCK;
3894 	I915_WRITE(reg, temp);
3895 
3896 	POSTING_READ(reg);
3897 	udelay(150);
3898 
3899 	/* enable CPU FDI TX and PCH FDI RX */
3900 	reg = FDI_TX_CTL(pipe);
3901 	temp = I915_READ(reg);
3902 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3903 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3904 	temp &= ~FDI_LINK_TRAIN_NONE;
3905 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3906 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3907 	/* SNB-B */
3908 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3909 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3910 
3911 	I915_WRITE(FDI_RX_MISC(pipe),
3912 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3913 
3914 	reg = FDI_RX_CTL(pipe);
3915 	temp = I915_READ(reg);
3916 	if (HAS_PCH_CPT(dev_priv)) {
3917 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3918 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3919 	} else {
3920 		temp &= ~FDI_LINK_TRAIN_NONE;
3921 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3922 	}
3923 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3924 
3925 	POSTING_READ(reg);
3926 	udelay(150);
3927 
3928 	for (i = 0; i < 4; i++) {
3929 		reg = FDI_TX_CTL(pipe);
3930 		temp = I915_READ(reg);
3931 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3932 		temp |= snb_b_fdi_train_param[i];
3933 		I915_WRITE(reg, temp);
3934 
3935 		POSTING_READ(reg);
3936 		udelay(500);
3937 
3938 		for (retry = 0; retry < 5; retry++) {
3939 			reg = FDI_RX_IIR(pipe);
3940 			temp = I915_READ(reg);
3941 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3942 			if (temp & FDI_RX_BIT_LOCK) {
3943 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3944 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3945 				break;
3946 			}
3947 			udelay(50);
3948 		}
3949 		if (retry < 5)
3950 			break;
3951 	}
3952 	if (i == 4)
3953 		DRM_ERROR("FDI train 1 fail!\n");
3954 
3955 	/* Train 2 */
3956 	reg = FDI_TX_CTL(pipe);
3957 	temp = I915_READ(reg);
3958 	temp &= ~FDI_LINK_TRAIN_NONE;
3959 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3960 	if (IS_GEN6(dev_priv)) {
3961 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3962 		/* SNB-B */
3963 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3964 	}
3965 	I915_WRITE(reg, temp);
3966 
3967 	reg = FDI_RX_CTL(pipe);
3968 	temp = I915_READ(reg);
3969 	if (HAS_PCH_CPT(dev_priv)) {
3970 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3971 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3972 	} else {
3973 		temp &= ~FDI_LINK_TRAIN_NONE;
3974 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3975 	}
3976 	I915_WRITE(reg, temp);
3977 
3978 	POSTING_READ(reg);
3979 	udelay(150);
3980 
3981 	for (i = 0; i < 4; i++) {
3982 		reg = FDI_TX_CTL(pipe);
3983 		temp = I915_READ(reg);
3984 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3985 		temp |= snb_b_fdi_train_param[i];
3986 		I915_WRITE(reg, temp);
3987 
3988 		POSTING_READ(reg);
3989 		udelay(500);
3990 
3991 		for (retry = 0; retry < 5; retry++) {
3992 			reg = FDI_RX_IIR(pipe);
3993 			temp = I915_READ(reg);
3994 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3995 			if (temp & FDI_RX_SYMBOL_LOCK) {
3996 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3997 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3998 				break;
3999 			}
4000 			udelay(50);
4001 		}
4002 		if (retry < 5)
4003 			break;
4004 	}
4005 	if (i == 4)
4006 		DRM_ERROR("FDI train 2 fail!\n");
4007 
4008 	DRM_DEBUG_KMS("FDI train done.\n");
4009 }
4010 
4011 /* Manual link training for Ivy Bridge A0 parts */
4012 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
4013 {
4014 	struct drm_device *dev = crtc->dev;
4015 	struct drm_i915_private *dev_priv = to_i915(dev);
4016 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4017 	int pipe = intel_crtc->pipe;
4018 	i915_reg_t reg;
4019 	u32 temp, i, j;
4020 
4021 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4022 	   for train result */
4023 	reg = FDI_RX_IMR(pipe);
4024 	temp = I915_READ(reg);
4025 	temp &= ~FDI_RX_SYMBOL_LOCK;
4026 	temp &= ~FDI_RX_BIT_LOCK;
4027 	I915_WRITE(reg, temp);
4028 
4029 	POSTING_READ(reg);
4030 	udelay(150);
4031 
4032 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4033 		      I915_READ(FDI_RX_IIR(pipe)));
4034 
4035 	/* Try each vswing and preemphasis setting twice before moving on */
4036 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4037 		/* disable first in case we need to retry */
4038 		reg = FDI_TX_CTL(pipe);
4039 		temp = I915_READ(reg);
4040 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4041 		temp &= ~FDI_TX_ENABLE;
4042 		I915_WRITE(reg, temp);
4043 
4044 		reg = FDI_RX_CTL(pipe);
4045 		temp = I915_READ(reg);
4046 		temp &= ~FDI_LINK_TRAIN_AUTO;
4047 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4048 		temp &= ~FDI_RX_ENABLE;
4049 		I915_WRITE(reg, temp);
4050 
4051 		/* enable CPU FDI TX and PCH FDI RX */
4052 		reg = FDI_TX_CTL(pipe);
4053 		temp = I915_READ(reg);
4054 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
4055 		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4056 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4057 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4058 		temp |= snb_b_fdi_train_param[j/2];
4059 		temp |= FDI_COMPOSITE_SYNC;
4060 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
4061 
4062 		I915_WRITE(FDI_RX_MISC(pipe),
4063 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4064 
4065 		reg = FDI_RX_CTL(pipe);
4066 		temp = I915_READ(reg);
4067 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4068 		temp |= FDI_COMPOSITE_SYNC;
4069 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
4070 
4071 		POSTING_READ(reg);
4072 		udelay(1); /* should be 0.5us */
4073 
4074 		for (i = 0; i < 4; i++) {
4075 			reg = FDI_RX_IIR(pipe);
4076 			temp = I915_READ(reg);
4077 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4078 
4079 			if (temp & FDI_RX_BIT_LOCK ||
4080 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4081 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4082 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4083 					      i);
4084 				break;
4085 			}
4086 			udelay(1); /* should be 0.5us */
4087 		}
4088 		if (i == 4) {
4089 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4090 			continue;
4091 		}
4092 
4093 		/* Train 2 */
4094 		reg = FDI_TX_CTL(pipe);
4095 		temp = I915_READ(reg);
4096 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4097 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4098 		I915_WRITE(reg, temp);
4099 
4100 		reg = FDI_RX_CTL(pipe);
4101 		temp = I915_READ(reg);
4102 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4103 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4104 		I915_WRITE(reg, temp);
4105 
4106 		POSTING_READ(reg);
4107 		udelay(2); /* should be 1.5us */
4108 
4109 		for (i = 0; i < 4; i++) {
4110 			reg = FDI_RX_IIR(pipe);
4111 			temp = I915_READ(reg);
4112 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4113 
4114 			if (temp & FDI_RX_SYMBOL_LOCK ||
4115 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4116 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4117 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4118 					      i);
4119 				goto train_done;
4120 			}
4121 			udelay(2); /* should be 1.5us */
4122 		}
4123 		if (i == 4)
4124 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4125 	}
4126 
4127 train_done:
4128 	DRM_DEBUG_KMS("FDI train done.\n");
4129 }
4130 
4131 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4132 {
4133 	struct drm_device *dev = intel_crtc->base.dev;
4134 	struct drm_i915_private *dev_priv = to_i915(dev);
4135 	int pipe = intel_crtc->pipe;
4136 	i915_reg_t reg;
4137 	u32 temp;
4138 
4139 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4140 	reg = FDI_RX_CTL(pipe);
4141 	temp = I915_READ(reg);
4142 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4143 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4144 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4145 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4146 
4147 	POSTING_READ(reg);
4148 	udelay(200);
4149 
4150 	/* Switch from Rawclk to PCDclk */
4151 	temp = I915_READ(reg);
4152 	I915_WRITE(reg, temp | FDI_PCDCLK);
4153 
4154 	POSTING_READ(reg);
4155 	udelay(200);
4156 
4157 	/* Enable CPU FDI TX PLL, always on for Ironlake */
4158 	reg = FDI_TX_CTL(pipe);
4159 	temp = I915_READ(reg);
4160 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4161 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4162 
4163 		POSTING_READ(reg);
4164 		udelay(100);
4165 	}
4166 }
4167 
4168 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4169 {
4170 	struct drm_device *dev = intel_crtc->base.dev;
4171 	struct drm_i915_private *dev_priv = to_i915(dev);
4172 	int pipe = intel_crtc->pipe;
4173 	i915_reg_t reg;
4174 	u32 temp;
4175 
4176 	/* Switch from PCDclk to Rawclk */
4177 	reg = FDI_RX_CTL(pipe);
4178 	temp = I915_READ(reg);
4179 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
4180 
4181 	/* Disable CPU FDI TX PLL */
4182 	reg = FDI_TX_CTL(pipe);
4183 	temp = I915_READ(reg);
4184 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4185 
4186 	POSTING_READ(reg);
4187 	udelay(100);
4188 
4189 	reg = FDI_RX_CTL(pipe);
4190 	temp = I915_READ(reg);
4191 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4192 
4193 	/* Wait for the clocks to turn off. */
4194 	POSTING_READ(reg);
4195 	udelay(100);
4196 }
4197 
4198 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4199 {
4200 	struct drm_device *dev = crtc->dev;
4201 	struct drm_i915_private *dev_priv = to_i915(dev);
4202 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203 	int pipe = intel_crtc->pipe;
4204 	i915_reg_t reg;
4205 	u32 temp;
4206 
4207 	/* disable CPU FDI tx and PCH FDI rx */
4208 	reg = FDI_TX_CTL(pipe);
4209 	temp = I915_READ(reg);
4210 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4211 	POSTING_READ(reg);
4212 
4213 	reg = FDI_RX_CTL(pipe);
4214 	temp = I915_READ(reg);
4215 	temp &= ~(0x7 << 16);
4216 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4217 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4218 
4219 	POSTING_READ(reg);
4220 	udelay(100);
4221 
4222 	/* Ironlake workaround, disable clock pointer after downing FDI */
4223 	if (HAS_PCH_IBX(dev_priv))
4224 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4225 
4226 	/* still set train pattern 1 */
4227 	reg = FDI_TX_CTL(pipe);
4228 	temp = I915_READ(reg);
4229 	temp &= ~FDI_LINK_TRAIN_NONE;
4230 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4231 	I915_WRITE(reg, temp);
4232 
4233 	reg = FDI_RX_CTL(pipe);
4234 	temp = I915_READ(reg);
4235 	if (HAS_PCH_CPT(dev_priv)) {
4236 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4237 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4238 	} else {
4239 		temp &= ~FDI_LINK_TRAIN_NONE;
4240 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4241 	}
4242 	/* BPC in FDI rx is consistent with that in PIPECONF */
4243 	temp &= ~(0x07 << 16);
4244 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4245 	I915_WRITE(reg, temp);
4246 
4247 	POSTING_READ(reg);
4248 	udelay(100);
4249 }
4250 
4251 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4252 {
4253 	struct intel_crtc *crtc;
4254 
4255 	/* Note that we don't need to be called with mode_config.lock here
4256 	 * as our list of CRTC objects is static for the lifetime of the
4257 	 * device and so cannot disappear as we iterate. Similarly, we can
4258 	 * happily treat the predicates as racy, atomic checks as userspace
4259 	 * cannot claim and pin a new fb without at least acquring the
4260 	 * struct_mutex and so serialising with us.
4261 	 */
4262 	for_each_intel_crtc(dev, crtc) {
4263 		if (atomic_read(&crtc->unpin_work_count) == 0)
4264 			continue;
4265 
4266 		if (crtc->flip_work)
4267 			intel_wait_for_vblank(dev, crtc->pipe);
4268 
4269 		return true;
4270 	}
4271 
4272 	return false;
4273 }
4274 
4275 static void page_flip_completed(struct intel_crtc *intel_crtc)
4276 {
4277 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4278 	struct intel_flip_work *work = intel_crtc->flip_work;
4279 
4280 	intel_crtc->flip_work = NULL;
4281 
4282 	if (work->event)
4283 		drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4284 
4285 	drm_crtc_vblank_put(&intel_crtc->base);
4286 
4287 	wake_up_all(&dev_priv->pending_flip_queue);
4288 	queue_work(dev_priv->wq, &work->unpin_work);
4289 
4290 	trace_i915_flip_complete(intel_crtc->plane,
4291 				 work->pending_flip_obj);
4292 }
4293 
4294 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4295 {
4296 	struct drm_device *dev = crtc->dev;
4297 	struct drm_i915_private *dev_priv = to_i915(dev);
4298 	long ret;
4299 
4300 	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4301 
4302 	ret = wait_event_interruptible_timeout(
4303 					dev_priv->pending_flip_queue,
4304 					!intel_crtc_has_pending_flip(crtc),
4305 					60*HZ);
4306 
4307 	if (ret < 0)
4308 		return ret;
4309 
4310 	if (ret == 0) {
4311 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4312 		struct intel_flip_work *work;
4313 
4314 		spin_lock_irq(&dev->event_lock);
4315 		work = intel_crtc->flip_work;
4316 		if (work && !is_mmio_work(work)) {
4317 			WARN_ONCE(1, "Removing stuck page flip\n");
4318 			page_flip_completed(intel_crtc);
4319 		}
4320 		spin_unlock_irq(&dev->event_lock);
4321 	}
4322 
4323 	return 0;
4324 }
4325 
4326 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4327 {
4328 	u32 temp;
4329 
4330 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4331 
4332 	mutex_lock(&dev_priv->sb_lock);
4333 
4334 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4335 	temp |= SBI_SSCCTL_DISABLE;
4336 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4337 
4338 	mutex_unlock(&dev_priv->sb_lock);
4339 }
4340 
4341 /* Program iCLKIP clock to the desired frequency */
4342 static void lpt_program_iclkip(struct drm_crtc *crtc)
4343 {
4344 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4345 	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4346 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
4347 	u32 temp;
4348 
4349 	lpt_disable_iclkip(dev_priv);
4350 
4351 	/* The iCLK virtual clock root frequency is in MHz,
4352 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
4353 	 * divisors, it is necessary to divide one by another, so we
4354 	 * convert the virtual clock precision to KHz here for higher
4355 	 * precision.
4356 	 */
4357 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4358 		u32 iclk_virtual_root_freq = 172800 * 1000;
4359 		u32 iclk_pi_range = 64;
4360 		u32 desired_divisor;
4361 
4362 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4363 						    clock << auxdiv);
4364 		divsel = (desired_divisor / iclk_pi_range) - 2;
4365 		phaseinc = desired_divisor % iclk_pi_range;
4366 
4367 		/*
4368 		 * Near 20MHz is a corner case which is
4369 		 * out of range for the 7-bit divisor
4370 		 */
4371 		if (divsel <= 0x7f)
4372 			break;
4373 	}
4374 
4375 	/* This should not happen with any sane values */
4376 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4377 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4378 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4379 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4380 
4381 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4382 			clock,
4383 			auxdiv,
4384 			divsel,
4385 			phasedir,
4386 			phaseinc);
4387 
4388 	mutex_lock(&dev_priv->sb_lock);
4389 
4390 	/* Program SSCDIVINTPHASE6 */
4391 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4392 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4393 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4394 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4395 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4396 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4397 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4398 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4399 
4400 	/* Program SSCAUXDIV */
4401 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4402 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4403 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4404 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4405 
4406 	/* Enable modulator and associated divider */
4407 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4408 	temp &= ~SBI_SSCCTL_DISABLE;
4409 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4410 
4411 	mutex_unlock(&dev_priv->sb_lock);
4412 
4413 	/* Wait for initialization time */
4414 	udelay(24);
4415 
4416 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4417 }
4418 
4419 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4420 {
4421 	u32 divsel, phaseinc, auxdiv;
4422 	u32 iclk_virtual_root_freq = 172800 * 1000;
4423 	u32 iclk_pi_range = 64;
4424 	u32 desired_divisor;
4425 	u32 temp;
4426 
4427 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4428 		return 0;
4429 
4430 	mutex_lock(&dev_priv->sb_lock);
4431 
4432 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4433 	if (temp & SBI_SSCCTL_DISABLE) {
4434 		mutex_unlock(&dev_priv->sb_lock);
4435 		return 0;
4436 	}
4437 
4438 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4439 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4440 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4441 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4442 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4443 
4444 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4445 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4446 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4447 
4448 	mutex_unlock(&dev_priv->sb_lock);
4449 
4450 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4451 
4452 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4453 				 desired_divisor << auxdiv);
4454 }
4455 
4456 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4457 						enum i915_pipe pch_transcoder)
4458 {
4459 	struct drm_device *dev = crtc->base.dev;
4460 	struct drm_i915_private *dev_priv = to_i915(dev);
4461 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4462 
4463 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4464 		   I915_READ(HTOTAL(cpu_transcoder)));
4465 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4466 		   I915_READ(HBLANK(cpu_transcoder)));
4467 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4468 		   I915_READ(HSYNC(cpu_transcoder)));
4469 
4470 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4471 		   I915_READ(VTOTAL(cpu_transcoder)));
4472 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4473 		   I915_READ(VBLANK(cpu_transcoder)));
4474 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4475 		   I915_READ(VSYNC(cpu_transcoder)));
4476 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4477 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4478 }
4479 
4480 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4481 {
4482 	struct drm_i915_private *dev_priv = to_i915(dev);
4483 	uint32_t temp;
4484 
4485 	temp = I915_READ(SOUTH_CHICKEN1);
4486 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4487 		return;
4488 
4489 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4490 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4491 
4492 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4493 	if (enable)
4494 		temp |= FDI_BC_BIFURCATION_SELECT;
4495 
4496 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4497 	I915_WRITE(SOUTH_CHICKEN1, temp);
4498 	POSTING_READ(SOUTH_CHICKEN1);
4499 }
4500 
4501 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4502 {
4503 	struct drm_device *dev = intel_crtc->base.dev;
4504 
4505 	switch (intel_crtc->pipe) {
4506 	case PIPE_A:
4507 		break;
4508 	case PIPE_B:
4509 		if (intel_crtc->config->fdi_lanes > 2)
4510 			cpt_set_fdi_bc_bifurcation(dev, false);
4511 		else
4512 			cpt_set_fdi_bc_bifurcation(dev, true);
4513 
4514 		break;
4515 	case PIPE_C:
4516 		cpt_set_fdi_bc_bifurcation(dev, true);
4517 
4518 		break;
4519 	default:
4520 		BUG();
4521 	}
4522 }
4523 
4524 /* Return which DP Port should be selected for Transcoder DP control */
4525 static enum port
4526 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4527 {
4528 	struct drm_device *dev = crtc->dev;
4529 	struct intel_encoder *encoder;
4530 
4531 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4532 		if (encoder->type == INTEL_OUTPUT_DP ||
4533 		    encoder->type == INTEL_OUTPUT_EDP)
4534 			return enc_to_dig_port(&encoder->base)->port;
4535 	}
4536 
4537 	return -1;
4538 }
4539 
4540 /*
4541  * Enable PCH resources required for PCH ports:
4542  *   - PCH PLLs
4543  *   - FDI training & RX/TX
4544  *   - update transcoder timings
4545  *   - DP transcoding bits
4546  *   - transcoder
4547  */
4548 static void ironlake_pch_enable(struct drm_crtc *crtc)
4549 {
4550 	struct drm_device *dev = crtc->dev;
4551 	struct drm_i915_private *dev_priv = to_i915(dev);
4552 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4553 	int pipe = intel_crtc->pipe;
4554 	u32 temp;
4555 
4556 	assert_pch_transcoder_disabled(dev_priv, pipe);
4557 
4558 	if (IS_IVYBRIDGE(dev_priv))
4559 		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4560 
4561 	/* Write the TU size bits before fdi link training, so that error
4562 	 * detection works. */
4563 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4564 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4565 
4566 	/* For PCH output, training FDI link */
4567 	dev_priv->display.fdi_link_train(crtc);
4568 
4569 	/* We need to program the right clock selection before writing the pixel
4570 	 * mutliplier into the DPLL. */
4571 	if (HAS_PCH_CPT(dev_priv)) {
4572 		u32 sel;
4573 
4574 		temp = I915_READ(PCH_DPLL_SEL);
4575 		temp |= TRANS_DPLL_ENABLE(pipe);
4576 		sel = TRANS_DPLLB_SEL(pipe);
4577 		if (intel_crtc->config->shared_dpll ==
4578 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4579 			temp |= sel;
4580 		else
4581 			temp &= ~sel;
4582 		I915_WRITE(PCH_DPLL_SEL, temp);
4583 	}
4584 
4585 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4586 	 * transcoder, and we actually should do this to not upset any PCH
4587 	 * transcoder that already use the clock when we share it.
4588 	 *
4589 	 * Note that enable_shared_dpll tries to do the right thing, but
4590 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4591 	 * the right LVDS enable sequence. */
4592 	intel_enable_shared_dpll(intel_crtc);
4593 
4594 	/* set transcoder timing, panel must allow it */
4595 	assert_panel_unlocked(dev_priv, pipe);
4596 	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4597 
4598 	intel_fdi_normal_train(crtc);
4599 
4600 	/* For PCH DP, enable TRANS_DP_CTL */
4601 	if (HAS_PCH_CPT(dev_priv) &&
4602 	    intel_crtc_has_dp_encoder(intel_crtc->config)) {
4603 		const struct drm_display_mode *adjusted_mode =
4604 			&intel_crtc->config->base.adjusted_mode;
4605 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4606 		i915_reg_t reg = TRANS_DP_CTL(pipe);
4607 		temp = I915_READ(reg);
4608 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4609 			  TRANS_DP_SYNC_MASK |
4610 			  TRANS_DP_BPC_MASK);
4611 		temp |= TRANS_DP_OUTPUT_ENABLE;
4612 		temp |= bpc << 9; /* same format but at 11:9 */
4613 
4614 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4615 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4616 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4617 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4618 
4619 		switch (intel_trans_dp_port_sel(crtc)) {
4620 		case PORT_B:
4621 			temp |= TRANS_DP_PORT_SEL_B;
4622 			break;
4623 		case PORT_C:
4624 			temp |= TRANS_DP_PORT_SEL_C;
4625 			break;
4626 		case PORT_D:
4627 			temp |= TRANS_DP_PORT_SEL_D;
4628 			break;
4629 		default:
4630 			BUG();
4631 		}
4632 
4633 		I915_WRITE(reg, temp);
4634 	}
4635 
4636 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4637 }
4638 
4639 static void lpt_pch_enable(struct drm_crtc *crtc)
4640 {
4641 	struct drm_device *dev = crtc->dev;
4642 	struct drm_i915_private *dev_priv = to_i915(dev);
4643 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4644 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4645 
4646 	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4647 
4648 	lpt_program_iclkip(crtc);
4649 
4650 	/* Set transcoder timing. */
4651 	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4652 
4653 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4654 }
4655 
4656 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4657 {
4658 	struct drm_i915_private *dev_priv = to_i915(dev);
4659 	i915_reg_t dslreg = PIPEDSL(pipe);
4660 	u32 temp;
4661 
4662 	temp = I915_READ(dslreg);
4663 	udelay(500);
4664 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4665 		if (wait_for(I915_READ(dslreg) != temp, 5))
4666 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4667 	}
4668 }
4669 
4670 static int
4671 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4672 		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4673 		  int src_w, int src_h, int dst_w, int dst_h)
4674 {
4675 	struct intel_crtc_scaler_state *scaler_state =
4676 		&crtc_state->scaler_state;
4677 	struct intel_crtc *intel_crtc =
4678 		to_intel_crtc(crtc_state->base.crtc);
4679 	int need_scaling;
4680 
4681 	need_scaling = intel_rotation_90_or_270(rotation) ?
4682 		(src_h != dst_w || src_w != dst_h):
4683 		(src_w != dst_w || src_h != dst_h);
4684 
4685 	/*
4686 	 * if plane is being disabled or scaler is no more required or force detach
4687 	 *  - free scaler binded to this plane/crtc
4688 	 *  - in order to do this, update crtc->scaler_usage
4689 	 *
4690 	 * Here scaler state in crtc_state is set free so that
4691 	 * scaler can be assigned to other user. Actual register
4692 	 * update to free the scaler is done in plane/panel-fit programming.
4693 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4694 	 */
4695 	if (force_detach || !need_scaling) {
4696 		if (*scaler_id >= 0) {
4697 			scaler_state->scaler_users &= ~(1 << scaler_user);
4698 			scaler_state->scalers[*scaler_id].in_use = 0;
4699 
4700 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4701 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4702 				intel_crtc->pipe, scaler_user, *scaler_id,
4703 				scaler_state->scaler_users);
4704 			*scaler_id = -1;
4705 		}
4706 		return 0;
4707 	}
4708 
4709 	/* range checks */
4710 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4711 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4712 
4713 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4714 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4715 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4716 			"size is out of scaler range\n",
4717 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4718 		return -EINVAL;
4719 	}
4720 
4721 	/* mark this plane as a scaler user in crtc_state */
4722 	scaler_state->scaler_users |= (1 << scaler_user);
4723 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4724 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4725 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4726 		scaler_state->scaler_users);
4727 
4728 	return 0;
4729 }
4730 
4731 /**
4732  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4733  *
4734  * @state: crtc's scaler state
4735  *
4736  * Return
4737  *     0 - scaler_usage updated successfully
4738  *    error - requested scaling cannot be supported or other error condition
4739  */
4740 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4741 {
4742 	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4743 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4744 
4745 	DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4746 		      intel_crtc->base.base.id, intel_crtc->base.name,
4747 		      intel_crtc->pipe, SKL_CRTC_INDEX);
4748 
4749 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4750 		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4751 		state->pipe_src_w, state->pipe_src_h,
4752 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4753 }
4754 
4755 /**
4756  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4757  *
4758  * @state: crtc's scaler state
4759  * @plane_state: atomic plane state to update
4760  *
4761  * Return
4762  *     0 - scaler_usage updated successfully
4763  *    error - requested scaling cannot be supported or other error condition
4764  */
4765 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4766 				   struct intel_plane_state *plane_state)
4767 {
4768 
4769 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4770 	struct intel_plane *intel_plane =
4771 		to_intel_plane(plane_state->base.plane);
4772 	struct drm_framebuffer *fb = plane_state->base.fb;
4773 	int ret;
4774 
4775 	bool force_detach = !fb || !plane_state->base.visible;
4776 
4777 	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4778 		      intel_plane->base.base.id, intel_plane->base.name,
4779 		      intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4780 
4781 	ret = skl_update_scaler(crtc_state, force_detach,
4782 				drm_plane_index(&intel_plane->base),
4783 				&plane_state->scaler_id,
4784 				plane_state->base.rotation,
4785 				drm_rect_width(&plane_state->base.src) >> 16,
4786 				drm_rect_height(&plane_state->base.src) >> 16,
4787 				drm_rect_width(&plane_state->base.dst),
4788 				drm_rect_height(&plane_state->base.dst));
4789 
4790 	if (ret || plane_state->scaler_id < 0)
4791 		return ret;
4792 
4793 	/* check colorkey */
4794 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4795 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4796 			      intel_plane->base.base.id,
4797 			      intel_plane->base.name);
4798 		return -EINVAL;
4799 	}
4800 
4801 	/* Check src format */
4802 	switch (fb->pixel_format) {
4803 	case DRM_FORMAT_RGB565:
4804 	case DRM_FORMAT_XBGR8888:
4805 	case DRM_FORMAT_XRGB8888:
4806 	case DRM_FORMAT_ABGR8888:
4807 	case DRM_FORMAT_ARGB8888:
4808 	case DRM_FORMAT_XRGB2101010:
4809 	case DRM_FORMAT_XBGR2101010:
4810 	case DRM_FORMAT_YUYV:
4811 	case DRM_FORMAT_YVYU:
4812 	case DRM_FORMAT_UYVY:
4813 	case DRM_FORMAT_VYUY:
4814 		break;
4815 	default:
4816 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4817 			      intel_plane->base.base.id, intel_plane->base.name,
4818 			      fb->base.id, fb->pixel_format);
4819 		return -EINVAL;
4820 	}
4821 
4822 	return 0;
4823 }
4824 
4825 static void skylake_scaler_disable(struct intel_crtc *crtc)
4826 {
4827 	int i;
4828 
4829 	for (i = 0; i < crtc->num_scalers; i++)
4830 		skl_detach_scaler(crtc, i);
4831 }
4832 
4833 static void skylake_pfit_enable(struct intel_crtc *crtc)
4834 {
4835 	struct drm_device *dev = crtc->base.dev;
4836 	struct drm_i915_private *dev_priv = to_i915(dev);
4837 	int pipe = crtc->pipe;
4838 	struct intel_crtc_scaler_state *scaler_state =
4839 		&crtc->config->scaler_state;
4840 
4841 	DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4842 
4843 	if (crtc->config->pch_pfit.enabled) {
4844 		int id;
4845 
4846 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4847 			DRM_ERROR("Requesting pfit without getting a scaler first\n");
4848 			return;
4849 		}
4850 
4851 		id = scaler_state->scaler_id;
4852 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4853 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4854 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4855 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4856 
4857 		DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4858 	}
4859 }
4860 
4861 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4862 {
4863 	struct drm_device *dev = crtc->base.dev;
4864 	struct drm_i915_private *dev_priv = to_i915(dev);
4865 	int pipe = crtc->pipe;
4866 
4867 	if (crtc->config->pch_pfit.enabled) {
4868 		/* Force use of hard-coded filter coefficients
4869 		 * as some pre-programmed values are broken,
4870 		 * e.g. x201.
4871 		 */
4872 		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4873 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4874 						 PF_PIPE_SEL_IVB(pipe));
4875 		else
4876 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4877 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4878 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4879 	}
4880 }
4881 
4882 void hsw_enable_ips(struct intel_crtc *crtc)
4883 {
4884 	struct drm_device *dev = crtc->base.dev;
4885 	struct drm_i915_private *dev_priv = to_i915(dev);
4886 
4887 	if (!crtc->config->ips_enabled)
4888 		return;
4889 
4890 	/*
4891 	 * We can only enable IPS after we enable a plane and wait for a vblank
4892 	 * This function is called from post_plane_update, which is run after
4893 	 * a vblank wait.
4894 	 */
4895 
4896 	assert_plane_enabled(dev_priv, crtc->plane);
4897 	if (IS_BROADWELL(dev_priv)) {
4898 		mutex_lock(&dev_priv->rps.hw_lock);
4899 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4900 		mutex_unlock(&dev_priv->rps.hw_lock);
4901 		/* Quoting Art Runyan: "its not safe to expect any particular
4902 		 * value in IPS_CTL bit 31 after enabling IPS through the
4903 		 * mailbox." Moreover, the mailbox may return a bogus state,
4904 		 * so we need to just enable it and continue on.
4905 		 */
4906 	} else {
4907 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4908 		/* The bit only becomes 1 in the next vblank, so this wait here
4909 		 * is essentially intel_wait_for_vblank. If we don't have this
4910 		 * and don't wait for vblanks until the end of crtc_enable, then
4911 		 * the HW state readout code will complain that the expected
4912 		 * IPS_CTL value is not the one we read. */
4913 		if (intel_wait_for_register(dev_priv,
4914 					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4915 					    50))
4916 			DRM_ERROR("Timed out waiting for IPS enable\n");
4917 	}
4918 }
4919 
4920 void hsw_disable_ips(struct intel_crtc *crtc)
4921 {
4922 	struct drm_device *dev = crtc->base.dev;
4923 	struct drm_i915_private *dev_priv = to_i915(dev);
4924 
4925 	if (!crtc->config->ips_enabled)
4926 		return;
4927 
4928 	assert_plane_enabled(dev_priv, crtc->plane);
4929 	if (IS_BROADWELL(dev_priv)) {
4930 		mutex_lock(&dev_priv->rps.hw_lock);
4931 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4932 		mutex_unlock(&dev_priv->rps.hw_lock);
4933 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4934 		if (intel_wait_for_register(dev_priv,
4935 					    IPS_CTL, IPS_ENABLE, 0,
4936 					    42))
4937 			DRM_ERROR("Timed out waiting for IPS disable\n");
4938 	} else {
4939 		I915_WRITE(IPS_CTL, 0);
4940 		POSTING_READ(IPS_CTL);
4941 	}
4942 
4943 	/* We need to wait for a vblank before we can disable the plane. */
4944 	intel_wait_for_vblank(dev, crtc->pipe);
4945 }
4946 
4947 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4948 {
4949 	if (intel_crtc->overlay) {
4950 		struct drm_device *dev = intel_crtc->base.dev;
4951 		struct drm_i915_private *dev_priv = to_i915(dev);
4952 
4953 		mutex_lock(&dev->struct_mutex);
4954 		dev_priv->mm.interruptible = false;
4955 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4956 		dev_priv->mm.interruptible = true;
4957 		mutex_unlock(&dev->struct_mutex);
4958 	}
4959 
4960 	/* Let userspace switch the overlay on again. In most cases userspace
4961 	 * has to recompute where to put it anyway.
4962 	 */
4963 }
4964 
4965 /**
4966  * intel_post_enable_primary - Perform operations after enabling primary plane
4967  * @crtc: the CRTC whose primary plane was just enabled
4968  *
4969  * Performs potentially sleeping operations that must be done after the primary
4970  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4971  * called due to an explicit primary plane update, or due to an implicit
4972  * re-enable that is caused when a sprite plane is updated to no longer
4973  * completely hide the primary plane.
4974  */
4975 static void
4976 intel_post_enable_primary(struct drm_crtc *crtc)
4977 {
4978 	struct drm_device *dev = crtc->dev;
4979 	struct drm_i915_private *dev_priv = to_i915(dev);
4980 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4981 	int pipe = intel_crtc->pipe;
4982 
4983 	/*
4984 	 * FIXME IPS should be fine as long as one plane is
4985 	 * enabled, but in practice it seems to have problems
4986 	 * when going from primary only to sprite only and vice
4987 	 * versa.
4988 	 */
4989 	hsw_enable_ips(intel_crtc);
4990 
4991 	/*
4992 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4993 	 * So don't enable underrun reporting before at least some planes
4994 	 * are enabled.
4995 	 * FIXME: Need to fix the logic to work when we turn off all planes
4996 	 * but leave the pipe running.
4997 	 */
4998 	if (IS_GEN2(dev_priv))
4999 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5000 
5001 	/* Underruns don't always raise interrupts, so check manually. */
5002 	intel_check_cpu_fifo_underruns(dev_priv);
5003 	intel_check_pch_fifo_underruns(dev_priv);
5004 }
5005 
5006 /* FIXME move all this to pre_plane_update() with proper state tracking */
5007 static void
5008 intel_pre_disable_primary(struct drm_crtc *crtc)
5009 {
5010 	struct drm_device *dev = crtc->dev;
5011 	struct drm_i915_private *dev_priv = to_i915(dev);
5012 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5013 	int pipe = intel_crtc->pipe;
5014 
5015 	/*
5016 	 * Gen2 reports pipe underruns whenever all planes are disabled.
5017 	 * So diasble underrun reporting before all the planes get disabled.
5018 	 * FIXME: Need to fix the logic to work when we turn off all planes
5019 	 * but leave the pipe running.
5020 	 */
5021 	if (IS_GEN2(dev_priv))
5022 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5023 
5024 	/*
5025 	 * FIXME IPS should be fine as long as one plane is
5026 	 * enabled, but in practice it seems to have problems
5027 	 * when going from primary only to sprite only and vice
5028 	 * versa.
5029 	 */
5030 	hsw_disable_ips(intel_crtc);
5031 }
5032 
5033 /* FIXME get rid of this and use pre_plane_update */
5034 static void
5035 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5036 {
5037 	struct drm_device *dev = crtc->dev;
5038 	struct drm_i915_private *dev_priv = to_i915(dev);
5039 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5040 	int pipe = intel_crtc->pipe;
5041 
5042 	intel_pre_disable_primary(crtc);
5043 
5044 	/*
5045 	 * Vblank time updates from the shadow to live plane control register
5046 	 * are blocked if the memory self-refresh mode is active at that
5047 	 * moment. So to make sure the plane gets truly disabled, disable
5048 	 * first the self-refresh mode. The self-refresh enable bit in turn
5049 	 * will be checked/applied by the HW only at the next frame start
5050 	 * event which is after the vblank start event, so we need to have a
5051 	 * wait-for-vblank between disabling the plane and the pipe.
5052 	 */
5053 	if (HAS_GMCH_DISPLAY(dev_priv)) {
5054 		intel_set_memory_cxsr(dev_priv, false);
5055 		dev_priv->wm.vlv.cxsr = false;
5056 		intel_wait_for_vblank(dev, pipe);
5057 	}
5058 }
5059 
5060 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5061 {
5062 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5063 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5064 	struct intel_crtc_state *pipe_config =
5065 		to_intel_crtc_state(crtc->base.state);
5066 	struct drm_plane *primary = crtc->base.primary;
5067 	struct drm_plane_state *old_pri_state =
5068 		drm_atomic_get_existing_plane_state(old_state, primary);
5069 
5070 	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5071 
5072 	crtc->wm.cxsr_allowed = true;
5073 
5074 	if (pipe_config->update_wm_post && pipe_config->base.active)
5075 		intel_update_watermarks(&crtc->base);
5076 
5077 	if (old_pri_state) {
5078 		struct intel_plane_state *primary_state =
5079 			to_intel_plane_state(primary->state);
5080 		struct intel_plane_state *old_primary_state =
5081 			to_intel_plane_state(old_pri_state);
5082 
5083 		intel_fbc_post_update(crtc);
5084 
5085 		if (primary_state->base.visible &&
5086 		    (needs_modeset(&pipe_config->base) ||
5087 		     !old_primary_state->base.visible))
5088 			intel_post_enable_primary(&crtc->base);
5089 	}
5090 }
5091 
5092 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5093 {
5094 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5095 	struct drm_device *dev = crtc->base.dev;
5096 	struct drm_i915_private *dev_priv = to_i915(dev);
5097 	struct intel_crtc_state *pipe_config =
5098 		to_intel_crtc_state(crtc->base.state);
5099 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5100 	struct drm_plane *primary = crtc->base.primary;
5101 	struct drm_plane_state *old_pri_state =
5102 		drm_atomic_get_existing_plane_state(old_state, primary);
5103 	bool modeset = needs_modeset(&pipe_config->base);
5104 
5105 	if (old_pri_state) {
5106 		struct intel_plane_state *primary_state =
5107 			to_intel_plane_state(primary->state);
5108 		struct intel_plane_state *old_primary_state =
5109 			to_intel_plane_state(old_pri_state);
5110 
5111 		intel_fbc_pre_update(crtc, pipe_config, primary_state);
5112 
5113 		if (old_primary_state->base.visible &&
5114 		    (modeset || !primary_state->base.visible))
5115 			intel_pre_disable_primary(&crtc->base);
5116 	}
5117 
5118 	if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5119 		crtc->wm.cxsr_allowed = false;
5120 
5121 		/*
5122 		 * Vblank time updates from the shadow to live plane control register
5123 		 * are blocked if the memory self-refresh mode is active at that
5124 		 * moment. So to make sure the plane gets truly disabled, disable
5125 		 * first the self-refresh mode. The self-refresh enable bit in turn
5126 		 * will be checked/applied by the HW only at the next frame start
5127 		 * event which is after the vblank start event, so we need to have a
5128 		 * wait-for-vblank between disabling the plane and the pipe.
5129 		 */
5130 		if (old_crtc_state->base.active) {
5131 			intel_set_memory_cxsr(dev_priv, false);
5132 			dev_priv->wm.vlv.cxsr = false;
5133 			intel_wait_for_vblank(dev, crtc->pipe);
5134 		}
5135 	}
5136 
5137 	/*
5138 	 * IVB workaround: must disable low power watermarks for at least
5139 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
5140 	 * when scaling is disabled.
5141 	 *
5142 	 * WaCxSRDisabledForSpriteScaling:ivb
5143 	 */
5144 	if (pipe_config->disable_lp_wm) {
5145 		ilk_disable_lp_wm(dev);
5146 		intel_wait_for_vblank(dev, crtc->pipe);
5147 	}
5148 
5149 	/*
5150 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
5151 	 * watermark programming here.
5152 	 */
5153 	if (needs_modeset(&pipe_config->base))
5154 		return;
5155 
5156 	/*
5157 	 * For platforms that support atomic watermarks, program the
5158 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5159 	 * will be the intermediate values that are safe for both pre- and
5160 	 * post- vblank; when vblank happens, the 'active' values will be set
5161 	 * to the final 'target' values and we'll do this again to get the
5162 	 * optimal watermarks.  For gen9+ platforms, the values we program here
5163 	 * will be the final target values which will get automatically latched
5164 	 * at vblank time; no further programming will be necessary.
5165 	 *
5166 	 * If a platform hasn't been transitioned to atomic watermarks yet,
5167 	 * we'll continue to update watermarks the old way, if flags tell
5168 	 * us to.
5169 	 */
5170 	if (dev_priv->display.initial_watermarks != NULL)
5171 		dev_priv->display.initial_watermarks(pipe_config);
5172 	else if (pipe_config->update_wm_pre)
5173 		intel_update_watermarks(&crtc->base);
5174 }
5175 
5176 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5177 {
5178 	struct drm_device *dev = crtc->dev;
5179 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5180 	struct drm_plane *p;
5181 	int pipe = intel_crtc->pipe;
5182 
5183 	intel_crtc_dpms_overlay_disable(intel_crtc);
5184 
5185 	drm_for_each_plane_mask(p, dev, plane_mask)
5186 		to_intel_plane(p)->disable_plane(p, crtc);
5187 
5188 	/*
5189 	 * FIXME: Once we grow proper nuclear flip support out of this we need
5190 	 * to compute the mask of flip planes precisely. For the time being
5191 	 * consider this a flip to a NULL plane.
5192 	 */
5193 	intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5194 }
5195 
5196 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5197 					  struct intel_crtc_state *crtc_state,
5198 					  struct drm_atomic_state *old_state)
5199 {
5200 	struct drm_connector_state *old_conn_state;
5201 	struct drm_connector *conn;
5202 	int i;
5203 
5204 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5205 		struct drm_connector_state *conn_state = conn->state;
5206 		struct intel_encoder *encoder =
5207 			to_intel_encoder(conn_state->best_encoder);
5208 
5209 		if (conn_state->crtc != crtc)
5210 			continue;
5211 
5212 		if (encoder->pre_pll_enable)
5213 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5214 	}
5215 }
5216 
5217 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5218 				      struct intel_crtc_state *crtc_state,
5219 				      struct drm_atomic_state *old_state)
5220 {
5221 	struct drm_connector_state *old_conn_state;
5222 	struct drm_connector *conn;
5223 	int i;
5224 
5225 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5226 		struct drm_connector_state *conn_state = conn->state;
5227 		struct intel_encoder *encoder =
5228 			to_intel_encoder(conn_state->best_encoder);
5229 
5230 		if (conn_state->crtc != crtc)
5231 			continue;
5232 
5233 		if (encoder->pre_enable)
5234 			encoder->pre_enable(encoder, crtc_state, conn_state);
5235 	}
5236 }
5237 
5238 static void intel_encoders_enable(struct drm_crtc *crtc,
5239 				  struct intel_crtc_state *crtc_state,
5240 				  struct drm_atomic_state *old_state)
5241 {
5242 	struct drm_connector_state *old_conn_state;
5243 	struct drm_connector *conn;
5244 	int i;
5245 
5246 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5247 		struct drm_connector_state *conn_state = conn->state;
5248 		struct intel_encoder *encoder =
5249 			to_intel_encoder(conn_state->best_encoder);
5250 
5251 		if (conn_state->crtc != crtc)
5252 			continue;
5253 
5254 		encoder->enable(encoder, crtc_state, conn_state);
5255 		intel_opregion_notify_encoder(encoder, true);
5256 	}
5257 }
5258 
5259 static void intel_encoders_disable(struct drm_crtc *crtc,
5260 				   struct intel_crtc_state *old_crtc_state,
5261 				   struct drm_atomic_state *old_state)
5262 {
5263 	struct drm_connector_state *old_conn_state;
5264 	struct drm_connector *conn;
5265 	int i;
5266 
5267 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5268 		struct intel_encoder *encoder =
5269 			to_intel_encoder(old_conn_state->best_encoder);
5270 
5271 		if (old_conn_state->crtc != crtc)
5272 			continue;
5273 
5274 		intel_opregion_notify_encoder(encoder, false);
5275 		encoder->disable(encoder, old_crtc_state, old_conn_state);
5276 	}
5277 }
5278 
5279 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5280 					struct intel_crtc_state *old_crtc_state,
5281 					struct drm_atomic_state *old_state)
5282 {
5283 	struct drm_connector_state *old_conn_state;
5284 	struct drm_connector *conn;
5285 	int i;
5286 
5287 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5288 		struct intel_encoder *encoder =
5289 			to_intel_encoder(old_conn_state->best_encoder);
5290 
5291 		if (old_conn_state->crtc != crtc)
5292 			continue;
5293 
5294 		if (encoder->post_disable)
5295 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5296 	}
5297 }
5298 
5299 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5300 					    struct intel_crtc_state *old_crtc_state,
5301 					    struct drm_atomic_state *old_state)
5302 {
5303 	struct drm_connector_state *old_conn_state;
5304 	struct drm_connector *conn;
5305 	int i;
5306 
5307 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5308 		struct intel_encoder *encoder =
5309 			to_intel_encoder(old_conn_state->best_encoder);
5310 
5311 		if (old_conn_state->crtc != crtc)
5312 			continue;
5313 
5314 		if (encoder->post_pll_disable)
5315 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5316 	}
5317 }
5318 
5319 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5320 				 struct drm_atomic_state *old_state)
5321 {
5322 	struct drm_crtc *crtc = pipe_config->base.crtc;
5323 	struct drm_device *dev = crtc->dev;
5324 	struct drm_i915_private *dev_priv = to_i915(dev);
5325 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5326 	int pipe = intel_crtc->pipe;
5327 
5328 	if (WARN_ON(intel_crtc->active))
5329 		return;
5330 
5331 	/*
5332 	 * Sometimes spurious CPU pipe underruns happen during FDI
5333 	 * training, at least with VGA+HDMI cloning. Suppress them.
5334 	 *
5335 	 * On ILK we get an occasional spurious CPU pipe underruns
5336 	 * between eDP port A enable and vdd enable. Also PCH port
5337 	 * enable seems to result in the occasional CPU pipe underrun.
5338 	 *
5339 	 * Spurious PCH underruns also occur during PCH enabling.
5340 	 */
5341 	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5342 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5343 	if (intel_crtc->config->has_pch_encoder)
5344 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5345 
5346 	if (intel_crtc->config->has_pch_encoder)
5347 		intel_prepare_shared_dpll(intel_crtc);
5348 
5349 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5350 		intel_dp_set_m_n(intel_crtc, M1_N1);
5351 
5352 	intel_set_pipe_timings(intel_crtc);
5353 	intel_set_pipe_src_size(intel_crtc);
5354 
5355 	if (intel_crtc->config->has_pch_encoder) {
5356 		intel_cpu_transcoder_set_m_n(intel_crtc,
5357 				     &intel_crtc->config->fdi_m_n, NULL);
5358 	}
5359 
5360 	ironlake_set_pipeconf(crtc);
5361 
5362 	intel_crtc->active = true;
5363 
5364 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5365 
5366 	if (intel_crtc->config->has_pch_encoder) {
5367 		/* Note: FDI PLL enabling _must_ be done before we enable the
5368 		 * cpu pipes, hence this is separate from all the other fdi/pch
5369 		 * enabling. */
5370 		ironlake_fdi_pll_enable(intel_crtc);
5371 	} else {
5372 		assert_fdi_tx_disabled(dev_priv, pipe);
5373 		assert_fdi_rx_disabled(dev_priv, pipe);
5374 	}
5375 
5376 	ironlake_pfit_enable(intel_crtc);
5377 
5378 	/*
5379 	 * On ILK+ LUT must be loaded before the pipe is running but with
5380 	 * clocks enabled
5381 	 */
5382 	intel_color_load_luts(&pipe_config->base);
5383 
5384 	if (dev_priv->display.initial_watermarks != NULL)
5385 		dev_priv->display.initial_watermarks(intel_crtc->config);
5386 	intel_enable_pipe(intel_crtc);
5387 
5388 	if (intel_crtc->config->has_pch_encoder)
5389 		ironlake_pch_enable(crtc);
5390 
5391 	assert_vblank_disabled(crtc);
5392 	drm_crtc_vblank_on(crtc);
5393 
5394 	intel_encoders_enable(crtc, pipe_config, old_state);
5395 
5396 	if (HAS_PCH_CPT(dev_priv))
5397 		cpt_verify_modeset(dev, intel_crtc->pipe);
5398 
5399 	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
5400 	if (intel_crtc->config->has_pch_encoder)
5401 		intel_wait_for_vblank(dev, pipe);
5402 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5403 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5404 }
5405 
5406 /* IPS only exists on ULT machines and is tied to pipe A. */
5407 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5408 {
5409 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5410 }
5411 
5412 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5413 				struct drm_atomic_state *old_state)
5414 {
5415 	struct drm_crtc *crtc = pipe_config->base.crtc;
5416 	struct drm_device *dev = crtc->dev;
5417 	struct drm_i915_private *dev_priv = to_i915(dev);
5418 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5419 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5420 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5421 
5422 	if (WARN_ON(intel_crtc->active))
5423 		return;
5424 
5425 	if (intel_crtc->config->has_pch_encoder)
5426 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5427 						      false);
5428 
5429 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5430 
5431 	if (intel_crtc->config->shared_dpll)
5432 		intel_enable_shared_dpll(intel_crtc);
5433 
5434 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5435 		intel_dp_set_m_n(intel_crtc, M1_N1);
5436 
5437 	if (!transcoder_is_dsi(cpu_transcoder))
5438 		intel_set_pipe_timings(intel_crtc);
5439 
5440 	intel_set_pipe_src_size(intel_crtc);
5441 
5442 	if (cpu_transcoder != TRANSCODER_EDP &&
5443 	    !transcoder_is_dsi(cpu_transcoder)) {
5444 		I915_WRITE(PIPE_MULT(cpu_transcoder),
5445 			   intel_crtc->config->pixel_multiplier - 1);
5446 	}
5447 
5448 	if (intel_crtc->config->has_pch_encoder) {
5449 		intel_cpu_transcoder_set_m_n(intel_crtc,
5450 				     &intel_crtc->config->fdi_m_n, NULL);
5451 	}
5452 
5453 	if (!transcoder_is_dsi(cpu_transcoder))
5454 		haswell_set_pipeconf(crtc);
5455 
5456 	haswell_set_pipemisc(crtc);
5457 
5458 	intel_color_set_csc(&pipe_config->base);
5459 
5460 	intel_crtc->active = true;
5461 
5462 	if (intel_crtc->config->has_pch_encoder)
5463 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5464 	else
5465 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5466 
5467 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5468 
5469 	if (intel_crtc->config->has_pch_encoder)
5470 		dev_priv->display.fdi_link_train(crtc);
5471 
5472 	if (!transcoder_is_dsi(cpu_transcoder))
5473 		intel_ddi_enable_pipe_clock(intel_crtc);
5474 
5475 	if (INTEL_INFO(dev)->gen >= 9)
5476 		skylake_pfit_enable(intel_crtc);
5477 	else
5478 		ironlake_pfit_enable(intel_crtc);
5479 
5480 	/*
5481 	 * On ILK+ LUT must be loaded before the pipe is running but with
5482 	 * clocks enabled
5483 	 */
5484 	intel_color_load_luts(&pipe_config->base);
5485 
5486 	intel_ddi_set_pipe_settings(crtc);
5487 	if (!transcoder_is_dsi(cpu_transcoder))
5488 		intel_ddi_enable_transcoder_func(crtc);
5489 
5490 	if (dev_priv->display.initial_watermarks != NULL)
5491 		dev_priv->display.initial_watermarks(pipe_config);
5492 	else
5493 		intel_update_watermarks(crtc);
5494 
5495 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5496 	if (!transcoder_is_dsi(cpu_transcoder))
5497 		intel_enable_pipe(intel_crtc);
5498 
5499 	if (intel_crtc->config->has_pch_encoder)
5500 		lpt_pch_enable(crtc);
5501 
5502 	if (intel_crtc->config->dp_encoder_is_mst)
5503 		intel_ddi_set_vc_payload_alloc(crtc, true);
5504 
5505 	assert_vblank_disabled(crtc);
5506 	drm_crtc_vblank_on(crtc);
5507 
5508 	intel_encoders_enable(crtc, pipe_config, old_state);
5509 
5510 	if (intel_crtc->config->has_pch_encoder) {
5511 		intel_wait_for_vblank(dev, pipe);
5512 		intel_wait_for_vblank(dev, pipe);
5513 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5514 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5515 						      true);
5516 	}
5517 
5518 	/* If we change the relative order between pipe/planes enabling, we need
5519 	 * to change the workaround. */
5520 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5521 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5522 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5523 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5524 	}
5525 }
5526 
5527 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5528 {
5529 	struct drm_device *dev = crtc->base.dev;
5530 	struct drm_i915_private *dev_priv = to_i915(dev);
5531 	int pipe = crtc->pipe;
5532 
5533 	/* To avoid upsetting the power well on haswell only disable the pfit if
5534 	 * it's in use. The hw state code will make sure we get this right. */
5535 	if (force || crtc->config->pch_pfit.enabled) {
5536 		I915_WRITE(PF_CTL(pipe), 0);
5537 		I915_WRITE(PF_WIN_POS(pipe), 0);
5538 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5539 	}
5540 }
5541 
5542 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5543 				  struct drm_atomic_state *old_state)
5544 {
5545 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5546 	struct drm_device *dev = crtc->dev;
5547 	struct drm_i915_private *dev_priv = to_i915(dev);
5548 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5549 	int pipe = intel_crtc->pipe;
5550 
5551 	/*
5552 	 * Sometimes spurious CPU pipe underruns happen when the
5553 	 * pipe is already disabled, but FDI RX/TX is still enabled.
