xref: /dragonfly/sys/dev/drm/i915/intel_display.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51 
52 /* Primary plane formats for gen <= 3 */
53 static const uint32_t i8xx_primary_formats[] = {
54 	DRM_FORMAT_C8,
55 	DRM_FORMAT_RGB565,
56 	DRM_FORMAT_XRGB1555,
57 	DRM_FORMAT_XRGB8888,
58 };
59 
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t i965_primary_formats[] = {
62 	DRM_FORMAT_C8,
63 	DRM_FORMAT_RGB565,
64 	DRM_FORMAT_XRGB8888,
65 	DRM_FORMAT_XBGR8888,
66 	DRM_FORMAT_XRGB2101010,
67 	DRM_FORMAT_XBGR2101010,
68 };
69 
70 static const uint64_t i9xx_format_modifiers[] = {
71 	I915_FORMAT_MOD_X_TILED,
72 	DRM_FORMAT_MOD_LINEAR,
73 	DRM_FORMAT_MOD_INVALID
74 };
75 
76 static const uint32_t skl_primary_formats[] = {
77 	DRM_FORMAT_C8,
78 	DRM_FORMAT_RGB565,
79 	DRM_FORMAT_XRGB8888,
80 	DRM_FORMAT_XBGR8888,
81 	DRM_FORMAT_ARGB8888,
82 	DRM_FORMAT_ABGR8888,
83 	DRM_FORMAT_XRGB2101010,
84 	DRM_FORMAT_XBGR2101010,
85 	DRM_FORMAT_YUYV,
86 	DRM_FORMAT_YVYU,
87 	DRM_FORMAT_UYVY,
88 	DRM_FORMAT_VYUY,
89 };
90 
91 static const uint64_t skl_format_modifiers_noccs[] = {
92 	I915_FORMAT_MOD_Yf_TILED,
93 	I915_FORMAT_MOD_Y_TILED,
94 	I915_FORMAT_MOD_X_TILED,
95 	DRM_FORMAT_MOD_LINEAR,
96 	DRM_FORMAT_MOD_INVALID
97 };
98 
99 static const uint64_t skl_format_modifiers_ccs[] = {
100 	I915_FORMAT_MOD_Yf_TILED_CCS,
101 	I915_FORMAT_MOD_Y_TILED_CCS,
102 	I915_FORMAT_MOD_Yf_TILED,
103 	I915_FORMAT_MOD_Y_TILED,
104 	I915_FORMAT_MOD_X_TILED,
105 	DRM_FORMAT_MOD_LINEAR,
106 	DRM_FORMAT_MOD_INVALID
107 };
108 
109 /* Cursor formats */
110 static const uint32_t intel_cursor_formats[] = {
111 	DRM_FORMAT_ARGB8888,
112 };
113 
114 static const uint64_t cursor_format_modifiers[] = {
115 	DRM_FORMAT_MOD_LINEAR,
116 	DRM_FORMAT_MOD_INVALID
117 };
118 
119 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
120 				struct intel_crtc_state *pipe_config);
121 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
122 				   struct intel_crtc_state *pipe_config);
123 
124 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
125 				  struct drm_i915_gem_object *obj,
126 				  struct drm_mode_fb_cmd2 *mode_cmd);
127 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
128 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
129 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
130 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
131 					 struct intel_link_m_n *m_n,
132 					 struct intel_link_m_n *m2_n2);
133 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
134 static void haswell_set_pipeconf(struct drm_crtc *crtc);
135 static void haswell_set_pipemisc(struct drm_crtc *crtc);
136 static void vlv_prepare_pll(struct intel_crtc *crtc,
137 			    const struct intel_crtc_state *pipe_config);
138 static void chv_prepare_pll(struct intel_crtc *crtc,
139 			    const struct intel_crtc_state *pipe_config);
140 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
141 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
142 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
143 				    struct intel_crtc_state *crtc_state);
144 static void skylake_pfit_enable(struct intel_crtc *crtc);
145 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
146 static void ironlake_pfit_enable(struct intel_crtc *crtc);
147 static void intel_modeset_setup_hw_state(struct drm_device *dev,
148 					 struct drm_modeset_acquire_ctx *ctx);
149 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
150 
151 struct intel_limit {
152 	struct {
153 		int min, max;
154 	} dot, vco, n, m, m1, m2, p, p1;
155 
156 	struct {
157 		int dot_limit;
158 		int p2_slow, p2_fast;
159 	} p2;
160 };
161 
162 /* returns HPLL frequency in kHz */
163 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
164 {
165 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
166 
167 	/* Obtain SKU information */
168 	mutex_lock(&dev_priv->sb_lock);
169 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
170 		CCK_FUSE_HPLL_FREQ_MASK;
171 	mutex_unlock(&dev_priv->sb_lock);
172 
173 	return vco_freq[hpll_freq] * 1000;
174 }
175 
176 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
177 		      const char *name, u32 reg, int ref_freq)
178 {
179 	u32 val;
180 	int divider;
181 
182 	mutex_lock(&dev_priv->sb_lock);
183 	val = vlv_cck_read(dev_priv, reg);
184 	mutex_unlock(&dev_priv->sb_lock);
185 
186 	divider = val & CCK_FREQUENCY_VALUES;
187 
188 	WARN((val & CCK_FREQUENCY_STATUS) !=
189 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
190 	     "%s change in progress\n", name);
191 
192 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
193 }
194 
195 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
196 			   const char *name, u32 reg)
197 {
198 	if (dev_priv->hpll_freq == 0)
199 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
200 
201 	return vlv_get_cck_clock(dev_priv, name, reg,
202 				 dev_priv->hpll_freq);
203 }
204 
205 static void intel_update_czclk(struct drm_i915_private *dev_priv)
206 {
207 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
208 		return;
209 
210 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
211 						      CCK_CZ_CLOCK_CONTROL);
212 
213 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
214 }
215 
216 static inline u32 /* units of 100MHz */
217 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
218 		    const struct intel_crtc_state *pipe_config)
219 {
220 	if (HAS_DDI(dev_priv))
221 		return pipe_config->port_clock; /* SPLL */
222 	else if (IS_GEN5(dev_priv))
223 		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
224 	else
225 		return 270000;
226 }
227 
228 static const struct intel_limit intel_limits_i8xx_dac = {
229 	.dot = { .min = 25000, .max = 350000 },
230 	.vco = { .min = 908000, .max = 1512000 },
231 	.n = { .min = 2, .max = 16 },
232 	.m = { .min = 96, .max = 140 },
233 	.m1 = { .min = 18, .max = 26 },
234 	.m2 = { .min = 6, .max = 16 },
235 	.p = { .min = 4, .max = 128 },
236 	.p1 = { .min = 2, .max = 33 },
237 	.p2 = { .dot_limit = 165000,
238 		.p2_slow = 4, .p2_fast = 2 },
239 };
240 
241 static const struct intel_limit intel_limits_i8xx_dvo = {
242 	.dot = { .min = 25000, .max = 350000 },
243 	.vco = { .min = 908000, .max = 1512000 },
244 	.n = { .min = 2, .max = 16 },
245 	.m = { .min = 96, .max = 140 },
246 	.m1 = { .min = 18, .max = 26 },
247 	.m2 = { .min = 6, .max = 16 },
248 	.p = { .min = 4, .max = 128 },
249 	.p1 = { .min = 2, .max = 33 },
250 	.p2 = { .dot_limit = 165000,
251 		.p2_slow = 4, .p2_fast = 4 },
252 };
253 
254 static const struct intel_limit intel_limits_i8xx_lvds = {
255 	.dot = { .min = 25000, .max = 350000 },
256 	.vco = { .min = 908000, .max = 1512000 },
257 	.n = { .min = 2, .max = 16 },
258 	.m = { .min = 96, .max = 140 },
259 	.m1 = { .min = 18, .max = 26 },
260 	.m2 = { .min = 6, .max = 16 },
261 	.p = { .min = 4, .max = 128 },
262 	.p1 = { .min = 1, .max = 6 },
263 	.p2 = { .dot_limit = 165000,
264 		.p2_slow = 14, .p2_fast = 7 },
265 };
266 
267 static const struct intel_limit intel_limits_i9xx_sdvo = {
268 	.dot = { .min = 20000, .max = 400000 },
269 	.vco = { .min = 1400000, .max = 2800000 },
270 	.n = { .min = 1, .max = 6 },
271 	.m = { .min = 70, .max = 120 },
272 	.m1 = { .min = 8, .max = 18 },
273 	.m2 = { .min = 3, .max = 7 },
274 	.p = { .min = 5, .max = 80 },
275 	.p1 = { .min = 1, .max = 8 },
276 	.p2 = { .dot_limit = 200000,
277 		.p2_slow = 10, .p2_fast = 5 },
278 };
279 
280 static const struct intel_limit intel_limits_i9xx_lvds = {
281 	.dot = { .min = 20000, .max = 400000 },
282 	.vco = { .min = 1400000, .max = 2800000 },
283 	.n = { .min = 1, .max = 6 },
284 	.m = { .min = 70, .max = 120 },
285 	.m1 = { .min = 8, .max = 18 },
286 	.m2 = { .min = 3, .max = 7 },
287 	.p = { .min = 7, .max = 98 },
288 	.p1 = { .min = 1, .max = 8 },
289 	.p2 = { .dot_limit = 112000,
290 		.p2_slow = 14, .p2_fast = 7 },
291 };
292 
293 
294 static const struct intel_limit intel_limits_g4x_sdvo = {
295 	.dot = { .min = 25000, .max = 270000 },
296 	.vco = { .min = 1750000, .max = 3500000},
297 	.n = { .min = 1, .max = 4 },
298 	.m = { .min = 104, .max = 138 },
299 	.m1 = { .min = 17, .max = 23 },
300 	.m2 = { .min = 5, .max = 11 },
301 	.p = { .min = 10, .max = 30 },
302 	.p1 = { .min = 1, .max = 3},
303 	.p2 = { .dot_limit = 270000,
304 		.p2_slow = 10,
305 		.p2_fast = 10
306 	},
307 };
308 
309 static const struct intel_limit intel_limits_g4x_hdmi = {
310 	.dot = { .min = 22000, .max = 400000 },
311 	.vco = { .min = 1750000, .max = 3500000},
312 	.n = { .min = 1, .max = 4 },
313 	.m = { .min = 104, .max = 138 },
314 	.m1 = { .min = 16, .max = 23 },
315 	.m2 = { .min = 5, .max = 11 },
316 	.p = { .min = 5, .max = 80 },
317 	.p1 = { .min = 1, .max = 8},
318 	.p2 = { .dot_limit = 165000,
319 		.p2_slow = 10, .p2_fast = 5 },
320 };
321 
322 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
323 	.dot = { .min = 20000, .max = 115000 },
324 	.vco = { .min = 1750000, .max = 3500000 },
325 	.n = { .min = 1, .max = 3 },
326 	.m = { .min = 104, .max = 138 },
327 	.m1 = { .min = 17, .max = 23 },
328 	.m2 = { .min = 5, .max = 11 },
329 	.p = { .min = 28, .max = 112 },
330 	.p1 = { .min = 2, .max = 8 },
331 	.p2 = { .dot_limit = 0,
332 		.p2_slow = 14, .p2_fast = 14
333 	},
334 };
335 
336 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
337 	.dot = { .min = 80000, .max = 224000 },
338 	.vco = { .min = 1750000, .max = 3500000 },
339 	.n = { .min = 1, .max = 3 },
340 	.m = { .min = 104, .max = 138 },
341 	.m1 = { .min = 17, .max = 23 },
342 	.m2 = { .min = 5, .max = 11 },
343 	.p = { .min = 14, .max = 42 },
344 	.p1 = { .min = 2, .max = 6 },
345 	.p2 = { .dot_limit = 0,
346 		.p2_slow = 7, .p2_fast = 7
347 	},
348 };
349 
350 static const struct intel_limit intel_limits_pineview_sdvo = {
351 	.dot = { .min = 20000, .max = 400000},
352 	.vco = { .min = 1700000, .max = 3500000 },
353 	/* Pineview's Ncounter is a ring counter */
354 	.n = { .min = 3, .max = 6 },
355 	.m = { .min = 2, .max = 256 },
356 	/* Pineview only has one combined m divider, which we treat as m2. */
357 	.m1 = { .min = 0, .max = 0 },
358 	.m2 = { .min = 0, .max = 254 },
359 	.p = { .min = 5, .max = 80 },
360 	.p1 = { .min = 1, .max = 8 },
361 	.p2 = { .dot_limit = 200000,
362 		.p2_slow = 10, .p2_fast = 5 },
363 };
364 
365 static const struct intel_limit intel_limits_pineview_lvds = {
366 	.dot = { .min = 20000, .max = 400000 },
367 	.vco = { .min = 1700000, .max = 3500000 },
368 	.n = { .min = 3, .max = 6 },
369 	.m = { .min = 2, .max = 256 },
370 	.m1 = { .min = 0, .max = 0 },
371 	.m2 = { .min = 0, .max = 254 },
372 	.p = { .min = 7, .max = 112 },
373 	.p1 = { .min = 1, .max = 8 },
374 	.p2 = { .dot_limit = 112000,
375 		.p2_slow = 14, .p2_fast = 14 },
376 };
377 
378 /* Ironlake / Sandybridge
379  *
380  * We calculate clock using (register_value + 2) for N/M1/M2, so here
381  * the range value for them is (actual_value - 2).
382  */
383 static const struct intel_limit intel_limits_ironlake_dac = {
384 	.dot = { .min = 25000, .max = 350000 },
385 	.vco = { .min = 1760000, .max = 3510000 },
386 	.n = { .min = 1, .max = 5 },
387 	.m = { .min = 79, .max = 127 },
388 	.m1 = { .min = 12, .max = 22 },
389 	.m2 = { .min = 5, .max = 9 },
390 	.p = { .min = 5, .max = 80 },
391 	.p1 = { .min = 1, .max = 8 },
392 	.p2 = { .dot_limit = 225000,
393 		.p2_slow = 10, .p2_fast = 5 },
394 };
395 
396 static const struct intel_limit intel_limits_ironlake_single_lvds = {
397 	.dot = { .min = 25000, .max = 350000 },
398 	.vco = { .min = 1760000, .max = 3510000 },
399 	.n = { .min = 1, .max = 3 },
400 	.m = { .min = 79, .max = 118 },
401 	.m1 = { .min = 12, .max = 22 },
402 	.m2 = { .min = 5, .max = 9 },
403 	.p = { .min = 28, .max = 112 },
404 	.p1 = { .min = 2, .max = 8 },
405 	.p2 = { .dot_limit = 225000,
406 		.p2_slow = 14, .p2_fast = 14 },
407 };
408 
409 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
410 	.dot = { .min = 25000, .max = 350000 },
411 	.vco = { .min = 1760000, .max = 3510000 },
412 	.n = { .min = 1, .max = 3 },
413 	.m = { .min = 79, .max = 127 },
414 	.m1 = { .min = 12, .max = 22 },
415 	.m2 = { .min = 5, .max = 9 },
416 	.p = { .min = 14, .max = 56 },
417 	.p1 = { .min = 2, .max = 8 },
418 	.p2 = { .dot_limit = 225000,
419 		.p2_slow = 7, .p2_fast = 7 },
420 };
421 
422 /* LVDS 100mhz refclk limits. */
423 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
424 	.dot = { .min = 25000, .max = 350000 },
425 	.vco = { .min = 1760000, .max = 3510000 },
426 	.n = { .min = 1, .max = 2 },
427 	.m = { .min = 79, .max = 126 },
428 	.m1 = { .min = 12, .max = 22 },
429 	.m2 = { .min = 5, .max = 9 },
430 	.p = { .min = 28, .max = 112 },
431 	.p1 = { .min = 2, .max = 8 },
432 	.p2 = { .dot_limit = 225000,
433 		.p2_slow = 14, .p2_fast = 14 },
434 };
435 
436 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
437 	.dot = { .min = 25000, .max = 350000 },
438 	.vco = { .min = 1760000, .max = 3510000 },
439 	.n = { .min = 1, .max = 3 },
440 	.m = { .min = 79, .max = 126 },
441 	.m1 = { .min = 12, .max = 22 },
442 	.m2 = { .min = 5, .max = 9 },
443 	.p = { .min = 14, .max = 42 },
444 	.p1 = { .min = 2, .max = 6 },
445 	.p2 = { .dot_limit = 225000,
446 		.p2_slow = 7, .p2_fast = 7 },
447 };
448 
449 static const struct intel_limit intel_limits_vlv = {
450 	 /*
451 	  * These are the data rate limits (measured in fast clocks)
452 	  * since those are the strictest limits we have. The fast
453 	  * clock and actual rate limits are more relaxed, so checking
454 	  * them would make no difference.
455 	  */
456 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
457 	.vco = { .min = 4000000, .max = 6000000 },
458 	.n = { .min = 1, .max = 7 },
459 	.m1 = { .min = 2, .max = 3 },
460 	.m2 = { .min = 11, .max = 156 },
461 	.p1 = { .min = 2, .max = 3 },
462 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
463 };
464 
465 static const struct intel_limit intel_limits_chv = {
466 	/*
467 	 * These are the data rate limits (measured in fast clocks)
468 	 * since those are the strictest limits we have.  The fast
469 	 * clock and actual rate limits are more relaxed, so checking
470 	 * them would make no difference.
471 	 */
472 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
473 	.vco = { .min = 4800000, .max = 6480000 },
474 	.n = { .min = 1, .max = 1 },
475 	.m1 = { .min = 2, .max = 2 },
476 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
477 	.p1 = { .min = 2, .max = 4 },
478 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
479 };
480 
481 static const struct intel_limit intel_limits_bxt = {
482 	/* FIXME: find real dot limits */
483 	.dot = { .min = 0, .max = INT_MAX },
484 	.vco = { .min = 4800000, .max = 6700000 },
485 	.n = { .min = 1, .max = 1 },
486 	.m1 = { .min = 2, .max = 2 },
487 	/* FIXME: find real m2 limits */
488 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
489 	.p1 = { .min = 2, .max = 4 },
490 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
491 };
492 
493 static bool
494 needs_modeset(struct drm_crtc_state *state)
495 {
496 	return drm_atomic_crtc_needs_modeset(state);
497 }
498 
499 /*
500  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
501  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
502  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
503  * The helpers' return value is the rate of the clock that is fed to the
504  * display engine's pipe which can be the above fast dot clock rate or a
505  * divided-down version of it.
506  */
507 /* m1 is reserved as 0 in Pineview, n is a ring counter */
508 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
509 {
510 	clock->m = clock->m2 + 2;
511 	clock->p = clock->p1 * clock->p2;
512 	if (WARN_ON(clock->n == 0 || clock->p == 0))
513 		return 0;
514 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
515 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
516 
517 	return clock->dot;
518 }
519 
520 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
521 {
522 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
523 }
524 
525 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527 	clock->m = i9xx_dpll_compute_m(clock);
528 	clock->p = clock->p1 * clock->p2;
529 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
530 		return 0;
531 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
532 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533 
534 	return clock->dot;
535 }
536 
537 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
538 {
539 	clock->m = clock->m1 * clock->m2;
540 	clock->p = clock->p1 * clock->p2;
541 	if (WARN_ON(clock->n == 0 || clock->p == 0))
542 		return 0;
543 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
544 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
545 
546 	return clock->dot / 5;
547 }
548 
549 int chv_calc_dpll_params(int refclk, struct dpll *clock)
550 {
551 	clock->m = clock->m1 * clock->m2;
552 	clock->p = clock->p1 * clock->p2;
553 	if (WARN_ON(clock->n == 0 || clock->p == 0))
554 		return 0;
555 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 			clock->n << 22);
557 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558 
559 	return clock->dot / 5;
560 }
561 
562 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
563 /**
564  * Returns whether the given set of divisors are valid for a given refclk with
565  * the given connectors.
566  */
567 
568 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
569 			       const struct intel_limit *limit,
570 			       const struct dpll *clock)
571 {
572 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
573 		INTELPllInvalid("n out of range\n");
574 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
575 		INTELPllInvalid("p1 out of range\n");
576 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
577 		INTELPllInvalid("m2 out of range\n");
578 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
579 		INTELPllInvalid("m1 out of range\n");
580 
581 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
582 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
583 		if (clock->m1 <= clock->m2)
584 			INTELPllInvalid("m1 <= m2\n");
585 
586 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
587 	    !IS_GEN9_LP(dev_priv)) {
588 		if (clock->p < limit->p.min || limit->p.max < clock->p)
589 			INTELPllInvalid("p out of range\n");
590 		if (clock->m < limit->m.min || limit->m.max < clock->m)
591 			INTELPllInvalid("m out of range\n");
592 	}
593 
594 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
595 		INTELPllInvalid("vco out of range\n");
596 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
597 	 * connector, etc., rather than just a single range.
598 	 */
599 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
600 		INTELPllInvalid("dot out of range\n");
601 
602 	return true;
603 }
604 
605 static int
606 i9xx_select_p2_div(const struct intel_limit *limit,
607 		   const struct intel_crtc_state *crtc_state,
608 		   int target)
609 {
610 	struct drm_device *dev = crtc_state->base.crtc->dev;
611 
612 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
613 		/*
614 		 * For LVDS just rely on its current settings for dual-channel.
615 		 * We haven't figured out how to reliably set up different
616 		 * single/dual channel state, if we even can.
617 		 */
618 		if (intel_is_dual_link_lvds(dev))
619 			return limit->p2.p2_fast;
620 		else
621 			return limit->p2.p2_slow;
622 	} else {
623 		if (target < limit->p2.dot_limit)
624 			return limit->p2.p2_slow;
625 		else
626 			return limit->p2.p2_fast;
627 	}
628 }
629 
630 /*
631  * Returns a set of divisors for the desired target clock with the given
632  * refclk, or FALSE.  The returned values represent the clock equation:
633  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
634  *
635  * Target and reference clocks are specified in kHz.
636  *
637  * If match_clock is provided, then best_clock P divider must match the P
638  * divider from @match_clock used for LVDS downclocking.
639  */
640 static bool
641 i9xx_find_best_dpll(const struct intel_limit *limit,
642 		    struct intel_crtc_state *crtc_state,
643 		    int target, int refclk, struct dpll *match_clock,
644 		    struct dpll *best_clock)
645 {
646 	struct drm_device *dev = crtc_state->base.crtc->dev;
647 	struct dpll clock;
648 	int err = target;
649 
650 	memset(best_clock, 0, sizeof(*best_clock));
651 
652 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
653 
654 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655 	     clock.m1++) {
656 		for (clock.m2 = limit->m2.min;
657 		     clock.m2 <= limit->m2.max; clock.m2++) {
658 			if (clock.m2 >= clock.m1)
659 				break;
660 			for (clock.n = limit->n.min;
661 			     clock.n <= limit->n.max; clock.n++) {
662 				for (clock.p1 = limit->p1.min;
663 					clock.p1 <= limit->p1.max; clock.p1++) {
664 					int this_err;
665 
666 					i9xx_calc_dpll_params(refclk, &clock);
667 					if (!intel_PLL_is_valid(to_i915(dev),
668 								limit,
669 								&clock))
670 						continue;
671 					if (match_clock &&
672 					    clock.p != match_clock->p)
673 						continue;
674 
675 					this_err = abs(clock.dot - target);
676 					if (this_err < err) {
677 						*best_clock = clock;
678 						err = this_err;
679 					}
680 				}
681 			}
682 		}
683 	}
684 
685 	return (err != target);
686 }
687 
688 /*
689  * Returns a set of divisors for the desired target clock with the given
690  * refclk, or FALSE.  The returned values represent the clock equation:
691  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
692  *
693  * Target and reference clocks are specified in kHz.
694  *
695  * If match_clock is provided, then best_clock P divider must match the P
696  * divider from @match_clock used for LVDS downclocking.
697  */
698 static bool
699 pnv_find_best_dpll(const struct intel_limit *limit,
700 		   struct intel_crtc_state *crtc_state,
701 		   int target, int refclk, struct dpll *match_clock,
702 		   struct dpll *best_clock)
703 {
704 	struct drm_device *dev = crtc_state->base.crtc->dev;
705 	struct dpll clock;
706 	int err = target;
707 
708 	memset(best_clock, 0, sizeof(*best_clock));
709 
710 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
711 
712 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
713 	     clock.m1++) {
714 		for (clock.m2 = limit->m2.min;
715 		     clock.m2 <= limit->m2.max; clock.m2++) {
716 			for (clock.n = limit->n.min;
717 			     clock.n <= limit->n.max; clock.n++) {
718 				for (clock.p1 = limit->p1.min;
719 					clock.p1 <= limit->p1.max; clock.p1++) {
720 					int this_err;
721 
722 					pnv_calc_dpll_params(refclk, &clock);
723 					if (!intel_PLL_is_valid(to_i915(dev),
724 								limit,
725 								&clock))
726 						continue;
727 					if (match_clock &&
728 					    clock.p != match_clock->p)
729 						continue;
730 
731 					this_err = abs(clock.dot - target);
732 					if (this_err < err) {
733 						*best_clock = clock;
734 						err = this_err;
735 					}
736 				}
737 			}
738 		}
739 	}
740 
741 	return (err != target);
742 }
743 
744 /*
745  * Returns a set of divisors for the desired target clock with the given
746  * refclk, or FALSE.  The returned values represent the clock equation:
747  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
748  *
749  * Target and reference clocks are specified in kHz.
750  *
751  * If match_clock is provided, then best_clock P divider must match the P
752  * divider from @match_clock used for LVDS downclocking.
753  */
754 static bool
755 g4x_find_best_dpll(const struct intel_limit *limit,
756 		   struct intel_crtc_state *crtc_state,
757 		   int target, int refclk, struct dpll *match_clock,
758 		   struct dpll *best_clock)
759 {
760 	struct drm_device *dev = crtc_state->base.crtc->dev;
761 	struct dpll clock;
762 	int max_n;
763 	bool found = false;
764 	/* approximately equals target * 0.00585 */
765 	int err_most = (target >> 8) + (target >> 9);
766 
767 	memset(best_clock, 0, sizeof(*best_clock));
768 
769 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
770 
771 	max_n = limit->n.max;
772 	/* based on hardware requirement, prefer smaller n to precision */
773 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
774 		/* based on hardware requirement, prefere larger m1,m2 */
775 		for (clock.m1 = limit->m1.max;
776 		     clock.m1 >= limit->m1.min; clock.m1--) {
777 			for (clock.m2 = limit->m2.max;
778 			     clock.m2 >= limit->m2.min; clock.m2--) {
779 				for (clock.p1 = limit->p1.max;
780 				     clock.p1 >= limit->p1.min; clock.p1--) {
781 					int this_err;
782 
783 					i9xx_calc_dpll_params(refclk, &clock);
784 					if (!intel_PLL_is_valid(to_i915(dev),
785 								limit,
786 								&clock))
787 						continue;
788 
789 					this_err = abs(clock.dot - target);
790 					if (this_err < err_most) {
791 						*best_clock = clock;
792 						err_most = this_err;
793 						max_n = clock.n;
794 						found = true;
795 					}
796 				}
797 			}
798 		}
799 	}
800 	return found;
801 }
802 
803 /*
804  * Check if the calculated PLL configuration is more optimal compared to the
805  * best configuration and error found so far. Return the calculated error.
806  */
807 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
808 			       const struct dpll *calculated_clock,
809 			       const struct dpll *best_clock,
810 			       unsigned int best_error_ppm,
811 			       unsigned int *error_ppm)
812 {
813 	/*
814 	 * For CHV ignore the error and consider only the P value.
815 	 * Prefer a bigger P value based on HW requirements.
816 	 */
817 	if (IS_CHERRYVIEW(to_i915(dev))) {
818 		*error_ppm = 0;
819 
820 		return calculated_clock->p > best_clock->p;
821 	}
822 
823 	if (WARN_ON_ONCE(!target_freq))
824 		return false;
825 
826 	*error_ppm = div_u64(1000000ULL *
827 				abs(target_freq - calculated_clock->dot),
828 			     target_freq);
829 	/*
830 	 * Prefer a better P value over a better (smaller) error if the error
831 	 * is small. Ensure this preference for future configurations too by
832 	 * setting the error to 0.
833 	 */
834 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
835 		*error_ppm = 0;
836 
837 		return true;
838 	}
839 
840 	return *error_ppm + 10 < best_error_ppm;
841 }
842 
843 /*
844  * Returns a set of divisors for the desired target clock with the given
845  * refclk, or FALSE.  The returned values represent the clock equation:
846  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
847  */
848 static bool
849 vlv_find_best_dpll(const struct intel_limit *limit,
850 		   struct intel_crtc_state *crtc_state,
851 		   int target, int refclk, struct dpll *match_clock,
852 		   struct dpll *best_clock)
853 {
854 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
855 	struct drm_device *dev = crtc->base.dev;
856 	struct dpll clock;
857 	unsigned int bestppm = 1000000;
858 	/* min update 19.2 MHz */
859 	int max_n = min(limit->n.max, refclk / 19200);
860 	bool found = false;
861 
862 	target *= 5; /* fast clock */
863 
864 	memset(best_clock, 0, sizeof(*best_clock));
865 
866 	/* based on hardware requirement, prefer smaller n to precision */
867 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
868 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
869 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
870 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
871 				clock.p = clock.p1 * clock.p2;
872 				/* based on hardware requirement, prefer bigger m1,m2 values */
873 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
874 					unsigned int ppm;
875 
876 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
877 								     refclk * clock.m1);
878 
879 					vlv_calc_dpll_params(refclk, &clock);
880 
881 					if (!intel_PLL_is_valid(to_i915(dev),
882 								limit,
883 								&clock))
884 						continue;
885 
886 					if (!vlv_PLL_is_optimal(dev, target,
887 								&clock,
888 								best_clock,
889 								bestppm, &ppm))
890 						continue;
891 
892 					*best_clock = clock;
893 					bestppm = ppm;
894 					found = true;
895 				}
896 			}
897 		}
898 	}
899 
900 	return found;
901 }
902 
903 /*
904  * Returns a set of divisors for the desired target clock with the given
905  * refclk, or FALSE.  The returned values represent the clock equation:
906  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
907  */
908 static bool
909 chv_find_best_dpll(const struct intel_limit *limit,
910 		   struct intel_crtc_state *crtc_state,
911 		   int target, int refclk, struct dpll *match_clock,
912 		   struct dpll *best_clock)
913 {
914 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
915 	struct drm_device *dev = crtc->base.dev;
916 	unsigned int best_error_ppm;
917 	struct dpll clock;
918 	uint64_t m2;
919 	int found = false;
920 
921 	memset(best_clock, 0, sizeof(*best_clock));
922 	best_error_ppm = 1000000;
923 
924 	/*
925 	 * Based on hardware doc, the n always set to 1, and m1 always
926 	 * set to 2.  If requires to support 200Mhz refclk, we need to
927 	 * revisit this because n may not 1 anymore.
928 	 */
929 	clock.n = 1, clock.m1 = 2;
930 	target *= 5;	/* fast clock */
931 
932 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
933 		for (clock.p2 = limit->p2.p2_fast;
934 				clock.p2 >= limit->p2.p2_slow;
935 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
936 			unsigned int error_ppm;
937 
938 			clock.p = clock.p1 * clock.p2;
939 
940 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
941 					clock.n) << 22, refclk * clock.m1);
942 
943 			if (m2 > INT_MAX/clock.m1)
944 				continue;
945 
946 			clock.m2 = m2;
947 
948 			chv_calc_dpll_params(refclk, &clock);
949 
950 			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
951 				continue;
952 
953 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
954 						best_error_ppm, &error_ppm))
955 				continue;
956 
957 			*best_clock = clock;
958 			best_error_ppm = error_ppm;
959 			found = true;
960 		}
961 	}
962 
963 	return found;
964 }
965 
966 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
967 			struct dpll *best_clock)
968 {
969 	int refclk = 100000;
970 	const struct intel_limit *limit = &intel_limits_bxt;
971 
972 	return chv_find_best_dpll(limit, crtc_state,
973 				  target_clock, refclk, NULL, best_clock);
974 }
975 
976 bool intel_crtc_active(struct intel_crtc *crtc)
977 {
978 	/* Be paranoid as we can arrive here with only partial
979 	 * state retrieved from the hardware during setup.
980 	 *
981 	 * We can ditch the adjusted_mode.crtc_clock check as soon
982 	 * as Haswell has gained clock readout/fastboot support.
983 	 *
984 	 * We can ditch the crtc->primary->fb check as soon as we can
985 	 * properly reconstruct framebuffers.
986 	 *
987 	 * FIXME: The intel_crtc->active here should be switched to
988 	 * crtc->state->active once we have proper CRTC states wired up
989 	 * for atomic.
990 	 */
991 	return crtc->active && crtc->base.primary->state->fb &&
992 		crtc->config->base.adjusted_mode.crtc_clock;
993 }
994 
995 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
996 					     enum i915_pipe pipe)
997 {
998 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
999 
1000 	return crtc->config->cpu_transcoder;
1001 }
1002 
1003 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1004 				    enum i915_pipe pipe)
1005 {
1006 	i915_reg_t reg = PIPEDSL(pipe);
1007 	u32 line1, line2;
1008 	u32 line_mask;
1009 
1010 	if (IS_GEN2(dev_priv))
1011 		line_mask = DSL_LINEMASK_GEN2;
1012 	else
1013 		line_mask = DSL_LINEMASK_GEN3;
1014 
1015 	line1 = I915_READ(reg) & line_mask;
1016 	msleep(5);
1017 	line2 = I915_READ(reg) & line_mask;
1018 
1019 	return line1 != line2;
1020 }
1021 
1022 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1023 {
1024 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1025 	enum i915_pipe pipe = crtc->pipe;
1026 
1027 	/* Wait for the display line to settle/start moving */
1028 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1029 		DRM_ERROR("pipe %c scanline %s wait timed out\n",
1030 			  pipe_name(pipe), onoff(state));
1031 }
1032 
1033 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1034 {
1035 	wait_for_pipe_scanline_moving(crtc, false);
1036 }
1037 
1038 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1039 {
1040 	wait_for_pipe_scanline_moving(crtc, true);
1041 }
1042 
1043 /*
1044  * intel_wait_for_pipe_off - wait for pipe to turn off
1045  * @crtc: crtc whose pipe to wait for
1046  *
1047  * After disabling a pipe, we can't wait for vblank in the usual way,
1048  * spinning on the vblank interrupt status bit, since we won't actually
1049  * see an interrupt when the pipe is disabled.
1050  *
1051  * On Gen4 and above:
1052  *   wait for the pipe register state bit to turn off
1053  *
1054  * Otherwise:
1055  *   wait for the display line value to settle (it usually
1056  *   ends up stopping at the start of the next frame).