5554 	 * Happens at least with VGA+HDMI cloning. Suppress them.
5555 	 */
5556 	if (intel_crtc->config->has_pch_encoder) {
5557 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5558 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5559 	}
5560 
5561 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5562 
5563 	drm_crtc_vblank_off(crtc);
5564 	assert_vblank_disabled(crtc);
5565 
5566 	intel_disable_pipe(intel_crtc);
5567 
5568 	ironlake_pfit_disable(intel_crtc, false);
5569 
5570 	if (intel_crtc->config->has_pch_encoder)
5571 		ironlake_fdi_disable(crtc);
5572 
5573 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5574 
5575 	if (intel_crtc->config->has_pch_encoder) {
5576 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5577 
5578 		if (HAS_PCH_CPT(dev_priv)) {
5579 			i915_reg_t reg;
5580 			u32 temp;
5581 
5582 			/* disable TRANS_DP_CTL */
5583 			reg = TRANS_DP_CTL(pipe);
5584 			temp = I915_READ(reg);
5585 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5586 				  TRANS_DP_PORT_SEL_MASK);
5587 			temp |= TRANS_DP_PORT_SEL_NONE;
5588 			I915_WRITE(reg, temp);
5589 
5590 			/* disable DPLL_SEL */
5591 			temp = I915_READ(PCH_DPLL_SEL);
5592 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5593 			I915_WRITE(PCH_DPLL_SEL, temp);
5594 		}
5595 
5596 		ironlake_fdi_pll_disable(intel_crtc);
5597 	}
5598 
5599 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5600 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5601 }
5602 
5603 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5604 				 struct drm_atomic_state *old_state)
5605 {
5606 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5607 	struct drm_device *dev = crtc->dev;
5608 	struct drm_i915_private *dev_priv = to_i915(dev);
5609 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5610 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5611 
5612 	if (intel_crtc->config->has_pch_encoder)
5613 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5614 						      false);
5615 
5616 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5617 
5618 	drm_crtc_vblank_off(crtc);
5619 	assert_vblank_disabled(crtc);
5620 
5621 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5622 	if (!transcoder_is_dsi(cpu_transcoder))
5623 		intel_disable_pipe(intel_crtc);
5624 
5625 	if (intel_crtc->config->dp_encoder_is_mst)
5626 		intel_ddi_set_vc_payload_alloc(crtc, false);
5627 
5628 	if (!transcoder_is_dsi(cpu_transcoder))
5629 		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5630 
5631 	if (INTEL_INFO(dev)->gen >= 9)
5632 		skylake_scaler_disable(intel_crtc);
5633 	else
5634 		ironlake_pfit_disable(intel_crtc, false);
5635 
5636 	if (!transcoder_is_dsi(cpu_transcoder))
5637 		intel_ddi_disable_pipe_clock(intel_crtc);
5638 
5639 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5640 
5641 	if (old_crtc_state->has_pch_encoder)
5642 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5643 						      true);
5644 }
5645 
5646 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5647 {
5648 	struct drm_device *dev = crtc->base.dev;
5649 	struct drm_i915_private *dev_priv = to_i915(dev);
5650 	struct intel_crtc_state *pipe_config = crtc->config;
5651 
5652 	if (!pipe_config->gmch_pfit.control)
5653 		return;
5654 
5655 	/*
5656 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5657 	 * according to register description and PRM.
5658 	 */
5659 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5660 	assert_pipe_disabled(dev_priv, crtc->pipe);
5661 
5662 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5663 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5664 
5665 	/* Border color in case we don't scale up to the full screen. Black by
5666 	 * default, change to something else for debugging. */
5667 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5668 }
5669 
5670 static enum intel_display_power_domain port_to_power_domain(enum port port)
5671 {
5672 	switch (port) {
5673 	case PORT_A:
5674 		return POWER_DOMAIN_PORT_DDI_A_LANES;
5675 	case PORT_B:
5676 		return POWER_DOMAIN_PORT_DDI_B_LANES;
5677 	case PORT_C:
5678 		return POWER_DOMAIN_PORT_DDI_C_LANES;
5679 	case PORT_D:
5680 		return POWER_DOMAIN_PORT_DDI_D_LANES;
5681 	case PORT_E:
5682 		return POWER_DOMAIN_PORT_DDI_E_LANES;
5683 	default:
5684 		MISSING_CASE(port);
5685 		return POWER_DOMAIN_PORT_OTHER;
5686 	}
5687 }
5688 
5689 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5690 {
5691 	switch (port) {
5692 	case PORT_A:
5693 		return POWER_DOMAIN_AUX_A;
5694 	case PORT_B:
5695 		return POWER_DOMAIN_AUX_B;
5696 	case PORT_C:
5697 		return POWER_DOMAIN_AUX_C;
5698 	case PORT_D:
5699 		return POWER_DOMAIN_AUX_D;
5700 	case PORT_E:
5701 		/* FIXME: Check VBT for actual wiring of PORT E */
5702 		return POWER_DOMAIN_AUX_D;
5703 	default:
5704 		MISSING_CASE(port);
5705 		return POWER_DOMAIN_AUX_A;
5706 	}
5707 }
5708 
5709 enum intel_display_power_domain
5710 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5711 {
5712 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5713 	struct intel_digital_port *intel_dig_port;
5714 
5715 	switch (intel_encoder->type) {
5716 	case INTEL_OUTPUT_UNKNOWN:
5717 		/* Only DDI platforms should ever use this output type */
5718 		WARN_ON_ONCE(!HAS_DDI(dev_priv));
5719 	case INTEL_OUTPUT_DP:
5720 	case INTEL_OUTPUT_HDMI:
5721 	case INTEL_OUTPUT_EDP:
5722 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5723 		return port_to_power_domain(intel_dig_port->port);
5724 	case INTEL_OUTPUT_DP_MST:
5725 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5726 		return port_to_power_domain(intel_dig_port->port);
5727 	case INTEL_OUTPUT_ANALOG:
5728 		return POWER_DOMAIN_PORT_CRT;
5729 	case INTEL_OUTPUT_DSI:
5730 		return POWER_DOMAIN_PORT_DSI;
5731 	default:
5732 		return POWER_DOMAIN_PORT_OTHER;
5733 	}
5734 }
5735 
5736 enum intel_display_power_domain
5737 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5738 {
5739 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5740 	struct intel_digital_port *intel_dig_port;
5741 
5742 	switch (intel_encoder->type) {
5743 	case INTEL_OUTPUT_UNKNOWN:
5744 	case INTEL_OUTPUT_HDMI:
5745 		/*
5746 		 * Only DDI platforms should ever use these output types.
5747 		 * We can get here after the HDMI detect code has already set
5748 		 * the type of the shared encoder. Since we can't be sure
5749 		 * what's the status of the given connectors, play safe and
5750 		 * run the DP detection too.
5751 		 */
5752 		WARN_ON_ONCE(!HAS_DDI(dev_priv));
5753 	case INTEL_OUTPUT_DP:
5754 	case INTEL_OUTPUT_EDP:
5755 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5756 		return port_to_aux_power_domain(intel_dig_port->port);
5757 	case INTEL_OUTPUT_DP_MST:
5758 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5759 		return port_to_aux_power_domain(intel_dig_port->port);
5760 	default:
5761 		MISSING_CASE(intel_encoder->type);
5762 		return POWER_DOMAIN_AUX_A;
5763 	}
5764 }
5765 
5766 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5767 					    struct intel_crtc_state *crtc_state)
5768 {
5769 	struct drm_device *dev = crtc->dev;
5770 	struct drm_encoder *encoder;
5771 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5772 	enum i915_pipe pipe = intel_crtc->pipe;
5773 	unsigned long mask;
5774 	enum transcoder transcoder = crtc_state->cpu_transcoder;
5775 
5776 	if (!crtc_state->base.active)
5777 		return 0;
5778 
5779 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5780 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5781 	if (crtc_state->pch_pfit.enabled ||
5782 	    crtc_state->pch_pfit.force_thru)
5783 		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5784 
5785 	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5786 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5787 
5788 		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5789 	}
5790 
5791 	if (crtc_state->shared_dpll)
5792 		mask |= BIT(POWER_DOMAIN_PLLS);
5793 
5794 	return mask;
5795 }
5796 
5797 static unsigned long
5798 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5799 			       struct intel_crtc_state *crtc_state)
5800 {
5801 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5802 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5803 	enum intel_display_power_domain domain;
5804 	unsigned long domains, new_domains, old_domains;
5805 
5806 	old_domains = intel_crtc->enabled_power_domains;
5807 	intel_crtc->enabled_power_domains = new_domains =
5808 		get_crtc_power_domains(crtc, crtc_state);
5809 
5810 	domains = new_domains & ~old_domains;
5811 
5812 	for_each_power_domain(domain, domains)
5813 		intel_display_power_get(dev_priv, domain);
5814 
5815 	return old_domains & ~new_domains;
5816 }
5817 
5818 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5819 				      unsigned long domains)
5820 {
5821 	enum intel_display_power_domain domain;
5822 
5823 	for_each_power_domain(domain, domains)
5824 		intel_display_power_put(dev_priv, domain);
5825 }
5826 
5827 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5828 {
5829 	int max_cdclk_freq = dev_priv->max_cdclk_freq;
5830 
5831 	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5832 	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5833 		return max_cdclk_freq;
5834 	else if (IS_CHERRYVIEW(dev_priv))
5835 		return max_cdclk_freq*95/100;
5836 	else if (INTEL_INFO(dev_priv)->gen < 4)
5837 		return 2*max_cdclk_freq*90/100;
5838 	else
5839 		return max_cdclk_freq*90/100;
5840 }
5841 
5842 static int skl_calc_cdclk(int max_pixclk, int vco);
5843 
5844 static void intel_update_max_cdclk(struct drm_device *dev)
5845 {
5846 	struct drm_i915_private *dev_priv = to_i915(dev);
5847 
5848 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5849 		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5850 		int max_cdclk, vco;
5851 
5852 		vco = dev_priv->skl_preferred_vco_freq;
5853 		WARN_ON(vco != 8100000 && vco != 8640000);
5854 
5855 		/*
5856 		 * Use the lower (vco 8640) cdclk values as a
5857 		 * first guess. skl_calc_cdclk() will correct it
5858 		 * if the preferred vco is 8100 instead.
5859 		 */
5860 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5861 			max_cdclk = 617143;
5862 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5863 			max_cdclk = 540000;
5864 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5865 			max_cdclk = 432000;
5866 		else
5867 			max_cdclk = 308571;
5868 
5869 		dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5870 	} else if (IS_BROXTON(dev_priv)) {
5871 		dev_priv->max_cdclk_freq = 624000;
5872 	} else if (IS_BROADWELL(dev_priv))  {
5873 		/*
5874 		 * FIXME with extra cooling we can allow
5875 		 * 540 MHz for ULX and 675 Mhz for ULT.
5876 		 * How can we know if extra cooling is
5877 		 * available? PCI ID, VTB, something else?
5878 		 */
5879 		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5880 			dev_priv->max_cdclk_freq = 450000;
5881 		else if (IS_BDW_ULX(dev_priv))
5882 			dev_priv->max_cdclk_freq = 450000;
5883 		else if (IS_BDW_ULT(dev_priv))
5884 			dev_priv->max_cdclk_freq = 540000;
5885 		else
5886 			dev_priv->max_cdclk_freq = 675000;
5887 	} else if (IS_CHERRYVIEW(dev_priv)) {
5888 		dev_priv->max_cdclk_freq = 320000;
5889 	} else if (IS_VALLEYVIEW(dev_priv)) {
5890 		dev_priv->max_cdclk_freq = 400000;
5891 	} else {
5892 		/* otherwise assume cdclk is fixed */
5893 		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5894 	}
5895 
5896 	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5897 
5898 	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5899 			 dev_priv->max_cdclk_freq);
5900 
5901 	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5902 			 dev_priv->max_dotclk_freq);
5903 }
5904 
5905 static void intel_update_cdclk(struct drm_device *dev)
5906 {
5907 	struct drm_i915_private *dev_priv = to_i915(dev);
5908 
5909 	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5910 
5911 	if (INTEL_GEN(dev_priv) >= 9)
5912 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5913 				 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5914 				 dev_priv->cdclk_pll.ref);
5915 	else
5916 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5917 				 dev_priv->cdclk_freq);
5918 
5919 	/*
5920 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5921 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
5922 	 * of cdclk that generates 4MHz reference clock freq which is used to
5923 	 * generate GMBus clock. This will vary with the cdclk freq.
5924 	 */
5925 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5926 		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5927 }
5928 
5929 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5930 static int skl_cdclk_decimal(int cdclk)
5931 {
5932 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5933 }
5934 
5935 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5936 {
5937 	int ratio;
5938 
5939 	if (cdclk == dev_priv->cdclk_pll.ref)
5940 		return 0;
5941 
5942 	switch (cdclk) {
5943 	default:
5944 		MISSING_CASE(cdclk);
5945 	case 144000:
5946 	case 288000:
5947 	case 384000:
5948 	case 576000:
5949 		ratio = 60;
5950 		break;
5951 	case 624000:
5952 		ratio = 65;
5953 		break;
5954 	}
5955 
5956 	return dev_priv->cdclk_pll.ref * ratio;
5957 }
5958 
5959 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5960 {
5961 	I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5962 
5963 	/* Timeout 200us */
5964 	if (intel_wait_for_register(dev_priv,
5965 				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5966 				    1))
5967 		DRM_ERROR("timeout waiting for DE PLL unlock\n");
5968 
5969 	dev_priv->cdclk_pll.vco = 0;
5970 }
5971 
5972 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5973 {
5974 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5975 	u32 val;
5976 
5977 	val = I915_READ(BXT_DE_PLL_CTL);
5978 	val &= ~BXT_DE_PLL_RATIO_MASK;
5979 	val |= BXT_DE_PLL_RATIO(ratio);
5980 	I915_WRITE(BXT_DE_PLL_CTL, val);
5981 
5982 	I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5983 
5984 	/* Timeout 200us */
5985 	if (intel_wait_for_register(dev_priv,
5986 				    BXT_DE_PLL_ENABLE,
5987 				    BXT_DE_PLL_LOCK,
5988 				    BXT_DE_PLL_LOCK,
5989 				    1))
5990 		DRM_ERROR("timeout waiting for DE PLL lock\n");
5991 
5992 	dev_priv->cdclk_pll.vco = vco;
5993 }
5994 
5995 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5996 {
5997 	u32 val, divider;
5998 	int vco, ret;
5999 
6000 	vco = bxt_de_pll_vco(dev_priv, cdclk);
6001 
6002 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6003 
6004 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
6005 	switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
6006 	case 8:
6007 		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
6008 		break;
6009 	case 4:
6010 		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
6011 		break;
6012 	case 3:
6013 		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
6014 		break;
6015 	case 2:
6016 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6017 		break;
6018 	default:
6019 		WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6020 		WARN_ON(vco != 0);
6021 
6022 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6023 		break;
6024 	}
6025 
6026 	/* Inform power controller of upcoming frequency change */
6027 	mutex_lock(&dev_priv->rps.hw_lock);
6028 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6029 				      0x80000000);
6030 	mutex_unlock(&dev_priv->rps.hw_lock);
6031 
6032 	if (ret) {
6033 		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6034 			  ret, cdclk);
6035 		return;
6036 	}
6037 
6038 	if (dev_priv->cdclk_pll.vco != 0 &&
6039 	    dev_priv->cdclk_pll.vco != vco)
6040 		bxt_de_pll_disable(dev_priv);
6041 
6042 	if (dev_priv->cdclk_pll.vco != vco)
6043 		bxt_de_pll_enable(dev_priv, vco);
6044 
6045 	val = divider | skl_cdclk_decimal(cdclk);
6046 	/*
6047 	 * FIXME if only the cd2x divider needs changing, it could be done
6048 	 * without shutting off the pipe (if only one pipe is active).
6049 	 */
6050 	val |= BXT_CDCLK_CD2X_PIPE_NONE;
6051 	/*
6052 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6053 	 * enable otherwise.
6054 	 */
6055 	if (cdclk >= 500000)
6056 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6057 	I915_WRITE(CDCLK_CTL, val);
6058 
6059 	mutex_lock(&dev_priv->rps.hw_lock);
6060 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6061 				      DIV_ROUND_UP(cdclk, 25000));
6062 	mutex_unlock(&dev_priv->rps.hw_lock);
6063 
6064 	if (ret) {
6065 		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6066 			  ret, cdclk);
6067 		return;
6068 	}
6069 
6070 	intel_update_cdclk(&dev_priv->drm);
6071 }
6072 
6073 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6074 {
6075 	u32 cdctl, expected;
6076 
6077 	intel_update_cdclk(&dev_priv->drm);
6078 
6079 	if (dev_priv->cdclk_pll.vco == 0 ||
6080 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6081 		goto sanitize;
6082 
6083 	/* DPLL okay; verify the cdclock
6084 	 *
6085 	 * Some BIOS versions leave an incorrect decimal frequency value and
6086 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6087 	 * so sanitize this register.
6088 	 */
6089 	cdctl = I915_READ(CDCLK_CTL);
6090 	/*
6091 	 * Let's ignore the pipe field, since BIOS could have configured the
6092 	 * dividers both synching to an active pipe, or asynchronously
6093 	 * (PIPE_NONE).
6094 	 */
6095 	cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6096 
6097 	expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6098 		   skl_cdclk_decimal(dev_priv->cdclk_freq);
6099 	/*
6100 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6101 	 * enable otherwise.
6102 	 */
6103 	if (dev_priv->cdclk_freq >= 500000)
6104 		expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6105 
6106 	if (cdctl == expected)
6107 		/* All well; nothing to sanitize */
6108 		return;
6109 
6110 sanitize:
6111 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6112 
6113 	/* force cdclk programming */
6114 	dev_priv->cdclk_freq = 0;
6115 
6116 	/* force full PLL disable + enable */
6117 	dev_priv->cdclk_pll.vco = -1;
6118 }
6119 
6120 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6121 {
6122 	bxt_sanitize_cdclk(dev_priv);
6123 
6124 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6125 		return;
6126 
6127 	/*
6128 	 * FIXME:
6129 	 * - The initial CDCLK needs to be read from VBT.
6130 	 *   Need to make this change after VBT has changes for BXT.
6131 	 */
6132 	bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6133 }
6134 
6135 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6136 {
6137 	bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6138 }
6139 
6140 static int skl_calc_cdclk(int max_pixclk, int vco)
6141 {
6142 	if (vco == 8640000) {
6143 		if (max_pixclk > 540000)
6144 			return 617143;
6145 		else if (max_pixclk > 432000)
6146 			return 540000;
6147 		else if (max_pixclk > 308571)
6148 			return 432000;
6149 		else
6150 			return 308571;
6151 	} else {
6152 		if (max_pixclk > 540000)
6153 			return 675000;
6154 		else if (max_pixclk > 450000)
6155 			return 540000;
6156 		else if (max_pixclk > 337500)
6157 			return 450000;
6158 		else
6159 			return 337500;
6160 	}
6161 }
6162 
6163 static void
6164 skl_dpll0_update(struct drm_i915_private *dev_priv)
6165 {
6166 	u32 val;
6167 
6168 	dev_priv->cdclk_pll.ref = 24000;
6169 	dev_priv->cdclk_pll.vco = 0;
6170 
6171 	val = I915_READ(LCPLL1_CTL);
6172 	if ((val & LCPLL_PLL_ENABLE) == 0)
6173 		return;
6174 
6175 	if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6176 		return;
6177 
6178 	val = I915_READ(DPLL_CTRL1);
6179 
6180 	if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6181 			    DPLL_CTRL1_SSC(SKL_DPLL0) |
6182 			    DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6183 		    DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6184 		return;
6185 
6186 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6187 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6188 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6189 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6190 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6191 		dev_priv->cdclk_pll.vco = 8100000;
6192 		break;
6193 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6194 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6195 		dev_priv->cdclk_pll.vco = 8640000;
6196 		break;
6197 	default:
6198 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6199 		break;
6200 	}
6201 }
6202 
6203 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6204 {
6205 	bool changed = dev_priv->skl_preferred_vco_freq != vco;
6206 
6207 	dev_priv->skl_preferred_vco_freq = vco;
6208 
6209 	if (changed)
6210 		intel_update_max_cdclk(&dev_priv->drm);
6211 }
6212 
6213 static void
6214 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6215 {
6216 	int min_cdclk = skl_calc_cdclk(0, vco);
6217 	u32 val;
6218 
6219 	WARN_ON(vco != 8100000 && vco != 8640000);
6220 
6221 	/* select the minimum CDCLK before enabling DPLL 0 */
6222 	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6223 	I915_WRITE(CDCLK_CTL, val);
6224 	POSTING_READ(CDCLK_CTL);
6225 
6226 	/*
6227 	 * We always enable DPLL0 with the lowest link rate possible, but still
6228 	 * taking into account the VCO required to operate the eDP panel at the
6229 	 * desired frequency. The usual DP link rates operate with a VCO of
6230 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6231 	 * The modeset code is responsible for the selection of the exact link
6232 	 * rate later on, with the constraint of choosing a frequency that
6233 	 * works with vco.
6234 	 */
6235 	val = I915_READ(DPLL_CTRL1);
6236 
6237 	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6238 		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6239 	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6240 	if (vco == 8640000)
6241 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6242 					    SKL_DPLL0);
6243 	else
6244 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6245 					    SKL_DPLL0);
6246 
6247 	I915_WRITE(DPLL_CTRL1, val);
6248 	POSTING_READ(DPLL_CTRL1);
6249 
6250 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6251 
6252 	if (intel_wait_for_register(dev_priv,
6253 				    LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6254 				    5))
6255 		DRM_ERROR("DPLL0 not locked\n");
6256 
6257 	dev_priv->cdclk_pll.vco = vco;
6258 
6259 	/* We'll want to keep using the current vco from now on. */
6260 	skl_set_preferred_cdclk_vco(dev_priv, vco);
6261 }
6262 
6263 static void
6264 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6265 {
6266 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6267 	if (intel_wait_for_register(dev_priv,
6268 				   LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6269 				   1))
6270 		DRM_ERROR("Couldn't disable DPLL0\n");
6271 
6272 	dev_priv->cdclk_pll.vco = 0;
6273 }
6274 
6275 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6276 {
6277 	int ret;
6278 	u32 val;
6279 
6280 	/* inform PCU we want to change CDCLK */
6281 	val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6282 	mutex_lock(&dev_priv->rps.hw_lock);
6283 	ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6284 	mutex_unlock(&dev_priv->rps.hw_lock);
6285 
6286 	return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6287 }
6288 
6289 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6290 {
6291 	return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
6292 }
6293 
6294 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6295 {
6296 	struct drm_device *dev = &dev_priv->drm;
6297 	u32 freq_select, pcu_ack;
6298 
6299 	WARN_ON((cdclk == 24000) != (vco == 0));
6300 
6301 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6302 
6303 	if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6304 		DRM_ERROR("failed to inform PCU about cdclk change\n");
6305 		return;
6306 	}
6307 
6308 	/* set CDCLK_CTL */
6309 	switch (cdclk) {
6310 	case 450000:
6311 	case 432000:
6312 		freq_select = CDCLK_FREQ_450_432;
6313 		pcu_ack = 1;
6314 		break;
6315 	case 540000:
6316 		freq_select = CDCLK_FREQ_540;
6317 		pcu_ack = 2;
6318 		break;
6319 	case 308571:
6320 	case 337500:
6321 	default:
6322 		freq_select = CDCLK_FREQ_337_308;
6323 		pcu_ack = 0;
6324 		break;
6325 	case 617143:
6326 	case 675000:
6327 		freq_select = CDCLK_FREQ_675_617;
6328 		pcu_ack = 3;
6329 		break;
6330 	}
6331 
6332 	if (dev_priv->cdclk_pll.vco != 0 &&
6333 	    dev_priv->cdclk_pll.vco != vco)
6334 		skl_dpll0_disable(dev_priv);
6335 
6336 	if (dev_priv->cdclk_pll.vco != vco)
6337 		skl_dpll0_enable(dev_priv, vco);
6338 
6339 	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6340 	POSTING_READ(CDCLK_CTL);
6341 
6342 	/* inform PCU of the change */
6343 	mutex_lock(&dev_priv->rps.hw_lock);
6344 	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6345 	mutex_unlock(&dev_priv->rps.hw_lock);
6346 
6347 	intel_update_cdclk(dev);
6348 }
6349 
6350 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6351 
6352 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6353 {
6354 	skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6355 }
6356 
6357 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6358 {
6359 	int cdclk, vco;
6360 
6361 	skl_sanitize_cdclk(dev_priv);
6362 
6363 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6364 		/*
6365 		 * Use the current vco as our initial
6366 		 * guess as to what the preferred vco is.
6367 		 */
6368 		if (dev_priv->skl_preferred_vco_freq == 0)
6369 			skl_set_preferred_cdclk_vco(dev_priv,
6370 						    dev_priv->cdclk_pll.vco);
6371 		return;
6372 	}
6373 
6374 	vco = dev_priv->skl_preferred_vco_freq;
6375 	if (vco == 0)
6376 		vco = 8100000;
6377 	cdclk = skl_calc_cdclk(0, vco);
6378 
6379 	skl_set_cdclk(dev_priv, cdclk, vco);
6380 }
6381 
6382 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6383 {
6384 	uint32_t cdctl, expected;
6385 
6386 	/*
6387 	 * check if the pre-os intialized the display
6388 	 * There is SWF18 scratchpad register defined which is set by the
6389 	 * pre-os which can be used by the OS drivers to check the status
6390 	 */
6391 	if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6392 		goto sanitize;
6393 
6394 	intel_update_cdclk(&dev_priv->drm);
6395 	/* Is PLL enabled and locked ? */
6396 	if (dev_priv->cdclk_pll.vco == 0 ||
6397 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6398 		goto sanitize;
6399 
6400 	/* DPLL okay; verify the cdclock
6401 	 *
6402 	 * Noticed in some instances that the freq selection is correct but
6403 	 * decimal part is programmed wrong from BIOS where pre-os does not
6404 	 * enable display. Verify the same as well.
6405 	 */
6406 	cdctl = I915_READ(CDCLK_CTL);
6407 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6408 		skl_cdclk_decimal(dev_priv->cdclk_freq);
6409 	if (cdctl == expected)
6410 		/* All well; nothing to sanitize */
6411 		return;
6412 
6413 sanitize:
6414 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6415 
6416 	/* force cdclk programming */
6417 	dev_priv->cdclk_freq = 0;
6418 	/* force full PLL disable + enable */
6419 	dev_priv->cdclk_pll.vco = -1;
6420 }
6421 
6422 /* Adjust CDclk dividers to allow high res or save power if possible */
6423 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6424 {
6425 	struct drm_i915_private *dev_priv = to_i915(dev);
6426 	u32 val, cmd;
6427 
6428 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6429 					!= dev_priv->cdclk_freq);
6430 
6431 	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6432 		cmd = 2;
6433 	else if (cdclk == 266667)
6434 		cmd = 1;
6435 	else
6436 		cmd = 0;
6437 
6438 	mutex_lock(&dev_priv->rps.hw_lock);
6439 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6440 	val &= ~DSPFREQGUAR_MASK;
6441 	val |= (cmd << DSPFREQGUAR_SHIFT);
6442 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6443 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6444 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6445 		     50)) {
6446 		DRM_ERROR("timed out waiting for CDclk change\n");
6447 	}
6448 	mutex_unlock(&dev_priv->rps.hw_lock);
6449 
6450 	mutex_lock(&dev_priv->sb_lock);
6451 
6452 	if (cdclk == 400000) {
6453 		u32 divider;
6454 
6455 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6456 
6457 		/* adjust cdclk divider */
6458 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6459 		val &= ~CCK_FREQUENCY_VALUES;
6460 		val |= divider;
6461 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6462 
6463 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6464 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6465 			     50))
6466 			DRM_ERROR("timed out waiting for CDclk change\n");
6467 	}
6468 
6469 	/* adjust self-refresh exit latency value */
6470 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6471 	val &= ~0x7f;
6472 
6473 	/*
6474 	 * For high bandwidth configs, we set a higher latency in the bunit
6475 	 * so that the core display fetch happens in time to avoid underruns.
6476 	 */
6477 	if (cdclk == 400000)
6478 		val |= 4500 / 250; /* 4.5 usec */
6479 	else
6480 		val |= 3000 / 250; /* 3.0 usec */
6481 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6482 
6483 	mutex_unlock(&dev_priv->sb_lock);
6484 
6485 	intel_update_cdclk(dev);
6486 }
6487 
6488 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6489 {
6490 	struct drm_i915_private *dev_priv = to_i915(dev);
6491 	u32 val, cmd;
6492 
6493 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6494 						!= dev_priv->cdclk_freq);
6495 
6496 	switch (cdclk) {
6497 	case 333333:
6498 	case 320000:
6499 	case 266667:
6500 	case 200000:
6501 		break;
6502 	default:
6503 		MISSING_CASE(cdclk);
6504 		return;
6505 	}
6506 
6507 	/*
6508 	 * Specs are full of misinformation, but testing on actual
6509 	 * hardware has shown that we just need to write the desired
6510 	 * CCK divider into the Punit register.
6511 	 */
6512 	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6513 
6514 	mutex_lock(&dev_priv->rps.hw_lock);
6515 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6516 	val &= ~DSPFREQGUAR_MASK_CHV;
6517 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6518 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6519 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6520 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6521 		     50)) {
6522 		DRM_ERROR("timed out waiting for CDclk change\n");
6523 	}
6524 	mutex_unlock(&dev_priv->rps.hw_lock);
6525 
6526 	intel_update_cdclk(dev);
6527 }
6528 
6529 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6530 				 int max_pixclk)
6531 {
6532 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6533 	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6534 
6535 	/*
6536 	 * Really only a few cases to deal with, as only 4 CDclks are supported:
6537 	 *   200MHz
6538 	 *   267MHz
6539 	 *   320/333MHz (depends on HPLL freq)
6540 	 *   400MHz (VLV only)
6541 	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6542 	 * of the lower bin and adjust if needed.
6543 	 *
6544 	 * We seem to get an unstable or solid color picture at 200MHz.
6545 	 * Not sure what's wrong. For now use 200MHz only when all pipes
6546 	 * are off.
6547 	 */
6548 	if (!IS_CHERRYVIEW(dev_priv) &&
6549 	    max_pixclk > freq_320*limit/100)
6550 		return 400000;
6551 	else if (max_pixclk > 266667*limit/100)
6552 		return freq_320;
6553 	else if (max_pixclk > 0)
6554 		return 266667;
6555 	else
6556 		return 200000;
6557 }
6558 
6559 static int bxt_calc_cdclk(int max_pixclk)
6560 {
6561 	if (max_pixclk > 576000)
6562 		return 624000;
6563 	else if (max_pixclk > 384000)
6564 		return 576000;
6565 	else if (max_pixclk > 288000)
6566 		return 384000;
6567 	else if (max_pixclk > 144000)
6568 		return 288000;
6569 	else
6570 		return 144000;
6571 }
6572 
6573 /* Compute the max pixel clock for new configuration. */
6574 static int intel_mode_max_pixclk(struct drm_device *dev,
6575 				 struct drm_atomic_state *state)
6576 {
6577 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6578 	struct drm_i915_private *dev_priv = to_i915(dev);
6579 	struct drm_crtc *crtc;
6580 	struct drm_crtc_state *crtc_state;
6581 	unsigned max_pixclk = 0, i;
6582 	enum i915_pipe pipe;
6583 
6584 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6585 	       sizeof(intel_state->min_pixclk));
6586 
6587 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
6588 		int pixclk = 0;
6589 
6590 		if (crtc_state->enable)
6591 			pixclk = crtc_state->adjusted_mode.crtc_clock;
6592 
6593 		intel_state->min_pixclk[i] = pixclk;
6594 	}
6595 
6596 	for_each_pipe(dev_priv, pipe)
6597 		max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6598 
6599 	return max_pixclk;
6600 }
6601 
6602 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6603 {
6604 	struct drm_device *dev = state->dev;
6605 	struct drm_i915_private *dev_priv = to_i915(dev);
6606 	int max_pixclk = intel_mode_max_pixclk(dev, state);
6607 	struct intel_atomic_state *intel_state =
6608 		to_intel_atomic_state(state);
6609 
6610 	intel_state->cdclk = intel_state->dev_cdclk =
6611 		valleyview_calc_cdclk(dev_priv, max_pixclk);
6612 
6613 	if (!intel_state->active_crtcs)
6614 		intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6615 
6616 	return 0;
6617 }
6618 
6619 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6620 {
6621 	int max_pixclk = ilk_max_pixel_rate(state);
6622 	struct intel_atomic_state *intel_state =
6623 		to_intel_atomic_state(state);
6624 
6625 	intel_state->cdclk = intel_state->dev_cdclk =
6626 		bxt_calc_cdclk(max_pixclk);
6627 
6628 	if (!intel_state->active_crtcs)
6629 		intel_state->dev_cdclk = bxt_calc_cdclk(0);
6630 
6631 	return 0;
6632 }
6633 
6634 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6635 {
6636 	unsigned int credits, default_credits;
6637 
6638 	if (IS_CHERRYVIEW(dev_priv))
6639 		default_credits = PFI_CREDIT(12);
6640 	else
6641 		default_credits = PFI_CREDIT(8);
6642 
6643 	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6644 		/* CHV suggested value is 31 or 63 */
6645 		if (IS_CHERRYVIEW(dev_priv))
6646 			credits = PFI_CREDIT_63;
6647 		else
6648 			credits = PFI_CREDIT(15);
6649 	} else {
6650 		credits = default_credits;
6651 	}
6652 
6653 	/*
6654 	 * WA - write default credits before re-programming
6655 	 * FIXME: should we also set the resend bit here?
6656 	 */
6657 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6658 		   default_credits);
6659 
6660 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6661 		   credits | PFI_CREDIT_RESEND);
6662 
6663 	/*
6664 	 * FIXME is this guaranteed to clear
6665 	 * immediately or should we poll for it?
6666 	 */
6667 	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6668 }
6669 
6670 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6671 {
6672 	struct drm_device *dev = old_state->dev;
6673 	struct drm_i915_private *dev_priv = to_i915(dev);
6674 	struct intel_atomic_state *old_intel_state =
6675 		to_intel_atomic_state(old_state);
6676 	unsigned req_cdclk = old_intel_state->dev_cdclk;
6677 
6678 	/*
6679 	 * FIXME: We can end up here with all power domains off, yet
6680 	 * with a CDCLK frequency other than the minimum. To account
6681 	 * for this take the PIPE-A power domain, which covers the HW
6682 	 * blocks needed for the following programming. This can be
6683 	 * removed once it's guaranteed that we get here either with
6684 	 * the minimum CDCLK set, or the required power domains
6685 	 * enabled.
6686 	 */
6687 	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6688 
6689 	if (IS_CHERRYVIEW(dev_priv))
6690 		cherryview_set_cdclk(dev, req_cdclk);
6691 	else
6692 		valleyview_set_cdclk(dev, req_cdclk);
6693 
6694 	vlv_program_pfi_credits(dev_priv);
6695 
6696 	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6697 }
6698 
6699 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6700 				   struct drm_atomic_state *old_state)
6701 {
6702 	struct drm_crtc *crtc = pipe_config->base.crtc;
6703 	struct drm_device *dev = crtc->dev;
6704 	struct drm_i915_private *dev_priv = to_i915(dev);
6705 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6706 	int pipe = intel_crtc->pipe;
6707 
6708 	if (WARN_ON(intel_crtc->active))
6709 		return;
6710 
6711 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6712 		intel_dp_set_m_n(intel_crtc, M1_N1);
6713 
6714 	intel_set_pipe_timings(intel_crtc);
6715 	intel_set_pipe_src_size(intel_crtc);
6716 
6717 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6718 		struct drm_i915_private *dev_priv = to_i915(dev);
6719 
6720 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6721 		I915_WRITE(CHV_CANVAS(pipe), 0);
6722 	}
6723 
6724 	i9xx_set_pipeconf(intel_crtc);
6725 
6726 	intel_crtc->active = true;
6727 
6728 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6729 
6730 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6731 
6732 	if (IS_CHERRYVIEW(dev_priv)) {
6733 		chv_prepare_pll(intel_crtc, intel_crtc->config);
6734 		chv_enable_pll(intel_crtc, intel_crtc->config);
6735 	} else {
6736 		vlv_prepare_pll(intel_crtc, intel_crtc->config);
6737 		vlv_enable_pll(intel_crtc, intel_crtc->config);
6738 	}
6739 
6740 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
6741 
6742 	i9xx_pfit_enable(intel_crtc);
6743 
6744 	intel_color_load_luts(&pipe_config->base);
6745 
6746 	intel_update_watermarks(crtc);
6747 	intel_enable_pipe(intel_crtc);
6748 
6749 	assert_vblank_disabled(crtc);
6750 	drm_crtc_vblank_on(crtc);
6751 
6752 	intel_encoders_enable(crtc, pipe_config, old_state);
6753 }
6754 
6755 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6756 {
6757 	struct drm_device *dev = crtc->base.dev;
6758 	struct drm_i915_private *dev_priv = to_i915(dev);
6759 
6760 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6761 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6762 }
6763 
6764 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6765 			     struct drm_atomic_state *old_state)
6766 {
6767 	struct drm_crtc *crtc = pipe_config->base.crtc;
6768 	struct drm_device *dev = crtc->dev;
6769 	struct drm_i915_private *dev_priv = to_i915(dev);
6770 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6771 	enum i915_pipe pipe = intel_crtc->pipe;
6772 
6773 	if (WARN_ON(intel_crtc->active))
6774 		return;
6775 
6776 	i9xx_set_pll_dividers(intel_crtc);
6777 
6778 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6779 		intel_dp_set_m_n(intel_crtc, M1_N1);
6780 
6781 	intel_set_pipe_timings(intel_crtc);
6782 	intel_set_pipe_src_size(intel_crtc);
6783 
6784 	i9xx_set_pipeconf(intel_crtc);
6785 
6786 	intel_crtc->active = true;
6787 
6788 	if (!IS_GEN2(dev_priv))
6789 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6790 
6791 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
6792 
6793 	i9xx_enable_pll(intel_crtc);
6794 
6795 	i9xx_pfit_enable(intel_crtc);
6796 
6797 	intel_color_load_luts(&pipe_config->base);
6798 
6799 	intel_update_watermarks(crtc);
6800 	intel_enable_pipe(intel_crtc);
6801 
6802 	assert_vblank_disabled(crtc);
6803 	drm_crtc_vblank_on(crtc);
6804 
6805 	intel_encoders_enable(crtc, pipe_config, old_state);
6806 }
6807 
6808 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6809 {
6810 	struct drm_device *dev = crtc->base.dev;
6811 	struct drm_i915_private *dev_priv = to_i915(dev);
6812 
6813 	if (!crtc->config->gmch_pfit.control)
6814 		return;
6815 
6816 	assert_pipe_disabled(dev_priv, crtc->pipe);
6817 
6818 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6819 			 I915_READ(PFIT_CONTROL));
6820 	I915_WRITE(PFIT_CONTROL, 0);
6821 }
6822 
6823 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6824 			      struct drm_atomic_state *old_state)
6825 {
6826 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
6827 	struct drm_device *dev = crtc->dev;
6828 	struct drm_i915_private *dev_priv = to_i915(dev);
6829 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6830 	int pipe = intel_crtc->pipe;
6831 
6832 	/*
6833 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6834 	 * wait for planes to fully turn off before disabling the pipe.
6835 	 */
6836 	if (IS_GEN2(dev_priv))
6837 		intel_wait_for_vblank(dev, pipe);
6838 
6839 	intel_encoders_disable(crtc, old_crtc_state, old_state);
6840 
6841 	drm_crtc_vblank_off(crtc);
6842 	assert_vblank_disabled(crtc);
6843 
6844 	intel_disable_pipe(intel_crtc);
6845 
6846 	i9xx_pfit_disable(intel_crtc);
6847 
6848 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6849 
6850 	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6851 		if (IS_CHERRYVIEW(dev_priv))
6852 			chv_disable_pll(dev_priv, pipe);
6853 		else if (IS_VALLEYVIEW(dev_priv))
6854 			vlv_disable_pll(dev_priv, pipe);
6855 		else
6856 			i9xx_disable_pll(intel_crtc);
6857 	}
6858 
6859 	intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6860 
6861 	if (!IS_GEN2(dev_priv))
6862 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6863 }
6864 
6865 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6866 {
6867 	struct intel_encoder *encoder;
6868 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6869 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6870 	enum intel_display_power_domain domain;
6871 	unsigned long domains;
6872 	struct drm_atomic_state *state;
6873 	struct intel_crtc_state *crtc_state;
6874 	int ret;
6875 
6876 	if (!intel_crtc->active)
6877 		return;
6878 
6879 	if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6880 		WARN_ON(intel_crtc->flip_work);
6881 
6882 		intel_pre_disable_primary_noatomic(crtc);
6883 
6884 		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6885 		to_intel_plane_state(crtc->primary->state)->base.visible = false;
6886 	}
6887 
6888 	state = drm_atomic_state_alloc(crtc->dev);
6889 	state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6890 
6891 	/* Everything's already locked, -EDEADLK can't happen. */
6892 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6893 	ret = drm_atomic_add_affected_connectors(state, crtc);
6894 
6895 	WARN_ON(IS_ERR(crtc_state) || ret);
6896 
6897 	dev_priv->display.crtc_disable(crtc_state, state);
6898 
6899 	drm_atomic_state_free(state);
6900 
6901 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6902 		      crtc->base.id, crtc->name);
6903 
6904 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6905 	crtc->state->active = false;
6906 	intel_crtc->active = false;
6907 	crtc->enabled = false;
6908 	crtc->state->connector_mask = 0;
6909 	crtc->state->encoder_mask = 0;
6910 
6911 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6912 		encoder->base.crtc = NULL;
6913 
6914 	intel_fbc_disable(intel_crtc);
6915 	intel_update_watermarks(crtc);
6916 	intel_disable_shared_dpll(intel_crtc);
6917 
6918 	domains = intel_crtc->enabled_power_domains;
6919 	for_each_power_domain(domain, domains)
6920 		intel_display_power_put(dev_priv, domain);
6921 	intel_crtc->enabled_power_domains = 0;
6922 
6923 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6924 	dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6925 }
6926 
6927 /*
6928  * turn all crtc's off, but do not adjust state
6929  * This has to be paired with a call to intel_modeset_setup_hw_state.
6930  */
6931 int intel_display_suspend(struct drm_device *dev)
6932 {
6933 	struct drm_i915_private *dev_priv = to_i915(dev);
6934 	struct drm_atomic_state *state;
6935 	int ret;
6936 
6937 	state = drm_atomic_helper_suspend(dev);
6938 	ret = PTR_ERR_OR_ZERO(state);
6939 	if (ret)
6940 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6941 	else
6942 		dev_priv->modeset_restore_state = state;
6943 	return ret;
6944 }
6945 
6946 void intel_encoder_destroy(struct drm_encoder *encoder)
6947 {
6948 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6949 
6950 	drm_encoder_cleanup(encoder);
6951 	kfree(intel_encoder);
6952 }
6953 
6954 /* Cross check the actual hw state with our own modeset state tracking (and it's
6955  * internal consistency). */
6956 static void intel_connector_verify_state(struct intel_connector *connector)
6957 {
6958 	struct drm_crtc *crtc = connector->base.state->crtc;
6959 
6960 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6961 		      connector->base.base.id,
6962 		      connector->base.name);
6963 
6964 	if (connector->get_hw_state(connector)) {
6965 		struct intel_encoder *encoder = connector->encoder;
6966 		struct drm_connector_state *conn_state = connector->base.state;
6967 
6968 		I915_STATE_WARN(!crtc,
6969 			 "connector enabled without attached crtc\n");
6970 
6971 		if (!crtc)
6972 			return;
6973 
6974 		I915_STATE_WARN(!crtc->state->active,
6975 		      "connector is active, but attached crtc isn't\n");
6976 
6977 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6978 			return;
6979 
6980 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6981 			"atomic encoder doesn't match attached encoder\n");
6982 
6983 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6984 			"attached encoder crtc differs from connector crtc\n");
6985 	} else {
6986 		I915_STATE_WARN(crtc && crtc->state->active,
6987 			"attached crtc is active, but connector isn't\n");
6988 		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6989 			"best encoder set without crtc!\n");
6990 	}
6991 }
6992 
6993 int intel_connector_init(struct intel_connector *connector)
6994 {
6995 	drm_atomic_helper_connector_reset(&connector->base);
6996 
6997 	if (!connector->base.state)
6998 		return -ENOMEM;
6999 
7000 	return 0;
7001 }
7002 
7003 struct intel_connector *intel_connector_alloc(void)
7004 {
7005 	struct intel_connector *connector;
7006 
7007 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
7008 	if (!connector)
7009 		return NULL;
7010 
7011 	if (intel_connector_init(connector) < 0) {
7012 		kfree(connector);
7013 		return NULL;
7014 	}
7015 
7016 	return connector;
7017 }
7018 
7019 /* Simple connector->get_hw_state implementation for encoders that support only
7020  * one connector and no cloning and hence the encoder state determines the state
7021  * of the connector. */
7022 bool intel_connector_get_hw_state(struct intel_connector *connector)
7023 {
7024 	enum i915_pipe pipe = 0;
7025 	struct intel_encoder *encoder = connector->encoder;
7026 
7027 	return encoder->get_hw_state(encoder, &pipe);
7028 }
7029 
7030 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7031 {
7032 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7033 		return crtc_state->fdi_lanes;
7034 
7035 	return 0;
7036 }
7037 
7038 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum i915_pipe pipe,
7039 				     struct intel_crtc_state *pipe_config)
7040 {
7041 	struct drm_i915_private *dev_priv = to_i915(dev);
7042 	struct drm_atomic_state *state = pipe_config->base.state;
7043 	struct intel_crtc *other_crtc;
7044 	struct intel_crtc_state *other_crtc_state;
7045 
7046 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7047 		      pipe_name(pipe), pipe_config->fdi_lanes);
7048 	if (pipe_config->fdi_lanes > 4) {
7049 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7050 			      pipe_name(pipe), pipe_config->fdi_lanes);
7051 		return -EINVAL;
7052 	}
7053 
7054 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7055 		if (pipe_config->fdi_lanes > 2) {
7056 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7057 				      pipe_config->fdi_lanes);
7058 			return -EINVAL;
7059 		} else {
7060 			return 0;
7061 		}
7062 	}
7063 
7064 	if (INTEL_INFO(dev)->num_pipes == 2)
7065 		return 0;
7066 
7067 	/* Ivybridge 3 pipe is really complicated */
7068 	switch (pipe) {
7069 	case PIPE_A:
7070 		return 0;
7071 	case PIPE_B:
7072 		if (pipe_config->fdi_lanes <= 2)
7073 			return 0;
7074 
7075 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7076 		other_crtc_state =
7077 			intel_atomic_get_crtc_state(state, other_crtc);
7078 		if (IS_ERR(other_crtc_state))
7079 			return PTR_ERR(other_crtc_state);
7080 
7081 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7082 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7083 				      pipe_name(pipe), pipe_config->fdi_lanes);
7084 			return -EINVAL;
7085 		}
7086 		return 0;
7087 	case PIPE_C:
7088 		if (pipe_config->fdi_lanes > 2) {
7089 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7090 				      pipe_name(pipe), pipe_config->fdi_lanes);
7091 			return -EINVAL;
7092 		}
7093 
7094 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7095 		other_crtc_state =
7096 			intel_atomic_get_crtc_state(state, other_crtc);
7097 		if (IS_ERR(other_crtc_state))
7098 			return PTR_ERR(other_crtc_state);
7099 
7100 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7101 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7102 			return -EINVAL;
7103 		}
7104 		return 0;
7105 	default:
7106 		BUG();
7107 	}
7108 }
7109 
7110 #define RETRY 1
7111 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7112 				       struct intel_crtc_state *pipe_config)
7113 {
7114 	struct drm_device *dev = intel_crtc->base.dev;
7115 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7116 	int lane, link_bw, fdi_dotclock, ret;
7117 	bool needs_recompute = false;
7118 
7119 retry:
7120 	/* FDI is a binary signal running at ~2.7GHz, encoding
7121 	 * each output octet as 10 bits. The actual frequency
7122 	 * is stored as a divider into a 100MHz clock, and the
7123 	 * mode pixel clock is stored in units of 1KHz.
7124 	 * Hence the bw of each lane in terms of the mode signal
7125 	 * is:
7126 	 */
7127 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7128 
7129 	fdi_dotclock = adjusted_mode->crtc_clock;
7130 
7131 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7132 					   pipe_config->pipe_bpp);
7133 
7134 	pipe_config->fdi_lanes = lane;
7135 
7136 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7137 			       link_bw, &pipe_config->fdi_m_n);
7138 
7139 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7140 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7141 		pipe_config->pipe_bpp -= 2*3;
7142 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7143 			      pipe_config->pipe_bpp);
7144 		needs_recompute = true;
7145 		pipe_config->bw_constrained = true;
7146 
7147 		goto retry;
7148 	}
7149 
7150 	if (needs_recompute)
7151 		return RETRY;
7152 
7153 	return ret;
7154 }
7155 
7156 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7157 				     struct intel_crtc_state *pipe_config)
7158 {
7159 	if (pipe_config->pipe_bpp > 24)
7160 		return false;
7161 
7162 	/* HSW can handle pixel rate up to cdclk? */
7163 	if (IS_HASWELL(dev_priv))
7164 		return true;
7165 
7166 	/*
7167 	 * We compare against max which means we must take
7168 	 * the increased cdclk requirement into account when
7169 	 * calculating the new cdclk.
7170 	 *
7171 	 * Should measure whether using a lower cdclk w/o IPS
7172 	 */
7173 	return ilk_pipe_pixel_rate(pipe_config) <=
7174 		dev_priv->max_cdclk_freq * 95 / 100;
7175 }
7176 
7177 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7178 				   struct intel_crtc_state *pipe_config)
7179 {
7180 	struct drm_device *dev = crtc->base.dev;
7181 	struct drm_i915_private *dev_priv = to_i915(dev);
7182 
7183 	pipe_config->ips_enabled = i915.enable_ips &&
7184 		hsw_crtc_supports_ips(crtc) &&
7185 		pipe_config_supports_ips(dev_priv, pipe_config);
7186 }
7187 
7188 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7189 {
7190 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7191 
7192 	/* GDG double wide on either pipe, otherwise pipe A only */
7193 	return INTEL_INFO(dev_priv)->gen < 4 &&
7194 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7195 }
7196 
7197 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7198 				     struct intel_crtc_state *pipe_config)
7199 {
7200 	struct drm_device *dev = crtc->base.dev;
7201 	struct drm_i915_private *dev_priv = to_i915(dev);
7202 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7203 	int clock_limit = dev_priv->max_dotclk_freq;
7204 
7205 	if (INTEL_INFO(dev)->gen < 4) {
7206 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7207 
7208 		/*
7209 		 * Enable double wide mode when the dot clock
7210 		 * is > 90% of the (display) core speed.