1057  *
1058  */
1059 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1060 {
1061 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1062 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1063 
1064 	if (INTEL_GEN(dev_priv) >= 4) {
1065 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1066 
1067 		/* Wait for the Pipe State to go off */
1068 		if (intel_wait_for_register(dev_priv,
1069 					    reg, I965_PIPECONF_ACTIVE, 0,
1070 					    100))
1071 			WARN(1, "pipe_off wait timed out\n");
1072 	} else {
1073 		intel_wait_for_pipe_scanline_stopped(crtc);
1074 	}
1075 }
1076 
1077 /* Only for pre-ILK configs */
1078 void assert_pll(struct drm_i915_private *dev_priv,
1079 		enum i915_pipe pipe, bool state)
1080 {
1081 	u32 val;
1082 	bool cur_state;
1083 
1084 	val = I915_READ(DPLL(pipe));
1085 	cur_state = !!(val & DPLL_VCO_ENABLE);
1086 	I915_STATE_WARN(cur_state != state,
1087 	     "PLL state assertion failure (expected %s, current %s)\n",
1088 			onoff(state), onoff(cur_state));
1089 }
1090 
1091 /* XXX: the dsi pll is shared between MIPI DSI ports */
1092 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1093 {
1094 	u32 val;
1095 	bool cur_state;
1096 
1097 	mutex_lock(&dev_priv->sb_lock);
1098 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1099 	mutex_unlock(&dev_priv->sb_lock);
1100 
1101 	cur_state = val & DSI_PLL_VCO_EN;
1102 	I915_STATE_WARN(cur_state != state,
1103 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1104 			onoff(state), onoff(cur_state));
1105 }
1106 
1107 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108 			  enum i915_pipe pipe, bool state)
1109 {
1110 	bool cur_state;
1111 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1112 								      pipe);
1113 
1114 	if (HAS_DDI(dev_priv)) {
1115 		/* DDI does not have a specific FDI_TX register */
1116 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1117 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1118 	} else {
1119 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1120 		cur_state = !!(val & FDI_TX_ENABLE);
1121 	}
1122 	I915_STATE_WARN(cur_state != state,
1123 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1124 			onoff(state), onoff(cur_state));
1125 }
1126 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1127 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1128 
1129 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1130 			  enum i915_pipe pipe, bool state)
1131 {
1132 	u32 val;
1133 	bool cur_state;
1134 
1135 	val = I915_READ(FDI_RX_CTL(pipe));
1136 	cur_state = !!(val & FDI_RX_ENABLE);
1137 	I915_STATE_WARN(cur_state != state,
1138 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1139 			onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1142 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1143 
1144 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1145 				      enum i915_pipe pipe)
1146 {
1147 	u32 val;
1148 
1149 	/* ILK FDI PLL is always enabled */
1150 	if (IS_GEN5(dev_priv))
1151 		return;
1152 
1153 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1154 	if (HAS_DDI(dev_priv))
1155 		return;
1156 
1157 	val = I915_READ(FDI_TX_CTL(pipe));
1158 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1159 }
1160 
1161 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1162 		       enum i915_pipe pipe, bool state)
1163 {
1164 	u32 val;
1165 	bool cur_state;
1166 
1167 	val = I915_READ(FDI_RX_CTL(pipe));
1168 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1169 	I915_STATE_WARN(cur_state != state,
1170 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1171 			onoff(state), onoff(cur_state));
1172 }
1173 
1174 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1175 {
1176 	i915_reg_t pp_reg;
1177 	u32 val;
1178 	enum i915_pipe panel_pipe = PIPE_A;
1179 	bool locked = true;
1180 
1181 	if (WARN_ON(HAS_DDI(dev_priv)))
1182 		return;
1183 
1184 	if (HAS_PCH_SPLIT(dev_priv)) {
1185 		u32 port_sel;
1186 
1187 		pp_reg = PP_CONTROL(0);
1188 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1189 
1190 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1191 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1192 			panel_pipe = PIPE_B;
1193 		/* XXX: else fix for eDP */
1194 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1195 		/* presumably write lock depends on pipe, not port select */
1196 		pp_reg = PP_CONTROL(pipe);
1197 		panel_pipe = pipe;
1198 	} else {
1199 		pp_reg = PP_CONTROL(0);
1200 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1201 			panel_pipe = PIPE_B;
1202 	}
1203 
1204 	val = I915_READ(pp_reg);
1205 	if (!(val & PANEL_POWER_ON) ||
1206 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1207 		locked = false;
1208 
1209 	I915_STATE_WARN(panel_pipe == pipe && locked,
1210 	     "panel assertion failure, pipe %c regs locked\n",
1211 	     pipe_name(pipe));
1212 }
1213 
1214 void assert_pipe(struct drm_i915_private *dev_priv,
1215 		 enum i915_pipe pipe, bool state)
1216 {
1217 	bool cur_state;
1218 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1219 								      pipe);
1220 	enum intel_display_power_domain power_domain;
1221 
1222 	/* we keep both pipes enabled on 830 */
1223 	if (IS_I830(dev_priv))
1224 		state = true;
1225 
1226 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1227 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1228 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1229 		cur_state = !!(val & PIPECONF_ENABLE);
1230 
1231 		intel_display_power_put(dev_priv, power_domain);
1232 	} else {
1233 		cur_state = false;
1234 	}
1235 
1236 	I915_STATE_WARN(cur_state != state,
1237 	     "pipe %c assertion failure (expected %s, current %s)\n",
1238 			pipe_name(pipe), onoff(state), onoff(cur_state));
1239 }
1240 
1241 static void assert_plane(struct intel_plane *plane, bool state)
1242 {
1243 	bool cur_state = plane->get_hw_state(plane);
1244 
1245 	I915_STATE_WARN(cur_state != state,
1246 			"%s assertion failure (expected %s, current %s)\n",
1247 			plane->base.name, onoff(state), onoff(cur_state));
1248 }
1249 
1250 #define assert_plane_enabled(p) assert_plane(p, true)
1251 #define assert_plane_disabled(p) assert_plane(p, false)
1252 
1253 static void assert_planes_disabled(struct intel_crtc *crtc)
1254 {
1255 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1256 	struct intel_plane *plane;
1257 
1258 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1259 		assert_plane_disabled(plane);
1260 }
1261 
1262 static void assert_vblank_disabled(struct drm_crtc *crtc)
1263 {
1264 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1265 		drm_crtc_vblank_put(crtc);
1266 }
1267 
1268 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1269 				    enum i915_pipe pipe)
1270 {
1271 	u32 val;
1272 	bool enabled;
1273 
1274 	val = I915_READ(PCH_TRANSCONF(pipe));
1275 	enabled = !!(val & TRANS_ENABLE);
1276 	I915_STATE_WARN(enabled,
1277 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1278 	     pipe_name(pipe));
1279 }
1280 
1281 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1282 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1283 {
1284 	if ((val & DP_PORT_EN) == 0)
1285 		return false;
1286 
1287 	if (HAS_PCH_CPT(dev_priv)) {
1288 		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1289 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1290 			return false;
1291 	} else if (IS_CHERRYVIEW(dev_priv)) {
1292 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1293 			return false;
1294 	} else {
1295 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1296 			return false;
1297 	}
1298 	return true;
1299 }
1300 
1301 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1302 			      enum i915_pipe pipe, u32 val)
1303 {
1304 	if ((val & SDVO_ENABLE) == 0)
1305 		return false;
1306 
1307 	if (HAS_PCH_CPT(dev_priv)) {
1308 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1309 			return false;
1310 	} else if (IS_CHERRYVIEW(dev_priv)) {
1311 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1312 			return false;
1313 	} else {
1314 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1315 			return false;
1316 	}
1317 	return true;
1318 }
1319 
1320 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1321 			      enum i915_pipe pipe, u32 val)
1322 {
1323 	if ((val & LVDS_PORT_EN) == 0)
1324 		return false;
1325 
1326 	if (HAS_PCH_CPT(dev_priv)) {
1327 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1328 			return false;
1329 	} else {
1330 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1331 			return false;
1332 	}
1333 	return true;
1334 }
1335 
1336 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1337 			      enum i915_pipe pipe, u32 val)
1338 {
1339 	if ((val & ADPA_DAC_ENABLE) == 0)
1340 		return false;
1341 	if (HAS_PCH_CPT(dev_priv)) {
1342 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1343 			return false;
1344 	} else {
1345 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1346 			return false;
1347 	}
1348 	return true;
1349 }
1350 
1351 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1352 				   enum i915_pipe pipe, i915_reg_t reg,
1353 				   u32 port_sel)
1354 {
1355 	u32 val = I915_READ(reg);
1356 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1357 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1358 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1359 
1360 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1361 	     && (val & DP_PIPEB_SELECT),
1362 	     "IBX PCH dp port still using transcoder B\n");
1363 }
1364 
1365 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1366 				     enum i915_pipe pipe, i915_reg_t reg)
1367 {
1368 	u32 val = I915_READ(reg);
1369 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1370 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1371 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1372 
1373 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1374 	     && (val & SDVO_PIPE_B_SELECT),
1375 	     "IBX PCH hdmi port still using transcoder B\n");
1376 }
1377 
1378 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1379 				      enum i915_pipe pipe)
1380 {
1381 	u32 val;
1382 
1383 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1384 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1385 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1386 
1387 	val = I915_READ(PCH_ADPA);
1388 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1389 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1390 	     pipe_name(pipe));
1391 
1392 	val = I915_READ(PCH_LVDS);
1393 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1394 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1395 	     pipe_name(pipe));
1396 
1397 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1398 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1399 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1400 }
1401 
1402 static void _vlv_enable_pll(struct intel_crtc *crtc,
1403 			    const struct intel_crtc_state *pipe_config)
1404 {
1405 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1406 	enum i915_pipe pipe = crtc->pipe;
1407 
1408 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1409 	POSTING_READ(DPLL(pipe));
1410 	udelay(150);
1411 
1412 	if (intel_wait_for_register(dev_priv,
1413 				    DPLL(pipe),
1414 				    DPLL_LOCK_VLV,
1415 				    DPLL_LOCK_VLV,
1416 				    1))
1417 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1418 }
1419 
1420 static void vlv_enable_pll(struct intel_crtc *crtc,
1421 			   const struct intel_crtc_state *pipe_config)
1422 {
1423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1424 	enum i915_pipe pipe = crtc->pipe;
1425 
1426 	assert_pipe_disabled(dev_priv, pipe);
1427 
1428 	/* PLL is protected by panel, make sure we can write it */
1429 	assert_panel_unlocked(dev_priv, pipe);
1430 
1431 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1432 		_vlv_enable_pll(crtc, pipe_config);
1433 
1434 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1435 	POSTING_READ(DPLL_MD(pipe));
1436 }
1437 
1438 
1439 static void _chv_enable_pll(struct intel_crtc *crtc,
1440 			    const struct intel_crtc_state *pipe_config)
1441 {
1442 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1443 	enum i915_pipe pipe = crtc->pipe;
1444 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1445 	u32 tmp;
1446 
1447 	mutex_lock(&dev_priv->sb_lock);
1448 
1449 	/* Enable back the 10bit clock to display controller */
1450 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1451 	tmp |= DPIO_DCLKP_EN;
1452 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1453 
1454 	mutex_unlock(&dev_priv->sb_lock);
1455 
1456 	/*
1457 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1458 	 */
1459 	udelay(1);
1460 
1461 	/* Enable PLL */
1462 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1463 
1464 	/* Check PLL is locked */
1465 	if (intel_wait_for_register(dev_priv,
1466 				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1467 				    1))
1468 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1469 }
1470 
1471 static void chv_enable_pll(struct intel_crtc *crtc,
1472 			   const struct intel_crtc_state *pipe_config)
1473 {
1474 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1475 	enum i915_pipe pipe = crtc->pipe;
1476 
1477 	assert_pipe_disabled(dev_priv, pipe);
1478 
1479 	/* PLL is protected by panel, make sure we can write it */
1480 	assert_panel_unlocked(dev_priv, pipe);
1481 
1482 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1483 		_chv_enable_pll(crtc, pipe_config);
1484 
1485 	if (pipe != PIPE_A) {
1486 		/*
1487 		 * WaPixelRepeatModeFixForC0:chv
1488 		 *
1489 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1490 		 * the value from DPLLBMD to either pipe B or C.
1491 		 */
1492 		I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1493 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1494 		I915_WRITE(CBR4_VLV, 0);
1495 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1496 
1497 		/*
1498 		 * DPLLB VGA mode also seems to cause problems.
1499 		 * We should always have it disabled.
1500 		 */
1501 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1502 	} else {
1503 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1504 		POSTING_READ(DPLL_MD(pipe));
1505 	}
1506 }
1507 
1508 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1509 {
1510 	struct intel_crtc *crtc;
1511 	int count = 0;
1512 
1513 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1514 		count += crtc->base.state->active &&
1515 			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1516 	}
1517 
1518 	return count;
1519 }
1520 
1521 static void i9xx_enable_pll(struct intel_crtc *crtc,
1522 			    const struct intel_crtc_state *crtc_state)
1523 {
1524 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1525 	i915_reg_t reg = DPLL(crtc->pipe);
1526 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1527 	int i;
1528 
1529 	assert_pipe_disabled(dev_priv, crtc->pipe);
1530 
1531 	/* PLL is protected by panel, make sure we can write it */
1532 	if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1533 		assert_panel_unlocked(dev_priv, crtc->pipe);
1534 
1535 	/* Enable DVO 2x clock on both PLLs if necessary */
1536 	if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1537 		/*
1538 		 * It appears to be important that we don't enable this
1539 		 * for the current pipe before otherwise configuring the
1540 		 * PLL. No idea how this should be handled if multiple
1541 		 * DVO outputs are enabled simultaneosly.
1542 		 */
1543 		dpll |= DPLL_DVO_2X_MODE;
1544 		I915_WRITE(DPLL(!crtc->pipe),
1545 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1546 	}
1547 
1548 	/*
1549 	 * Apparently we need to have VGA mode enabled prior to changing
1550 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1551 	 * dividers, even though the register value does change.
1552 	 */
1553 	I915_WRITE(reg, 0);
1554 
1555 	I915_WRITE(reg, dpll);
1556 
1557 	/* Wait for the clocks to stabilize. */
1558 	POSTING_READ(reg);
1559 	udelay(150);
1560 
1561 	if (INTEL_GEN(dev_priv) >= 4) {
1562 		I915_WRITE(DPLL_MD(crtc->pipe),
1563 			   crtc_state->dpll_hw_state.dpll_md);
1564 	} else {
1565 		/* The pixel multiplier can only be updated once the
1566 		 * DPLL is enabled and the clocks are stable.
1567 		 *
1568 		 * So write it again.
1569 		 */
1570 		I915_WRITE(reg, dpll);
1571 	}
1572 
1573 	/* We do this three times for luck */
1574 	for (i = 0; i < 3; i++) {
1575 		I915_WRITE(reg, dpll);
1576 		POSTING_READ(reg);
1577 		udelay(150); /* wait for warmup */
1578 	}
1579 }
1580 
1581 static void i9xx_disable_pll(struct intel_crtc *crtc)
1582 {
1583 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1584 	enum i915_pipe pipe = crtc->pipe;
1585 
1586 	/* Disable DVO 2x clock on both PLLs if necessary */
1587 	if (IS_I830(dev_priv) &&
1588 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1589 	    !intel_num_dvo_pipes(dev_priv)) {
1590 		I915_WRITE(DPLL(PIPE_B),
1591 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1592 		I915_WRITE(DPLL(PIPE_A),
1593 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1594 	}
1595 
1596 	/* Don't disable pipe or pipe PLLs if needed */
1597 	if (IS_I830(dev_priv))
1598 		return;
1599 
1600 	/* Make sure the pipe isn't still relying on us */
1601 	assert_pipe_disabled(dev_priv, pipe);
1602 
1603 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1604 	POSTING_READ(DPLL(pipe));
1605 }
1606 
1607 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1608 {
1609 	u32 val;
1610 
1611 	/* Make sure the pipe isn't still relying on us */
1612 	assert_pipe_disabled(dev_priv, pipe);
1613 
1614 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1615 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1616 	if (pipe != PIPE_A)
1617 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1618 
1619 	I915_WRITE(DPLL(pipe), val);
1620 	POSTING_READ(DPLL(pipe));
1621 }
1622 
1623 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1624 {
1625 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1626 	u32 val;
1627 
1628 	/* Make sure the pipe isn't still relying on us */
1629 	assert_pipe_disabled(dev_priv, pipe);
1630 
1631 	val = DPLL_SSC_REF_CLK_CHV |
1632 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1633 	if (pipe != PIPE_A)
1634 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1635 
1636 	I915_WRITE(DPLL(pipe), val);
1637 	POSTING_READ(DPLL(pipe));
1638 
1639 	mutex_lock(&dev_priv->sb_lock);
1640 
1641 	/* Disable 10bit clock to display controller */
1642 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1643 	val &= ~DPIO_DCLKP_EN;
1644 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1645 
1646 	mutex_unlock(&dev_priv->sb_lock);
1647 }
1648 
1649 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1650 			 struct intel_digital_port *dport,
1651 			 unsigned int expected_mask)
1652 {
1653 	u32 port_mask;
1654 	i915_reg_t dpll_reg;
1655 
1656 	switch (dport->port) {
1657 	case PORT_B:
1658 		port_mask = DPLL_PORTB_READY_MASK;
1659 		dpll_reg = DPLL(0);
1660 		break;
1661 	case PORT_C:
1662 		port_mask = DPLL_PORTC_READY_MASK;
1663 		dpll_reg = DPLL(0);
1664 		expected_mask <<= 4;
1665 		break;
1666 	case PORT_D:
1667 		port_mask = DPLL_PORTD_READY_MASK;
1668 		dpll_reg = DPIO_PHY_STATUS;
1669 		break;
1670 	default:
1671 		BUG();
1672 	}
1673 
1674 	if (intel_wait_for_register(dev_priv,
1675 				    dpll_reg, port_mask, expected_mask,
1676 				    1000))
1677 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1678 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1679 }
1680 
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682 					   enum i915_pipe pipe)
1683 {
1684 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1685 								pipe);
1686 	i915_reg_t reg;
1687 	uint32_t val, pipeconf_val;
1688 
1689 	/* Make sure PCH DPLL is enabled */
1690 	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1691 
1692 	/* FDI must be feeding us bits for PCH ports */
1693 	assert_fdi_tx_enabled(dev_priv, pipe);
1694 	assert_fdi_rx_enabled(dev_priv, pipe);
1695 
1696 	if (HAS_PCH_CPT(dev_priv)) {
1697 		/* Workaround: Set the timing override bit before enabling the
1698 		 * pch transcoder. */
1699 		reg = TRANS_CHICKEN2(pipe);
1700 		val = I915_READ(reg);
1701 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1702 		I915_WRITE(reg, val);
1703 	}
1704 
1705 	reg = PCH_TRANSCONF(pipe);
1706 	val = I915_READ(reg);
1707 	pipeconf_val = I915_READ(PIPECONF(pipe));
1708 
1709 	if (HAS_PCH_IBX(dev_priv)) {
1710 		/*
1711 		 * Make the BPC in transcoder be consistent with
1712 		 * that in pipeconf reg. For HDMI we must use 8bpc
1713 		 * here for both 8bpc and 12bpc.
1714 		 */
1715 		val &= ~PIPECONF_BPC_MASK;
1716 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1717 			val |= PIPECONF_8BPC;
1718 		else
1719 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1720 	}
1721 
1722 	val &= ~TRANS_INTERLACE_MASK;
1723 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724 		if (HAS_PCH_IBX(dev_priv) &&
1725 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1726 			val |= TRANS_LEGACY_INTERLACED_ILK;
1727 		else
1728 			val |= TRANS_INTERLACED;
1729 	else
1730 		val |= TRANS_PROGRESSIVE;
1731 
1732 	I915_WRITE(reg, val | TRANS_ENABLE);
1733 	if (intel_wait_for_register(dev_priv,
1734 				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1735 				    100))
1736 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1737 }
1738 
1739 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1740 				      enum transcoder cpu_transcoder)
1741 {
1742 	u32 val, pipeconf_val;
1743 
1744 	/* FDI must be feeding us bits for PCH ports */
1745 	assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
1746 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1747 
1748 	/* Workaround: set timing override bit. */
1749 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1750 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1751 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1752 
1753 	val = TRANS_ENABLE;
1754 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1755 
1756 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1757 	    PIPECONF_INTERLACED_ILK)
1758 		val |= TRANS_INTERLACED;
1759 	else
1760 		val |= TRANS_PROGRESSIVE;
1761 
1762 	I915_WRITE(LPT_TRANSCONF, val);
1763 	if (intel_wait_for_register(dev_priv,
1764 				    LPT_TRANSCONF,
1765 				    TRANS_STATE_ENABLE,
1766 				    TRANS_STATE_ENABLE,
1767 				    100))
1768 		DRM_ERROR("Failed to enable PCH transcoder\n");
1769 }
1770 
1771 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1772 					    enum i915_pipe pipe)
1773 {
1774 	i915_reg_t reg;
1775 	uint32_t val;
1776 
1777 	/* FDI relies on the transcoder */
1778 	assert_fdi_tx_disabled(dev_priv, pipe);
1779 	assert_fdi_rx_disabled(dev_priv, pipe);
1780 
1781 	/* Ports must be off as well */
1782 	assert_pch_ports_disabled(dev_priv, pipe);
1783 
1784 	reg = PCH_TRANSCONF(pipe);
1785 	val = I915_READ(reg);
1786 	val &= ~TRANS_ENABLE;
1787 	I915_WRITE(reg, val);
1788 	/* wait for PCH transcoder off, transcoder state */
1789 	if (intel_wait_for_register(dev_priv,
1790 				    reg, TRANS_STATE_ENABLE, 0,
1791 				    50))
1792 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1793 
1794 	if (HAS_PCH_CPT(dev_priv)) {
1795 		/* Workaround: Clear the timing override chicken bit again. */
1796 		reg = TRANS_CHICKEN2(pipe);
1797 		val = I915_READ(reg);
1798 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1799 		I915_WRITE(reg, val);
1800 	}
1801 }
1802 
1803 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1804 {
1805 	u32 val;
1806 
1807 	val = I915_READ(LPT_TRANSCONF);
1808 	val &= ~TRANS_ENABLE;
1809 	I915_WRITE(LPT_TRANSCONF, val);
1810 	/* wait for PCH transcoder off, transcoder state */
1811 	if (intel_wait_for_register(dev_priv,
1812 				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1813 				    50))
1814 		DRM_ERROR("Failed to disable PCH transcoder\n");
1815 
1816 	/* Workaround: clear timing override bit. */
1817 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1818 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1819 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1820 }
1821 
1822 enum i915_pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1823 {
1824 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1825 
1826 	WARN_ON(!crtc->config->has_pch_encoder);
1827 
1828 	if (HAS_PCH_LPT(dev_priv))
1829 		return PIPE_A;
1830 	else
1831 		return crtc->pipe;
1832 }
1833 
1834 /**
1835  * intel_enable_pipe - enable a pipe, asserting requirements
1836  * @crtc: crtc responsible for the pipe
1837  *
1838  * Enable @crtc's pipe, making sure that various hardware specific requirements
1839  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1840  */
1841 static void intel_enable_pipe(struct intel_crtc *crtc)
1842 {
1843 	struct drm_device *dev = crtc->base.dev;
1844 	struct drm_i915_private *dev_priv = to_i915(dev);
1845 	enum i915_pipe pipe = crtc->pipe;
1846 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1847 	i915_reg_t reg;
1848 	u32 val;
1849 
1850 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1851 
1852 	assert_planes_disabled(crtc);
1853 
1854 	/*
1855 	 * A pipe without a PLL won't actually be able to drive bits from
1856 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1857 	 * need the check.
1858 	 */
1859 	if (HAS_GMCH_DISPLAY(dev_priv)) {
1860 		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1861 			assert_dsi_pll_enabled(dev_priv);
1862 		else
1863 			assert_pll_enabled(dev_priv, pipe);
1864 	} else {
1865 		if (crtc->config->has_pch_encoder) {
1866 			/* if driving the PCH, we need FDI enabled */
1867 			assert_fdi_rx_pll_enabled(dev_priv,
1868 						  intel_crtc_pch_transcoder(crtc));
1869 			assert_fdi_tx_pll_enabled(dev_priv,
1870 						  (enum i915_pipe) cpu_transcoder);
1871 		}
1872 		/* FIXME: assert CPU port conditions for SNB+ */
1873 	}
1874 
1875 	reg = PIPECONF(cpu_transcoder);
1876 	val = I915_READ(reg);
1877 	if (val & PIPECONF_ENABLE) {
1878 		/* we keep both pipes enabled on 830 */
1879 		WARN_ON(!IS_I830(dev_priv));
1880 		return;
1881 	}
1882 
1883 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1884 	POSTING_READ(reg);
1885 
1886 	/*
1887 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1888 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1889 	 * resets to its proper value. That also messes up the frame count
1890 	 * when it's derived from the timestamps. So let's wait for the
1891 	 * pipe to start properly before we call drm_crtc_vblank_on()
1892 	 */
1893 	if (dev->max_vblank_count == 0)
1894 		intel_wait_for_pipe_scanline_moving(crtc);
1895 }
1896 
1897 /**
1898  * intel_disable_pipe - disable a pipe, asserting requirements
1899  * @crtc: crtc whose pipes is to be disabled
1900  *
1901  * Disable the pipe of @crtc, making sure that various hardware
1902  * specific requirements are met, if applicable, e.g. plane
1903  * disabled, panel fitter off, etc.
1904  *
1905  * Will wait until the pipe has shut down before returning.
1906  */
1907 static void intel_disable_pipe(struct intel_crtc *crtc)
1908 {
1909 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1910 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1911 	enum i915_pipe pipe = crtc->pipe;
1912 	i915_reg_t reg;
1913 	u32 val;
1914 
1915 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1916 
1917 	/*
1918 	 * Make sure planes won't keep trying to pump pixels to us,
1919 	 * or we might hang the display.
1920 	 */
1921 	assert_planes_disabled(crtc);
1922 
1923 	reg = PIPECONF(cpu_transcoder);
1924 	val = I915_READ(reg);
1925 	if ((val & PIPECONF_ENABLE) == 0)
1926 		return;
1927 
1928 	/*
1929 	 * Double wide has implications for planes
1930 	 * so best keep it disabled when not needed.
1931 	 */
1932 	if (crtc->config->double_wide)
1933 		val &= ~PIPECONF_DOUBLE_WIDE;
1934 
1935 	/* Don't disable pipe or pipe PLLs if needed */
1936 	if (!IS_I830(dev_priv))
1937 		val &= ~PIPECONF_ENABLE;
1938 
1939 	I915_WRITE(reg, val);
1940 	if ((val & PIPECONF_ENABLE) == 0)
1941 		intel_wait_for_pipe_off(crtc);
1942 }
1943 
1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946 	return IS_GEN2(dev_priv) ? 2048 : 4096;
1947 }
1948 
1949 static unsigned int
1950 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1951 {
1952 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
1953 	unsigned int cpp = fb->format->cpp[plane];
1954 
1955 	switch (fb->modifier) {
1956 	case DRM_FORMAT_MOD_LINEAR:
1957 		return cpp;
1958 	case I915_FORMAT_MOD_X_TILED:
1959 		if (IS_GEN2(dev_priv))
1960 			return 128;
1961 		else
1962 			return 512;
1963 	case I915_FORMAT_MOD_Y_TILED_CCS:
1964 		if (plane == 1)
1965 			return 128;
1966 		/* fall through */
1967 	case I915_FORMAT_MOD_Y_TILED:
1968 		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
1969 			return 128;
1970 		else
1971 			return 512;
1972 	case I915_FORMAT_MOD_Yf_TILED_CCS:
1973 		if (plane == 1)
1974 			return 128;
1975 		/* fall through */
1976 	case I915_FORMAT_MOD_Yf_TILED:
1977 		switch (cpp) {
1978 		case 1:
1979 			return 64;
1980 		case 2:
1981 		case 4:
1982 			return 128;
1983 		case 8:
1984 		case 16:
1985 			return 256;
1986 		default:
1987 			MISSING_CASE(cpp);
1988 			return cpp;
1989 		}
1990 		break;
1991 	default:
1992 		MISSING_CASE(fb->modifier);
1993 		return cpp;
1994 	}
1995 }
1996 
1997 static unsigned int
1998 intel_tile_height(const struct drm_framebuffer *fb, int plane)
1999 {
2000 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2001 		return 1;
2002 	else
2003 		return intel_tile_size(to_i915(fb->dev)) /
2004 			intel_tile_width_bytes(fb, plane);
2005 }
2006 
2007 /* Return the tile dimensions in pixel units */
2008 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2009 			    unsigned int *tile_width,
2010 			    unsigned int *tile_height)
2011 {
2012 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2013 	unsigned int cpp = fb->format->cpp[plane];
2014 
2015 	*tile_width = tile_width_bytes / cpp;
2016 	*tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2017 }
2018 
2019 unsigned int
2020 intel_fb_align_height(const struct drm_framebuffer *fb,
2021 		      int plane, unsigned int height)
2022 {
2023 	unsigned int tile_height = intel_tile_height(fb, plane);
2024 
2025 	return ALIGN(height, tile_height);
2026 }
2027 
2028 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2029 {
2030 	unsigned int size = 0;
2031 	int i;
2032 
2033 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2034 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2035 
2036 	return size;
2037 }
2038 
2039 static void
2040 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2041 			const struct drm_framebuffer *fb,
2042 			unsigned int rotation)
2043 {
2044 	view->type = I915_GGTT_VIEW_NORMAL;
2045 	if (drm_rotation_90_or_270(rotation)) {
2046 		view->type = I915_GGTT_VIEW_ROTATED;
2047 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2048 	}
2049 }
2050 
2051 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2052 {
2053 	if (IS_I830(dev_priv))
2054 		return 16 * 1024;
2055 	else if (IS_I85X(dev_priv))
2056 		return 256;
2057 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2058 		return 32;
2059 	else
2060 		return 4 * 1024;
2061 }
2062 
2063 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2064 {
2065 	if (INTEL_INFO(dev_priv)->gen >= 9)
2066 		return 256 * 1024;
2067 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2068 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2069 		return 128 * 1024;
2070 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2071 		return 4 * 1024;
2072 	else
2073 		return 0;
2074 }
2075 
2076 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2077 					 int plane)
2078 {
2079 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2080 
2081 	/* AUX_DIST needs only 4K alignment */
2082 	if (plane == 1)
2083 		return 4096;
2084 
2085 	switch (fb->modifier) {
2086 	case DRM_FORMAT_MOD_LINEAR:
2087 		return intel_linear_alignment(dev_priv);
2088 	case I915_FORMAT_MOD_X_TILED:
2089 		if (INTEL_GEN(dev_priv) >= 9)
2090 			return 256 * 1024;
2091 		return 0;
2092 	case I915_FORMAT_MOD_Y_TILED_CCS:
2093 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2094 	case I915_FORMAT_MOD_Y_TILED:
2095 	case I915_FORMAT_MOD_Yf_TILED:
2096 		return 1 * 1024 * 1024;
2097 	default:
2098 		MISSING_CASE(fb->modifier);
2099 		return 0;
2100 	}
2101 }
2102 
2103 struct i915_vma *
2104 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2105 {
2106 	struct drm_device *dev = fb->dev;
2107 	struct drm_i915_private *dev_priv = to_i915(dev);
2108 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2109 	struct i915_ggtt_view view;
2110 	struct i915_vma *vma;
2111 	u32 alignment;
2112 
2113 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2114 
2115 	alignment = intel_surf_alignment(fb, 0);
2116 
2117 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2118 
2119 	/* Note that the w/a also requires 64 PTE of padding following the
2120 	 * bo. We currently fill all unused PTE with the shadow page and so
2121 	 * we should always have valid PTE following the scanout preventing
2122 	 * the VT-d warning.
2123 	 */
2124 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2125 		alignment = 256 * 1024;
2126 
2127 	/*
2128 	 * Global gtt pte registers are special registers which actually forward
2129 	 * writes to a chunk of system memory. Which means that there is no risk
2130 	 * that the register values disappear as soon as we call
2131 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2132 	 * pin/unpin/fence and not more.
2133 	 */
2134 	intel_runtime_pm_get(dev_priv);
2135 
2136 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2137 
2138 	vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2139 	if (IS_ERR(vma))
2140 		goto err;
2141 
2142 	if (i915_vma_is_map_and_fenceable(vma)) {
2143 		/* Install a fence for tiled scan-out. Pre-i965 always needs a
2144 		 * fence, whereas 965+ only requires a fence if using
2145 		 * framebuffer compression.  For simplicity, we always, when
2146 		 * possible, install a fence as the cost is not that onerous.
2147 		 *
2148 		 * If we fail to fence the tiled scanout, then either the
2149 		 * modeset will reject the change (which is highly unlikely as
2150 		 * the affected systems, all but one, do not have unmappable
2151 		 * space) or we will not be able to enable full powersaving
2152 		 * techniques (also likely not to apply due to various limits
2153 		 * FBC and the like impose on the size of the buffer, which
2154 		 * presumably we violated anyway with this unmappable buffer).
2155 		 * Anyway, it is presumably better to stumble onwards with
2156 		 * something and try to run the system in a "less than optimal"
2157 		 * mode that matches the user configuration.
2158 		 */
2159 		i915_vma_pin_fence(vma);
2160 	}
2161 
2162 	i915_vma_get(vma);
2163 err:
2164 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2165 
2166 	intel_runtime_pm_put(dev_priv);
2167 	return vma;
2168 }
2169 
2170 void intel_unpin_fb_vma(struct i915_vma *vma)
2171 {
2172 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2173 
2174 	i915_vma_unpin_fence(vma);
2175 	i915_gem_object_unpin_from_display_plane(vma);
2176 	i915_vma_put(vma);
2177 }
2178 
2179 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2180 			  unsigned int rotation)
2181 {
2182 	if (drm_rotation_90_or_270(rotation))
2183 		return to_intel_framebuffer(fb)->rotated[plane].pitch;
2184 	else
2185 		return fb->pitches[plane];
2186 }
2187 
2188 /*
2189  * Convert the x/y offsets into a linear offset.
2190  * Only valid with 0/180 degree rotation, which is fine since linear
2191  * offset is only used with linear buffers on pre-hsw and tiled buffers
2192  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2193  */
2194 u32 intel_fb_xy_to_linear(int x, int y,
2195 			  const struct intel_plane_state *state,
2196 			  int plane)
2197 {
2198 	const struct drm_framebuffer *fb = state->base.fb;
2199 	unsigned int cpp = fb->format->cpp[plane];
2200 	unsigned int pitch = fb->pitches[plane];
2201 
2202 	return y * pitch + x * cpp;
2203 }
2204 
2205 /*
2206  * Add the x/y offsets derived from fb->offsets[] to the user
2207  * specified plane src x/y offsets. The resulting x/y offsets
2208  * specify the start of scanout from the beginning of the gtt mapping.
2209  */
2210 void intel_add_fb_offsets(int *x, int *y,
2211 			  const struct intel_plane_state *state,
2212 			  int plane)
2213 
2214 {
2215 	const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2216 	unsigned int rotation = state->base.rotation;
2217 
2218 	if (drm_rotation_90_or_270(rotation)) {
2219 		*x += intel_fb->rotated[plane].x;
2220 		*y += intel_fb->rotated[plane].y;
2221 	} else {
2222 		*x += intel_fb->normal[plane].x;
2223 		*y += intel_fb->normal[plane].y;
2224 	}
2225 }
2226 
2227 static u32 __intel_adjust_tile_offset(int *x, int *y,
2228 				      unsigned int tile_width,
2229 				      unsigned int tile_height,
2230 				      unsigned int tile_size,
2231 				      unsigned int pitch_tiles,
2232 				      u32 old_offset,
2233 				      u32 new_offset)
2234 {
2235 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2236 	unsigned int tiles;
2237 
2238 	WARN_ON(old_offset & (tile_size - 1));
2239 	WARN_ON(new_offset & (tile_size - 1));
2240 	WARN_ON(new_offset > old_offset);
2241 
2242 	tiles = (old_offset - new_offset) / tile_size;
2243 
2244 	*y += tiles / pitch_tiles * tile_height;
2245 	*x += tiles % pitch_tiles * tile_width;
2246 
2247 	/* minimize x in case it got needlessly big */
2248 	*y += *x / pitch_pixels * tile_height;
2249 	*x %= pitch_pixels;
2250 
2251 	return new_offset;
2252 }
2253 
2254 static u32 _intel_adjust_tile_offset(int *x, int *y,
2255 				     const struct drm_framebuffer *fb, int plane,
2256 				     unsigned int rotation,
2257 				     u32 old_offset, u32 new_offset)
2258 {
2259 	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2260 	unsigned int cpp = fb->format->cpp[plane];
2261 	unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2262 
2263 	WARN_ON(new_offset > old_offset);
2264 
2265 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2266 		unsigned int tile_size, tile_width, tile_height;
2267 		unsigned int pitch_tiles;
2268 
2269 		tile_size = intel_tile_size(dev_priv);
2270 		intel_tile_dims(fb, plane, &tile_width, &tile_height);
2271 
2272 		if (drm_rotation_90_or_270(rotation)) {
2273 			pitch_tiles = pitch / tile_height;
2274 			swap(tile_width, tile_height);
2275 		} else {
2276 			pitch_tiles = pitch / (tile_width * cpp);
2277 		}
2278 
2279 		__intel_adjust_tile_offset(x, y, tile_width, tile_height,
2280 					   tile_size, pitch_tiles,
2281 					   old_offset, new_offset);
2282 	} else {
2283 		old_offset += *y * pitch + *x * cpp;
2284 
2285 		*y = (old_offset - new_offset) / pitch;
2286 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2287 	}
2288 
2289 	return new_offset;
2290 }
2291 
2292 /*
2293  * Adjust the tile offset by moving the difference into
2294  * the x/y offsets.
2295  */
2296 static u32 intel_adjust_tile_offset(int *x, int *y,
2297 				    const struct intel_plane_state *state, int plane,
2298 				    u32 old_offset, u32 new_offset)
2299 {
2300 	return _intel_adjust_tile_offset(x, y, state->base.fb, plane,
2301 					 state->base.rotation,
2302 					 old_offset, new_offset);
2303 }
2304 
2305 /*
2306  * Computes the linear offset to the base tile and adjusts
2307  * x, y. bytes per pixel is assumed to be a power-of-two.
2308  *
2309  * In the 90/270 rotated case, x and y are assumed
2310  * to be already rotated to match the rotated GTT view, and
2311  * pitch is the tile_height aligned framebuffer height.
2312  *
2313  * This function is used when computing the derived information
2314  * under intel_framebuffer, so using any of that information
2315  * here is not allowed. Anything under drm_framebuffer can be
2316  * used. This is why the user has to pass in the pitch since it
2317  * is specified in the rotated orientation.
2318  */
2319 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2320 				      int *x, int *y,
2321 				      const struct drm_framebuffer *fb, int plane,
2322 				      unsigned int pitch,
2323 				      unsigned int rotation,
2324 				      u32 alignment)
2325 {
2326 	uint64_t fb_modifier = fb->modifier;
2327 	unsigned int cpp = fb->format->cpp[plane];
2328 	u32 offset, offset_aligned;
2329 
2330 	if (alignment)
2331 		alignment--;
2332 
2333 	if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2334 		unsigned int tile_size, tile_width, tile_height;
2335 		unsigned int tile_rows, tiles, pitch_tiles;
2336 
2337 		tile_size = intel_tile_size(dev_priv);
2338 		intel_tile_dims(fb, plane, &tile_width, &tile_height);
2339 
2340 		if (drm_rotation_90_or_270(rotation)) {
2341 			pitch_tiles = pitch / tile_height;
2342 			swap(tile_width, tile_height);
2343 		} else {
2344 			pitch_tiles = pitch / (tile_width * cpp);
2345 		}
2346 
2347 		tile_rows = *y / tile_height;
2348 		*y %= tile_height;
2349 
2350 		tiles = *x / tile_width;
2351 		*x %= tile_width;
2352 
2353 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2354 		offset_aligned = offset & ~alignment;
2355 
2356 		__intel_adjust_tile_offset(x, y, tile_width, tile_height,
2357 					   tile_size, pitch_tiles,
2358 					   offset, offset_aligned);
2359 	} else {
2360 		offset = *y * pitch + *x * cpp;
2361 		offset_aligned = offset & ~alignment;
2362 
2363 		*y = (offset & alignment) / pitch;
2364 		*x = ((offset & alignment) - *y * pitch) / cpp;
2365 	}
2366 
2367 	return offset_aligned;
2368 }
2369 
2370 u32 intel_compute_tile_offset(int *x, int *y,
2371 			      const struct intel_plane_state *state,
2372 			      int plane)
2373 {
2374 	struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2375 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2376 	const struct drm_framebuffer *fb = state->base.fb;
2377 	unsigned int rotation = state->base.rotation;
2378 	int pitch = intel_fb_pitch(fb, plane, rotation);
2379 	u32 alignment;
2380 
2381 	if (intel_plane->id == PLANE_CURSOR)
2382 		alignment = intel_cursor_alignment(dev_priv);
2383 	else
2384 		alignment = intel_surf_alignment(fb, plane);
2385 
2386 	return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2387 					  rotation, alignment);
2388 }
2389 
2390 /* Convert the fb->offset[] into x/y offsets */
2391 static int intel_fb_offset_to_xy(int *x, int *y,
2392 				 const struct drm_framebuffer *fb, int plane)
2393 {
2394 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2395 
2396 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2397 	    fb->offsets[plane] % intel_tile_size(dev_priv))
2398 		return -EINVAL;
2399 
2400 	*x = 0;
2401 	*y = 0;
2402 
2403 	_intel_adjust_tile_offset(x, y,
2404 				  fb, plane, DRM_MODE_ROTATE_0,
2405 				  fb->offsets[plane], 0);
2406 
2407 	return 0;
2408 }
2409 
2410 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2411 {
2412 	switch (fb_modifier) {
2413 	case I915_FORMAT_MOD_X_TILED:
2414 		return I915_TILING_X;
2415 	case I915_FORMAT_MOD_Y_TILED:
2416 	case I915_FORMAT_MOD_Y_TILED_CCS:
2417 		return I915_TILING_Y;
2418 	default:
2419 		return I915_TILING_NONE;
2420 	}
2421 }
2422 
2423 static const struct drm_format_info ccs_formats[] = {
2424 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2425 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2426 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2427 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2428 };
2429 
2430 static const struct drm_format_info *
2431 lookup_format_info(const struct drm_format_info formats[],
2432 		   int num_formats, u32 format)
2433 {
2434 	int i;
2435 
2436 	for (i = 0; i < num_formats; i++) {
2437 		if (formats[i].format == format)
2438 			return &formats[i];
2439 	}
2440 
2441 	return NULL;
2442 }
2443 
2444 static const struct drm_format_info *
2445 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2446 {
2447 	switch (cmd->modifier[0]) {
2448 	case I915_FORMAT_MOD_Y_TILED_CCS:
2449 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2450 		return lookup_format_info(ccs_formats,
2451 					  ARRAY_SIZE(ccs_formats),
2452 					  cmd->pixel_format);
2453 	default:
2454 		return NULL;
2455 	}
2456 }
2457 
2458 static int
2459 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2460 		   struct drm_framebuffer *fb)
2461 {
2462 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2463 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2464 	u32 gtt_offset_rotated = 0;
2465 	unsigned int max_size = 0;
2466 	int i, num_planes = fb->format->num_planes;
2467 	unsigned int tile_size = intel_tile_size(dev_priv);
2468 
2469 	for (i = 0; i < num_planes; i++) {
2470 		unsigned int width, height;
2471 		unsigned int cpp, size;
2472 		u32 offset;
2473 		int x, y;
2474 		int ret;
2475 
2476 		cpp = fb->format->cpp[i];
2477 		width = drm_framebuffer_plane_width(fb->width, fb, i);
2478 		height = drm_framebuffer_plane_height(fb->height, fb, i);
2479 
2480 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2481 		if (ret) {
2482 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2483 				      i, fb->offsets[i]);
2484 			return ret;
2485 		}
2486 
2487 		if ((fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2488 		     fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) && i == 1) {
2489 			int hsub = fb->format->hsub;
2490 			int vsub = fb->format->vsub;
2491 			int tile_width, tile_height;
2492 			int main_x, main_y;
2493 			int ccs_x, ccs_y;
2494 
2495 			intel_tile_dims(fb, i, &tile_width, &tile_height);
2496 			tile_width *= hsub;
2497 			tile_height *= vsub;
2498 
2499 			ccs_x = (x * hsub) % tile_width;
2500 			ccs_y = (y * vsub) % tile_height;
2501 			main_x = intel_fb->normal[0].x % tile_width;
2502 			main_y = intel_fb->normal[0].y % tile_height;
2503 
2504 			/*
2505 			 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2506 			 * x/y offsets must match between CCS and the main surface.
2507 			 */
2508 			if (main_x != ccs_x || main_y != ccs_y) {
2509 				DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2510 					      main_x, main_y,
2511 					      ccs_x, ccs_y,
2512 					      intel_fb->normal[0].x,
2513 					      intel_fb->normal[0].y,
2514 					      x, y);
2515 				return -EINVAL;
2516 			}
2517 		}
2518 
2519 		/*
2520 		 * The fence (if used) is aligned to the start of the object
2521 		 * so having the framebuffer wrap around across the edge of the
2522 		 * fenced region doesn't really work. We have no API to configure
2523 		 * the fence start offset within the object (nor could we probably
2524 		 * on gen2/3). So it's just easier if we just require that the
2525 		 * fb layout agrees with the fence layout. We already check that the
2526 		 * fb stride matches the fence stride elsewhere.
2527 		 */
2528 		if (i == 0 && i915_gem_object_is_tiled(intel_fb->obj) &&
2529 		    (x + width) * cpp > fb->pitches[i]) {
2530 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2531 				      i, fb->offsets[i]);
2532 			return -EINVAL;
2533 		}
2534 
2535 		/*
2536 		 * First pixel of the framebuffer from
2537 		 * the start of the normal gtt mapping.
2538 		 */
2539 		intel_fb->normal[i].x = x;
2540 		intel_fb->normal[i].y = y;
2541 
2542 		offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2543 						    fb, i, fb->pitches[i],
2544 						    DRM_MODE_ROTATE_0, tile_size);
2545 		offset /= tile_size;
2546 
2547 		if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2548 			unsigned int tile_width, tile_height;
2549 			unsigned int pitch_tiles;
2550 			struct drm_rect r;
2551 
2552 			intel_tile_dims(fb, i, &tile_width, &tile_height);
2553 
2554 			rot_info->plane[i].offset = offset;
2555 			rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2556 			rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2557 			rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2558 
2559 			intel_fb->rotated[i].pitch =
2560 				rot_info->plane[i].height * tile_height;
2561 
2562 			/* how many tiles does this plane need */
2563 			size = rot_info->plane[i].stride * rot_info->plane[i].height;
2564 			/*
2565 			 * If the plane isn't horizontally tile aligned,
2566 			 * we need one more tile.
2567 			 */
2568 			if (x != 0)
2569 				size++;
2570 
2571 			/* rotate the x/y offsets to match the GTT view */
2572 			r.x1 = x;
2573 			r.y1 = y;
2574 			r.x2 = x + width;
2575 			r.y2 = y + height;
2576 			drm_rect_rotate(&r,
2577 					rot_info->plane[i].width * tile_width,
2578 					rot_info->plane[i].height * tile_height,
2579 					DRM_MODE_ROTATE_270);
2580 			x = r.x1;
2581 			y = r.y1;
2582 
2583 			/* rotate the tile dimensions to match the GTT view */
2584 			pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2585 			swap(tile_width, tile_height);
2586 
2587 			/*
2588 			 * We only keep the x/y offsets, so push all of the
2589 			 * gtt offset into the x/y offsets.
2590 			 */
2591 			__intel_adjust_tile_offset(&x, &y,
2592 						   tile_width, tile_height,
2593 						   tile_size, pitch_tiles,
2594 						   gtt_offset_rotated * tile_size, 0);
2595 
2596 			gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2597 
2598 			/*
2599 			 * First pixel of the framebuffer from
2600 			 * the start of the rotated gtt mapping.
2601 			 */
2602 			intel_fb->rotated[i].x = x;
2603 			intel_fb->rotated[i].y = y;
2604 		} else {
2605 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2606 					    x * cpp, tile_size);
2607 		}
2608 
2609 		/* how many tiles in total needed in the bo */
2610 		max_size = max(max_size, offset + size);
2611 	}
2612 
2613 	if (max_size * tile_size > intel_fb->obj->base.size) {
2614 		DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2615 			      max_size * tile_size, intel_fb->obj->base.size);
2616 		return -EINVAL;
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static int i9xx_format_to_fourcc(int format)
2623 {
2624 	switch (format) {
2625 	case DISPPLANE_8BPP:
2626 		return DRM_FORMAT_C8;
2627 	case DISPPLANE_BGRX555:
2628 		return DRM_FORMAT_XRGB1555;
2629 	case DISPPLANE_BGRX565:
2630 		return DRM_FORMAT_RGB565;
2631 	default:
2632 	case DISPPLANE_BGRX888:
2633 		return DRM_FORMAT_XRGB8888;
2634 	case DISPPLANE_RGBX888:
2635 		return DRM_FORMAT_XBGR8888;
2636 	case DISPPLANE_BGRX101010:
2637 		return DRM_FORMAT_XRGB2101010;
2638 	case DISPPLANE_RGBX101010:
2639 		return DRM_FORMAT_XBGR2101010;
2640 	}
2641 }
2642 
2643 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2644 {
2645 	switch (format) {
2646 	case PLANE_CTL_FORMAT_RGB_565:
2647 		return DRM_FORMAT_RGB565;
2648 	default:
2649 	case PLANE_CTL_FORMAT_XRGB_8888:
2650 		if (rgb_order) {
2651 			if (alpha)
2652 				return DRM_FORMAT_ABGR8888;
2653 			else
2654 				return DRM_FORMAT_XBGR8888;
2655 		} else {
2656 			if (alpha)
2657 				return DRM_FORMAT_ARGB8888;
2658 			else
2659 				return DRM_FORMAT_XRGB8888;
2660 		}
2661 	case PLANE_CTL_FORMAT_XRGB_2101010:
2662 		if (rgb_order)
2663 			return DRM_FORMAT_XBGR2101010;
2664 		else
2665 			return DRM_FORMAT_XRGB2101010;
2666 	}
2667 }
2668 
2669 static bool
2670 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2671 			      struct intel_initial_plane_config *plane_config)
2672 {
2673 	struct drm_device *dev = crtc->base.dev;
2674 	struct drm_i915_private *dev_priv = to_i915(dev);
2675 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2676 	struct drm_i915_gem_object *obj = NULL;
2677 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2678 	struct drm_framebuffer *fb = &plane_config->fb->base;
2679 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2680 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2681 				    PAGE_SIZE);
2682 
2683 	size_aligned -= base_aligned;
2684 
2685 	if (plane_config->size == 0)
2686 		return false;
2687 
2688 	/* If the FB is too big, just don't use it since fbdev is not very
2689 	 * important and we should probably use that space with FBC or other
2690 	 * features. */
2691 	if (size_aligned * 2 > ggtt->stolen_usable_size)
2692 		return false;
2693 
2694 	mutex_lock(&dev->struct_mutex);
2695 	obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2696 							     base_aligned,
2697 							     base_aligned,
2698 							     size_aligned);
2699 	mutex_unlock(&dev->struct_mutex);
2700 	if (!obj)
2701 		return false;
2702 
2703 	if (plane_config->tiling == I915_TILING_X)
2704 		obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2705 
2706 	mode_cmd.pixel_format = fb->format->format;
2707 	mode_cmd.width = fb->width;
2708 	mode_cmd.height = fb->height;
2709 	mode_cmd.pitches[0] = fb->pitches[0];
2710 	mode_cmd.modifier[0] = fb->modifier;
2711 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2712 
2713 	if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2714 		DRM_DEBUG_KMS("intel fb init failed\n");
2715 		goto out_unref_obj;
2716 	}
2717 
2718 
2719 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2720 	return true;
2721 
2722 out_unref_obj:
2723 	i915_gem_object_put(obj);
2724 	return false;
2725 }
2726 
2727 static void
2728 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2729 			struct intel_plane_state *plane_state,
2730 			bool visible)
2731 {
2732 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2733 
2734 	plane_state->base.visible = visible;
2735 
2736 	/* FIXME pre-g4x don't work like this */
2737 	if (visible) {
2738 		crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2739 		crtc_state->active_planes |= BIT(plane->id);
2740 	} else {
2741 		crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2742 		crtc_state->active_planes &= ~BIT(plane->id);
2743 	}
2744 
2745 	DRM_DEBUG_KMS("%s active planes 0x%x\n",
2746 		      crtc_state->base.crtc->name,
2747 		      crtc_state->active_planes);
2748 }
2749 
2750 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
2751 					 struct intel_plane *plane)
2752 {
2753 	struct intel_crtc_state *crtc_state =
2754 		to_intel_crtc_state(crtc->base.state);
2755 	struct intel_plane_state *plane_state =
2756 		to_intel_plane_state(plane->base.state);
2757 
2758 	intel_set_plane_visible(crtc_state, plane_state, false);
2759 
2760 	if (plane->id == PLANE_PRIMARY)
2761 		intel_pre_disable_primary_noatomic(&crtc->base);
2762 
2763 	trace_intel_disable_plane(&plane->base, crtc);
2764 	plane->disable_plane(plane, crtc);
2765 }
2766 
2767 static void
2768 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2769 			     struct intel_initial_plane_config *plane_config)
2770 {
2771 	struct drm_device *dev = intel_crtc->base.dev;
2772 	struct drm_i915_private *dev_priv = to_i915(dev);
2773 	struct drm_crtc *c;
2774 	struct drm_i915_gem_object *obj;
2775 	struct drm_plane *primary = intel_crtc->base.primary;
2776 	struct drm_plane_state *plane_state = primary->state;
2777 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2778 	struct intel_plane *intel_plane = to_intel_plane(primary);
2779 	struct intel_plane_state *intel_state =
2780 		to_intel_plane_state(plane_state);
2781 	struct drm_framebuffer *fb;
2782 
2783 	if (!plane_config->fb)
2784 		return;
2785 
2786 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2787 		fb = &plane_config->fb->base;
2788 		goto valid_fb;
2789 	}
2790 
2791 	kfree(plane_config->fb);
2792 
2793 	/*
2794 	 * Failed to alloc the obj, check to see if we should share
2795 	 * an fb with another CRTC instead
2796 	 */
2797 	for_each_crtc(dev, c) {
2798 		struct intel_plane_state *state;
2799 
2800 		if (c == &intel_crtc->base)
2801 			continue;
2802 
2803 		if (!to_intel_crtc(c)->active)
2804 			continue;
2805 
2806 		state = to_intel_plane_state(c->primary->state);
2807 		if (!state->vma)
2808 			continue;
2809 
2810 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
2811 			fb = c->primary->fb;
2812 			drm_framebuffer_get(fb);
2813 			goto valid_fb;
2814 		}
2815 	}
2816 
2817 	/*
2818 	 * We've failed to reconstruct the BIOS FB.  Current display state
2819 	 * indicates that the primary plane is visible, but has a NULL FB,
2820 	 * which will lead to problems later if we don't fix it up.  The
2821 	 * simplest solution is to just disable the primary plane now and
2822 	 * pretend the BIOS never had it enabled.
2823 	 */
2824 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
2825 
2826 	return;
2827 
2828 valid_fb:
2829 	mutex_lock(&dev->struct_mutex);
2830 	intel_state->vma =
2831 		intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2832 	mutex_unlock(&dev->struct_mutex);
2833 	if (IS_ERR(intel_state->vma)) {
2834 		DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2835 			  intel_crtc->pipe, PTR_ERR(intel_state->vma));
2836 
2837 		intel_state->vma = NULL;
2838 		drm_framebuffer_put(fb);
2839 		return;
2840 	}
2841 
2842 	plane_state->src_x = 0;
2843 	plane_state->src_y = 0;
2844 	plane_state->src_w = fb->width << 16;
2845 	plane_state->src_h = fb->height << 16;
2846 
2847 	plane_state->crtc_x = 0;
2848 	plane_state->crtc_y = 0;
2849 	plane_state->crtc_w = fb->width;
2850 	plane_state->crtc_h = fb->height;
2851 
2852 	intel_state->base.src = drm_plane_state_src(plane_state);
2853 	intel_state->base.dst = drm_plane_state_dest(plane_state);
2854 
2855 	obj = intel_fb_obj(fb);
2856 	if (i915_gem_object_is_tiled(obj))
2857 		dev_priv->preserve_bios_swizzle = true;
2858 
2859 	drm_framebuffer_get(fb);
2860 	primary->fb = primary->state->fb = fb;
2861 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2862 
2863 	intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2864 				to_intel_plane_state(plane_state),
2865 				true);
2866 
2867 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2868 		  &obj->frontbuffer_bits);
2869 }
2870 
2871 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2872 			       unsigned int rotation)
2873 {
2874 	int cpp = fb->format->cpp[plane];
2875 
2876 	switch (fb->modifier) {
2877 	case DRM_FORMAT_MOD_LINEAR:
2878 	case I915_FORMAT_MOD_X_TILED:
2879 		switch (cpp) {
2880 		case 8:
2881 			return 4096;
2882 		case 4:
2883 		case 2:
2884 		case 1:
2885 			return 8192;
2886 		default:
2887 			MISSING_CASE(cpp);
2888 			break;
2889 		}
2890 		break;
2891 	case I915_FORMAT_MOD_Y_TILED_CCS:
2892 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2893 		/* FIXME AUX plane? */
2894 	case I915_FORMAT_MOD_Y_TILED:
2895 	case I915_FORMAT_MOD_Yf_TILED:
2896 		switch (cpp) {
2897 		case 8:
2898 			return 2048;
2899 		case 4:
2900 			return 4096;
2901 		case 2:
2902 		case 1:
2903 			return 8192;
2904 		default:
2905 			MISSING_CASE(cpp);
2906 			break;
2907 		}
2908 		break;
2909 	default:
2910 		MISSING_CASE(fb->modifier);
2911 	}
2912 
2913 	return 2048;
2914 }
2915 
2916 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
2917 					   int main_x, int main_y, u32 main_offset)
2918 {
2919 	const struct drm_framebuffer *fb = plane_state->base.fb;
2920 	int hsub = fb->format->hsub;
2921 	int vsub = fb->format->vsub;
2922 	int aux_x = plane_state->aux.x;
2923 	int aux_y = plane_state->aux.y;
2924 	u32 aux_offset = plane_state->aux.offset;
2925 	u32 alignment = intel_surf_alignment(fb, 1);
2926 
2927 	while (aux_offset >= main_offset && aux_y <= main_y) {
2928 		int x, y;
2929 
2930 		if (aux_x == main_x && aux_y == main_y)
2931 			break;
2932 
2933 		if (aux_offset == 0)
2934 			break;
2935 
2936 		x = aux_x / hsub;
2937 		y = aux_y / vsub;
2938 		aux_offset = intel_adjust_tile_offset(&x, &y, plane_state, 1,
2939 						      aux_offset, aux_offset - alignment);
2940 		aux_x = x * hsub + aux_x % hsub;
2941 		aux_y = y * vsub + aux_y % vsub;
2942 	}
2943 
2944 	if (aux_x != main_x || aux_y != main_y)
2945 		return false;
2946 
2947 	plane_state->aux.offset = aux_offset;
2948 	plane_state->aux.x = aux_x;
2949 	plane_state->aux.y = aux_y;
2950 
2951 	return true;
2952 }
2953 
2954 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2955 {
2956 	const struct drm_framebuffer *fb = plane_state->base.fb;
2957 	unsigned int rotation = plane_state->base.rotation;
2958 	int x = plane_state->base.src.x1 >> 16;
2959 	int y = plane_state->base.src.y1 >> 16;
2960 	int w = drm_rect_width(&plane_state->base.src) >> 16;
2961 	int h = drm_rect_height(&plane_state->base.src) >> 16;
2962 	int max_width = skl_max_plane_width(fb, 0, rotation);
2963 	int max_height = 4096;
2964 	u32 alignment, offset, aux_offset = plane_state->aux.offset;
2965 
2966 	if (w > max_width || h > max_height) {
2967 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2968 			      w, h, max_width, max_height);
2969 		return -EINVAL;
2970 	}
2971 
2972 	intel_add_fb_offsets(&x, &y, plane_state, 0);
2973 	offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2974 	alignment = intel_surf_alignment(fb, 0);
2975 
2976 	/*
2977 	 * AUX surface offset is specified as the distance from the
2978 	 * main surface offset, and it must be non-negative. Make
2979 	 * sure that is what we will get.
2980 	 */
2981 	if (offset > aux_offset)
2982 		offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2983 						  offset, aux_offset & ~(alignment - 1));
2984 
2985 	/*
2986 	 * When using an X-tiled surface, the plane blows up
2987 	 * if the x offset + width exceed the stride.
2988 	 *
2989 	 * TODO: linear and Y-tiled seem fine, Yf untested,
2990 	 */
2991 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2992 		int cpp = fb->format->cpp[0];
2993 
2994 		while ((x + w) * cpp > fb->pitches[0]) {
2995 			if (offset == 0) {
2996 				DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
2997 				return -EINVAL;
2998 			}
2999 
3000 			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3001 							  offset, offset - alignment);
3002 		}
3003 	}
3004 
3005 	/*
3006 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3007 	 * they match with the main surface x/y offsets.
3008 	 */
3009 	if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3010 	    fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3011 		while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3012 			if (offset == 0)
3013 				break;
3014 
3015 			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3016 							  offset, offset - alignment);
3017 		}
3018 
3019 		if (x != plane_state->aux.x || y != plane_state->aux.y) {
3020 			DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3021 			return -EINVAL;
3022 		}
3023 	}
3024 
3025 	plane_state->main.offset = offset;
3026 	plane_state->main.x = x;
3027 	plane_state->main.y = y;
3028 
3029 	return 0;
3030 }
3031 
3032 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3033 {
3034 	const struct drm_framebuffer *fb = plane_state->base.fb;
3035 	unsigned int rotation = plane_state->base.rotation;
3036 	int max_width = skl_max_plane_width(fb, 1, rotation);
3037 	int max_height = 4096;
3038 	int x = plane_state->base.src.x1 >> 17;
3039 	int y = plane_state->base.src.y1 >> 17;
3040 	int w = drm_rect_width(&plane_state->base.src) >> 17;
3041 	int h = drm_rect_height(&plane_state->base.src) >> 17;
3042 	u32 offset;
3043 
3044 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3045 	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3046 
3047 	/* FIXME not quite sure how/if these apply to the chroma plane */
3048 	if (w > max_width || h > max_height) {
3049 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3050 			      w, h, max_width, max_height);
3051 		return -EINVAL;
3052 	}
3053 
3054 	plane_state->aux.offset = offset;
3055 	plane_state->aux.x = x;
3056 	plane_state->aux.y = y;
3057 
3058 	return 0;
3059 }
3060 
3061 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3062 {
3063 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3064 	struct intel_crtc *crtc = to_intel_crtc(plane_state->base.crtc);
3065 	const struct drm_framebuffer *fb = plane_state->base.fb;
3066 	int src_x = plane_state->base.src.x1 >> 16;
3067 	int src_y = plane_state->base.src.y1 >> 16;
3068 	int hsub = fb->format->hsub;
3069 	int vsub = fb->format->vsub;
3070 	int x = src_x / hsub;
3071 	int y = src_y / vsub;
3072 	u32 offset;
3073 
3074 	switch (plane->id) {
3075 	case PLANE_PRIMARY:
3076 	case PLANE_SPRITE0:
3077 		break;
3078 	default:
3079 		DRM_DEBUG_KMS("RC support only on plane 1 and 2\n");
3080 		return -EINVAL;
3081 	}
3082 
3083 	if (crtc->pipe == PIPE_C) {
3084 		DRM_DEBUG_KMS("No RC support on pipe C\n");
3085 		return -EINVAL;
3086 	}
3087 
3088 	if (plane_state->base.rotation & ~(DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180)) {
3089 		DRM_DEBUG_KMS("RC support only with 0/180 degree rotation %x\n",
3090 			      plane_state->base.rotation);
3091 		return -EINVAL;
3092 	}
3093 
3094 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3095 	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3096 
3097 	plane_state->aux.offset = offset;
3098 	plane_state->aux.x = x * hsub + src_x % hsub;
3099 	plane_state->aux.y = y * vsub + src_y % vsub;
3100 
3101 	return 0;
3102 }
3103 
3104 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3105 {
3106 	const struct drm_framebuffer *fb = plane_state->base.fb;
3107 	unsigned int rotation = plane_state->base.rotation;
3108 	int ret;
3109 
3110 	if (!plane_state->base.visible)
3111 		return 0;
3112 
3113 	/* Rotate src coordinates to match rotated GTT view */
3114 	if (drm_rotation_90_or_270(rotation))
3115 		drm_rect_rotate(&plane_state->base.src,
3116 				fb->width << 16, fb->height << 16,
3117 				DRM_MODE_ROTATE_270);
3118 
3119 	/*
3120 	 * Handle the AUX surface first since
3121 	 * the main surface setup depends on it.
3122 	 */
3123 	if (fb->format->format == DRM_FORMAT_NV12) {
3124 		ret = skl_check_nv12_aux_surface(plane_state);
3125 		if (ret)
3126 			return ret;
3127 	} else if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3128 		   fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3129 		ret = skl_check_ccs_aux_surface(plane_state);
3130 		if (ret)
3131 			return ret;
3132 	} else {
3133 		plane_state->aux.offset = ~0xfff;
3134 		plane_state->aux.x = 0;
3135 		plane_state->aux.y = 0;
3136 	}
3137 
3138 	ret = skl_check_main_surface(plane_state);
3139 	if (ret)
3140 		return ret;
3141 
3142 	return 0;
3143 }
3144 
3145 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3146 			  const struct intel_plane_state *plane_state)
3147 {
3148 	struct drm_i915_private *dev_priv =
3149 		to_i915(plane_state->base.plane->dev);
3150 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3151 	const struct drm_framebuffer *fb = plane_state->base.fb;
3152 	unsigned int rotation = plane_state->base.rotation;
3153 	u32 dspcntr;
3154 
3155 	dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
3156 
3157 	if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
3158 	    IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
3159 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3160 
3161 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3162 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3163 
3164 	if (INTEL_GEN(dev_priv) < 4)
3165 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3166 
3167 	switch (fb->format->format) {
3168 	case DRM_FORMAT_C8:
3169 		dspcntr |= DISPPLANE_8BPP;
3170 		break;
3171 	case DRM_FORMAT_XRGB1555:
3172 		dspcntr |= DISPPLANE_BGRX555;
3173 		break;
3174 	case DRM_FORMAT_RGB565:
3175 		dspcntr |= DISPPLANE_BGRX565;
3176 		break;
3177 	case DRM_FORMAT_XRGB8888:
3178 		dspcntr |= DISPPLANE_BGRX888;
3179 		break;
3180 	case DRM_FORMAT_XBGR8888:
3181 		dspcntr |= DISPPLANE_RGBX888;
3182 		break;
3183 	case DRM_FORMAT_XRGB2101010:
3184 		dspcntr |= DISPPLANE_BGRX101010;
3185 		break;
3186 	case DRM_FORMAT_XBGR2101010:
3187 		dspcntr |= DISPPLANE_RGBX101010;
3188 		break;
3189 	default:
3190 		MISSING_CASE(fb->format->format);
3191 		return 0;
3192 	}
3193 
3194 	if (INTEL_GEN(dev_priv) >= 4 &&
3195 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
3196 		dspcntr |= DISPPLANE_TILED;
3197 
3198 	if (rotation & DRM_MODE_ROTATE_180)
3199 		dspcntr |= DISPPLANE_ROTATE_180;
3200 
3201 	if (rotation & DRM_MODE_REFLECT_X)
3202 		dspcntr |= DISPPLANE_MIRROR;
3203 
3204 	return dspcntr;
3205 }
3206 
3207 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3208 {
3209 	struct drm_i915_private *dev_priv =
3210 		to_i915(plane_state->base.plane->dev);
3211 	int src_x = plane_state->base.src.x1 >> 16;
3212 	int src_y = plane_state->base.src.y1 >> 16;
3213 	u32 offset;
3214 
3215 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3216 
3217 	if (INTEL_GEN(dev_priv) >= 4)
3218 		offset = intel_compute_tile_offset(&src_x, &src_y,
3219 						   plane_state, 0);
3220 	else
3221 		offset = 0;
3222 
3223 	/* HSW/BDW do this automagically in hardware */
3224 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3225 		unsigned int rotation = plane_state->base.rotation;
3226 		int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3227 		int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3228 
3229 		if (rotation & DRM_MODE_ROTATE_180) {
3230 			src_x += src_w - 1;
3231 			src_y += src_h - 1;
3232 		} else if (rotation & DRM_MODE_REFLECT_X) {
3233 			src_x += src_w - 1;
3234 		}
3235 	}
3236 
3237 	plane_state->main.offset = offset;
3238 	plane_state->main.x = src_x;
3239 	plane_state->main.y = src_y;
3240 
3241 	return 0;
3242 }
3243 
3244 static void i9xx_update_primary_plane(struct intel_plane *primary,
3245 				      const struct intel_crtc_state *crtc_state,
3246 				      const struct intel_plane_state *plane_state)
3247 {
3248 	struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3249 	const struct drm_framebuffer *fb = plane_state->base.fb;
3250 	enum plane plane = primary->plane;
3251 	u32 linear_offset;
3252 	u32 dspcntr = plane_state->ctl;
3253 	i915_reg_t reg = DSPCNTR(plane);
3254 	int x = plane_state->main.x;
3255 	int y = plane_state->main.y;
3256 	unsigned long irqflags;
3257 	u32 dspaddr_offset;
3258 
3259 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3260 
3261 	if (INTEL_GEN(dev_priv) >= 4)
3262 		dspaddr_offset = plane_state->main.offset;
3263 	else
3264 		dspaddr_offset = linear_offset;
3265 
3266 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3267 
3268 	if (INTEL_GEN(dev_priv) < 4) {
3269 		/* pipesrc and dspsize control the size that is scaled from,
3270 		 * which should always be the user's requested size.
3271 		 */
3272 		I915_WRITE_FW(DSPSIZE(plane),
3273 			      ((crtc_state->pipe_src_h - 1) << 16) |
3274 			      (crtc_state->pipe_src_w - 1));
3275 		I915_WRITE_FW(DSPPOS(plane), 0);
3276 	} else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3277 		I915_WRITE_FW(PRIMSIZE(plane),
3278 			      ((crtc_state->pipe_src_h - 1) << 16) |
3279 			      (crtc_state->pipe_src_w - 1));
3280 		I915_WRITE_FW(PRIMPOS(plane), 0);
3281 		I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3282 	}
3283 
3284 	I915_WRITE_FW(reg, dspcntr);
3285 
3286 	I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3287 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3288 		I915_WRITE_FW(DSPSURF(plane),
3289 			      intel_plane_ggtt_offset(plane_state) +
3290 			      dspaddr_offset);
3291 		I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3292 	} else if (INTEL_GEN(dev_priv) >= 4) {
3293 		I915_WRITE_FW(DSPSURF(plane),
3294 			      intel_plane_ggtt_offset(plane_state) +
3295 			      dspaddr_offset);
3296 		I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3297 		I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3298 	} else {
3299 		I915_WRITE_FW(DSPADDR(plane),
3300 			      intel_plane_ggtt_offset(plane_state) +
3301 			      dspaddr_offset);
3302 	}
3303 	POSTING_READ_FW(reg);
3304 
3305 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3306 }
3307 
3308 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3309 				       struct intel_crtc *crtc)
3310 {
3311 	struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3312 	enum plane plane = primary->plane;
3313 	unsigned long irqflags;
3314 
3315 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3316 
3317 	I915_WRITE_FW(DSPCNTR(plane), 0);
3318 	if (INTEL_INFO(dev_priv)->gen >= 4)
3319 		I915_WRITE_FW(DSPSURF(plane), 0);
3320 	else
3321 		I915_WRITE_FW(DSPADDR(plane), 0);
3322 	POSTING_READ_FW(DSPCNTR(plane));
3323 
3324 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3325 }
3326 
3327 static bool i9xx_plane_get_hw_state(struct intel_plane *primary)
3328 {
3329 
3330 	struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3331 	enum intel_display_power_domain power_domain;
3332 	enum plane plane = primary->plane;
3333 	enum i915_pipe pipe = primary->pipe;
3334 	bool ret;
3335 
3336 	/*
3337 	 * Not 100% correct for planes that can move between pipes,
3338 	 * but that's only the case for gen2-4 which don't have any
3339 	 * display power wells.