7211 		 */
7212 		if (intel_crtc_supports_double_wide(crtc) &&
7213 		    adjusted_mode->crtc_clock > clock_limit) {
7214 			clock_limit = dev_priv->max_dotclk_freq;
7215 			pipe_config->double_wide = true;
7216 		}
7217 	}
7218 
7219 	if (adjusted_mode->crtc_clock > clock_limit) {
7220 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7221 			      adjusted_mode->crtc_clock, clock_limit,
7222 			      yesno(pipe_config->double_wide));
7223 		return -EINVAL;
7224 	}
7225 
7226 	/*
7227 	 * Pipe horizontal size must be even in:
7228 	 * - DVO ganged mode
7229 	 * - LVDS dual channel mode
7230 	 * - Double wide pipe
7231 	 */
7232 	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7233 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7234 		pipe_config->pipe_src_w &= ~1;
7235 
7236 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
7237 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7238 	 */
7239 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7240 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7241 		return -EINVAL;
7242 
7243 	if (HAS_IPS(dev_priv))
7244 		hsw_compute_ips_config(crtc, pipe_config);
7245 
7246 	if (pipe_config->has_pch_encoder)
7247 		return ironlake_fdi_compute_config(crtc, pipe_config);
7248 
7249 	return 0;
7250 }
7251 
7252 static int skylake_get_display_clock_speed(struct drm_device *dev)
7253 {
7254 	struct drm_i915_private *dev_priv = to_i915(dev);
7255 	uint32_t cdctl;
7256 
7257 	skl_dpll0_update(dev_priv);
7258 
7259 	if (dev_priv->cdclk_pll.vco == 0)
7260 		return dev_priv->cdclk_pll.ref;
7261 
7262 	cdctl = I915_READ(CDCLK_CTL);
7263 
7264 	if (dev_priv->cdclk_pll.vco == 8640000) {
7265 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7266 		case CDCLK_FREQ_450_432:
7267 			return 432000;
7268 		case CDCLK_FREQ_337_308:
7269 			return 308571;
7270 		case CDCLK_FREQ_540:
7271 			return 540000;
7272 		case CDCLK_FREQ_675_617:
7273 			return 617143;
7274 		default:
7275 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7276 		}
7277 	} else {
7278 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7279 		case CDCLK_FREQ_450_432:
7280 			return 450000;
7281 		case CDCLK_FREQ_337_308:
7282 			return 337500;
7283 		case CDCLK_FREQ_540:
7284 			return 540000;
7285 		case CDCLK_FREQ_675_617:
7286 			return 675000;
7287 		default:
7288 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7289 		}
7290 	}
7291 
7292 	return dev_priv->cdclk_pll.ref;
7293 }
7294 
7295 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7296 {
7297 	u32 val;
7298 
7299 	dev_priv->cdclk_pll.ref = 19200;
7300 	dev_priv->cdclk_pll.vco = 0;
7301 
7302 	val = I915_READ(BXT_DE_PLL_ENABLE);
7303 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7304 		return;
7305 
7306 	if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7307 		return;
7308 
7309 	val = I915_READ(BXT_DE_PLL_CTL);
7310 	dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7311 		dev_priv->cdclk_pll.ref;
7312 }
7313 
7314 static int broxton_get_display_clock_speed(struct drm_device *dev)
7315 {
7316 	struct drm_i915_private *dev_priv = to_i915(dev);
7317 	u32 divider;
7318 	int div, vco;
7319 
7320 	bxt_de_pll_update(dev_priv);
7321 
7322 	vco = dev_priv->cdclk_pll.vco;
7323 	if (vco == 0)
7324 		return dev_priv->cdclk_pll.ref;
7325 
7326 	divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7327 
7328 	switch (divider) {
7329 	case BXT_CDCLK_CD2X_DIV_SEL_1:
7330 		div = 2;
7331 		break;
7332 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7333 		div = 3;
7334 		break;
7335 	case BXT_CDCLK_CD2X_DIV_SEL_2:
7336 		div = 4;
7337 		break;
7338 	case BXT_CDCLK_CD2X_DIV_SEL_4:
7339 		div = 8;
7340 		break;
7341 	default:
7342 		MISSING_CASE(divider);
7343 		return dev_priv->cdclk_pll.ref;
7344 	}
7345 
7346 	return DIV_ROUND_CLOSEST(vco, div);
7347 }
7348 
7349 static int broadwell_get_display_clock_speed(struct drm_device *dev)
7350 {
7351 	struct drm_i915_private *dev_priv = to_i915(dev);
7352 	uint32_t lcpll = I915_READ(LCPLL_CTL);
7353 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7354 
7355 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
7356 		return 800000;
7357 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7358 		return 450000;
7359 	else if (freq == LCPLL_CLK_FREQ_450)
7360 		return 450000;
7361 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7362 		return 540000;
7363 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7364 		return 337500;
7365 	else
7366 		return 675000;
7367 }
7368 
7369 static int haswell_get_display_clock_speed(struct drm_device *dev)
7370 {
7371 	struct drm_i915_private *dev_priv = to_i915(dev);
7372 	uint32_t lcpll = I915_READ(LCPLL_CTL);
7373 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7374 
7375 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
7376 		return 800000;
7377 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7378 		return 450000;
7379 	else if (freq == LCPLL_CLK_FREQ_450)
7380 		return 450000;
7381 	else if (IS_HSW_ULT(dev_priv))
7382 		return 337500;
7383 	else
7384 		return 540000;
7385 }
7386 
7387 static int valleyview_get_display_clock_speed(struct drm_device *dev)
7388 {
7389 	return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7390 				      CCK_DISPLAY_CLOCK_CONTROL);
7391 }
7392 
7393 static int ilk_get_display_clock_speed(struct drm_device *dev)
7394 {
7395 	return 450000;
7396 }
7397 
7398 static int i945_get_display_clock_speed(struct drm_device *dev)
7399 {
7400 	return 400000;
7401 }
7402 
7403 static int i915_get_display_clock_speed(struct drm_device *dev)
7404 {
7405 	return 333333;
7406 }
7407 
7408 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7409 {
7410 	return 200000;
7411 }
7412 
7413 static int pnv_get_display_clock_speed(struct drm_device *dev)
7414 {
7415 	struct pci_dev *pdev = dev->pdev;
7416 	u16 gcfgc = 0;
7417 
7418 	pci_read_config_word(pdev, GCFGC, &gcfgc);
7419 
7420 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7421 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7422 		return 266667;
7423 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7424 		return 333333;
7425 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7426 		return 444444;
7427 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7428 		return 200000;
7429 	default:
7430 		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7431 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7432 		return 133333;
7433 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7434 		return 166667;
7435 	}
7436 }
7437 
7438 static int i915gm_get_display_clock_speed(struct drm_device *dev)
7439 {
7440 	struct pci_dev *pdev = dev->pdev;
7441 	u16 gcfgc = 0;
7442 
7443 	pci_read_config_word(pdev, GCFGC, &gcfgc);
7444 
7445 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7446 		return 133333;
7447 	else {
7448 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7449 		case GC_DISPLAY_CLOCK_333_MHZ:
7450 			return 333333;
7451 		default:
7452 		case GC_DISPLAY_CLOCK_190_200_MHZ:
7453 			return 190000;
7454 		}
7455 	}
7456 }
7457 
7458 static int i865_get_display_clock_speed(struct drm_device *dev)
7459 {
7460 	return 266667;
7461 }
7462 
7463 static int i85x_get_display_clock_speed(struct drm_device *dev)
7464 {
7465 	struct pci_dev *pdev = dev->pdev;
7466 	u16 hpllcc = 0;
7467 
7468 	/*
7469 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7470 	 * encoding is different :(
7471 	 * FIXME is this the right way to detect 852GM/852GMV?
7472 	 */
7473 	if (pdev->revision == 0x1)
7474 		return 133333;
7475 
7476 	pci_bus_read_config_word(pdev->bus,
7477 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7478 
7479 	/* Assume that the hardware is in the high speed state.  This
7480 	 * should be the default.
7481 	 */
7482 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7483 	case GC_CLOCK_133_200:
7484 	case GC_CLOCK_133_200_2:
7485 	case GC_CLOCK_100_200:
7486 		return 200000;
7487 	case GC_CLOCK_166_250:
7488 		return 250000;
7489 	case GC_CLOCK_100_133:
7490 		return 133333;
7491 	case GC_CLOCK_133_266:
7492 	case GC_CLOCK_133_266_2:
7493 	case GC_CLOCK_166_266:
7494 		return 266667;
7495 	}
7496 
7497 	/* Shouldn't happen */
7498 	return 0;
7499 }
7500 
7501 static int i830_get_display_clock_speed(struct drm_device *dev)
7502 {
7503 	return 133333;
7504 }
7505 
7506 static unsigned int intel_hpll_vco(struct drm_device *dev)
7507 {
7508 	struct drm_i915_private *dev_priv = to_i915(dev);
7509 	static const unsigned int blb_vco[8] = {
7510 		[0] = 3200000,
7511 		[1] = 4000000,
7512 		[2] = 5333333,
7513 		[3] = 4800000,
7514 		[4] = 6400000,
7515 	};
7516 	static const unsigned int pnv_vco[8] = {
7517 		[0] = 3200000,
7518 		[1] = 4000000,
7519 		[2] = 5333333,
7520 		[3] = 4800000,
7521 		[4] = 2666667,
7522 	};
7523 	static const unsigned int cl_vco[8] = {
7524 		[0] = 3200000,
7525 		[1] = 4000000,
7526 		[2] = 5333333,
7527 		[3] = 6400000,
7528 		[4] = 3333333,
7529 		[5] = 3566667,
7530 		[6] = 4266667,
7531 	};
7532 	static const unsigned int elk_vco[8] = {
7533 		[0] = 3200000,
7534 		[1] = 4000000,
7535 		[2] = 5333333,
7536 		[3] = 4800000,
7537 	};
7538 	static const unsigned int ctg_vco[8] = {
7539 		[0] = 3200000,
7540 		[1] = 4000000,
7541 		[2] = 5333333,
7542 		[3] = 6400000,
7543 		[4] = 2666667,
7544 		[5] = 4266667,
7545 	};
7546 	const unsigned int *vco_table;
7547 	unsigned int vco;
7548 	uint8_t tmp = 0;
7549 
7550 	/* FIXME other chipsets? */
7551 	if (IS_GM45(dev_priv))
7552 		vco_table = ctg_vco;
7553 	else if (IS_G4X(dev_priv))
7554 		vco_table = elk_vco;
7555 	else if (IS_CRESTLINE(dev))
7556 		vco_table = cl_vco;
7557 	else if (IS_PINEVIEW(dev))
7558 		vco_table = pnv_vco;
7559 	else if (IS_G33(dev))
7560 		vco_table = blb_vco;
7561 	else
7562 		return 0;
7563 
7564 	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7565 
7566 	vco = vco_table[tmp & 0x7];
7567 	if (vco == 0)
7568 		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7569 	else
7570 		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7571 
7572 	return vco;
7573 }
7574 
7575 static int gm45_get_display_clock_speed(struct drm_device *dev)
7576 {
7577 	struct pci_dev *pdev = dev->pdev;
7578 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7579 	uint16_t tmp = 0;
7580 
7581 	pci_read_config_word(pdev, GCFGC, &tmp);
7582 
7583 	cdclk_sel = (tmp >> 12) & 0x1;
7584 
7585 	switch (vco) {
7586 	case 2666667:
7587 	case 4000000:
7588 	case 5333333:
7589 		return cdclk_sel ? 333333 : 222222;
7590 	case 3200000:
7591 		return cdclk_sel ? 320000 : 228571;
7592 	default:
7593 		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7594 		return 222222;
7595 	}
7596 }
7597 
7598 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7599 {
7600 	struct pci_dev *pdev = dev->pdev;
7601 	static const uint8_t div_3200[] = { 16, 10,  8 };
7602 	static const uint8_t div_4000[] = { 20, 12, 10 };
7603 	static const uint8_t div_5333[] = { 24, 16, 14 };
7604 	const uint8_t *div_table;
7605 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7606 	uint16_t tmp = 0;
7607 
7608 	pci_read_config_word(pdev, GCFGC, &tmp);
7609 
7610 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7611 
7612 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7613 		goto fail;
7614 
7615 	switch (vco) {
7616 	case 3200000:
7617 		div_table = div_3200;
7618 		break;
7619 	case 4000000:
7620 		div_table = div_4000;
7621 		break;
7622 	case 5333333:
7623 		div_table = div_5333;
7624 		break;
7625 	default:
7626 		goto fail;
7627 	}
7628 
7629 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7630 
7631 fail:
7632 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7633 	return 200000;
7634 }
7635 
7636 static int g33_get_display_clock_speed(struct drm_device *dev)
7637 {
7638 	struct pci_dev *pdev = dev->pdev;
7639 	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7640 	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7641 	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7642 	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7643 	const uint8_t *div_table;
7644 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7645 	uint16_t tmp = 0;
7646 
7647 	pci_read_config_word(pdev, GCFGC, &tmp);
7648 
7649 	cdclk_sel = (tmp >> 4) & 0x7;
7650 
7651 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7652 		goto fail;
7653 
7654 	switch (vco) {
7655 	case 3200000:
7656 		div_table = div_3200;
7657 		break;
7658 	case 4000000:
7659 		div_table = div_4000;
7660 		break;
7661 	case 4800000:
7662 		div_table = div_4800;
7663 		break;
7664 	case 5333333:
7665 		div_table = div_5333;
7666 		break;
7667 	default:
7668 		goto fail;
7669 	}
7670 
7671 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7672 
7673 fail:
7674 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7675 	return 190476;
7676 }
7677 
7678 static void
7679 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7680 {
7681 	while (*num > DATA_LINK_M_N_MASK ||
7682 	       *den > DATA_LINK_M_N_MASK) {
7683 		*num >>= 1;
7684 		*den >>= 1;
7685 	}
7686 }
7687 
7688 static void compute_m_n(unsigned int m, unsigned int n,
7689 			uint32_t *ret_m, uint32_t *ret_n)
7690 {
7691 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7692 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7693 	intel_reduce_m_n_ratio(ret_m, ret_n);
7694 }
7695 
7696 void
7697 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7698 		       int pixel_clock, int link_clock,
7699 		       struct intel_link_m_n *m_n)
7700 {
7701 	m_n->tu = 64;
7702 
7703 	compute_m_n(bits_per_pixel * pixel_clock,
7704 		    link_clock * nlanes * 8,
7705 		    &m_n->gmch_m, &m_n->gmch_n);
7706 
7707 	compute_m_n(pixel_clock, link_clock,
7708 		    &m_n->link_m, &m_n->link_n);
7709 }
7710 
7711 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7712 {
7713 	if (i915.panel_use_ssc >= 0)
7714 		return i915.panel_use_ssc != 0;
7715 	return dev_priv->vbt.lvds_use_ssc
7716 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7717 }
7718 
7719 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7720 {
7721 	return (1 << dpll->n) << 16 | dpll->m2;
7722 }
7723 
7724 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7725 {
7726 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7727 }
7728 
7729 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7730 				     struct intel_crtc_state *crtc_state,
7731 				     struct dpll *reduced_clock)
7732 {
7733 	struct drm_device *dev = crtc->base.dev;
7734 	u32 fp, fp2 = 0;
7735 
7736 	if (IS_PINEVIEW(dev)) {
7737 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7738 		if (reduced_clock)
7739 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7740 	} else {
7741 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7742 		if (reduced_clock)
7743 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7744 	}
7745 
7746 	crtc_state->dpll_hw_state.fp0 = fp;
7747 
7748 	crtc->lowfreq_avail = false;
7749 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7750 	    reduced_clock) {
7751 		crtc_state->dpll_hw_state.fp1 = fp2;
7752 		crtc->lowfreq_avail = true;
7753 	} else {
7754 		crtc_state->dpll_hw_state.fp1 = fp;
7755 	}
7756 }
7757 
7758 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum i915_pipe
7759 		pipe)
7760 {
7761 	u32 reg_val;
7762 
7763 	/*
7764 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7765 	 * and set it to a reasonable value instead.
7766 	 */
7767 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7768 	reg_val &= 0xffffff00;
7769 	reg_val |= 0x00000030;
7770 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7771 
7772 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7773 	reg_val &= 0x8cffffff;
7774 	reg_val = 0x8c000000;
7775 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7776 
7777 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7778 	reg_val &= 0xffffff00;
7779 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7780 
7781 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7782 	reg_val &= 0x00ffffff;
7783 	reg_val |= 0xb0000000;
7784 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7785 }
7786 
7787 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7788 					 struct intel_link_m_n *m_n)
7789 {
7790 	struct drm_device *dev = crtc->base.dev;
7791 	struct drm_i915_private *dev_priv = to_i915(dev);
7792 	int pipe = crtc->pipe;
7793 
7794 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7795 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7796 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7797 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7798 }
7799 
7800 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7801 					 struct intel_link_m_n *m_n,
7802 					 struct intel_link_m_n *m2_n2)
7803 {
7804 	struct drm_device *dev = crtc->base.dev;
7805 	struct drm_i915_private *dev_priv = to_i915(dev);
7806 	int pipe = crtc->pipe;
7807 	enum transcoder transcoder = crtc->config->cpu_transcoder;
7808 
7809 	if (INTEL_INFO(dev)->gen >= 5) {
7810 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7811 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7812 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7813 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7814 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7815 		 * for gen < 8) and if DRRS is supported (to make sure the
7816 		 * registers are not unnecessarily accessed).
7817 		 */
7818 		if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7819 		    INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7820 			I915_WRITE(PIPE_DATA_M2(transcoder),
7821 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7822 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7823 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7824 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7825 		}
7826 	} else {
7827 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7828 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7829 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7830 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7831 	}
7832 }
7833 
7834 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7835 {
7836 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7837 
7838 	if (m_n == M1_N1) {
7839 		dp_m_n = &crtc->config->dp_m_n;
7840 		dp_m2_n2 = &crtc->config->dp_m2_n2;
7841 	} else if (m_n == M2_N2) {
7842 
7843 		/*
7844 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7845 		 * needs to be programmed into M1_N1.
7846 		 */
7847 		dp_m_n = &crtc->config->dp_m2_n2;
7848 	} else {
7849 		DRM_ERROR("Unsupported divider value\n");
7850 		return;
7851 	}
7852 
7853 	if (crtc->config->has_pch_encoder)
7854 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7855 	else
7856 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7857 }
7858 
7859 static void vlv_compute_dpll(struct intel_crtc *crtc,
7860 			     struct intel_crtc_state *pipe_config)
7861 {
7862 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7863 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7864 	if (crtc->pipe != PIPE_A)
7865 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7866 
7867 	/* DPLL not used with DSI, but still need the rest set up */
7868 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7869 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7870 			DPLL_EXT_BUFFER_ENABLE_VLV;
7871 
7872 	pipe_config->dpll_hw_state.dpll_md =
7873 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7874 }
7875 
7876 static void chv_compute_dpll(struct intel_crtc *crtc,
7877 			     struct intel_crtc_state *pipe_config)
7878 {
7879 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7880 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7881 	if (crtc->pipe != PIPE_A)
7882 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7883 
7884 	/* DPLL not used with DSI, but still need the rest set up */
7885 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7886 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7887 
7888 	pipe_config->dpll_hw_state.dpll_md =
7889 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7890 }
7891 
7892 static void vlv_prepare_pll(struct intel_crtc *crtc,
7893 			    const struct intel_crtc_state *pipe_config)
7894 {
7895 	struct drm_device *dev = crtc->base.dev;
7896 	struct drm_i915_private *dev_priv = to_i915(dev);
7897 	enum i915_pipe pipe = crtc->pipe;
7898 	u32 mdiv;
7899 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7900 	u32 coreclk, reg_val;
7901 
7902 	/* Enable Refclk */
7903 	I915_WRITE(DPLL(pipe),
7904 		   pipe_config->dpll_hw_state.dpll &
7905 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7906 
7907 	/* No need to actually set up the DPLL with DSI */
7908 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7909 		return;
7910 
7911 	mutex_lock(&dev_priv->sb_lock);
7912 
7913 	bestn = pipe_config->dpll.n;
7914 	bestm1 = pipe_config->dpll.m1;
7915 	bestm2 = pipe_config->dpll.m2;
7916 	bestp1 = pipe_config->dpll.p1;
7917 	bestp2 = pipe_config->dpll.p2;
7918 
7919 	/* See eDP HDMI DPIO driver vbios notes doc */
7920 
7921 	/* PLL B needs special handling */
7922 	if (pipe == PIPE_B)
7923 		vlv_pllb_recal_opamp(dev_priv, pipe);
7924 
7925 	/* Set up Tx target for periodic Rcomp update */
7926 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7927 
7928 	/* Disable target IRef on PLL */
7929 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7930 	reg_val &= 0x00ffffff;
7931 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7932 
7933 	/* Disable fast lock */
7934 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7935 
7936 	/* Set idtafcrecal before PLL is enabled */
7937 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7938 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7939 	mdiv |= ((bestn << DPIO_N_SHIFT));
7940 	mdiv |= (1 << DPIO_K_SHIFT);
7941 
7942 	/*
7943 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7944 	 * but we don't support that).
7945 	 * Note: don't use the DAC post divider as it seems unstable.
7946 	 */
7947 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7948 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7949 
7950 	mdiv |= DPIO_ENABLE_CALIBRATION;
7951 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7952 
7953 	/* Set HBR and RBR LPF coefficients */
7954 	if (pipe_config->port_clock == 162000 ||
7955 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7956 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7957 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7958 				 0x009f0003);
7959 	else
7960 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7961 				 0x00d0000f);
7962 
7963 	if (intel_crtc_has_dp_encoder(pipe_config)) {
7964 		/* Use SSC source */
7965 		if (pipe == PIPE_A)
7966 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7967 					 0x0df40000);
7968 		else
7969 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7970 					 0x0df70000);
7971 	} else { /* HDMI or VGA */
7972 		/* Use bend source */
7973 		if (pipe == PIPE_A)
7974 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7975 					 0x0df70000);
7976 		else
7977 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7978 					 0x0df40000);
7979 	}
7980 
7981 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7982 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7983 	if (intel_crtc_has_dp_encoder(crtc->config))
7984 		coreclk |= 0x01000000;
7985 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7986 
7987 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7988 	mutex_unlock(&dev_priv->sb_lock);
7989 }
7990 
7991 static void chv_prepare_pll(struct intel_crtc *crtc,
7992 			    const struct intel_crtc_state *pipe_config)
7993 {
7994 	struct drm_device *dev = crtc->base.dev;
7995 	struct drm_i915_private *dev_priv = to_i915(dev);
7996 	enum i915_pipe pipe = crtc->pipe;
7997 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7998 	u32 loopfilter, tribuf_calcntr;
7999 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8000 	u32 dpio_val;
8001 	int vco;
8002 
8003 	/* Enable Refclk and SSC */
8004 	I915_WRITE(DPLL(pipe),
8005 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8006 
8007 	/* No need to actually set up the DPLL with DSI */
8008 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8009 		return;
8010 
8011 	bestn = pipe_config->dpll.n;
8012 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8013 	bestm1 = pipe_config->dpll.m1;
8014 	bestm2 = pipe_config->dpll.m2 >> 22;
8015 	bestp1 = pipe_config->dpll.p1;
8016 	bestp2 = pipe_config->dpll.p2;
8017 	vco = pipe_config->dpll.vco;
8018 	dpio_val = 0;
8019 	loopfilter = 0;
8020 
8021 	mutex_lock(&dev_priv->sb_lock);
8022 
8023 	/* p1 and p2 divider */
8024 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8025 			5 << DPIO_CHV_S1_DIV_SHIFT |
8026 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8027 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8028 			1 << DPIO_CHV_K_DIV_SHIFT);
8029 
8030 	/* Feedback post-divider - m2 */
8031 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8032 
8033 	/* Feedback refclk divider - n and m1 */
8034 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8035 			DPIO_CHV_M1_DIV_BY_2 |
8036 			1 << DPIO_CHV_N_DIV_SHIFT);
8037 
8038 	/* M2 fraction division */
8039 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8040 
8041 	/* M2 fraction division enable */
8042 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8043 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8044 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8045 	if (bestm2_frac)
8046 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8047 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8048 
8049 	/* Program digital lock detect threshold */
8050 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8051 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8052 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8053 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8054 	if (!bestm2_frac)
8055 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8056 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8057 
8058 	/* Loop filter */
8059 	if (vco == 5400000) {
8060 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8061 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8062 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8063 		tribuf_calcntr = 0x9;
8064 	} else if (vco <= 6200000) {
8065 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8066 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8067 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8068 		tribuf_calcntr = 0x9;
8069 	} else if (vco <= 6480000) {
8070 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8071 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8072 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8073 		tribuf_calcntr = 0x8;
8074 	} else {
8075 		/* Not supported. Apply the same limits as in the max case */
8076 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8077 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8078 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8079 		tribuf_calcntr = 0;
8080 	}
8081 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8082 
8083 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8084 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8085 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8086 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8087 
8088 	/* AFC Recal */
8089 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8090 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8091 			DPIO_AFC_RECAL);
8092 
8093 	mutex_unlock(&dev_priv->sb_lock);
8094 }
8095 
8096 /**
8097  * vlv_force_pll_on - forcibly enable just the PLL
8098  * @dev_priv: i915 private structure
8099  * @pipe: pipe PLL to enable
8100  * @dpll: PLL configuration
8101  *
8102  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8103  * in cases where we need the PLL enabled even when @pipe is not going to
8104  * be enabled.
8105  */
8106 int vlv_force_pll_on(struct drm_device *dev, enum i915_pipe pipe,
8107 		     const struct dpll *dpll)
8108 {
8109 	struct intel_crtc *crtc =
8110 		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
8111 	struct intel_crtc_state *pipe_config;
8112 
8113 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8114 	if (!pipe_config)
8115 		return -ENOMEM;
8116 
8117 	pipe_config->base.crtc = &crtc->base;
8118 	pipe_config->pixel_multiplier = 1;
8119 	pipe_config->dpll = *dpll;
8120 
8121 	if (IS_CHERRYVIEW(to_i915(dev))) {
8122 		chv_compute_dpll(crtc, pipe_config);
8123 		chv_prepare_pll(crtc, pipe_config);
8124 		chv_enable_pll(crtc, pipe_config);
8125 	} else {
8126 		vlv_compute_dpll(crtc, pipe_config);
8127 		vlv_prepare_pll(crtc, pipe_config);
8128 		vlv_enable_pll(crtc, pipe_config);
8129 	}
8130 
8131 	kfree(pipe_config);
8132 
8133 	return 0;
8134 }
8135 
8136 /**
8137  * vlv_force_pll_off - forcibly disable just the PLL
8138  * @dev_priv: i915 private structure
8139  * @pipe: pipe PLL to disable
8140  *
8141  * Disable the PLL for @pipe. To be used in cases where we need
8142  * the PLL enabled even when @pipe is not going to be enabled.
8143  */
8144 void vlv_force_pll_off(struct drm_device *dev, enum i915_pipe pipe)
8145 {
8146 	if (IS_CHERRYVIEW(to_i915(dev)))
8147 		chv_disable_pll(to_i915(dev), pipe);
8148 	else
8149 		vlv_disable_pll(to_i915(dev), pipe);
8150 }
8151 
8152 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8153 			      struct intel_crtc_state *crtc_state,
8154 			      struct dpll *reduced_clock)
8155 {
8156 	struct drm_device *dev = crtc->base.dev;
8157 	struct drm_i915_private *dev_priv = to_i915(dev);
8158 	u32 dpll;
8159 	struct dpll *clock = &crtc_state->dpll;
8160 
8161 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8162 
8163 	dpll = DPLL_VGA_MODE_DIS;
8164 
8165 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8166 		dpll |= DPLLB_MODE_LVDS;
8167 	else
8168 		dpll |= DPLLB_MODE_DAC_SERIAL;
8169 
8170 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8171 		dpll |= (crtc_state->pixel_multiplier - 1)
8172 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8173 	}
8174 
8175 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8176 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8177 		dpll |= DPLL_SDVO_HIGH_SPEED;
8178 
8179 	if (intel_crtc_has_dp_encoder(crtc_state))
8180 		dpll |= DPLL_SDVO_HIGH_SPEED;
8181 
8182 	/* compute bitmask from p1 value */
8183 	if (IS_PINEVIEW(dev))
8184 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8185 	else {
8186 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8187 		if (IS_G4X(dev_priv) && reduced_clock)
8188 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8189 	}
8190 	switch (clock->p2) {
8191 	case 5:
8192 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8193 		break;
8194 	case 7:
8195 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8196 		break;
8197 	case 10:
8198 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8199 		break;
8200 	case 14:
8201 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8202 		break;
8203 	}
8204 	if (INTEL_INFO(dev)->gen >= 4)
8205 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8206 
8207 	if (crtc_state->sdvo_tv_clock)
8208 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8209 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8210 		 intel_panel_use_ssc(dev_priv))
8211 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8212 	else
8213 		dpll |= PLL_REF_INPUT_DREFCLK;
8214 
8215 	dpll |= DPLL_VCO_ENABLE;
8216 	crtc_state->dpll_hw_state.dpll = dpll;
8217 
8218 	if (INTEL_INFO(dev)->gen >= 4) {
8219 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8220 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8221 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8222 	}
8223 }
8224 
8225 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8226 			      struct intel_crtc_state *crtc_state,
8227 			      struct dpll *reduced_clock)
8228 {
8229 	struct drm_device *dev = crtc->base.dev;
8230 	struct drm_i915_private *dev_priv = to_i915(dev);
8231 	u32 dpll;
8232 	struct dpll *clock = &crtc_state->dpll;
8233 
8234 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8235 
8236 	dpll = DPLL_VGA_MODE_DIS;
8237 
8238 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8239 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8240 	} else {
8241 		if (clock->p1 == 2)
8242 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8243 		else
8244 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8245 		if (clock->p2 == 4)
8246 			dpll |= PLL_P2_DIVIDE_BY_4;
8247 	}
8248 
8249 	if (!IS_I830(dev_priv) &&
8250 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8251 		dpll |= DPLL_DVO_2X_MODE;
8252 
8253 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8254 	    intel_panel_use_ssc(dev_priv))
8255 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8256 	else
8257 		dpll |= PLL_REF_INPUT_DREFCLK;
8258 
8259 	dpll |= DPLL_VCO_ENABLE;
8260 	crtc_state->dpll_hw_state.dpll = dpll;
8261 }
8262 
8263 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8264 {
8265 	struct drm_device *dev = intel_crtc->base.dev;
8266 	struct drm_i915_private *dev_priv = to_i915(dev);
8267 	enum i915_pipe pipe = intel_crtc->pipe;
8268 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8269 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8270 	uint32_t crtc_vtotal, crtc_vblank_end;
8271 	int vsyncshift = 0;
8272 
8273 	/* We need to be careful not to changed the adjusted mode, for otherwise
8274 	 * the hw state checker will get angry at the mismatch. */
8275 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8276 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8277 
8278 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8279 		/* the chip adds 2 halflines automatically */
8280 		crtc_vtotal -= 1;
8281 		crtc_vblank_end -= 1;
8282 
8283 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8284 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8285 		else
8286 			vsyncshift = adjusted_mode->crtc_hsync_start -
8287 				adjusted_mode->crtc_htotal / 2;
8288 		if (vsyncshift < 0)
8289 			vsyncshift += adjusted_mode->crtc_htotal;
8290 	}
8291 
8292 	if (INTEL_INFO(dev)->gen > 3)
8293 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8294 
8295 	I915_WRITE(HTOTAL(cpu_transcoder),
8296 		   (adjusted_mode->crtc_hdisplay - 1) |
8297 		   ((adjusted_mode->crtc_htotal - 1) << 16));
8298 	I915_WRITE(HBLANK(cpu_transcoder),
8299 		   (adjusted_mode->crtc_hblank_start - 1) |
8300 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
8301 	I915_WRITE(HSYNC(cpu_transcoder),
8302 		   (adjusted_mode->crtc_hsync_start - 1) |
8303 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
8304 
8305 	I915_WRITE(VTOTAL(cpu_transcoder),
8306 		   (adjusted_mode->crtc_vdisplay - 1) |
8307 		   ((crtc_vtotal - 1) << 16));
8308 	I915_WRITE(VBLANK(cpu_transcoder),
8309 		   (adjusted_mode->crtc_vblank_start - 1) |
8310 		   ((crtc_vblank_end - 1) << 16));
8311 	I915_WRITE(VSYNC(cpu_transcoder),
8312 		   (adjusted_mode->crtc_vsync_start - 1) |
8313 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
8314 
8315 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8316 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8317 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8318 	 * bits. */
8319 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8320 	    (pipe == PIPE_B || pipe == PIPE_C))
8321 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8322 
8323 }
8324 
8325 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8326 {
8327 	struct drm_device *dev = intel_crtc->base.dev;
8328 	struct drm_i915_private *dev_priv = to_i915(dev);
8329 	enum i915_pipe pipe = intel_crtc->pipe;
8330 
8331 	/* pipesrc controls the size that is scaled from, which should
8332 	 * always be the user's requested size.
8333 	 */
8334 	I915_WRITE(PIPESRC(pipe),
8335 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
8336 		   (intel_crtc->config->pipe_src_h - 1));
8337 }
8338 
8339 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8340 				   struct intel_crtc_state *pipe_config)
8341 {
8342 	struct drm_device *dev = crtc->base.dev;
8343 	struct drm_i915_private *dev_priv = to_i915(dev);
8344 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8345 	uint32_t tmp;
8346 
8347 	tmp = I915_READ(HTOTAL(cpu_transcoder));
8348 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8349 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8350 	tmp = I915_READ(HBLANK(cpu_transcoder));
8351 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8352 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8353 	tmp = I915_READ(HSYNC(cpu_transcoder));
8354 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8355 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8356 
8357 	tmp = I915_READ(VTOTAL(cpu_transcoder));
8358 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8359 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8360 	tmp = I915_READ(VBLANK(cpu_transcoder));
8361 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8362 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8363 	tmp = I915_READ(VSYNC(cpu_transcoder));
8364 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8365 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8366 
8367 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8368 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8369 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8370 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8371 	}
8372 }
8373 
8374 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8375 				    struct intel_crtc_state *pipe_config)
8376 {
8377 	struct drm_device *dev = crtc->base.dev;
8378 	struct drm_i915_private *dev_priv = to_i915(dev);
8379 	u32 tmp;
8380 
8381 	tmp = I915_READ(PIPESRC(crtc->pipe));
8382 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8383 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8384 
8385 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8386 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8387 }
8388 
8389 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8390 				 struct intel_crtc_state *pipe_config)
8391 {
8392 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8393 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8394 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8395 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8396 
8397 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8398 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8399 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8400 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8401 
8402 	mode->flags = pipe_config->base.adjusted_mode.flags;
8403 	mode->type = DRM_MODE_TYPE_DRIVER;
8404 
8405 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8406 	mode->flags |= pipe_config->base.adjusted_mode.flags;
8407 
8408 	mode->hsync = drm_mode_hsync(mode);
8409 	mode->vrefresh = drm_mode_vrefresh(mode);
8410 	drm_mode_set_name(mode);
8411 }
8412 
8413 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8414 {
8415 	struct drm_device *dev = intel_crtc->base.dev;
8416 	struct drm_i915_private *dev_priv = to_i915(dev);
8417 	uint32_t pipeconf;
8418 
8419 	pipeconf = 0;
8420 
8421 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8422 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8423 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8424 
8425 	if (intel_crtc->config->double_wide)
8426 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8427 
8428 	/* only g4x and later have fancy bpc/dither controls */
8429 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8430 	    IS_CHERRYVIEW(dev_priv)) {
8431 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8432 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8433 			pipeconf |= PIPECONF_DITHER_EN |
8434 				    PIPECONF_DITHER_TYPE_SP;
8435 
8436 		switch (intel_crtc->config->pipe_bpp) {
8437 		case 18:
8438 			pipeconf |= PIPECONF_6BPC;
8439 			break;
8440 		case 24:
8441 			pipeconf |= PIPECONF_8BPC;
8442 			break;
8443 		case 30:
8444 			pipeconf |= PIPECONF_10BPC;
8445 			break;
8446 		default:
8447 			/* Case prevented by intel_choose_pipe_bpp_dither. */
8448 			BUG();
8449 		}
8450 	}
8451 
8452 	if (HAS_PIPE_CXSR(dev)) {
8453 		if (intel_crtc->lowfreq_avail) {
8454 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8455 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8456 		} else {
8457 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8458 		}
8459 	}
8460 
8461 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8462 		if (INTEL_INFO(dev)->gen < 4 ||
8463 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8464 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8465 		else
8466 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8467 	} else
8468 		pipeconf |= PIPECONF_PROGRESSIVE;
8469 
8470 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8471 	     intel_crtc->config->limited_color_range)
8472 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8473 
8474 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8475 	POSTING_READ(PIPECONF(intel_crtc->pipe));
8476 }
8477 
8478 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8479 				   struct intel_crtc_state *crtc_state)
8480 {
8481 	struct drm_device *dev = crtc->base.dev;
8482 	struct drm_i915_private *dev_priv = to_i915(dev);
8483 	const struct intel_limit *limit;
8484 	int refclk = 48000;
8485 
8486 	memset(&crtc_state->dpll_hw_state, 0,
8487 	       sizeof(crtc_state->dpll_hw_state));
8488 
8489 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8490 		if (intel_panel_use_ssc(dev_priv)) {
8491 			refclk = dev_priv->vbt.lvds_ssc_freq;
8492 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8493 		}
8494 
8495 		limit = &intel_limits_i8xx_lvds;
8496 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8497 		limit = &intel_limits_i8xx_dvo;
8498 	} else {
8499 		limit = &intel_limits_i8xx_dac;
8500 	}
8501 
8502 	if (!crtc_state->clock_set &&
8503 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8504 				 refclk, NULL, &crtc_state->dpll)) {
8505 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8506 		return -EINVAL;
8507 	}
8508 
8509 	i8xx_compute_dpll(crtc, crtc_state, NULL);
8510 
8511 	return 0;
8512 }
8513 
8514 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8515 				  struct intel_crtc_state *crtc_state)
8516 {
8517 	struct drm_device *dev = crtc->base.dev;
8518 	struct drm_i915_private *dev_priv = to_i915(dev);
8519 	const struct intel_limit *limit;
8520 	int refclk = 96000;
8521 
8522 	memset(&crtc_state->dpll_hw_state, 0,
8523 	       sizeof(crtc_state->dpll_hw_state));
8524 
8525 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8526 		if (intel_panel_use_ssc(dev_priv)) {
8527 			refclk = dev_priv->vbt.lvds_ssc_freq;
8528 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8529 		}
8530 
8531 		if (intel_is_dual_link_lvds(dev))
8532 			limit = &intel_limits_g4x_dual_channel_lvds;
8533 		else
8534 			limit = &intel_limits_g4x_single_channel_lvds;
8535 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8536 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8537 		limit = &intel_limits_g4x_hdmi;
8538 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8539 		limit = &intel_limits_g4x_sdvo;
8540 	} else {
8541 		/* The option is for other outputs */
8542 		limit = &intel_limits_i9xx_sdvo;
8543 	}
8544 
8545 	if (!crtc_state->clock_set &&
8546 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8547 				refclk, NULL, &crtc_state->dpll)) {
8548 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8549 		return -EINVAL;
8550 	}
8551 
8552 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8553 
8554 	return 0;
8555 }
8556 
8557 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8558 				  struct intel_crtc_state *crtc_state)
8559 {
8560 	struct drm_device *dev = crtc->base.dev;
8561 	struct drm_i915_private *dev_priv = to_i915(dev);
8562 	const struct intel_limit *limit;
8563 	int refclk = 96000;
8564 
8565 	memset(&crtc_state->dpll_hw_state, 0,
8566 	       sizeof(crtc_state->dpll_hw_state));
8567 
8568 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8569 		if (intel_panel_use_ssc(dev_priv)) {
8570 			refclk = dev_priv->vbt.lvds_ssc_freq;
8571 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8572 		}
8573 
8574 		limit = &intel_limits_pineview_lvds;
8575 	} else {
8576 		limit = &intel_limits_pineview_sdvo;
8577 	}
8578 
8579 	if (!crtc_state->clock_set &&
8580 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8581 				refclk, NULL, &crtc_state->dpll)) {
8582 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8583 		return -EINVAL;
8584 	}
8585 
8586 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8587 
8588 	return 0;
8589 }
8590 
8591 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8592 				   struct intel_crtc_state *crtc_state)
8593 {
8594 	struct drm_device *dev = crtc->base.dev;
8595 	struct drm_i915_private *dev_priv = to_i915(dev);
8596 	const struct intel_limit *limit;
8597 	int refclk = 96000;
8598 
8599 	memset(&crtc_state->dpll_hw_state, 0,
8600 	       sizeof(crtc_state->dpll_hw_state));
8601 
8602 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8603 		if (intel_panel_use_ssc(dev_priv)) {
8604 			refclk = dev_priv->vbt.lvds_ssc_freq;
8605 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8606 		}
8607 
8608 		limit = &intel_limits_i9xx_lvds;
8609 	} else {
8610 		limit = &intel_limits_i9xx_sdvo;
8611 	}
8612 
8613 	if (!crtc_state->clock_set &&
8614 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8615 				 refclk, NULL, &crtc_state->dpll)) {
8616 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8617 		return -EINVAL;
8618 	}
8619 
8620 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8621 
8622 	return 0;
8623 }
8624 
8625 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8626 				  struct intel_crtc_state *crtc_state)
8627 {
8628 	int refclk = 100000;
8629 	const struct intel_limit *limit = &intel_limits_chv;
8630 
8631 	memset(&crtc_state->dpll_hw_state, 0,
8632 	       sizeof(crtc_state->dpll_hw_state));
8633 
8634 	if (!crtc_state->clock_set &&
8635 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8636 				refclk, NULL, &crtc_state->dpll)) {
8637 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8638 		return -EINVAL;
8639 	}
8640 
8641 	chv_compute_dpll(crtc, crtc_state);
8642 
8643 	return 0;
8644 }
8645 
8646 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8647 				  struct intel_crtc_state *crtc_state)
8648 {
8649 	int refclk = 100000;
8650 	const struct intel_limit *limit = &intel_limits_vlv;
8651 
8652 	memset(&crtc_state->dpll_hw_state, 0,
8653 	       sizeof(crtc_state->dpll_hw_state));
8654 
8655 	if (!crtc_state->clock_set &&
8656 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8657 				refclk, NULL, &crtc_state->dpll)) {
8658 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8659 		return -EINVAL;
8660 	}
8661 
8662 	vlv_compute_dpll(crtc, crtc_state);
8663 
8664 	return 0;
8665 }
8666 
8667 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8668 				 struct intel_crtc_state *pipe_config)
8669 {
8670 	struct drm_device *dev = crtc->base.dev;
8671 	struct drm_i915_private *dev_priv = to_i915(dev);
8672 	uint32_t tmp;
8673 
8674 	if (INTEL_GEN(dev_priv) <= 3 &&
8675 	    (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8676 		return;
8677 
8678 	tmp = I915_READ(PFIT_CONTROL);
8679 	if (!(tmp & PFIT_ENABLE))
8680 		return;
8681 
8682 	/* Check whether the pfit is attached to our pipe. */
8683 	if (INTEL_INFO(dev)->gen < 4) {
8684 		if (crtc->pipe != PIPE_B)
8685 			return;
8686 	} else {
8687 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8688 			return;
8689 	}
8690 
8691 	pipe_config->gmch_pfit.control = tmp;
8692 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8693 }
8694 
8695 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8696 			       struct intel_crtc_state *pipe_config)
8697 {
8698 	struct drm_device *dev = crtc->base.dev;
8699 	struct drm_i915_private *dev_priv = to_i915(dev);
8700 	int pipe = pipe_config->cpu_transcoder;
8701 	struct dpll clock;
8702 	u32 mdiv;
8703 	int refclk = 100000;
8704 
8705 	/* In case of DSI, DPLL will not be used */
8706 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8707 		return;
8708 
8709 	mutex_lock(&dev_priv->sb_lock);
8710 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8711 	mutex_unlock(&dev_priv->sb_lock);
8712 
8713 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8714 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8715 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8716 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8717 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8718 
8719 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8720 }
8721 
8722 static void
8723 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8724 			      struct intel_initial_plane_config *plane_config)
8725 {
8726 	struct drm_device *dev = crtc->base.dev;
8727 	struct drm_i915_private *dev_priv = to_i915(dev);
8728 	u32 val, base, offset;
8729 	int pipe = crtc->pipe, plane = crtc->plane;
8730 	int fourcc, pixel_format;
8731 	unsigned int aligned_height;
8732 	struct drm_framebuffer *fb;
8733 	struct intel_framebuffer *intel_fb;
8734 
8735 	val = I915_READ(DSPCNTR(plane));
8736 	if (!(val & DISPLAY_PLANE_ENABLE))
8737 		return;
8738 
8739 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8740 	if (!intel_fb) {
8741 		DRM_DEBUG_KMS("failed to alloc fb\n");
8742 		return;
8743 	}
8744 
8745 	fb = &intel_fb->base;
8746 
8747 	if (INTEL_INFO(dev)->gen >= 4) {
8748 		if (val & DISPPLANE_TILED) {
8749 			plane_config->tiling = I915_TILING_X;
8750 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8751 		}
8752 	}
8753 
8754 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8755 	fourcc = i9xx_format_to_fourcc(pixel_format);
8756 	fb->pixel_format = fourcc;
8757 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8758 
8759 	if (INTEL_INFO(dev)->gen >= 4) {
8760 		if (plane_config->tiling)
8761 			offset = I915_READ(DSPTILEOFF(plane));
8762 		else
8763 			offset = I915_READ(DSPLINOFF(plane));
8764 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8765 	} else {
8766 		base = I915_READ(DSPADDR(plane));
8767 	}
8768 	plane_config->base = base;
8769 
8770 	val = I915_READ(PIPESRC(pipe));
8771 	fb->width = ((val >> 16) & 0xfff) + 1;
8772 	fb->height = ((val >> 0) & 0xfff) + 1;
8773 
8774 	val = I915_READ(DSPSTRIDE(pipe));
8775 	fb->pitches[0] = val & 0xffffffc0;
8776 
8777 	aligned_height = intel_fb_align_height(dev, fb->height,
8778 					       fb->pixel_format,
8779 					       fb->modifier[0]);
8780 
8781 	plane_config->size = fb->pitches[0] * aligned_height;
8782 
8783 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8784 		      pipe_name(pipe), plane, fb->width, fb->height,
8785 		      fb->bits_per_pixel, base, fb->pitches[0],
8786 		      plane_config->size);
8787 
8788 	plane_config->fb = intel_fb;
8789 }
8790 
8791 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8792 			       struct intel_crtc_state *pipe_config)
8793 {
8794 	struct drm_device *dev = crtc->base.dev;
8795 	struct drm_i915_private *dev_priv = to_i915(dev);
8796 	int pipe = pipe_config->cpu_transcoder;
8797 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8798 	struct dpll clock;
8799 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8800 	int refclk = 100000;
8801 
8802 	/* In case of DSI, DPLL will not be used */
8803 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8804 		return;
8805 
8806 	mutex_lock(&dev_priv->sb_lock);
8807 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8808 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8809 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8810 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8811 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8812 	mutex_unlock(&dev_priv->sb_lock);
8813 
8814 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8815 	clock.m2 = (pll_dw0 & 0xff) << 22;
8816 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8817 		clock.m2 |= pll_dw2 & 0x3fffff;
8818 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8819 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8820 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8821 
8822 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8823 }
8824 
8825 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8826 				 struct intel_crtc_state *pipe_config)
8827 {
8828 	struct drm_device *dev = crtc->base.dev;
8829 	struct drm_i915_private *dev_priv = to_i915(dev);
8830 	enum intel_display_power_domain power_domain;
8831 	uint32_t tmp;
8832 	bool ret;
8833 
8834 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8835 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8836 		return false;
8837 
8838 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8839 	pipe_config->shared_dpll = NULL;
8840 
8841 	ret = false;
8842 
8843 	tmp = I915_READ(PIPECONF(crtc->pipe));
8844 	if (!(tmp & PIPECONF_ENABLE))
8845 		goto out;
8846 
8847 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8848 	    IS_CHERRYVIEW(dev_priv)) {
8849 		switch (tmp & PIPECONF_BPC_MASK) {
8850 		case PIPECONF_6BPC:
8851 			pipe_config->pipe_bpp = 18;
8852 			break;
8853 		case PIPECONF_8BPC:
8854 			pipe_config->pipe_bpp = 24;
8855 			break;
8856 		case PIPECONF_10BPC:
8857 			pipe_config->pipe_bpp = 30;
8858 			break;
8859 		default:
8860 			break;
8861 		}
8862 	}
8863 
8864 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8865 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
8866 		pipe_config->limited_color_range = true;
8867 
8868 	if (INTEL_INFO(dev)->gen < 4)
8869 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8870 
8871 	intel_get_pipe_timings(crtc, pipe_config);
8872 	intel_get_pipe_src_size(crtc, pipe_config);
8873 
8874 	i9xx_get_pfit_config(crtc, pipe_config);
8875 
8876 	if (INTEL_INFO(dev)->gen >= 4) {
8877 		/* No way to read it out on pipes B and C */
8878 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8879 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
8880 		else
8881 			tmp = I915_READ(DPLL_MD(crtc->pipe));
8882 		pipe_config->pixel_multiplier =
8883 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8884 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8885 		pipe_config->dpll_hw_state.dpll_md = tmp;
8886 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8887 		   IS_G33(dev_priv)) {
8888 		tmp = I915_READ(DPLL(crtc->pipe));
8889 		pipe_config->pixel_multiplier =
8890 			((tmp & SDVO_MULTIPLIER_MASK)
8891 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8892 	} else {
8893 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8894 		 * port and will be fixed up in the encoder->get_config
8895 		 * function. */
8896 		pipe_config->pixel_multiplier = 1;
8897 	}
8898 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8899 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8900 		/*
8901 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8902 		 * on 830. Filter it out here so that we don't
8903 		 * report errors due to that.
8904 		 */
8905 		if (IS_I830(dev_priv))
8906 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8907 
8908 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8909 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8910 	} else {
8911 		/* Mask out read-only status bits. */
8912 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8913 						     DPLL_PORTC_READY_MASK |
8914 						     DPLL_PORTB_READY_MASK);
8915 	}
8916 
8917 	if (IS_CHERRYVIEW(dev_priv))
8918 		chv_crtc_clock_get(crtc, pipe_config);
8919 	else if (IS_VALLEYVIEW(dev_priv))
8920 		vlv_crtc_clock_get(crtc, pipe_config);
8921 	else
8922 		i9xx_crtc_clock_get(crtc, pipe_config);
8923 
8924 	/*
8925 	 * Normally the dotclock is filled in by the encoder .get_config()
8926 	 * but in case the pipe is enabled w/o any ports we need a sane
8927 	 * default.
8928 	 */
8929 	pipe_config->base.adjusted_mode.crtc_clock =
8930 		pipe_config->port_clock / pipe_config->pixel_multiplier;
8931 
8932 	ret = true;
8933 
8934 out:
8935 	intel_display_power_put(dev_priv, power_domain);
8936 
8937 	return ret;
8938 }
8939 
8940 static void ironlake_init_pch_refclk(struct drm_device *dev)
8941 {
8942 	struct drm_i915_private *dev_priv = to_i915(dev);
8943 	struct intel_encoder *encoder;
8944 	int i;
8945 	u32 val, final;
8946 	bool has_lvds = false;
8947 	bool has_cpu_edp = false;
8948 	bool has_panel = false;
8949 	bool has_ck505 = false;
8950 	bool can_ssc = false;
8951 	bool using_ssc_source = false;
8952 
8953 	/* We need to take the global config into account */
8954 	for_each_intel_encoder(dev, encoder) {
8955 		switch (encoder->type) {
8956 		case INTEL_OUTPUT_LVDS:
8957 			has_panel = true;
8958 			has_lvds = true;
8959 			break;
8960 		case INTEL_OUTPUT_EDP:
8961 			has_panel = true;
8962 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8963 				has_cpu_edp = true;
8964 			break;
8965 		default:
8966 			break;
8967 		}
8968 	}
8969 
8970 	if (HAS_PCH_IBX(dev_priv)) {
8971 		has_ck505 = dev_priv->vbt.display_clock_mode;
8972 		can_ssc = has_ck505;
8973 	} else {
8974 		has_ck505 = false;
8975 		can_ssc = true;
8976 	}
8977 
8978 	/* Check if any DPLLs are using the SSC source */
8979 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8980 		u32 temp = I915_READ(PCH_DPLL(i));
8981 
8982 		if (!(temp & DPLL_VCO_ENABLE))
8983 			continue;
8984 
8985 		if ((temp & PLL_REF_INPUT_MASK) ==
8986 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8987 			using_ssc_source = true;
8988 			break;
8989 		}
8990 	}
8991 
8992 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8993 		      has_panel, has_lvds, has_ck505, using_ssc_source);
8994 
8995 	/* Ironlake: try to setup display ref clock before DPLL
8996 	 * enabling. This is only under driver's control after
8997 	 * PCH B stepping, previous chipset stepping should be
8998 	 * ignoring this setting.
8999 	 */
9000 	val = I915_READ(PCH_DREF_CONTROL);
9001 
9002 	/* As we must carefully and slowly disable/enable each source in turn,
9003 	 * compute the final state we want first and check if we need to
9004 	 * make any changes at all.
9005 	 */
9006 	final = val;
9007 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
9008 	if (has_ck505)
9009 		final |= DREF_NONSPREAD_CK505_ENABLE;
9010 	else
9011 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
9012 
9013 	final &= ~DREF_SSC_SOURCE_MASK;
9014 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9015 	final &= ~DREF_SSC1_ENABLE;
9016 
9017 	if (has_panel) {
9018 		final |= DREF_SSC_SOURCE_ENABLE;
9019 
9020 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
9021 			final |= DREF_SSC1_ENABLE;
9022 
9023 		if (has_cpu_edp) {
9024 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9025 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9026 			else
9027 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9028 		} else
9029 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9030 	} else if (using_ssc_source) {
9031 		final |= DREF_SSC_SOURCE_ENABLE;
9032 		final |= DREF_SSC1_ENABLE;
9033 	}
9034 
9035 	if (final == val)
9036 		return;
9037 
9038 	/* Always enable nonspread source */
9039 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9040 
9041 	if (has_ck505)
9042 		val |= DREF_NONSPREAD_CK505_ENABLE;
9043 	else
9044 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9045 
9046 	if (has_panel) {
9047 		val &= ~DREF_SSC_SOURCE_MASK;
9048 		val |= DREF_SSC_SOURCE_ENABLE;
9049 
9050 		/* SSC must be turned on before enabling the CPU output  */
9051 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9052 			DRM_DEBUG_KMS("Using SSC on panel\n");
9053 			val |= DREF_SSC1_ENABLE;
9054 		} else
9055 			val &= ~DREF_SSC1_ENABLE;
9056 
9057 		/* Get SSC going before enabling the outputs */
9058 		I915_WRITE(PCH_DREF_CONTROL, val);
9059 		POSTING_READ(PCH_DREF_CONTROL);
9060 		udelay(200);
9061 
9062 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9063 
9064 		/* Enable CPU source on CPU attached eDP */
9065 		if (has_cpu_edp) {
9066 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9067 				DRM_DEBUG_KMS("Using SSC on eDP\n");
9068 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9069 			} else
9070 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9071 		} else
9072 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9073 
9074 		I915_WRITE(PCH_DREF_CONTROL, val);
9075 		POSTING_READ(PCH_DREF_CONTROL);
9076 		udelay(200);
9077 	} else {
9078 		DRM_DEBUG_KMS("Disabling CPU source output\n");
9079 
9080 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9081 
9082 		/* Turn off CPU output */
9083 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9084 
9085 		I915_WRITE(PCH_DREF_CONTROL, val);
9086 		POSTING_READ(PCH_DREF_CONTROL);
9087 		udelay(200);
9088 
9089 		if (!using_ssc_source) {
9090 			DRM_DEBUG_KMS("Disabling SSC source\n");
9091 
9092 			/* Turn off the SSC source */
9093 			val &= ~DREF_SSC_SOURCE_MASK;
9094 			val |= DREF_SSC_SOURCE_DISABLE;
9095 
9096 			/* Turn off SSC1 */
9097 			val &= ~DREF_SSC1_ENABLE;
9098 
9099 			I915_WRITE(PCH_DREF_CONTROL, val);
9100 			POSTING_READ(PCH_DREF_CONTROL);
9101 			udelay(200);
9102 		}
9103 	}
9104 
9105 	BUG_ON(val != final);
9106 }
9107 
9108 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9109 {
9110 	uint32_t tmp;
9111 
9112 	tmp = I915_READ(SOUTH_CHICKEN2);
9113 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9114 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9115 
9116 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9117 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9118 		DRM_ERROR("FDI mPHY reset assert timeout\n");
9119 
9120 	tmp = I915_READ(SOUTH_CHICKEN2);
9121 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9122 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9123 
9124 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9125 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9126 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9127 }
9128 
9129 /* WaMPhyProgramming:hsw */
9130 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9131 {
9132 	uint32_t tmp;
9133 
9134 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9135 	tmp &= ~(0xFF << 24);
9136 	tmp |= (0x12 << 24);
9137 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9138 
9139 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9140 	tmp |= (1 << 11);
9141 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9142 
9143 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9144 	tmp |= (1 << 11);
9145 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9146 
9147 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9148 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9149 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9150 
9151 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9152 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9153 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9154 
9155 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9156 	tmp &= ~(7 << 13);
9157 	tmp |= (5 << 13);
9158 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9159 
9160 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9161 	tmp &= ~(7 << 13);
9162 	tmp |= (5 << 13);
9163 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9164 
9165 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9166 	tmp &= ~0xFF;
9167 	tmp |= 0x1C;
9168 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9169 
9170 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9171 	tmp &= ~0xFF;
9172 	tmp |= 0x1C;
9173 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9174 
9175 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9176 	tmp &= ~(0xFF << 16);
9177 	tmp |= (0x1C << 16);
9178 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9179 
9180 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9181 	tmp &= ~(0xFF << 16);
9182 	tmp |= (0x1C << 16);
9183 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9184 
9185 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9186 	tmp |= (1 << 27);
9187 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9188 
9189 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9190 	tmp |= (1 << 27);
9191 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9192 
9193 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9194 	tmp &= ~(0xF << 28);
9195 	tmp |= (4 << 28);
9196 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9197 
9198 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9199 	tmp &= ~(0xF << 28);
9200 	tmp |= (4 << 28);
9201 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9202 }
9203 
9204 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9205  * Programming" based on the parameters passed:
9206  * - Sequence to enable CLKOUT_DP
9207  * - Sequence to enable CLKOUT_DP without spread
9208  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9209  */
9210 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9211 				 bool with_fdi)
9212 {
9213 	struct drm_i915_private *dev_priv = to_i915(dev);
9214 	uint32_t reg, tmp;
9215 
9216 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9217 		with_spread = true;
9218 	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9219 	    with_fdi, "LP PCH doesn't have FDI\n"))
9220 		with_fdi = false;
9221 
9222 	mutex_lock(&dev_priv->sb_lock);
9223 
9224 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9225 	tmp &= ~SBI_SSCCTL_DISABLE;
9226 	tmp |= SBI_SSCCTL_PATHALT;
9227 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9228 
9229 	udelay(24);
9230 
9231 	if (with_spread) {
9232 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9233 		tmp &= ~SBI_SSCCTL_PATHALT;
9234 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9235 
9236 		if (with_fdi) {
9237 			lpt_reset_fdi_mphy(dev_priv);
9238 			lpt_program_fdi_mphy(dev_priv);
9239 		}
9240 	}
9241 
9242 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9243 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9244 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9245 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9246 
9247 	mutex_unlock(&dev_priv->sb_lock);
9248 }
9249 
9250 /* Sequence to disable CLKOUT_DP */
9251 static void lpt_disable_clkout_dp(struct drm_device *dev)
9252 {
9253 	struct drm_i915_private *dev_priv = to_i915(dev);
9254 	uint32_t reg, tmp;
9255 
9256 	mutex_lock(&dev_priv->sb_lock);
9257 
9258 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9259 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9260 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9261 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9262 
9263 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9264 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9265 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9266 			tmp |= SBI_SSCCTL_PATHALT;
9267 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9268 			udelay(32);
9269 		}
9270 		tmp |= SBI_SSCCTL_DISABLE;
9271 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9272 	}
9273 
9274 	mutex_unlock(&dev_priv->sb_lock);
9275 }
9276 
9277 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9278 
9279 static const uint16_t sscdivintphase[] = {
9280 	[BEND_IDX( 50)] = 0x3B23,
9281 	[BEND_IDX( 45)] = 0x3B23,
9282 	[BEND_IDX( 40)] = 0x3C23,
9283 	[BEND_IDX( 35)] = 0x3C23,
9284 	[BEND_IDX( 30)] = 0x3D23,
9285 	[BEND_IDX( 25)] = 0x3D23,
9286 	[BEND_IDX( 20)] = 0x3E23,
9287 	[BEND_IDX( 15)] = 0x3E23,
9288 	[BEND_IDX( 10)] = 0x3F23,
9289 	[BEND_IDX(  5)] = 0x3F23,
9290 	[BEND_IDX(  0)] = 0x0025,
9291 	[BEND_IDX( -5)] = 0x0025,
9292 	[BEND_IDX(-10)] = 0x0125,
9293 	[BEND_IDX(-15)] = 0x0125,
9294 	[BEND_IDX(-20)] = 0x0225,
9295 	[BEND_IDX(-25)] = 0x0225,
9296 	[BEND_IDX(-30)] = 0x0325,
9297 	[BEND_IDX(-35)] = 0x0325,
9298 	[BEND_IDX(-40)] = 0x0425,
9299 	[BEND_IDX(-45)] = 0x0425,
9300 	[BEND_IDX(-50)] = 0x0525,
9301 };
9302 
9303 /*
9304  * Bend CLKOUT_DP
9305  * steps -50 to 50 inclusive, in steps of 5
9306  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9307  * change in clock period = -(steps / 10) * 5.787 ps
9308  */
9309 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9310 {
9311 	uint32_t tmp;
9312 	int idx = BEND_IDX(steps);
9313 
9314 	if (WARN_ON(steps % 5 != 0))
9315 		return;
9316 
9317 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9318 		return;
9319 
9320 	mutex_lock(&dev_priv->sb_lock);
9321 
9322 	if (steps % 10 != 0)
9323 		tmp = 0xAAAAAAAB;
9324 	else
9325 		tmp = 0x00000000;
9326 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9327 
9328 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9329 	tmp &= 0xffff0000;
9330 	tmp |= sscdivintphase[idx];
9331 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9332 
9333 	mutex_unlock(&dev_priv->sb_lock);
9334 }
9335 
9336 #undef BEND_IDX
9337 
9338 static void lpt_init_pch_refclk(struct drm_device *dev)
9339 {
9340 	struct intel_encoder *encoder;
9341 	bool has_vga = false;
9342 
9343 	for_each_intel_encoder(dev, encoder) {
9344 		switch (encoder->type) {
9345 		case INTEL_OUTPUT_ANALOG:
9346 			has_vga = true;
9347 			break;
9348 		default:
9349 			break;
9350 		}
9351 	}
9352 
9353 	if (has_vga) {
9354 		lpt_bend_clkout_dp(to_i915(dev), 0);
9355 		lpt_enable_clkout_dp(dev, true, true);
9356 	} else {
9357 		lpt_disable_clkout_dp(dev);
9358 	}
9359 }
9360 
9361 /*
9362  * Initialize reference clocks when the driver loads
9363  */
9364 void intel_init_pch_refclk(struct drm_device *dev)
9365 {
9366 	struct drm_i915_private *dev_priv = to_i915(dev);
9367 
9368 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9369 		ironlake_init_pch_refclk(dev);
9370 	else if (HAS_PCH_LPT(dev_priv))
9371 		lpt_init_pch_refclk(dev);
9372 }
9373 
9374 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9375 {
9376 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9377 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9378 	int pipe = intel_crtc->pipe;
9379 	uint32_t val;
9380 
9381 	val = 0;
9382 
9383 	switch (intel_crtc->config->pipe_bpp) {
9384 	case 18:
9385 		val |= PIPECONF_6BPC;
9386 		break;
9387 	case 24:
9388 		val |= PIPECONF_8BPC;
9389 		break;
9390 	case 30:
9391 		val |= PIPECONF_10BPC;
9392 		break;
9393 	case 36:
9394 		val |= PIPECONF_12BPC;
9395 		break;
9396 	default:
9397 		/* Case prevented by intel_choose_pipe_bpp_dither. */
9398 		BUG();
9399 	}
9400 
9401 	if (intel_crtc->config->dither)
9402 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9403 
9404 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9405 		val |= PIPECONF_INTERLACED_ILK;
9406 	else
9407 		val |= PIPECONF_PROGRESSIVE;
9408 
9409 	if (intel_crtc->config->limited_color_range)
9410 		val |= PIPECONF_COLOR_RANGE_SELECT;
9411 
9412 	I915_WRITE(PIPECONF(pipe), val);
9413 	POSTING_READ(PIPECONF(pipe));
9414 }
9415 
9416 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9417 {
9418 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9419 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9420 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9421 	u32 val = 0;
9422 
9423 	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9424 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9425 
9426 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9427 		val |= PIPECONF_INTERLACED_ILK;
9428 	else
9429 		val |= PIPECONF_PROGRESSIVE;
9430 
9431 	I915_WRITE(PIPECONF(cpu_transcoder), val);
9432 	POSTING_READ(PIPECONF(cpu_transcoder));
9433 }
9434 
9435 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9436 {
9437 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9438 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9439 
9440 	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9441 		u32 val = 0;
9442 
9443 		switch (intel_crtc->config->pipe_bpp) {
9444 		case 18:
9445 			val |= PIPEMISC_DITHER_6_BPC;
9446 			break;
9447 		case 24:
9448 			val |= PIPEMISC_DITHER_8_BPC;
9449 			break;
9450 		case 30:
9451 			val |= PIPEMISC_DITHER_10_BPC;
9452 			break;
9453 		case 36:
9454 			val |= PIPEMISC_DITHER_12_BPC;
9455 			break;
9456 		default:
9457 			/* Case prevented by pipe_config_set_bpp. */
9458 			BUG();
9459 		}
9460 
9461 		if (intel_crtc->config->dither)
9462 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9463 
9464 		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9465 	}
9466 }
9467 
9468 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9469 {
9470 	/*
9471 	 * Account for spread spectrum to avoid
9472 	 * oversubscribing the link. Max center spread
9473 	 * is 2.5%; use 5% for safety's sake.
9474 	 */
9475 	u32 bps = target_clock * bpp * 21 / 20;
9476 	return DIV_ROUND_UP(bps, link_bw * 8);
9477 }
9478 
9479 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9480 {
9481 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9482 }
9483 
9484 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9485 				  struct intel_crtc_state *crtc_state,
9486 				  struct dpll *reduced_clock)
9487 {
9488 	struct drm_crtc *crtc = &intel_crtc->base;
9489 	struct drm_device *dev = crtc->dev;
9490 	struct drm_i915_private *dev_priv = to_i915(dev);
9491 	u32 dpll, fp, fp2;
9492 	int factor;
9493 
9494 	/* Enable autotuning of the PLL clock (if permissible) */
9495 	factor = 21;
9496 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9497 		if ((intel_panel_use_ssc(dev_priv) &&
9498 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
9499 		    (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9500 			factor = 25;
9501 	} else if (crtc_state->sdvo_tv_clock)
9502 		factor = 20;
9503 
9504 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9505 
9506 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9507 		fp |= FP_CB_TUNE;
9508 
9509 	if (reduced_clock) {
9510 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
9511 
9512 		if (reduced_clock->m < factor * reduced_clock->n)
9513 			fp2 |= FP_CB_TUNE;
9514 	} else {
9515 		fp2 = fp;
9516 	}
9517 
9518 	dpll = 0;
9519 
9520 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9521 		dpll |= DPLLB_MODE_LVDS;
9522 	else
9523 		dpll |= DPLLB_MODE_DAC_SERIAL;
9524 
9525 	dpll |= (crtc_state->pixel_multiplier - 1)
9526 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9527 
9528 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9529 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9530 		dpll |= DPLL_SDVO_HIGH_SPEED;
9531 
9532 	if (intel_crtc_has_dp_encoder(crtc_state))
9533 		dpll |= DPLL_SDVO_HIGH_SPEED;
9534 
9535 	/*
9536 	 * The high speed IO clock is only really required for
9537 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9538 	 * possible to share the DPLL between CRT and HDMI. Enabling
9539 	 * the clock needlessly does no real harm, except use up a
9540 	 * bit of power potentially.
9541 	 *
9542 	 * We'll limit this to IVB with 3 pipes, since it has only two
9543 	 * DPLLs and so DPLL sharing is the only way to get three pipes
9544 	 * driving PCH ports at the same time. On SNB we could do this,
9545 	 * and potentially avoid enabling the second DPLL, but it's not
9546 	 * clear if it''s a win or loss power wise. No point in doing
9547 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9548 	 */
9549 	if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9550 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9551 		dpll |= DPLL_SDVO_HIGH_SPEED;
9552 
9553 	/* compute bitmask from p1 value */
9554 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9555 	/* also FPA1 */
9556 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9557 
9558 	switch (crtc_state->dpll.p2) {
9559 	case 5:
9560 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9561 		break;
9562 	case 7:
9563 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9564 		break;
9565 	case 10:
9566 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9567 		break;
9568 	case 14:
9569 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9570 		break;
9571 	}
9572 
9573 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9574 	    intel_panel_use_ssc(dev_priv))
9575 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9576 	else
9577 		dpll |= PLL_REF_INPUT_DREFCLK;
9578 
9579 	dpll |= DPLL_VCO_ENABLE;
9580 
9581 	crtc_state->dpll_hw_state.dpll = dpll;
9582 	crtc_state->dpll_hw_state.fp0 = fp;
9583 	crtc_state->dpll_hw_state.fp1 = fp2;
9584 }
9585 
9586 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9587 				       struct intel_crtc_state *crtc_state)
9588 {
9589 	struct drm_device *dev = crtc->base.dev;
9590 	struct drm_i915_private *dev_priv = to_i915(dev);
9591 	struct dpll reduced_clock;
9592 	bool has_reduced_clock = false;
9593 	struct intel_shared_dpll *pll;
9594 	const struct intel_limit *limit;
9595 	int refclk = 120000;
9596 
9597 	memset(&crtc_state->dpll_hw_state, 0,
9598 	       sizeof(crtc_state->dpll_hw_state));
9599 
9600 	crtc->lowfreq_avail = false;
9601 
9602 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9603 	if (!crtc_state->has_pch_encoder)
9604 		return 0;
9605 
9606 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9607 		if (intel_panel_use_ssc(dev_priv)) {
9608 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9609 				      dev_priv->vbt.lvds_ssc_freq);
9610 			refclk = dev_priv->vbt.lvds_ssc_freq;
9611 		}
9612 
9613 		if (intel_is_dual_link_lvds(dev)) {
9614 			if (refclk == 100000)
9615 				limit = &intel_limits_ironlake_dual_lvds_100m;
9616 			else
9617 				limit = &intel_limits_ironlake_dual_lvds;
9618 		} else {
9619 			if (refclk == 100000)
9620 				limit = &intel_limits_ironlake_single_lvds_100m;
9621 			else
9622 				limit = &intel_limits_ironlake_single_lvds;
9623 		}
9624 	} else {
9625 		limit = &intel_limits_ironlake_dac;
9626 	}
9627 
9628 	if (!crtc_state->clock_set &&
9629 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9630 				refclk, NULL, &crtc_state->dpll)) {
9631 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
9632 		return -EINVAL;
9633 	}
9634 
9635 	ironlake_compute_dpll(crtc, crtc_state,
9636 			      has_reduced_clock ? &reduced_clock : NULL);
9637 
9638 	pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9639 	if (pll == NULL) {
9640 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9641 				 pipe_name(crtc->pipe));
9642 		return -EINVAL;
9643 	}
9644 
9645 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9646 	    has_reduced_clock)
9647 		crtc->lowfreq_avail = true;
9648 
9649 	return 0;
9650 }
9651 
9652 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9653 					 struct intel_link_m_n *m_n)
9654 {
9655 	struct drm_device *dev = crtc->base.dev;
9656 	struct drm_i915_private *dev_priv = to_i915(dev);
9657 	enum i915_pipe pipe = crtc->pipe;
9658 
9659 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9660 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9661 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9662 		& ~TU_SIZE_MASK;
9663 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9664 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9665 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9666 }
9667 
9668 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9669 					 enum transcoder transcoder,
9670 					 struct intel_link_m_n *m_n,
9671 					 struct intel_link_m_n *m2_n2)
9672 {
9673 	struct drm_device *dev = crtc->base.dev;
9674 	struct drm_i915_private *dev_priv = to_i915(dev);
9675 	enum i915_pipe pipe = crtc->pipe;
9676 
9677 	if (INTEL_INFO(dev)->gen >= 5) {
9678 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9679 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9680 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9681 			& ~TU_SIZE_MASK;
9682 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9683 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9684 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9685 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9686 		 * gen < 8) and if DRRS is supported (to make sure the
9687 		 * registers are not unnecessarily read).
9688 		 */
9689 		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9690 			crtc->config->has_drrs) {
9691 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9692 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9693 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9694 					& ~TU_SIZE_MASK;
9695 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9696 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9697 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9698 		}
9699 	} else {
9700 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9701 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9702 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9703 			& ~TU_SIZE_MASK;
9704 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9705 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9706 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9707 	}
9708 }
9709 
9710 void intel_dp_get_m_n(struct intel_crtc *crtc,
9711 		      struct intel_crtc_state *pipe_config)
9712 {
9713 	if (pipe_config->has_pch_encoder)
9714 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9715 	else
9716 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9717 					     &pipe_config->dp_m_n,
9718 					     &pipe_config->dp_m2_n2);
9719 }
9720 
9721 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9722 					struct intel_crtc_state *pipe_config)
9723 {
9724 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9725 				     &pipe_config->fdi_m_n, NULL);
9726 }
9727 
9728 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9729 				    struct intel_crtc_state *pipe_config)
9730 {
9731 	struct drm_device *dev = crtc->base.dev;
9732 	struct drm_i915_private *dev_priv = to_i915(dev);
9733 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9734 	uint32_t ps_ctrl = 0;
9735 	int id = -1;
9736 	int i;
9737 
9738 	/* find scaler attached to this pipe */
9739 	for (i = 0; i < crtc->num_scalers; i++) {
9740 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9741 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9742 			id = i;
9743 			pipe_config->pch_pfit.enabled = true;
9744 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9745 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9746 			break;
9747 		}
9748 	}
9749 
9750 	scaler_state->scaler_id = id;
9751 	if (id >= 0) {
9752 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9753 	} else {
9754 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9755 	}
9756 }
9757 
9758 static void
9759 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9760 				 struct intel_initial_plane_config *plane_config)
9761 {
9762 	struct drm_device *dev = crtc->base.dev;
9763 	struct drm_i915_private *dev_priv = to_i915(dev);
9764 	u32 val, base, offset, stride_mult, tiling;
9765 	int pipe = crtc->pipe;
9766 	int fourcc, pixel_format;
9767 	unsigned int aligned_height;
9768 	struct drm_framebuffer *fb;
9769 	struct intel_framebuffer *intel_fb;
9770 
9771 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9772 	if (!intel_fb) {
9773 		DRM_DEBUG_KMS("failed to alloc fb\n");
9774 		return;
9775 	}
9776 
9777 	fb = &intel_fb->base;
9778 
9779 	val = I915_READ(PLANE_CTL(pipe, 0));
9780 	if (!(val & PLANE_CTL_ENABLE))
9781 		goto error;
9782 
9783 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9784 	fourcc = skl_format_to_fourcc(pixel_format,
9785 				      val & PLANE_CTL_ORDER_RGBX,
9786 				      val & PLANE_CTL_ALPHA_MASK);
9787 	fb->pixel_format = fourcc;
9788 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9789 
9790 	tiling = val & PLANE_CTL_TILED_MASK;
9791 	switch (tiling) {
9792 	case PLANE_CTL_TILED_LINEAR:
9793 		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9794 		break;
9795 	case PLANE_CTL_TILED_X:
9796 		plane_config->tiling = I915_TILING_X;
9797 		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9798 		break;
9799 	case PLANE_CTL_TILED_Y:
9800 		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9801 		break;
9802 	case PLANE_CTL_TILED_YF:
9803 		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9804 		break;
9805 	default:
9806 		MISSING_CASE(tiling);
9807 		goto error;
9808 	}
9809 
9810 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9811 	plane_config->base = base;
9812 
9813 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9814 
9815 	val = I915_READ(PLANE_SIZE(pipe, 0));
9816 	fb->height = ((val >> 16) & 0xfff) + 1;
9817 	fb->width = ((val >> 0) & 0x1fff) + 1;
9818 
9819 	val = I915_READ(PLANE_STRIDE(pipe, 0));
9820 	stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9821 						fb->pixel_format);
9822 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9823 
9824 	aligned_height = intel_fb_align_height(dev, fb->height,
9825 					       fb->pixel_format,
9826 					       fb->modifier[0]);
9827 
9828 	plane_config->size = fb->pitches[0] * aligned_height;
9829 
9830 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9831 		      pipe_name(pipe), fb->width, fb->height,
9832 		      fb->bits_per_pixel, base, fb->pitches[0],
9833 		      plane_config->size);
9834 
9835 	plane_config->fb = intel_fb;
9836 	return;
9837 
9838 error:
9839 	kfree(intel_fb);
9840 }
9841 
9842 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9843 				     struct intel_crtc_state *pipe_config)
9844 {
9845 	struct drm_device *dev = crtc->base.dev;
9846 	struct drm_i915_private *dev_priv = to_i915(dev);
9847 	uint32_t tmp;
9848 
9849 	tmp = I915_READ(PF_CTL(crtc->pipe));
9850 
9851 	if (tmp & PF_ENABLE) {
9852 		pipe_config->pch_pfit.enabled = true;
9853 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9854 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9855 
9856 		/* We currently do not free assignements of panel fitters on
9857 		 * ivb/hsw (since we don't use the higher upscaling modes which
9858 		 * differentiates them) so just WARN about this case for now. */
9859 		if (IS_GEN7(dev_priv)) {
9860 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9861 				PF_PIPE_SEL_IVB(crtc->pipe));
9862 		}
9863 	}
9864 }
9865 
9866 static void
9867 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9868 				  struct intel_initial_plane_config *plane_config)
9869 {
9870 	struct drm_device *dev = crtc->base.dev;
9871 	struct drm_i915_private *dev_priv = to_i915(dev);
9872 	u32 val, base, offset;
9873 	int pipe = crtc->pipe;
9874 	int fourcc, pixel_format;
9875 	unsigned int aligned_height;
9876 	struct drm_framebuffer *fb;
9877 	struct intel_framebuffer *intel_fb;
9878 
9879 	val = I915_READ(DSPCNTR(pipe));
9880 	if (!(val & DISPLAY_PLANE_ENABLE))
9881 		return;
9882 
9883 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9884 	if (!intel_fb) {
9885 		DRM_DEBUG_KMS("failed to alloc fb\n");
9886 		return;
9887 	}
9888 
9889 	fb = &intel_fb->base;
9890 
9891 	if (INTEL_INFO(dev)->gen >= 4) {
9892 		if (val & DISPPLANE_TILED) {
9893 			plane_config->tiling = I915_TILING_X;
9894 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9895 		}
9896 	}
9897 
9898 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9899 	fourcc = i9xx_format_to_fourcc(pixel_format);
9900 	fb->pixel_format = fourcc;
9901 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9902 
9903 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9904 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9905 		offset = I915_READ(DSPOFFSET(pipe));
9906 	} else {
9907 		if (plane_config->tiling)
9908 			offset = I915_READ(DSPTILEOFF(pipe));
9909 		else
9910 			offset = I915_READ(DSPLINOFF(pipe));
9911 	}
9912 	plane_config->base = base;
9913 
9914 	val = I915_READ(PIPESRC(pipe));
9915 	fb->width = ((val >> 16) & 0xfff) + 1;
9916 	fb->height = ((val >> 0) & 0xfff) + 1;
9917 
9918 	val = I915_READ(DSPSTRIDE(pipe));
9919 	fb->pitches[0] = val & 0xffffffc0;
9920 
9921 	aligned_height = intel_fb_align_height(dev, fb->height,
9922 					       fb->pixel_format,
9923 					       fb->modifier[0]);
9924 
9925 	plane_config->size = fb->pitches[0] * aligned_height;
9926 
9927 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9928 		      pipe_name(pipe), fb->width, fb->height,
9929 		      fb->bits_per_pixel, base, fb->pitches[0],
9930 		      plane_config->size);
9931 
9932 	plane_config->fb = intel_fb;
9933 }
9934 
9935 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9936 				     struct intel_crtc_state *pipe_config)
9937 {
9938 	struct drm_device *dev = crtc->base.dev;
9939 	struct drm_i915_private *dev_priv = to_i915(dev);
9940 	enum intel_display_power_domain power_domain;
9941 	uint32_t tmp;
9942 	bool ret;
9943 
9944 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9945 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9946 		return false;
9947 
9948 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9949 	pipe_config->shared_dpll = NULL;
9950 
9951 	ret = false;
9952 	tmp = I915_READ(PIPECONF(crtc->pipe));
9953 	if (!(tmp & PIPECONF_ENABLE))
9954 		goto out;
9955 
9956 	switch (tmp & PIPECONF_BPC_MASK) {
9957 	case PIPECONF_6BPC:
9958 		pipe_config->pipe_bpp = 18;
9959 		break;
9960 	case PIPECONF_8BPC:
9961 		pipe_config->pipe_bpp = 24;
9962 		break;
9963 	case PIPECONF_10BPC:
9964 		pipe_config->pipe_bpp = 30;
9965 		break;
9966 	case PIPECONF_12BPC:
9967 		pipe_config->pipe_bpp = 36;
9968 		break;
9969 	default:
9970 		break;
9971 	}
9972 
9973 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9974 		pipe_config->limited_color_range = true;
9975 
9976 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9977 		struct intel_shared_dpll *pll;
9978 		enum intel_dpll_id pll_id;
9979 
9980 		pipe_config->has_pch_encoder = true;
9981 
9982 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9983 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9984 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9985 
9986 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9987 
9988 		if (HAS_PCH_IBX(dev_priv)) {
9989 			/*
9990 			 * The pipe->pch transcoder and pch transcoder->pll
9991 			 * mapping is fixed.
9992 			 */
9993 			pll_id = (enum intel_dpll_id) crtc->pipe;
9994 		} else {
9995 			tmp = I915_READ(PCH_DPLL_SEL);
9996 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9997 				pll_id = DPLL_ID_PCH_PLL_B;
9998 			else
9999 				pll_id= DPLL_ID_PCH_PLL_A;
10000 		}
10001 
10002 		pipe_config->shared_dpll =
10003 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10004 		pll = pipe_config->shared_dpll;
10005 
10006 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10007 						 &pipe_config->dpll_hw_state));
10008 
10009 		tmp = pipe_config->dpll_hw_state.dpll;
10010 		pipe_config->pixel_multiplier =
10011 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10012 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10013 
10014 		ironlake_pch_clock_get(crtc, pipe_config);
10015 	} else {
10016 		pipe_config->pixel_multiplier = 1;
10017 	}
10018 
10019 	intel_get_pipe_timings(crtc, pipe_config);
10020 	intel_get_pipe_src_size(crtc, pipe_config);
10021 
10022 	ironlake_get_pfit_config(crtc, pipe_config);
10023 
10024 	ret = true;
10025 
10026 out:
10027 	intel_display_power_put(dev_priv, power_domain);
10028 
10029 	return ret;
10030 }
10031 
10032 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10033 {
10034 	struct drm_device *dev = &dev_priv->drm;
10035 	struct intel_crtc *crtc;
10036 
10037 	for_each_intel_crtc(dev, crtc)
10038 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10039 		     pipe_name(crtc->pipe));
10040 
10041 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10042 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10043 	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10044 	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10045 	I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10046 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10047 	     "CPU PWM1 enabled\n");
10048 	if (IS_HASWELL(dev_priv))
10049 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10050 		     "CPU PWM2 enabled\n");
10051 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10052 	     "PCH PWM1 enabled\n");
10053 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10054 	     "Utility pin enabled\n");
10055 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10056 
10057 	/*
10058 	 * In theory we can still leave IRQs enabled, as long as only the HPD
10059 	 * interrupts remain enabled. We used to check for that, but since it's
10060 	 * gen-specific and since we only disable LCPLL after we fully disable
10061 	 * the interrupts, the check below should be enough.
10062 	 */
10063 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10064 }
10065 
10066 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10067 {
10068 	if (IS_HASWELL(dev_priv))
10069 		return I915_READ(D_COMP_HSW);
10070 	else
10071 		return I915_READ(D_COMP_BDW);
10072 }
10073 
10074 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10075 {
10076 	if (IS_HASWELL(dev_priv)) {
10077 		mutex_lock(&dev_priv->rps.hw_lock);
10078 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10079 					    val))
10080 			DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10081 		mutex_unlock(&dev_priv->rps.hw_lock);
10082 	} else {
10083 		I915_WRITE(D_COMP_BDW, val);
10084 		POSTING_READ(D_COMP_BDW);
10085 	}
10086 }
10087 
10088 /*
10089  * This function implements pieces of two sequences from BSpec:
10090  * - Sequence for display software to disable LCPLL
10091  * - Sequence for display software to allow package C8+
10092  * The steps implemented here are just the steps that actually touch the LCPLL
10093  * register. Callers should take care of disabling all the display engine
10094  * functions, doing the mode unset, fixing interrupts, etc.
10095  */
10096 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10097 			      bool switch_to_fclk, bool allow_power_down)
10098 {
10099 	uint32_t val;
10100 
10101 	assert_can_disable_lcpll(dev_priv);
10102 
10103 	val = I915_READ(LCPLL_CTL);
10104 
10105 	if (switch_to_fclk) {
10106 		val |= LCPLL_CD_SOURCE_FCLK;
10107 		I915_WRITE(LCPLL_CTL, val);
10108 
10109 		if (wait_for_us(I915_READ(LCPLL_CTL) &
10110 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
10111 			DRM_ERROR("Switching to FCLK failed\n");
10112 
10113 		val = I915_READ(LCPLL_CTL);
10114 	}
10115 
10116 	val |= LCPLL_PLL_DISABLE;
10117 	I915_WRITE(LCPLL_CTL, val);
10118 	POSTING_READ(LCPLL_CTL);
10119 
10120 	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10121 		DRM_ERROR("LCPLL still locked\n");
10122 
10123 	val = hsw_read_dcomp(dev_priv);
10124 	val |= D_COMP_COMP_DISABLE;
10125 	hsw_write_dcomp(dev_priv, val);
10126 	ndelay(100);
10127 
10128 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10129 		     1))
10130 		DRM_ERROR("D_COMP RCOMP still in progress\n");
10131 
10132 	if (allow_power_down) {
10133 		val = I915_READ(LCPLL_CTL);
10134 		val |= LCPLL_POWER_DOWN_ALLOW;
10135 		I915_WRITE(LCPLL_CTL, val);
10136 		POSTING_READ(LCPLL_CTL);
10137 	}
10138 }
10139 
10140 /*
10141  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10142  * source.
10143  */
10144 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10145 {
10146 	uint32_t val;
10147 
10148 	val = I915_READ(LCPLL_CTL);
10149 
10150 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10151 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10152 		return;
10153 
10154 	/*
10155 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
10156 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10157 	 */
10158 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10159 
10160 	if (val & LCPLL_POWER_DOWN_ALLOW) {
10161 		val &= ~LCPLL_POWER_DOWN_ALLOW;
10162 		I915_WRITE(LCPLL_CTL, val);
10163 		POSTING_READ(LCPLL_CTL);
10164 	}
10165 
10166 	val = hsw_read_dcomp(dev_priv);
10167 	val |= D_COMP_COMP_FORCE;
10168 	val &= ~D_COMP_COMP_DISABLE;
10169 	hsw_write_dcomp(dev_priv, val);
10170 
10171 	val = I915_READ(LCPLL_CTL);
10172 	val &= ~LCPLL_PLL_DISABLE;
10173 	I915_WRITE(LCPLL_CTL, val);
10174 
10175 	if (intel_wait_for_register(dev_priv,
10176 				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10177 				    5))
10178 		DRM_ERROR("LCPLL not locked yet\n");
10179 
10180 	if (val & LCPLL_CD_SOURCE_FCLK) {
10181 		val = I915_READ(LCPLL_CTL);
10182 		val &= ~LCPLL_CD_SOURCE_FCLK;
10183 		I915_WRITE(LCPLL_CTL, val);
10184 
10185 		if (wait_for_us((I915_READ(LCPLL_CTL) &
10186 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10187 			DRM_ERROR("Switching back to LCPLL failed\n");
10188 	}
10189 
10190 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10191 	intel_update_cdclk(&dev_priv->drm);
10192 }
10193 
10194 /*
10195  * Package states C8 and deeper are really deep PC states that can only be
10196  * reached when all the devices on the system allow it, so even if the graphics
10197  * device allows PC8+, it doesn't mean the system will actually get to these
10198  * states. Our driver only allows PC8+ when going into runtime PM.
10199  *
10200  * The requirements for PC8+ are that all the outputs are disabled, the power
10201  * well is disabled and most interrupts are disabled, and these are also
10202  * requirements for runtime PM. When these conditions are met, we manually do
10203  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10204  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10205  * hang the machine.
10206  *
10207  * When we really reach PC8 or deeper states (not just when we allow it) we lose
10208  * the state of some registers, so when we come back from PC8+ we need to
10209  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10210  * need to take care of the registers kept by RC6. Notice that this happens even
10211  * if we don't put the device in PCI D3 state (which is what currently happens
10212  * because of the runtime PM support).
10213  *
10214  * For more, read "Display Sequences for Package C8" on the hardware
10215  * documentation.
10216  */
10217 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10218 {
10219 	struct drm_device *dev = &dev_priv->drm;
10220 	uint32_t val;
10221 
10222 	DRM_DEBUG_KMS("Enabling package C8+\n");
10223 
10224 	if (HAS_PCH_LPT_LP(dev_priv)) {
10225 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10226 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10227 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10228 	}
10229 
10230 	lpt_disable_clkout_dp(dev);
10231 	hsw_disable_lcpll(dev_priv, true, true);
10232 }
10233 
10234 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10235 {
10236 	struct drm_device *dev = &dev_priv->drm;
10237 	uint32_t val;
10238 
10239 	DRM_DEBUG_KMS("Disabling package C8+\n");
10240 
10241 	hsw_restore_lcpll(dev_priv);
10242 	lpt_init_pch_refclk(dev);
10243 
10244 	if (HAS_PCH_LPT_LP(dev_priv)) {
10245 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10246 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10247 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10248 	}
10249 }
10250 
10251 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10252 {
10253 	struct drm_device *dev = old_state->dev;
10254 	struct intel_atomic_state *old_intel_state =
10255 		to_intel_atomic_state(old_state);
10256 	unsigned int req_cdclk = old_intel_state->dev_cdclk;
10257 
10258 	bxt_set_cdclk(to_i915(dev), req_cdclk);
10259 }
10260 
10261 /* compute the max rate for new configuration */
10262 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10263 {
10264 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10265 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10266 	struct drm_crtc *crtc;
10267 	struct drm_crtc_state *cstate;
10268 	struct intel_crtc_state *crtc_state;
10269 	unsigned max_pixel_rate = 0, i;
10270 	enum i915_pipe pipe;
10271 
10272 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10273 	       sizeof(intel_state->min_pixclk));
10274 
10275 	for_each_crtc_in_state(state, crtc, cstate, i) {
10276 		int pixel_rate;
10277 
10278 		crtc_state = to_intel_crtc_state(cstate);
10279 		if (!crtc_state->base.enable) {
10280 			intel_state->min_pixclk[i] = 0;
10281 			continue;
10282 		}
10283 
10284 		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10285 
10286 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10287 		if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10288 			pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10289 
10290 		intel_state->min_pixclk[i] = pixel_rate;
10291 	}
10292 
10293 	for_each_pipe(dev_priv, pipe)
10294 		max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10295 
10296 	return max_pixel_rate;
10297 }
10298 
10299 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10300 {
10301 	struct drm_i915_private *dev_priv = to_i915(dev);
10302 	uint32_t val, data;
10303 	int ret;
10304 
10305 	if (WARN((I915_READ(LCPLL_CTL) &
10306 		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10307 		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10308 		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10309 		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10310 		 "trying to change cdclk frequency with cdclk not enabled\n"))
10311 		return;
10312 
10313 	mutex_lock(&dev_priv->rps.hw_lock);
10314 	ret = sandybridge_pcode_write(dev_priv,
10315 				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10316 	mutex_unlock(&dev_priv->rps.hw_lock);
10317 	if (ret) {
10318 		DRM_ERROR("failed to inform pcode about cdclk change\n");
10319 		return;
10320 	}
10321 
10322 	val = I915_READ(LCPLL_CTL);
10323 	val |= LCPLL_CD_SOURCE_FCLK;
10324 	I915_WRITE(LCPLL_CTL, val);
10325 
10326 	if (wait_for_us(I915_READ(LCPLL_CTL) &
10327 			LCPLL_CD_SOURCE_FCLK_DONE, 1))
10328 		DRM_ERROR("Switching to FCLK failed\n");
10329 
10330 	val = I915_READ(LCPLL_CTL);
10331 	val &= ~LCPLL_CLK_FREQ_MASK;
10332 
10333 	switch (cdclk) {
10334 	case 450000:
10335 		val |= LCPLL_CLK_FREQ_450;
10336 		data = 0;
10337 		break;
10338 	case 540000:
10339 		val |= LCPLL_CLK_FREQ_54O_BDW;
10340 		data = 1;
10341 		break;
10342 	case 337500:
10343 		val |= LCPLL_CLK_FREQ_337_5_BDW;
10344 		data = 2;
10345 		break;
10346 	case 675000:
10347 		val |= LCPLL_CLK_FREQ_675_BDW;
10348 		data = 3;
10349 		break;
10350 	default:
10351 		WARN(1, "invalid cdclk frequency\n");
10352 		return;
10353 	}
10354 
10355 	I915_WRITE(LCPLL_CTL, val);
10356 
10357 	val = I915_READ(LCPLL_CTL);
10358 	val &= ~LCPLL_CD_SOURCE_FCLK;
10359 	I915_WRITE(LCPLL_CTL, val);
10360 
10361 	if (wait_for_us((I915_READ(LCPLL_CTL) &
10362 			LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10363 		DRM_ERROR("Switching back to LCPLL failed\n");
10364 
10365 	mutex_lock(&dev_priv->rps.hw_lock);
10366 	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10367 	mutex_unlock(&dev_priv->rps.hw_lock);
10368 
10369 	I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10370 
10371 	intel_update_cdclk(dev);
10372 
10373 	WARN(cdclk != dev_priv->cdclk_freq,
10374 	     "cdclk requested %d kHz but got %d kHz\n",
10375 	     cdclk, dev_priv->cdclk_freq);
10376 }
10377 
10378 static int broadwell_calc_cdclk(int max_pixclk)
10379 {
10380 	if (max_pixclk > 540000)
10381 		return 675000;
10382 	else if (max_pixclk > 450000)
10383 		return 540000;
10384 	else if (max_pixclk > 337500)
10385 		return 450000;
10386 	else
10387 		return 337500;
10388 }
10389 
10390 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10391 {
10392 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10393 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10394 	int max_pixclk = ilk_max_pixel_rate(state);
10395 	int cdclk;
10396 
10397 	/*
10398 	 * FIXME should also account for plane ratio
10399 	 * once 64bpp pixel formats are supported.
10400 	 */
10401 	cdclk = broadwell_calc_cdclk(max_pixclk);
10402 
10403 	if (cdclk > dev_priv->max_cdclk_freq) {
10404 		DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10405 			      cdclk, dev_priv->max_cdclk_freq);
10406 		return -EINVAL;
10407 	}
10408 
10409 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10410 	if (!intel_state->active_crtcs)
10411 		intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10412 
10413 	return 0;
10414 }
10415 
10416 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10417 {
10418 	struct drm_device *dev = old_state->dev;
10419 	struct intel_atomic_state *old_intel_state =
10420 		to_intel_atomic_state(old_state);
10421 	unsigned req_cdclk = old_intel_state->dev_cdclk;
10422 
10423 	broadwell_set_cdclk(dev, req_cdclk);
10424 }
10425 
10426 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10427 {
10428 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10429 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10430 	const int max_pixclk = ilk_max_pixel_rate(state);
10431 	int vco = intel_state->cdclk_pll_vco;
10432 	int cdclk;
10433 
10434 	/*
10435 	 * FIXME should also account for plane ratio
10436 	 * once 64bpp pixel formats are supported.
10437 	 */
10438 	cdclk = skl_calc_cdclk(max_pixclk, vco);
10439 
10440 	/*
10441 	 * FIXME move the cdclk caclulation to
10442 	 * compute_config() so we can fail gracegully.
10443 	 */
10444 	if (cdclk > dev_priv->max_cdclk_freq) {
10445 		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10446 			  cdclk, dev_priv->max_cdclk_freq);
10447 		cdclk = dev_priv->max_cdclk_freq;
10448 	}
10449 
10450 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10451 	if (!intel_state->active_crtcs)
10452 		intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10453 
10454 	return 0;
10455 }
10456 
10457 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10458 {
10459 	struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10460 	struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10461 	unsigned int req_cdclk = intel_state->dev_cdclk;
10462 	unsigned int req_vco = intel_state->cdclk_pll_vco;
10463 
10464 	skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10465 }
10466 
10467 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10468 				      struct intel_crtc_state *crtc_state)
10469 {
10470 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10471 		if (!intel_ddi_pll_select(crtc, crtc_state))
10472 			return -EINVAL;
10473 	}
10474 
10475 	crtc->lowfreq_avail = false;
10476 
10477 	return 0;
10478 }
10479 
10480 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10481 				enum port port,
10482 				struct intel_crtc_state *pipe_config)
10483 {
10484 	enum intel_dpll_id id;
10485 
10486 	switch (port) {
10487 	case PORT_A:
10488 		id = DPLL_ID_SKL_DPLL0;
10489 		break;
10490 	case PORT_B:
10491 		id = DPLL_ID_SKL_DPLL1;
10492 		break;
10493 	case PORT_C:
10494 		id = DPLL_ID_SKL_DPLL2;
10495 		break;
10496 	default:
10497 		DRM_ERROR("Incorrect port type\n");
10498 		return;
10499 	}
10500 
10501 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10502 }
10503 
10504 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10505 				enum port port,
10506 				struct intel_crtc_state *pipe_config)
10507 {
10508 	enum intel_dpll_id id;
10509 	u32 temp;
10510 
10511 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10512 	id = temp >> (port * 3 + 1);
10513 
10514 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10515 		return;
10516 
10517 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10518 }
10519 
10520 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10521 				enum port port,
10522 				struct intel_crtc_state *pipe_config)
10523 {
10524 	enum intel_dpll_id id;
10525 	uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10526 
10527 	switch (ddi_pll_sel) {
10528 	case PORT_CLK_SEL_WRPLL1:
10529 		id = DPLL_ID_WRPLL1;
10530 		break;
10531 	case PORT_CLK_SEL_WRPLL2:
10532 		id = DPLL_ID_WRPLL2;
10533 		break;
10534 	case PORT_CLK_SEL_SPLL:
10535 		id = DPLL_ID_SPLL;
10536 		break;
10537 	case PORT_CLK_SEL_LCPLL_810:
10538 		id = DPLL_ID_LCPLL_810;
10539 		break;
10540 	case PORT_CLK_SEL_LCPLL_1350:
10541 		id = DPLL_ID_LCPLL_1350;
10542 		break;
10543 	case PORT_CLK_SEL_LCPLL_2700:
10544 		id = DPLL_ID_LCPLL_2700;
10545 		break;
10546 	default:
10547 		MISSING_CASE(ddi_pll_sel);
10548 		/* fall through */
10549 	case PORT_CLK_SEL_NONE:
10550 		return;
10551 	}
10552 
10553 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10554 }
10555 
10556 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10557 				     struct intel_crtc_state *pipe_config,
10558 				     unsigned long *power_domain_mask)
10559 {
10560 	struct drm_device *dev = crtc->base.dev;
10561 	struct drm_i915_private *dev_priv = to_i915(dev);
10562 	enum intel_display_power_domain power_domain;
10563 	u32 tmp;
10564 
10565 	/*
10566 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10567 	 * transcoder handled below.
10568 	 */
10569 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10570 
10571 	/*
10572 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10573 	 * consistency and less surprising code; it's in always on power).
10574 	 */
10575 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10576 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
10577 		enum i915_pipe trans_edp_pipe;
10578 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10579 		default:
10580 			WARN(1, "unknown pipe linked to edp transcoder\n");
10581 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10582 		case TRANS_DDI_EDP_INPUT_A_ON:
10583 			trans_edp_pipe = PIPE_A;
10584 			break;
10585 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10586 			trans_edp_pipe = PIPE_B;
10587 			break;
10588 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10589 			trans_edp_pipe = PIPE_C;
10590 			break;
10591 		}
10592 
10593 		if (trans_edp_pipe == crtc->pipe)
10594 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
10595 	}
10596 
10597 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10598 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10599 		return false;
10600 	*power_domain_mask |= BIT(power_domain);
10601 
10602 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10603 
10604 	return tmp & PIPECONF_ENABLE;
10605 }
10606 
10607 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10608 					 struct intel_crtc_state *pipe_config,
10609 					 unsigned long *power_domain_mask)
10610 {
10611 	struct drm_device *dev = crtc->base.dev;
10612 	struct drm_i915_private *dev_priv = to_i915(dev);
10613 	enum intel_display_power_domain power_domain;
10614 	enum port port;
10615 	enum transcoder cpu_transcoder;
10616 	u32 tmp;
10617 
10618 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10619 		if (port == PORT_A)
10620 			cpu_transcoder = TRANSCODER_DSI_A;
10621 		else
10622 			cpu_transcoder = TRANSCODER_DSI_C;
10623 
10624 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10625 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10626 			continue;
10627 		*power_domain_mask |= BIT(power_domain);
10628 
10629 		/*
10630 		 * The PLL needs to be enabled with a valid divider
10631 		 * configuration, otherwise accessing DSI registers will hang
10632 		 * the machine. See BSpec North Display Engine
10633 		 * registers/MIPI[BXT]. We can break out here early, since we
10634 		 * need the same DSI PLL to be enabled for both DSI ports.
10635 		 */
10636 		if (!intel_dsi_pll_is_enabled(dev_priv))
10637 			break;
10638 
10639 		/* XXX: this works for video mode only */
10640 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10641 		if (!(tmp & DPI_ENABLE))
10642 			continue;
10643 
10644 		tmp = I915_READ(MIPI_CTRL(port));
10645 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10646 			continue;
10647 
10648 		pipe_config->cpu_transcoder = cpu_transcoder;
10649 		break;
10650 	}
10651 
10652 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10653 }
10654 
10655 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10656 				       struct intel_crtc_state *pipe_config)
10657 {
10658 	struct drm_device *dev = crtc->base.dev;
10659 	struct drm_i915_private *dev_priv = to_i915(dev);
10660 	struct intel_shared_dpll *pll;
10661 	enum port port;
10662 	uint32_t tmp;
10663 
10664 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10665 
10666 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10667 
10668 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10669 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10670 	else if (IS_BROXTON(dev_priv))
10671 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10672 	else
10673 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10674 
10675 	pll = pipe_config->shared_dpll;
10676 	if (pll) {
10677 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10678 						 &pipe_config->dpll_hw_state));
10679 	}
10680 
10681 	/*
10682 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10683 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10684 	 * the PCH transcoder is on.
10685 	 */
10686 	if (INTEL_INFO(dev)->gen < 9 &&
10687 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10688 		pipe_config->has_pch_encoder = true;
10689 
10690 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10691 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10692 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10693 
10694 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10695 	}
10696 }
10697 
10698 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10699 				    struct intel_crtc_state *pipe_config)
10700 {
10701 	struct drm_device *dev = crtc->base.dev;
10702 	struct drm_i915_private *dev_priv = to_i915(dev);
10703 	enum intel_display_power_domain power_domain;
10704 	unsigned long power_domain_mask;
10705 	bool active;
10706 
10707 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10708 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10709 		return false;
10710 	power_domain_mask = BIT(power_domain);
10711 
10712 	pipe_config->shared_dpll = NULL;
10713 
10714 	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10715 
10716 	if (IS_BROXTON(dev_priv) &&
10717 	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10718 		WARN_ON(active);
10719 		active = true;
10720 	}
10721 
10722 	if (!active)
10723 		goto out;
10724 
10725 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10726 		haswell_get_ddi_port_state(crtc, pipe_config);
10727 		intel_get_pipe_timings(crtc, pipe_config);
10728 	}
10729 
10730 	intel_get_pipe_src_size(crtc, pipe_config);
10731 
10732 	pipe_config->gamma_mode =
10733 		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10734 
10735 	if (INTEL_INFO(dev)->gen >= 9) {
10736 		skl_init_scalers(dev, crtc, pipe_config);
10737 	}
10738 
10739 	if (INTEL_INFO(dev)->gen >= 9) {
10740 		pipe_config->scaler_state.scaler_id = -1;
10741 		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10742 	}
10743 
10744 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10745 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10746 		power_domain_mask |= BIT(power_domain);
10747 		if (INTEL_INFO(dev)->gen >= 9)
10748 			skylake_get_pfit_config(crtc, pipe_config);
10749 		else
10750 			ironlake_get_pfit_config(crtc, pipe_config);
10751 	}
10752 
10753 	if (IS_HASWELL(dev_priv))
10754 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10755 			(I915_READ(IPS_CTL) & IPS_ENABLE);
10756 
10757 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10758 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10759 		pipe_config->pixel_multiplier =
10760 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10761 	} else {
10762 		pipe_config->pixel_multiplier = 1;
10763 	}
10764 
10765 out:
10766 	for_each_power_domain(power_domain, power_domain_mask)
10767 		intel_display_power_put(dev_priv, power_domain);
10768 
10769 	return active;
10770 }
10771 
10772 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10773 			       const struct intel_plane_state *plane_state)
10774 {
10775 	struct drm_device *dev = crtc->dev;
10776 	struct drm_i915_private *dev_priv = to_i915(dev);
10777 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10778 	uint32_t cntl = 0, size = 0;
10779 
10780 	if (plane_state && plane_state->base.visible) {
10781 		unsigned int width = plane_state->base.crtc_w;
10782 		unsigned int height = plane_state->base.crtc_h;
10783 		unsigned int stride = roundup_pow_of_two(width) * 4;
10784 
10785 		switch (stride) {
10786 		default:
10787 			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10788 				  width, stride);
10789 			stride = 256;
10790 			/* fallthrough */
10791 		case 256:
10792 		case 512:
10793 		case 1024:
10794 		case 2048:
10795 			break;
10796 		}
10797 
10798 		cntl |= CURSOR_ENABLE |
10799 			CURSOR_GAMMA_ENABLE |
10800 			CURSOR_FORMAT_ARGB |
10801 			CURSOR_STRIDE(stride);
10802 
10803 		size = (height << 12) | width;
10804 	}
10805 
10806 	if (intel_crtc->cursor_cntl != 0 &&
10807 	    (intel_crtc->cursor_base != base ||
10808 	     intel_crtc->cursor_size != size ||
10809 	     intel_crtc->cursor_cntl != cntl)) {
10810 		/* On these chipsets we can only modify the base/size/stride
10811 		 * whilst the cursor is disabled.