3340 	 */
3341 	power_domain = POWER_DOMAIN_PIPE(pipe);
3342 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3343 		return false;
3344 
3345 	ret = I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE;
3346 
3347 	intel_display_power_put(dev_priv, power_domain);
3348 
3349 	return ret;
3350 }
3351 
3352 static u32
3353 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3354 {
3355 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3356 		return 64;
3357 	else
3358 		return intel_tile_width_bytes(fb, plane);
3359 }
3360 
3361 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3362 {
3363 	struct drm_device *dev = intel_crtc->base.dev;
3364 	struct drm_i915_private *dev_priv = to_i915(dev);
3365 
3366 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3367 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3368 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3369 }
3370 
3371 /*
3372  * This function detaches (aka. unbinds) unused scalers in hardware
3373  */
3374 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3375 {
3376 	struct intel_crtc_scaler_state *scaler_state;
3377 	int i;
3378 
3379 	scaler_state = &intel_crtc->config->scaler_state;
3380 
3381 	/* loop through and disable scalers that aren't in use */
3382 	for (i = 0; i < intel_crtc->num_scalers; i++) {
3383 		if (!scaler_state->scalers[i].in_use)
3384 			skl_detach_scaler(intel_crtc, i);
3385 	}
3386 }
3387 
3388 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3389 		     unsigned int rotation)
3390 {
3391 	u32 stride;
3392 
3393 	if (plane >= fb->format->num_planes)
3394 		return 0;
3395 
3396 	stride = intel_fb_pitch(fb, plane, rotation);
3397 
3398 	/*
3399 	 * The stride is either expressed as a multiple of 64 bytes chunks for
3400 	 * linear buffers or in number of tiles for tiled buffers.
3401 	 */
3402 	if (drm_rotation_90_or_270(rotation))
3403 		stride /= intel_tile_height(fb, plane);
3404 	else
3405 		stride /= intel_fb_stride_alignment(fb, plane);
3406 
3407 	return stride;
3408 }
3409 
3410 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3411 {
3412 	switch (pixel_format) {
3413 	case DRM_FORMAT_C8:
3414 		return PLANE_CTL_FORMAT_INDEXED;
3415 	case DRM_FORMAT_RGB565:
3416 		return PLANE_CTL_FORMAT_RGB_565;
3417 	case DRM_FORMAT_XBGR8888:
3418 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3419 	case DRM_FORMAT_XRGB8888:
3420 		return PLANE_CTL_FORMAT_XRGB_8888;
3421 	/*
3422 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3423 	 * to be already pre-multiplied. We need to add a knob (or a different
3424 	 * DRM_FORMAT) for user-space to configure that.
3425 	 */
3426 	case DRM_FORMAT_ABGR8888:
3427 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3428 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3429 	case DRM_FORMAT_ARGB8888:
3430 		return PLANE_CTL_FORMAT_XRGB_8888 |
3431 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3432 	case DRM_FORMAT_XRGB2101010:
3433 		return PLANE_CTL_FORMAT_XRGB_2101010;
3434 	case DRM_FORMAT_XBGR2101010:
3435 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3436 	case DRM_FORMAT_YUYV:
3437 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3438 	case DRM_FORMAT_YVYU:
3439 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3440 	case DRM_FORMAT_UYVY:
3441 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3442 	case DRM_FORMAT_VYUY:
3443 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3444 	default:
3445 		MISSING_CASE(pixel_format);
3446 	}
3447 
3448 	return 0;
3449 }
3450 
3451 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3452 {
3453 	switch (fb_modifier) {
3454 	case DRM_FORMAT_MOD_LINEAR:
3455 		break;
3456 	case I915_FORMAT_MOD_X_TILED:
3457 		return PLANE_CTL_TILED_X;
3458 	case I915_FORMAT_MOD_Y_TILED:
3459 		return PLANE_CTL_TILED_Y;
3460 	case I915_FORMAT_MOD_Y_TILED_CCS:
3461 		return PLANE_CTL_TILED_Y | PLANE_CTL_DECOMPRESSION_ENABLE;
3462 	case I915_FORMAT_MOD_Yf_TILED:
3463 		return PLANE_CTL_TILED_YF;
3464 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3465 		return PLANE_CTL_TILED_YF | PLANE_CTL_DECOMPRESSION_ENABLE;
3466 	default:
3467 		MISSING_CASE(fb_modifier);
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3474 {
3475 	switch (rotation) {
3476 	case DRM_MODE_ROTATE_0:
3477 		break;
3478 	/*
3479 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3480 	 * while i915 HW rotation is clockwise, thats why this swapping.
3481 	 */
3482 	case DRM_MODE_ROTATE_90:
3483 		return PLANE_CTL_ROTATE_270;
3484 	case DRM_MODE_ROTATE_180:
3485 		return PLANE_CTL_ROTATE_180;
3486 	case DRM_MODE_ROTATE_270:
3487 		return PLANE_CTL_ROTATE_90;
3488 	default:
3489 		MISSING_CASE(rotation);
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3496 		  const struct intel_plane_state *plane_state)
3497 {
3498 	struct drm_i915_private *dev_priv =
3499 		to_i915(plane_state->base.plane->dev);
3500 	const struct drm_framebuffer *fb = plane_state->base.fb;
3501 	unsigned int rotation = plane_state->base.rotation;
3502 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3503 	u32 plane_ctl;
3504 
3505 	plane_ctl = PLANE_CTL_ENABLE;
3506 
3507 	if (!IS_GEMINILAKE(dev_priv) && !IS_CANNONLAKE(dev_priv)) {
3508 		plane_ctl |=
3509 			PLANE_CTL_PIPE_GAMMA_ENABLE |
3510 			PLANE_CTL_PIPE_CSC_ENABLE |
3511 			PLANE_CTL_PLANE_GAMMA_DISABLE;
3512 	}
3513 
3514 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
3515 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3516 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3517 
3518 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
3519 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3520 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
3521 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3522 
3523 	return plane_ctl;
3524 }
3525 
3526 static int
3527 __intel_display_resume(struct drm_device *dev,
3528 		       struct drm_atomic_state *state,
3529 		       struct drm_modeset_acquire_ctx *ctx)
3530 {
3531 	struct drm_crtc_state *crtc_state;
3532 	struct drm_crtc *crtc;
3533 	int i, ret;
3534 
3535 	intel_modeset_setup_hw_state(dev, ctx);
3536 	i915_redisable_vga(to_i915(dev));
3537 
3538 	if (!state)
3539 		return 0;
3540 
3541 	/*
3542 	 * We've duplicated the state, pointers to the old state are invalid.
3543 	 *
3544 	 * Don't attempt to use the old state until we commit the duplicated state.
3545 	 */
3546 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3547 		/*
3548 		 * Force recalculation even if we restore
3549 		 * current state. With fast modeset this may not result
3550 		 * in a modeset when the state is compatible.
3551 		 */
3552 		crtc_state->mode_changed = true;
3553 	}
3554 
3555 	/* ignore any reset values/BIOS leftovers in the WM registers */
3556 	if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3557 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
3558 
3559 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3560 
3561 	WARN_ON(ret == -EDEADLK);
3562 	return ret;
3563 }
3564 
3565 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3566 {
3567 	return intel_has_gpu_reset(dev_priv) &&
3568 		INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3569 }
3570 
3571 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3572 {
3573 	struct drm_device *dev = &dev_priv->drm;
3574 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3575 	struct drm_atomic_state *state;
3576 	int ret;
3577 
3578 
3579 	/* reset doesn't touch the display */
3580 	if (!i915_modparams.force_reset_modeset_test &&
3581 	    !gpu_reset_clobbers_display(dev_priv))
3582 		return;
3583 
3584 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
3585 	set_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3586 	wake_up_all(&dev_priv->gpu_error.wait_queue);
3587 
3588 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
3589 		DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
3590 		i915_gem_set_wedged(dev_priv);
3591 	}
3592 
3593 	/*
3594 	 * Need mode_config.mutex so that we don't
3595 	 * trample ongoing ->detect() and whatnot.
3596 	 */
3597 	mutex_lock(&dev->mode_config.mutex);
3598 	drm_modeset_acquire_init(ctx, 0);
3599 	while (1) {
3600 		ret = drm_modeset_lock_all_ctx(dev, ctx);
3601 		if (ret != -EDEADLK)
3602 			break;
3603 
3604 		drm_modeset_backoff(ctx);
3605 	}
3606 	/*
3607 	 * Disabling the crtcs gracefully seems nicer. Also the
3608 	 * g33 docs say we should at least disable all the planes.
3609 	 */
3610 	state = drm_atomic_helper_duplicate_state(dev, ctx);
3611 	if (IS_ERR(state)) {
3612 		ret = PTR_ERR(state);
3613 		DRM_ERROR("Duplicating state failed with %i\n", ret);
3614 		return;
3615 	}
3616 
3617 	ret = drm_atomic_helper_disable_all(dev, ctx);
3618 	if (ret) {
3619 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3620 		drm_atomic_state_put(state);
3621 		return;
3622 	}
3623 
3624 	dev_priv->modeset_restore_state = state;
3625 	state->acquire_ctx = ctx;
3626 }
3627 
3628 void intel_finish_reset(struct drm_i915_private *dev_priv)
3629 {
3630 	struct drm_device *dev = &dev_priv->drm;
3631 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3632 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3633 	int ret;
3634 
3635 	/* reset doesn't touch the display */
3636 	if (!i915_modparams.force_reset_modeset_test &&
3637 	    !gpu_reset_clobbers_display(dev_priv))
3638 		return;
3639 
3640 	if (!state)
3641 		goto unlock;
3642 
3643 	dev_priv->modeset_restore_state = NULL;
3644 
3645 	/* reset doesn't touch the display */
3646 	if (!gpu_reset_clobbers_display(dev_priv)) {
3647 		/* for testing only restore the display */
3648 		ret = __intel_display_resume(dev, state, ctx);
3649 		if (ret)
3650 			DRM_ERROR("Restoring old state failed with %i\n", ret);
3651 	} else {
3652 		/*
3653 		 * The display has been reset as well,
3654 		 * so need a full re-initialization.
3655 		 */
3656 		intel_runtime_pm_disable_interrupts(dev_priv);
3657 		intel_runtime_pm_enable_interrupts(dev_priv);
3658 
3659 		intel_pps_unlock_regs_wa(dev_priv);
3660 		intel_modeset_init_hw(dev);
3661 		intel_init_clock_gating(dev_priv);
3662 
3663 		spin_lock_irq(&dev_priv->irq_lock);
3664 		if (dev_priv->display.hpd_irq_setup)
3665 			dev_priv->display.hpd_irq_setup(dev_priv);
3666 		spin_unlock_irq(&dev_priv->irq_lock);
3667 
3668 		ret = __intel_display_resume(dev, state, ctx);
3669 		if (ret)
3670 			DRM_ERROR("Restoring old state failed with %i\n", ret);
3671 
3672 		intel_hpd_init(dev_priv);
3673 	}
3674 
3675 	drm_atomic_state_put(state);
3676 unlock:
3677 	drm_modeset_drop_locks(ctx);
3678 	drm_modeset_acquire_fini(ctx);
3679 	mutex_unlock(&dev->mode_config.mutex);
3680 
3681 	clear_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3682 }
3683 
3684 static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state,
3685 				     const struct intel_crtc_state *new_crtc_state)
3686 {
3687 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
3688 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3689 
3690 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3691 	crtc->base.mode = new_crtc_state->base.mode;
3692 
3693 	/*
3694 	 * Update pipe size and adjust fitter if needed: the reason for this is
3695 	 * that in compute_mode_changes we check the native mode (not the pfit
3696 	 * mode) to see if we can flip rather than do a full mode set. In the
3697 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3698 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3699 	 * sized surface.
3700 	 */
3701 
3702 	I915_WRITE(PIPESRC(crtc->pipe),
3703 		   ((new_crtc_state->pipe_src_w - 1) << 16) |
3704 		   (new_crtc_state->pipe_src_h - 1));
3705 
3706 	/* on skylake this is done by detaching scalers */
3707 	if (INTEL_GEN(dev_priv) >= 9) {
3708 		skl_detach_scalers(crtc);
3709 
3710 		if (new_crtc_state->pch_pfit.enabled)
3711 			skylake_pfit_enable(crtc);
3712 	} else if (HAS_PCH_SPLIT(dev_priv)) {
3713 		if (new_crtc_state->pch_pfit.enabled)
3714 			ironlake_pfit_enable(crtc);
3715 		else if (old_crtc_state->pch_pfit.enabled)
3716 			ironlake_pfit_disable(crtc, true);
3717 	}
3718 }
3719 
3720 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3721 {
3722 	struct drm_device *dev = crtc->base.dev;
3723 	struct drm_i915_private *dev_priv = to_i915(dev);
3724 	int pipe = crtc->pipe;
3725 	i915_reg_t reg;
3726 	u32 temp;
3727 
3728 	/* enable normal train */
3729 	reg = FDI_TX_CTL(pipe);
3730 	temp = I915_READ(reg);
3731 	if (IS_IVYBRIDGE(dev_priv)) {
3732 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3733 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3734 	} else {
3735 		temp &= ~FDI_LINK_TRAIN_NONE;
3736 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3737 	}
3738 	I915_WRITE(reg, temp);
3739 
3740 	reg = FDI_RX_CTL(pipe);
3741 	temp = I915_READ(reg);
3742 	if (HAS_PCH_CPT(dev_priv)) {
3743 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3744 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3745 	} else {
3746 		temp &= ~FDI_LINK_TRAIN_NONE;
3747 		temp |= FDI_LINK_TRAIN_NONE;
3748 	}
3749 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3750 
3751 	/* wait one idle pattern time */
3752 	POSTING_READ(reg);
3753 	udelay(1000);
3754 
3755 	/* IVB wants error correction enabled */
3756 	if (IS_IVYBRIDGE(dev_priv))
3757 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3758 			   FDI_FE_ERRC_ENABLE);
3759 }
3760 
3761 /* The FDI link training functions for ILK/Ibexpeak. */
3762 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3763 				    const struct intel_crtc_state *crtc_state)
3764 {
3765 	struct drm_device *dev = crtc->base.dev;
3766 	struct drm_i915_private *dev_priv = to_i915(dev);
3767 	int pipe = crtc->pipe;
3768 	i915_reg_t reg;
3769 	u32 temp, tries;
3770 
3771 	/* FDI needs bits from pipe first */
3772 	assert_pipe_enabled(dev_priv, pipe);
3773 
3774 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3775 	   for train result */
3776 	reg = FDI_RX_IMR(pipe);
3777 	temp = I915_READ(reg);
3778 	temp &= ~FDI_RX_SYMBOL_LOCK;
3779 	temp &= ~FDI_RX_BIT_LOCK;
3780 	I915_WRITE(reg, temp);
3781 	I915_READ(reg);
3782 	udelay(150);
3783 
3784 	/* enable CPU FDI TX and PCH FDI RX */
3785 	reg = FDI_TX_CTL(pipe);
3786 	temp = I915_READ(reg);
3787 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3788 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3789 	temp &= ~FDI_LINK_TRAIN_NONE;
3790 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3791 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3792 
3793 	reg = FDI_RX_CTL(pipe);
3794 	temp = I915_READ(reg);
3795 	temp &= ~FDI_LINK_TRAIN_NONE;
3796 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3797 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3798 
3799 	POSTING_READ(reg);
3800 	udelay(150);
3801 
3802 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3803 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3804 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3805 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3806 
3807 	reg = FDI_RX_IIR(pipe);
3808 	for (tries = 0; tries < 5; tries++) {
3809 		temp = I915_READ(reg);
3810 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3811 
3812 		if ((temp & FDI_RX_BIT_LOCK)) {
3813 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3814 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3815 			break;
3816 		}
3817 	}
3818 	if (tries == 5)
3819 		DRM_ERROR("FDI train 1 fail!\n");
3820 
3821 	/* Train 2 */
3822 	reg = FDI_TX_CTL(pipe);
3823 	temp = I915_READ(reg);
3824 	temp &= ~FDI_LINK_TRAIN_NONE;
3825 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3826 	I915_WRITE(reg, temp);
3827 
3828 	reg = FDI_RX_CTL(pipe);
3829 	temp = I915_READ(reg);
3830 	temp &= ~FDI_LINK_TRAIN_NONE;
3831 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3832 	I915_WRITE(reg, temp);
3833 
3834 	POSTING_READ(reg);
3835 	udelay(150);
3836 
3837 	reg = FDI_RX_IIR(pipe);
3838 	for (tries = 0; tries < 5; tries++) {
3839 		temp = I915_READ(reg);
3840 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3841 
3842 		if (temp & FDI_RX_SYMBOL_LOCK) {
3843 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3844 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3845 			break;
3846 		}
3847 	}
3848 	if (tries == 5)
3849 		DRM_ERROR("FDI train 2 fail!\n");
3850 
3851 	DRM_DEBUG_KMS("FDI train done\n");
3852 
3853 }
3854 
3855 static const int snb_b_fdi_train_param[] = {
3856 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3857 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3858 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3859 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3860 };
3861 
3862 /* The FDI link training functions for SNB/Cougarpoint. */
3863 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3864 				const struct intel_crtc_state *crtc_state)
3865 {
3866 	struct drm_device *dev = crtc->base.dev;
3867 	struct drm_i915_private *dev_priv = to_i915(dev);
3868 	int pipe = crtc->pipe;
3869 	i915_reg_t reg;
3870 	u32 temp, i, retry;
3871 
3872 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3873 	   for train result */
3874 	reg = FDI_RX_IMR(pipe);
3875 	temp = I915_READ(reg);
3876 	temp &= ~FDI_RX_SYMBOL_LOCK;
3877 	temp &= ~FDI_RX_BIT_LOCK;
3878 	I915_WRITE(reg, temp);
3879 
3880 	POSTING_READ(reg);
3881 	udelay(150);
3882 
3883 	/* enable CPU FDI TX and PCH FDI RX */
3884 	reg = FDI_TX_CTL(pipe);
3885 	temp = I915_READ(reg);
3886 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3887 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3888 	temp &= ~FDI_LINK_TRAIN_NONE;
3889 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3890 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3891 	/* SNB-B */
3892 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3893 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3894 
3895 	I915_WRITE(FDI_RX_MISC(pipe),
3896 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3897 
3898 	reg = FDI_RX_CTL(pipe);
3899 	temp = I915_READ(reg);
3900 	if (HAS_PCH_CPT(dev_priv)) {
3901 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3902 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3903 	} else {
3904 		temp &= ~FDI_LINK_TRAIN_NONE;
3905 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3906 	}
3907 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3908 
3909 	POSTING_READ(reg);
3910 	udelay(150);
3911 
3912 	for (i = 0; i < 4; i++) {
3913 		reg = FDI_TX_CTL(pipe);
3914 		temp = I915_READ(reg);
3915 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3916 		temp |= snb_b_fdi_train_param[i];
3917 		I915_WRITE(reg, temp);
3918 
3919 		POSTING_READ(reg);
3920 		udelay(500);
3921 
3922 		for (retry = 0; retry < 5; retry++) {
3923 			reg = FDI_RX_IIR(pipe);
3924 			temp = I915_READ(reg);
3925 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3926 			if (temp & FDI_RX_BIT_LOCK) {
3927 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3928 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3929 				break;
3930 			}
3931 			udelay(50);
3932 		}
3933 		if (retry < 5)
3934 			break;
3935 	}
3936 	if (i == 4)
3937 		DRM_ERROR("FDI train 1 fail!\n");
3938 
3939 	/* Train 2 */
3940 	reg = FDI_TX_CTL(pipe);
3941 	temp = I915_READ(reg);
3942 	temp &= ~FDI_LINK_TRAIN_NONE;
3943 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3944 	if (IS_GEN6(dev_priv)) {
3945 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3946 		/* SNB-B */
3947 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3948 	}
3949 	I915_WRITE(reg, temp);
3950 
3951 	reg = FDI_RX_CTL(pipe);
3952 	temp = I915_READ(reg);
3953 	if (HAS_PCH_CPT(dev_priv)) {
3954 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3955 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3956 	} else {
3957 		temp &= ~FDI_LINK_TRAIN_NONE;
3958 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3959 	}
3960 	I915_WRITE(reg, temp);
3961 
3962 	POSTING_READ(reg);
3963 	udelay(150);
3964 
3965 	for (i = 0; i < 4; i++) {
3966 		reg = FDI_TX_CTL(pipe);
3967 		temp = I915_READ(reg);
3968 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3969 		temp |= snb_b_fdi_train_param[i];
3970 		I915_WRITE(reg, temp);
3971 
3972 		POSTING_READ(reg);
3973 		udelay(500);
3974 
3975 		for (retry = 0; retry < 5; retry++) {
3976 			reg = FDI_RX_IIR(pipe);
3977 			temp = I915_READ(reg);
3978 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3979 			if (temp & FDI_RX_SYMBOL_LOCK) {
3980 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3981 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3982 				break;
3983 			}
3984 			udelay(50);
3985 		}
3986 		if (retry < 5)
3987 			break;
3988 	}
3989 	if (i == 4)
3990 		DRM_ERROR("FDI train 2 fail!\n");
3991 
3992 	DRM_DEBUG_KMS("FDI train done.\n");
3993 }
3994 
3995 /* Manual link training for Ivy Bridge A0 parts */
3996 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3997 				      const struct intel_crtc_state *crtc_state)
3998 {
3999 	struct drm_device *dev = crtc->base.dev;
4000 	struct drm_i915_private *dev_priv = to_i915(dev);
4001 	int pipe = crtc->pipe;
4002 	i915_reg_t reg;
4003 	u32 temp, i, j;
4004 
4005 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4006 	   for train result */
4007 	reg = FDI_RX_IMR(pipe);
4008 	temp = I915_READ(reg);
4009 	temp &= ~FDI_RX_SYMBOL_LOCK;
4010 	temp &= ~FDI_RX_BIT_LOCK;
4011 	I915_WRITE(reg, temp);
4012 
4013 	POSTING_READ(reg);
4014 	udelay(150);
4015 
4016 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4017 		      I915_READ(FDI_RX_IIR(pipe)));
4018 
4019 	/* Try each vswing and preemphasis setting twice before moving on */
4020 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4021 		/* disable first in case we need to retry */
4022 		reg = FDI_TX_CTL(pipe);
4023 		temp = I915_READ(reg);
4024 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4025 		temp &= ~FDI_TX_ENABLE;
4026 		I915_WRITE(reg, temp);
4027 
4028 		reg = FDI_RX_CTL(pipe);
4029 		temp = I915_READ(reg);
4030 		temp &= ~FDI_LINK_TRAIN_AUTO;
4031 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4032 		temp &= ~FDI_RX_ENABLE;
4033 		I915_WRITE(reg, temp);
4034 
4035 		/* enable CPU FDI TX and PCH FDI RX */
4036 		reg = FDI_TX_CTL(pipe);
4037 		temp = I915_READ(reg);
4038 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
4039 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4040 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4041 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4042 		temp |= snb_b_fdi_train_param[j/2];
4043 		temp |= FDI_COMPOSITE_SYNC;
4044 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
4045 
4046 		I915_WRITE(FDI_RX_MISC(pipe),
4047 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4048 
4049 		reg = FDI_RX_CTL(pipe);
4050 		temp = I915_READ(reg);
4051 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4052 		temp |= FDI_COMPOSITE_SYNC;
4053 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
4054 
4055 		POSTING_READ(reg);
4056 		udelay(1); /* should be 0.5us */
4057 
4058 		for (i = 0; i < 4; i++) {
4059 			reg = FDI_RX_IIR(pipe);
4060 			temp = I915_READ(reg);
4061 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4062 
4063 			if (temp & FDI_RX_BIT_LOCK ||
4064 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4065 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4066 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4067 					      i);
4068 				break;
4069 			}
4070 			udelay(1); /* should be 0.5us */
4071 		}
4072 		if (i == 4) {
4073 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4074 			continue;
4075 		}
4076 
4077 		/* Train 2 */
4078 		reg = FDI_TX_CTL(pipe);
4079 		temp = I915_READ(reg);
4080 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4081 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4082 		I915_WRITE(reg, temp);
4083 
4084 		reg = FDI_RX_CTL(pipe);
4085 		temp = I915_READ(reg);
4086 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4087 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4088 		I915_WRITE(reg, temp);
4089 
4090 		POSTING_READ(reg);
4091 		udelay(2); /* should be 1.5us */
4092 
4093 		for (i = 0; i < 4; i++) {
4094 			reg = FDI_RX_IIR(pipe);
4095 			temp = I915_READ(reg);
4096 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4097 
4098 			if (temp & FDI_RX_SYMBOL_LOCK ||
4099 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4100 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4101 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4102 					      i);
4103 				goto train_done;
4104 			}
4105 			udelay(2); /* should be 1.5us */
4106 		}
4107 		if (i == 4)
4108 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4109 	}
4110 
4111 train_done:
4112 	DRM_DEBUG_KMS("FDI train done.\n");
4113 }
4114 
4115 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4116 {
4117 	struct drm_device *dev = intel_crtc->base.dev;
4118 	struct drm_i915_private *dev_priv = to_i915(dev);
4119 	int pipe = intel_crtc->pipe;
4120 	i915_reg_t reg;
4121 	u32 temp;
4122 
4123 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4124 	reg = FDI_RX_CTL(pipe);
4125 	temp = I915_READ(reg);
4126 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4127 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4128 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4129 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4130 
4131 	POSTING_READ(reg);
4132 	udelay(200);
4133 
4134 	/* Switch from Rawclk to PCDclk */
4135 	temp = I915_READ(reg);
4136 	I915_WRITE(reg, temp | FDI_PCDCLK);
4137 
4138 	POSTING_READ(reg);
4139 	udelay(200);
4140 
4141 	/* Enable CPU FDI TX PLL, always on for Ironlake */
4142 	reg = FDI_TX_CTL(pipe);
4143 	temp = I915_READ(reg);
4144 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4145 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4146 
4147 		POSTING_READ(reg);
4148 		udelay(100);
4149 	}
4150 }
4151 
4152 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4153 {
4154 	struct drm_device *dev = intel_crtc->base.dev;
4155 	struct drm_i915_private *dev_priv = to_i915(dev);
4156 	int pipe = intel_crtc->pipe;
4157 	i915_reg_t reg;
4158 	u32 temp;
4159 
4160 	/* Switch from PCDclk to Rawclk */
4161 	reg = FDI_RX_CTL(pipe);
4162 	temp = I915_READ(reg);
4163 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
4164 
4165 	/* Disable CPU FDI TX PLL */
4166 	reg = FDI_TX_CTL(pipe);
4167 	temp = I915_READ(reg);
4168 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4169 
4170 	POSTING_READ(reg);
4171 	udelay(100);
4172 
4173 	reg = FDI_RX_CTL(pipe);
4174 	temp = I915_READ(reg);
4175 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4176 
4177 	/* Wait for the clocks to turn off. */
4178 	POSTING_READ(reg);
4179 	udelay(100);
4180 }
4181 
4182 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4183 {
4184 	struct drm_device *dev = crtc->dev;
4185 	struct drm_i915_private *dev_priv = to_i915(dev);
4186 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4187 	int pipe = intel_crtc->pipe;
4188 	i915_reg_t reg;
4189 	u32 temp;
4190 
4191 	/* disable CPU FDI tx and PCH FDI rx */
4192 	reg = FDI_TX_CTL(pipe);
4193 	temp = I915_READ(reg);
4194 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4195 	POSTING_READ(reg);
4196 
4197 	reg = FDI_RX_CTL(pipe);
4198 	temp = I915_READ(reg);
4199 	temp &= ~(0x7 << 16);
4200 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4201 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4202 
4203 	POSTING_READ(reg);
4204 	udelay(100);
4205 
4206 	/* Ironlake workaround, disable clock pointer after downing FDI */
4207 	if (HAS_PCH_IBX(dev_priv))
4208 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4209 
4210 	/* still set train pattern 1 */
4211 	reg = FDI_TX_CTL(pipe);
4212 	temp = I915_READ(reg);
4213 	temp &= ~FDI_LINK_TRAIN_NONE;
4214 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4215 	I915_WRITE(reg, temp);
4216 
4217 	reg = FDI_RX_CTL(pipe);
4218 	temp = I915_READ(reg);
4219 	if (HAS_PCH_CPT(dev_priv)) {
4220 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4221 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4222 	} else {
4223 		temp &= ~FDI_LINK_TRAIN_NONE;
4224 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4225 	}
4226 	/* BPC in FDI rx is consistent with that in PIPECONF */
4227 	temp &= ~(0x07 << 16);
4228 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4229 	I915_WRITE(reg, temp);
4230 
4231 	POSTING_READ(reg);
4232 	udelay(100);
4233 }
4234 
4235 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4236 {
4237 	struct drm_crtc *crtc;
4238 	bool cleanup_done;
4239 
4240 	drm_for_each_crtc(crtc, &dev_priv->drm) {
4241 		struct drm_crtc_commit *commit;
4242 		lockmgr(&crtc->commit_lock, LK_EXCLUSIVE);
4243 		commit = list_first_entry_or_null(&crtc->commit_list,
4244 						  struct drm_crtc_commit, commit_entry);
4245 		cleanup_done = commit ?
4246 			try_wait_for_completion(&commit->cleanup_done) : true;
4247 		lockmgr(&crtc->commit_lock, LK_RELEASE);
4248 
4249 		if (cleanup_done)
4250 			continue;
4251 
4252 		drm_crtc_wait_one_vblank(crtc);
4253 
4254 		return true;
4255 	}
4256 
4257 	return false;
4258 }
4259 
4260 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4261 {
4262 	u32 temp;
4263 
4264 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4265 
4266 	mutex_lock(&dev_priv->sb_lock);
4267 
4268 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4269 	temp |= SBI_SSCCTL_DISABLE;
4270 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4271 
4272 	mutex_unlock(&dev_priv->sb_lock);
4273 }
4274 
4275 /* Program iCLKIP clock to the desired frequency */
4276 static void lpt_program_iclkip(struct intel_crtc *crtc)
4277 {
4278 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4279 	int clock = crtc->config->base.adjusted_mode.crtc_clock;
4280 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
4281 	u32 temp;
4282 
4283 	lpt_disable_iclkip(dev_priv);
4284 
4285 	/* The iCLK virtual clock root frequency is in MHz,
4286 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
4287 	 * divisors, it is necessary to divide one by another, so we
4288 	 * convert the virtual clock precision to KHz here for higher
4289 	 * precision.
4290 	 */
4291 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4292 		u32 iclk_virtual_root_freq = 172800 * 1000;
4293 		u32 iclk_pi_range = 64;
4294 		u32 desired_divisor;
4295 
4296 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4297 						    clock << auxdiv);
4298 		divsel = (desired_divisor / iclk_pi_range) - 2;
4299 		phaseinc = desired_divisor % iclk_pi_range;
4300 
4301 		/*
4302 		 * Near 20MHz is a corner case which is
4303 		 * out of range for the 7-bit divisor
4304 		 */
4305 		if (divsel <= 0x7f)
4306 			break;
4307 	}
4308 
4309 	/* This should not happen with any sane values */
4310 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4311 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4312 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4313 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4314 
4315 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4316 			clock,
4317 			auxdiv,
4318 			divsel,
4319 			phasedir,
4320 			phaseinc);
4321 
4322 	mutex_lock(&dev_priv->sb_lock);
4323 
4324 	/* Program SSCDIVINTPHASE6 */
4325 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4326 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4327 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4328 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4329 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4330 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4331 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4332 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4333 
4334 	/* Program SSCAUXDIV */
4335 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4336 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4337 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4338 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4339 
4340 	/* Enable modulator and associated divider */
4341 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4342 	temp &= ~SBI_SSCCTL_DISABLE;
4343 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4344 
4345 	mutex_unlock(&dev_priv->sb_lock);
4346 
4347 	/* Wait for initialization time */
4348 	udelay(24);
4349 
4350 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4351 }
4352 
4353 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4354 {
4355 	u32 divsel, phaseinc, auxdiv;
4356 	u32 iclk_virtual_root_freq = 172800 * 1000;
4357 	u32 iclk_pi_range = 64;
4358 	u32 desired_divisor;
4359 	u32 temp;
4360 
4361 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4362 		return 0;
4363 
4364 	mutex_lock(&dev_priv->sb_lock);
4365 
4366 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4367 	if (temp & SBI_SSCCTL_DISABLE) {
4368 		mutex_unlock(&dev_priv->sb_lock);
4369 		return 0;
4370 	}
4371 
4372 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4373 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4374 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4375 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4376 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4377 
4378 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4379 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4380 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4381 
4382 	mutex_unlock(&dev_priv->sb_lock);
4383 
4384 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4385 
4386 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4387 				 desired_divisor << auxdiv);
4388 }
4389 
4390 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4391 						enum i915_pipe pch_transcoder)
4392 {
4393 	struct drm_device *dev = crtc->base.dev;
4394 	struct drm_i915_private *dev_priv = to_i915(dev);
4395 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4396 
4397 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4398 		   I915_READ(HTOTAL(cpu_transcoder)));
4399 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4400 		   I915_READ(HBLANK(cpu_transcoder)));
4401 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4402 		   I915_READ(HSYNC(cpu_transcoder)));
4403 
4404 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4405 		   I915_READ(VTOTAL(cpu_transcoder)));
4406 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4407 		   I915_READ(VBLANK(cpu_transcoder)));
4408 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4409 		   I915_READ(VSYNC(cpu_transcoder)));
4410 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4411 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4412 }
4413 
4414 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4415 {
4416 	struct drm_i915_private *dev_priv = to_i915(dev);
4417 	uint32_t temp;
4418 
4419 	temp = I915_READ(SOUTH_CHICKEN1);
4420 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4421 		return;
4422 
4423 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4424 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4425 
4426 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4427 	if (enable)
4428 		temp |= FDI_BC_BIFURCATION_SELECT;
4429 
4430 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4431 	I915_WRITE(SOUTH_CHICKEN1, temp);
4432 	POSTING_READ(SOUTH_CHICKEN1);
4433 }
4434 
4435 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4436 {
4437 	struct drm_device *dev = intel_crtc->base.dev;
4438 
4439 	switch (intel_crtc->pipe) {
4440 	case PIPE_A:
4441 		break;
4442 	case PIPE_B:
4443 		if (intel_crtc->config->fdi_lanes > 2)
4444 			cpt_set_fdi_bc_bifurcation(dev, false);
4445 		else
4446 			cpt_set_fdi_bc_bifurcation(dev, true);
4447 
4448 		break;
4449 	case PIPE_C:
4450 		cpt_set_fdi_bc_bifurcation(dev, true);
4451 
4452 		break;
4453 	default:
4454 		BUG();
4455 	}
4456 }
4457 
4458 /* Return which DP Port should be selected for Transcoder DP control */
4459 static enum port
4460 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4461 {
4462 	struct drm_device *dev = crtc->base.dev;
4463 	struct intel_encoder *encoder;
4464 
4465 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4466 		if (encoder->type == INTEL_OUTPUT_DP ||
4467 		    encoder->type == INTEL_OUTPUT_EDP)
4468 			return enc_to_dig_port(&encoder->base)->port;
4469 	}
4470 
4471 	return -1;
4472 }
4473 
4474 /*
4475  * Enable PCH resources required for PCH ports:
4476  *   - PCH PLLs
4477  *   - FDI training & RX/TX
4478  *   - update transcoder timings
4479  *   - DP transcoding bits
4480  *   - transcoder
4481  */
4482 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4483 {
4484 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4485 	struct drm_device *dev = crtc->base.dev;
4486 	struct drm_i915_private *dev_priv = to_i915(dev);
4487 	int pipe = crtc->pipe;
4488 	u32 temp;
4489 
4490 	assert_pch_transcoder_disabled(dev_priv, pipe);
4491 
4492 	if (IS_IVYBRIDGE(dev_priv))
4493 		ivybridge_update_fdi_bc_bifurcation(crtc);
4494 
4495 	/* Write the TU size bits before fdi link training, so that error
4496 	 * detection works. */
4497 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4498 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4499 
4500 	/* For PCH output, training FDI link */
4501 	dev_priv->display.fdi_link_train(crtc, crtc_state);
4502 
4503 	/* We need to program the right clock selection before writing the pixel
4504 	 * mutliplier into the DPLL. */
4505 	if (HAS_PCH_CPT(dev_priv)) {
4506 		u32 sel;
4507 
4508 		temp = I915_READ(PCH_DPLL_SEL);
4509 		temp |= TRANS_DPLL_ENABLE(pipe);
4510 		sel = TRANS_DPLLB_SEL(pipe);
4511 		if (crtc_state->shared_dpll ==
4512 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4513 			temp |= sel;
4514 		else
4515 			temp &= ~sel;
4516 		I915_WRITE(PCH_DPLL_SEL, temp);
4517 	}
4518 
4519 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4520 	 * transcoder, and we actually should do this to not upset any PCH
4521 	 * transcoder that already use the clock when we share it.