10812 		 */
10813 		I915_WRITE(CURCNTR(PIPE_A), 0);
10814 		POSTING_READ(CURCNTR(PIPE_A));
10815 		intel_crtc->cursor_cntl = 0;
10816 	}
10817 
10818 	if (intel_crtc->cursor_base != base) {
10819 		I915_WRITE(CURBASE(PIPE_A), base);
10820 		intel_crtc->cursor_base = base;
10821 	}
10822 
10823 	if (intel_crtc->cursor_size != size) {
10824 		I915_WRITE(CURSIZE, size);
10825 		intel_crtc->cursor_size = size;
10826 	}
10827 
10828 	if (intel_crtc->cursor_cntl != cntl) {
10829 		I915_WRITE(CURCNTR(PIPE_A), cntl);
10830 		POSTING_READ(CURCNTR(PIPE_A));
10831 		intel_crtc->cursor_cntl = cntl;
10832 	}
10833 }
10834 
10835 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10836 			       const struct intel_plane_state *plane_state)
10837 {
10838 	struct drm_device *dev = crtc->dev;
10839 	struct drm_i915_private *dev_priv = to_i915(dev);
10840 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10841 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
10842 	const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
10843 	const struct skl_plane_wm *p_wm =
10844 		&cstate->wm.skl.optimal.planes[PLANE_CURSOR];
10845 	int pipe = intel_crtc->pipe;
10846 	uint32_t cntl = 0;
10847 
10848 	if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10849 		skl_write_cursor_wm(intel_crtc, p_wm, &wm->ddb);
10850 
10851 	if (plane_state && plane_state->base.visible) {
10852 		cntl = MCURSOR_GAMMA_ENABLE;
10853 		switch (plane_state->base.crtc_w) {
10854 			case 64:
10855 				cntl |= CURSOR_MODE_64_ARGB_AX;
10856 				break;
10857 			case 128:
10858 				cntl |= CURSOR_MODE_128_ARGB_AX;
10859 				break;
10860 			case 256:
10861 				cntl |= CURSOR_MODE_256_ARGB_AX;
10862 				break;
10863 			default:
10864 				MISSING_CASE(plane_state->base.crtc_w);
10865 				return;
10866 		}
10867 		cntl |= pipe << 28; /* Connect to correct pipe */
10868 
10869 		if (HAS_DDI(dev_priv))
10870 			cntl |= CURSOR_PIPE_CSC_ENABLE;
10871 
10872 		if (plane_state->base.rotation == DRM_ROTATE_180)
10873 			cntl |= CURSOR_ROTATE_180;
10874 	}
10875 
10876 	if (intel_crtc->cursor_cntl != cntl) {
10877 		I915_WRITE(CURCNTR(pipe), cntl);
10878 		POSTING_READ(CURCNTR(pipe));
10879 		intel_crtc->cursor_cntl = cntl;
10880 	}
10881 
10882 	/* and commit changes on next vblank */
10883 	I915_WRITE(CURBASE(pipe), base);
10884 	POSTING_READ(CURBASE(pipe));
10885 
10886 	intel_crtc->cursor_base = base;
10887 }
10888 
10889 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10890 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10891 				     const struct intel_plane_state *plane_state)
10892 {
10893 	struct drm_device *dev = crtc->dev;
10894 	struct drm_i915_private *dev_priv = to_i915(dev);
10895 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10896 	int pipe = intel_crtc->pipe;
10897 	u32 base = intel_crtc->cursor_addr;
10898 	u32 pos = 0;
10899 
10900 	if (plane_state) {
10901 		int x = plane_state->base.crtc_x;
10902 		int y = plane_state->base.crtc_y;
10903 
10904 		if (x < 0) {
10905 			pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10906 			x = -x;
10907 		}
10908 		pos |= x << CURSOR_X_SHIFT;
10909 
10910 		if (y < 0) {
10911 			pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10912 			y = -y;
10913 		}
10914 		pos |= y << CURSOR_Y_SHIFT;
10915 
10916 		/* ILK+ do this automagically */
10917 		if (HAS_GMCH_DISPLAY(dev_priv) &&
10918 		    plane_state->base.rotation == DRM_ROTATE_180) {
10919 			base += (plane_state->base.crtc_h *
10920 				 plane_state->base.crtc_w - 1) * 4;
10921 		}
10922 	}
10923 
10924 	I915_WRITE(CURPOS(pipe), pos);
10925 
10926 	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10927 		i845_update_cursor(crtc, base, plane_state);
10928 	else
10929 		i9xx_update_cursor(crtc, base, plane_state);
10930 }
10931 
10932 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10933 			   uint32_t width, uint32_t height)
10934 {
10935 	if (width == 0 || height == 0)
10936 		return false;
10937 
10938 	/*
10939 	 * 845g/865g are special in that they are only limited by
10940 	 * the width of their cursors, the height is arbitrary up to
10941 	 * the precision of the register. Everything else requires
10942 	 * square cursors, limited to a few power-of-two sizes.
10943 	 */
10944 	if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10945 		if ((width & 63) != 0)
10946 			return false;
10947 
10948 		if (width > (IS_845G(dev_priv) ? 64 : 512))
10949 			return false;
10950 
10951 		if (height > 1023)
10952 			return false;
10953 	} else {
10954 		switch (width | height) {
10955 		case 256:
10956 		case 128:
10957 			if (IS_GEN2(dev_priv))
10958 				return false;
10959 		case 64:
10960 			break;
10961 		default:
10962 			return false;
10963 		}
10964 	}
10965 
10966 	return true;
10967 }
10968 
10969 /* VESA 640x480x72Hz mode to set on the pipe */
10970 static struct drm_display_mode load_detect_mode = {
10971 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10972 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10973 };
10974 
10975 struct drm_framebuffer *
10976 __intel_framebuffer_create(struct drm_device *dev,
10977 			   struct drm_mode_fb_cmd2 *mode_cmd,
10978 			   struct drm_i915_gem_object *obj)
10979 {
10980 	struct intel_framebuffer *intel_fb;
10981 	int ret;
10982 
10983 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10984 	if (!intel_fb)
10985 		return ERR_PTR(-ENOMEM);
10986 
10987 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10988 	if (ret)
10989 		goto err;
10990 
10991 	return &intel_fb->base;
10992 
10993 err:
10994 	kfree(intel_fb);
10995 	return ERR_PTR(ret);
10996 }
10997 
10998 static struct drm_framebuffer *
10999 intel_framebuffer_create(struct drm_device *dev,
11000 			 struct drm_mode_fb_cmd2 *mode_cmd,
11001 			 struct drm_i915_gem_object *obj)
11002 {
11003 	struct drm_framebuffer *fb;
11004 	int ret;
11005 
11006 	ret = i915_mutex_lock_interruptible(dev);
11007 	if (ret)
11008 		return ERR_PTR(ret);
11009 	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11010 	mutex_unlock(&dev->struct_mutex);
11011 
11012 	return fb;
11013 }
11014 
11015 static u32
11016 intel_framebuffer_pitch_for_width(int width, int bpp)
11017 {
11018 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11019 	return ALIGN(pitch, 64);
11020 }
11021 
11022 static u32
11023 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11024 {
11025 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11026 	return PAGE_ALIGN(pitch * mode->vdisplay);
11027 }
11028 
11029 static struct drm_framebuffer *
11030 intel_framebuffer_create_for_mode(struct drm_device *dev,
11031 				  struct drm_display_mode *mode,
11032 				  int depth, int bpp)
11033 {
11034 	struct drm_framebuffer *fb;
11035 	struct drm_i915_gem_object *obj;
11036 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11037 
11038 	obj = i915_gem_object_create(dev,
11039 				    intel_framebuffer_size_for_mode(mode, bpp));
11040 	if (IS_ERR(obj))
11041 		return ERR_CAST(obj);
11042 
11043 	mode_cmd.width = mode->hdisplay;
11044 	mode_cmd.height = mode->vdisplay;
11045 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11046 								bpp);
11047 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11048 
11049 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11050 	if (IS_ERR(fb))
11051 		i915_gem_object_put_unlocked(obj);
11052 
11053 	return fb;
11054 }
11055 
11056 static struct drm_framebuffer *
11057 mode_fits_in_fbdev(struct drm_device *dev,
11058 		   struct drm_display_mode *mode)
11059 {
11060 #ifdef CONFIG_DRM_FBDEV_EMULATION
11061 	struct drm_i915_private *dev_priv = to_i915(dev);
11062 	struct drm_i915_gem_object *obj;
11063 	struct drm_framebuffer *fb;
11064 
11065 	if (!dev_priv->fbdev)
11066 		return NULL;
11067 
11068 	if (!dev_priv->fbdev->fb)
11069 		return NULL;
11070 
11071 	obj = dev_priv->fbdev->fb->obj;
11072 	BUG_ON(!obj);
11073 
11074 	fb = &dev_priv->fbdev->fb->base;
11075 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11076 							       fb->bits_per_pixel))
11077 		return NULL;
11078 
11079 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
11080 		return NULL;
11081 
11082 	drm_framebuffer_reference(fb);
11083 	return fb;
11084 #else
11085 	return NULL;
11086 #endif
11087 }
11088 
11089 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11090 					   struct drm_crtc *crtc,
11091 					   struct drm_display_mode *mode,
11092 					   struct drm_framebuffer *fb,
11093 					   int x, int y)
11094 {
11095 	struct drm_plane_state *plane_state;
11096 	int hdisplay, vdisplay;
11097 	int ret;
11098 
11099 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11100 	if (IS_ERR(plane_state))
11101 		return PTR_ERR(plane_state);
11102 
11103 	if (mode)
11104 		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11105 	else
11106 		hdisplay = vdisplay = 0;
11107 
11108 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11109 	if (ret)
11110 		return ret;
11111 	drm_atomic_set_fb_for_plane(plane_state, fb);
11112 	plane_state->crtc_x = 0;
11113 	plane_state->crtc_y = 0;
11114 	plane_state->crtc_w = hdisplay;
11115 	plane_state->crtc_h = vdisplay;
11116 	plane_state->src_x = x << 16;
11117 	plane_state->src_y = y << 16;
11118 	plane_state->src_w = hdisplay << 16;
11119 	plane_state->src_h = vdisplay << 16;
11120 
11121 	return 0;
11122 }
11123 
11124 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11125 				struct drm_display_mode *mode,
11126 				struct intel_load_detect_pipe *old,
11127 				struct drm_modeset_acquire_ctx *ctx)
11128 {
11129 	struct intel_crtc *intel_crtc;
11130 	struct intel_encoder *intel_encoder =
11131 		intel_attached_encoder(connector);
11132 	struct drm_crtc *possible_crtc;
11133 	struct drm_encoder *encoder = &intel_encoder->base;
11134 	struct drm_crtc *crtc = NULL;
11135 	struct drm_device *dev = encoder->dev;
11136 	struct drm_framebuffer *fb;
11137 	struct drm_mode_config *config = &dev->mode_config;
11138 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11139 	struct drm_connector_state *connector_state;
11140 	struct intel_crtc_state *crtc_state;
11141 	int ret, i = -1;
11142 
11143 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11144 		      connector->base.id, connector->name,
11145 		      encoder->base.id, encoder->name);
11146 
11147 	old->restore_state = NULL;
11148 
11149 retry:
11150 	ret = drm_modeset_lock(&config->connection_mutex, ctx);
11151 	if (ret)
11152 		goto fail;
11153 
11154 	/*
11155 	 * Algorithm gets a little messy:
11156 	 *
11157 	 *   - if the connector already has an assigned crtc, use it (but make
11158 	 *     sure it's on first)
11159 	 *
11160 	 *   - try to find the first unused crtc that can drive this connector,
11161 	 *     and use that if we find one
11162 	 */
11163 
11164 	/* See if we already have a CRTC for this connector */
11165 	if (connector->state->crtc) {
11166 		crtc = connector->state->crtc;
11167 
11168 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11169 		if (ret)
11170 			goto fail;
11171 
11172 		/* Make sure the crtc and connector are running */
11173 		goto found;
11174 	}
11175 
11176 	/* Find an unused one (if possible) */
11177 	for_each_crtc(dev, possible_crtc) {
11178 		i++;
11179 		if (!(encoder->possible_crtcs & (1 << i)))
11180 			continue;
11181 
11182 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11183 		if (ret)
11184 			goto fail;
11185 
11186 		if (possible_crtc->state->enable) {
11187 			drm_modeset_unlock(&possible_crtc->mutex);
11188 			continue;
11189 		}
11190 
11191 		crtc = possible_crtc;
11192 		break;
11193 	}
11194 
11195 	/*
11196 	 * If we didn't find an unused CRTC, don't use any.
11197 	 */
11198 	if (!crtc) {
11199 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
11200 		goto fail;
11201 	}
11202 
11203 found:
11204 	intel_crtc = to_intel_crtc(crtc);
11205 
11206 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11207 	if (ret)
11208 		goto fail;
11209 
11210 	state = drm_atomic_state_alloc(dev);
11211 	restore_state = drm_atomic_state_alloc(dev);
11212 	if (!state || !restore_state) {
11213 		ret = -ENOMEM;
11214 		goto fail;
11215 	}
11216 
11217 	state->acquire_ctx = ctx;
11218 	restore_state->acquire_ctx = ctx;
11219 
11220 	connector_state = drm_atomic_get_connector_state(state, connector);
11221 	if (IS_ERR(connector_state)) {
11222 		ret = PTR_ERR(connector_state);
11223 		goto fail;
11224 	}
11225 
11226 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11227 	if (ret)
11228 		goto fail;
11229 
11230 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11231 	if (IS_ERR(crtc_state)) {
11232 		ret = PTR_ERR(crtc_state);
11233 		goto fail;
11234 	}
11235 
11236 	crtc_state->base.active = crtc_state->base.enable = true;
11237 
11238 	if (!mode)
11239 		mode = &load_detect_mode;
11240 
11241 	/* We need a framebuffer large enough to accommodate all accesses
11242 	 * that the plane may generate whilst we perform load detection.
11243 	 * We can not rely on the fbcon either being present (we get called
11244 	 * during its initialisation to detect all boot displays, or it may
11245 	 * not even exist) or that it is large enough to satisfy the
11246 	 * requested mode.
11247 	 */
11248 	fb = mode_fits_in_fbdev(dev, mode);
11249 	if (fb == NULL) {
11250 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11251 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11252 	} else
11253 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11254 	if (IS_ERR(fb)) {
11255 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11256 		goto fail;
11257 	}
11258 
11259 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11260 	if (ret)
11261 		goto fail;
11262 
11263 	drm_framebuffer_unreference(fb);
11264 
11265 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11266 	if (ret)
11267 		goto fail;
11268 
11269 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11270 	if (!ret)
11271 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11272 	if (!ret)
11273 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11274 	if (ret) {
11275 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11276 		goto fail;
11277 	}
11278 
11279 	ret = drm_atomic_commit(state);
11280 	if (ret) {
11281 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11282 		goto fail;
11283 	}
11284 
11285 	old->restore_state = restore_state;
11286 
11287 	/* let the connector get through one full cycle before testing */
11288 	intel_wait_for_vblank(dev, intel_crtc->pipe);
11289 	return true;
11290 
11291 fail:
11292 	drm_atomic_state_free(state);
11293 	drm_atomic_state_free(restore_state);
11294 	restore_state = state = NULL;
11295 
11296 	if (ret == -EDEADLK) {
11297 		drm_modeset_backoff(ctx);
11298 		goto retry;
11299 	}
11300 
11301 	return false;
11302 }
11303 
11304 void intel_release_load_detect_pipe(struct drm_connector *connector,
11305 				    struct intel_load_detect_pipe *old,
11306 				    struct drm_modeset_acquire_ctx *ctx)
11307 {
11308 	struct intel_encoder *intel_encoder =
11309 		intel_attached_encoder(connector);
11310 	struct drm_encoder *encoder = &intel_encoder->base;
11311 	struct drm_atomic_state *state = old->restore_state;
11312 	int ret;
11313 
11314 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11315 		      connector->base.id, connector->name,
11316 		      encoder->base.id, encoder->name);
11317 
11318 	if (!state)
11319 		return;
11320 
11321 	ret = drm_atomic_commit(state);
11322 	if (ret) {
11323 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11324 		drm_atomic_state_free(state);
11325 	}
11326 }
11327 
11328 static int i9xx_pll_refclk(struct drm_device *dev,
11329 			   const struct intel_crtc_state *pipe_config)
11330 {
11331 	struct drm_i915_private *dev_priv = to_i915(dev);
11332 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11333 
11334 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11335 		return dev_priv->vbt.lvds_ssc_freq;
11336 	else if (HAS_PCH_SPLIT(dev_priv))
11337 		return 120000;
11338 	else if (!IS_GEN2(dev_priv))
11339 		return 96000;
11340 	else
11341 		return 48000;
11342 }
11343 
11344 /* Returns the clock of the currently programmed mode of the given pipe. */
11345 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11346 				struct intel_crtc_state *pipe_config)
11347 {
11348 	struct drm_device *dev = crtc->base.dev;
11349 	struct drm_i915_private *dev_priv = to_i915(dev);
11350 	int pipe = pipe_config->cpu_transcoder;
11351 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11352 	u32 fp;
11353 	struct dpll clock;
11354 	int port_clock;
11355 	int refclk = i9xx_pll_refclk(dev, pipe_config);
11356 
11357 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11358 		fp = pipe_config->dpll_hw_state.fp0;
11359 	else
11360 		fp = pipe_config->dpll_hw_state.fp1;
11361 
11362 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11363 	if (IS_PINEVIEW(dev)) {
11364 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11365 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11366 	} else {
11367 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11368 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11369 	}
11370 
11371 	if (!IS_GEN2(dev_priv)) {
11372 		if (IS_PINEVIEW(dev))
11373 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11374 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11375 		else
11376 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11377 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
11378 
11379 		switch (dpll & DPLL_MODE_MASK) {
11380 		case DPLLB_MODE_DAC_SERIAL:
11381 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11382 				5 : 10;
11383 			break;
11384 		case DPLLB_MODE_LVDS:
11385 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11386 				7 : 14;
11387 			break;
11388 		default:
11389 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11390 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
11391 			return;
11392 		}
11393 
11394 		if (IS_PINEVIEW(dev))
11395 			port_clock = pnv_calc_dpll_params(refclk, &clock);
11396 		else
11397 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
11398 	} else {
11399 		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11400 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11401 
11402 		if (is_lvds) {
11403 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11404 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
11405 
11406 			if (lvds & LVDS_CLKB_POWER_UP)
11407 				clock.p2 = 7;
11408 			else
11409 				clock.p2 = 14;
11410 		} else {
11411 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
11412 				clock.p1 = 2;
11413 			else {
11414 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11415 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11416 			}
11417 			if (dpll & PLL_P2_DIVIDE_BY_4)
11418 				clock.p2 = 4;
11419 			else
11420 				clock.p2 = 2;
11421 		}
11422 
11423 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
11424 	}
11425 
11426 	/*
11427 	 * This value includes pixel_multiplier. We will use
11428 	 * port_clock to compute adjusted_mode.crtc_clock in the
11429 	 * encoder's get_config() function.
11430 	 */
11431 	pipe_config->port_clock = port_clock;
11432 }
11433 
11434 int intel_dotclock_calculate(int link_freq,
11435 			     const struct intel_link_m_n *m_n)
11436 {
11437 	/*
11438 	 * The calculation for the data clock is:
11439 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11440 	 * But we want to avoid losing precison if possible, so:
11441 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11442 	 *
11443 	 * and the link clock is simpler:
11444 	 * link_clock = (m * link_clock) / n
11445 	 */
11446 
11447 	if (!m_n->link_n)
11448 		return 0;
11449 
11450 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11451 }
11452 
11453 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11454 				   struct intel_crtc_state *pipe_config)
11455 {
11456 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11457 
11458 	/* read out port_clock from the DPLL */
11459 	i9xx_crtc_clock_get(crtc, pipe_config);
11460 
11461 	/*
11462 	 * In case there is an active pipe without active ports,
11463 	 * we may need some idea for the dotclock anyway.
11464 	 * Calculate one based on the FDI configuration.
11465 	 */
11466 	pipe_config->base.adjusted_mode.crtc_clock =
11467 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11468 					 &pipe_config->fdi_m_n);
11469 }
11470 
11471 /** Returns the currently programmed mode of the given pipe. */
11472 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11473 					     struct drm_crtc *crtc)
11474 {
11475 	struct drm_i915_private *dev_priv = to_i915(dev);
11476 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11477 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11478 	struct drm_display_mode *mode;
11479 	struct intel_crtc_state *pipe_config;
11480 	int htot = I915_READ(HTOTAL(cpu_transcoder));
11481 	int hsync = I915_READ(HSYNC(cpu_transcoder));
11482 	int vtot = I915_READ(VTOTAL(cpu_transcoder));
11483 	int vsync = I915_READ(VSYNC(cpu_transcoder));
11484 	enum i915_pipe pipe = intel_crtc->pipe;
11485 
11486 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11487 	if (!mode)
11488 		return NULL;
11489 
11490 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11491 	if (!pipe_config) {
11492 		kfree(mode);
11493 		return NULL;
11494 	}
11495 
11496 	/*
11497 	 * Construct a pipe_config sufficient for getting the clock info
11498 	 * back out of crtc_clock_get.
11499 	 *
11500 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11501 	 * to use a real value here instead.
11502 	 */
11503 	pipe_config->cpu_transcoder = (enum transcoder) pipe;
11504 	pipe_config->pixel_multiplier = 1;
11505 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11506 	pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11507 	pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11508 	i9xx_crtc_clock_get(intel_crtc, pipe_config);
11509 
11510 	mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11511 	mode->hdisplay = (htot & 0xffff) + 1;
11512 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11513 	mode->hsync_start = (hsync & 0xffff) + 1;
11514 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11515 	mode->vdisplay = (vtot & 0xffff) + 1;
11516 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11517 	mode->vsync_start = (vsync & 0xffff) + 1;
11518 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11519 
11520 	drm_mode_set_name(mode);
11521 
11522 	kfree(pipe_config);
11523 
11524 	return mode;
11525 }
11526 
11527 static void intel_crtc_destroy(struct drm_crtc *crtc)
11528 {
11529 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11530 	struct drm_device *dev = crtc->dev;
11531 	struct intel_flip_work *work;
11532 
11533 	spin_lock_irq(&dev->event_lock);
11534 	work = intel_crtc->flip_work;
11535 	intel_crtc->flip_work = NULL;
11536 	spin_unlock_irq(&dev->event_lock);
11537 
11538 	if (work) {
11539 		cancel_work_sync(&work->mmio_work);
11540 		cancel_work_sync(&work->unpin_work);
11541 		kfree(work);
11542 	}
11543 
11544 	drm_crtc_cleanup(crtc);
11545 
11546 	kfree(intel_crtc);
11547 }
11548 
11549 static void intel_unpin_work_fn(struct work_struct *__work)
11550 {
11551 	struct intel_flip_work *work =
11552 		container_of(__work, struct intel_flip_work, unpin_work);
11553 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11554 	struct drm_device *dev = crtc->base.dev;
11555 	struct drm_plane *primary = crtc->base.primary;
11556 
11557 	if (is_mmio_work(work))
11558 		flush_work(&work->mmio_work);
11559 
11560 	mutex_lock(&dev->struct_mutex);
11561 	intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11562 	i915_gem_object_put(work->pending_flip_obj);
11563 	mutex_unlock(&dev->struct_mutex);
11564 
11565 	i915_gem_request_put(work->flip_queued_req);
11566 
11567 	intel_frontbuffer_flip_complete(to_i915(dev),
11568 					to_intel_plane(primary)->frontbuffer_bit);
11569 	intel_fbc_post_update(crtc);
11570 	drm_framebuffer_unreference(work->old_fb);
11571 
11572 	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11573 	atomic_dec(&crtc->unpin_work_count);
11574 
11575 	kfree(work);
11576 }
11577 
11578 /* Is 'a' after or equal to 'b'? */
11579 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11580 {
11581 	return !((a - b) & 0x80000000);
11582 }
11583 
11584 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11585 				   struct intel_flip_work *work)
11586 {
11587 	struct drm_device *dev = crtc->base.dev;
11588 	struct drm_i915_private *dev_priv = to_i915(dev);
11589 
11590 	if (abort_flip_on_reset(crtc))
11591 		return true;
11592 
11593 	/*
11594 	 * The relevant registers doen't exist on pre-ctg.
11595 	 * As the flip done interrupt doesn't trigger for mmio
11596 	 * flips on gmch platforms, a flip count check isn't
11597 	 * really needed there. But since ctg has the registers,
11598 	 * include it in the check anyway.
11599 	 */
11600 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11601 		return true;
11602 
11603 	/*
11604 	 * BDW signals flip done immediately if the plane
11605 	 * is disabled, even if the plane enable is already
11606 	 * armed to occur at the next vblank :(
11607 	 */
11608 
11609 	/*
11610 	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11611 	 * used the same base address. In that case the mmio flip might
11612 	 * have completed, but the CS hasn't even executed the flip yet.
11613 	 *
11614 	 * A flip count check isn't enough as the CS might have updated
11615 	 * the base address just after start of vblank, but before we
11616 	 * managed to process the interrupt. This means we'd complete the
11617 	 * CS flip too soon.
11618 	 *
11619 	 * Combining both checks should get us a good enough result. It may
11620 	 * still happen that the CS flip has been executed, but has not
11621 	 * yet actually completed. But in case the base address is the same
11622 	 * anyway, we don't really care.
11623 	 */
11624 	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11625 		crtc->flip_work->gtt_offset &&
11626 		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11627 				    crtc->flip_work->flip_count);
11628 }
11629 
11630 static bool
11631 __pageflip_finished_mmio(struct intel_crtc *crtc,
11632 			       struct intel_flip_work *work)
11633 {
11634 	/*
11635 	 * MMIO work completes when vblank is different from
11636 	 * flip_queued_vblank.
11637 	 *
11638 	 * Reset counter value doesn't matter, this is handled by
11639 	 * i915_wait_request finishing early, so no need to handle
11640 	 * reset here.
11641 	 */
11642 	return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11643 }
11644 
11645 
11646 static bool pageflip_finished(struct intel_crtc *crtc,
11647 			      struct intel_flip_work *work)
11648 {
11649 	if (!atomic_read(&work->pending))
11650 		return false;
11651 
11652 	smp_rmb();
11653 
11654 	if (is_mmio_work(work))
11655 		return __pageflip_finished_mmio(crtc, work);
11656 	else
11657 		return __pageflip_finished_cs(crtc, work);
11658 }
11659 
11660 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11661 {
11662 	struct drm_device *dev = &dev_priv->drm;
11663 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11664 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11665 	struct intel_flip_work *work;
11666 	unsigned long flags;
11667 
11668 	/* Ignore early vblank irqs */
11669 	if (!crtc)
11670 		return;
11671 
11672 	/*
11673 	 * This is called both by irq handlers and the reset code (to complete
11674 	 * lost pageflips) so needs the full irqsave spinlocks.
11675 	 */
11676 	spin_lock_irqsave(&dev->event_lock, flags);
11677 	work = intel_crtc->flip_work;
11678 
11679 	if (work != NULL &&
11680 	    !is_mmio_work(work) &&
11681 	    pageflip_finished(intel_crtc, work))
11682 		page_flip_completed(intel_crtc);
11683 
11684 	spin_unlock_irqrestore(&dev->event_lock, flags);
11685 }
11686 
11687 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11688 {
11689 	struct drm_device *dev = &dev_priv->drm;
11690 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11691 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11692 	struct intel_flip_work *work;
11693 	unsigned long flags;
11694 
11695 	/* Ignore early vblank irqs */
11696 	if (!crtc)
11697 		return;
11698 
11699 	/*
11700 	 * This is called both by irq handlers and the reset code (to complete
11701 	 * lost pageflips) so needs the full irqsave spinlocks.
11702 	 */
11703 	spin_lock_irqsave(&dev->event_lock, flags);
11704 	work = intel_crtc->flip_work;
11705 
11706 	if (work != NULL &&
11707 	    is_mmio_work(work) &&
11708 	    pageflip_finished(intel_crtc, work))
11709 		page_flip_completed(intel_crtc);
11710 
11711 	spin_unlock_irqrestore(&dev->event_lock, flags);
11712 }
11713 
11714 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11715 					       struct intel_flip_work *work)
11716 {
11717 	work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11718 
11719 	/* Ensure that the work item is consistent when activating it ... */
11720 	smp_mb__before_atomic();
11721 	atomic_set(&work->pending, 1);
11722 }
11723 
11724 static int intel_gen2_queue_flip(struct drm_device *dev,
11725 				 struct drm_crtc *crtc,
11726 				 struct drm_framebuffer *fb,
11727 				 struct drm_i915_gem_object *obj,
11728 				 struct drm_i915_gem_request *req,
11729 				 uint32_t flags)
11730 {
11731 	struct intel_ring *ring = req->ring;
11732 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11733 	u32 flip_mask;
11734 	int ret;
11735 
11736 	ret = intel_ring_begin(req, 6);
11737 	if (ret)
11738 		return ret;
11739 
11740 	/* Can't queue multiple flips, so wait for the previous
11741 	 * one to finish before executing the next.
11742 	 */
11743 	if (intel_crtc->plane)
11744 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11745 	else
11746 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11747 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11748 	intel_ring_emit(ring, MI_NOOP);
11749 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11750 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11751 	intel_ring_emit(ring, fb->pitches[0]);
11752 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11753 	intel_ring_emit(ring, 0); /* aux display base address, unused */
11754 
11755 	return 0;
11756 }
11757 
11758 static int intel_gen3_queue_flip(struct drm_device *dev,
11759 				 struct drm_crtc *crtc,
11760 				 struct drm_framebuffer *fb,
11761 				 struct drm_i915_gem_object *obj,
11762 				 struct drm_i915_gem_request *req,
11763 				 uint32_t flags)
11764 {
11765 	struct intel_ring *ring = req->ring;
11766 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11767 	u32 flip_mask;
11768 	int ret;
11769 
11770 	ret = intel_ring_begin(req, 6);
11771 	if (ret)
11772 		return ret;
11773 
11774 	if (intel_crtc->plane)
11775 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11776 	else
11777 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11778 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11779 	intel_ring_emit(ring, MI_NOOP);
11780 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11781 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11782 	intel_ring_emit(ring, fb->pitches[0]);
11783 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11784 	intel_ring_emit(ring, MI_NOOP);
11785 
11786 	return 0;
11787 }
11788 
11789 static int intel_gen4_queue_flip(struct drm_device *dev,
11790 				 struct drm_crtc *crtc,
11791 				 struct drm_framebuffer *fb,
11792 				 struct drm_i915_gem_object *obj,
11793 				 struct drm_i915_gem_request *req,
11794 				 uint32_t flags)
11795 {
11796 	struct intel_ring *ring = req->ring;
11797 	struct drm_i915_private *dev_priv = to_i915(dev);
11798 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11799 	uint32_t pf, pipesrc;
11800 	int ret;
11801 
11802 	ret = intel_ring_begin(req, 4);
11803 	if (ret)
11804 		return ret;
11805 
11806 	/* i965+ uses the linear or tiled offsets from the
11807 	 * Display Registers (which do not change across a page-flip)
11808 	 * so we need only reprogram the base address.
11809 	 */
11810 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11811 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11812 	intel_ring_emit(ring, fb->pitches[0]);
11813 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11814 			intel_fb_modifier_to_tiling(fb->modifier[0]));
11815 
11816 	/* XXX Enabling the panel-fitter across page-flip is so far
11817 	 * untested on non-native modes, so ignore it for now.
11818 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11819 	 */
11820 	pf = 0;
11821 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11822 	intel_ring_emit(ring, pf | pipesrc);
11823 
11824 	return 0;
11825 }
11826 
11827 static int intel_gen6_queue_flip(struct drm_device *dev,
11828 				 struct drm_crtc *crtc,
11829 				 struct drm_framebuffer *fb,
11830 				 struct drm_i915_gem_object *obj,
11831 				 struct drm_i915_gem_request *req,
11832 				 uint32_t flags)
11833 {
11834 	struct intel_ring *ring = req->ring;
11835 	struct drm_i915_private *dev_priv = to_i915(dev);
11836 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11837 	uint32_t pf, pipesrc;
11838 	int ret;
11839 
11840 	ret = intel_ring_begin(req, 4);
11841 	if (ret)
11842 		return ret;
11843 
11844 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11845 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11846 	intel_ring_emit(ring, fb->pitches[0] |
11847 			intel_fb_modifier_to_tiling(fb->modifier[0]));
11848 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11849 
11850 	/* Contrary to the suggestions in the documentation,
11851 	 * "Enable Panel Fitter" does not seem to be required when page
11852 	 * flipping with a non-native mode, and worse causes a normal
11853 	 * modeset to fail.
11854 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11855 	 */
11856 	pf = 0;
11857 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11858 	intel_ring_emit(ring, pf | pipesrc);
11859 
11860 	return 0;
11861 }
11862 
11863 static int intel_gen7_queue_flip(struct drm_device *dev,
11864 				 struct drm_crtc *crtc,
11865 				 struct drm_framebuffer *fb,
11866 				 struct drm_i915_gem_object *obj,
11867 				 struct drm_i915_gem_request *req,
11868 				 uint32_t flags)
11869 {
11870 	struct drm_i915_private *dev_priv = to_i915(dev);
11871 	struct intel_ring *ring = req->ring;
11872 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11873 	uint32_t plane_bit = 0;
11874 	int len, ret;
11875 
11876 	switch (intel_crtc->plane) {
11877 	case PLANE_A:
11878 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11879 		break;
11880 	case PLANE_B:
11881 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11882 		break;
11883 	case PLANE_C:
11884 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11885 		break;
11886 	default:
11887 		WARN_ONCE(1, "unknown plane in flip command\n");
11888 		return -ENODEV;
11889 	}
11890 
11891 	len = 4;
11892 	if (req->engine->id == RCS) {
11893 		len += 6;
11894 		/*
11895 		 * On Gen 8, SRM is now taking an extra dword to accommodate
11896 		 * 48bits addresses, and we need a NOOP for the batch size to
11897 		 * stay even.
11898 		 */
11899 		if (IS_GEN8(dev_priv))
11900 			len += 2;
11901 	}
11902 
11903 	/*
11904 	 * BSpec MI_DISPLAY_FLIP for IVB:
11905 	 * "The full packet must be contained within the same cache line."
11906 	 *
11907 	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11908 	 * cacheline, if we ever start emitting more commands before
11909 	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11910 	 * then do the cacheline alignment, and finally emit the
11911 	 * MI_DISPLAY_FLIP.
11912 	 */
11913 	ret = intel_ring_cacheline_align(req);
11914 	if (ret)
11915 		return ret;
11916 
11917 	ret = intel_ring_begin(req, len);
11918 	if (ret)
11919 		return ret;
11920 
11921 	/* Unmask the flip-done completion message. Note that the bspec says that
11922 	 * we should do this for both the BCS and RCS, and that we must not unmask
11923 	 * more than one flip event at any time (or ensure that one flip message
11924 	 * can be sent by waiting for flip-done prior to queueing new flips).
11925 	 * Experimentation says that BCS works despite DERRMR masking all
11926 	 * flip-done completion events and that unmasking all planes at once
11927 	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11928 	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11929 	 */
11930 	if (req->engine->id == RCS) {
11931 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11932 		intel_ring_emit_reg(ring, DERRMR);
11933 		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11934 					  DERRMR_PIPEB_PRI_FLIP_DONE |
11935 					  DERRMR_PIPEC_PRI_FLIP_DONE));
11936 		if (IS_GEN8(dev_priv))
11937 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11938 					      MI_SRM_LRM_GLOBAL_GTT);
11939 		else
11940 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11941 					      MI_SRM_LRM_GLOBAL_GTT);
11942 		intel_ring_emit_reg(ring, DERRMR);
11943 		intel_ring_emit(ring,
11944 				i915_ggtt_offset(req->engine->scratch) + 256);
11945 		if (IS_GEN8(dev_priv)) {
11946 			intel_ring_emit(ring, 0);
11947 			intel_ring_emit(ring, MI_NOOP);
11948 		}
11949 	}
11950 
11951 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11952 	intel_ring_emit(ring, fb->pitches[0] |
11953 			intel_fb_modifier_to_tiling(fb->modifier[0]));
11954 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11955 	intel_ring_emit(ring, (MI_NOOP));
11956 
11957 	return 0;
11958 }
11959 
11960 static bool use_mmio_flip(struct intel_engine_cs *engine,
11961 			  struct drm_i915_gem_object *obj)
11962 {
11963 	struct reservation_object *resv;
11964 
11965 	/*
11966 	 * This is not being used for older platforms, because
11967 	 * non-availability of flip done interrupt forces us to use
11968 	 * CS flips. Older platforms derive flip done using some clever
11969 	 * tricks involving the flip_pending status bits and vblank irqs.
11970 	 * So using MMIO flips there would disrupt this mechanism.
11971 	 */
11972 
11973 	if (engine == NULL)
11974 		return true;
11975 
11976 	if (INTEL_GEN(engine->i915) < 5)
11977 		return false;
11978 
11979 	if (i915.use_mmio_flip < 0)
11980 		return false;
11981 	else if (i915.use_mmio_flip > 0)
11982 		return true;
11983 	else if (i915.enable_execlists)
11984 		return true;
11985 
11986 	resv = i915_gem_object_get_dmabuf_resv(obj);
11987 	if (resv && !reservation_object_test_signaled_rcu(resv, false))
11988 		return true;
11989 
11990 	return engine != i915_gem_active_get_engine(&obj->last_write,
11991 						    &obj->base.dev->struct_mutex);
11992 }
11993 
11994 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11995 			     unsigned int rotation,
11996 			     struct intel_flip_work *work)
11997 {
11998 	struct drm_device *dev = intel_crtc->base.dev;
11999 	struct drm_i915_private *dev_priv = to_i915(dev);
12000 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12001 	const enum i915_pipe pipe = intel_crtc->pipe;
12002 	u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
12003 
12004 	ctl = I915_READ(PLANE_CTL(pipe, 0));
12005 	ctl &= ~PLANE_CTL_TILED_MASK;
12006 	switch (fb->modifier[0]) {
12007 	case DRM_FORMAT_MOD_NONE:
12008 		break;
12009 	case I915_FORMAT_MOD_X_TILED:
12010 		ctl |= PLANE_CTL_TILED_X;
12011 		break;
12012 	case I915_FORMAT_MOD_Y_TILED:
12013 		ctl |= PLANE_CTL_TILED_Y;
12014 		break;
12015 	case I915_FORMAT_MOD_Yf_TILED:
12016 		ctl |= PLANE_CTL_TILED_YF;
12017 		break;
12018 	default:
12019 		MISSING_CASE(fb->modifier[0]);
12020 	}
12021 
12022 	/*
12023 	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12024 	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12025 	 */
12026 	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12027 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12028 
12029 	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12030 	POSTING_READ(PLANE_SURF(pipe, 0));
12031 }
12032 
12033 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12034 			     struct intel_flip_work *work)
12035 {
12036 	struct drm_device *dev = intel_crtc->base.dev;
12037 	struct drm_i915_private *dev_priv = to_i915(dev);
12038 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12039 	i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12040 	u32 dspcntr;
12041 
12042 	dspcntr = I915_READ(reg);
12043 
12044 	if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
12045 		dspcntr |= DISPPLANE_TILED;
12046 	else
12047 		dspcntr &= ~DISPPLANE_TILED;
12048 
12049 	I915_WRITE(reg, dspcntr);
12050 
12051 	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12052 	POSTING_READ(DSPSURF(intel_crtc->plane));
12053 }
12054 
12055 static void intel_mmio_flip_work_func(struct work_struct *w)
12056 {
12057 	struct intel_flip_work *work =
12058 		container_of(w, struct intel_flip_work, mmio_work);
12059 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12060 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12061 	struct intel_framebuffer *intel_fb =
12062 		to_intel_framebuffer(crtc->base.primary->fb);
12063 	struct drm_i915_gem_object *obj = intel_fb->obj;
12064 	struct reservation_object *resv;
12065 
12066 	if (work->flip_queued_req)
12067 		WARN_ON(i915_wait_request(work->flip_queued_req,
12068 					  0, NULL, NO_WAITBOOST));
12069 
12070 	/* For framebuffer backed by dmabuf, wait for fence */
12071 	resv = i915_gem_object_get_dmabuf_resv(obj);
12072 	if (resv)
12073 		WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
12074 							    MAX_SCHEDULE_TIMEOUT) < 0);
12075 
12076 	intel_pipe_update_start(crtc);
12077 
12078 	if (INTEL_GEN(dev_priv) >= 9)
12079 		skl_do_mmio_flip(crtc, work->rotation, work);
12080 	else
12081 		/* use_mmio_flip() retricts MMIO flips to ilk+ */
12082 		ilk_do_mmio_flip(crtc, work);
12083 
12084 	intel_pipe_update_end(crtc, work);
12085 }
12086 
12087 static int intel_default_queue_flip(struct drm_device *dev,
12088 				    struct drm_crtc *crtc,
12089 				    struct drm_framebuffer *fb,
12090 				    struct drm_i915_gem_object *obj,
12091 				    struct drm_i915_gem_request *req,
12092 				    uint32_t flags)
12093 {
12094 	return -ENODEV;
12095 }
12096 
12097 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12098 				      struct intel_crtc *intel_crtc,
12099 				      struct intel_flip_work *work)
12100 {
12101 	u32 addr, vblank;
12102 
12103 	if (!atomic_read(&work->pending))
12104 		return false;
12105 
12106 	smp_rmb();
12107 
12108 	vblank = intel_crtc_get_vblank_counter(intel_crtc);
12109 	if (work->flip_ready_vblank == 0) {
12110 		if (work->flip_queued_req &&
12111 		    !i915_gem_request_completed(work->flip_queued_req))
12112 			return false;
12113 
12114 		work->flip_ready_vblank = vblank;
12115 	}
12116 
12117 	if (vblank - work->flip_ready_vblank < 3)
12118 		return false;
12119 
12120 	/* Potential stall - if we see that the flip has happened,
12121 	 * assume a missed interrupt. */
12122 	if (INTEL_GEN(dev_priv) >= 4)
12123 		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12124 	else
12125 		addr = I915_READ(DSPADDR(intel_crtc->plane));
12126 
12127 	/* There is a potential issue here with a false positive after a flip
12128 	 * to the same address. We could address this by checking for a
12129 	 * non-incrementing frame counter.
12130 	 */
12131 	return addr == work->gtt_offset;
12132 }
12133 
12134 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12135 {
12136 	struct drm_device *dev = &dev_priv->drm;
12137 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12138 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12139 	struct intel_flip_work *work;
12140 
12141 //	WARN_ON(!in_interrupt());
12142 
12143 	if (crtc == NULL)
12144 		return;
12145 
12146 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
12147 	work = intel_crtc->flip_work;
12148 
12149 	if (work != NULL && !is_mmio_work(work) &&
12150 	    __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12151 		WARN_ONCE(1,
12152 			  "Kicking stuck page flip: queued at %d, now %d\n",
12153 			work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12154 		page_flip_completed(intel_crtc);
12155 		work = NULL;
12156 	}
12157 
12158 	if (work != NULL && !is_mmio_work(work) &&
12159 	    intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12160 		intel_queue_rps_boost_for_request(work->flip_queued_req);
12161 	lockmgr(&dev->event_lock, LK_RELEASE);
12162 }
12163 
12164 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12165 				struct drm_framebuffer *fb,
12166 				struct drm_pending_vblank_event *event,
12167 				uint32_t page_flip_flags)
12168 {
12169 	struct drm_device *dev = crtc->dev;
12170 	struct drm_i915_private *dev_priv = to_i915(dev);
12171 	struct drm_framebuffer *old_fb = crtc->primary->fb;
12172 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12173 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12174 	struct drm_plane *primary = crtc->primary;
12175 	enum i915_pipe pipe = intel_crtc->pipe;
12176 	struct intel_flip_work *work;
12177 	struct intel_engine_cs *engine;
12178 	bool mmio_flip;
12179 	struct drm_i915_gem_request *request;
12180 	struct i915_vma *vma;
12181 	int ret;
12182 
12183 	/*
12184 	 * drm_mode_page_flip_ioctl() should already catch this, but double
12185 	 * check to be safe.  In the future we may enable pageflipping from
12186 	 * a disabled primary plane.
12187 	 */
12188 	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12189 		return -EBUSY;
12190 
12191 	/* Can't change pixel format via MI display flips. */
12192 	if (fb->pixel_format != crtc->primary->fb->pixel_format)
12193 		return -EINVAL;
12194 
12195 	/*
12196 	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12197 	 * Note that pitch changes could also affect these register.
12198 	 */
12199 	if (INTEL_INFO(dev)->gen > 3 &&
12200 	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12201 	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
12202 		return -EINVAL;
12203 
12204 	if (i915_terminally_wedged(&dev_priv->gpu_error))
12205 		goto out_hang;
12206 
12207 	work = kzalloc(sizeof(*work), GFP_KERNEL);
12208 	if (work == NULL)
12209 		return -ENOMEM;
12210 
12211 	work->event = event;
12212 	work->crtc = crtc;
12213 	work->old_fb = old_fb;
12214 	INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12215 
12216 	ret = drm_crtc_vblank_get(crtc);
12217 	if (ret)
12218 		goto free_work;
12219 
12220 	/* We borrow the event spin lock for protecting flip_work */
12221 	spin_lock_irq(&dev->event_lock);
12222 	if (intel_crtc->flip_work) {
12223 		/* Before declaring the flip queue wedged, check if
12224 		 * the hardware completed the operation behind our backs.
12225 		 */
12226 		if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12227 			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12228 			page_flip_completed(intel_crtc);
12229 		} else {
12230 			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12231 			spin_unlock_irq(&dev->event_lock);
12232 
12233 			drm_crtc_vblank_put(crtc);
12234 			kfree(work);
12235 			return -EBUSY;
12236 		}
12237 	}
12238 	intel_crtc->flip_work = work;
12239 	spin_unlock_irq(&dev->event_lock);
12240 
12241 	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12242 		flush_workqueue(dev_priv->wq);
12243 
12244 	/* Reference the objects for the scheduled work. */
12245 	drm_framebuffer_reference(work->old_fb);
12246 
12247 	crtc->primary->fb = fb;
12248 	update_state_fb(crtc->primary);
12249 
12250 	work->pending_flip_obj = i915_gem_object_get(obj);
12251 
12252 	ret = i915_mutex_lock_interruptible(dev);
12253 	if (ret)
12254 		goto cleanup;
12255 
12256 	intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12257 	if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12258 		ret = -EIO;
12259 		goto cleanup;
12260 	}
12261 
12262 	atomic_inc(&intel_crtc->unpin_work_count);
12263 
12264 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12265 		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12266 
12267 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12268 		engine = dev_priv->engine[BCS];
12269 		if (fb->modifier[0] != old_fb->modifier[0])
12270 			/* vlv: DISPLAY_FLIP fails to change tiling */
12271 			engine = NULL;
12272 	} else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12273 		engine = dev_priv->engine[BCS];
12274 	} else if (INTEL_INFO(dev)->gen >= 7) {
12275 		engine = i915_gem_active_get_engine(&obj->last_write,
12276 						    &obj->base.dev->struct_mutex);
12277 		if (engine == NULL || engine->id != RCS)
12278 			engine = dev_priv->engine[BCS];
12279 	} else {
12280 		engine = dev_priv->engine[RCS];
12281 	}
12282 
12283 	mmio_flip = use_mmio_flip(engine, obj);
12284 
12285 	vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12286 	if (IS_ERR(vma)) {
12287 		ret = PTR_ERR(vma);
12288 		goto cleanup_pending;
12289 	}
12290 
12291 	work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12292 	work->gtt_offset += intel_crtc->dspaddr_offset;
12293 	work->rotation = crtc->primary->state->rotation;
12294 
12295 	/*
12296 	 * There's the potential that the next frame will not be compatible with
12297 	 * FBC, so we want to call pre_update() before the actual page flip.
12298 	 * The problem is that pre_update() caches some information about the fb
12299 	 * object, so we want to do this only after the object is pinned. Let's
12300 	 * be on the safe side and do this immediately before scheduling the
12301 	 * flip.
12302 	 */
12303 	intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12304 			     to_intel_plane_state(primary->state));
12305 
12306 	if (mmio_flip) {
12307 		INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12308 
12309 		work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12310 							    &obj->base.dev->struct_mutex);
12311 		queue_work(system_unbound_wq, &work->mmio_work);
12312 	} else {
12313 		request = i915_gem_request_alloc(engine, engine->last_context);
12314 		if (IS_ERR(request)) {
12315 			ret = PTR_ERR(request);
12316 			goto cleanup_unpin;
12317 		}
12318 
12319 		ret = i915_gem_request_await_object(request, obj, false);
12320 		if (ret)
12321 			goto cleanup_request;
12322 
12323 		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12324 						   page_flip_flags);
12325 		if (ret)
12326 			goto cleanup_request;
12327 
12328 		intel_mark_page_flip_active(intel_crtc, work);
12329 
12330 		work->flip_queued_req = i915_gem_request_get(request);
12331 		i915_add_request_no_flush(request);
12332 	}
12333 
12334 	i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12335 			  to_intel_plane(primary)->frontbuffer_bit);
12336 	mutex_unlock(&dev->struct_mutex);
12337 
12338 	intel_frontbuffer_flip_prepare(to_i915(dev),
12339 				       to_intel_plane(primary)->frontbuffer_bit);
12340 
12341 	trace_i915_flip_request(intel_crtc->plane, obj);
12342 
12343 	return 0;
12344 
12345 cleanup_request:
12346 	i915_add_request_no_flush(request);
12347 cleanup_unpin:
12348 	intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12349 cleanup_pending:
12350 	atomic_dec(&intel_crtc->unpin_work_count);
12351 	mutex_unlock(&dev->struct_mutex);
12352 cleanup:
12353 	crtc->primary->fb = old_fb;
12354 	update_state_fb(crtc->primary);
12355 
12356 	i915_gem_object_put_unlocked(obj);
12357 	drm_framebuffer_unreference(work->old_fb);
12358 
12359 	spin_lock_irq(&dev->event_lock);
12360 	intel_crtc->flip_work = NULL;
12361 	spin_unlock_irq(&dev->event_lock);
12362 
12363 	drm_crtc_vblank_put(crtc);
12364 free_work:
12365 	kfree(work);
12366 
12367 	if (ret == -EIO) {
12368 		struct drm_atomic_state *state;
12369 		struct drm_plane_state *plane_state;
12370 
12371 out_hang:
12372 		state = drm_atomic_state_alloc(dev);
12373 		if (!state)
12374 			return -ENOMEM;
12375 		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12376 
12377 retry:
12378 		plane_state = drm_atomic_get_plane_state(state, primary);
12379 		ret = PTR_ERR_OR_ZERO(plane_state);
12380 		if (!ret) {
12381 			drm_atomic_set_fb_for_plane(plane_state, fb);
12382 
12383 			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12384 			if (!ret)
12385 				ret = drm_atomic_commit(state);
12386 		}
12387 
12388 		if (ret == -EDEADLK) {
12389 			drm_modeset_backoff(state->acquire_ctx);
12390 			drm_atomic_state_clear(state);
12391 			goto retry;
12392 		}
12393 
12394 		if (ret)
12395 			drm_atomic_state_free(state);
12396 
12397 		if (ret == 0 && event) {
12398 			spin_lock_irq(&dev->event_lock);
12399 			drm_crtc_send_vblank_event(crtc, event);
12400 			spin_unlock_irq(&dev->event_lock);
12401 		}
12402 	}
12403 	return ret;
12404 }
12405 
12406 
12407 /**
12408  * intel_wm_need_update - Check whether watermarks need updating
12409  * @plane: drm plane
12410  * @state: new plane state
12411  *
12412  * Check current plane state versus the new one to determine whether
12413  * watermarks need to be recalculated.
12414  *
12415  * Returns true or false.
12416  */
12417 static bool intel_wm_need_update(struct drm_plane *plane,
12418 				 struct drm_plane_state *state)
12419 {
12420 	struct intel_plane_state *new = to_intel_plane_state(state);
12421 	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12422 
12423 	/* Update watermarks on tiling or size changes. */
12424 	if (new->base.visible != cur->base.visible)
12425 		return true;
12426 
12427 	if (!cur->base.fb || !new->base.fb)
12428 		return false;
12429 
12430 	if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12431 	    cur->base.rotation != new->base.rotation ||
12432 	    drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12433 	    drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12434 	    drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12435 	    drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12436 		return true;
12437 
12438 	return false;
12439 }
12440 
12441 static bool needs_scaling(struct intel_plane_state *state)
12442 {
12443 	int src_w = drm_rect_width(&state->base.src) >> 16;
12444 	int src_h = drm_rect_height(&state->base.src) >> 16;
12445 	int dst_w = drm_rect_width(&state->base.dst);
12446 	int dst_h = drm_rect_height(&state->base.dst);
12447 
12448 	return (src_w != dst_w || src_h != dst_h);
12449 }
12450 
12451 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12452 				    struct drm_plane_state *plane_state)
12453 {
12454 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12455 	struct drm_crtc *crtc = crtc_state->crtc;
12456 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12457 	struct drm_plane *plane = plane_state->plane;
12458 	struct drm_device *dev = crtc->dev;
12459 	struct drm_i915_private *dev_priv = to_i915(dev);
12460 	struct intel_plane_state *old_plane_state =
12461 		to_intel_plane_state(plane->state);
12462 	bool mode_changed = needs_modeset(crtc_state);
12463 	bool was_crtc_enabled = crtc->state->active;
12464 	bool is_crtc_enabled = crtc_state->active;
12465 	bool turn_off, turn_on, visible, was_visible;
12466 	struct drm_framebuffer *fb = plane_state->fb;
12467 	int ret;
12468 
12469 	if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12470 		ret = skl_update_scaler_plane(
12471 			to_intel_crtc_state(crtc_state),
12472 			to_intel_plane_state(plane_state));
12473 		if (ret)
12474 			return ret;
12475 	}
12476 
12477 	was_visible = old_plane_state->base.visible;
12478 	visible = to_intel_plane_state(plane_state)->base.visible;
12479 
12480 	if (!was_crtc_enabled && WARN_ON(was_visible))
12481 		was_visible = false;
12482 
12483 	/*
12484 	 * Visibility is calculated as if the crtc was on, but
12485 	 * after scaler setup everything depends on it being off
12486 	 * when the crtc isn't active.
12487 	 *
12488 	 * FIXME this is wrong for watermarks. Watermarks should also
12489 	 * be computed as if the pipe would be active. Perhaps move
12490 	 * per-plane wm computation to the .check_plane() hook, and
12491 	 * only combine the results from all planes in the current place?
12492 	 */
12493 	if (!is_crtc_enabled)
12494 		to_intel_plane_state(plane_state)->base.visible = visible = false;
12495 
12496 	if (!was_visible && !visible)
12497 		return 0;
12498 
12499 	if (fb != old_plane_state->base.fb)
12500 		pipe_config->fb_changed = true;
12501 
12502 	turn_off = was_visible && (!visible || mode_changed);
12503 	turn_on = visible && (!was_visible || mode_changed);
12504 
12505 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12506 			 intel_crtc->base.base.id,
12507 			 intel_crtc->base.name,
12508 			 plane->base.id, plane->name,
12509 			 fb ? fb->base.id : -1);
12510 
12511 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12512 			 plane->base.id, plane->name,
12513 			 was_visible, visible,
12514 			 turn_off, turn_on, mode_changed);
12515 
12516 	if (turn_on) {
12517 		pipe_config->update_wm_pre = true;
12518 
12519 		/* must disable cxsr around plane enable/disable */
12520 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12521 			pipe_config->disable_cxsr = true;
12522 	} else if (turn_off) {
12523 		pipe_config->update_wm_post = true;
12524 
12525 		/* must disable cxsr around plane enable/disable */
12526 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12527 			pipe_config->disable_cxsr = true;
12528 	} else if (intel_wm_need_update(plane, plane_state)) {
12529 		/* FIXME bollocks */
12530 		pipe_config->update_wm_pre = true;
12531 		pipe_config->update_wm_post = true;
12532 	}
12533 
12534 	/* Pre-gen9 platforms need two-step watermark updates */
12535 	if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12536 	    INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12537 		to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12538 
12539 	if (visible || was_visible)
12540 		pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12541 
12542 	/*
12543 	 * WaCxSRDisabledForSpriteScaling:ivb
12544 	 *
12545 	 * cstate->update_wm was already set above, so this flag will
12546 	 * take effect when we commit and program watermarks.
12547 	 */
12548 	if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12549 	    needs_scaling(to_intel_plane_state(plane_state)) &&
12550 	    !needs_scaling(old_plane_state))
12551 		pipe_config->disable_lp_wm = true;
12552 
12553 	return 0;
12554 }
12555 
12556 static bool encoders_cloneable(const struct intel_encoder *a,
12557 			       const struct intel_encoder *b)
12558 {
12559 	/* masks could be asymmetric, so check both ways */
12560 	return a == b || (a->cloneable & (1 << b->type) &&
12561 			  b->cloneable & (1 << a->type));
12562 }
12563 
12564 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12565 					 struct intel_crtc *crtc,
12566 					 struct intel_encoder *encoder)
12567 {
12568 	struct intel_encoder *source_encoder;
12569 	struct drm_connector *connector;
12570 	struct drm_connector_state *connector_state;
12571 	int i;
12572 
12573 	for_each_connector_in_state(state, connector, connector_state, i) {
12574 		if (connector_state->crtc != &crtc->base)
12575 			continue;
12576 
12577 		source_encoder =
12578 			to_intel_encoder(connector_state->best_encoder);
12579 		if (!encoders_cloneable(encoder, source_encoder))
12580 			return false;
12581 	}
12582 
12583 	return true;
12584 }
12585 
12586 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12587 				   struct drm_crtc_state *crtc_state)
12588 {
12589 	struct drm_device *dev = crtc->dev;
12590 	struct drm_i915_private *dev_priv = to_i915(dev);
12591 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12592 	struct intel_crtc_state *pipe_config =
12593 		to_intel_crtc_state(crtc_state);
12594 	struct drm_atomic_state *state = crtc_state->state;
12595 	int ret;
12596 	bool mode_changed = needs_modeset(crtc_state);
12597 
12598 	if (mode_changed && !crtc_state->active)
12599 		pipe_config->update_wm_post = true;
12600 
12601 	if (mode_changed && crtc_state->enable &&
12602 	    dev_priv->display.crtc_compute_clock &&
12603 	    !WARN_ON(pipe_config->shared_dpll)) {
12604 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12605 							   pipe_config);
12606 		if (ret)
12607 			return ret;
12608 	}
12609 
12610 	if (crtc_state->color_mgmt_changed) {
12611 		ret = intel_color_check(crtc, crtc_state);
12612 		if (ret)
12613 			return ret;
12614 
12615 		/*
12616 		 * Changing color management on Intel hardware is
12617 		 * handled as part of planes update.
12618 		 */
12619 		crtc_state->planes_changed = true;
12620 	}
12621 
12622 	ret = 0;
12623 	if (dev_priv->display.compute_pipe_wm) {
12624 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
12625 		if (ret) {
12626 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12627 			return ret;
12628 		}
12629 	}
12630 
12631 	if (dev_priv->display.compute_intermediate_wm &&
12632 	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
12633 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12634 			return 0;
12635 
12636 		/*
12637 		 * Calculate 'intermediate' watermarks that satisfy both the
12638 		 * old state and the new state.  We can program these
12639 		 * immediately.
12640 		 */
12641 		ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12642 								intel_crtc,
12643 								pipe_config);
12644 		if (ret) {
12645 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12646 			return ret;
12647 		}
12648 	} else if (dev_priv->display.compute_intermediate_wm) {
12649 		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12650 			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12651 	}
12652 
12653 	if (INTEL_INFO(dev)->gen >= 9) {
12654 		if (mode_changed)
12655 			ret = skl_update_scaler_crtc(pipe_config);
12656 
12657 		if (!ret)
12658 			ret = intel_atomic_setup_scalers(dev, intel_crtc,
12659 							 pipe_config);
12660 	}
12661 
12662 	return ret;
12663 }
12664 
12665 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12666 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
12667 	.atomic_begin = intel_begin_crtc_commit,
12668 	.atomic_flush = intel_finish_crtc_commit,
12669 	.atomic_check = intel_crtc_atomic_check,
12670 };
12671 
12672 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12673 {
12674 	struct intel_connector *connector;
12675 
12676 	for_each_intel_connector(dev, connector) {
12677 		if (connector->base.state->crtc)
12678 			drm_connector_unreference(&connector->base);
12679 
12680 		if (connector->base.encoder) {
12681 			connector->base.state->best_encoder =
12682 				connector->base.encoder;
12683 			connector->base.state->crtc =
12684 				connector->base.encoder->crtc;
12685 
12686 			drm_connector_reference(&connector->base);
12687 		} else {
12688 			connector->base.state->best_encoder = NULL;
12689 			connector->base.state->crtc = NULL;
12690 		}
12691 	}
12692 }
12693 
12694 static void
12695 connected_sink_compute_bpp(struct intel_connector *connector,
12696 			   struct intel_crtc_state *pipe_config)
12697 {
12698 	const struct drm_display_info *info = &connector->base.display_info;
12699 	int bpp = pipe_config->pipe_bpp;
12700 
12701 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12702 		      connector->base.base.id,
12703 		      connector->base.name);
12704 
12705 	/* Don't use an invalid EDID bpc value */
12706 	if (info->bpc != 0 && info->bpc * 3 < bpp) {
12707 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12708 			      bpp, info->bpc * 3);
12709 		pipe_config->pipe_bpp = info->bpc * 3;
12710 	}
12711 
12712 	/* Clamp bpp to 8 on screens without EDID 1.4 */
12713 	if (info->bpc == 0 && bpp > 24) {
12714 		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12715 			      bpp);
12716 		pipe_config->pipe_bpp = 24;
12717 	}
12718 }
12719 
12720 static int
12721 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12722 			  struct intel_crtc_state *pipe_config)
12723 {
12724 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12725 	struct drm_atomic_state *state;
12726 	struct drm_connector *connector;
12727 	struct drm_connector_state *connector_state;
12728 	int bpp, i;
12729 
12730 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12731 	    IS_CHERRYVIEW(dev_priv)))
12732 		bpp = 10*3;
12733 	else if (INTEL_GEN(dev_priv) >= 5)
12734 		bpp = 12*3;
12735 	else
12736 		bpp = 8*3;
12737 
12738 
12739 	pipe_config->pipe_bpp = bpp;
12740 
12741 	state = pipe_config->base.state;
12742 
12743 	/* Clamp display bpp to EDID value */
12744 	for_each_connector_in_state(state, connector, connector_state, i) {
12745 		if (connector_state->crtc != &crtc->base)
12746 			continue;
12747 
12748 		connected_sink_compute_bpp(to_intel_connector(connector),
12749 					   pipe_config);
12750 	}
12751 
12752 	return bpp;
12753 }
12754 
12755 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12756 {
12757 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12758 			"type: 0x%x flags: 0x%x\n",
12759 		mode->crtc_clock,
12760 		mode->crtc_hdisplay, mode->crtc_hsync_start,
12761 		mode->crtc_hsync_end, mode->crtc_htotal,
12762 		mode->crtc_vdisplay, mode->crtc_vsync_start,
12763 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12764 }
12765 
12766 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12767 				   struct intel_crtc_state *pipe_config,
12768 				   const char *context)
12769 {
12770 	struct drm_device *dev = crtc->base.dev;
12771 	struct drm_i915_private *dev_priv = to_i915(dev);
12772 	struct drm_plane *plane;
12773 	struct intel_plane *intel_plane;
12774 	struct intel_plane_state *state;
12775 	struct drm_framebuffer *fb;
12776 
12777 	DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12778 		      crtc->base.base.id, crtc->base.name,
12779 		      context, pipe_config, pipe_name(crtc->pipe));
12780 
12781 	DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12782 	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12783 		      pipe_config->pipe_bpp, pipe_config->dither);
12784 	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12785 		      pipe_config->has_pch_encoder,
12786 		      pipe_config->fdi_lanes,
12787 		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12788 		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12789 		      pipe_config->fdi_m_n.tu);
12790 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12791 		      intel_crtc_has_dp_encoder(pipe_config),
12792 		      pipe_config->lane_count,
12793 		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12794 		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12795 		      pipe_config->dp_m_n.tu);
12796 
12797 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12798 		      intel_crtc_has_dp_encoder(pipe_config),
12799 		      pipe_config->lane_count,
12800 		      pipe_config->dp_m2_n2.gmch_m,
12801 		      pipe_config->dp_m2_n2.gmch_n,
12802 		      pipe_config->dp_m2_n2.link_m,
12803 		      pipe_config->dp_m2_n2.link_n,
12804 		      pipe_config->dp_m2_n2.tu);
12805 
12806 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12807 		      pipe_config->has_audio,
12808 		      pipe_config->has_infoframe);
12809 
12810 	DRM_DEBUG_KMS("requested mode:\n");
12811 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12812 	DRM_DEBUG_KMS("adjusted mode:\n");
12813 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12814 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12815 	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12816 	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12817 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12818 	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12819 		      crtc->num_scalers,
12820 		      pipe_config->scaler_state.scaler_users,
12821 		      pipe_config->scaler_state.scaler_id);
12822 	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12823 		      pipe_config->gmch_pfit.control,
12824 		      pipe_config->gmch_pfit.pgm_ratios,
12825 		      pipe_config->gmch_pfit.lvds_border_bits);
12826 	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12827 		      pipe_config->pch_pfit.pos,
12828 		      pipe_config->pch_pfit.size,
12829 		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12830 	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12831 	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12832 
12833 	if (IS_BROXTON(dev_priv)) {
12834 		DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12835 			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12836 			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12837 			      pipe_config->dpll_hw_state.ebb0,
12838 			      pipe_config->dpll_hw_state.ebb4,
12839 			      pipe_config->dpll_hw_state.pll0,
12840 			      pipe_config->dpll_hw_state.pll1,
12841 			      pipe_config->dpll_hw_state.pll2,
12842 			      pipe_config->dpll_hw_state.pll3,
12843 			      pipe_config->dpll_hw_state.pll6,
12844 			      pipe_config->dpll_hw_state.pll8,
12845 			      pipe_config->dpll_hw_state.pll9,
12846 			      pipe_config->dpll_hw_state.pll10,
12847 			      pipe_config->dpll_hw_state.pcsdw12);
12848 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12849 		DRM_DEBUG_KMS("dpll_hw_state: "
12850 			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12851 			      pipe_config->dpll_hw_state.ctrl1,
12852 			      pipe_config->dpll_hw_state.cfgcr1,
12853 			      pipe_config->dpll_hw_state.cfgcr2);
12854 	} else if (HAS_DDI(dev_priv)) {
12855 		DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12856 			      pipe_config->dpll_hw_state.wrpll,
12857 			      pipe_config->dpll_hw_state.spll);
12858 	} else {
12859 		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12860 			      "fp0: 0x%x, fp1: 0x%x\n",
12861 			      pipe_config->dpll_hw_state.dpll,
12862 			      pipe_config->dpll_hw_state.dpll_md,
12863 			      pipe_config->dpll_hw_state.fp0,
12864 			      pipe_config->dpll_hw_state.fp1);
12865 	}
12866 
12867 	DRM_DEBUG_KMS("planes on this crtc\n");
12868 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12869 		char *format_name;
12870 		intel_plane = to_intel_plane(plane);
12871 		if (intel_plane->pipe != crtc->pipe)
12872 			continue;
12873 
12874 		state = to_intel_plane_state(plane->state);
12875 		fb = state->base.fb;
12876 		if (!fb) {
12877 			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12878 				      plane->base.id, plane->name, state->scaler_id);
12879 			continue;
12880 		}
12881 
12882 		format_name = drm_get_format_name(fb->pixel_format);
12883 
12884 		DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12885 			      plane->base.id, plane->name);
12886 		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12887 			      fb->base.id, fb->width, fb->height, format_name);
12888 		DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12889 			      state->scaler_id,
12890 			      state->base.src.x1 >> 16,
12891 			      state->base.src.y1 >> 16,
12892 			      drm_rect_width(&state->base.src) >> 16,
12893 			      drm_rect_height(&state->base.src) >> 16,
12894 			      state->base.dst.x1, state->base.dst.y1,
12895 			      drm_rect_width(&state->base.dst),
12896 			      drm_rect_height(&state->base.dst));
12897 
12898 		kfree(format_name);
12899 	}
12900 }
12901 
12902 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12903 {
12904 	struct drm_device *dev = state->dev;
12905 	struct drm_connector *connector;
12906 	unsigned int used_ports = 0;
12907 	unsigned int used_mst_ports = 0;
12908 
12909 	/*
12910 	 * Walk the connector list instead of the encoder
12911 	 * list to detect the problem on ddi platforms
12912 	 * where there's just one encoder per digital port.
12913 	 */
12914 	drm_for_each_connector(connector, dev) {
12915 		struct drm_connector_state *connector_state;
12916 		struct intel_encoder *encoder;
12917 
12918 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12919 		if (!connector_state)
12920 			connector_state = connector->state;
12921 
12922 		if (!connector_state->best_encoder)
12923 			continue;
12924 
12925 		encoder = to_intel_encoder(connector_state->best_encoder);
12926 
12927 		WARN_ON(!connector_state->crtc);
12928 
12929 		switch (encoder->type) {
12930 			unsigned int port_mask;
12931 		case INTEL_OUTPUT_UNKNOWN:
12932 			if (WARN_ON(!HAS_DDI(to_i915(dev))))
12933 				break;
12934 		case INTEL_OUTPUT_DP:
12935 		case INTEL_OUTPUT_HDMI:
12936 		case INTEL_OUTPUT_EDP:
12937 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12938 
12939 			/* the same port mustn't appear more than once */
12940 			if (used_ports & port_mask)
12941 				return false;
12942 
12943 			used_ports |= port_mask;
12944 			break;
12945 		case INTEL_OUTPUT_DP_MST:
12946 			used_mst_ports |=
12947 				1 << enc_to_mst(&encoder->base)->primary->port;
12948 			break;
12949 		default:
12950 			break;
12951 		}
12952 	}
12953 
12954 	/* can't mix MST and SST/HDMI on the same port */
12955 	if (used_ports & used_mst_ports)
12956 		return false;
12957 
12958 	return true;
12959 }
12960 
12961 static void
12962 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12963 {
12964 	struct drm_crtc_state tmp_state;
12965 	struct intel_crtc_scaler_state scaler_state;
12966 	struct intel_dpll_hw_state dpll_hw_state;
12967 	struct intel_shared_dpll *shared_dpll;
12968 	bool force_thru;
12969 
12970 	/* FIXME: before the switch to atomic started, a new pipe_config was
12971 	 * kzalloc'd. Code that depends on any field being zero should be
12972 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12973 	 * only fields that are know to not cause problems are preserved. */
12974 
12975 	tmp_state = crtc_state->base;
12976 	scaler_state = crtc_state->scaler_state;
12977 	shared_dpll = crtc_state->shared_dpll;
12978 	dpll_hw_state = crtc_state->dpll_hw_state;
12979 	force_thru = crtc_state->pch_pfit.force_thru;
12980 
12981 	memset(crtc_state, 0, sizeof *crtc_state);
12982 
12983 	crtc_state->base = tmp_state;
12984 	crtc_state->scaler_state = scaler_state;
12985 	crtc_state->shared_dpll = shared_dpll;
12986 	crtc_state->dpll_hw_state = dpll_hw_state;
12987 	crtc_state->pch_pfit.force_thru = force_thru;
12988 }
12989 
12990 static int
12991 intel_modeset_pipe_config(struct drm_crtc *crtc,
12992 			  struct intel_crtc_state *pipe_config)
12993 {
12994 	struct drm_atomic_state *state = pipe_config->base.state;
12995 	struct intel_encoder *encoder;
12996 	struct drm_connector *connector;
12997 	struct drm_connector_state *connector_state;
12998 	int base_bpp, ret = -EINVAL;
12999 	int i;
13000 	bool retry = true;
13001 
13002 	clear_intel_crtc_state(pipe_config);
13003 
13004 	pipe_config->cpu_transcoder =
13005 		(enum transcoder) to_intel_crtc(crtc)->pipe;
13006 
13007 	/*
13008 	 * Sanitize sync polarity flags based on requested ones. If neither
13009 	 * positive or negative polarity is requested, treat this as meaning
13010 	 * negative polarity.
13011 	 */
13012 	if (!(pipe_config->base.adjusted_mode.flags &
13013 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13014 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13015 
13016 	if (!(pipe_config->base.adjusted_mode.flags &
13017 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13018 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13019 
13020 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13021 					     pipe_config);
13022 	if (base_bpp < 0)
13023 		goto fail;
13024 
13025 	/*
13026 	 * Determine the real pipe dimensions. Note that stereo modes can
13027 	 * increase the actual pipe size due to the frame doubling and
13028 	 * insertion of additional space for blanks between the frame. This
13029 	 * is stored in the crtc timings. We use the requested mode to do this
13030 	 * computation to clearly distinguish it from the adjusted mode, which
13031 	 * can be changed by the connectors in the below retry loop.
13032 	 */
13033 	drm_crtc_get_hv_timing(&pipe_config->base.mode,
13034 			       &pipe_config->pipe_src_w,
13035 			       &pipe_config->pipe_src_h);
13036 
13037 	for_each_connector_in_state(state, connector, connector_state, i) {
13038 		if (connector_state->crtc != crtc)
13039 			continue;
13040 
13041 		encoder = to_intel_encoder(connector_state->best_encoder);
13042 
13043 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13044 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13045 			goto fail;
13046 		}
13047 
13048 		/*
13049 		 * Determine output_types before calling the .compute_config()
13050 		 * hooks so that the hooks can use this information safely.
13051 		 */
13052 		pipe_config->output_types |= 1 << encoder->type;
13053 	}
13054 
13055 encoder_retry:
13056 	/* Ensure the port clock defaults are reset when retrying. */
13057 	pipe_config->port_clock = 0;
13058 	pipe_config->pixel_multiplier = 1;
13059 
13060 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13061 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13062 			      CRTC_STEREO_DOUBLE);
13063 
13064 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13065 	 * adjust it according to limitations or connector properties, and also
13066 	 * a chance to reject the mode entirely.
13067 	 */
13068 	for_each_connector_in_state(state, connector, connector_state, i) {
13069 		if (connector_state->crtc != crtc)
13070 			continue;
13071 
13072 		encoder = to_intel_encoder(connector_state->best_encoder);
13073 
13074 		if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13075 			DRM_DEBUG_KMS("Encoder config failure\n");
13076 			goto fail;
13077 		}
13078 	}
13079 
13080 	/* Set default port clock if not overwritten by the encoder. Needs to be
13081 	 * done afterwards in case the encoder adjusts the mode. */
13082 	if (!pipe_config->port_clock)
13083 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13084 			* pipe_config->pixel_multiplier;
13085 
13086 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13087 	if (ret < 0) {
13088 		DRM_DEBUG_KMS("CRTC fixup failed\n");
13089 		goto fail;
13090 	}
13091 
13092 	if (ret == RETRY) {
13093 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
13094 			ret = -EINVAL;
13095 			goto fail;
13096 		}
13097 
13098 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13099 		retry = false;
13100 		goto encoder_retry;
13101 	}
13102 
13103 	/* Dithering seems to not pass-through bits correctly when it should, so
13104 	 * only enable it on 6bpc panels. */
13105 	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13106 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13107 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13108 
13109 fail:
13110 	return ret;
13111 }
13112 
13113 static void
13114 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13115 {
13116 	struct drm_crtc *crtc;
13117 	struct drm_crtc_state *crtc_state;
13118 	int i;
13119 
13120 	/* Double check state. */
13121 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13122 		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13123 
13124 		/* Update hwmode for vblank functions */
13125 		if (crtc->state->active)
13126 			crtc->hwmode = crtc->state->adjusted_mode;
13127 		else
13128 			crtc->hwmode.crtc_clock = 0;
13129 
13130 		/*
13131 		 * Update legacy state to satisfy fbc code. This can
13132 		 * be removed when fbc uses the atomic state.
13133 		 */
13134 		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13135 			struct drm_plane_state *plane_state = crtc->primary->state;
13136 
13137 			crtc->primary->fb = plane_state->fb;
13138 			crtc->x = plane_state->src_x >> 16;
13139 			crtc->y = plane_state->src_y >> 16;
13140 		}
13141 	}
13142 }
13143 
13144 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13145 {
13146 	int diff;
13147 
13148 	if (clock1 == clock2)
13149 		return true;
13150 
13151 	if (!clock1 || !clock2)
13152 		return false;
13153 
13154 	diff = abs(clock1 - clock2);
13155 
13156 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13157 		return true;
13158 
13159 	return false;
13160 }
13161 
13162 static bool
13163 intel_compare_m_n(unsigned int m, unsigned int n,
13164 		  unsigned int m2, unsigned int n2,
13165 		  bool exact)
13166 {
13167 	if (m == m2 && n == n2)
13168 		return true;
13169 
13170 	if (exact || !m || !n || !m2 || !n2)
13171 		return false;
13172 
13173 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13174 
13175 	if (n > n2) {
13176 		while (n > n2) {
13177 			m2 <<= 1;
13178 			n2 <<= 1;
13179 		}
13180 	} else if (n < n2) {
13181 		while (n < n2) {
13182 			m <<= 1;
13183 			n <<= 1;
13184 		}
13185 	}
13186 
13187 	if (n != n2)
13188 		return false;
13189 
13190 	return intel_fuzzy_clock_check(m, m2);
13191 }
13192 
13193 static bool
13194 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13195 		       struct intel_link_m_n *m2_n2,
13196 		       bool adjust)
13197 {
13198 	if (m_n->tu == m2_n2->tu &&
13199 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13200 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13201 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
13202 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
13203 		if (adjust)
13204 			*m2_n2 = *m_n;
13205 
13206 		return true;
13207 	}
13208 
13209 	return false;
13210 }
13211 
13212 static bool
13213 intel_pipe_config_compare(struct drm_device *dev,
13214 			  struct intel_crtc_state *current_config,
13215 			  struct intel_crtc_state *pipe_config,
13216 			  bool adjust)
13217 {
13218 	struct drm_i915_private *dev_priv = to_i915(dev);
13219 	bool ret = true;
13220 
13221 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13222 	do { \
13223 		if (!adjust) \
13224 			DRM_ERROR(fmt, ##__VA_ARGS__); \
13225 		else \
13226 			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13227 	} while (0)
13228 
13229 #define PIPE_CONF_CHECK_X(name)	\
13230 	if (current_config->name != pipe_config->name) { \
13231 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13232 			  "(expected 0x%08x, found 0x%08x)\n", \
13233 			  current_config->name, \
13234 			  pipe_config->name); \
13235 		ret = false; \
13236 	}
13237 
13238 #define PIPE_CONF_CHECK_I(name)	\
13239 	if (current_config->name != pipe_config->name) { \
13240 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13241 			  "(expected %i, found %i)\n", \
13242 			  current_config->name, \
13243 			  pipe_config->name); \
13244 		ret = false; \
13245 	}
13246 
13247 #define PIPE_CONF_CHECK_P(name)	\
13248 	if (current_config->name != pipe_config->name) { \
13249 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13250 			  "(expected %p, found %p)\n", \
13251 			  current_config->name, \
13252 			  pipe_config->name); \
13253 		ret = false; \
13254 	}
13255 
13256 #define PIPE_CONF_CHECK_M_N(name) \
13257 	if (!intel_compare_link_m_n(&current_config->name, \
13258 				    &pipe_config->name,\
13259 				    adjust)) { \
13260 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13261 			  "(expected tu %i gmch %i/%i link %i/%i, " \
13262 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13263 			  current_config->name.tu, \
13264 			  current_config->name.gmch_m, \
13265 			  current_config->name.gmch_n, \
13266 			  current_config->name.link_m, \
13267 			  current_config->name.link_n, \
13268 			  pipe_config->name.tu, \
13269 			  pipe_config->name.gmch_m, \
13270 			  pipe_config->name.gmch_n, \
13271 			  pipe_config->name.link_m, \
13272 			  pipe_config->name.link_n); \
13273 		ret = false; \
13274 	}
13275 
13276 /* This is required for BDW+ where there is only one set of registers for
13277  * switching between high and low RR.
13278  * This macro can be used whenever a comparison has to be made between one
13279  * hw state and multiple sw state variables.
13280  */
13281 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13282 	if (!intel_compare_link_m_n(&current_config->name, \
13283 				    &pipe_config->name, adjust) && \
13284 	    !intel_compare_link_m_n(&current_config->alt_name, \
13285 				    &pipe_config->name, adjust)) { \
13286 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13287 			  "(expected tu %i gmch %i/%i link %i/%i, " \
13288 			  "or tu %i gmch %i/%i link %i/%i, " \
13289 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13290 			  current_config->name.tu, \
13291 			  current_config->name.gmch_m, \
13292 			  current_config->name.gmch_n, \
13293 			  current_config->name.link_m, \
13294 			  current_config->name.link_n, \
13295 			  current_config->alt_name.tu, \
13296 			  current_config->alt_name.gmch_m, \
13297 			  current_config->alt_name.gmch_n, \
13298 			  current_config->alt_name.link_m, \
13299 			  current_config->alt_name.link_n, \
13300 			  pipe_config->name.tu, \
13301 			  pipe_config->name.gmch_m, \
13302 			  pipe_config->name.gmch_n, \
13303 			  pipe_config->name.link_m, \
13304 			  pipe_config->name.link_n); \
13305 		ret = false; \
13306 	}
13307 
13308 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
13309 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13310 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13311 			  "(expected %i, found %i)\n", \
13312 			  current_config->name & (mask), \
13313 			  pipe_config->name & (mask)); \
13314 		ret = false; \
13315 	}
13316 
13317 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13318 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13319 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13320 			  "(expected %i, found %i)\n", \
13321 			  current_config->name, \
13322 			  pipe_config->name); \
13323 		ret = false; \
13324 	}
13325 
13326 #define PIPE_CONF_QUIRK(quirk)	\
13327 	((current_config->quirks | pipe_config->quirks) & (quirk))
13328 
13329 	PIPE_CONF_CHECK_I(cpu_transcoder);
13330 
13331 	PIPE_CONF_CHECK_I(has_pch_encoder);
13332 	PIPE_CONF_CHECK_I(fdi_lanes);
13333 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13334 
13335 	PIPE_CONF_CHECK_I(lane_count);
13336 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13337 
13338 	if (INTEL_INFO(dev)->gen < 8) {
13339 		PIPE_CONF_CHECK_M_N(dp_m_n);
13340 
13341 		if (current_config->has_drrs)
13342 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13343 	} else
13344 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13345 
13346 	PIPE_CONF_CHECK_X(output_types);
13347 
13348 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13349 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13350 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13351 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13352 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13353 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13354 
13355 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13356 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13357 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13358 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13359 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13360 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13361 
13362 	PIPE_CONF_CHECK_I(pixel_multiplier);
13363 	PIPE_CONF_CHECK_I(has_hdmi_sink);
13364 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13365 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13366 		PIPE_CONF_CHECK_I(limited_color_range);
13367 	PIPE_CONF_CHECK_I(has_infoframe);
13368 
13369 	PIPE_CONF_CHECK_I(has_audio);
13370 
13371 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13372 			      DRM_MODE_FLAG_INTERLACE);
13373 
13374 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13375 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13376 				      DRM_MODE_FLAG_PHSYNC);
13377 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13378 				      DRM_MODE_FLAG_NHSYNC);
13379 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13380 				      DRM_MODE_FLAG_PVSYNC);
13381 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13382 				      DRM_MODE_FLAG_NVSYNC);
13383 	}
13384 
13385 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13386 	/* pfit ratios are autocomputed by the hw on gen4+ */
13387 	if (INTEL_INFO(dev)->gen < 4)
13388 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13389 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13390 
13391 	if (!adjust) {
13392 		PIPE_CONF_CHECK_I(pipe_src_w);
13393 		PIPE_CONF_CHECK_I(pipe_src_h);
13394 
13395 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
13396 		if (current_config->pch_pfit.enabled) {
13397 			PIPE_CONF_CHECK_X(pch_pfit.pos);
13398 			PIPE_CONF_CHECK_X(pch_pfit.size);
13399 		}
13400 
13401 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13402 	}
13403 
13404 	/* BDW+ don't expose a synchronous way to read the state */
13405 	if (IS_HASWELL(dev_priv))
13406 		PIPE_CONF_CHECK_I(ips_enabled);
13407 
13408 	PIPE_CONF_CHECK_I(double_wide);
13409 
13410 	PIPE_CONF_CHECK_P(shared_dpll);
13411 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13412 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13413 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13414 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13415 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13416 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13417 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13418 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13419 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13420 
13421 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13422 	PIPE_CONF_CHECK_X(dsi_pll.div);
13423 
13424 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13425 		PIPE_CONF_CHECK_I(pipe_bpp);
13426 
13427 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13428 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13429 
13430 #undef PIPE_CONF_CHECK_X
13431 #undef PIPE_CONF_CHECK_I
13432 #undef PIPE_CONF_CHECK_P
13433 #undef PIPE_CONF_CHECK_FLAGS
13434 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13435 #undef PIPE_CONF_QUIRK
13436 #undef INTEL_ERR_OR_DBG_KMS
13437 
13438 	return ret;
13439 }
13440 
13441 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13442 					   const struct intel_crtc_state *pipe_config)
13443 {
13444 	if (pipe_config->has_pch_encoder) {
13445 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13446 							    &pipe_config->fdi_m_n);
13447 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13448 
13449 		/*
13450 		 * FDI already provided one idea for the dotclock.
13451 		 * Yell if the encoder disagrees.
13452 		 */
13453 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13454 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13455 		     fdi_dotclock, dotclock);
13456 	}
13457 }
13458 
13459 static void verify_wm_state(struct drm_crtc *crtc,
13460 			    struct drm_crtc_state *new_state)
13461 {
13462 	struct drm_device *dev = crtc->dev;
13463 	struct drm_i915_private *dev_priv = to_i915(dev);
13464 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
13465 	struct skl_pipe_wm hw_wm, *sw_wm;
13466 	struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13467 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13468 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13469 	const enum i915_pipe pipe = intel_crtc->pipe;
13470 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
13471 
13472 	if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
13473 		return;
13474 
13475 	skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13476 	sw_wm = &intel_crtc->wm.active.skl;
13477 
13478 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13479 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
13480 
13481 	/* planes */
13482 	for_each_plane(dev_priv, pipe, plane) {
13483 		hw_plane_wm = &hw_wm.planes[plane];
13484 		sw_plane_wm = &sw_wm->planes[plane];
13485 
13486 		/* Watermarks */
13487 		for (level = 0; level <= max_level; level++) {
13488 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13489 						&sw_plane_wm->wm[level]))
13490 				continue;
13491 
13492 			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13493 				  pipe_name(pipe), plane + 1, level,
13494 				  sw_plane_wm->wm[level].plane_en,
13495 				  sw_plane_wm->wm[level].plane_res_b,
13496 				  sw_plane_wm->wm[level].plane_res_l,
13497 				  hw_plane_wm->wm[level].plane_en,
13498 				  hw_plane_wm->wm[level].plane_res_b,
13499 				  hw_plane_wm->wm[level].plane_res_l);
13500 		}
13501 
13502 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13503 					 &sw_plane_wm->trans_wm)) {
13504 			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13505 				  pipe_name(pipe), plane + 1,
13506 				  sw_plane_wm->trans_wm.plane_en,
13507 				  sw_plane_wm->trans_wm.plane_res_b,
13508 				  sw_plane_wm->trans_wm.plane_res_l,
13509 				  hw_plane_wm->trans_wm.plane_en,
13510 				  hw_plane_wm->trans_wm.plane_res_b,
13511 				  hw_plane_wm->trans_wm.plane_res_l);
13512 		}
13513 
13514 		/* DDB */
13515 		hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13516 		sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13517 
13518 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13519 			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13520 				  pipe_name(pipe), plane + 1,
13521 				  sw_ddb_entry->start, sw_ddb_entry->end,
13522 				  hw_ddb_entry->start, hw_ddb_entry->end);
13523 		}
13524 	}
13525 
13526 	/*
13527 	 * cursor
13528 	 * If the cursor plane isn't active, we may not have updated it's ddb
13529 	 * allocation. In that case since the ddb allocation will be updated
13530 	 * once the plane becomes visible, we can skip this check
13531 	 */
13532 	if (intel_crtc->cursor_addr) {
13533 		hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13534 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13535 
13536 		/* Watermarks */
13537 		for (level = 0; level <= max_level; level++) {
13538 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13539 						&sw_plane_wm->wm[level]))
13540 				continue;
13541 
13542 			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13543 				  pipe_name(pipe), level,
13544 				  sw_plane_wm->wm[level].plane_en,
13545 				  sw_plane_wm->wm[level].plane_res_b,
13546 				  sw_plane_wm->wm[level].plane_res_l,
13547 				  hw_plane_wm->wm[level].plane_en,
13548 				  hw_plane_wm->wm[level].plane_res_b,
13549 				  hw_plane_wm->wm[level].plane_res_l);
13550 		}
13551 
13552 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13553 					 &sw_plane_wm->trans_wm)) {
13554 			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13555 				  pipe_name(pipe),
13556 				  sw_plane_wm->trans_wm.plane_en,
13557 				  sw_plane_wm->trans_wm.plane_res_b,
13558 				  sw_plane_wm->trans_wm.plane_res_l,
13559 				  hw_plane_wm->trans_wm.plane_en,
13560 				  hw_plane_wm->trans_wm.plane_res_b,
13561 				  hw_plane_wm->trans_wm.plane_res_l);
13562 		}
13563 
13564 		/* DDB */
13565 		hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13566 		sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13567 
13568 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13569 			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13570 				  pipe_name(pipe),
13571 				  sw_ddb_entry->start, sw_ddb_entry->end,
13572 				  hw_ddb_entry->start, hw_ddb_entry->end);
13573 		}
13574 	}
13575 }
13576 
13577 static void
13578 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13579 {
13580 	struct drm_connector *connector;
13581 
13582 	drm_for_each_connector(connector, dev) {
13583 		struct drm_encoder *encoder = connector->encoder;
13584 		struct drm_connector_state *state = connector->state;
13585 
13586 		if (state->crtc != crtc)
13587 			continue;
13588 
13589 		intel_connector_verify_state(to_intel_connector(connector));
13590 
13591 		I915_STATE_WARN(state->best_encoder != encoder,
13592 		     "connector's atomic encoder doesn't match legacy encoder\n");
13593 	}
13594 }
13595 
13596 static void
13597 verify_encoder_state(struct drm_device *dev)
13598 {
13599 	struct intel_encoder *encoder;
13600 	struct intel_connector *connector;
13601 
13602 	for_each_intel_encoder(dev, encoder) {
13603 		bool enabled = false;
13604 		enum i915_pipe pipe;
13605 
13606 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13607 			      encoder->base.base.id,
13608 			      encoder->base.name);
13609 
13610 		for_each_intel_connector(dev, connector) {
13611 			if (connector->base.state->best_encoder != &encoder->base)
13612 				continue;
13613 			enabled = true;
13614 
13615 			I915_STATE_WARN(connector->base.state->crtc !=
13616 					encoder->base.crtc,
13617 			     "connector's crtc doesn't match encoder crtc\n");
13618 		}
13619 
13620 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13621 		     "encoder's enabled state mismatch "
13622 		     "(expected %i, found %i)\n",
13623 		     !!encoder->base.crtc, enabled);
13624 
13625 		if (!encoder->base.crtc) {
13626 			bool active;
13627 
13628 			active = encoder->get_hw_state(encoder, &pipe);
13629 			I915_STATE_WARN(active,
13630 			     "encoder detached but still enabled on pipe %c.\n",
13631 			     pipe_name(pipe));
13632 		}
13633 	}
13634 }
13635 
13636 static void
13637 verify_crtc_state(struct drm_crtc *crtc,
13638 		  struct drm_crtc_state *old_crtc_state,
13639 		  struct drm_crtc_state *new_crtc_state)
13640 {
13641 	struct drm_device *dev = crtc->dev;
13642 	struct drm_i915_private *dev_priv = to_i915(dev);
13643 	struct intel_encoder *encoder;
13644 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13645 	struct intel_crtc_state *pipe_config, *sw_config;
13646 	struct drm_atomic_state *old_state;
13647 	bool active;
13648 
13649 	old_state = old_crtc_state->state;
13650 	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13651 	pipe_config = to_intel_crtc_state(old_crtc_state);
13652 	memset(pipe_config, 0, sizeof(*pipe_config));
13653 	pipe_config->base.crtc = crtc;
13654 	pipe_config->base.state = old_state;
13655 
13656 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13657 
13658 	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13659 
13660 	/* hw state is inconsistent with the pipe quirk */
13661 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13662 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13663 		active = new_crtc_state->active;
13664 
13665 	I915_STATE_WARN(new_crtc_state->active != active,
13666 	     "crtc active state doesn't match with hw state "
13667 	     "(expected %i, found %i)\n", new_crtc_state->active, active);
13668 
13669 	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13670 	     "transitional active state does not match atomic hw state "
13671 	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13672 
13673 	for_each_encoder_on_crtc(dev, crtc, encoder) {
13674 		enum i915_pipe pipe;
13675 
13676 		active = encoder->get_hw_state(encoder, &pipe);
13677 		I915_STATE_WARN(active != new_crtc_state->active,
13678 			"[ENCODER:%i] active %i with crtc active %i\n",
13679 			encoder->base.base.id, active, new_crtc_state->active);
13680 
13681 		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13682 				"Encoder connected to wrong pipe %c\n",
13683 				pipe_name(pipe));
13684 
13685 		if (active) {
13686 			pipe_config->output_types |= 1 << encoder->type;
13687 			encoder->get_config(encoder, pipe_config);
13688 		}
13689 	}
13690 
13691 	if (!new_crtc_state->active)
13692 		return;
13693 
13694 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13695 
13696 	sw_config = to_intel_crtc_state(crtc->state);
13697 	if (!intel_pipe_config_compare(dev, sw_config,
13698 				       pipe_config, false)) {
13699 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13700 		intel_dump_pipe_config(intel_crtc, pipe_config,
13701 				       "[hw state]");
13702 		intel_dump_pipe_config(intel_crtc, sw_config,
13703 				       "[sw state]");
13704 	}
13705 }
13706 
13707 static void
13708 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13709 			 struct intel_shared_dpll *pll,
13710 			 struct drm_crtc *crtc,
13711 			 struct drm_crtc_state *new_state)
13712 {
13713 	struct intel_dpll_hw_state dpll_hw_state;
13714 	unsigned crtc_mask;
13715 	bool active;
13716 
13717 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13718 
13719 	DRM_DEBUG_KMS("%s\n", pll->name);
13720 
13721 	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13722 
13723 	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13724 		I915_STATE_WARN(!pll->on && pll->active_mask,
13725 		     "pll in active use but not on in sw tracking\n");
13726 		I915_STATE_WARN(pll->on && !pll->active_mask,
13727 		     "pll is on but not used by any active crtc\n");
13728 		I915_STATE_WARN(pll->on != active,
13729 		     "pll on state mismatch (expected %i, found %i)\n",
13730 		     pll->on, active);
13731 	}
13732 
13733 	if (!crtc) {
13734 		I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13735 				"more active pll users than references: %x vs %x\n",
13736 				pll->active_mask, pll->config.crtc_mask);
13737 
13738 		return;
13739 	}
13740 
13741 	crtc_mask = 1 << drm_crtc_index(crtc);
13742 
13743 	if (new_state->active)
13744 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13745 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13746 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13747 	else
13748 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13749 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13750 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13751 
13752 	I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13753 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13754 			crtc_mask, pll->config.crtc_mask);
13755 
13756 	I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13757 					  &dpll_hw_state,
13758 					  sizeof(dpll_hw_state)),
13759 			"pll hw state mismatch\n");
13760 }
13761 
13762 static void
13763 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13764 			 struct drm_crtc_state *old_crtc_state,
13765 			 struct drm_crtc_state *new_crtc_state)
13766 {
13767 	struct drm_i915_private *dev_priv = to_i915(dev);
13768 	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13769 	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13770 
13771 	if (new_state->shared_dpll)
13772 		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13773 
13774 	if (old_state->shared_dpll &&
13775 	    old_state->shared_dpll != new_state->shared_dpll) {
13776 		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13777 		struct intel_shared_dpll *pll = old_state->shared_dpll;
13778 
13779 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13780 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13781 				pipe_name(drm_crtc_index(crtc)));
13782 		I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13783 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13784 				pipe_name(drm_crtc_index(crtc)));
13785 	}
13786 }
13787 
13788 static void
13789 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13790 			 struct drm_crtc_state *old_state,
13791 			 struct drm_crtc_state *new_state)
13792 {
13793 	if (!needs_modeset(new_state) &&
13794 	    !to_intel_crtc_state(new_state)->update_pipe)
13795 		return;
13796 
13797 	verify_wm_state(crtc, new_state);
13798 	verify_connector_state(crtc->dev, crtc);
13799 	verify_crtc_state(crtc, old_state, new_state);
13800 	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13801 }
13802 
13803 static void
13804 verify_disabled_dpll_state(struct drm_device *dev)
13805 {
13806 	struct drm_i915_private *dev_priv = to_i915(dev);
13807 	int i;
13808 
13809 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13810 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13811 }
13812 
13813 static void
13814 intel_modeset_verify_disabled(struct drm_device *dev)
13815 {
13816 	verify_encoder_state(dev);
13817 	verify_connector_state(dev, NULL);
13818 	verify_disabled_dpll_state(dev);
13819 }
13820 
13821 static void update_scanline_offset(struct intel_crtc *crtc)
13822 {
13823 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13824 
13825 	/*
13826 	 * The scanline counter increments at the leading edge of hsync.
13827 	 *
13828 	 * On most platforms it starts counting from vtotal-1 on the
13829 	 * first active line. That means the scanline counter value is
13830 	 * always one less than what we would expect. Ie. just after
13831 	 * start of vblank, which also occurs at start of hsync (on the
13832 	 * last active line), the scanline counter will read vblank_start-1.
13833 	 *
13834 	 * On gen2 the scanline counter starts counting from 1 instead
13835 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13836 	 * to keep the value positive), instead of adding one.
13837 	 *
13838 	 * On HSW+ the behaviour of the scanline counter depends on the output
13839 	 * type. For DP ports it behaves like most other platforms, but on HDMI
13840 	 * there's an extra 1 line difference. So we need to add two instead of
13841 	 * one to the value.
13842 	 */
13843 	if (IS_GEN2(dev_priv)) {
13844 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13845 		int vtotal;
13846 
13847 		vtotal = adjusted_mode->crtc_vtotal;
13848 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13849 			vtotal /= 2;
13850 
13851 		crtc->scanline_offset = vtotal - 1;
13852 	} else if (HAS_DDI(dev_priv) &&
13853 		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13854 		crtc->scanline_offset = 2;
13855 	} else
13856 		crtc->scanline_offset = 1;
13857 }
13858 
13859 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13860 {
13861 	struct drm_device *dev = state->dev;
13862 	struct drm_i915_private *dev_priv = to_i915(dev);
13863 	struct intel_shared_dpll_config *shared_dpll = NULL;
13864 	struct drm_crtc *crtc;
13865 	struct drm_crtc_state *crtc_state;
13866 	int i;
13867 
13868 	if (!dev_priv->display.crtc_compute_clock)
13869 		return;
13870 
13871 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13872 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13873 		struct intel_shared_dpll *old_dpll =
13874 			to_intel_crtc_state(crtc->state)->shared_dpll;
13875 
13876 		if (!needs_modeset(crtc_state))
13877 			continue;
13878 
13879 		to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13880 
13881 		if (!old_dpll)
13882 			continue;
13883 
13884 		if (!shared_dpll)
13885 			shared_dpll = intel_atomic_get_shared_dpll_state(state);
13886 
13887 		intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13888 	}
13889 }
13890 
13891 /*
13892  * This implements the workaround described in the "notes" section of the mode
13893  * set sequence documentation. When going from no pipes or single pipe to
13894  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13895  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13896  */
13897 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13898 {
13899 	struct drm_crtc_state *crtc_state;
13900 	struct intel_crtc *intel_crtc;
13901 	struct drm_crtc *crtc;
13902 	struct intel_crtc_state *first_crtc_state = NULL;
13903 	struct intel_crtc_state *other_crtc_state = NULL;
13904 	enum i915_pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13905 	int i;
13906 
13907 	/* look at all crtc's that are going to be enabled in during modeset */
13908 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13909 		intel_crtc = to_intel_crtc(crtc);
13910 
13911 		if (!crtc_state->active || !needs_modeset(crtc_state))
13912 			continue;
13913 
13914 		if (first_crtc_state) {
13915 			other_crtc_state = to_intel_crtc_state(crtc_state);
13916 			break;
13917 		} else {
13918 			first_crtc_state = to_intel_crtc_state(crtc_state);
13919 			first_pipe = intel_crtc->pipe;
13920 		}
13921 	}
13922 
13923 	/* No workaround needed? */
13924 	if (!first_crtc_state)
13925 		return 0;
13926 
13927 	/* w/a possibly needed, check how many crtc's are already enabled. */
13928 	for_each_intel_crtc(state->dev, intel_crtc) {
13929 		struct intel_crtc_state *pipe_config;
13930 
13931 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13932 		if (IS_ERR(pipe_config))
13933 			return PTR_ERR(pipe_config);
13934 
13935 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13936 
13937 		if (!pipe_config->base.active ||
13938 		    needs_modeset(&pipe_config->base))
13939 			continue;
13940 
13941 		/* 2 or more enabled crtcs means no need for w/a */
13942 		if (enabled_pipe != INVALID_PIPE)
13943 			return 0;
13944 
13945 		enabled_pipe = intel_crtc->pipe;
13946 	}
13947 
13948 	if (enabled_pipe != INVALID_PIPE)
13949 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13950 	else if (other_crtc_state)
13951 		other_crtc_state->hsw_workaround_pipe = first_pipe;
13952 
13953 	return 0;
13954 }
13955 
13956 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13957 {
13958 	struct drm_crtc *crtc;
13959 	struct drm_crtc_state *crtc_state;
13960 	int ret = 0;
13961 
13962 	/* add all active pipes to the state */
13963 	for_each_crtc(state->dev, crtc) {
13964 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13965 		if (IS_ERR(crtc_state))
13966 			return PTR_ERR(crtc_state);
13967 
13968 		if (!crtc_state->active || needs_modeset(crtc_state))
13969 			continue;
13970 
13971 		crtc_state->mode_changed = true;
13972 
13973 		ret = drm_atomic_add_affected_connectors(state, crtc);
13974 		if (ret)
13975 			break;
13976 
13977 		ret = drm_atomic_add_affected_planes(state, crtc);
13978 		if (ret)
13979 			break;
13980 	}
13981 
13982 	return ret;
13983 }
13984 
13985 static int intel_modeset_checks(struct drm_atomic_state *state)
13986 {
13987 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13988 	struct drm_i915_private *dev_priv = to_i915(state->dev);
13989 	struct drm_crtc *crtc;
13990 	struct drm_crtc_state *crtc_state;
13991 	int ret = 0, i;
13992 
13993 	if (!check_digital_port_conflicts(state)) {
13994 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13995 		return -EINVAL;
13996 	}
13997 
13998 	intel_state->modeset = true;
13999 	intel_state->active_crtcs = dev_priv->active_crtcs;
14000 
14001 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14002 		if (crtc_state->active)
14003 			intel_state->active_crtcs |= 1 << i;
14004 		else
14005 			intel_state->active_crtcs &= ~(1 << i);
14006 
14007 		if (crtc_state->active != crtc->state->active)
14008 			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
14009 	}
14010 
14011 	/*
14012 	 * See if the config requires any additional preparation, e.g.
14013 	 * to adjust global state with pipes off.  We need to do this
14014 	 * here so we can get the modeset_pipe updated config for the new
14015 	 * mode set on this crtc.  For other crtcs we need to use the
14016 	 * adjusted_mode bits in the crtc directly.
14017 	 */
14018 	if (dev_priv->display.modeset_calc_cdclk) {
14019 		if (!intel_state->cdclk_pll_vco)
14020 			intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
14021 		if (!intel_state->cdclk_pll_vco)
14022 			intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
14023 
14024 		ret = dev_priv->display.modeset_calc_cdclk(state);
14025 		if (ret < 0)
14026 			return ret;
14027 
14028 		if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14029 		    intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
14030 			ret = intel_modeset_all_pipes(state);
14031 
14032 		if (ret < 0)
14033 			return ret;
14034 
14035 		DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14036 			      intel_state->cdclk, intel_state->dev_cdclk);
14037 	} else
14038 		to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
14039 
14040 	intel_modeset_clear_plls(state);
14041 
14042 	if (IS_HASWELL(dev_priv))
14043 		return haswell_mode_set_planes_workaround(state);
14044 
14045 	return 0;
14046 }
14047 
14048 /*
14049  * Handle calculation of various watermark data at the end of the atomic check
14050  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14051  * handlers to ensure that all derived state has been updated.