4522 	 *
4523 	 * Note that enable_shared_dpll tries to do the right thing, but
4524 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4525 	 * the right LVDS enable sequence. */
4526 	intel_enable_shared_dpll(crtc);
4527 
4528 	/* set transcoder timing, panel must allow it */
4529 	assert_panel_unlocked(dev_priv, pipe);
4530 	ironlake_pch_transcoder_set_timings(crtc, pipe);
4531 
4532 	intel_fdi_normal_train(crtc);
4533 
4534 	/* For PCH DP, enable TRANS_DP_CTL */
4535 	if (HAS_PCH_CPT(dev_priv) &&
4536 	    intel_crtc_has_dp_encoder(crtc_state)) {
4537 		const struct drm_display_mode *adjusted_mode =
4538 			&crtc_state->base.adjusted_mode;
4539 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4540 		i915_reg_t reg = TRANS_DP_CTL(pipe);
4541 		temp = I915_READ(reg);
4542 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4543 			  TRANS_DP_SYNC_MASK |
4544 			  TRANS_DP_BPC_MASK);
4545 		temp |= TRANS_DP_OUTPUT_ENABLE;
4546 		temp |= bpc << 9; /* same format but at 11:9 */
4547 
4548 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4549 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4550 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4551 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4552 
4553 		switch (intel_trans_dp_port_sel(crtc)) {
4554 		case PORT_B:
4555 			temp |= TRANS_DP_PORT_SEL_B;
4556 			break;
4557 		case PORT_C:
4558 			temp |= TRANS_DP_PORT_SEL_C;
4559 			break;
4560 		case PORT_D:
4561 			temp |= TRANS_DP_PORT_SEL_D;
4562 			break;
4563 		default:
4564 			BUG();
4565 		}
4566 
4567 		I915_WRITE(reg, temp);
4568 	}
4569 
4570 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4571 }
4572 
4573 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4574 {
4575 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4576 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4577 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4578 
4579 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
4580 
4581 	lpt_program_iclkip(crtc);
4582 
4583 	/* Set transcoder timing. */
4584 	ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4585 
4586 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4587 }
4588 
4589 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4590 {
4591 	struct drm_i915_private *dev_priv = to_i915(dev);
4592 	i915_reg_t dslreg = PIPEDSL(pipe);
4593 	u32 temp;
4594 
4595 	temp = I915_READ(dslreg);
4596 	udelay(500);
4597 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4598 		if (wait_for(I915_READ(dslreg) != temp, 5))
4599 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4600 	}
4601 }
4602 
4603 static int
4604 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4605 		  unsigned int scaler_user, int *scaler_id,
4606 		  int src_w, int src_h, int dst_w, int dst_h)
4607 {
4608 	struct intel_crtc_scaler_state *scaler_state =
4609 		&crtc_state->scaler_state;
4610 	struct intel_crtc *intel_crtc =
4611 		to_intel_crtc(crtc_state->base.crtc);
4612 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4613 	const struct drm_display_mode *adjusted_mode =
4614 		&crtc_state->base.adjusted_mode;
4615 	int need_scaling;
4616 
4617 	/*
4618 	 * Src coordinates are already rotated by 270 degrees for
4619 	 * the 90/270 degree plane rotation cases (to match the
4620 	 * GTT mapping), hence no need to account for rotation here.
4621 	 */
4622 	need_scaling = src_w != dst_w || src_h != dst_h;
4623 
4624 	if (crtc_state->ycbcr420 && scaler_user == SKL_CRTC_INDEX)
4625 		need_scaling = true;
4626 
4627 	/*
4628 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
4629 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
4630 	 * Once NV12 is enabled, handle it here while allocating scaler
4631 	 * for NV12.
4632 	 */
4633 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
4634 	    need_scaling && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4635 		DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
4636 		return -EINVAL;
4637 	}
4638 
4639 	/*
4640 	 * if plane is being disabled or scaler is no more required or force detach
4641 	 *  - free scaler binded to this plane/crtc
4642 	 *  - in order to do this, update crtc->scaler_usage
4643 	 *
4644 	 * Here scaler state in crtc_state is set free so that
4645 	 * scaler can be assigned to other user. Actual register
4646 	 * update to free the scaler is done in plane/panel-fit programming.
4647 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4648 	 */
4649 	if (force_detach || !need_scaling) {
4650 		if (*scaler_id >= 0) {
4651 			scaler_state->scaler_users &= ~(1 << scaler_user);
4652 			scaler_state->scalers[*scaler_id].in_use = 0;
4653 
4654 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4655 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4656 				intel_crtc->pipe, scaler_user, *scaler_id,
4657 				scaler_state->scaler_users);
4658 			*scaler_id = -1;
4659 		}
4660 		return 0;
4661 	}
4662 
4663 	/* range checks */
4664 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4665 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4666 
4667 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4668 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4669 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4670 			"size is out of scaler range\n",
4671 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4672 		return -EINVAL;
4673 	}
4674 
4675 	/* mark this plane as a scaler user in crtc_state */
4676 	scaler_state->scaler_users |= (1 << scaler_user);
4677 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4678 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4679 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4680 		scaler_state->scaler_users);
4681 
4682 	return 0;
4683 }
4684 
4685 /**
4686  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4687  *
4688  * @state: crtc's scaler state
4689  *
4690  * Return
4691  *     0 - scaler_usage updated successfully
4692  *    error - requested scaling cannot be supported or other error condition
4693  */
4694 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4695 {
4696 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4697 
4698 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4699 		&state->scaler_state.scaler_id,
4700 		state->pipe_src_w, state->pipe_src_h,
4701 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4702 }
4703 
4704 /**
4705  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4706  *
4707  * @state: crtc's scaler state
4708  * @plane_state: atomic plane state to update
4709  *
4710  * Return
4711  *     0 - scaler_usage updated successfully
4712  *    error - requested scaling cannot be supported or other error condition
4713  */
4714 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4715 				   struct intel_plane_state *plane_state)
4716 {
4717 
4718 	struct intel_plane *intel_plane =
4719 		to_intel_plane(plane_state->base.plane);
4720 	struct drm_framebuffer *fb = plane_state->base.fb;
4721 	int ret;
4722 
4723 	bool force_detach = !fb || !plane_state->base.visible;
4724 
4725 	ret = skl_update_scaler(crtc_state, force_detach,
4726 				drm_plane_index(&intel_plane->base),
4727 				&plane_state->scaler_id,
4728 				drm_rect_width(&plane_state->base.src) >> 16,
4729 				drm_rect_height(&plane_state->base.src) >> 16,
4730 				drm_rect_width(&plane_state->base.dst),
4731 				drm_rect_height(&plane_state->base.dst));
4732 
4733 	if (ret || plane_state->scaler_id < 0)
4734 		return ret;
4735 
4736 	/* check colorkey */
4737 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4738 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4739 			      intel_plane->base.base.id,
4740 			      intel_plane->base.name);
4741 		return -EINVAL;
4742 	}
4743 
4744 	/* Check src format */
4745 	switch (fb->format->format) {
4746 	case DRM_FORMAT_RGB565:
4747 	case DRM_FORMAT_XBGR8888:
4748 	case DRM_FORMAT_XRGB8888:
4749 	case DRM_FORMAT_ABGR8888:
4750 	case DRM_FORMAT_ARGB8888:
4751 	case DRM_FORMAT_XRGB2101010:
4752 	case DRM_FORMAT_XBGR2101010:
4753 	case DRM_FORMAT_YUYV:
4754 	case DRM_FORMAT_YVYU:
4755 	case DRM_FORMAT_UYVY:
4756 	case DRM_FORMAT_VYUY:
4757 		break;
4758 	default:
4759 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4760 			      intel_plane->base.base.id, intel_plane->base.name,
4761 			      fb->base.id, fb->format->format);
4762 		return -EINVAL;
4763 	}
4764 
4765 	return 0;
4766 }
4767 
4768 static void skylake_scaler_disable(struct intel_crtc *crtc)
4769 {
4770 	int i;
4771 
4772 	for (i = 0; i < crtc->num_scalers; i++)
4773 		skl_detach_scaler(crtc, i);
4774 }
4775 
4776 static void skylake_pfit_enable(struct intel_crtc *crtc)
4777 {
4778 	struct drm_device *dev = crtc->base.dev;
4779 	struct drm_i915_private *dev_priv = to_i915(dev);
4780 	int pipe = crtc->pipe;
4781 	struct intel_crtc_scaler_state *scaler_state =
4782 		&crtc->config->scaler_state;
4783 
4784 	if (crtc->config->pch_pfit.enabled) {
4785 		int id;
4786 
4787 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4788 			return;
4789 
4790 		id = scaler_state->scaler_id;
4791 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4792 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4793 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4794 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4795 	}
4796 }
4797 
4798 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4799 {
4800 	struct drm_device *dev = crtc->base.dev;
4801 	struct drm_i915_private *dev_priv = to_i915(dev);
4802 	int pipe = crtc->pipe;
4803 
4804 	if (crtc->config->pch_pfit.enabled) {
4805 		/* Force use of hard-coded filter coefficients
4806 		 * as some pre-programmed values are broken,
4807 		 * e.g. x201.
4808 		 */
4809 		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4810 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4811 						 PF_PIPE_SEL_IVB(pipe));
4812 		else
4813 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4814 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4815 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4816 	}
4817 }
4818 
4819 void hsw_enable_ips(struct intel_crtc *crtc)
4820 {
4821 	struct drm_device *dev = crtc->base.dev;
4822 	struct drm_i915_private *dev_priv = to_i915(dev);
4823 
4824 	if (!crtc->config->ips_enabled)
4825 		return;
4826 
4827 	/*
4828 	 * We can only enable IPS after we enable a plane and wait for a vblank
4829 	 * This function is called from post_plane_update, which is run after
4830 	 * a vblank wait.
4831 	 */
4832 
4833 	assert_plane_enabled(to_intel_plane(crtc->base.primary));
4834 
4835 	if (IS_BROADWELL(dev_priv)) {
4836 		mutex_lock(&dev_priv->pcu_lock);
4837 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
4838 						IPS_ENABLE | IPS_PCODE_CONTROL));
4839 		mutex_unlock(&dev_priv->pcu_lock);
4840 		/* Quoting Art Runyan: "its not safe to expect any particular
4841 		 * value in IPS_CTL bit 31 after enabling IPS through the
4842 		 * mailbox." Moreover, the mailbox may return a bogus state,
4843 		 * so we need to just enable it and continue on.
4844 		 */
4845 	} else {
4846 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4847 		/* The bit only becomes 1 in the next vblank, so this wait here
4848 		 * is essentially intel_wait_for_vblank. If we don't have this
4849 		 * and don't wait for vblanks until the end of crtc_enable, then
4850 		 * the HW state readout code will complain that the expected
4851 		 * IPS_CTL value is not the one we read. */
4852 		if (intel_wait_for_register(dev_priv,
4853 					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4854 					    50))
4855 			DRM_ERROR("Timed out waiting for IPS enable\n");
4856 	}
4857 }
4858 
4859 void hsw_disable_ips(struct intel_crtc *crtc)
4860 {
4861 	struct drm_device *dev = crtc->base.dev;
4862 	struct drm_i915_private *dev_priv = to_i915(dev);
4863 
4864 	if (!crtc->config->ips_enabled)
4865 		return;
4866 
4867 	assert_plane_enabled(to_intel_plane(crtc->base.primary));
4868 
4869 	if (IS_BROADWELL(dev_priv)) {
4870 		mutex_lock(&dev_priv->pcu_lock);
4871 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4872 		mutex_unlock(&dev_priv->pcu_lock);
4873 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4874 		if (intel_wait_for_register(dev_priv,
4875 					    IPS_CTL, IPS_ENABLE, 0,
4876 					    42))
4877 			DRM_ERROR("Timed out waiting for IPS disable\n");
4878 	} else {
4879 		I915_WRITE(IPS_CTL, 0);
4880 		POSTING_READ(IPS_CTL);
4881 	}
4882 
4883 	/* We need to wait for a vblank before we can disable the plane. */
4884 	intel_wait_for_vblank(dev_priv, crtc->pipe);
4885 }
4886 
4887 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4888 {
4889 	if (intel_crtc->overlay) {
4890 		struct drm_device *dev = intel_crtc->base.dev;
4891 
4892 		mutex_lock(&dev->struct_mutex);
4893 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4894 		mutex_unlock(&dev->struct_mutex);
4895 	}
4896 
4897 	/* Let userspace switch the overlay on again. In most cases userspace
4898 	 * has to recompute where to put it anyway.
4899 	 */
4900 }
4901 
4902 /**
4903  * intel_post_enable_primary - Perform operations after enabling primary plane
4904  * @crtc: the CRTC whose primary plane was just enabled
4905  *
4906  * Performs potentially sleeping operations that must be done after the primary
4907  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4908  * called due to an explicit primary plane update, or due to an implicit
4909  * re-enable that is caused when a sprite plane is updated to no longer
4910  * completely hide the primary plane.
4911  */
4912 static void
4913 intel_post_enable_primary(struct drm_crtc *crtc)
4914 {
4915 	struct drm_device *dev = crtc->dev;
4916 	struct drm_i915_private *dev_priv = to_i915(dev);
4917 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4918 	int pipe = intel_crtc->pipe;
4919 
4920 	/*
4921 	 * FIXME IPS should be fine as long as one plane is
4922 	 * enabled, but in practice it seems to have problems
4923 	 * when going from primary only to sprite only and vice
4924 	 * versa.
4925 	 */
4926 	hsw_enable_ips(intel_crtc);
4927 
4928 	/*
4929 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4930 	 * So don't enable underrun reporting before at least some planes
4931 	 * are enabled.
4932 	 * FIXME: Need to fix the logic to work when we turn off all planes
4933 	 * but leave the pipe running.
4934 	 */
4935 	if (IS_GEN2(dev_priv))
4936 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4937 
4938 	/* Underruns don't always raise interrupts, so check manually. */
4939 	intel_check_cpu_fifo_underruns(dev_priv);
4940 	intel_check_pch_fifo_underruns(dev_priv);
4941 }
4942 
4943 /* FIXME move all this to pre_plane_update() with proper state tracking */
4944 static void
4945 intel_pre_disable_primary(struct drm_crtc *crtc)
4946 {
4947 	struct drm_device *dev = crtc->dev;
4948 	struct drm_i915_private *dev_priv = to_i915(dev);
4949 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4950 	int pipe = intel_crtc->pipe;
4951 
4952 	/*
4953 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4954 	 * So diasble underrun reporting before all the planes get disabled.
4955 	 * FIXME: Need to fix the logic to work when we turn off all planes
4956 	 * but leave the pipe running.
4957 	 */
4958 	if (IS_GEN2(dev_priv))
4959 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4960 
4961 	/*
4962 	 * FIXME IPS should be fine as long as one plane is
4963 	 * enabled, but in practice it seems to have problems
4964 	 * when going from primary only to sprite only and vice
4965 	 * versa.
4966 	 */
4967 	hsw_disable_ips(intel_crtc);
4968 }
4969 
4970 /* FIXME get rid of this and use pre_plane_update */
4971 static void
4972 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4973 {
4974 	struct drm_device *dev = crtc->dev;
4975 	struct drm_i915_private *dev_priv = to_i915(dev);
4976 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4977 	int pipe = intel_crtc->pipe;
4978 
4979 	intel_pre_disable_primary(crtc);
4980 
4981 	/*
4982 	 * Vblank time updates from the shadow to live plane control register
4983 	 * are blocked if the memory self-refresh mode is active at that
4984 	 * moment. So to make sure the plane gets truly disabled, disable
4985 	 * first the self-refresh mode. The self-refresh enable bit in turn
4986 	 * will be checked/applied by the HW only at the next frame start
4987 	 * event which is after the vblank start event, so we need to have a
4988 	 * wait-for-vblank between disabling the plane and the pipe.
4989 	 */
4990 	if (HAS_GMCH_DISPLAY(dev_priv) &&
4991 	    intel_set_memory_cxsr(dev_priv, false))
4992 		intel_wait_for_vblank(dev_priv, pipe);
4993 }
4994 
4995 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4996 {
4997 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4998 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
4999 	struct intel_crtc_state *pipe_config =
5000 		intel_atomic_get_new_crtc_state(to_intel_atomic_state(old_state),
5001 						crtc);
5002 	struct drm_plane *primary = crtc->base.primary;
5003 	struct drm_plane_state *old_pri_state =
5004 		drm_atomic_get_existing_plane_state(old_state, primary);
5005 
5006 	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5007 
5008 	if (pipe_config->update_wm_post && pipe_config->base.active)
5009 		intel_update_watermarks(crtc);
5010 
5011 	if (old_pri_state) {
5012 		struct intel_plane_state *primary_state =
5013 			intel_atomic_get_new_plane_state(to_intel_atomic_state(old_state),
5014 							 to_intel_plane(primary));
5015 		struct intel_plane_state *old_primary_state =
5016 			to_intel_plane_state(old_pri_state);
5017 
5018 		intel_fbc_post_update(crtc);
5019 
5020 		if (primary_state->base.visible &&
5021 		    (needs_modeset(&pipe_config->base) ||
5022 		     !old_primary_state->base.visible))
5023 			intel_post_enable_primary(&crtc->base);
5024 	}
5025 }
5026 
5027 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5028 				   struct intel_crtc_state *pipe_config)
5029 {
5030 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5031 	struct drm_device *dev = crtc->base.dev;
5032 	struct drm_i915_private *dev_priv = to_i915(dev);
5033 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5034 	struct drm_plane *primary = crtc->base.primary;
5035 	struct drm_plane_state *old_pri_state =
5036 		drm_atomic_get_existing_plane_state(old_state, primary);
5037 	bool modeset = needs_modeset(&pipe_config->base);
5038 	struct intel_atomic_state *old_intel_state =
5039 		to_intel_atomic_state(old_state);
5040 
5041 	if (old_pri_state) {
5042 		struct intel_plane_state *primary_state =
5043 			intel_atomic_get_new_plane_state(old_intel_state,
5044 							 to_intel_plane(primary));
5045 		struct intel_plane_state *old_primary_state =
5046 			to_intel_plane_state(old_pri_state);
5047 
5048 		intel_fbc_pre_update(crtc, pipe_config, primary_state);
5049 
5050 		if (old_primary_state->base.visible &&
5051 		    (modeset || !primary_state->base.visible))
5052 			intel_pre_disable_primary(&crtc->base);
5053 	}
5054 
5055 	/*
5056 	 * Vblank time updates from the shadow to live plane control register
5057 	 * are blocked if the memory self-refresh mode is active at that
5058 	 * moment. So to make sure the plane gets truly disabled, disable
5059 	 * first the self-refresh mode. The self-refresh enable bit in turn
5060 	 * will be checked/applied by the HW only at the next frame start
5061 	 * event which is after the vblank start event, so we need to have a
5062 	 * wait-for-vblank between disabling the plane and the pipe.
5063 	 */
5064 	if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5065 	    pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5066 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5067 
5068 	/*
5069 	 * IVB workaround: must disable low power watermarks for at least
5070 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
5071 	 * when scaling is disabled.
5072 	 *
5073 	 * WaCxSRDisabledForSpriteScaling:ivb
5074 	 */
5075 	if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5076 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5077 
5078 	/*
5079 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
5080 	 * watermark programming here.
5081 	 */
5082 	if (needs_modeset(&pipe_config->base))
5083 		return;
5084 
5085 	/*
5086 	 * For platforms that support atomic watermarks, program the
5087 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5088 	 * will be the intermediate values that are safe for both pre- and
5089 	 * post- vblank; when vblank happens, the 'active' values will be set
5090 	 * to the final 'target' values and we'll do this again to get the
5091 	 * optimal watermarks.  For gen9+ platforms, the values we program here
5092 	 * will be the final target values which will get automatically latched
5093 	 * at vblank time; no further programming will be necessary.
5094 	 *
5095 	 * If a platform hasn't been transitioned to atomic watermarks yet,
5096 	 * we'll continue to update watermarks the old way, if flags tell
5097 	 * us to.
5098 	 */
5099 	if (dev_priv->display.initial_watermarks != NULL)
5100 		dev_priv->display.initial_watermarks(old_intel_state,
5101 						     pipe_config);
5102 	else if (pipe_config->update_wm_pre)
5103 		intel_update_watermarks(crtc);
5104 }
5105 
5106 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5107 {
5108 	struct drm_device *dev = crtc->dev;
5109 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5110 	struct drm_plane *p;
5111 	int pipe = intel_crtc->pipe;
5112 
5113 	intel_crtc_dpms_overlay_disable(intel_crtc);
5114 
5115 	drm_for_each_plane_mask(p, dev, plane_mask)
5116 		to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5117 
5118 	/*
5119 	 * FIXME: Once we grow proper nuclear flip support out of this we need
5120 	 * to compute the mask of flip planes precisely. For the time being
5121 	 * consider this a flip to a NULL plane.
5122 	 */
5123 	intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5124 }
5125 
5126 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5127 					  struct intel_crtc_state *crtc_state,
5128 					  struct drm_atomic_state *old_state)
5129 {
5130 	struct drm_connector_state *conn_state;
5131 	struct drm_connector *conn;
5132 	int i;
5133 
5134 	for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5135 		struct intel_encoder *encoder =
5136 			to_intel_encoder(conn_state->best_encoder);
5137 
5138 		if (conn_state->crtc != crtc)
5139 			continue;
5140 
5141 		if (encoder->pre_pll_enable)
5142 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5143 	}
5144 }
5145 
5146 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5147 				      struct intel_crtc_state *crtc_state,
5148 				      struct drm_atomic_state *old_state)
5149 {
5150 	struct drm_connector_state *conn_state;
5151 	struct drm_connector *conn;
5152 	int i;
5153 
5154 	for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5155 		struct intel_encoder *encoder =
5156 			to_intel_encoder(conn_state->best_encoder);
5157 
5158 		if (conn_state->crtc != crtc)
5159 			continue;
5160 
5161 		if (encoder->pre_enable)
5162 			encoder->pre_enable(encoder, crtc_state, conn_state);
5163 	}
5164 }
5165 
5166 static void intel_encoders_enable(struct drm_crtc *crtc,
5167 				  struct intel_crtc_state *crtc_state,
5168 				  struct drm_atomic_state *old_state)
5169 {
5170 	struct drm_connector_state *conn_state;
5171 	struct drm_connector *conn;
5172 	int i;
5173 
5174 	for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5175 		struct intel_encoder *encoder =
5176 			to_intel_encoder(conn_state->best_encoder);
5177 
5178 		if (conn_state->crtc != crtc)
5179 			continue;
5180 
5181 		encoder->enable(encoder, crtc_state, conn_state);
5182 		intel_opregion_notify_encoder(encoder, true);
5183 	}
5184 }
5185 
5186 static void intel_encoders_disable(struct drm_crtc *crtc,
5187 				   struct intel_crtc_state *old_crtc_state,
5188 				   struct drm_atomic_state *old_state)
5189 {
5190 	struct drm_connector_state *old_conn_state;
5191 	struct drm_connector *conn;
5192 	int i;
5193 
5194 	for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5195 		struct intel_encoder *encoder =
5196 			to_intel_encoder(old_conn_state->best_encoder);
5197 
5198 		if (old_conn_state->crtc != crtc)
5199 			continue;
5200 
5201 		intel_opregion_notify_encoder(encoder, false);
5202 		encoder->disable(encoder, old_crtc_state, old_conn_state);
5203 	}
5204 }
5205 
5206 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5207 					struct intel_crtc_state *old_crtc_state,
5208 					struct drm_atomic_state *old_state)
5209 {
5210 	struct drm_connector_state *old_conn_state;
5211 	struct drm_connector *conn;
5212 	int i;
5213 
5214 	for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5215 		struct intel_encoder *encoder =
5216 			to_intel_encoder(old_conn_state->best_encoder);
5217 
5218 		if (old_conn_state->crtc != crtc)
5219 			continue;
5220 
5221 		if (encoder->post_disable)
5222 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5223 	}
5224 }
5225 
5226 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5227 					    struct intel_crtc_state *old_crtc_state,
5228 					    struct drm_atomic_state *old_state)
5229 {
5230 	struct drm_connector_state *old_conn_state;
5231 	struct drm_connector *conn;
5232 	int i;
5233 
5234 	for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5235 		struct intel_encoder *encoder =
5236 			to_intel_encoder(old_conn_state->best_encoder);
5237 
5238 		if (old_conn_state->crtc != crtc)
5239 			continue;
5240 
5241 		if (encoder->post_pll_disable)
5242 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5243 	}
5244 }
5245 
5246 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5247 				 struct drm_atomic_state *old_state)
5248 {
5249 	struct drm_crtc *crtc = pipe_config->base.crtc;
5250 	struct drm_device *dev = crtc->dev;
5251 	struct drm_i915_private *dev_priv = to_i915(dev);
5252 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5253 	int pipe = intel_crtc->pipe;
5254 	struct intel_atomic_state *old_intel_state =
5255 		to_intel_atomic_state(old_state);
5256 
5257 	if (WARN_ON(intel_crtc->active))
5258 		return;
5259 
5260 	/*
5261 	 * Sometimes spurious CPU pipe underruns happen during FDI
5262 	 * training, at least with VGA+HDMI cloning. Suppress them.
5263 	 *
5264 	 * On ILK we get an occasional spurious CPU pipe underruns
5265 	 * between eDP port A enable and vdd enable. Also PCH port
5266 	 * enable seems to result in the occasional CPU pipe underrun.
5267 	 *
5268 	 * Spurious PCH underruns also occur during PCH enabling.
5269 	 */
5270 	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5271 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5272 	if (intel_crtc->config->has_pch_encoder)
5273 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5274 
5275 	if (intel_crtc->config->has_pch_encoder)
5276 		intel_prepare_shared_dpll(intel_crtc);
5277 
5278 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5279 		intel_dp_set_m_n(intel_crtc, M1_N1);
5280 
5281 	intel_set_pipe_timings(intel_crtc);
5282 	intel_set_pipe_src_size(intel_crtc);
5283 
5284 	if (intel_crtc->config->has_pch_encoder) {
5285 		intel_cpu_transcoder_set_m_n(intel_crtc,
5286 				     &intel_crtc->config->fdi_m_n, NULL);
5287 	}
5288 
5289 	ironlake_set_pipeconf(crtc);
5290 
5291 	intel_crtc->active = true;
5292 
5293 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5294 
5295 	if (intel_crtc->config->has_pch_encoder) {
5296 		/* Note: FDI PLL enabling _must_ be done before we enable the
5297 		 * cpu pipes, hence this is separate from all the other fdi/pch
5298 		 * enabling. */
5299 		ironlake_fdi_pll_enable(intel_crtc);
5300 	} else {
5301 		assert_fdi_tx_disabled(dev_priv, pipe);
5302 		assert_fdi_rx_disabled(dev_priv, pipe);
5303 	}
5304 
5305 	ironlake_pfit_enable(intel_crtc);
5306 
5307 	/*
5308 	 * On ILK+ LUT must be loaded before the pipe is running but with
5309 	 * clocks enabled
5310 	 */
5311 	intel_color_load_luts(&pipe_config->base);
5312 
5313 	if (dev_priv->display.initial_watermarks != NULL)
5314 		dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5315 	intel_enable_pipe(intel_crtc);
5316 
5317 	if (intel_crtc->config->has_pch_encoder)
5318 		ironlake_pch_enable(pipe_config);
5319 
5320 	assert_vblank_disabled(crtc);
5321 	drm_crtc_vblank_on(crtc);
5322 
5323 	intel_encoders_enable(crtc, pipe_config, old_state);
5324 
5325 	if (HAS_PCH_CPT(dev_priv))
5326 		cpt_verify_modeset(dev, intel_crtc->pipe);
5327 
5328 	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
5329 	if (intel_crtc->config->has_pch_encoder)
5330 		intel_wait_for_vblank(dev_priv, pipe);
5331 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5332 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5333 }
5334 
5335 /* IPS only exists on ULT machines and is tied to pipe A. */
5336 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5337 {
5338 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5339 }
5340 
5341 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
5342 					    enum i915_pipe pipe, bool apply)
5343 {
5344 	u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
5345 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
5346 
5347 	if (apply)
5348 		val |= mask;
5349 	else
5350 		val &= ~mask;
5351 
5352 	I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
5353 }
5354 
5355 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5356 				struct drm_atomic_state *old_state)
5357 {
5358 	struct drm_crtc *crtc = pipe_config->base.crtc;
5359 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5360 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5361 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5362 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5363 	struct intel_atomic_state *old_intel_state =
5364 		to_intel_atomic_state(old_state);
5365 	bool psl_clkgate_wa;
5366 
5367 	if (WARN_ON(intel_crtc->active))
5368 		return;
5369 
5370 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5371 
5372 	if (intel_crtc->config->shared_dpll)
5373 		intel_enable_shared_dpll(intel_crtc);
5374 
5375 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5376 		intel_dp_set_m_n(intel_crtc, M1_N1);
5377 
5378 	if (!transcoder_is_dsi(cpu_transcoder))
5379 		intel_set_pipe_timings(intel_crtc);
5380 
5381 	intel_set_pipe_src_size(intel_crtc);
5382 
5383 	if (cpu_transcoder != TRANSCODER_EDP &&
5384 	    !transcoder_is_dsi(cpu_transcoder)) {
5385 		I915_WRITE(PIPE_MULT(cpu_transcoder),
5386 			   intel_crtc->config->pixel_multiplier - 1);
5387 	}
5388 
5389 	if (intel_crtc->config->has_pch_encoder) {
5390 		intel_cpu_transcoder_set_m_n(intel_crtc,
5391 				     &intel_crtc->config->fdi_m_n, NULL);
5392 	}
5393 
5394 	if (!transcoder_is_dsi(cpu_transcoder))
5395 		haswell_set_pipeconf(crtc);
5396 
5397 	haswell_set_pipemisc(crtc);
5398 
5399 	intel_color_set_csc(&pipe_config->base);
5400 
5401 	intel_crtc->active = true;
5402 
5403 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5404 
5405 	if (!transcoder_is_dsi(cpu_transcoder))
5406 		intel_ddi_enable_pipe_clock(pipe_config);
5407 
5408 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
5409 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
5410 			 intel_crtc->config->pch_pfit.enabled;
5411 	if (psl_clkgate_wa)
5412 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
5413 
5414 	if (INTEL_GEN(dev_priv) >= 9)
5415 		skylake_pfit_enable(intel_crtc);
5416 	else
5417 		ironlake_pfit_enable(intel_crtc);
5418 
5419 	/*
5420 	 * On ILK+ LUT must be loaded before the pipe is running but with
5421 	 * clocks enabled
5422 	 */
5423 	intel_color_load_luts(&pipe_config->base);
5424 
5425 	intel_ddi_set_pipe_settings(pipe_config);
5426 	if (!transcoder_is_dsi(cpu_transcoder))
5427 		intel_ddi_enable_transcoder_func(pipe_config);
5428 
5429 	if (dev_priv->display.initial_watermarks != NULL)
5430 		dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5431 
5432 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5433 	if (!transcoder_is_dsi(cpu_transcoder))
5434 		intel_enable_pipe(intel_crtc);
5435 
5436 	if (intel_crtc->config->has_pch_encoder)
5437 		lpt_pch_enable(pipe_config);
5438 
5439 	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5440 		intel_ddi_set_vc_payload_alloc(pipe_config, true);
5441 
5442 	assert_vblank_disabled(crtc);
5443 	drm_crtc_vblank_on(crtc);
5444 
5445 	intel_encoders_enable(crtc, pipe_config, old_state);
5446 
5447 	if (psl_clkgate_wa) {
5448 		intel_wait_for_vblank(dev_priv, pipe);
5449 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
5450 	}
5451 
5452 	/* If we change the relative order between pipe/planes enabling, we need
5453 	 * to change the workaround. */
5454 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5455 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5456 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5457 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5458 	}
5459 }
5460 
5461 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5462 {
5463 	struct drm_device *dev = crtc->base.dev;
5464 	struct drm_i915_private *dev_priv = to_i915(dev);
5465 	int pipe = crtc->pipe;
5466 
5467 	/* To avoid upsetting the power well on haswell only disable the pfit if
5468 	 * it's in use. The hw state code will make sure we get this right. */
5469 	if (force || crtc->config->pch_pfit.enabled) {
5470 		I915_WRITE(PF_CTL(pipe), 0);
5471 		I915_WRITE(PF_WIN_POS(pipe), 0);
5472 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5473 	}
5474 }
5475 
5476 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5477 				  struct drm_atomic_state *old_state)
5478 {
5479 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5480 	struct drm_device *dev = crtc->dev;
5481 	struct drm_i915_private *dev_priv = to_i915(dev);
5482 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5483 	int pipe = intel_crtc->pipe;
5484 
5485 	/*
5486 	 * Sometimes spurious CPU pipe underruns happen when the
5487 	 * pipe is already disabled, but FDI RX/TX is still enabled.
5488 	 * Happens at least with VGA+HDMI cloning. Suppress them.