14052  */
14053 static int calc_watermark_data(struct drm_atomic_state *state)
14054 {
14055 	struct drm_device *dev = state->dev;
14056 	struct drm_i915_private *dev_priv = to_i915(dev);
14057 
14058 	/* Is there platform-specific watermark information to calculate? */
14059 	if (dev_priv->display.compute_global_watermarks)
14060 		return dev_priv->display.compute_global_watermarks(state);
14061 
14062 	return 0;
14063 }
14064 
14065 /**
14066  * intel_atomic_check - validate state object
14067  * @dev: drm device
14068  * @state: state to validate
14069  */
14070 static int intel_atomic_check(struct drm_device *dev,
14071 			      struct drm_atomic_state *state)
14072 {
14073 	struct drm_i915_private *dev_priv = to_i915(dev);
14074 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14075 	struct drm_crtc *crtc;
14076 	struct drm_crtc_state *crtc_state;
14077 	int ret, i;
14078 	bool any_ms = false;
14079 
14080 	ret = drm_atomic_helper_check_modeset(dev, state);
14081 	if (ret)
14082 		return ret;
14083 
14084 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14085 		struct intel_crtc_state *pipe_config =
14086 			to_intel_crtc_state(crtc_state);
14087 
14088 		/* Catch I915_MODE_FLAG_INHERITED */
14089 		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14090 			crtc_state->mode_changed = true;
14091 
14092 		if (!needs_modeset(crtc_state))
14093 			continue;
14094 
14095 		if (!crtc_state->enable) {
14096 			any_ms = true;
14097 			continue;
14098 		}
14099 
14100 		/* FIXME: For only active_changed we shouldn't need to do any
14101 		 * state recomputation at all. */
14102 
14103 		ret = drm_atomic_add_affected_connectors(state, crtc);
14104 		if (ret)
14105 			return ret;
14106 
14107 		ret = intel_modeset_pipe_config(crtc, pipe_config);
14108 		if (ret) {
14109 			intel_dump_pipe_config(to_intel_crtc(crtc),
14110 					       pipe_config, "[failed]");
14111 			return ret;
14112 		}
14113 
14114 		if (i915.fastboot &&
14115 		    intel_pipe_config_compare(dev,
14116 					to_intel_crtc_state(crtc->state),
14117 					pipe_config, true)) {
14118 			crtc_state->mode_changed = false;
14119 			to_intel_crtc_state(crtc_state)->update_pipe = true;
14120 		}
14121 
14122 		if (needs_modeset(crtc_state))
14123 			any_ms = true;
14124 
14125 		ret = drm_atomic_add_affected_planes(state, crtc);
14126 		if (ret)
14127 			return ret;
14128 
14129 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14130 				       needs_modeset(crtc_state) ?
14131 				       "[modeset]" : "[fastset]");
14132 	}
14133 
14134 	if (any_ms) {
14135 		ret = intel_modeset_checks(state);
14136 
14137 		if (ret)
14138 			return ret;
14139 	} else
14140 		intel_state->cdclk = dev_priv->cdclk_freq;
14141 
14142 	ret = drm_atomic_helper_check_planes(dev, state);
14143 	if (ret)
14144 		return ret;
14145 
14146 	intel_fbc_choose_crtc(dev_priv, state);
14147 	return calc_watermark_data(state);
14148 }
14149 
14150 static int intel_atomic_prepare_commit(struct drm_device *dev,
14151 				       struct drm_atomic_state *state,
14152 				       bool nonblock)
14153 {
14154 	struct drm_i915_private *dev_priv = to_i915(dev);
14155 	struct drm_plane_state *plane_state;
14156 	struct drm_crtc_state *crtc_state;
14157 	struct drm_plane *plane;
14158 	struct drm_crtc *crtc;
14159 	int i, ret;
14160 
14161 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14162 		if (state->legacy_cursor_update)
14163 			continue;
14164 
14165 		ret = intel_crtc_wait_for_pending_flips(crtc);
14166 		if (ret)
14167 			return ret;
14168 
14169 		if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14170 			flush_workqueue(dev_priv->wq);
14171 	}
14172 
14173 	ret = mutex_lock_interruptible(&dev->struct_mutex);
14174 	if (ret)
14175 		return ret;
14176 
14177 	ret = drm_atomic_helper_prepare_planes(dev, state);
14178 	mutex_unlock(&dev->struct_mutex);
14179 
14180 	if (!ret && !nonblock) {
14181 		for_each_plane_in_state(state, plane, plane_state, i) {
14182 			struct intel_plane_state *intel_plane_state =
14183 				to_intel_plane_state(plane_state);
14184 
14185 			if (!intel_plane_state->wait_req)
14186 				continue;
14187 
14188 			ret = i915_wait_request(intel_plane_state->wait_req,
14189 						I915_WAIT_INTERRUPTIBLE,
14190 						NULL, NULL);
14191 			if (ret) {
14192 				/* Any hang should be swallowed by the wait */
14193 				WARN_ON(ret == -EIO);
14194 				mutex_lock(&dev->struct_mutex);
14195 				drm_atomic_helper_cleanup_planes(dev, state);
14196 				mutex_unlock(&dev->struct_mutex);
14197 				break;
14198 			}
14199 		}
14200 	}
14201 
14202 	return ret;
14203 }
14204 
14205 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14206 {
14207 	struct drm_device *dev = crtc->base.dev;
14208 
14209 	if (!dev->max_vblank_count)
14210 		return drm_accurate_vblank_count(&crtc->base);
14211 
14212 	return dev->driver->get_vblank_counter(dev, crtc->pipe);
14213 }
14214 
14215 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14216 					  struct drm_i915_private *dev_priv,
14217 					  unsigned crtc_mask)
14218 {
14219 	unsigned last_vblank_count[I915_MAX_PIPES];
14220 	enum i915_pipe pipe;
14221 	int ret;
14222 
14223 	if (!crtc_mask)
14224 		return;
14225 
14226 	for_each_pipe(dev_priv, pipe) {
14227 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14228 
14229 		if (!((1 << pipe) & crtc_mask))
14230 			continue;
14231 
14232 		ret = drm_crtc_vblank_get(crtc);
14233 		if (WARN_ON(ret != 0)) {
14234 			crtc_mask &= ~(1 << pipe);
14235 			continue;
14236 		}
14237 
14238 		last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
14239 	}
14240 
14241 	for_each_pipe(dev_priv, pipe) {
14242 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14243 		long lret;
14244 
14245 		if (!((1 << pipe) & crtc_mask))
14246 			continue;
14247 
14248 		lret = wait_event_timeout(dev->vblank[pipe].queue,
14249 				last_vblank_count[pipe] !=
14250 					drm_crtc_vblank_count(crtc),
14251 				msecs_to_jiffies(50));
14252 
14253 		WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14254 
14255 		drm_crtc_vblank_put(crtc);
14256 	}
14257 }
14258 
14259 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14260 {
14261 	/* fb updated, need to unpin old fb */
14262 	if (crtc_state->fb_changed)
14263 		return true;
14264 
14265 	/* wm changes, need vblank before final wm's */
14266 	if (crtc_state->update_wm_post)
14267 		return true;
14268 
14269 	/*
14270 	 * cxsr is re-enabled after vblank.
14271 	 * This is already handled by crtc_state->update_wm_post,
14272 	 * but added for clarity.
14273 	 */
14274 	if (crtc_state->disable_cxsr)
14275 		return true;
14276 
14277 	return false;
14278 }
14279 
14280 static void intel_update_crtc(struct drm_crtc *crtc,
14281 			      struct drm_atomic_state *state,
14282 			      struct drm_crtc_state *old_crtc_state,
14283 			      unsigned int *crtc_vblank_mask)
14284 {
14285 	struct drm_device *dev = crtc->dev;
14286 	struct drm_i915_private *dev_priv = to_i915(dev);
14287 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14288 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14289 	bool modeset = needs_modeset(crtc->state);
14290 
14291 	if (modeset) {
14292 		update_scanline_offset(intel_crtc);
14293 		dev_priv->display.crtc_enable(pipe_config, state);
14294 	} else {
14295 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14296 	}
14297 
14298 	if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14299 		intel_fbc_enable(
14300 		    intel_crtc, pipe_config,
14301 		    to_intel_plane_state(crtc->primary->state));
14302 	}
14303 
14304 	drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14305 
14306 	if (needs_vblank_wait(pipe_config))
14307 		*crtc_vblank_mask |= drm_crtc_mask(crtc);
14308 }
14309 
14310 static void intel_update_crtcs(struct drm_atomic_state *state,
14311 			       unsigned int *crtc_vblank_mask)
14312 {
14313 	struct drm_crtc *crtc;
14314 	struct drm_crtc_state *old_crtc_state;
14315 	int i;
14316 
14317 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14318 		if (!crtc->state->active)
14319 			continue;
14320 
14321 		intel_update_crtc(crtc, state, old_crtc_state,
14322 				  crtc_vblank_mask);
14323 	}
14324 }
14325 
14326 static void skl_update_crtcs(struct drm_atomic_state *state,
14327 			     unsigned int *crtc_vblank_mask)
14328 {
14329 	struct drm_device *dev = state->dev;
14330 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14331 	struct drm_crtc *crtc;
14332 	struct intel_crtc *intel_crtc;
14333 	struct drm_crtc_state *old_crtc_state;
14334 	struct intel_crtc_state *cstate;
14335 	unsigned int updated = 0;
14336 	bool progress;
14337 	enum i915_pipe pipe;
14338 
14339 	/*
14340 	 * Whenever the number of active pipes changes, we need to make sure we
14341 	 * update the pipes in the right order so that their ddb allocations
14342 	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14343 	 * cause pipe underruns and other bad stuff.
14344 	 */
14345 	do {
14346 		int i;
14347 		progress = false;
14348 
14349 		for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14350 			bool vbl_wait = false;
14351 			unsigned int cmask = drm_crtc_mask(crtc);
14352 
14353 			intel_crtc = to_intel_crtc(crtc);
14354 			cstate = to_intel_crtc_state(crtc->state);
14355 			pipe = intel_crtc->pipe;
14356 
14357 			if (updated & cmask || !crtc->state->active)
14358 				continue;
14359 			if (skl_ddb_allocation_overlaps(state, intel_crtc))
14360 				continue;
14361 
14362 			updated |= cmask;
14363 
14364 			/*
14365 			 * If this is an already active pipe, it's DDB changed,
14366 			 * and this isn't the last pipe that needs updating
14367 			 * then we need to wait for a vblank to pass for the
14368 			 * new ddb allocation to take effect.
14369 			 */
14370 			if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14371 						 &intel_crtc->hw_ddb) &&
14372 			    !crtc->state->active_changed &&
14373 			    intel_state->wm_results.dirty_pipes != updated)
14374 				vbl_wait = true;
14375 
14376 			intel_update_crtc(crtc, state, old_crtc_state,
14377 					  crtc_vblank_mask);
14378 
14379 			if (vbl_wait)
14380 				intel_wait_for_vblank(dev, pipe);
14381 
14382 			progress = true;
14383 		}
14384 	} while (progress);
14385 }
14386 
14387 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14388 {
14389 	struct drm_device *dev = state->dev;
14390 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14391 	struct drm_i915_private *dev_priv = to_i915(dev);
14392 	struct drm_crtc_state *old_crtc_state;
14393 	struct drm_crtc *crtc;
14394 	struct intel_crtc_state *intel_cstate;
14395 	struct drm_plane *plane;
14396 	struct drm_plane_state *plane_state;
14397 	bool hw_check = intel_state->modeset;
14398 	unsigned long put_domains[I915_MAX_PIPES] = {};
14399 	unsigned crtc_vblank_mask = 0;
14400 	int i, ret;
14401 
14402 	for_each_plane_in_state(state, plane, plane_state, i) {
14403 		struct intel_plane_state *intel_plane_state =
14404 			to_intel_plane_state(plane_state);
14405 
14406 		if (!intel_plane_state->wait_req)
14407 			continue;
14408 
14409 		ret = i915_wait_request(intel_plane_state->wait_req,
14410 					0, NULL, NULL);
14411 		/* EIO should be eaten, and we can't get interrupted in the
14412 		 * worker, and blocking commits have waited already. */
14413 		WARN_ON(ret);
14414 	}
14415 
14416 	drm_atomic_helper_wait_for_dependencies(state);
14417 
14418 	if (intel_state->modeset) {
14419 		memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14420 		       sizeof(intel_state->min_pixclk));
14421 		dev_priv->active_crtcs = intel_state->active_crtcs;
14422 		dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14423 
14424 		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14425 	}
14426 
14427 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14428 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14429 
14430 		if (needs_modeset(crtc->state) ||
14431 		    to_intel_crtc_state(crtc->state)->update_pipe) {
14432 			hw_check = true;
14433 
14434 			put_domains[to_intel_crtc(crtc)->pipe] =
14435 				modeset_get_crtc_power_domains(crtc,
14436 					to_intel_crtc_state(crtc->state));
14437 		}
14438 
14439 		if (!needs_modeset(crtc->state))
14440 			continue;
14441 
14442 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14443 
14444 		if (old_crtc_state->active) {
14445 			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14446 			dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14447 			intel_crtc->active = false;
14448 			intel_fbc_disable(intel_crtc);
14449 			intel_disable_shared_dpll(intel_crtc);
14450 
14451 			/*
14452 			 * Underruns don't always raise
14453 			 * interrupts, so check manually.
14454 			 */
14455 			intel_check_cpu_fifo_underruns(dev_priv);
14456 			intel_check_pch_fifo_underruns(dev_priv);
14457 
14458 			if (!crtc->state->active)
14459 				intel_update_watermarks(crtc);
14460 		}
14461 	}
14462 
14463 	/* Only after disabling all output pipelines that will be changed can we
14464 	 * update the the output configuration. */
14465 	intel_modeset_update_crtc_state(state);
14466 
14467 	if (intel_state->modeset) {
14468 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14469 
14470 		if (dev_priv->display.modeset_commit_cdclk &&
14471 		    (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14472 		     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14473 			dev_priv->display.modeset_commit_cdclk(state);
14474 
14475 		/*
14476 		 * SKL workaround: bspec recommends we disable the SAGV when we
14477 		 * have more then one pipe enabled
14478 		 */
14479 		if (!intel_can_enable_sagv(state))
14480 			intel_disable_sagv(dev_priv);
14481 
14482 		intel_modeset_verify_disabled(dev);
14483 	}
14484 
14485 	/* Complete the events for pipes that have now been disabled */
14486 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14487 		bool modeset = needs_modeset(crtc->state);
14488 
14489 		/* Complete events for now disable pipes here. */
14490 		if (modeset && !crtc->state->active && crtc->state->event) {
14491 			spin_lock_irq(&dev->event_lock);
14492 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
14493 			spin_unlock_irq(&dev->event_lock);
14494 
14495 			crtc->state->event = NULL;
14496 		}
14497 	}
14498 
14499 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
14500 	dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14501 
14502 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14503 	 * already, but still need the state for the delayed optimization. To
14504 	 * fix this:
14505 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14506 	 * - schedule that vblank worker _before_ calling hw_done
14507 	 * - at the start of commit_tail, cancel it _synchrously
14508 	 * - switch over to the vblank wait helper in the core after that since
14509 	 *   we don't need out special handling any more.
14510 	 */
14511 	if (!state->legacy_cursor_update)
14512 		intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14513 
14514 	/*
14515 	 * Now that the vblank has passed, we can go ahead and program the
14516 	 * optimal watermarks on platforms that need two-step watermark
14517 	 * programming.
14518 	 *
14519 	 * TODO: Move this (and other cleanup) to an async worker eventually.
14520 	 */
14521 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14522 		intel_cstate = to_intel_crtc_state(crtc->state);
14523 
14524 		if (dev_priv->display.optimize_watermarks)
14525 			dev_priv->display.optimize_watermarks(intel_cstate);
14526 	}
14527 
14528 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14529 		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14530 
14531 		if (put_domains[i])
14532 			modeset_put_power_domains(dev_priv, put_domains[i]);
14533 
14534 		intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14535 	}
14536 
14537 	if (intel_state->modeset && intel_can_enable_sagv(state))
14538 		intel_enable_sagv(dev_priv);
14539 
14540 	drm_atomic_helper_commit_hw_done(state);
14541 
14542 	if (intel_state->modeset)
14543 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14544 
14545 	mutex_lock(&dev->struct_mutex);
14546 	drm_atomic_helper_cleanup_planes(dev, state);
14547 	mutex_unlock(&dev->struct_mutex);
14548 
14549 	drm_atomic_helper_commit_cleanup_done(state);
14550 
14551 	drm_atomic_state_free(state);
14552 
14553 	/* As one of the primary mmio accessors, KMS has a high likelihood
14554 	 * of triggering bugs in unclaimed access. After we finish
14555 	 * modesetting, see if an error has been flagged, and if so
14556 	 * enable debugging for the next modeset - and hope we catch
14557 	 * the culprit.
14558 	 *
14559 	 * XXX note that we assume display power is on at this point.
14560 	 * This might hold true now but we need to add pm helper to check
14561 	 * unclaimed only when the hardware is on, as atomic commits
14562 	 * can happen also when the device is completely off.
14563 	 */
14564 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14565 }
14566 
14567 static void intel_atomic_commit_work(struct work_struct *work)
14568 {
14569 	struct drm_atomic_state *state = container_of(work,
14570 						      struct drm_atomic_state,
14571 						      commit_work);
14572 	intel_atomic_commit_tail(state);
14573 }
14574 
14575 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14576 {
14577 	struct drm_plane_state *old_plane_state;
14578 	struct drm_plane *plane;
14579 	int i;
14580 
14581 	for_each_plane_in_state(state, plane, old_plane_state, i)
14582 		i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14583 				  intel_fb_obj(plane->state->fb),
14584 				  to_intel_plane(plane)->frontbuffer_bit);
14585 }
14586 
14587 /**
14588  * intel_atomic_commit - commit validated state object
14589  * @dev: DRM device
14590  * @state: the top-level driver state object
14591  * @nonblock: nonblocking commit
14592  *
14593  * This function commits a top-level state object that has been validated
14594  * with drm_atomic_helper_check().
14595  *
14596  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
14597  * nonblocking commits are only safe for pure plane updates. Everything else
14598  * should work though.
14599  *
14600  * RETURNS
14601  * Zero for success or -errno.
14602  */
14603 static int intel_atomic_commit(struct drm_device *dev,
14604 			       struct drm_atomic_state *state,
14605 			       bool nonblock)
14606 {
14607 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14608 	struct drm_i915_private *dev_priv = to_i915(dev);
14609 	int ret = 0;
14610 
14611 	if (intel_state->modeset && nonblock) {
14612 		DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14613 		return -EINVAL;
14614 	}
14615 
14616 	ret = drm_atomic_helper_setup_commit(state, nonblock);
14617 	if (ret)
14618 		return ret;
14619 
14620 	INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14621 
14622 	ret = intel_atomic_prepare_commit(dev, state, nonblock);
14623 	if (ret) {
14624 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14625 		return ret;
14626 	}
14627 
14628 	drm_atomic_helper_swap_state(state, true);
14629 	dev_priv->wm.distrust_bios_wm = false;
14630 	dev_priv->wm.skl_results = intel_state->wm_results;
14631 	intel_shared_dpll_commit(state);
14632 	intel_atomic_track_fbs(state);
14633 
14634 	if (nonblock)
14635 		queue_work(system_unbound_wq, &state->commit_work);
14636 	else
14637 		intel_atomic_commit_tail(state);
14638 
14639 	return 0;
14640 }
14641 
14642 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14643 {
14644 	struct drm_device *dev = crtc->dev;
14645 	struct drm_atomic_state *state;
14646 	struct drm_crtc_state *crtc_state;
14647 	int ret;
14648 
14649 	state = drm_atomic_state_alloc(dev);
14650 	if (!state) {
14651 		DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14652 			      crtc->base.id, crtc->name);
14653 		return;
14654 	}
14655 
14656 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14657 
14658 retry:
14659 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
14660 	ret = PTR_ERR_OR_ZERO(crtc_state);
14661 	if (!ret) {
14662 		if (!crtc_state->active)
14663 			goto out;
14664 
14665 		crtc_state->mode_changed = true;
14666 		ret = drm_atomic_commit(state);
14667 	}
14668 
14669 	if (ret == -EDEADLK) {
14670 		drm_atomic_state_clear(state);
14671 		drm_modeset_backoff(state->acquire_ctx);
14672 		goto retry;
14673 	}
14674 
14675 	if (ret)
14676 out:
14677 		drm_atomic_state_free(state);
14678 }
14679 
14680 /*
14681  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14682  *        drm_atomic_helper_legacy_gamma_set() directly.
14683  */
14684 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14685 					 u16 *red, u16 *green, u16 *blue,
14686 					 uint32_t size)
14687 {
14688 	struct drm_device *dev = crtc->dev;
14689 	struct drm_mode_config *config = &dev->mode_config;
14690 	struct drm_crtc_state *state;
14691 	int ret;
14692 
14693 	ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14694 	if (ret)
14695 		return ret;
14696 
14697 	/*
14698 	 * Make sure we update the legacy properties so this works when
14699 	 * atomic is not enabled.
14700 	 */
14701 
14702 	state = crtc->state;
14703 
14704 	drm_object_property_set_value(&crtc->base,
14705 				      config->degamma_lut_property,
14706 				      (state->degamma_lut) ?
14707 				      state->degamma_lut->base.id : 0);
14708 
14709 	drm_object_property_set_value(&crtc->base,
14710 				      config->ctm_property,
14711 				      (state->ctm) ?
14712 				      state->ctm->base.id : 0);
14713 
14714 	drm_object_property_set_value(&crtc->base,
14715 				      config->gamma_lut_property,
14716 				      (state->gamma_lut) ?
14717 				      state->gamma_lut->base.id : 0);
14718 
14719 	return 0;
14720 }
14721 
14722 static const struct drm_crtc_funcs intel_crtc_funcs = {
14723 	.gamma_set = intel_atomic_legacy_gamma_set,
14724 	.set_config = drm_atomic_helper_set_config,
14725 	.set_property = drm_atomic_helper_crtc_set_property,
14726 	.destroy = intel_crtc_destroy,
14727 	.page_flip = intel_crtc_page_flip,
14728 	.atomic_duplicate_state = intel_crtc_duplicate_state,
14729 	.atomic_destroy_state = intel_crtc_destroy_state,
14730 };
14731 
14732 /**
14733  * intel_prepare_plane_fb - Prepare fb for usage on plane
14734  * @plane: drm plane to prepare for
14735  * @fb: framebuffer to prepare for presentation
14736  *
14737  * Prepares a framebuffer for usage on a display plane.  Generally this
14738  * involves pinning the underlying object and updating the frontbuffer tracking
14739  * bits.  Some older platforms need special physical address handling for
14740  * cursor planes.
14741  *
14742  * Must be called with struct_mutex held.
14743  *
14744  * Returns 0 on success, negative error code on failure.
14745  */
14746 int
14747 intel_prepare_plane_fb(struct drm_plane *plane,
14748 		       struct drm_plane_state *new_state)
14749 {
14750 	struct drm_device *dev = plane->dev;
14751 	struct drm_i915_private *dev_priv = to_i915(dev);
14752 	struct drm_framebuffer *fb = new_state->fb;
14753 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14754 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14755 	struct reservation_object *resv;
14756 	int ret = 0;
14757 
14758 	if (!obj && !old_obj)
14759 		return 0;
14760 
14761 	if (old_obj) {
14762 		struct drm_crtc_state *crtc_state =
14763 			drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14764 
14765 		/* Big Hammer, we also need to ensure that any pending
14766 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14767 		 * current scanout is retired before unpinning the old
14768 		 * framebuffer. Note that we rely on userspace rendering
14769 		 * into the buffer attached to the pipe they are waiting
14770 		 * on. If not, userspace generates a GPU hang with IPEHR
14771 		 * point to the MI_WAIT_FOR_EVENT.
14772 		 *
14773 		 * This should only fail upon a hung GPU, in which case we
14774 		 * can safely continue.
14775 		 */
14776 		if (needs_modeset(crtc_state))
14777 			ret = i915_gem_object_wait_rendering(old_obj, true);
14778 		if (ret) {
14779 			/* GPU hangs should have been swallowed by the wait */
14780 			WARN_ON(ret == -EIO);
14781 			return ret;
14782 		}
14783 	}
14784 
14785 	if (!obj)
14786 		return 0;
14787 
14788 	/* For framebuffer backed by dmabuf, wait for fence */
14789 	resv = i915_gem_object_get_dmabuf_resv(obj);
14790 	if (resv) {
14791 		long lret;
14792 
14793 		lret = reservation_object_wait_timeout_rcu(resv, false, true,
14794 							   MAX_SCHEDULE_TIMEOUT);
14795 		if (lret == -ERESTARTSYS)
14796 			return lret;
14797 
14798 		WARN(lret < 0, "waiting returns %li\n", lret);
14799 	}
14800 
14801 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14802 	    INTEL_INFO(dev)->cursor_needs_physical) {
14803 		int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14804 		ret = i915_gem_object_attach_phys(obj, align);
14805 		if (ret)
14806 			DRM_DEBUG_KMS("failed to attach phys object\n");
14807 	} else {
14808 		struct i915_vma *vma;
14809 
14810 		vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14811 		if (IS_ERR(vma))
14812 			ret = PTR_ERR(vma);
14813 	}
14814 
14815 	if (ret == 0) {
14816 		to_intel_plane_state(new_state)->wait_req =
14817 			i915_gem_active_get(&obj->last_write,
14818 					    &obj->base.dev->struct_mutex);
14819 	}
14820 
14821 	return ret;
14822 }
14823 
14824 /**
14825  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14826  * @plane: drm plane to clean up for
14827  * @fb: old framebuffer that was on plane
14828  *
14829  * Cleans up a framebuffer that has just been removed from a plane.
14830  *
14831  * Must be called with struct_mutex held.
14832  */
14833 void
14834 intel_cleanup_plane_fb(struct drm_plane *plane,
14835 		       struct drm_plane_state *old_state)
14836 {
14837 	struct drm_device *dev = plane->dev;
14838 	struct intel_plane_state *old_intel_state;
14839 	struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14840 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14841 	struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14842 
14843 	old_intel_state = to_intel_plane_state(old_state);
14844 
14845 	if (!obj && !old_obj)
14846 		return;
14847 
14848 	if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14849 	    !INTEL_INFO(dev)->cursor_needs_physical))
14850 		intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14851 
14852 	i915_gem_request_assign(&intel_state->wait_req, NULL);
14853 	i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14854 }
14855 
14856 int
14857 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14858 {
14859 	int max_scale;
14860 	int crtc_clock, cdclk;
14861 
14862 	if (!intel_crtc || !crtc_state->base.enable)
14863 		return DRM_PLANE_HELPER_NO_SCALING;
14864 
14865 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14866 	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14867 
14868 	if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14869 		return DRM_PLANE_HELPER_NO_SCALING;
14870 
14871 	/*
14872 	 * skl max scale is lower of:
14873 	 *    close to 3 but not 3, -1 is for that purpose
14874 	 *            or
14875 	 *    cdclk/crtc_clock
14876 	 */
14877 	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14878 
14879 	return max_scale;
14880 }
14881 
14882 static int
14883 intel_check_primary_plane(struct drm_plane *plane,
14884 			  struct intel_crtc_state *crtc_state,
14885 			  struct intel_plane_state *state)
14886 {
14887 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14888 	struct drm_crtc *crtc = state->base.crtc;
14889 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14890 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14891 	bool can_position = false;
14892 	int ret;
14893 
14894 	if (INTEL_GEN(dev_priv) >= 9) {
14895 		/* use scaler when colorkey is not required */
14896 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14897 			min_scale = 1;
14898 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14899 		}
14900 		can_position = true;
14901 	}
14902 
14903 	ret = drm_plane_helper_check_state(&state->base,
14904 					   &state->clip,
14905 					   min_scale, max_scale,
14906 					   can_position, true);
14907 	if (ret)
14908 		return ret;
14909 
14910 	if (!state->base.fb)
14911 		return 0;
14912 
14913 	if (INTEL_GEN(dev_priv) >= 9) {
14914 		ret = skl_check_plane_surface(state);
14915 		if (ret)
14916 			return ret;
14917 	}
14918 
14919 	return 0;
14920 }
14921 
14922 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14923 				    struct drm_crtc_state *old_crtc_state)
14924 {
14925 	struct drm_device *dev = crtc->dev;
14926 	struct drm_i915_private *dev_priv = to_i915(dev);
14927 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14928 	struct intel_crtc_state *intel_cstate =
14929 		to_intel_crtc_state(crtc->state);
14930 	struct intel_crtc_state *old_intel_state =
14931 		to_intel_crtc_state(old_crtc_state);
14932 	bool modeset = needs_modeset(crtc->state);
14933 	enum i915_pipe pipe = intel_crtc->pipe;
14934 
14935 	/* Perform vblank evasion around commit operation */
14936 	intel_pipe_update_start(intel_crtc);
14937 
14938 	if (modeset)
14939 		return;
14940 
14941 	if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14942 		intel_color_set_csc(crtc->state);
14943 		intel_color_load_luts(crtc->state);
14944 	}
14945 
14946 	if (intel_cstate->update_pipe) {
14947 		intel_update_pipe_config(intel_crtc, old_intel_state);
14948 	} else if (INTEL_GEN(dev_priv) >= 9) {
14949 		skl_detach_scalers(intel_crtc);
14950 
14951 		I915_WRITE(PIPE_WM_LINETIME(pipe),
14952 			   intel_cstate->wm.skl.optimal.linetime);
14953 	}
14954 }
14955 
14956 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14957 				     struct drm_crtc_state *old_crtc_state)
14958 {
14959 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14960 
14961 	intel_pipe_update_end(intel_crtc, NULL);
14962 }
14963 
14964 /**
14965  * intel_plane_destroy - destroy a plane
14966  * @plane: plane to destroy
14967  *
14968  * Common destruction function for all types of planes (primary, cursor,
14969  * sprite).
14970  */
14971 void intel_plane_destroy(struct drm_plane *plane)
14972 {
14973 	if (!plane)
14974 		return;
14975 
14976 	drm_plane_cleanup(plane);
14977 	kfree(to_intel_plane(plane));
14978 }
14979 
14980 const struct drm_plane_funcs intel_plane_funcs = {
14981 	.update_plane = drm_atomic_helper_update_plane,
14982 	.disable_plane = drm_atomic_helper_disable_plane,
14983 	.destroy = intel_plane_destroy,
14984 	.set_property = drm_atomic_helper_plane_set_property,
14985 	.atomic_get_property = intel_plane_atomic_get_property,
14986 	.atomic_set_property = intel_plane_atomic_set_property,
14987 	.atomic_duplicate_state = intel_plane_duplicate_state,
14988 	.atomic_destroy_state = intel_plane_destroy_state,
14989 
14990 };
14991 
14992 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14993 						    int pipe)
14994 {
14995 	struct drm_i915_private *dev_priv = to_i915(dev);
14996 	struct intel_plane *primary = NULL;
14997 	struct intel_plane_state *state = NULL;
14998 	const uint32_t *intel_primary_formats;
14999 	unsigned int num_formats;
15000 	int ret;
15001 
15002 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
15003 	if (!primary)
15004 		goto fail;
15005 
15006 	state = intel_create_plane_state(&primary->base);
15007 	if (!state)
15008 		goto fail;
15009 	primary->base.state = &state->base;
15010 
15011 	primary->can_scale = false;
15012 	primary->max_downscale = 1;
15013 	if (INTEL_INFO(dev)->gen >= 9) {
15014 		primary->can_scale = true;
15015 		state->scaler_id = -1;
15016 	}
15017 	primary->pipe = pipe;
15018 	primary->plane = pipe;
15019 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
15020 	primary->check_plane = intel_check_primary_plane;
15021 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
15022 		primary->plane = !pipe;
15023 
15024 	if (INTEL_INFO(dev)->gen >= 9) {
15025 		intel_primary_formats = skl_primary_formats;
15026 		num_formats = ARRAY_SIZE(skl_primary_formats);
15027 
15028 		primary->update_plane = skylake_update_primary_plane;
15029 		primary->disable_plane = skylake_disable_primary_plane;
15030 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15031 		intel_primary_formats = i965_primary_formats;
15032 		num_formats = ARRAY_SIZE(i965_primary_formats);
15033 
15034 		primary->update_plane = ironlake_update_primary_plane;
15035 		primary->disable_plane = i9xx_disable_primary_plane;
15036 	} else if (INTEL_INFO(dev)->gen >= 4) {
15037 		intel_primary_formats = i965_primary_formats;
15038 		num_formats = ARRAY_SIZE(i965_primary_formats);
15039 
15040 		primary->update_plane = i9xx_update_primary_plane;
15041 		primary->disable_plane = i9xx_disable_primary_plane;
15042 	} else {
15043 		intel_primary_formats = i8xx_primary_formats;
15044 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
15045 
15046 		primary->update_plane = i9xx_update_primary_plane;
15047 		primary->disable_plane = i9xx_disable_primary_plane;
15048 	}
15049 
15050 	if (INTEL_INFO(dev)->gen >= 9)
15051 		ret = drm_universal_plane_init(dev, &primary->base, 0,
15052 					       &intel_plane_funcs,
15053 					       intel_primary_formats, num_formats,
15054 					       DRM_PLANE_TYPE_PRIMARY,
15055 					       "plane 1%c", pipe_name(pipe));
15056 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15057 		ret = drm_universal_plane_init(dev, &primary->base, 0,
15058 					       &intel_plane_funcs,
15059 					       intel_primary_formats, num_formats,
15060 					       DRM_PLANE_TYPE_PRIMARY,
15061 					       "primary %c", pipe_name(pipe));
15062 	else
15063 		ret = drm_universal_plane_init(dev, &primary->base, 0,
15064 					       &intel_plane_funcs,
15065 					       intel_primary_formats, num_formats,
15066 					       DRM_PLANE_TYPE_PRIMARY,
15067 					       "plane %c", plane_name(primary->plane));
15068 	if (ret)
15069 		goto fail;
15070 
15071 	if (INTEL_INFO(dev)->gen >= 4)
15072 		intel_create_rotation_property(dev, primary);
15073 
15074 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15075 
15076 	return &primary->base;
15077 
15078 fail:
15079 	kfree(state);
15080 	kfree(primary);
15081 
15082 	return NULL;
15083 }
15084 
15085 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
15086 {
15087 	if (!dev->mode_config.rotation_property) {
15088 		unsigned long flags = DRM_ROTATE_0 |
15089 			DRM_ROTATE_180;
15090 
15091 		if (INTEL_INFO(dev)->gen >= 9)
15092 			flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
15093 
15094 		dev->mode_config.rotation_property =
15095 			drm_mode_create_rotation_property(dev, flags);
15096 	}
15097 	if (dev->mode_config.rotation_property)
15098 		drm_object_attach_property(&plane->base.base,
15099 				dev->mode_config.rotation_property,
15100 				plane->base.state->rotation);
15101 }
15102 
15103 static int
15104 intel_check_cursor_plane(struct drm_plane *plane,
15105 			 struct intel_crtc_state *crtc_state,
15106 			 struct intel_plane_state *state)
15107 {
15108 	struct drm_framebuffer *fb = state->base.fb;
15109 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15110 	enum i915_pipe pipe = to_intel_plane(plane)->pipe;
15111 	unsigned stride;
15112 	int ret;
15113 
15114 	ret = drm_plane_helper_check_state(&state->base,
15115 					   &state->clip,
15116 					   DRM_PLANE_HELPER_NO_SCALING,
15117 					   DRM_PLANE_HELPER_NO_SCALING,
15118 					   true, true);
15119 	if (ret)
15120 		return ret;
15121 
15122 	/* if we want to turn off the cursor ignore width and height */
15123 	if (!obj)
15124 		return 0;
15125 
15126 	/* Check for which cursor types we support */
15127 	if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15128 			    state->base.crtc_h)) {
15129 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15130 			  state->base.crtc_w, state->base.crtc_h);
15131 		return -EINVAL;
15132 	}
15133 
15134 	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15135 	if (obj->base.size < stride * state->base.crtc_h) {
15136 		DRM_DEBUG_KMS("buffer is too small\n");
15137 		return -ENOMEM;
15138 	}
15139 
15140 	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
15141 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
15142 		return -EINVAL;
15143 	}
15144 
15145 	/*
15146 	 * There's something wrong with the cursor on CHV pipe C.
15147 	 * If it straddles the left edge of the screen then
15148 	 * moving it away from the edge or disabling it often
15149 	 * results in a pipe underrun, and often that can lead to
15150 	 * dead pipe (constant underrun reported, and it scans
15151 	 * out just a solid color). To recover from that, the
15152 	 * display power well must be turned off and on again.
15153 	 * Refuse the put the cursor into that compromised position.
15154 	 */
15155 	if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15156 	    state->base.visible && state->base.crtc_x < 0) {
15157 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15158 		return -EINVAL;
15159 	}
15160 
15161 	return 0;
15162 }
15163 
15164 static void
15165 intel_disable_cursor_plane(struct drm_plane *plane,
15166 			   struct drm_crtc *crtc)
15167 {
15168 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15169 
15170 	intel_crtc->cursor_addr = 0;
15171 	intel_crtc_update_cursor(crtc, NULL);
15172 }
15173 
15174 static void
15175 intel_update_cursor_plane(struct drm_plane *plane,
15176 			  const struct intel_crtc_state *crtc_state,
15177 			  const struct intel_plane_state *state)
15178 {
15179 	struct drm_crtc *crtc = crtc_state->base.crtc;
15180 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15181 	struct drm_device *dev = plane->dev;
15182 	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15183 	uint32_t addr;
15184 
15185 	if (!obj)
15186 		addr = 0;
15187 	else if (!INTEL_INFO(dev)->cursor_needs_physical)
15188 		addr = i915_gem_object_ggtt_offset(obj, NULL);
15189 	else
15190 		addr = obj->phys_handle->busaddr;
15191 
15192 	intel_crtc->cursor_addr = addr;
15193 	intel_crtc_update_cursor(crtc, state);
15194 }
15195 
15196 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15197 						   int pipe)
15198 {
15199 	struct intel_plane *cursor = NULL;
15200 	struct intel_plane_state *state = NULL;
15201 	int ret;
15202 
15203 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15204 	if (!cursor)
15205 		goto fail;
15206 
15207 	state = intel_create_plane_state(&cursor->base);
15208 	if (!state)
15209 		goto fail;
15210 	cursor->base.state = &state->base;
15211 
15212 	cursor->can_scale = false;
15213 	cursor->max_downscale = 1;
15214 	cursor->pipe = pipe;
15215 	cursor->plane = pipe;
15216 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15217 	cursor->check_plane = intel_check_cursor_plane;
15218 	cursor->update_plane = intel_update_cursor_plane;
15219 	cursor->disable_plane = intel_disable_cursor_plane;
15220 
15221 	ret = drm_universal_plane_init(dev, &cursor->base, 0,
15222 				       &intel_plane_funcs,
15223 				       intel_cursor_formats,
15224 				       ARRAY_SIZE(intel_cursor_formats),
15225 				       DRM_PLANE_TYPE_CURSOR,
15226 				       "cursor %c", pipe_name(pipe));
15227 	if (ret)
15228 		goto fail;
15229 
15230 	if (INTEL_INFO(dev)->gen >= 4) {
15231 		if (!dev->mode_config.rotation_property)
15232 			dev->mode_config.rotation_property =
15233 				drm_mode_create_rotation_property(dev,
15234 							DRM_ROTATE_0 |
15235 							DRM_ROTATE_180);
15236 		if (dev->mode_config.rotation_property)
15237 			drm_object_attach_property(&cursor->base.base,
15238 				dev->mode_config.rotation_property,
15239 				state->base.rotation);
15240 	}
15241 
15242 	if (INTEL_INFO(dev)->gen >=9)
15243 		state->scaler_id = -1;
15244 
15245 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15246 
15247 	return &cursor->base;
15248 
15249 fail:
15250 	kfree(state);
15251 	kfree(cursor);
15252 
15253 	return NULL;
15254 }
15255 
15256 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15257 	struct intel_crtc_state *crtc_state)
15258 {
15259 	int i;
15260 	struct intel_scaler *intel_scaler;
15261 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15262 
15263 	for (i = 0; i < intel_crtc->num_scalers; i++) {
15264 		intel_scaler = &scaler_state->scalers[i];
15265 		intel_scaler->in_use = 0;
15266 		intel_scaler->mode = PS_SCALER_MODE_DYN;
15267 	}
15268 
15269 	scaler_state->scaler_id = -1;
15270 }
15271 
15272 static void intel_crtc_init(struct drm_device *dev, int pipe)
15273 {
15274 	struct drm_i915_private *dev_priv = to_i915(dev);
15275 	struct intel_crtc *intel_crtc;
15276 	struct intel_crtc_state *crtc_state = NULL;
15277 	struct drm_plane *primary = NULL;
15278 	struct drm_plane *cursor = NULL;
15279 	int ret;
15280 
15281 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15282 	if (intel_crtc == NULL)
15283 		return;
15284 
15285 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15286 	if (!crtc_state)
15287 		goto fail;
15288 	intel_crtc->config = crtc_state;
15289 	intel_crtc->base.state = &crtc_state->base;
15290 	crtc_state->base.crtc = &intel_crtc->base;
15291 
15292 	/* initialize shared scalers */
15293 	if (INTEL_INFO(dev)->gen >= 9) {
15294 		if (pipe == PIPE_C)
15295 			intel_crtc->num_scalers = 1;
15296 		else
15297 			intel_crtc->num_scalers = SKL_NUM_SCALERS;
15298 
15299 		skl_init_scalers(dev, intel_crtc, crtc_state);
15300 	}
15301 
15302 	primary = intel_primary_plane_create(dev, pipe);
15303 	if (!primary)
15304 		goto fail;
15305 
15306 	cursor = intel_cursor_plane_create(dev, pipe);
15307 	if (!cursor)
15308 		goto fail;
15309 
15310 	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
15311 					cursor, &intel_crtc_funcs,
15312 					"pipe %c", pipe_name(pipe));
15313 	if (ret)
15314 		goto fail;
15315 
15316 	/*
15317 	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
15318 	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
15319 	 */
15320 	intel_crtc->pipe = pipe;
15321 	intel_crtc->plane = pipe;
15322 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
15323 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
15324 		intel_crtc->plane = !pipe;
15325 	}
15326 
15327 	intel_crtc->cursor_base = ~0;
15328 	intel_crtc->cursor_cntl = ~0;
15329 	intel_crtc->cursor_size = ~0;
15330 
15331 	intel_crtc->wm.cxsr_allowed = true;
15332 
15333 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15334 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15335 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15336 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15337 
15338 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15339 
15340 	intel_color_init(&intel_crtc->base);
15341 
15342 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15343 	return;
15344 
15345 fail:
15346 	intel_plane_destroy(primary);
15347 	intel_plane_destroy(cursor);
15348 	kfree(crtc_state);
15349 	kfree(intel_crtc);
15350 }
15351 
15352 enum i915_pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15353 {
15354 	struct drm_encoder *encoder = connector->base.encoder;
15355 	struct drm_device *dev = connector->base.dev;
15356 
15357 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15358 
15359 	if (!encoder || WARN_ON(!encoder->crtc))
15360 		return INVALID_PIPE;
15361 
15362 	return to_intel_crtc(encoder->crtc)->pipe;
15363 }
15364 
15365 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15366 				struct drm_file *file)
15367 {
15368 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15369 	struct drm_crtc *drmmode_crtc;
15370 	struct intel_crtc *crtc;
15371 
15372 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15373 	if (!drmmode_crtc)
15374 		return -ENOENT;
15375 
15376 	crtc = to_intel_crtc(drmmode_crtc);
15377 	pipe_from_crtc_id->pipe = crtc->pipe;
15378 
15379 	return 0;
15380 }
15381 
15382 static int intel_encoder_clones(struct intel_encoder *encoder)
15383 {
15384 	struct drm_device *dev = encoder->base.dev;
15385 	struct intel_encoder *source_encoder;
15386 	int index_mask = 0;
15387 	int entry = 0;
15388 
15389 	for_each_intel_encoder(dev, source_encoder) {
15390 		if (encoders_cloneable(encoder, source_encoder))
15391 			index_mask |= (1 << entry);
15392 
15393 		entry++;
15394 	}
15395 
15396 	return index_mask;
15397 }
15398 
15399 static bool has_edp_a(struct drm_device *dev)
15400 {
15401 	struct drm_i915_private *dev_priv = to_i915(dev);
15402 
15403 	if (!IS_MOBILE(dev))
15404 		return false;
15405 
15406 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15407 		return false;
15408 
15409 	if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15410 		return false;
15411 
15412 	return true;
15413 }
15414 
15415 static bool intel_crt_present(struct drm_device *dev)
15416 {
15417 	struct drm_i915_private *dev_priv = to_i915(dev);
15418 
15419 	if (INTEL_INFO(dev)->gen >= 9)
15420 		return false;
15421 
15422 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15423 		return false;
15424 
15425 	if (IS_CHERRYVIEW(dev_priv))
15426 		return false;
15427 
15428 	if (HAS_PCH_LPT_H(dev_priv) &&
15429 	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15430 		return false;
15431 
15432 	/* DDI E can't be used if DDI A requires 4 lanes */
15433 	if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15434 		return false;
15435 
15436 	if (!dev_priv->vbt.int_crt_support)
15437 		return false;
15438 
15439 	return true;
15440 }
15441 
15442 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15443 {
15444 	int pps_num;
15445 	int pps_idx;
15446 
15447 	if (HAS_DDI(dev_priv))
15448 		return;
15449 	/*
15450 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15451 	 * everywhere where registers can be write protected.
15452 	 */
15453 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15454 		pps_num = 2;
15455 	else
15456 		pps_num = 1;
15457 
15458 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15459 		u32 val = I915_READ(PP_CONTROL(pps_idx));
15460 
15461 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15462 		I915_WRITE(PP_CONTROL(pps_idx), val);
15463 	}
15464 }
15465 
15466 static void intel_pps_init(struct drm_i915_private *dev_priv)
15467 {
15468 	if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15469 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
15470 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15471 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
15472 	else
15473 		dev_priv->pps_mmio_base = PPS_BASE;
15474 
15475 	intel_pps_unlock_regs_wa(dev_priv);
15476 }
15477 
15478 static void intel_setup_outputs(struct drm_device *dev)
15479 {
15480 	struct drm_i915_private *dev_priv = to_i915(dev);
15481 	struct intel_encoder *encoder;
15482 	bool dpd_is_edp = false;
15483 
15484 	intel_pps_init(dev_priv);
15485 
15486 	/*
15487 	 * intel_edp_init_connector() depends on this completing first, to
15488 	 * prevent the registeration of both eDP and LVDS and the incorrect
15489 	 * sharing of the PPS.
15490 	 */
15491 	intel_lvds_init(dev);
15492 
15493 	if (intel_crt_present(dev))
15494 		intel_crt_init(dev);
15495 
15496 	if (IS_BROXTON(dev_priv)) {
15497 		/*
15498 		 * FIXME: Broxton doesn't support port detection via the
15499 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15500 		 * detect the ports.
15501 		 */
15502 		intel_ddi_init(dev, PORT_A);
15503 		intel_ddi_init(dev, PORT_B);
15504 		intel_ddi_init(dev, PORT_C);
15505 
15506 		intel_dsi_init(dev);
15507 	} else if (HAS_DDI(dev_priv)) {
15508 		int found;
15509 
15510 		/*
15511 		 * Haswell uses DDI functions to detect digital outputs.
15512 		 * On SKL pre-D0 the strap isn't connected, so we assume
15513 		 * it's there.
15514 		 */
15515 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15516 		/* WaIgnoreDDIAStrap: skl */
15517 		if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15518 			intel_ddi_init(dev, PORT_A);
15519 
15520 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
15521 		 * register */
15522 		found = I915_READ(SFUSE_STRAP);
15523 
15524 		if (found & SFUSE_STRAP_DDIB_DETECTED)
15525 			intel_ddi_init(dev, PORT_B);
15526 		if (found & SFUSE_STRAP_DDIC_DETECTED)
15527 			intel_ddi_init(dev, PORT_C);
15528 		if (found & SFUSE_STRAP_DDID_DETECTED)
15529 			intel_ddi_init(dev, PORT_D);
15530 		/*
15531 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15532 		 */
15533 		if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15534 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15535 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15536 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15537 			intel_ddi_init(dev, PORT_E);
15538 
15539 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15540 		int found;
15541 		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
15542 
15543 		if (has_edp_a(dev))
15544 			intel_dp_init(dev, DP_A, PORT_A);
15545 
15546 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15547 			/* PCH SDVOB multiplex with HDMIB */
15548 			found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15549 			if (!found)
15550 				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15551 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15552 				intel_dp_init(dev, PCH_DP_B, PORT_B);
15553 		}
15554 
15555 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15556 			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15557 
15558 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15559 			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15560 
15561 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
15562 			intel_dp_init(dev, PCH_DP_C, PORT_C);
15563 
15564 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
15565 			intel_dp_init(dev, PCH_DP_D, PORT_D);
15566 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15567 		bool has_edp, has_port;
15568 
15569 		/*
15570 		 * The DP_DETECTED bit is the latched state of the DDC
15571 		 * SDA pin at boot. However since eDP doesn't require DDC
15572 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15573 		 * eDP ports may have been muxed to an alternate function.
15574 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
15575 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
15576 		 * detect eDP ports.
15577 		 *
15578 		 * Sadly the straps seem to be missing sometimes even for HDMI
15579 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15580 		 * and VBT for the presence of the port. Additionally we can't
15581 		 * trust the port type the VBT declares as we've seen at least
15582 		 * HDMI ports that the VBT claim are DP or eDP.
15583 		 */
15584 		has_edp = intel_dp_is_edp(dev, PORT_B);
15585 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15586 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15587 			has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15588 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15589 			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15590 
15591 		has_edp = intel_dp_is_edp(dev, PORT_C);
15592 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15593 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15594 			has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15595 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15596 			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15597 
15598 		if (IS_CHERRYVIEW(dev_priv)) {
15599 			/*
15600 			 * eDP not supported on port D,
15601 			 * so no need to worry about it
15602 			 */
15603 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15604 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15605 				intel_dp_init(dev, CHV_DP_D, PORT_D);
15606 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15607 				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15608 		}
15609 
15610 		intel_dsi_init(dev);
15611 	} else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15612 		bool found = false;
15613 
15614 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15615 			DRM_DEBUG_KMS("probing SDVOB\n");
15616 			found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15617 			if (!found && IS_G4X(dev_priv)) {
15618 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15619 				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15620 			}
15621 
15622 			if (!found && IS_G4X(dev_priv))
15623 				intel_dp_init(dev, DP_B, PORT_B);
15624 		}
15625 
15626 		/* Before G4X SDVOC doesn't have its own detect register */
15627 
15628 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15629 			DRM_DEBUG_KMS("probing SDVOC\n");
15630 			found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15631 		}
15632 
15633 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15634 
15635 			if (IS_G4X(dev_priv)) {
15636 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15637 				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15638 			}
15639 			if (IS_G4X(dev_priv))
15640 				intel_dp_init(dev, DP_C, PORT_C);
15641 		}
15642 
15643 		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15644 			intel_dp_init(dev, DP_D, PORT_D);
15645 	} else if (IS_GEN2(dev_priv))
15646 		intel_dvo_init(dev);
15647 
15648 	if (SUPPORTS_TV(dev))
15649 		intel_tv_init(dev);
15650 
15651 	intel_psr_init(dev);
15652 
15653 	for_each_intel_encoder(dev, encoder) {
15654 		encoder->base.possible_crtcs = encoder->crtc_mask;
15655 		encoder->base.possible_clones =
15656 			intel_encoder_clones(encoder);
15657 	}
15658 
15659 	intel_init_pch_refclk(dev);
15660 
15661 	drm_helper_move_panel_connectors_to_head(dev);
15662 }
15663 
15664 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15665 {
15666 	struct drm_device *dev = fb->dev;
15667 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15668 
15669 	drm_framebuffer_cleanup(fb);
15670 	mutex_lock(&dev->struct_mutex);
15671 	WARN_ON(!intel_fb->obj->framebuffer_references--);
15672 	i915_gem_object_put(intel_fb->obj);
15673 	mutex_unlock(&dev->struct_mutex);
15674 	kfree(intel_fb);
15675 }
15676 
15677 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15678 						struct drm_file *file,
15679 						unsigned int *handle)
15680 {
15681 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15682 	struct drm_i915_gem_object *obj = intel_fb->obj;
15683 
15684 	if (obj->userptr.mm) {
15685 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15686 		return -EINVAL;
15687 	}
15688 
15689 	return drm_gem_handle_create(file, &obj->base, handle);
15690 }
15691 
15692 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15693 					struct drm_file *file,
15694 					unsigned flags, unsigned color,
15695 					struct drm_clip_rect *clips,
15696 					unsigned num_clips)
15697 {
15698 	struct drm_device *dev = fb->dev;
15699 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15700 	struct drm_i915_gem_object *obj = intel_fb->obj;
15701 
15702 	mutex_lock(&dev->struct_mutex);
15703 	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15704 	mutex_unlock(&dev->struct_mutex);
15705 
15706 	return 0;
15707 }
15708 
15709 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15710 	.destroy = intel_user_framebuffer_destroy,
15711 	.create_handle = intel_user_framebuffer_create_handle,
15712 	.dirty = intel_user_framebuffer_dirty,
15713 };
15714 
15715 static
15716 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15717 			 uint64_t fb_modifier, uint32_t pixel_format)
15718 {
15719 	u32 gen = INTEL_INFO(dev_priv)->gen;
15720 
15721 	if (gen >= 9) {
15722 		int cpp = drm_format_plane_cpp(pixel_format, 0);
15723 
15724 		/* "The stride in bytes must not exceed the of the size of 8K
15725 		 *  pixels and 32K bytes."