5489 	 */
5490 	if (intel_crtc->config->has_pch_encoder) {
5491 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5492 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5493 	}
5494 
5495 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5496 
5497 	drm_crtc_vblank_off(crtc);
5498 	assert_vblank_disabled(crtc);
5499 
5500 	intel_disable_pipe(intel_crtc);
5501 
5502 	ironlake_pfit_disable(intel_crtc, false);
5503 
5504 	if (intel_crtc->config->has_pch_encoder)
5505 		ironlake_fdi_disable(crtc);
5506 
5507 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5508 
5509 	if (intel_crtc->config->has_pch_encoder) {
5510 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5511 
5512 		if (HAS_PCH_CPT(dev_priv)) {
5513 			i915_reg_t reg;
5514 			u32 temp;
5515 
5516 			/* disable TRANS_DP_CTL */
5517 			reg = TRANS_DP_CTL(pipe);
5518 			temp = I915_READ(reg);
5519 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5520 				  TRANS_DP_PORT_SEL_MASK);
5521 			temp |= TRANS_DP_PORT_SEL_NONE;
5522 			I915_WRITE(reg, temp);
5523 
5524 			/* disable DPLL_SEL */
5525 			temp = I915_READ(PCH_DPLL_SEL);
5526 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5527 			I915_WRITE(PCH_DPLL_SEL, temp);
5528 		}
5529 
5530 		ironlake_fdi_pll_disable(intel_crtc);
5531 	}
5532 
5533 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5534 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5535 }
5536 
5537 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5538 				 struct drm_atomic_state *old_state)
5539 {
5540 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5541 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5542 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5543 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5544 
5545 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5546 
5547 	drm_crtc_vblank_off(crtc);
5548 	assert_vblank_disabled(crtc);
5549 
5550 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5551 	if (!transcoder_is_dsi(cpu_transcoder))
5552 		intel_disable_pipe(intel_crtc);
5553 
5554 	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5555 		intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5556 
5557 	if (!transcoder_is_dsi(cpu_transcoder))
5558 		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5559 
5560 	if (INTEL_GEN(dev_priv) >= 9)
5561 		skylake_scaler_disable(intel_crtc);
5562 	else
5563 		ironlake_pfit_disable(intel_crtc, false);
5564 
5565 	if (!transcoder_is_dsi(cpu_transcoder))
5566 		intel_ddi_disable_pipe_clock(intel_crtc->config);
5567 
5568 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5569 }
5570 
5571 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5572 {
5573 	struct drm_device *dev = crtc->base.dev;
5574 	struct drm_i915_private *dev_priv = to_i915(dev);
5575 	struct intel_crtc_state *pipe_config = crtc->config;
5576 
5577 	if (!pipe_config->gmch_pfit.control)
5578 		return;
5579 
5580 	/*
5581 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5582 	 * according to register description and PRM.
5583 	 */
5584 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5585 	assert_pipe_disabled(dev_priv, crtc->pipe);
5586 
5587 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5588 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5589 
5590 	/* Border color in case we don't scale up to the full screen. Black by
5591 	 * default, change to something else for debugging. */
5592 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5593 }
5594 
5595 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5596 {
5597 	switch (port) {
5598 	case PORT_A:
5599 		return POWER_DOMAIN_PORT_DDI_A_LANES;
5600 	case PORT_B:
5601 		return POWER_DOMAIN_PORT_DDI_B_LANES;
5602 	case PORT_C:
5603 		return POWER_DOMAIN_PORT_DDI_C_LANES;
5604 	case PORT_D:
5605 		return POWER_DOMAIN_PORT_DDI_D_LANES;
5606 	case PORT_E:
5607 		return POWER_DOMAIN_PORT_DDI_E_LANES;
5608 	default:
5609 		MISSING_CASE(port);
5610 		return POWER_DOMAIN_PORT_OTHER;
5611 	}
5612 }
5613 
5614 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5615 				  struct intel_crtc_state *crtc_state)
5616 {
5617 	struct drm_device *dev = crtc->dev;
5618 	struct drm_i915_private *dev_priv = to_i915(dev);
5619 	struct drm_encoder *encoder;
5620 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5621 	enum i915_pipe pipe = intel_crtc->pipe;
5622 	u64 mask;
5623 	enum transcoder transcoder = crtc_state->cpu_transcoder;
5624 
5625 	if (!crtc_state->base.active)
5626 		return 0;
5627 
5628 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5629 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5630 	if (crtc_state->pch_pfit.enabled ||
5631 	    crtc_state->pch_pfit.force_thru)
5632 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5633 
5634 	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5635 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5636 
5637 		mask |= BIT_ULL(intel_encoder->power_domain);
5638 	}
5639 
5640 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5641 		mask |= BIT(POWER_DOMAIN_AUDIO);
5642 
5643 	if (crtc_state->shared_dpll)
5644 		mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5645 
5646 	return mask;
5647 }
5648 
5649 static u64
5650 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5651 			       struct intel_crtc_state *crtc_state)
5652 {
5653 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5654 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5655 	enum intel_display_power_domain domain;
5656 	u64 domains, new_domains, old_domains;
5657 
5658 	old_domains = intel_crtc->enabled_power_domains;
5659 	intel_crtc->enabled_power_domains = new_domains =
5660 		get_crtc_power_domains(crtc, crtc_state);
5661 
5662 	domains = new_domains & ~old_domains;
5663 
5664 	for_each_power_domain(domain, domains)
5665 		intel_display_power_get(dev_priv, domain);
5666 
5667 	return old_domains & ~new_domains;
5668 }
5669 
5670 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5671 				      u64 domains)
5672 {
5673 	enum intel_display_power_domain domain;
5674 
5675 	for_each_power_domain(domain, domains)
5676 		intel_display_power_put(dev_priv, domain);
5677 }
5678 
5679 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5680 				   struct drm_atomic_state *old_state)
5681 {
5682 	struct intel_atomic_state *old_intel_state =
5683 		to_intel_atomic_state(old_state);
5684 	struct drm_crtc *crtc = pipe_config->base.crtc;
5685 	struct drm_device *dev = crtc->dev;
5686 	struct drm_i915_private *dev_priv = to_i915(dev);
5687 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5688 	int pipe = intel_crtc->pipe;
5689 
5690 	if (WARN_ON(intel_crtc->active))
5691 		return;
5692 
5693 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5694 		intel_dp_set_m_n(intel_crtc, M1_N1);
5695 
5696 	intel_set_pipe_timings(intel_crtc);
5697 	intel_set_pipe_src_size(intel_crtc);
5698 
5699 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5700 		struct drm_i915_private *dev_priv = to_i915(dev);
5701 
5702 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5703 		I915_WRITE(CHV_CANVAS(pipe), 0);
5704 	}
5705 
5706 	i9xx_set_pipeconf(intel_crtc);
5707 
5708 	intel_crtc->active = true;
5709 
5710 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5711 
5712 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5713 
5714 	if (IS_CHERRYVIEW(dev_priv)) {
5715 		chv_prepare_pll(intel_crtc, intel_crtc->config);
5716 		chv_enable_pll(intel_crtc, intel_crtc->config);
5717 	} else {
5718 		vlv_prepare_pll(intel_crtc, intel_crtc->config);
5719 		vlv_enable_pll(intel_crtc, intel_crtc->config);
5720 	}
5721 
5722 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5723 
5724 	i9xx_pfit_enable(intel_crtc);
5725 
5726 	intel_color_load_luts(&pipe_config->base);
5727 
5728 	dev_priv->display.initial_watermarks(old_intel_state,
5729 					     pipe_config);
5730 	intel_enable_pipe(intel_crtc);
5731 
5732 	assert_vblank_disabled(crtc);
5733 	drm_crtc_vblank_on(crtc);
5734 
5735 	intel_encoders_enable(crtc, pipe_config, old_state);
5736 }
5737 
5738 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5739 {
5740 	struct drm_device *dev = crtc->base.dev;
5741 	struct drm_i915_private *dev_priv = to_i915(dev);
5742 
5743 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5744 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5745 }
5746 
5747 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5748 			     struct drm_atomic_state *old_state)
5749 {
5750 	struct intel_atomic_state *old_intel_state =
5751 		to_intel_atomic_state(old_state);
5752 	struct drm_crtc *crtc = pipe_config->base.crtc;
5753 	struct drm_device *dev = crtc->dev;
5754 	struct drm_i915_private *dev_priv = to_i915(dev);
5755 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756 	enum i915_pipe pipe = intel_crtc->pipe;
5757 
5758 	if (WARN_ON(intel_crtc->active))
5759 		return;
5760 
5761 	i9xx_set_pll_dividers(intel_crtc);
5762 
5763 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5764 		intel_dp_set_m_n(intel_crtc, M1_N1);
5765 
5766 	intel_set_pipe_timings(intel_crtc);
5767 	intel_set_pipe_src_size(intel_crtc);
5768 
5769 	i9xx_set_pipeconf(intel_crtc);
5770 
5771 	intel_crtc->active = true;
5772 
5773 	if (!IS_GEN2(dev_priv))
5774 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5775 
5776 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5777 
5778 	i9xx_enable_pll(intel_crtc, pipe_config);
5779 
5780 	i9xx_pfit_enable(intel_crtc);
5781 
5782 	intel_color_load_luts(&pipe_config->base);
5783 
5784 	if (dev_priv->display.initial_watermarks != NULL)
5785 		dev_priv->display.initial_watermarks(old_intel_state,
5786 						     intel_crtc->config);
5787 	else
5788 		intel_update_watermarks(intel_crtc);
5789 	intel_enable_pipe(intel_crtc);
5790 
5791 	assert_vblank_disabled(crtc);
5792 	drm_crtc_vblank_on(crtc);
5793 
5794 	intel_encoders_enable(crtc, pipe_config, old_state);
5795 }
5796 
5797 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5798 {
5799 	struct drm_device *dev = crtc->base.dev;
5800 	struct drm_i915_private *dev_priv = to_i915(dev);
5801 
5802 	if (!crtc->config->gmch_pfit.control)
5803 		return;
5804 
5805 	assert_pipe_disabled(dev_priv, crtc->pipe);
5806 
5807 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5808 			 I915_READ(PFIT_CONTROL));
5809 	I915_WRITE(PFIT_CONTROL, 0);
5810 }
5811 
5812 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5813 			      struct drm_atomic_state *old_state)
5814 {
5815 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5816 	struct drm_device *dev = crtc->dev;
5817 	struct drm_i915_private *dev_priv = to_i915(dev);
5818 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5819 	int pipe = intel_crtc->pipe;
5820 
5821 	/*
5822 	 * On gen2 planes are double buffered but the pipe isn't, so we must
5823 	 * wait for planes to fully turn off before disabling the pipe.
5824 	 */
5825 	if (IS_GEN2(dev_priv))
5826 		intel_wait_for_vblank(dev_priv, pipe);
5827 
5828 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5829 
5830 	drm_crtc_vblank_off(crtc);
5831 	assert_vblank_disabled(crtc);
5832 
5833 	intel_disable_pipe(intel_crtc);
5834 
5835 	i9xx_pfit_disable(intel_crtc);
5836 
5837 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5838 
5839 	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5840 		if (IS_CHERRYVIEW(dev_priv))
5841 			chv_disable_pll(dev_priv, pipe);
5842 		else if (IS_VALLEYVIEW(dev_priv))
5843 			vlv_disable_pll(dev_priv, pipe);
5844 		else
5845 			i9xx_disable_pll(intel_crtc);
5846 	}
5847 
5848 	intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5849 
5850 	if (!IS_GEN2(dev_priv))
5851 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5852 
5853 	if (!dev_priv->display.initial_watermarks)
5854 		intel_update_watermarks(intel_crtc);
5855 
5856 	/* clock the pipe down to 640x480@60 to potentially save power */
5857 	if (IS_I830(dev_priv))
5858 		i830_enable_pipe(dev_priv, pipe);
5859 }
5860 
5861 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5862 					struct drm_modeset_acquire_ctx *ctx)
5863 {
5864 	struct intel_encoder *encoder;
5865 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5866 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5867 	enum intel_display_power_domain domain;
5868 	struct intel_plane *plane;
5869 	u64 domains;
5870 	struct drm_atomic_state *state;
5871 	struct intel_crtc_state *crtc_state;
5872 	int ret;
5873 
5874 	if (!intel_crtc->active)
5875 		return;
5876 
5877 	for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
5878 		const struct intel_plane_state *plane_state =
5879 			to_intel_plane_state(plane->base.state);
5880 
5881 		if (plane_state->base.visible)
5882 			intel_plane_disable_noatomic(intel_crtc, plane);
5883 	}
5884 
5885 	state = drm_atomic_state_alloc(crtc->dev);
5886 	if (!state) {
5887 		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5888 			      crtc->base.id, crtc->name);
5889 		return;
5890 	}
5891 
5892 	state->acquire_ctx = ctx;
5893 
5894 	/* Everything's already locked, -EDEADLK can't happen. */
5895 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5896 	ret = drm_atomic_add_affected_connectors(state, crtc);
5897 
5898 	WARN_ON(IS_ERR(crtc_state) || ret);
5899 
5900 	dev_priv->display.crtc_disable(crtc_state, state);
5901 
5902 	drm_atomic_state_put(state);
5903 
5904 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5905 		      crtc->base.id, crtc->name);
5906 
5907 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5908 	crtc->state->active = false;
5909 	intel_crtc->active = false;
5910 	crtc->enabled = false;
5911 	crtc->state->connector_mask = 0;
5912 	crtc->state->encoder_mask = 0;
5913 
5914 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5915 		encoder->base.crtc = NULL;
5916 
5917 	intel_fbc_disable(intel_crtc);
5918 	intel_update_watermarks(intel_crtc);
5919 	intel_disable_shared_dpll(intel_crtc);
5920 
5921 	domains = intel_crtc->enabled_power_domains;
5922 	for_each_power_domain(domain, domains)
5923 		intel_display_power_put(dev_priv, domain);
5924 	intel_crtc->enabled_power_domains = 0;
5925 
5926 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5927 	dev_priv->min_cdclk[intel_crtc->pipe] = 0;
5928 }
5929 
5930 /*
5931  * turn all crtc's off, but do not adjust state
5932  * This has to be paired with a call to intel_modeset_setup_hw_state.
5933  */
5934 int intel_display_suspend(struct drm_device *dev)
5935 {
5936 	struct drm_i915_private *dev_priv = to_i915(dev);
5937 	struct drm_atomic_state *state;
5938 	int ret;
5939 
5940 	state = drm_atomic_helper_suspend(dev);
5941 	ret = PTR_ERR_OR_ZERO(state);
5942 	if (ret)
5943 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5944 	else
5945 		dev_priv->modeset_restore_state = state;
5946 	return ret;
5947 }
5948 
5949 void intel_encoder_destroy(struct drm_encoder *encoder)
5950 {
5951 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5952 
5953 	drm_encoder_cleanup(encoder);
5954 	kfree(intel_encoder);
5955 }
5956 
5957 /* Cross check the actual hw state with our own modeset state tracking (and it's
5958  * internal consistency). */
5959 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5960 					 struct drm_connector_state *conn_state)
5961 {
5962 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
5963 
5964 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5965 		      connector->base.base.id,
5966 		      connector->base.name);
5967 
5968 	if (connector->get_hw_state(connector)) {
5969 		struct intel_encoder *encoder = connector->encoder;
5970 
5971 		I915_STATE_WARN(!crtc_state,
5972 			 "connector enabled without attached crtc\n");
5973 
5974 		if (!crtc_state)
5975 			return;
5976 
5977 		I915_STATE_WARN(!crtc_state->active,
5978 		      "connector is active, but attached crtc isn't\n");
5979 
5980 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5981 			return;
5982 
5983 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5984 			"atomic encoder doesn't match attached encoder\n");
5985 
5986 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5987 			"attached encoder crtc differs from connector crtc\n");
5988 	} else {
5989 		I915_STATE_WARN(crtc_state && crtc_state->active,
5990 			"attached crtc is active, but connector isn't\n");
5991 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5992 			"best encoder set without crtc!\n");
5993 	}
5994 }
5995 
5996 int intel_connector_init(struct intel_connector *connector)
5997 {
5998 	struct intel_digital_connector_state *conn_state;
5999 
6000 	/*
6001 	 * Allocate enough memory to hold intel_digital_connector_state,
6002 	 * This might be a few bytes too many, but for connectors that don't
6003 	 * need it we'll free the state and allocate a smaller one on the first
6004 	 * succesful commit anyway.
6005 	 */
6006 	conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
6007 	if (!conn_state)
6008 		return -ENOMEM;
6009 
6010 	__drm_atomic_helper_connector_reset(&connector->base,
6011 					    &conn_state->base);
6012 
6013 	return 0;
6014 }
6015 
6016 struct intel_connector *intel_connector_alloc(void)
6017 {
6018 	struct intel_connector *connector;
6019 
6020 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6021 	if (!connector)
6022 		return NULL;
6023 
6024 	if (intel_connector_init(connector) < 0) {
6025 		kfree(connector);
6026 		return NULL;
6027 	}
6028 
6029 	return connector;
6030 }
6031 
6032 /*
6033  * Free the bits allocated by intel_connector_alloc.
6034  * This should only be used after intel_connector_alloc has returned
6035  * successfully, and before drm_connector_init returns successfully.
6036  * Otherwise the destroy callbacks for the connector and the state should
6037  * take care of proper cleanup/free
6038  */
6039 void intel_connector_free(struct intel_connector *connector)
6040 {
6041 	kfree(to_intel_digital_connector_state(connector->base.state));
6042 	kfree(connector);
6043 }
6044 
6045 /* Simple connector->get_hw_state implementation for encoders that support only
6046  * one connector and no cloning and hence the encoder state determines the state
6047  * of the connector. */
6048 bool intel_connector_get_hw_state(struct intel_connector *connector)
6049 {
6050 	enum i915_pipe pipe = 0;
6051 	struct intel_encoder *encoder = connector->encoder;
6052 
6053 	return encoder->get_hw_state(encoder, &pipe);
6054 }
6055 
6056 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6057 {
6058 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6059 		return crtc_state->fdi_lanes;
6060 
6061 	return 0;
6062 }
6063 
6064 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum i915_pipe pipe,
6065 				     struct intel_crtc_state *pipe_config)
6066 {
6067 	struct drm_i915_private *dev_priv = to_i915(dev);
6068 	struct drm_atomic_state *state = pipe_config->base.state;
6069 	struct intel_crtc *other_crtc;
6070 	struct intel_crtc_state *other_crtc_state;
6071 
6072 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6073 		      pipe_name(pipe), pipe_config->fdi_lanes);
6074 	if (pipe_config->fdi_lanes > 4) {
6075 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6076 			      pipe_name(pipe), pipe_config->fdi_lanes);
6077 		return -EINVAL;
6078 	}
6079 
6080 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6081 		if (pipe_config->fdi_lanes > 2) {
6082 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6083 				      pipe_config->fdi_lanes);
6084 			return -EINVAL;
6085 		} else {
6086 			return 0;
6087 		}
6088 	}
6089 
6090 	if (INTEL_INFO(dev_priv)->num_pipes == 2)
6091 		return 0;
6092 
6093 	/* Ivybridge 3 pipe is really complicated */
6094 	switch (pipe) {
6095 	case PIPE_A:
6096 		return 0;
6097 	case PIPE_B:
6098 		if (pipe_config->fdi_lanes <= 2)
6099 			return 0;
6100 
6101 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6102 		other_crtc_state =
6103 			intel_atomic_get_crtc_state(state, other_crtc);
6104 		if (IS_ERR(other_crtc_state))
6105 			return PTR_ERR(other_crtc_state);
6106 
6107 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6108 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6109 				      pipe_name(pipe), pipe_config->fdi_lanes);
6110 			return -EINVAL;
6111 		}
6112 		return 0;
6113 	case PIPE_C:
6114 		if (pipe_config->fdi_lanes > 2) {
6115 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6116 				      pipe_name(pipe), pipe_config->fdi_lanes);
6117 			return -EINVAL;
6118 		}
6119 
6120 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6121 		other_crtc_state =
6122 			intel_atomic_get_crtc_state(state, other_crtc);
6123 		if (IS_ERR(other_crtc_state))
6124 			return PTR_ERR(other_crtc_state);
6125 
6126 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6127 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6128 			return -EINVAL;
6129 		}
6130 		return 0;
6131 	default:
6132 		BUG();
6133 	}
6134 }
6135 
6136 #define RETRY 1
6137 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6138 				       struct intel_crtc_state *pipe_config)
6139 {
6140 	struct drm_device *dev = intel_crtc->base.dev;
6141 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6142 	int lane, link_bw, fdi_dotclock, ret;
6143 	bool needs_recompute = false;
6144 
6145 retry:
6146 	/* FDI is a binary signal running at ~2.7GHz, encoding
6147 	 * each output octet as 10 bits. The actual frequency
6148 	 * is stored as a divider into a 100MHz clock, and the
6149 	 * mode pixel clock is stored in units of 1KHz.
6150 	 * Hence the bw of each lane in terms of the mode signal
6151 	 * is:
6152 	 */
6153 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6154 
6155 	fdi_dotclock = adjusted_mode->crtc_clock;
6156 
6157 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6158 					   pipe_config->pipe_bpp);
6159 
6160 	pipe_config->fdi_lanes = lane;
6161 
6162 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6163 			       link_bw, &pipe_config->fdi_m_n, false);
6164 
6165 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6166 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6167 		pipe_config->pipe_bpp -= 2*3;
6168 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6169 			      pipe_config->pipe_bpp);
6170 		needs_recompute = true;
6171 		pipe_config->bw_constrained = true;
6172 
6173 		goto retry;
6174 	}
6175 
6176 	if (needs_recompute)
6177 		return RETRY;
6178 
6179 	return ret;
6180 }
6181 
6182 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6183 				     struct intel_crtc_state *pipe_config)
6184 {
6185 	if (pipe_config->ips_force_disable)
6186 		return false;
6187 
6188 	if (pipe_config->pipe_bpp > 24)
6189 		return false;
6190 
6191 	/* HSW can handle pixel rate up to cdclk? */
6192 	if (IS_HASWELL(dev_priv))
6193 		return true;
6194 
6195 	/*
6196 	 * We compare against max which means we must take
6197 	 * the increased cdclk requirement into account when
6198 	 * calculating the new cdclk.
6199 	 *
6200 	 * Should measure whether using a lower cdclk w/o IPS
6201 	 */
6202 	return pipe_config->pixel_rate <=
6203 		dev_priv->max_cdclk_freq * 95 / 100;
6204 }
6205 
6206 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6207 				   struct intel_crtc_state *pipe_config)
6208 {
6209 	struct drm_device *dev = crtc->base.dev;
6210 	struct drm_i915_private *dev_priv = to_i915(dev);
6211 
6212 	pipe_config->ips_enabled = i915_modparams.enable_ips &&
6213 		hsw_crtc_supports_ips(crtc) &&
6214 		pipe_config_supports_ips(dev_priv, pipe_config);
6215 }
6216 
6217 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6218 {
6219 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6220 
6221 	/* GDG double wide on either pipe, otherwise pipe A only */
6222 	return INTEL_INFO(dev_priv)->gen < 4 &&
6223 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6224 }
6225 
6226 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6227 {
6228 	uint32_t pixel_rate;
6229 
6230 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6231 
6232 	/*
6233 	 * We only use IF-ID interlacing. If we ever use
6234 	 * PF-ID we'll need to adjust the pixel_rate here.
6235 	 */
6236 
6237 	if (pipe_config->pch_pfit.enabled) {
6238 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6239 		uint32_t pfit_size = pipe_config->pch_pfit.size;
6240 
6241 		pipe_w = pipe_config->pipe_src_w;
6242 		pipe_h = pipe_config->pipe_src_h;
6243 
6244 		pfit_w = (pfit_size >> 16) & 0xFFFF;
6245 		pfit_h = pfit_size & 0xFFFF;
6246 		if (pipe_w < pfit_w)
6247 			pipe_w = pfit_w;
6248 		if (pipe_h < pfit_h)
6249 			pipe_h = pfit_h;
6250 
6251 		if (WARN_ON(!pfit_w || !pfit_h))
6252 			return pixel_rate;
6253 
6254 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6255 				     pfit_w * pfit_h);
6256 	}
6257 
6258 	return pixel_rate;
6259 }
6260 
6261 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6262 {
6263 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6264 
6265 	if (HAS_GMCH_DISPLAY(dev_priv))
6266 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
6267 		crtc_state->pixel_rate =
6268 			crtc_state->base.adjusted_mode.crtc_clock;
6269 	else
6270 		crtc_state->pixel_rate =
6271 			ilk_pipe_pixel_rate(crtc_state);
6272 }
6273 
6274 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6275 				     struct intel_crtc_state *pipe_config)
6276 {
6277 	struct drm_device *dev = crtc->base.dev;
6278 	struct drm_i915_private *dev_priv = to_i915(dev);
6279 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6280 	int clock_limit = dev_priv->max_dotclk_freq;
6281 
6282 	if (INTEL_GEN(dev_priv) < 4) {
6283 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6284 
6285 		/*
6286 		 * Enable double wide mode when the dot clock
6287 		 * is > 90% of the (display) core speed.
6288 		 */
6289 		if (intel_crtc_supports_double_wide(crtc) &&
6290 		    adjusted_mode->crtc_clock > clock_limit) {
6291 			clock_limit = dev_priv->max_dotclk_freq;
6292 			pipe_config->double_wide = true;
6293 		}
6294 	}
6295 
6296 	if (adjusted_mode->crtc_clock > clock_limit) {
6297 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6298 			      adjusted_mode->crtc_clock, clock_limit,
6299 			      yesno(pipe_config->double_wide));
6300 		return -EINVAL;
6301 	}
6302 
6303 	if (pipe_config->ycbcr420 && pipe_config->base.ctm) {
6304 		/*
6305 		 * There is only one pipe CSC unit per pipe, and we need that
6306 		 * for output conversion from RGB->YCBCR. So if CTM is already
6307 		 * applied we can't support YCBCR420 output.
6308 		 */
6309 		DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
6310 		return -EINVAL;
6311 	}
6312 
6313 	/*
6314 	 * Pipe horizontal size must be even in:
6315 	 * - DVO ganged mode
6316 	 * - LVDS dual channel mode
6317 	 * - Double wide pipe
6318 	 */
6319 	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6320 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6321 		pipe_config->pipe_src_w &= ~1;
6322 
6323 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6324 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6325 	 */
6326 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6327 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6328 		return -EINVAL;
6329 
6330 	intel_crtc_compute_pixel_rate(pipe_config);
6331 
6332 	if (HAS_IPS(dev_priv))
6333 		hsw_compute_ips_config(crtc, pipe_config);
6334 
6335 	if (pipe_config->has_pch_encoder)
6336 		return ironlake_fdi_compute_config(crtc, pipe_config);
6337 
6338 	return 0;
6339 }
6340 
6341 static void
6342 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6343 {
6344 	while (*num > DATA_LINK_M_N_MASK ||
6345 	       *den > DATA_LINK_M_N_MASK) {
6346 		*num >>= 1;
6347 		*den >>= 1;
6348 	}
6349 }
6350 
6351 static void compute_m_n(unsigned int m, unsigned int n,
6352 			uint32_t *ret_m, uint32_t *ret_n,
6353 			bool reduce_m_n)
6354 {
6355 	/*
6356 	 * Reduce M/N as much as possible without loss in precision. Several DP
6357 	 * dongles in particular seem to be fussy about too large *link* M/N
6358 	 * values. The passed in values are more likely to have the least
6359 	 * significant bits zero than M after rounding below, so do this first.
6360 	 */
6361 	if (reduce_m_n) {
6362 		while ((m & 1) == 0 && (n & 1) == 0) {
6363 			m >>= 1;
6364 			n >>= 1;
6365 		}
6366 	}
6367 
6368 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6369 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
6370 	intel_reduce_m_n_ratio(ret_m, ret_n);
6371 }
6372 
6373 void
6374 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6375 		       int pixel_clock, int link_clock,
6376 		       struct intel_link_m_n *m_n,
6377 		       bool reduce_m_n)
6378 {
6379 	m_n->tu = 64;
6380 
6381 	compute_m_n(bits_per_pixel * pixel_clock,
6382 		    link_clock * nlanes * 8,
6383 		    &m_n->gmch_m, &m_n->gmch_n,
6384 		    reduce_m_n);
6385 
6386 	compute_m_n(pixel_clock, link_clock,
6387 		    &m_n->link_m, &m_n->link_n,
6388 		    reduce_m_n);
6389 }
6390 
6391 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6392 {
6393 	if (i915_modparams.panel_use_ssc >= 0)
6394 		return i915_modparams.panel_use_ssc != 0;
6395 	return dev_priv->vbt.lvds_use_ssc
6396 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6397 }
6398 
6399 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6400 {
6401 	return (1 << dpll->n) << 16 | dpll->m2;
6402 }
6403 
6404 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6405 {
6406 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6407 }
6408 
6409 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6410 				     struct intel_crtc_state *crtc_state,
6411 				     struct dpll *reduced_clock)
6412 {
6413 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6414 	u32 fp, fp2 = 0;
6415 
6416 	if (IS_PINEVIEW(dev_priv)) {
6417 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6418 		if (reduced_clock)
6419 			fp2 = pnv_dpll_compute_fp(reduced_clock);
6420 	} else {
6421 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6422 		if (reduced_clock)
6423 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
6424 	}
6425 
6426 	crtc_state->dpll_hw_state.fp0 = fp;
6427 
6428 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6429 	    reduced_clock) {
6430 		crtc_state->dpll_hw_state.fp1 = fp2;
6431 	} else {
6432 		crtc_state->dpll_hw_state.fp1 = fp;
6433 	}
6434 }
6435 
6436 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum i915_pipe
6437 		pipe)
6438 {
6439 	u32 reg_val;
6440 
6441 	/*
6442 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6443 	 * and set it to a reasonable value instead.
6444 	 */
6445 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6446 	reg_val &= 0xffffff00;
6447 	reg_val |= 0x00000030;
6448 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6449 
6450 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6451 	reg_val &= 0x00ffffff;
6452 	reg_val |= 0x8c000000;
6453 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6454 
6455 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6456 	reg_val &= 0xffffff00;
6457 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6458 
6459 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6460 	reg_val &= 0x00ffffff;
6461 	reg_val |= 0xb0000000;
6462 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6463 }
6464 
6465 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6466 					 struct intel_link_m_n *m_n)
6467 {
6468 	struct drm_device *dev = crtc->base.dev;
6469 	struct drm_i915_private *dev_priv = to_i915(dev);
6470 	int pipe = crtc->pipe;
6471 
6472 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6473 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6474 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6475 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6476 }
6477 
6478 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6479 					 struct intel_link_m_n *m_n,
6480 					 struct intel_link_m_n *m2_n2)
6481 {
6482 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6483 	int pipe = crtc->pipe;
6484 	enum transcoder transcoder = crtc->config->cpu_transcoder;
6485 
6486 	if (INTEL_GEN(dev_priv) >= 5) {
6487 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6488 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6489 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6490 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6491 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6492 		 * for gen < 8) and if DRRS is supported (to make sure the
6493 		 * registers are not unnecessarily accessed).
6494 		 */
6495 		if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6496 		    INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6497 			I915_WRITE(PIPE_DATA_M2(transcoder),
6498 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6499 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6500 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6501 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6502 		}
6503 	} else {
6504 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6505 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6506 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6507 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6508 	}
6509 }
6510 
6511 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6512 {
6513 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6514 
6515 	if (m_n == M1_N1) {
6516 		dp_m_n = &crtc->config->dp_m_n;
6517 		dp_m2_n2 = &crtc->config->dp_m2_n2;
6518 	} else if (m_n == M2_N2) {
6519 
6520 		/*
6521 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
6522 		 * needs to be programmed into M1_N1.
6523 		 */
6524 		dp_m_n = &crtc->config->dp_m2_n2;
6525 	} else {
6526 		DRM_ERROR("Unsupported divider value\n");
6527 		return;
6528 	}
6529 
6530 	if (crtc->config->has_pch_encoder)
6531 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6532 	else
6533 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6534 }
6535 
6536 static void vlv_compute_dpll(struct intel_crtc *crtc,
6537 			     struct intel_crtc_state *pipe_config)
6538 {
6539 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6540 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6541 	if (crtc->pipe != PIPE_A)
6542 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6543 
6544 	/* DPLL not used with DSI, but still need the rest set up */
6545 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6546 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6547 			DPLL_EXT_BUFFER_ENABLE_VLV;
6548 
6549 	pipe_config->dpll_hw_state.dpll_md =
6550 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6551 }
6552 
6553 static void chv_compute_dpll(struct intel_crtc *crtc,
6554 			     struct intel_crtc_state *pipe_config)
6555 {
6556 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6557 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6558 	if (crtc->pipe != PIPE_A)
6559 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6560 
6561 	/* DPLL not used with DSI, but still need the rest set up */
6562 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6563 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6564 
6565 	pipe_config->dpll_hw_state.dpll_md =
6566 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6567 }
6568 
6569 static void vlv_prepare_pll(struct intel_crtc *crtc,
6570 			    const struct intel_crtc_state *pipe_config)
6571 {
6572 	struct drm_device *dev = crtc->base.dev;
6573 	struct drm_i915_private *dev_priv = to_i915(dev);
6574 	enum i915_pipe pipe = crtc->pipe;
6575 	u32 mdiv;
6576 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
6577 	u32 coreclk, reg_val;
6578 
6579 	/* Enable Refclk */
6580 	I915_WRITE(DPLL(pipe),
6581 		   pipe_config->dpll_hw_state.dpll &
6582 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6583 
6584 	/* No need to actually set up the DPLL with DSI */
6585 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6586 		return;
6587 
6588 	mutex_lock(&dev_priv->sb_lock);
6589 
6590 	bestn = pipe_config->dpll.n;
6591 	bestm1 = pipe_config->dpll.m1;
6592 	bestm2 = pipe_config->dpll.m2;
6593 	bestp1 = pipe_config->dpll.p1;
6594 	bestp2 = pipe_config->dpll.p2;
6595 
6596 	/* See eDP HDMI DPIO driver vbios notes doc */
6597 
6598 	/* PLL B needs special handling */
6599 	if (pipe == PIPE_B)
6600 		vlv_pllb_recal_opamp(dev_priv, pipe);
6601 
6602 	/* Set up Tx target for periodic Rcomp update */
6603 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6604 
6605 	/* Disable target IRef on PLL */
6606 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6607 	reg_val &= 0x00ffffff;
6608 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6609 
6610 	/* Disable fast lock */
6611 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6612 
6613 	/* Set idtafcrecal before PLL is enabled */
6614 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6615 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6616 	mdiv |= ((bestn << DPIO_N_SHIFT));
6617 	mdiv |= (1 << DPIO_K_SHIFT);
6618 
6619 	/*
6620 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6621 	 * but we don't support that).
6622 	 * Note: don't use the DAC post divider as it seems unstable.
6623 	 */
6624 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6625 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6626 
6627 	mdiv |= DPIO_ENABLE_CALIBRATION;
6628 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6629 
6630 	/* Set HBR and RBR LPF coefficients */
6631 	if (pipe_config->port_clock == 162000 ||
6632 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6633 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6634 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6635 				 0x009f0003);
6636 	else
6637 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6638 				 0x00d0000f);
6639 
6640 	if (intel_crtc_has_dp_encoder(pipe_config)) {
6641 		/* Use SSC source */
6642 		if (pipe == PIPE_A)
6643 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6644 					 0x0df40000);
6645 		else
6646 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6647 					 0x0df70000);
6648 	} else { /* HDMI or VGA */
6649 		/* Use bend source */
6650 		if (pipe == PIPE_A)
6651 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6652 					 0x0df70000);
6653 		else
6654 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6655 					 0x0df40000);
6656 	}
6657 
6658 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6659 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6660 	if (intel_crtc_has_dp_encoder(crtc->config))
6661 		coreclk |= 0x01000000;
6662 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6663 
6664 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6665 	mutex_unlock(&dev_priv->sb_lock);
6666 }
6667 
6668 static void chv_prepare_pll(struct intel_crtc *crtc,
6669 			    const struct intel_crtc_state *pipe_config)
6670 {
6671 	struct drm_device *dev = crtc->base.dev;
6672 	struct drm_i915_private *dev_priv = to_i915(dev);
6673 	enum i915_pipe pipe = crtc->pipe;
6674 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
6675 	u32 loopfilter, tribuf_calcntr;
6676 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6677 	u32 dpio_val;
6678 	int vco;
6679 
6680 	/* Enable Refclk and SSC */
6681 	I915_WRITE(DPLL(pipe),
6682 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6683 
6684 	/* No need to actually set up the DPLL with DSI */
6685 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6686 		return;
6687 
6688 	bestn = pipe_config->dpll.n;
6689 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6690 	bestm1 = pipe_config->dpll.m1;
6691 	bestm2 = pipe_config->dpll.m2 >> 22;
6692 	bestp1 = pipe_config->dpll.p1;
6693 	bestp2 = pipe_config->dpll.p2;
6694 	vco = pipe_config->dpll.vco;
6695 	dpio_val = 0;
6696 	loopfilter = 0;
6697 
6698 	mutex_lock(&dev_priv->sb_lock);
6699 
6700 	/* p1 and p2 divider */
6701 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6702 			5 << DPIO_CHV_S1_DIV_SHIFT |
6703 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6704 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6705 			1 << DPIO_CHV_K_DIV_SHIFT);
6706 
6707 	/* Feedback post-divider - m2 */
6708 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6709 
6710 	/* Feedback refclk divider - n and m1 */
6711 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6712 			DPIO_CHV_M1_DIV_BY_2 |
6713 			1 << DPIO_CHV_N_DIV_SHIFT);
6714 
6715 	/* M2 fraction division */
6716 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6717 
6718 	/* M2 fraction division enable */
6719 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6720 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6721 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6722 	if (bestm2_frac)
6723 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6724 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6725 
6726 	/* Program digital lock detect threshold */
6727 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6728 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6729 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6730 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6731 	if (!bestm2_frac)
6732 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6733 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6734 
6735 	/* Loop filter */
6736 	if (vco == 5400000) {
6737 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6738 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6739 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6740 		tribuf_calcntr = 0x9;
6741 	} else if (vco <= 6200000) {
6742 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6743 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6744 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6745 		tribuf_calcntr = 0x9;
6746 	} else if (vco <= 6480000) {
6747 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6748 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6749 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6750 		tribuf_calcntr = 0x8;
6751 	} else {
6752 		/* Not supported. Apply the same limits as in the max case */
6753 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6754 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6755 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6756 		tribuf_calcntr = 0;
6757 	}
6758 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6759 
6760 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6761 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6762 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6763 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6764 
6765 	/* AFC Recal */
6766 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6767 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6768 			DPIO_AFC_RECAL);
6769 
6770 	mutex_unlock(&dev_priv->sb_lock);
6771 }
6772 
6773 /**
6774  * vlv_force_pll_on - forcibly enable just the PLL
6775  * @dev_priv: i915 private structure
6776  * @pipe: pipe PLL to enable
6777  * @dpll: PLL configuration
6778  *
6779  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6780  * in cases where we need the PLL enabled even when @pipe is not going to
6781  * be enabled.
6782  */
6783 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
6784 		     const struct dpll *dpll)
6785 {
6786 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6787 	struct intel_crtc_state *pipe_config;
6788 
6789 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6790 	if (!pipe_config)
6791 		return -ENOMEM;
6792 
6793 	pipe_config->base.crtc = &crtc->base;
6794 	pipe_config->pixel_multiplier = 1;
6795 	pipe_config->dpll = *dpll;
6796 
6797 	if (IS_CHERRYVIEW(dev_priv)) {
6798 		chv_compute_dpll(crtc, pipe_config);
6799 		chv_prepare_pll(crtc, pipe_config);
6800 		chv_enable_pll(crtc, pipe_config);
6801 	} else {
6802 		vlv_compute_dpll(crtc, pipe_config);
6803 		vlv_prepare_pll(crtc, pipe_config);
6804 		vlv_enable_pll(crtc, pipe_config);
6805 	}
6806 
6807 	kfree(pipe_config);
6808 
6809 	return 0;
6810 }
6811 
6812 /**
6813  * vlv_force_pll_off - forcibly disable just the PLL
6814  * @dev_priv: i915 private structure
6815  * @pipe: pipe PLL to disable
6816  *
6817  * Disable the PLL for @pipe. To be used in cases where we need
6818  * the PLL enabled even when @pipe is not going to be enabled.
6819  */
6820 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
6821 {
6822 	if (IS_CHERRYVIEW(dev_priv))
6823 		chv_disable_pll(dev_priv, pipe);
6824 	else
6825 		vlv_disable_pll(dev_priv, pipe);
6826 }
6827 
6828 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6829 			      struct intel_crtc_state *crtc_state,
6830 			      struct dpll *reduced_clock)
6831 {
6832 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6833 	u32 dpll;
6834 	struct dpll *clock = &crtc_state->dpll;
6835 
6836 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6837 
6838 	dpll = DPLL_VGA_MODE_DIS;
6839 
6840 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6841 		dpll |= DPLLB_MODE_LVDS;
6842 	else
6843 		dpll |= DPLLB_MODE_DAC_SERIAL;
6844 
6845 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6846 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6847 		dpll |= (crtc_state->pixel_multiplier - 1)
6848 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
6849 	}
6850 
6851 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6852 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6853 		dpll |= DPLL_SDVO_HIGH_SPEED;
6854 
6855 	if (intel_crtc_has_dp_encoder(crtc_state))
6856 		dpll |= DPLL_SDVO_HIGH_SPEED;
6857 
6858 	/* compute bitmask from p1 value */
6859 	if (IS_PINEVIEW(dev_priv))
6860 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6861 	else {
6862 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6863 		if (IS_G4X(dev_priv) && reduced_clock)
6864 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6865 	}
6866 	switch (clock->p2) {
6867 	case 5:
6868 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6869 		break;
6870 	case 7:
6871 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6872 		break;
6873 	case 10:
6874 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6875 		break;
6876 	case 14:
6877 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6878 		break;
6879 	}
6880 	if (INTEL_GEN(dev_priv) >= 4)
6881 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6882 
6883 	if (crtc_state->sdvo_tv_clock)
6884 		dpll |= PLL_REF_INPUT_TVCLKINBC;
6885 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6886 		 intel_panel_use_ssc(dev_priv))
6887 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6888 	else
6889 		dpll |= PLL_REF_INPUT_DREFCLK;
6890 
6891 	dpll |= DPLL_VCO_ENABLE;
6892 	crtc_state->dpll_hw_state.dpll = dpll;
6893 
6894 	if (INTEL_GEN(dev_priv) >= 4) {
6895 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6896 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
6897 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
6898 	}
6899 }
6900 
6901 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6902 			      struct intel_crtc_state *crtc_state,
6903 			      struct dpll *reduced_clock)
6904 {
6905 	struct drm_device *dev = crtc->base.dev;
6906 	struct drm_i915_private *dev_priv = to_i915(dev);
6907 	u32 dpll;
6908 	struct dpll *clock = &crtc_state->dpll;
6909 
6910 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6911 
6912 	dpll = DPLL_VGA_MODE_DIS;
6913 
6914 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6915 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6916 	} else {
6917 		if (clock->p1 == 2)
6918 			dpll |= PLL_P1_DIVIDE_BY_TWO;
6919 		else
6920 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6921 		if (clock->p2 == 4)
6922 			dpll |= PLL_P2_DIVIDE_BY_4;
6923 	}
6924 
6925 	if (!IS_I830(dev_priv) &&
6926 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6927 		dpll |= DPLL_DVO_2X_MODE;
6928 
6929 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6930 	    intel_panel_use_ssc(dev_priv))
6931 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6932 	else
6933 		dpll |= PLL_REF_INPUT_DREFCLK;
6934 
6935 	dpll |= DPLL_VCO_ENABLE;
6936 	crtc_state->dpll_hw_state.dpll = dpll;
6937 }
6938 
6939 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6940 {
6941 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6942 	enum i915_pipe pipe = intel_crtc->pipe;
6943 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6944 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6945 	uint32_t crtc_vtotal, crtc_vblank_end;
6946 	int vsyncshift = 0;
6947 
6948 	/* We need to be careful not to changed the adjusted mode, for otherwise
6949 	 * the hw state checker will get angry at the mismatch. */
6950 	crtc_vtotal = adjusted_mode->crtc_vtotal;
6951 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6952 
6953 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6954 		/* the chip adds 2 halflines automatically */
6955 		crtc_vtotal -= 1;
6956 		crtc_vblank_end -= 1;
6957 
6958 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6959 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6960 		else
6961 			vsyncshift = adjusted_mode->crtc_hsync_start -
6962 				adjusted_mode->crtc_htotal / 2;
6963 		if (vsyncshift < 0)
6964 			vsyncshift += adjusted_mode->crtc_htotal;
6965 	}
6966 
6967 	if (INTEL_GEN(dev_priv) > 3)
6968 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6969 
6970 	I915_WRITE(HTOTAL(cpu_transcoder),
6971 		   (adjusted_mode->crtc_hdisplay - 1) |
6972 		   ((adjusted_mode->crtc_htotal - 1) << 16));
6973 	I915_WRITE(HBLANK(cpu_transcoder),
6974 		   (adjusted_mode->crtc_hblank_start - 1) |
6975 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
6976 	I915_WRITE(HSYNC(cpu_transcoder),
6977 		   (adjusted_mode->crtc_hsync_start - 1) |
6978 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
6979 
6980 	I915_WRITE(VTOTAL(cpu_transcoder),
6981 		   (adjusted_mode->crtc_vdisplay - 1) |
6982 		   ((crtc_vtotal - 1) << 16));
6983 	I915_WRITE(VBLANK(cpu_transcoder),
6984 		   (adjusted_mode->crtc_vblank_start - 1) |
6985 		   ((crtc_vblank_end - 1) << 16));
6986 	I915_WRITE(VSYNC(cpu_transcoder),
6987 		   (adjusted_mode->crtc_vsync_start - 1) |
6988 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
6989 
6990 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6991 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6992 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6993 	 * bits. */
6994 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6995 	    (pipe == PIPE_B || pipe == PIPE_C))
6996 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6997 
6998 }
6999 
7000 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7001 {
7002 	struct drm_device *dev = intel_crtc->base.dev;
7003 	struct drm_i915_private *dev_priv = to_i915(dev);
7004 	enum i915_pipe pipe = intel_crtc->pipe;
7005 
7006 	/* pipesrc controls the size that is scaled from, which should
7007 	 * always be the user's requested size.
7008 	 */
7009 	I915_WRITE(PIPESRC(pipe),
7010 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7011 		   (intel_crtc->config->pipe_src_h - 1));
7012 }
7013 
7014 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7015 				   struct intel_crtc_state *pipe_config)
7016 {
7017 	struct drm_device *dev = crtc->base.dev;
7018 	struct drm_i915_private *dev_priv = to_i915(dev);
7019 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7020 	uint32_t tmp;
7021 
7022 	tmp = I915_READ(HTOTAL(cpu_transcoder));
7023 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7024 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7025 	tmp = I915_READ(HBLANK(cpu_transcoder));
7026 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7027 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7028 	tmp = I915_READ(HSYNC(cpu_transcoder));
7029 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7030 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7031 
7032 	tmp = I915_READ(VTOTAL(cpu_transcoder));
7033 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7034 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7035 	tmp = I915_READ(VBLANK(cpu_transcoder));
7036 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7037 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7038 	tmp = I915_READ(VSYNC(cpu_transcoder));
7039 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7040 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7041 
7042 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7043 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7044 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7045 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7046 	}
7047 }
7048 
7049 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7050 				    struct intel_crtc_state *pipe_config)
7051 {
7052 	struct drm_device *dev = crtc->base.dev;
7053 	struct drm_i915_private *dev_priv = to_i915(dev);
7054 	u32 tmp;
7055 
7056 	tmp = I915_READ(PIPESRC(crtc->pipe));
7057 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7058 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7059 
7060 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7061 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7062 }
7063 
7064 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7065 				 struct intel_crtc_state *pipe_config)
7066 {
7067 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7068 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7069 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7070 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7071 
7072 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7073 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7074 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7075 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7076 
7077 	mode->flags = pipe_config->base.adjusted_mode.flags;
7078 	mode->type = DRM_MODE_TYPE_DRIVER;
7079 
7080 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7081 
7082 	mode->hsync = drm_mode_hsync(mode);
7083 	mode->vrefresh = drm_mode_vrefresh(mode);
7084 	drm_mode_set_name(mode);
7085 }
7086 
7087 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7088 {
7089 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7090 	uint32_t pipeconf;
7091 
7092 	pipeconf = 0;
7093 
7094 	/* we keep both pipes enabled on 830 */
7095 	if (IS_I830(dev_priv))
7096 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7097 
7098 	if (intel_crtc->config->double_wide)
7099 		pipeconf |= PIPECONF_DOUBLE_WIDE;
7100 
7101 	/* only g4x and later have fancy bpc/dither controls */
7102 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7103 	    IS_CHERRYVIEW(dev_priv)) {
7104 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
7105 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7106 			pipeconf |= PIPECONF_DITHER_EN |
7107 				    PIPECONF_DITHER_TYPE_SP;
7108 
7109 		switch (intel_crtc->config->pipe_bpp) {
7110 		case 18:
7111 			pipeconf |= PIPECONF_6BPC;
7112 			break;
7113 		case 24:
7114 			pipeconf |= PIPECONF_8BPC;
7115 			break;
7116 		case 30:
7117 			pipeconf |= PIPECONF_10BPC;
7118 			break;
7119 		default:
7120 			/* Case prevented by intel_choose_pipe_bpp_dither. */
7121 			BUG();
7122 		}
7123 	}
7124 
7125 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7126 		if (INTEL_GEN(dev_priv) < 4 ||
7127 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7128 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7129 		else
7130 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7131 	} else
7132 		pipeconf |= PIPECONF_PROGRESSIVE;
7133 
7134 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7135 	     intel_crtc->config->limited_color_range)
7136 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7137 
7138 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7139 	POSTING_READ(PIPECONF(intel_crtc->pipe));
7140 }
7141 
7142 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7143 				   struct intel_crtc_state *crtc_state)
7144 {
7145 	struct drm_device *dev = crtc->base.dev;
7146 	struct drm_i915_private *dev_priv = to_i915(dev);
7147 	const struct intel_limit *limit;
7148 	int refclk = 48000;
7149 
7150 	memset(&crtc_state->dpll_hw_state, 0,
7151 	       sizeof(crtc_state->dpll_hw_state));
7152 
7153 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7154 		if (intel_panel_use_ssc(dev_priv)) {
7155 			refclk = dev_priv->vbt.lvds_ssc_freq;
7156 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7157 		}
7158 
7159 		limit = &intel_limits_i8xx_lvds;
7160 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7161 		limit = &intel_limits_i8xx_dvo;
7162 	} else {
7163 		limit = &intel_limits_i8xx_dac;
7164 	}
7165 
7166 	if (!crtc_state->clock_set &&
7167 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7168 				 refclk, NULL, &crtc_state->dpll)) {
7169 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7170 		return -EINVAL;
7171 	}
7172 
7173 	i8xx_compute_dpll(crtc, crtc_state, NULL);
7174 
7175 	return 0;
7176 }
7177 
7178 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7179 				  struct intel_crtc_state *crtc_state)
7180 {
7181 	struct drm_device *dev = crtc->base.dev;
7182 	struct drm_i915_private *dev_priv = to_i915(dev);
7183 	const struct intel_limit *limit;
7184 	int refclk = 96000;
7185 
7186 	memset(&crtc_state->dpll_hw_state, 0,
7187 	       sizeof(crtc_state->dpll_hw_state));
7188 
7189 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7190 		if (intel_panel_use_ssc(dev_priv)) {
7191 			refclk = dev_priv->vbt.lvds_ssc_freq;
7192 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7193 		}
7194 
7195 		if (intel_is_dual_link_lvds(dev))
7196 			limit = &intel_limits_g4x_dual_channel_lvds;
7197 		else
7198 			limit = &intel_limits_g4x_single_channel_lvds;
7199 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7200 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7201 		limit = &intel_limits_g4x_hdmi;
7202 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7203 		limit = &intel_limits_g4x_sdvo;
7204 	} else {
7205 		/* The option is for other outputs */
7206 		limit = &intel_limits_i9xx_sdvo;
7207 	}
7208 
7209 	if (!crtc_state->clock_set &&
7210 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7211 				refclk, NULL, &crtc_state->dpll)) {
7212 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7213 		return -EINVAL;
7214 	}
7215 
7216 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7217 
7218 	return 0;
7219 }
7220 
7221 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7222 				  struct intel_crtc_state *crtc_state)
7223 {
7224 	struct drm_device *dev = crtc->base.dev;
7225 	struct drm_i915_private *dev_priv = to_i915(dev);
7226 	const struct intel_limit *limit;
7227 	int refclk = 96000;
7228 
7229 	memset(&crtc_state->dpll_hw_state, 0,
7230 	       sizeof(crtc_state->dpll_hw_state));
7231 
7232 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7233 		if (intel_panel_use_ssc(dev_priv)) {
7234 			refclk = dev_priv->vbt.lvds_ssc_freq;
7235 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7236 		}
7237 
7238 		limit = &intel_limits_pineview_lvds;
7239 	} else {
7240 		limit = &intel_limits_pineview_sdvo;
7241 	}
7242 
7243 	if (!crtc_state->clock_set &&
7244 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7245 				refclk, NULL, &crtc_state->dpll)) {
7246 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7247 		return -EINVAL;
7248 	}
7249 
7250 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7251 
7252 	return 0;
7253 }
7254 
7255 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7256 				   struct intel_crtc_state *crtc_state)
7257 {
7258 	struct drm_device *dev = crtc->base.dev;
7259 	struct drm_i915_private *dev_priv = to_i915(dev);
7260 	const struct intel_limit *limit;
7261 	int refclk = 96000;
7262 
7263 	memset(&crtc_state->dpll_hw_state, 0,
7264 	       sizeof(crtc_state->dpll_hw_state));
7265 
7266 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7267 		if (intel_panel_use_ssc(dev_priv)) {
7268 			refclk = dev_priv->vbt.lvds_ssc_freq;
7269 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7270 		}
7271 
7272 		limit = &intel_limits_i9xx_lvds;
7273 	} else {
7274 		limit = &intel_limits_i9xx_sdvo;
7275 	}
7276 
7277 	if (!crtc_state->clock_set &&
7278 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7279 				 refclk, NULL, &crtc_state->dpll)) {
7280 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7281 		return -EINVAL;
7282 	}
7283 
7284 	i9xx_compute_dpll(crtc, crtc_state, NULL);
7285 
7286 	return 0;
7287 }
7288 
7289 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7290 				  struct intel_crtc_state *crtc_state)
7291 {
7292 	int refclk = 100000;
7293 	const struct intel_limit *limit = &intel_limits_chv;
7294 
7295 	memset(&crtc_state->dpll_hw_state, 0,
7296 	       sizeof(crtc_state->dpll_hw_state));
7297 
7298 	if (!crtc_state->clock_set &&
7299 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7300 				refclk, NULL, &crtc_state->dpll)) {
7301 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7302 		return -EINVAL;
7303 	}
7304 
7305 	chv_compute_dpll(crtc, crtc_state);
7306 
7307 	return 0;
7308 }
7309 
7310 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7311 				  struct intel_crtc_state *crtc_state)
7312 {
7313 	int refclk = 100000;
7314 	const struct intel_limit *limit = &intel_limits_vlv;
7315 
7316 	memset(&crtc_state->dpll_hw_state, 0,
7317 	       sizeof(crtc_state->dpll_hw_state));
7318 
7319 	if (!crtc_state->clock_set &&
7320 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7321 				refclk, NULL, &crtc_state->dpll)) {
7322 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7323 		return -EINVAL;
7324 	}
7325 
7326 	vlv_compute_dpll(crtc, crtc_state);
7327 
7328 	return 0;
7329 }
7330 
7331 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7332 				 struct intel_crtc_state *pipe_config)
7333 {
7334 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7335 	uint32_t tmp;
7336 
7337 	if (INTEL_GEN(dev_priv) <= 3 &&
7338 	    (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7339 		return;
7340 
7341 	tmp = I915_READ(PFIT_CONTROL);
7342 	if (!(tmp & PFIT_ENABLE))
7343 		return;
7344 
7345 	/* Check whether the pfit is attached to our pipe. */
7346 	if (INTEL_GEN(dev_priv) < 4) {
7347 		if (crtc->pipe != PIPE_B)
7348 			return;
7349 	} else {
7350 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7351 			return;
7352 	}
7353 
7354 	pipe_config->gmch_pfit.control = tmp;
7355 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7356 }
7357 
7358 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7359 			       struct intel_crtc_state *pipe_config)
7360 {
7361 	struct drm_device *dev = crtc->base.dev;
7362 	struct drm_i915_private *dev_priv = to_i915(dev);
7363 	int pipe = pipe_config->cpu_transcoder;
7364 	struct dpll clock;
7365 	u32 mdiv;
7366 	int refclk = 100000;
7367 
7368 	/* In case of DSI, DPLL will not be used */
7369 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7370 		return;
7371 
7372 	mutex_lock(&dev_priv->sb_lock);
7373 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7374 	mutex_unlock(&dev_priv->sb_lock);
7375 
7376 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7377 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
7378 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7379 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7380 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7381 
7382 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7383 }
7384 
7385 static void
7386 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7387 			      struct intel_initial_plane_config *plane_config)
7388 {
7389 	struct drm_device *dev = crtc->base.dev;
7390 	struct drm_i915_private *dev_priv = to_i915(dev);
7391 	u32 val, base, offset;
7392 	int pipe = crtc->pipe, plane = crtc->plane;
7393 	int fourcc, pixel_format;
7394 	unsigned int aligned_height;
7395 	struct drm_framebuffer *fb;
7396 	struct intel_framebuffer *intel_fb;
7397 
7398 	val = I915_READ(DSPCNTR(plane));
7399 	if (!(val & DISPLAY_PLANE_ENABLE))
7400 		return;
7401 
7402 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7403 	if (!intel_fb) {
7404 		DRM_DEBUG_KMS("failed to alloc fb\n");
7405 		return;
7406 	}
7407 
7408 	fb = &intel_fb->base;
7409 
7410 	fb->dev = dev;
7411 
7412 	if (INTEL_GEN(dev_priv) >= 4) {
7413 		if (val & DISPPLANE_TILED) {
7414 			plane_config->tiling = I915_TILING_X;
7415 			fb->modifier = I915_FORMAT_MOD_X_TILED;
7416 		}
7417 	}
7418 
7419 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7420 	fourcc = i9xx_format_to_fourcc(pixel_format);
7421 	fb->format = drm_format_info(fourcc);
7422 
7423 	if (INTEL_GEN(dev_priv) >= 4) {
7424 		if (plane_config->tiling)
7425 			offset = I915_READ(DSPTILEOFF(plane));
7426 		else
7427 			offset = I915_READ(DSPLINOFF(plane));
7428 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7429 	} else {
7430 		base = I915_READ(DSPADDR(plane));
7431 	}
7432 	plane_config->base = base;
7433 
7434 	val = I915_READ(PIPESRC(pipe));
7435 	fb->width = ((val >> 16) & 0xfff) + 1;
7436 	fb->height = ((val >> 0) & 0xfff) + 1;
7437 
7438 	val = I915_READ(DSPSTRIDE(pipe));
7439 	fb->pitches[0] = val & 0xffffffc0;
7440 
7441 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
7442 
7443 	plane_config->size = fb->pitches[0] * aligned_height;
7444 
7445 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7446 		      pipe_name(pipe), plane, fb->width, fb->height,
7447 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
7448 		      plane_config->size);
7449 
7450 	plane_config->fb = intel_fb;
7451 }
7452 
7453 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7454 			       struct intel_crtc_state *pipe_config)
7455 {
7456 	struct drm_device *dev = crtc->base.dev;
7457 	struct drm_i915_private *dev_priv = to_i915(dev);
7458 	int pipe = pipe_config->cpu_transcoder;
7459 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7460 	struct dpll clock;
7461 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7462 	int refclk = 100000;
7463 
7464 	/* In case of DSI, DPLL will not be used */
7465 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7466 		return;
7467 
7468 	mutex_lock(&dev_priv->sb_lock);
7469 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7470 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7471 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7472 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7473 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7474 	mutex_unlock(&dev_priv->sb_lock);
7475 
7476 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7477 	clock.m2 = (pll_dw0 & 0xff) << 22;
7478 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7479 		clock.m2 |= pll_dw2 & 0x3fffff;
7480 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7481 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7482 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7483 
7484 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7485 }
7486 
7487 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7488 				 struct intel_crtc_state *pipe_config)
7489 {
7490 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7491 	enum intel_display_power_domain power_domain;
7492 	uint32_t tmp;
7493 	bool ret;
7494 
7495 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7496 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7497 		return false;
7498 
7499 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7500 	pipe_config->shared_dpll = NULL;
7501 
7502 	ret = false;
7503 
7504 	tmp = I915_READ(PIPECONF(crtc->pipe));
7505 	if (!(tmp & PIPECONF_ENABLE))
7506 		goto out;
7507 
7508 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7509 	    IS_CHERRYVIEW(dev_priv)) {
7510 		switch (tmp & PIPECONF_BPC_MASK) {
7511 		case PIPECONF_6BPC:
7512 			pipe_config->pipe_bpp = 18;
7513 			break;
7514 		case PIPECONF_8BPC:
7515 			pipe_config->pipe_bpp = 24;
7516 			break;
7517 		case PIPECONF_10BPC:
7518 			pipe_config->pipe_bpp = 30;
7519 			break;
7520 		default:
7521 			break;
7522 		}
7523 	}
7524 
7525 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7526 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
7527 		pipe_config->limited_color_range = true;
7528 
7529 	if (INTEL_GEN(dev_priv) < 4)
7530 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7531 
7532 	intel_get_pipe_timings(crtc, pipe_config);
7533 	intel_get_pipe_src_size(crtc, pipe_config);
7534 
7535 	i9xx_get_pfit_config(crtc, pipe_config);
7536 
7537 	if (INTEL_GEN(dev_priv) >= 4) {
7538 		/* No way to read it out on pipes B and C */
7539 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7540 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
7541 		else
7542 			tmp = I915_READ(DPLL_MD(crtc->pipe));
7543 		pipe_config->pixel_multiplier =
7544 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7545 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7546 		pipe_config->dpll_hw_state.dpll_md = tmp;
7547 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7548 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7549 		tmp = I915_READ(DPLL(crtc->pipe));
7550 		pipe_config->pixel_multiplier =
7551 			((tmp & SDVO_MULTIPLIER_MASK)
7552 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7553 	} else {
7554 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
7555 		 * port and will be fixed up in the encoder->get_config
7556 		 * function. */
7557 		pipe_config->pixel_multiplier = 1;
7558 	}
7559 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7560 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7561 		/*
7562 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7563 		 * on 830. Filter it out here so that we don't
7564 		 * report errors due to that.
7565 		 */
7566 		if (IS_I830(dev_priv))
7567 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7568 
7569 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7570 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7571 	} else {
7572 		/* Mask out read-only status bits. */
7573 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7574 						     DPLL_PORTC_READY_MASK |
7575 						     DPLL_PORTB_READY_MASK);
7576 	}
7577 
7578 	if (IS_CHERRYVIEW(dev_priv))
7579 		chv_crtc_clock_get(crtc, pipe_config);
7580 	else if (IS_VALLEYVIEW(dev_priv))
7581 		vlv_crtc_clock_get(crtc, pipe_config);
7582 	else
7583 		i9xx_crtc_clock_get(crtc, pipe_config);
7584 
7585 	/*
7586 	 * Normally the dotclock is filled in by the encoder .get_config()
7587 	 * but in case the pipe is enabled w/o any ports we need a sane
7588 	 * default.
7589 	 */
7590 	pipe_config->base.adjusted_mode.crtc_clock =
7591 		pipe_config->port_clock / pipe_config->pixel_multiplier;
7592 
7593 	ret = true;
7594 
7595 out:
7596 	intel_display_power_put(dev_priv, power_domain);
7597 
7598 	return ret;
7599 }
7600 
7601 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7602 {
7603 	struct intel_encoder *encoder;
7604 	int i;
7605 	u32 val, final;
7606 	bool has_lvds = false;
7607 	bool has_cpu_edp = false;
7608 	bool has_panel = false;
7609 	bool has_ck505 = false;
7610 	bool can_ssc = false;
7611 	bool using_ssc_source = false;
7612 
7613 	/* We need to take the global config into account */
7614 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7615 		switch (encoder->type) {
7616 		case INTEL_OUTPUT_LVDS:
7617 			has_panel = true;
7618 			has_lvds = true;
7619 			break;
7620 		case INTEL_OUTPUT_EDP:
7621 			has_panel = true;
7622 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7623 				has_cpu_edp = true;
7624 			break;
7625 		default:
7626 			break;
7627 		}
7628 	}
7629 
7630 	if (HAS_PCH_IBX(dev_priv)) {
7631 		has_ck505 = dev_priv->vbt.display_clock_mode;
7632 		can_ssc = has_ck505;
7633 	} else {
7634 		has_ck505 = false;
7635 		can_ssc = true;
7636 	}
7637 
7638 	/* Check if any DPLLs are using the SSC source */
7639 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7640 		u32 temp = I915_READ(PCH_DPLL(i));
7641 
7642 		if (!(temp & DPLL_VCO_ENABLE))
7643 			continue;
7644 
7645 		if ((temp & PLL_REF_INPUT_MASK) ==
7646 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7647 			using_ssc_source = true;
7648 			break;
7649 		}
7650 	}
7651 
7652 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7653 		      has_panel, has_lvds, has_ck505, using_ssc_source);
7654 
7655 	/* Ironlake: try to setup display ref clock before DPLL
7656 	 * enabling. This is only under driver's control after
7657 	 * PCH B stepping, previous chipset stepping should be
7658 	 * ignoring this setting.
7659 	 */
7660 	val = I915_READ(PCH_DREF_CONTROL);
7661 
7662 	/* As we must carefully and slowly disable/enable each source in turn,
7663 	 * compute the final state we want first and check if we need to
7664 	 * make any changes at all.