15726 		 */
15727 		return min(8192 * cpp, 32768);
15728 	} else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15729 		   !IS_CHERRYVIEW(dev_priv)) {
15730 		return 32*1024;
15731 	} else if (gen >= 4) {
15732 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15733 			return 16*1024;
15734 		else
15735 			return 32*1024;
15736 	} else if (gen >= 3) {
15737 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15738 			return 8*1024;
15739 		else
15740 			return 16*1024;
15741 	} else {
15742 		/* XXX DSPC is limited to 4k tiled */
15743 		return 8*1024;
15744 	}
15745 }
15746 
15747 static int intel_framebuffer_init(struct drm_device *dev,
15748 				  struct intel_framebuffer *intel_fb,
15749 				  struct drm_mode_fb_cmd2 *mode_cmd,
15750 				  struct drm_i915_gem_object *obj)
15751 {
15752 	struct drm_i915_private *dev_priv = to_i915(dev);
15753 	unsigned int tiling = i915_gem_object_get_tiling(obj);
15754 	int ret;
15755 	u32 pitch_limit, stride_alignment;
15756 	char *format_name;
15757 
15758 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15759 
15760 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15761 		/*
15762 		 * If there's a fence, enforce that
15763 		 * the fb modifier and tiling mode match.
15764 		 */
15765 		if (tiling != I915_TILING_NONE &&
15766 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15767 			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15768 			return -EINVAL;
15769 		}
15770 	} else {
15771 		if (tiling == I915_TILING_X) {
15772 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15773 		} else if (tiling == I915_TILING_Y) {
15774 			DRM_DEBUG("No Y tiling for legacy addfb\n");
15775 			return -EINVAL;
15776 		}
15777 	}
15778 
15779 	/* Passed in modifier sanity checking. */
15780 	switch (mode_cmd->modifier[0]) {
15781 	case I915_FORMAT_MOD_Y_TILED:
15782 	case I915_FORMAT_MOD_Yf_TILED:
15783 		if (INTEL_INFO(dev)->gen < 9) {
15784 			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15785 				  mode_cmd->modifier[0]);
15786 			return -EINVAL;
15787 		}
15788 	case DRM_FORMAT_MOD_NONE:
15789 	case I915_FORMAT_MOD_X_TILED:
15790 		break;
15791 	default:
15792 		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15793 			  mode_cmd->modifier[0]);
15794 		return -EINVAL;
15795 	}
15796 
15797 	/*
15798 	 * gen2/3 display engine uses the fence if present,
15799 	 * so the tiling mode must match the fb modifier exactly.
15800 	 */
15801 	if (INTEL_INFO(dev_priv)->gen < 4 &&
15802 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15803 		DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15804 		return -EINVAL;
15805 	}
15806 
15807 	stride_alignment = intel_fb_stride_alignment(dev_priv,
15808 						     mode_cmd->modifier[0],
15809 						     mode_cmd->pixel_format);
15810 	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15811 		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15812 			  mode_cmd->pitches[0], stride_alignment);
15813 		return -EINVAL;
15814 	}
15815 
15816 	pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15817 					   mode_cmd->pixel_format);
15818 	if (mode_cmd->pitches[0] > pitch_limit) {
15819 		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15820 			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15821 			  "tiled" : "linear",
15822 			  mode_cmd->pitches[0], pitch_limit);
15823 		return -EINVAL;
15824 	}
15825 
15826 	/*
15827 	 * If there's a fence, enforce that
15828 	 * the fb pitch and fence stride match.
15829 	 */
15830 	if (tiling != I915_TILING_NONE &&
15831 	    mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15832 		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15833 			  mode_cmd->pitches[0],
15834 			  i915_gem_object_get_stride(obj));
15835 		return -EINVAL;
15836 	}
15837 
15838 	/* Reject formats not supported by any plane early. */
15839 	switch (mode_cmd->pixel_format) {
15840 	case DRM_FORMAT_C8:
15841 	case DRM_FORMAT_RGB565:
15842 	case DRM_FORMAT_XRGB8888:
15843 	case DRM_FORMAT_ARGB8888:
15844 		break;
15845 	case DRM_FORMAT_XRGB1555:
15846 		if (INTEL_INFO(dev)->gen > 3) {
15847 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15848 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15849 			kfree(format_name);
15850 			return -EINVAL;
15851 		}
15852 		break;
15853 	case DRM_FORMAT_ABGR8888:
15854 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15855 		    INTEL_INFO(dev)->gen < 9) {
15856 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15857 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15858 			kfree(format_name);
15859 			return -EINVAL;
15860 		}
15861 		break;
15862 	case DRM_FORMAT_XBGR8888:
15863 	case DRM_FORMAT_XRGB2101010:
15864 	case DRM_FORMAT_XBGR2101010:
15865 		if (INTEL_INFO(dev)->gen < 4) {
15866 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15867 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15868 			kfree(format_name);
15869 			return -EINVAL;
15870 		}
15871 		break;
15872 	case DRM_FORMAT_ABGR2101010:
15873 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15874 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15875 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15876 			kfree(format_name);
15877 			return -EINVAL;
15878 		}
15879 		break;
15880 	case DRM_FORMAT_YUYV:
15881 	case DRM_FORMAT_UYVY:
15882 	case DRM_FORMAT_YVYU:
15883 	case DRM_FORMAT_VYUY:
15884 		if (INTEL_INFO(dev)->gen < 5) {
15885 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15886 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15887 			kfree(format_name);
15888 			return -EINVAL;
15889 		}
15890 		break;
15891 	default:
15892 		format_name = drm_get_format_name(mode_cmd->pixel_format);
15893 		DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15894 		kfree(format_name);
15895 		return -EINVAL;
15896 	}
15897 
15898 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15899 	if (mode_cmd->offsets[0] != 0)
15900 		return -EINVAL;
15901 
15902 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15903 	intel_fb->obj = obj;
15904 
15905 	ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15906 	if (ret)
15907 		return ret;
15908 
15909 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15910 	if (ret) {
15911 		DRM_ERROR("framebuffer init failed %d\n", ret);
15912 		return ret;
15913 	}
15914 
15915 	intel_fb->obj->framebuffer_references++;
15916 
15917 	return 0;
15918 }
15919 
15920 static struct drm_framebuffer *
15921 intel_user_framebuffer_create(struct drm_device *dev,
15922 			      struct drm_file *filp,
15923 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
15924 {
15925 	struct drm_framebuffer *fb;
15926 	struct drm_i915_gem_object *obj;
15927 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15928 
15929 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15930 	if (!obj)
15931 		return ERR_PTR(-ENOENT);
15932 
15933 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15934 	if (IS_ERR(fb))
15935 		i915_gem_object_put_unlocked(obj);
15936 
15937 	return fb;
15938 }
15939 
15940 static const struct drm_mode_config_funcs intel_mode_funcs = {
15941 	.fb_create = intel_user_framebuffer_create,
15942 	.output_poll_changed = intel_fbdev_output_poll_changed,
15943 	.atomic_check = intel_atomic_check,
15944 	.atomic_commit = intel_atomic_commit,
15945 	.atomic_state_alloc = intel_atomic_state_alloc,
15946 	.atomic_state_clear = intel_atomic_state_clear,
15947 };
15948 
15949 /**
15950  * intel_init_display_hooks - initialize the display modesetting hooks
15951  * @dev_priv: device private
15952  */
15953 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15954 {
15955 	if (INTEL_INFO(dev_priv)->gen >= 9) {
15956 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15957 		dev_priv->display.get_initial_plane_config =
15958 			skylake_get_initial_plane_config;
15959 		dev_priv->display.crtc_compute_clock =
15960 			haswell_crtc_compute_clock;
15961 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15962 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15963 	} else if (HAS_DDI(dev_priv)) {
15964 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15965 		dev_priv->display.get_initial_plane_config =
15966 			ironlake_get_initial_plane_config;
15967 		dev_priv->display.crtc_compute_clock =
15968 			haswell_crtc_compute_clock;
15969 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15970 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15971 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15972 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15973 		dev_priv->display.get_initial_plane_config =
15974 			ironlake_get_initial_plane_config;
15975 		dev_priv->display.crtc_compute_clock =
15976 			ironlake_crtc_compute_clock;
15977 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
15978 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
15979 	} else if (IS_CHERRYVIEW(dev_priv)) {
15980 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15981 		dev_priv->display.get_initial_plane_config =
15982 			i9xx_get_initial_plane_config;
15983 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15984 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15985 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15986 	} else if (IS_VALLEYVIEW(dev_priv)) {
15987 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15988 		dev_priv->display.get_initial_plane_config =
15989 			i9xx_get_initial_plane_config;
15990 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15991 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15992 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15993 	} else if (IS_G4X(dev_priv)) {
15994 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15995 		dev_priv->display.get_initial_plane_config =
15996 			i9xx_get_initial_plane_config;
15997 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15998 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15999 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16000 	} else if (IS_PINEVIEW(dev_priv)) {
16001 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16002 		dev_priv->display.get_initial_plane_config =
16003 			i9xx_get_initial_plane_config;
16004 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16005 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
16006 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16007 	} else if (!IS_GEN2(dev_priv)) {
16008 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16009 		dev_priv->display.get_initial_plane_config =
16010 			i9xx_get_initial_plane_config;
16011 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16012 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
16013 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16014 	} else {
16015 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16016 		dev_priv->display.get_initial_plane_config =
16017 			i9xx_get_initial_plane_config;
16018 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16019 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
16020 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16021 	}
16022 
16023 	/* Returns the core display clock speed */
16024 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16025 		dev_priv->display.get_display_clock_speed =
16026 			skylake_get_display_clock_speed;
16027 	else if (IS_BROXTON(dev_priv))
16028 		dev_priv->display.get_display_clock_speed =
16029 			broxton_get_display_clock_speed;
16030 	else if (IS_BROADWELL(dev_priv))
16031 		dev_priv->display.get_display_clock_speed =
16032 			broadwell_get_display_clock_speed;
16033 	else if (IS_HASWELL(dev_priv))
16034 		dev_priv->display.get_display_clock_speed =
16035 			haswell_get_display_clock_speed;
16036 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16037 		dev_priv->display.get_display_clock_speed =
16038 			valleyview_get_display_clock_speed;
16039 	else if (IS_GEN5(dev_priv))
16040 		dev_priv->display.get_display_clock_speed =
16041 			ilk_get_display_clock_speed;
16042 	else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16043 		 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16044 		dev_priv->display.get_display_clock_speed =
16045 			i945_get_display_clock_speed;
16046 	else if (IS_GM45(dev_priv))
16047 		dev_priv->display.get_display_clock_speed =
16048 			gm45_get_display_clock_speed;
16049 	else if (IS_CRESTLINE(dev_priv))
16050 		dev_priv->display.get_display_clock_speed =
16051 			i965gm_get_display_clock_speed;
16052 	else if (IS_PINEVIEW(dev_priv))
16053 		dev_priv->display.get_display_clock_speed =
16054 			pnv_get_display_clock_speed;
16055 	else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16056 		dev_priv->display.get_display_clock_speed =
16057 			g33_get_display_clock_speed;
16058 	else if (IS_I915G(dev_priv))
16059 		dev_priv->display.get_display_clock_speed =
16060 			i915_get_display_clock_speed;
16061 	else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16062 		dev_priv->display.get_display_clock_speed =
16063 			i9xx_misc_get_display_clock_speed;
16064 	else if (IS_I915GM(dev_priv))
16065 		dev_priv->display.get_display_clock_speed =
16066 			i915gm_get_display_clock_speed;
16067 	else if (IS_I865G(dev_priv))
16068 		dev_priv->display.get_display_clock_speed =
16069 			i865_get_display_clock_speed;
16070 	else if (IS_I85X(dev_priv))
16071 		dev_priv->display.get_display_clock_speed =
16072 			i85x_get_display_clock_speed;
16073 	else { /* 830 */
16074 		WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16075 		dev_priv->display.get_display_clock_speed =
16076 			i830_get_display_clock_speed;
16077 	}
16078 
16079 	if (IS_GEN5(dev_priv)) {
16080 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16081 	} else if (IS_GEN6(dev_priv)) {
16082 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16083 	} else if (IS_IVYBRIDGE(dev_priv)) {
16084 		/* FIXME: detect B0+ stepping and use auto training */
16085 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16086 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16087 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16088 	}
16089 
16090 	if (IS_BROADWELL(dev_priv)) {
16091 		dev_priv->display.modeset_commit_cdclk =
16092 			broadwell_modeset_commit_cdclk;
16093 		dev_priv->display.modeset_calc_cdclk =
16094 			broadwell_modeset_calc_cdclk;
16095 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16096 		dev_priv->display.modeset_commit_cdclk =
16097 			valleyview_modeset_commit_cdclk;
16098 		dev_priv->display.modeset_calc_cdclk =
16099 			valleyview_modeset_calc_cdclk;
16100 	} else if (IS_BROXTON(dev_priv)) {
16101 		dev_priv->display.modeset_commit_cdclk =
16102 			bxt_modeset_commit_cdclk;
16103 		dev_priv->display.modeset_calc_cdclk =
16104 			bxt_modeset_calc_cdclk;
16105 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16106 		dev_priv->display.modeset_commit_cdclk =
16107 			skl_modeset_commit_cdclk;
16108 		dev_priv->display.modeset_calc_cdclk =
16109 			skl_modeset_calc_cdclk;
16110 	}
16111 
16112 	if (dev_priv->info.gen >= 9)
16113 		dev_priv->display.update_crtcs = skl_update_crtcs;
16114 	else
16115 		dev_priv->display.update_crtcs = intel_update_crtcs;
16116 
16117 	switch (INTEL_INFO(dev_priv)->gen) {
16118 	case 2:
16119 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
16120 		break;
16121 
16122 	case 3:
16123 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
16124 		break;
16125 
16126 	case 4:
16127 	case 5:
16128 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
16129 		break;
16130 
16131 	case 6:
16132 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
16133 		break;
16134 	case 7:
16135 	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16136 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
16137 		break;
16138 	case 9:
16139 		/* Drop through - unsupported since execlist only. */
16140 	default:
16141 		/* Default just returns -ENODEV to indicate unsupported */
16142 		dev_priv->display.queue_flip = intel_default_queue_flip;
16143 	}
16144 }
16145 
16146 /*
16147  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16148  * resume, or other times.  This quirk makes sure that's the case for
16149  * affected systems.
16150  */
16151 static void quirk_pipea_force(struct drm_device *dev)
16152 {
16153 	struct drm_i915_private *dev_priv = to_i915(dev);
16154 
16155 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16156 	DRM_INFO("applying pipe a force quirk\n");
16157 }
16158 
16159 static void quirk_pipeb_force(struct drm_device *dev)
16160 {
16161 	struct drm_i915_private *dev_priv = to_i915(dev);
16162 
16163 	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16164 	DRM_INFO("applying pipe b force quirk\n");
16165 }
16166 
16167 /*
16168  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16169  */
16170 static void quirk_ssc_force_disable(struct drm_device *dev)
16171 {
16172 	struct drm_i915_private *dev_priv = to_i915(dev);
16173 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16174 	DRM_INFO("applying lvds SSC disable quirk\n");
16175 }
16176 
16177 /*
16178  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16179  * brightness value
16180  */
16181 static void quirk_invert_brightness(struct drm_device *dev)
16182 {
16183 	struct drm_i915_private *dev_priv = to_i915(dev);
16184 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16185 	DRM_INFO("applying inverted panel brightness quirk\n");
16186 }
16187 
16188 /* Some VBT's incorrectly indicate no backlight is present */
16189 static void quirk_backlight_present(struct drm_device *dev)
16190 {
16191 	struct drm_i915_private *dev_priv = to_i915(dev);
16192 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16193 	DRM_INFO("applying backlight present quirk\n");
16194 }
16195 
16196 struct intel_quirk {
16197 	int device;
16198 	int subsystem_vendor;
16199 	int subsystem_device;
16200 	void (*hook)(struct drm_device *dev);
16201 };
16202 
16203 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16204 struct intel_dmi_quirk {
16205 	void (*hook)(struct drm_device *dev);
16206 	const struct dmi_system_id (*dmi_id_list)[];
16207 };
16208 
16209 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16210 {
16211 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16212 	return 1;
16213 }
16214 
16215 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16216 	{
16217 		.dmi_id_list = &(const struct dmi_system_id[]) {
16218 			{
16219 				.callback = intel_dmi_reverse_brightness,
16220 				.ident = "NCR Corporation",
16221 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16222 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
16223 				},
16224 			},
16225 			{ }  /* terminating entry */
16226 		},
16227 		.hook = quirk_invert_brightness,
16228 	},
16229 };
16230 
16231 static struct intel_quirk intel_quirks[] = {
16232 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16233 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16234 
16235 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16236 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16237 
16238 	/* 830 needs to leave pipe A & dpll A up */
16239 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16240 
16241 	/* 830 needs to leave pipe B & dpll B up */
16242 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16243 
16244 	/* Lenovo U160 cannot use SSC on LVDS */
16245 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16246 
16247 	/* Sony Vaio Y cannot use SSC on LVDS */
16248 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16249 
16250 	/* Acer Aspire 5734Z must invert backlight brightness */
16251 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16252 
16253 	/* Acer/eMachines G725 */
16254 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16255 
16256 	/* Acer/eMachines e725 */
16257 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16258 
16259 	/* Acer/Packard Bell NCL20 */
16260 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16261 
16262 	/* Acer Aspire 4736Z */
16263 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16264 
16265 	/* Acer Aspire 5336 */
16266 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16267 
16268 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16269 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16270 
16271 	/* Acer C720 Chromebook (Core i3 4005U) */
16272 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16273 
16274 	/* Apple Macbook 2,1 (Core 2 T7400) */
16275 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16276 
16277 	/* Apple Macbook 4,1 */
16278 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16279 
16280 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
16281 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16282 
16283 	/* HP Chromebook 14 (Celeron 2955U) */
16284 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16285 
16286 	/* Dell Chromebook 11 */
16287 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16288 
16289 	/* Dell Chromebook 11 (2015 version) */
16290 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16291 };
16292 
16293 static void intel_init_quirks(struct drm_device *dev)
16294 {
16295 	struct pci_dev *d = dev->pdev;
16296 	int i;
16297 
16298 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16299 		struct intel_quirk *q = &intel_quirks[i];
16300 
16301 		if (d->device == q->device &&
16302 		    (d->subsystem_vendor == q->subsystem_vendor ||
16303 		     q->subsystem_vendor == PCI_ANY_ID) &&
16304 		    (d->subsystem_device == q->subsystem_device ||
16305 		     q->subsystem_device == PCI_ANY_ID))
16306 			q->hook(dev);
16307 	}
16308 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16309 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16310 			intel_dmi_quirks[i].hook(dev);
16311 	}
16312 }
16313 
16314 /* Disable the VGA plane that we never use */
16315 static void i915_disable_vga(struct drm_device *dev)
16316 {
16317 	struct drm_i915_private *dev_priv = to_i915(dev);
16318 	struct pci_dev *pdev = dev_priv->drm.pdev;
16319 	u8 sr1;
16320 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16321 
16322 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16323 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16324 	outb(SR01, VGA_SR_INDEX);
16325 	sr1 = inb(VGA_SR_DATA);
16326 	outb(sr1 | 1<<5, VGA_SR_DATA);
16327 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
16328 	udelay(300);
16329 
16330 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16331 	POSTING_READ(vga_reg);
16332 }
16333 
16334 void intel_modeset_init_hw(struct drm_device *dev)
16335 {
16336 	struct drm_i915_private *dev_priv = to_i915(dev);
16337 
16338 	intel_update_cdclk(dev);
16339 
16340 	dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16341 
16342 	intel_init_clock_gating(dev);
16343 }
16344 
16345 /*
16346  * Calculate what we think the watermarks should be for the state we've read
16347  * out of the hardware and then immediately program those watermarks so that
16348  * we ensure the hardware settings match our internal state.
16349  *
16350  * We can calculate what we think WM's should be by creating a duplicate of the
16351  * current state (which was constructed during hardware readout) and running it
16352  * through the atomic check code to calculate new watermark values in the
16353  * state object.
16354  */
16355 static void sanitize_watermarks(struct drm_device *dev)
16356 {
16357 	struct drm_i915_private *dev_priv = to_i915(dev);
16358 	struct drm_atomic_state *state;
16359 	struct drm_crtc *crtc;
16360 	struct drm_crtc_state *cstate;
16361 	struct drm_modeset_acquire_ctx ctx;
16362 	int ret;
16363 	int i;
16364 
16365 	/* Only supported on platforms that use atomic watermark design */
16366 	if (!dev_priv->display.optimize_watermarks)
16367 		return;
16368 
16369 	/*
16370 	 * We need to hold connection_mutex before calling duplicate_state so
16371 	 * that the connector loop is protected.
16372 	 */
16373 	drm_modeset_acquire_init(&ctx, 0);
16374 retry:
16375 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
16376 	if (ret == -EDEADLK) {
16377 		drm_modeset_backoff(&ctx);
16378 		goto retry;
16379 	} else if (WARN_ON(ret)) {
16380 		goto fail;
16381 	}
16382 
16383 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
16384 	if (WARN_ON(IS_ERR(state)))
16385 		goto fail;
16386 
16387 	/*
16388 	 * Hardware readout is the only time we don't want to calculate
16389 	 * intermediate watermarks (since we don't trust the current
16390 	 * watermarks).
16391 	 */
16392 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
16393 
16394 	ret = intel_atomic_check(dev, state);
16395 	if (ret) {
16396 		/*
16397 		 * If we fail here, it means that the hardware appears to be
16398 		 * programmed in a way that shouldn't be possible, given our
16399 		 * understanding of watermark requirements.  This might mean a
16400 		 * mistake in the hardware readout code or a mistake in the
16401 		 * watermark calculations for a given platform.  Raise a WARN
16402 		 * so that this is noticeable.
16403 		 *
16404 		 * If this actually happens, we'll have to just leave the
16405 		 * BIOS-programmed watermarks untouched and hope for the best.
16406 		 */
16407 		WARN(true, "Could not determine valid watermarks for inherited state\n");
16408 		goto fail;
16409 	}
16410 
16411 	/* Write calculated watermark values back */
16412 	for_each_crtc_in_state(state, crtc, cstate, i) {
16413 		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16414 
16415 		cs->wm.need_postvbl_update = true;
16416 		dev_priv->display.optimize_watermarks(cs);
16417 	}
16418 
16419 	drm_atomic_state_free(state);
16420 fail:
16421 	drm_modeset_drop_locks(&ctx);
16422 	drm_modeset_acquire_fini(&ctx);
16423 }
16424 
16425 void intel_modeset_init(struct drm_device *dev)
16426 {
16427 	struct drm_i915_private *dev_priv = to_i915(dev);
16428 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
16429 	int sprite, ret;
16430 	enum i915_pipe pipe;
16431 	struct intel_crtc *crtc;
16432 
16433 	drm_mode_config_init(dev);
16434 
16435 	dev->mode_config.min_width = 0;
16436 	dev->mode_config.min_height = 0;
16437 
16438 	dev->mode_config.preferred_depth = 24;
16439 	dev->mode_config.prefer_shadow = 1;
16440 
16441 	dev->mode_config.allow_fb_modifiers = true;
16442 
16443 	dev->mode_config.funcs = &intel_mode_funcs;
16444 
16445 	intel_init_quirks(dev);
16446 
16447 	intel_init_pm(dev);
16448 
16449 	if (INTEL_INFO(dev)->num_pipes == 0)
16450 		return;
16451 
16452 	/*
16453 	 * There may be no VBT; and if the BIOS enabled SSC we can
16454 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
16455 	 * BIOS isn't using it, don't assume it will work even if the VBT
16456 	 * indicates as much.
16457 	 */
16458 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16459 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16460 					    DREF_SSC1_ENABLE);
16461 
16462 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16463 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16464 				     bios_lvds_use_ssc ? "en" : "dis",
16465 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16466 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16467 		}
16468 	}
16469 
16470 	if (IS_GEN2(dev_priv)) {
16471 		dev->mode_config.max_width = 2048;
16472 		dev->mode_config.max_height = 2048;
16473 	} else if (IS_GEN3(dev_priv)) {
16474 		dev->mode_config.max_width = 4096;
16475 		dev->mode_config.max_height = 4096;
16476 	} else {
16477 		dev->mode_config.max_width = 8192;
16478 		dev->mode_config.max_height = 8192;
16479 	}
16480 
16481 	if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16482 		dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16483 		dev->mode_config.cursor_height = 1023;
16484 	} else if (IS_GEN2(dev_priv)) {
16485 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16486 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16487 	} else {
16488 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16489 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16490 	}
16491 
16492 	dev->mode_config.fb_base = ggtt->mappable_base;
16493 
16494 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
16495 		      INTEL_INFO(dev)->num_pipes,
16496 		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
16497 
16498 	for_each_pipe(dev_priv, pipe) {
16499 		intel_crtc_init(dev, pipe);
16500 		for_each_sprite(dev_priv, pipe, sprite) {
16501 			ret = intel_plane_init(dev, pipe, sprite);
16502 			if (ret)
16503 				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
16504 					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
16505 		}
16506 	}
16507 
16508 	intel_update_czclk(dev_priv);
16509 	intel_update_cdclk(dev);
16510 
16511 	intel_shared_dpll_init(dev);
16512 
16513 	if (dev_priv->max_cdclk_freq == 0)
16514 		intel_update_max_cdclk(dev);
16515 
16516 	/* Just disable it once at startup */
16517 	i915_disable_vga(dev);
16518 	intel_setup_outputs(dev);
16519 
16520 	drm_modeset_lock_all(dev);
16521 	intel_modeset_setup_hw_state(dev);
16522 	drm_modeset_unlock_all(dev);
16523 
16524 	for_each_intel_crtc(dev, crtc) {
16525 		struct intel_initial_plane_config plane_config = {};
16526 
16527 		if (!crtc->active)
16528 			continue;
16529 
16530 		/*
16531 		 * Note that reserving the BIOS fb up front prevents us
16532 		 * from stuffing other stolen allocations like the ring
16533 		 * on top.  This prevents some ugliness at boot time, and
16534 		 * can even allow for smooth boot transitions if the BIOS
16535 		 * fb is large enough for the active pipe configuration.
16536 		 */
16537 		dev_priv->display.get_initial_plane_config(crtc,
16538 							   &plane_config);
16539 
16540 		/*
16541 		 * If the fb is shared between multiple heads, we'll
16542 		 * just get the first one.
16543 		 */
16544 		intel_find_initial_plane_obj(crtc, &plane_config);
16545 	}
16546 
16547 	/*
16548 	 * Make sure hardware watermarks really match the state we read out.
16549 	 * Note that we need to do this after reconstructing the BIOS fb's
16550 	 * since the watermark calculation done here will use pstate->fb.
16551 	 */
16552 	sanitize_watermarks(dev);
16553 }
16554 
16555 static void intel_enable_pipe_a(struct drm_device *dev)
16556 {
16557 	struct intel_connector *connector;
16558 	struct drm_connector *crt = NULL;
16559 	struct intel_load_detect_pipe load_detect_temp;
16560 	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16561 
16562 	/* We can't just switch on the pipe A, we need to set things up with a
16563 	 * proper mode and output configuration. As a gross hack, enable pipe A
16564 	 * by enabling the load detect pipe once. */
16565 	for_each_intel_connector(dev, connector) {
16566 		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16567 			crt = &connector->base;
16568 			break;
16569 		}
16570 	}
16571 
16572 	if (!crt)
16573 		return;
16574 
16575 	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16576 		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16577 }
16578 
16579 static bool
16580 intel_check_plane_mapping(struct intel_crtc *crtc)
16581 {
16582 	struct drm_device *dev = crtc->base.dev;
16583 	struct drm_i915_private *dev_priv = to_i915(dev);
16584 	u32 val;
16585 
16586 	if (INTEL_INFO(dev)->num_pipes == 1)
16587 		return true;
16588 
16589 	val = I915_READ(DSPCNTR(!crtc->plane));
16590 
16591 	if ((val & DISPLAY_PLANE_ENABLE) &&
16592 	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16593 		return false;
16594 
16595 	return true;
16596 }
16597 
16598 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16599 {
16600 	struct drm_device *dev = crtc->base.dev;
16601 	struct intel_encoder *encoder;
16602 
16603 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16604 		return true;
16605 
16606 	return false;
16607 }
16608 
16609 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16610 {
16611 	struct drm_device *dev = encoder->base.dev;
16612 	struct intel_connector *connector;
16613 
16614 	for_each_connector_on_encoder(dev, &encoder->base, connector)
16615 		return connector;
16616 
16617 	return NULL;
16618 }
16619 
16620 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16621 			      enum transcoder pch_transcoder)
16622 {
16623 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16624 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16625 }
16626 
16627 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16628 {
16629 	struct drm_device *dev = crtc->base.dev;
16630 	struct drm_i915_private *dev_priv = to_i915(dev);
16631 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16632 
16633 	/* Clear any frame start delays used for debugging left by the BIOS */
16634 	if (!transcoder_is_dsi(cpu_transcoder)) {
16635 		i915_reg_t reg = PIPECONF(cpu_transcoder);
16636 
16637 		I915_WRITE(reg,
16638 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16639 	}
16640 
16641 	/* restore vblank interrupts to correct state */
16642 	drm_crtc_vblank_reset(&crtc->base);
16643 	if (crtc->active) {
16644 		struct intel_plane *plane;
16645 
16646 		drm_crtc_vblank_on(&crtc->base);
16647 
16648 		/* Disable everything but the primary plane */
16649 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
16650 			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16651 				continue;
16652 
16653 			plane->disable_plane(&plane->base, &crtc->base);
16654 		}
16655 	}
16656 
16657 	/* We need to sanitize the plane -> pipe mapping first because this will
16658 	 * disable the crtc (and hence change the state) if it is wrong. Note
16659 	 * that gen4+ has a fixed plane -> pipe mapping.  */
16660 	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
16661 		bool plane;
16662 
16663 		DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16664 			      crtc->base.base.id, crtc->base.name);
16665 
16666 		/* Pipe has the wrong plane attached and the plane is active.
16667 		 * Temporarily change the plane mapping and disable everything
16668 		 * ...  */
16669 		plane = crtc->plane;
16670 		to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16671 		crtc->plane = !plane;
16672 		intel_crtc_disable_noatomic(&crtc->base);
16673 		crtc->plane = plane;
16674 	}
16675 
16676 	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16677 	    crtc->pipe == PIPE_A && !crtc->active) {
16678 		/* BIOS forgot to enable pipe A, this mostly happens after
16679 		 * resume. Force-enable the pipe to fix this, the update_dpms
16680 		 * call below we restore the pipe to the right state, but leave
16681 		 * the required bits on. */
16682 		intel_enable_pipe_a(dev);
16683 	}
16684 
16685 	/* Adjust the state of the output pipe according to whether we
16686 	 * have active connectors/encoders. */
16687 	if (crtc->active && !intel_crtc_has_encoders(crtc))
16688 		intel_crtc_disable_noatomic(&crtc->base);
16689 
16690 	if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16691 		/*
16692 		 * We start out with underrun reporting disabled to avoid races.
16693 		 * For correct bookkeeping mark this on active crtcs.
16694 		 *
16695 		 * Also on gmch platforms we dont have any hardware bits to
16696 		 * disable the underrun reporting. Which means we need to start
16697 		 * out with underrun reporting disabled also on inactive pipes,
16698 		 * since otherwise we'll complain about the garbage we read when
16699 		 * e.g. coming up after runtime pm.
16700 		 *
16701 		 * No protection against concurrent access is required - at
16702 		 * worst a fifo underrun happens which also sets this to false.
16703 		 */
16704 		crtc->cpu_fifo_underrun_disabled = true;
16705 		/*
16706 		 * We track the PCH trancoder underrun reporting state
16707 		 * within the crtc. With crtc for pipe A housing the underrun
16708 		 * reporting state for PCH transcoder A, crtc for pipe B housing
16709 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16710 		 * and marking underrun reporting as disabled for the non-existing
16711 		 * PCH transcoders B and C would prevent enabling the south
16712 		 * error interrupt (see cpt_can_enable_serr_int()).
16713 		 */
16714 		if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16715 			crtc->pch_fifo_underrun_disabled = true;
16716 	}
16717 }
16718 
16719 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16720 {
16721 	struct intel_connector *connector;
16722 
16723 	/* We need to check both for a crtc link (meaning that the
16724 	 * encoder is active and trying to read from a pipe) and the
16725 	 * pipe itself being active. */
16726 	bool has_active_crtc = encoder->base.crtc &&
16727 		to_intel_crtc(encoder->base.crtc)->active;
16728 
16729 	connector = intel_encoder_find_connector(encoder);
16730 	if (connector && !has_active_crtc) {
16731 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16732 			      encoder->base.base.id,
16733 			      encoder->base.name);
16734 
16735 		/* Connector is active, but has no active pipe. This is
16736 		 * fallout from our resume register restoring. Disable
16737 		 * the encoder manually again. */
16738 		if (encoder->base.crtc) {
16739 			struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16740 
16741 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16742 				      encoder->base.base.id,
16743 				      encoder->base.name);
16744 			encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16745 			if (encoder->post_disable)
16746 				encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16747 		}
16748 		encoder->base.crtc = NULL;
16749 
16750 		/* Inconsistent output/port/pipe state happens presumably due to
16751 		 * a bug in one of the get_hw_state functions. Or someplace else
16752 		 * in our code, like the register restore mess on resume. Clamp
16753 		 * things to off as a safer default. */
16754 
16755 		connector->base.dpms = DRM_MODE_DPMS_OFF;
16756 		connector->base.encoder = NULL;
16757 	}
16758 	/* Enabled encoders without active connectors will be fixed in
16759 	 * the crtc fixup. */
16760 }
16761 
16762 void i915_redisable_vga_power_on(struct drm_device *dev)
16763 {
16764 	struct drm_i915_private *dev_priv = to_i915(dev);
16765 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16766 
16767 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16768 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16769 		i915_disable_vga(dev);
16770 	}
16771 }
16772 
16773 void i915_redisable_vga(struct drm_device *dev)
16774 {
16775 	struct drm_i915_private *dev_priv = to_i915(dev);
16776 
16777 	/* This function can be called both from intel_modeset_setup_hw_state or
16778 	 * at a very early point in our resume sequence, where the power well
16779 	 * structures are not yet restored. Since this function is at a very
16780 	 * paranoid "someone might have enabled VGA while we were not looking"
16781 	 * level, just check if the power well is enabled instead of trying to
16782 	 * follow the "don't touch the power well if we don't need it" policy
16783 	 * the rest of the driver uses. */
16784 	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16785 		return;
16786 
16787 	i915_redisable_vga_power_on(dev);
16788 
16789 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16790 }
16791 
16792 static bool primary_get_hw_state(struct intel_plane *plane)
16793 {
16794 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16795 
16796 	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16797 }
16798 
16799 /* FIXME read out full plane state for all planes */
16800 static void readout_plane_state(struct intel_crtc *crtc)
16801 {
16802 	struct drm_plane *primary = crtc->base.primary;
16803 	struct intel_plane_state *plane_state =
16804 		to_intel_plane_state(primary->state);
16805 
16806 	plane_state->base.visible = crtc->active &&
16807 		primary_get_hw_state(to_intel_plane(primary));
16808 
16809 	if (plane_state->base.visible)
16810 		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16811 }
16812 
16813 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16814 {
16815 	struct drm_i915_private *dev_priv = to_i915(dev);
16816 	enum i915_pipe pipe;
16817 	struct intel_crtc *crtc;
16818 	struct intel_encoder *encoder;
16819 	struct intel_connector *connector;
16820 	int i;
16821 
16822 	dev_priv->active_crtcs = 0;
16823 
16824 	for_each_intel_crtc(dev, crtc) {
16825 		struct intel_crtc_state *crtc_state = crtc->config;
16826 		int pixclk = 0;
16827 
16828 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16829 		memset(crtc_state, 0, sizeof(*crtc_state));
16830 		crtc_state->base.crtc = &crtc->base;
16831 
16832 		crtc_state->base.active = crtc_state->base.enable =
16833 			dev_priv->display.get_pipe_config(crtc, crtc_state);
16834 
16835 		crtc->base.enabled = crtc_state->base.enable;
16836 		crtc->active = crtc_state->base.active;
16837 
16838 		if (crtc_state->base.active) {
16839 			dev_priv->active_crtcs |= 1 << crtc->pipe;
16840 
16841 			if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16842 				pixclk = ilk_pipe_pixel_rate(crtc_state);
16843 			else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16844 				pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16845 			else
16846 				WARN_ON(dev_priv->display.modeset_calc_cdclk);
16847 
16848 			/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16849 			if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16850 				pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16851 		}
16852 
16853 		dev_priv->min_pixclk[crtc->pipe] = pixclk;
16854 
16855 		readout_plane_state(crtc);
16856 
16857 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16858 			      crtc->base.base.id, crtc->base.name,
16859 			      crtc->active ? "enabled" : "disabled");
16860 	}
16861 
16862 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16863 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16864 
16865 		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16866 						  &pll->config.hw_state);
16867 		pll->config.crtc_mask = 0;
16868 		for_each_intel_crtc(dev, crtc) {
16869 			if (crtc->active && crtc->config->shared_dpll == pll)
16870 				pll->config.crtc_mask |= 1 << crtc->pipe;
16871 		}
16872 		pll->active_mask = pll->config.crtc_mask;
16873 
16874 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16875 			      pll->name, pll->config.crtc_mask, pll->on);
16876 	}
16877 
16878 	for_each_intel_encoder(dev, encoder) {
16879 		pipe = 0;
16880 
16881 		if (encoder->get_hw_state(encoder, &pipe)) {
16882 			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16883 			encoder->base.crtc = &crtc->base;
16884 			crtc->config->output_types |= 1 << encoder->type;
16885 			encoder->get_config(encoder, crtc->config);
16886 		} else {
16887 			encoder->base.crtc = NULL;
16888 		}
16889 
16890 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16891 			      encoder->base.base.id,
16892 			      encoder->base.name,
16893 			      encoder->base.crtc ? "enabled" : "disabled",
16894 			      pipe_name(pipe));
16895 	}
16896 
16897 	for_each_intel_connector(dev, connector) {
16898 		if (connector->get_hw_state(connector)) {
16899 			connector->base.dpms = DRM_MODE_DPMS_ON;
16900 
16901 			encoder = connector->encoder;
16902 			connector->base.encoder = &encoder->base;
16903 
16904 			if (encoder->base.crtc &&
16905 			    encoder->base.crtc->state->active) {
16906 				/*
16907 				 * This has to be done during hardware readout
16908 				 * because anything calling .crtc_disable may
16909 				 * rely on the connector_mask being accurate.
16910 				 */
16911 				encoder->base.crtc->state->connector_mask |=
16912 					1 << drm_connector_index(&connector->base);
16913 				encoder->base.crtc->state->encoder_mask |=
16914 					1 << drm_encoder_index(&encoder->base);
16915 			}
16916 
16917 		} else {
16918 			connector->base.dpms = DRM_MODE_DPMS_OFF;
16919 			connector->base.encoder = NULL;
16920 		}
16921 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16922 			      connector->base.base.id,
16923 			      connector->base.name,
16924 			      connector->base.encoder ? "enabled" : "disabled");
16925 	}
16926 
16927 	for_each_intel_crtc(dev, crtc) {
16928 		crtc->base.hwmode = crtc->config->base.adjusted_mode;
16929 
16930 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16931 		if (crtc->base.state->active) {
16932 			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16933 			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16934 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16935 
16936 			/*
16937 			 * The initial mode needs to be set in order to keep
16938 			 * the atomic core happy. It wants a valid mode if the
16939 			 * crtc's enabled, so we do the above call.
16940 			 *
16941 			 * At this point some state updated by the connectors
16942 			 * in their ->detect() callback has not run yet, so
16943 			 * no recalculation can be done yet.
16944 			 *
16945 			 * Even if we could do a recalculation and modeset
16946 			 * right now it would cause a double modeset if
16947 			 * fbdev or userspace chooses a different initial mode.
16948 			 *
16949 			 * If that happens, someone indicated they wanted a
16950 			 * mode change, which means it's safe to do a full
16951 			 * recalculation.
16952 			 */
16953 			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16954 
16955 			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16956 			update_scanline_offset(crtc);
16957 		}
16958 
16959 		intel_pipe_config_sanity_check(dev_priv, crtc->config);
16960 	}
16961 }
16962 
16963 /* Scan out the current hw modeset state,
16964  * and sanitizes it to the current state
16965  */
16966 static void
16967 intel_modeset_setup_hw_state(struct drm_device *dev)
16968 {
16969 	struct drm_i915_private *dev_priv = to_i915(dev);
16970 	enum i915_pipe pipe;
16971 	struct intel_crtc *crtc;
16972 	struct intel_encoder *encoder;
16973 	int i;
16974 
16975 	intel_modeset_readout_hw_state(dev);
16976 
16977 	/* HW state is read out, now we need to sanitize this mess. */
16978 	for_each_intel_encoder(dev, encoder) {
16979 		intel_sanitize_encoder(encoder);
16980 	}
16981 
16982 	for_each_pipe(dev_priv, pipe) {
16983 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16984 		intel_sanitize_crtc(crtc);
16985 		intel_dump_pipe_config(crtc, crtc->config,
16986 				       "[setup_hw_state]");
16987 	}
16988 
16989 	intel_modeset_update_connector_atomic_state(dev);
16990 
16991 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16992 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16993 
16994 		if (!pll->on || pll->active_mask)
16995 			continue;
16996 
16997 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16998 
16999 		pll->funcs.disable(dev_priv, pll);
17000 		pll->on = false;
17001 	}
17002 
17003 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17004 		vlv_wm_get_hw_state(dev);
17005 	else if (IS_GEN9(dev_priv))
17006 		skl_wm_get_hw_state(dev);
17007 	else if (HAS_PCH_SPLIT(dev_priv))
17008 		ilk_wm_get_hw_state(dev);
17009 
17010 	for_each_intel_crtc(dev, crtc) {
17011 		unsigned long put_domains;
17012 
17013 		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17014 		if (WARN_ON(put_domains))
17015 			modeset_put_power_domains(dev_priv, put_domains);
17016 	}
17017 	intel_display_set_init_power(dev_priv, false);
17018 
17019 	intel_fbc_init_pipe_state(dev_priv);
17020 }
17021 
17022 void intel_display_resume(struct drm_device *dev)
17023 {
17024 	struct drm_i915_private *dev_priv = to_i915(dev);
17025 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17026 	struct drm_modeset_acquire_ctx ctx;
17027 	int ret;
17028 
17029 	dev_priv->modeset_restore_state = NULL;
17030 	if (state)
17031 		state->acquire_ctx = &ctx;
17032 
17033 	/*
17034 	 * This is a cludge because with real atomic modeset mode_config.mutex
17035 	 * won't be taken. Unfortunately some probed state like
17036 	 * audio_codec_enable is still protected by mode_config.mutex, so lock
17037 	 * it here for now.
17038 	 */
17039 	mutex_lock(&dev->mode_config.mutex);
17040 	drm_modeset_acquire_init(&ctx, 0);
17041 
17042 	while (1) {
17043 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
17044 		if (ret != -EDEADLK)
17045 			break;
17046 
17047 		drm_modeset_backoff(&ctx);
17048 	}
17049 
17050 	if (!ret)
17051 		ret = __intel_display_resume(dev, state);
17052 
17053 	drm_modeset_drop_locks(&ctx);
17054 	drm_modeset_acquire_fini(&ctx);
17055 	mutex_unlock(&dev->mode_config.mutex);
17056 
17057 	if (ret) {
17058 		DRM_ERROR("Restoring old state failed with %i\n", ret);
17059 		drm_atomic_state_free(state);
17060 	}
17061 }
17062 
17063 void intel_modeset_gem_init(struct drm_device *dev)
17064 {
17065 	struct drm_i915_private *dev_priv = to_i915(dev);
17066 	struct drm_crtc *c;
17067 	struct drm_i915_gem_object *obj;
17068 
17069 	intel_init_gt_powersave(dev_priv);
17070 
17071 	intel_modeset_init_hw(dev);
17072 
17073 	intel_setup_overlay(dev_priv);
17074 
17075 	/*
17076 	 * Make sure any fbs we allocated at startup are properly
17077 	 * pinned & fenced.  When we do the allocation it's too early
17078 	 * for this.
17079 	 */
17080 	for_each_crtc(dev, c) {
17081 		struct i915_vma *vma;
17082 
17083 		obj = intel_fb_obj(c->primary->fb);
17084 		if (obj == NULL)
17085 			continue;
17086 
17087 		mutex_lock(&dev->struct_mutex);
17088 		vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17089 						 c->primary->state->rotation);
17090 		mutex_unlock(&dev->struct_mutex);
17091 		if (IS_ERR(vma)) {
17092 			DRM_ERROR("failed to pin boot fb on pipe %d\n",
17093 				  to_intel_crtc(c)->pipe);
17094 			drm_framebuffer_unreference(c->primary->fb);
17095 			c->primary->fb = NULL;
17096 			c->primary->crtc = c->primary->state->crtc = NULL;
17097 			update_state_fb(c->primary);
17098 			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17099 		}
17100 	}
17101 }
17102 
17103 int intel_connector_register(struct drm_connector *connector)
17104 {
17105 	struct intel_connector *intel_connector = to_intel_connector(connector);
17106 	int ret;
17107 
17108 	ret = intel_backlight_device_register(intel_connector);
17109 	if (ret)
17110 		goto err;
17111 
17112 	return 0;
17113 
17114 err:
17115 	return ret;
17116 }
17117 
17118 void intel_connector_unregister(struct drm_connector *connector)
17119 {
17120 	struct intel_connector *intel_connector = to_intel_connector(connector);
17121 
17122 	intel_backlight_device_unregister(intel_connector);
17123 	intel_panel_destroy_backlight(connector);
17124 }
17125 
17126 void intel_modeset_cleanup(struct drm_device *dev)
17127 {
17128 	struct drm_i915_private *dev_priv = to_i915(dev);
17129 
17130 	intel_disable_gt_powersave(dev_priv);
17131 
17132 	/*
17133 	 * Interrupts and polling as the first thing to avoid creating havoc.
17134 	 * Too much stuff here (turning of connectors, ...) would
17135 	 * experience fancy races otherwise.
17136 	 */
17137 	intel_irq_uninstall(dev_priv);
17138 
17139 	/*
17140 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
17141 	 * poll handlers. Hence disable polling after hpd handling is shut down.
17142 	 */
17143 	drm_kms_helper_poll_fini(dev);
17144 
17145 	intel_unregister_dsm_handler();
17146 
17147 	intel_fbc_global_disable(dev_priv);
17148 
17149 	/* flush any delayed tasks or pending work */
17150 	flush_scheduled_work();
17151 
17152 	drm_mode_config_cleanup(dev);
17153 
17154 	intel_cleanup_overlay(dev_priv);
17155 
17156 	intel_cleanup_gt_powersave(dev_priv);
17157 
17158 	intel_teardown_gmbus(dev);
17159 }
17160 
17161 void intel_connector_attach_encoder(struct intel_connector *connector,
17162 				    struct intel_encoder *encoder)
17163 {
17164 	connector->encoder = encoder;
17165 	drm_mode_connector_attach_encoder(&connector->base,
17166 					  &encoder->base);
17167 }
17168 
17169 /*
17170  * set vga decode state - true == enable VGA decode
17171  */
17172 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17173 {
17174 	struct drm_i915_private *dev_priv = to_i915(dev);
17175 	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17176 	u16 gmch_ctrl;
17177 
17178 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17179 		DRM_ERROR("failed to read control word\n");
17180 		return -EIO;
17181 	}
17182 
17183 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17184 		return 0;
17185 
17186 	if (state)
17187 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17188 	else
17189 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17190 
17191 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17192 		DRM_ERROR("failed to write control word\n");
17193 		return -EIO;
17194 	}
17195 
17196 	return 0;
17197 }
17198 
17199 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17200 
17201 struct intel_display_error_state {
17202 
17203 	u32 power_well_driver;
17204 
17205 	int num_transcoders;
17206 
17207 	struct intel_cursor_error_state {
17208 		u32 control;
17209 		u32 position;
17210 		u32 base;
17211 		u32 size;
17212 	} cursor[I915_MAX_PIPES];
17213 
17214 	struct intel_pipe_error_state {
17215 		bool power_domain_on;
17216 		u32 source;
17217 		u32 stat;
17218 	} pipe[I915_MAX_PIPES];
17219 
17220 	struct intel_plane_error_state {
17221 		u32 control;
17222 		u32 stride;
17223 		u32 size;
17224 		u32 pos;
17225 		u32 addr;
17226 		u32 surface;
17227 		u32 tile_offset;
17228 	} plane[I915_MAX_PIPES];
17229 
17230 	struct intel_transcoder_error_state {
17231 		bool power_domain_on;
17232 		enum transcoder cpu_transcoder;
17233 
17234 		u32 conf;
17235 
17236 		u32 htotal;
17237 		u32 hblank;
17238 		u32 hsync;
17239 		u32 vtotal;
17240 		u32 vblank;
17241 		u32 vsync;
17242 	} transcoder[4];
17243 };
17244 
17245 struct intel_display_error_state *
17246 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17247 {
17248 	struct intel_display_error_state *error;
17249 	int transcoders[] = {
17250 		TRANSCODER_A,
17251 		TRANSCODER_B,
17252 		TRANSCODER_C,
17253 		TRANSCODER_EDP,
17254 	};
17255 	int i;
17256 
17257 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
17258 		return NULL;
17259 
17260 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
17261 	if (error == NULL)
17262 		return NULL;
17263 
17264 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17265 		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17266 
17267 	for_each_pipe(dev_priv, i) {
17268 		error->pipe[i].power_domain_on =
17269 			__intel_display_power_is_enabled(dev_priv,
17270 							 POWER_DOMAIN_PIPE(i));
17271 		if (!error->pipe[i].power_domain_on)
17272 			continue;
17273 
17274 		error->cursor[i].control = I915_READ(CURCNTR(i));
17275 		error->cursor[i].position = I915_READ(CURPOS(i));
17276 		error->cursor[i].base = I915_READ(CURBASE(i));
17277 
17278 		error->plane[i].control = I915_READ(DSPCNTR(i));
17279 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17280 		if (INTEL_GEN(dev_priv) <= 3) {
17281 			error->plane[i].size = I915_READ(DSPSIZE(i));
17282 			error->plane[i].pos = I915_READ(DSPPOS(i));
17283 		}
17284 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17285 			error->plane[i].addr = I915_READ(DSPADDR(i));
17286 		if (INTEL_GEN(dev_priv) >= 4) {
17287 			error->plane[i].surface = I915_READ(DSPSURF(i));
17288 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17289 		}
17290 
17291 		error->pipe[i].source = I915_READ(PIPESRC(i));
17292 
17293 		if (HAS_GMCH_DISPLAY(dev_priv))
17294 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
17295 	}
17296 
17297 	/* Note: this does not include DSI transcoders. */
17298 	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17299 	if (HAS_DDI(dev_priv))
17300 		error->num_transcoders++; /* Account for eDP. */
17301 
17302 	for (i = 0; i < error->num_transcoders; i++) {
17303 		enum transcoder cpu_transcoder = transcoders[i];
17304 
17305 		error->transcoder[i].power_domain_on =
17306 			__intel_display_power_is_enabled(dev_priv,
17307 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17308 		if (!error->transcoder[i].power_domain_on)
17309 			continue;
17310 
17311 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
17312 
17313 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17314 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17315 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17316 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17317 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17318 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17319 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17320 	}
17321 
17322 	return error;
17323 }
17324 
17325 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17326 
17327 void
17328 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17329 				struct drm_device *dev,
17330 				struct intel_display_error_state *error)
17331 {
17332 	struct drm_i915_private *dev_priv = to_i915(dev);
17333 	int i;
17334 
17335 	if (!error)
17336 		return;
17337 
17338 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
17339 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17340 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
17341 			   error->power_well_driver);
17342 	for_each_pipe(dev_priv, i) {
17343 		err_printf(m, "Pipe [%d]:\n", i);
17344 		err_printf(m, "  Power: %s\n",
17345 			   onoff(error->pipe[i].power_domain_on));
17346 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17347 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17348 
17349 		err_printf(m, "Plane [%d]:\n", i);
17350 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17351 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17352 		if (INTEL_INFO(dev)->gen <= 3) {
17353 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17354 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17355 		}
17356 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17357 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17358 		if (INTEL_INFO(dev)->gen >= 4) {
17359 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17360 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17361 		}
17362 
17363 		err_printf(m, "Cursor [%d]:\n", i);
17364 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17365 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17366 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17367 	}
17368 
17369 	for (i = 0; i < error->num_transcoders; i++) {
17370 		err_printf(m, "CPU transcoder: %s\n",
17371 			   transcoder_name(error->transcoder[i].cpu_transcoder));
17372 		err_printf(m, "  Power: %s\n",
17373 			   onoff(error->transcoder[i].power_domain_on));
17374 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17375 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17376 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17377 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17378 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17379 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17380 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17381 	}
17382 }
17383 
17384 #endif
17385