7665 	 */
7666 	final = val;
7667 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
7668 	if (has_ck505)
7669 		final |= DREF_NONSPREAD_CK505_ENABLE;
7670 	else
7671 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
7672 
7673 	final &= ~DREF_SSC_SOURCE_MASK;
7674 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7675 	final &= ~DREF_SSC1_ENABLE;
7676 
7677 	if (has_panel) {
7678 		final |= DREF_SSC_SOURCE_ENABLE;
7679 
7680 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
7681 			final |= DREF_SSC1_ENABLE;
7682 
7683 		if (has_cpu_edp) {
7684 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
7685 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7686 			else
7687 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7688 		} else
7689 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7690 	} else if (using_ssc_source) {
7691 		final |= DREF_SSC_SOURCE_ENABLE;
7692 		final |= DREF_SSC1_ENABLE;
7693 	}
7694 
7695 	if (final == val)
7696 		return;
7697 
7698 	/* Always enable nonspread source */
7699 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
7700 
7701 	if (has_ck505)
7702 		val |= DREF_NONSPREAD_CK505_ENABLE;
7703 	else
7704 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
7705 
7706 	if (has_panel) {
7707 		val &= ~DREF_SSC_SOURCE_MASK;
7708 		val |= DREF_SSC_SOURCE_ENABLE;
7709 
7710 		/* SSC must be turned on before enabling the CPU output  */
7711 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7712 			DRM_DEBUG_KMS("Using SSC on panel\n");
7713 			val |= DREF_SSC1_ENABLE;
7714 		} else
7715 			val &= ~DREF_SSC1_ENABLE;
7716 
7717 		/* Get SSC going before enabling the outputs */
7718 		I915_WRITE(PCH_DREF_CONTROL, val);
7719 		POSTING_READ(PCH_DREF_CONTROL);
7720 		udelay(200);
7721 
7722 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7723 
7724 		/* Enable CPU source on CPU attached eDP */
7725 		if (has_cpu_edp) {
7726 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7727 				DRM_DEBUG_KMS("Using SSC on eDP\n");
7728 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7729 			} else
7730 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7731 		} else
7732 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7733 
7734 		I915_WRITE(PCH_DREF_CONTROL, val);
7735 		POSTING_READ(PCH_DREF_CONTROL);
7736 		udelay(200);
7737 	} else {
7738 		DRM_DEBUG_KMS("Disabling CPU source output\n");
7739 
7740 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7741 
7742 		/* Turn off CPU output */
7743 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7744 
7745 		I915_WRITE(PCH_DREF_CONTROL, val);
7746 		POSTING_READ(PCH_DREF_CONTROL);
7747 		udelay(200);
7748 
7749 		if (!using_ssc_source) {
7750 			DRM_DEBUG_KMS("Disabling SSC source\n");
7751 
7752 			/* Turn off the SSC source */
7753 			val &= ~DREF_SSC_SOURCE_MASK;
7754 			val |= DREF_SSC_SOURCE_DISABLE;
7755 
7756 			/* Turn off SSC1 */
7757 			val &= ~DREF_SSC1_ENABLE;
7758 
7759 			I915_WRITE(PCH_DREF_CONTROL, val);
7760 			POSTING_READ(PCH_DREF_CONTROL);
7761 			udelay(200);
7762 		}
7763 	}
7764 
7765 	BUG_ON(val != final);
7766 }
7767 
7768 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7769 {
7770 	uint32_t tmp;
7771 
7772 	tmp = I915_READ(SOUTH_CHICKEN2);
7773 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7774 	I915_WRITE(SOUTH_CHICKEN2, tmp);
7775 
7776 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7777 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7778 		DRM_ERROR("FDI mPHY reset assert timeout\n");
7779 
7780 	tmp = I915_READ(SOUTH_CHICKEN2);
7781 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7782 	I915_WRITE(SOUTH_CHICKEN2, tmp);
7783 
7784 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7785 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7786 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7787 }
7788 
7789 /* WaMPhyProgramming:hsw */
7790 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7791 {
7792 	uint32_t tmp;
7793 
7794 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7795 	tmp &= ~(0xFF << 24);
7796 	tmp |= (0x12 << 24);
7797 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7798 
7799 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7800 	tmp |= (1 << 11);
7801 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7802 
7803 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7804 	tmp |= (1 << 11);
7805 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7806 
7807 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7808 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7809 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7810 
7811 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7812 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7813 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7814 
7815 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7816 	tmp &= ~(7 << 13);
7817 	tmp |= (5 << 13);
7818 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7819 
7820 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7821 	tmp &= ~(7 << 13);
7822 	tmp |= (5 << 13);
7823 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7824 
7825 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7826 	tmp &= ~0xFF;
7827 	tmp |= 0x1C;
7828 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7829 
7830 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7831 	tmp &= ~0xFF;
7832 	tmp |= 0x1C;
7833 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7834 
7835 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7836 	tmp &= ~(0xFF << 16);
7837 	tmp |= (0x1C << 16);
7838 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7839 
7840 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7841 	tmp &= ~(0xFF << 16);
7842 	tmp |= (0x1C << 16);
7843 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7844 
7845 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7846 	tmp |= (1 << 27);
7847 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7848 
7849 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7850 	tmp |= (1 << 27);
7851 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7852 
7853 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7854 	tmp &= ~(0xF << 28);
7855 	tmp |= (4 << 28);
7856 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7857 
7858 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7859 	tmp &= ~(0xF << 28);
7860 	tmp |= (4 << 28);
7861 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7862 }
7863 
7864 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7865  * Programming" based on the parameters passed:
7866  * - Sequence to enable CLKOUT_DP
7867  * - Sequence to enable CLKOUT_DP without spread
7868  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7869  */
7870 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7871 				 bool with_spread, bool with_fdi)
7872 {
7873 	uint32_t reg, tmp;
7874 
7875 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7876 		with_spread = true;
7877 	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7878 	    with_fdi, "LP PCH doesn't have FDI\n"))
7879 		with_fdi = false;
7880 
7881 	mutex_lock(&dev_priv->sb_lock);
7882 
7883 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7884 	tmp &= ~SBI_SSCCTL_DISABLE;
7885 	tmp |= SBI_SSCCTL_PATHALT;
7886 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7887 
7888 	udelay(24);
7889 
7890 	if (with_spread) {
7891 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7892 		tmp &= ~SBI_SSCCTL_PATHALT;
7893 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7894 
7895 		if (with_fdi) {
7896 			lpt_reset_fdi_mphy(dev_priv);
7897 			lpt_program_fdi_mphy(dev_priv);
7898 		}
7899 	}
7900 
7901 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7902 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7903 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7904 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7905 
7906 	mutex_unlock(&dev_priv->sb_lock);
7907 }
7908 
7909 /* Sequence to disable CLKOUT_DP */
7910 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7911 {
7912 	uint32_t reg, tmp;
7913 
7914 	mutex_lock(&dev_priv->sb_lock);
7915 
7916 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7917 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7918 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7919 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7920 
7921 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7922 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
7923 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
7924 			tmp |= SBI_SSCCTL_PATHALT;
7925 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7926 			udelay(32);
7927 		}
7928 		tmp |= SBI_SSCCTL_DISABLE;
7929 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7930 	}
7931 
7932 	mutex_unlock(&dev_priv->sb_lock);
7933 }
7934 
7935 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7936 
7937 static const uint16_t sscdivintphase[] = {
7938 	[BEND_IDX( 50)] = 0x3B23,
7939 	[BEND_IDX( 45)] = 0x3B23,
7940 	[BEND_IDX( 40)] = 0x3C23,
7941 	[BEND_IDX( 35)] = 0x3C23,
7942 	[BEND_IDX( 30)] = 0x3D23,
7943 	[BEND_IDX( 25)] = 0x3D23,
7944 	[BEND_IDX( 20)] = 0x3E23,
7945 	[BEND_IDX( 15)] = 0x3E23,
7946 	[BEND_IDX( 10)] = 0x3F23,
7947 	[BEND_IDX(  5)] = 0x3F23,
7948 	[BEND_IDX(  0)] = 0x0025,
7949 	[BEND_IDX( -5)] = 0x0025,
7950 	[BEND_IDX(-10)] = 0x0125,
7951 	[BEND_IDX(-15)] = 0x0125,
7952 	[BEND_IDX(-20)] = 0x0225,
7953 	[BEND_IDX(-25)] = 0x0225,
7954 	[BEND_IDX(-30)] = 0x0325,
7955 	[BEND_IDX(-35)] = 0x0325,
7956 	[BEND_IDX(-40)] = 0x0425,
7957 	[BEND_IDX(-45)] = 0x0425,
7958 	[BEND_IDX(-50)] = 0x0525,
7959 };
7960 
7961 /*
7962  * Bend CLKOUT_DP
7963  * steps -50 to 50 inclusive, in steps of 5
7964  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7965  * change in clock period = -(steps / 10) * 5.787 ps
7966  */
7967 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7968 {
7969 	uint32_t tmp;
7970 	int idx = BEND_IDX(steps);
7971 
7972 	if (WARN_ON(steps % 5 != 0))
7973 		return;
7974 
7975 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7976 		return;
7977 
7978 	mutex_lock(&dev_priv->sb_lock);
7979 
7980 	if (steps % 10 != 0)
7981 		tmp = 0xAAAAAAAB;
7982 	else
7983 		tmp = 0x00000000;
7984 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7985 
7986 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7987 	tmp &= 0xffff0000;
7988 	tmp |= sscdivintphase[idx];
7989 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7990 
7991 	mutex_unlock(&dev_priv->sb_lock);
7992 }
7993 
7994 #undef BEND_IDX
7995 
7996 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7997 {
7998 	struct intel_encoder *encoder;
7999 	bool has_vga = false;
8000 
8001 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8002 		switch (encoder->type) {
8003 		case INTEL_OUTPUT_ANALOG:
8004 			has_vga = true;
8005 			break;
8006 		default:
8007 			break;
8008 		}
8009 	}
8010 
8011 	if (has_vga) {
8012 		lpt_bend_clkout_dp(dev_priv, 0);
8013 		lpt_enable_clkout_dp(dev_priv, true, true);
8014 	} else {
8015 		lpt_disable_clkout_dp(dev_priv);
8016 	}
8017 }
8018 
8019 /*
8020  * Initialize reference clocks when the driver loads
8021  */
8022 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
8023 {
8024 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
8025 		ironlake_init_pch_refclk(dev_priv);
8026 	else if (HAS_PCH_LPT(dev_priv))
8027 		lpt_init_pch_refclk(dev_priv);
8028 }
8029 
8030 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8031 {
8032 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8033 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8034 	int pipe = intel_crtc->pipe;
8035 	uint32_t val;
8036 
8037 	val = 0;
8038 
8039 	switch (intel_crtc->config->pipe_bpp) {
8040 	case 18:
8041 		val |= PIPECONF_6BPC;
8042 		break;
8043 	case 24:
8044 		val |= PIPECONF_8BPC;
8045 		break;
8046 	case 30:
8047 		val |= PIPECONF_10BPC;
8048 		break;
8049 	case 36:
8050 		val |= PIPECONF_12BPC;
8051 		break;
8052 	default:
8053 		/* Case prevented by intel_choose_pipe_bpp_dither. */
8054 		BUG();
8055 	}
8056 
8057 	if (intel_crtc->config->dither)
8058 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8059 
8060 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8061 		val |= PIPECONF_INTERLACED_ILK;
8062 	else
8063 		val |= PIPECONF_PROGRESSIVE;
8064 
8065 	if (intel_crtc->config->limited_color_range)
8066 		val |= PIPECONF_COLOR_RANGE_SELECT;
8067 
8068 	I915_WRITE(PIPECONF(pipe), val);
8069 	POSTING_READ(PIPECONF(pipe));
8070 }
8071 
8072 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8073 {
8074 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8075 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8076 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8077 	u32 val = 0;
8078 
8079 	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8080 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8081 
8082 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8083 		val |= PIPECONF_INTERLACED_ILK;
8084 	else
8085 		val |= PIPECONF_PROGRESSIVE;
8086 
8087 	I915_WRITE(PIPECONF(cpu_transcoder), val);
8088 	POSTING_READ(PIPECONF(cpu_transcoder));
8089 }
8090 
8091 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8092 {
8093 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8094 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8095 	struct intel_crtc_state *config = intel_crtc->config;
8096 
8097 	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8098 		u32 val = 0;
8099 
8100 		switch (intel_crtc->config->pipe_bpp) {
8101 		case 18:
8102 			val |= PIPEMISC_DITHER_6_BPC;
8103 			break;
8104 		case 24:
8105 			val |= PIPEMISC_DITHER_8_BPC;
8106 			break;
8107 		case 30:
8108 			val |= PIPEMISC_DITHER_10_BPC;
8109 			break;
8110 		case 36:
8111 			val |= PIPEMISC_DITHER_12_BPC;
8112 			break;
8113 		default:
8114 			/* Case prevented by pipe_config_set_bpp. */
8115 			BUG();
8116 		}
8117 
8118 		if (intel_crtc->config->dither)
8119 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8120 
8121 		if (config->ycbcr420) {
8122 			val |= PIPEMISC_OUTPUT_COLORSPACE_YUV |
8123 				PIPEMISC_YUV420_ENABLE |
8124 				PIPEMISC_YUV420_MODE_FULL_BLEND;
8125 		}
8126 
8127 		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8128 	}
8129 }
8130 
8131 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8132 {
8133 	/*
8134 	 * Account for spread spectrum to avoid
8135 	 * oversubscribing the link. Max center spread
8136 	 * is 2.5%; use 5% for safety's sake.
8137 	 */
8138 	u32 bps = target_clock * bpp * 21 / 20;
8139 	return DIV_ROUND_UP(bps, link_bw * 8);
8140 }
8141 
8142 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8143 {
8144 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8145 }
8146 
8147 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8148 				  struct intel_crtc_state *crtc_state,
8149 				  struct dpll *reduced_clock)
8150 {
8151 	struct drm_crtc *crtc = &intel_crtc->base;
8152 	struct drm_device *dev = crtc->dev;
8153 	struct drm_i915_private *dev_priv = to_i915(dev);
8154 	u32 dpll, fp, fp2;
8155 	int factor;
8156 
8157 	/* Enable autotuning of the PLL clock (if permissible) */
8158 	factor = 21;
8159 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8160 		if ((intel_panel_use_ssc(dev_priv) &&
8161 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8162 		    (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8163 			factor = 25;
8164 	} else if (crtc_state->sdvo_tv_clock)
8165 		factor = 20;
8166 
8167 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8168 
8169 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8170 		fp |= FP_CB_TUNE;
8171 
8172 	if (reduced_clock) {
8173 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
8174 
8175 		if (reduced_clock->m < factor * reduced_clock->n)
8176 			fp2 |= FP_CB_TUNE;
8177 	} else {
8178 		fp2 = fp;
8179 	}
8180 
8181 	dpll = 0;
8182 
8183 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8184 		dpll |= DPLLB_MODE_LVDS;
8185 	else
8186 		dpll |= DPLLB_MODE_DAC_SERIAL;
8187 
8188 	dpll |= (crtc_state->pixel_multiplier - 1)
8189 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8190 
8191 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8192 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8193 		dpll |= DPLL_SDVO_HIGH_SPEED;
8194 
8195 	if (intel_crtc_has_dp_encoder(crtc_state))
8196 		dpll |= DPLL_SDVO_HIGH_SPEED;
8197 
8198 	/*
8199 	 * The high speed IO clock is only really required for
8200 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8201 	 * possible to share the DPLL between CRT and HDMI. Enabling
8202 	 * the clock needlessly does no real harm, except use up a
8203 	 * bit of power potentially.
8204 	 *
8205 	 * We'll limit this to IVB with 3 pipes, since it has only two
8206 	 * DPLLs and so DPLL sharing is the only way to get three pipes
8207 	 * driving PCH ports at the same time. On SNB we could do this,
8208 	 * and potentially avoid enabling the second DPLL, but it's not
8209 	 * clear if it''s a win or loss power wise. No point in doing
8210 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8211 	 */
8212 	if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8213 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8214 		dpll |= DPLL_SDVO_HIGH_SPEED;
8215 
8216 	/* compute bitmask from p1 value */
8217 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8218 	/* also FPA1 */
8219 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8220 
8221 	switch (crtc_state->dpll.p2) {
8222 	case 5:
8223 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8224 		break;
8225 	case 7:
8226 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8227 		break;
8228 	case 10:
8229 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8230 		break;
8231 	case 14:
8232 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8233 		break;
8234 	}
8235 
8236 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8237 	    intel_panel_use_ssc(dev_priv))
8238 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8239 	else
8240 		dpll |= PLL_REF_INPUT_DREFCLK;
8241 
8242 	dpll |= DPLL_VCO_ENABLE;
8243 
8244 	crtc_state->dpll_hw_state.dpll = dpll;
8245 	crtc_state->dpll_hw_state.fp0 = fp;
8246 	crtc_state->dpll_hw_state.fp1 = fp2;
8247 }
8248 
8249 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8250 				       struct intel_crtc_state *crtc_state)
8251 {
8252 	struct drm_device *dev = crtc->base.dev;
8253 	struct drm_i915_private *dev_priv = to_i915(dev);
8254 	const struct intel_limit *limit;
8255 	int refclk = 120000;
8256 
8257 	memset(&crtc_state->dpll_hw_state, 0,
8258 	       sizeof(crtc_state->dpll_hw_state));
8259 
8260 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8261 	if (!crtc_state->has_pch_encoder)
8262 		return 0;
8263 
8264 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8265 		if (intel_panel_use_ssc(dev_priv)) {
8266 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8267 				      dev_priv->vbt.lvds_ssc_freq);
8268 			refclk = dev_priv->vbt.lvds_ssc_freq;
8269 		}
8270 
8271 		if (intel_is_dual_link_lvds(dev)) {
8272 			if (refclk == 100000)
8273 				limit = &intel_limits_ironlake_dual_lvds_100m;
8274 			else
8275 				limit = &intel_limits_ironlake_dual_lvds;
8276 		} else {
8277 			if (refclk == 100000)
8278 				limit = &intel_limits_ironlake_single_lvds_100m;
8279 			else
8280 				limit = &intel_limits_ironlake_single_lvds;
8281 		}
8282 	} else {
8283 		limit = &intel_limits_ironlake_dac;
8284 	}
8285 
8286 	if (!crtc_state->clock_set &&
8287 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8288 				refclk, NULL, &crtc_state->dpll)) {
8289 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8290 		return -EINVAL;
8291 	}
8292 
8293 	ironlake_compute_dpll(crtc, crtc_state, NULL);
8294 
8295 	if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8296 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8297 				 pipe_name(crtc->pipe));
8298 		return -EINVAL;
8299 	}
8300 
8301 	return 0;
8302 }
8303 
8304 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8305 					 struct intel_link_m_n *m_n)
8306 {
8307 	struct drm_device *dev = crtc->base.dev;
8308 	struct drm_i915_private *dev_priv = to_i915(dev);
8309 	enum i915_pipe pipe = crtc->pipe;
8310 
8311 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8312 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8313 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8314 		& ~TU_SIZE_MASK;
8315 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8316 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8317 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8318 }
8319 
8320 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8321 					 enum transcoder transcoder,
8322 					 struct intel_link_m_n *m_n,
8323 					 struct intel_link_m_n *m2_n2)
8324 {
8325 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8326 	enum i915_pipe pipe = crtc->pipe;
8327 
8328 	if (INTEL_GEN(dev_priv) >= 5) {
8329 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8330 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8331 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8332 			& ~TU_SIZE_MASK;
8333 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8334 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8335 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8336 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8337 		 * gen < 8) and if DRRS is supported (to make sure the
8338 		 * registers are not unnecessarily read).
8339 		 */
8340 		if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8341 			crtc->config->has_drrs) {
8342 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8343 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
8344 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
8345 					& ~TU_SIZE_MASK;
8346 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
8347 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8348 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8349 		}
8350 	} else {
8351 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8352 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8353 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8354 			& ~TU_SIZE_MASK;
8355 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8356 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8357 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8358 	}
8359 }
8360 
8361 void intel_dp_get_m_n(struct intel_crtc *crtc,
8362 		      struct intel_crtc_state *pipe_config)
8363 {
8364 	if (pipe_config->has_pch_encoder)
8365 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8366 	else
8367 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8368 					     &pipe_config->dp_m_n,
8369 					     &pipe_config->dp_m2_n2);
8370 }
8371 
8372 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8373 					struct intel_crtc_state *pipe_config)
8374 {
8375 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8376 				     &pipe_config->fdi_m_n, NULL);
8377 }
8378 
8379 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8380 				    struct intel_crtc_state *pipe_config)
8381 {
8382 	struct drm_device *dev = crtc->base.dev;
8383 	struct drm_i915_private *dev_priv = to_i915(dev);
8384 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8385 	uint32_t ps_ctrl = 0;
8386 	int id = -1;
8387 	int i;
8388 
8389 	/* find scaler attached to this pipe */
8390 	for (i = 0; i < crtc->num_scalers; i++) {
8391 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8392 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8393 			id = i;
8394 			pipe_config->pch_pfit.enabled = true;
8395 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8396 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8397 			break;
8398 		}
8399 	}
8400 
8401 	scaler_state->scaler_id = id;
8402 	if (id >= 0) {
8403 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8404 	} else {
8405 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8406 	}
8407 }
8408 
8409 static void
8410 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8411 				 struct intel_initial_plane_config *plane_config)
8412 {
8413 	struct drm_device *dev = crtc->base.dev;
8414 	struct drm_i915_private *dev_priv = to_i915(dev);
8415 	u32 val, base, offset, stride_mult, tiling;
8416 	int pipe = crtc->pipe;
8417 	int fourcc, pixel_format;
8418 	unsigned int aligned_height;
8419 	struct drm_framebuffer *fb;
8420 	struct intel_framebuffer *intel_fb;
8421 
8422 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8423 	if (!intel_fb) {
8424 		DRM_DEBUG_KMS("failed to alloc fb\n");
8425 		return;
8426 	}
8427 
8428 	fb = &intel_fb->base;
8429 
8430 	fb->dev = dev;
8431 
8432 	val = I915_READ(PLANE_CTL(pipe, 0));
8433 	if (!(val & PLANE_CTL_ENABLE))
8434 		goto error;
8435 
8436 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
8437 	fourcc = skl_format_to_fourcc(pixel_format,
8438 				      val & PLANE_CTL_ORDER_RGBX,
8439 				      val & PLANE_CTL_ALPHA_MASK);
8440 	fb->format = drm_format_info(fourcc);
8441 
8442 	tiling = val & PLANE_CTL_TILED_MASK;
8443 	switch (tiling) {
8444 	case PLANE_CTL_TILED_LINEAR:
8445 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
8446 		break;
8447 	case PLANE_CTL_TILED_X:
8448 		plane_config->tiling = I915_TILING_X;
8449 		fb->modifier = I915_FORMAT_MOD_X_TILED;
8450 		break;
8451 	case PLANE_CTL_TILED_Y:
8452 		if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8453 			fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
8454 		else
8455 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
8456 		break;
8457 	case PLANE_CTL_TILED_YF:
8458 		if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8459 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
8460 		else
8461 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8462 		break;
8463 	default:
8464 		MISSING_CASE(tiling);
8465 		goto error;
8466 	}
8467 
8468 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8469 	plane_config->base = base;
8470 
8471 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
8472 
8473 	val = I915_READ(PLANE_SIZE(pipe, 0));
8474 	fb->height = ((val >> 16) & 0xfff) + 1;
8475 	fb->width = ((val >> 0) & 0x1fff) + 1;
8476 
8477 	val = I915_READ(PLANE_STRIDE(pipe, 0));
8478 	stride_mult = intel_fb_stride_alignment(fb, 0);
8479 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
8480 
8481 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
8482 
8483 	plane_config->size = fb->pitches[0] * aligned_height;
8484 
8485 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8486 		      pipe_name(pipe), fb->width, fb->height,
8487 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
8488 		      plane_config->size);
8489 
8490 	plane_config->fb = intel_fb;
8491 	return;
8492 
8493 error:
8494 	kfree(intel_fb);
8495 }
8496 
8497 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8498 				     struct intel_crtc_state *pipe_config)
8499 {
8500 	struct drm_device *dev = crtc->base.dev;
8501 	struct drm_i915_private *dev_priv = to_i915(dev);
8502 	uint32_t tmp;
8503 
8504 	tmp = I915_READ(PF_CTL(crtc->pipe));
8505 
8506 	if (tmp & PF_ENABLE) {
8507 		pipe_config->pch_pfit.enabled = true;
8508 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8509 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8510 
8511 		/* We currently do not free assignements of panel fitters on
8512 		 * ivb/hsw (since we don't use the higher upscaling modes which
8513 		 * differentiates them) so just WARN about this case for now. */
8514 		if (IS_GEN7(dev_priv)) {
8515 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8516 				PF_PIPE_SEL_IVB(crtc->pipe));
8517 		}
8518 	}
8519 }
8520 
8521 static void
8522 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8523 				  struct intel_initial_plane_config *plane_config)
8524 {
8525 	struct drm_device *dev = crtc->base.dev;
8526 	struct drm_i915_private *dev_priv = to_i915(dev);
8527 	u32 val, base, offset;
8528 	int pipe = crtc->pipe;
8529 	int fourcc, pixel_format;
8530 	unsigned int aligned_height;
8531 	struct drm_framebuffer *fb;
8532 	struct intel_framebuffer *intel_fb;
8533 
8534 	val = I915_READ(DSPCNTR(pipe));
8535 	if (!(val & DISPLAY_PLANE_ENABLE))
8536 		return;
8537 
8538 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8539 	if (!intel_fb) {
8540 		DRM_DEBUG_KMS("failed to alloc fb\n");
8541 		return;
8542 	}
8543 
8544 	fb = &intel_fb->base;
8545 
8546 	fb->dev = dev;
8547 
8548 	if (INTEL_GEN(dev_priv) >= 4) {
8549 		if (val & DISPPLANE_TILED) {
8550 			plane_config->tiling = I915_TILING_X;
8551 			fb->modifier = I915_FORMAT_MOD_X_TILED;
8552 		}
8553 	}
8554 
8555 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8556 	fourcc = i9xx_format_to_fourcc(pixel_format);
8557 	fb->format = drm_format_info(fourcc);
8558 
8559 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8560 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8561 		offset = I915_READ(DSPOFFSET(pipe));
8562 	} else {
8563 		if (plane_config->tiling)
8564 			offset = I915_READ(DSPTILEOFF(pipe));
8565 		else
8566 			offset = I915_READ(DSPLINOFF(pipe));
8567 	}
8568 	plane_config->base = base;
8569 
8570 	val = I915_READ(PIPESRC(pipe));
8571 	fb->width = ((val >> 16) & 0xfff) + 1;
8572 	fb->height = ((val >> 0) & 0xfff) + 1;
8573 
8574 	val = I915_READ(DSPSTRIDE(pipe));
8575 	fb->pitches[0] = val & 0xffffffc0;
8576 
8577 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
8578 
8579 	plane_config->size = fb->pitches[0] * aligned_height;
8580 
8581 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8582 		      pipe_name(pipe), fb->width, fb->height,
8583 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
8584 		      plane_config->size);
8585 
8586 	plane_config->fb = intel_fb;
8587 }
8588 
8589 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8590 				     struct intel_crtc_state *pipe_config)
8591 {
8592 	struct drm_device *dev = crtc->base.dev;
8593 	struct drm_i915_private *dev_priv = to_i915(dev);
8594 	enum intel_display_power_domain power_domain;
8595 	uint32_t tmp;
8596 	bool ret;
8597 
8598 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8599 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8600 		return false;
8601 
8602 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8603 	pipe_config->shared_dpll = NULL;
8604 
8605 	ret = false;
8606 	tmp = I915_READ(PIPECONF(crtc->pipe));
8607 	if (!(tmp & PIPECONF_ENABLE))
8608 		goto out;
8609 
8610 	switch (tmp & PIPECONF_BPC_MASK) {
8611 	case PIPECONF_6BPC:
8612 		pipe_config->pipe_bpp = 18;
8613 		break;
8614 	case PIPECONF_8BPC:
8615 		pipe_config->pipe_bpp = 24;
8616 		break;
8617 	case PIPECONF_10BPC:
8618 		pipe_config->pipe_bpp = 30;
8619 		break;
8620 	case PIPECONF_12BPC:
8621 		pipe_config->pipe_bpp = 36;
8622 		break;
8623 	default:
8624 		break;
8625 	}
8626 
8627 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8628 		pipe_config->limited_color_range = true;
8629 
8630 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8631 		struct intel_shared_dpll *pll;
8632 		enum intel_dpll_id pll_id;
8633 
8634 		pipe_config->has_pch_encoder = true;
8635 
8636 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8637 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8638 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
8639 
8640 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
8641 
8642 		if (HAS_PCH_IBX(dev_priv)) {
8643 			/*
8644 			 * The pipe->pch transcoder and pch transcoder->pll
8645 			 * mapping is fixed.
8646 			 */
8647 			pll_id = (enum intel_dpll_id) crtc->pipe;
8648 		} else {
8649 			tmp = I915_READ(PCH_DPLL_SEL);
8650 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8651 				pll_id = DPLL_ID_PCH_PLL_B;
8652 			else
8653 				pll_id= DPLL_ID_PCH_PLL_A;
8654 		}
8655 
8656 		pipe_config->shared_dpll =
8657 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
8658 		pll = pipe_config->shared_dpll;
8659 
8660 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8661 						 &pipe_config->dpll_hw_state));
8662 
8663 		tmp = pipe_config->dpll_hw_state.dpll;
8664 		pipe_config->pixel_multiplier =
8665 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8666 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8667 
8668 		ironlake_pch_clock_get(crtc, pipe_config);
8669 	} else {
8670 		pipe_config->pixel_multiplier = 1;
8671 	}
8672 
8673 	intel_get_pipe_timings(crtc, pipe_config);
8674 	intel_get_pipe_src_size(crtc, pipe_config);
8675 
8676 	ironlake_get_pfit_config(crtc, pipe_config);
8677 
8678 	ret = true;
8679 
8680 out:
8681 	intel_display_power_put(dev_priv, power_domain);
8682 
8683 	return ret;
8684 }
8685 
8686 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8687 {
8688 	struct drm_device *dev = &dev_priv->drm;
8689 	struct intel_crtc *crtc;
8690 
8691 	for_each_intel_crtc(dev, crtc)
8692 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8693 		     pipe_name(crtc->pipe));
8694 
8695 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL)),
8696 			"Display power well on\n");
8697 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8698 	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8699 	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8700 	I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8701 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8702 	     "CPU PWM1 enabled\n");
8703 	if (IS_HASWELL(dev_priv))
8704 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8705 		     "CPU PWM2 enabled\n");
8706 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8707 	     "PCH PWM1 enabled\n");
8708 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8709 	     "Utility pin enabled\n");
8710 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8711 
8712 	/*
8713 	 * In theory we can still leave IRQs enabled, as long as only the HPD
8714 	 * interrupts remain enabled. We used to check for that, but since it's
8715 	 * gen-specific and since we only disable LCPLL after we fully disable
8716 	 * the interrupts, the check below should be enough.
8717 	 */
8718 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8719 }
8720 
8721 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8722 {
8723 	if (IS_HASWELL(dev_priv))
8724 		return I915_READ(D_COMP_HSW);
8725 	else
8726 		return I915_READ(D_COMP_BDW);
8727 }
8728 
8729 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8730 {
8731 	if (IS_HASWELL(dev_priv)) {
8732 		mutex_lock(&dev_priv->pcu_lock);
8733 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8734 					    val))
8735 			DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8736 		mutex_unlock(&dev_priv->pcu_lock);
8737 	} else {
8738 		I915_WRITE(D_COMP_BDW, val);
8739 		POSTING_READ(D_COMP_BDW);
8740 	}
8741 }
8742 
8743 /*
8744  * This function implements pieces of two sequences from BSpec:
8745  * - Sequence for display software to disable LCPLL
8746  * - Sequence for display software to allow package C8+
8747  * The steps implemented here are just the steps that actually touch the LCPLL
8748  * register. Callers should take care of disabling all the display engine
8749  * functions, doing the mode unset, fixing interrupts, etc.
8750  */
8751 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8752 			      bool switch_to_fclk, bool allow_power_down)
8753 {
8754 	uint32_t val;
8755 
8756 	assert_can_disable_lcpll(dev_priv);
8757 
8758 	val = I915_READ(LCPLL_CTL);
8759 
8760 	if (switch_to_fclk) {
8761 		val |= LCPLL_CD_SOURCE_FCLK;
8762 		I915_WRITE(LCPLL_CTL, val);
8763 
8764 		if (wait_for_us(I915_READ(LCPLL_CTL) &
8765 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
8766 			DRM_ERROR("Switching to FCLK failed\n");
8767 
8768 		val = I915_READ(LCPLL_CTL);
8769 	}
8770 
8771 	val |= LCPLL_PLL_DISABLE;
8772 	I915_WRITE(LCPLL_CTL, val);
8773 	POSTING_READ(LCPLL_CTL);
8774 
8775 	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8776 		DRM_ERROR("LCPLL still locked\n");
8777 
8778 	val = hsw_read_dcomp(dev_priv);
8779 	val |= D_COMP_COMP_DISABLE;
8780 	hsw_write_dcomp(dev_priv, val);
8781 	ndelay(100);
8782 
8783 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8784 		     1))
8785 		DRM_ERROR("D_COMP RCOMP still in progress\n");
8786 
8787 	if (allow_power_down) {
8788 		val = I915_READ(LCPLL_CTL);
8789 		val |= LCPLL_POWER_DOWN_ALLOW;
8790 		I915_WRITE(LCPLL_CTL, val);
8791 		POSTING_READ(LCPLL_CTL);
8792 	}
8793 }
8794 
8795 /*
8796  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8797  * source.
8798  */
8799 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8800 {
8801 	uint32_t val;
8802 
8803 	val = I915_READ(LCPLL_CTL);
8804 
8805 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8806 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8807 		return;
8808 
8809 	/*
8810 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
8811 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8812 	 */
8813 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8814 
8815 	if (val & LCPLL_POWER_DOWN_ALLOW) {
8816 		val &= ~LCPLL_POWER_DOWN_ALLOW;
8817 		I915_WRITE(LCPLL_CTL, val);
8818 		POSTING_READ(LCPLL_CTL);
8819 	}
8820 
8821 	val = hsw_read_dcomp(dev_priv);
8822 	val |= D_COMP_COMP_FORCE;
8823 	val &= ~D_COMP_COMP_DISABLE;
8824 	hsw_write_dcomp(dev_priv, val);
8825 
8826 	val = I915_READ(LCPLL_CTL);
8827 	val &= ~LCPLL_PLL_DISABLE;
8828 	I915_WRITE(LCPLL_CTL, val);
8829 
8830 	if (intel_wait_for_register(dev_priv,
8831 				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8832 				    5))
8833 		DRM_ERROR("LCPLL not locked yet\n");
8834 
8835 	if (val & LCPLL_CD_SOURCE_FCLK) {
8836 		val = I915_READ(LCPLL_CTL);
8837 		val &= ~LCPLL_CD_SOURCE_FCLK;
8838 		I915_WRITE(LCPLL_CTL, val);
8839 
8840 		if (wait_for_us((I915_READ(LCPLL_CTL) &
8841 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8842 			DRM_ERROR("Switching back to LCPLL failed\n");
8843 	}
8844 
8845 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8846 	intel_update_cdclk(dev_priv);
8847 }
8848 
8849 /*
8850  * Package states C8 and deeper are really deep PC states that can only be
8851  * reached when all the devices on the system allow it, so even if the graphics
8852  * device allows PC8+, it doesn't mean the system will actually get to these
8853  * states. Our driver only allows PC8+ when going into runtime PM.
8854  *
8855  * The requirements for PC8+ are that all the outputs are disabled, the power
8856  * well is disabled and most interrupts are disabled, and these are also
8857  * requirements for runtime PM. When these conditions are met, we manually do
8858  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8859  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8860  * hang the machine.
8861  *
8862  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8863  * the state of some registers, so when we come back from PC8+ we need to
8864  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8865  * need to take care of the registers kept by RC6. Notice that this happens even
8866  * if we don't put the device in PCI D3 state (which is what currently happens
8867  * because of the runtime PM support).
8868  *
8869  * For more, read "Display Sequences for Package C8" on the hardware
8870  * documentation.
8871  */
8872 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8873 {
8874 	uint32_t val;
8875 
8876 	DRM_DEBUG_KMS("Enabling package C8+\n");
8877 
8878 	if (HAS_PCH_LPT_LP(dev_priv)) {
8879 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
8880 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8881 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8882 	}
8883 
8884 	lpt_disable_clkout_dp(dev_priv);
8885 	hsw_disable_lcpll(dev_priv, true, true);
8886 }
8887 
8888 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8889 {
8890 	uint32_t val;
8891 
8892 	DRM_DEBUG_KMS("Disabling package C8+\n");
8893 
8894 	hsw_restore_lcpll(dev_priv);
8895 	lpt_init_pch_refclk(dev_priv);
8896 
8897 	if (HAS_PCH_LPT_LP(dev_priv)) {
8898 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
8899 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8900 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8901 	}
8902 }
8903 
8904 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8905 				      struct intel_crtc_state *crtc_state)
8906 {
8907 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8908 		struct intel_encoder *encoder =
8909 			intel_ddi_get_crtc_new_encoder(crtc_state);
8910 
8911 		if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8912 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8913 					 pipe_name(crtc->pipe));
8914 			return -EINVAL;
8915 		}
8916 	}
8917 
8918 	return 0;
8919 }
8920 
8921 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
8922 				   enum port port,
8923 				   struct intel_crtc_state *pipe_config)
8924 {
8925 	enum intel_dpll_id id;
8926 	u32 temp;
8927 
8928 	temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
8929 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
8930 
8931 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
8932 		return;
8933 
8934 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8935 }
8936 
8937 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8938 				enum port port,
8939 				struct intel_crtc_state *pipe_config)
8940 {
8941 	enum intel_dpll_id id;
8942 
8943 	switch (port) {
8944 	case PORT_A:
8945 		id = DPLL_ID_SKL_DPLL0;
8946 		break;
8947 	case PORT_B:
8948 		id = DPLL_ID_SKL_DPLL1;
8949 		break;
8950 	case PORT_C:
8951 		id = DPLL_ID_SKL_DPLL2;
8952 		break;
8953 	default:
8954 		DRM_ERROR("Incorrect port type\n");
8955 		return;
8956 	}
8957 
8958 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8959 }
8960 
8961 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8962 				enum port port,
8963 				struct intel_crtc_state *pipe_config)
8964 {
8965 	enum intel_dpll_id id;
8966 	u32 temp;
8967 
8968 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8969 	id = temp >> (port * 3 + 1);
8970 
8971 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8972 		return;
8973 
8974 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8975 }
8976 
8977 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8978 				enum port port,
8979 				struct intel_crtc_state *pipe_config)
8980 {
8981 	enum intel_dpll_id id;
8982 	uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8983 
8984 	switch (ddi_pll_sel) {
8985 	case PORT_CLK_SEL_WRPLL1:
8986 		id = DPLL_ID_WRPLL1;
8987 		break;
8988 	case PORT_CLK_SEL_WRPLL2:
8989 		id = DPLL_ID_WRPLL2;
8990 		break;
8991 	case PORT_CLK_SEL_SPLL:
8992 		id = DPLL_ID_SPLL;
8993 		break;
8994 	case PORT_CLK_SEL_LCPLL_810:
8995 		id = DPLL_ID_LCPLL_810;
8996 		break;
8997 	case PORT_CLK_SEL_LCPLL_1350:
8998 		id = DPLL_ID_LCPLL_1350;
8999 		break;
9000 	case PORT_CLK_SEL_LCPLL_2700:
9001 		id = DPLL_ID_LCPLL_2700;
9002 		break;
9003 	default:
9004 		MISSING_CASE(ddi_pll_sel);
9005 		/* fall through */
9006 	case PORT_CLK_SEL_NONE:
9007 		return;
9008 	}
9009 
9010 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9011 }
9012 
9013 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9014 				     struct intel_crtc_state *pipe_config,
9015 				     u64 *power_domain_mask)
9016 {
9017 	struct drm_device *dev = crtc->base.dev;
9018 	struct drm_i915_private *dev_priv = to_i915(dev);
9019 	enum intel_display_power_domain power_domain;
9020 	u32 tmp;
9021 
9022 	/*
9023 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
9024 	 * transcoder handled below.
9025 	 */
9026 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9027 
9028 	/*
9029 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9030 	 * consistency and less surprising code; it's in always on power).
9031 	 */
9032 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9033 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
9034 		enum i915_pipe trans_edp_pipe;
9035 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9036 		default:
9037 			WARN(1, "unknown pipe linked to edp transcoder\n");
9038 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
9039 		case TRANS_DDI_EDP_INPUT_A_ON:
9040 			trans_edp_pipe = PIPE_A;
9041 			break;
9042 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
9043 			trans_edp_pipe = PIPE_B;
9044 			break;
9045 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
9046 			trans_edp_pipe = PIPE_C;
9047 			break;
9048 		}
9049 
9050 		if (trans_edp_pipe == crtc->pipe)
9051 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
9052 	}
9053 
9054 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9055 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9056 		return false;
9057 	*power_domain_mask |= BIT_ULL(power_domain);
9058 
9059 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9060 
9061 	return tmp & PIPECONF_ENABLE;
9062 }
9063 
9064 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9065 					 struct intel_crtc_state *pipe_config,
9066 					 u64 *power_domain_mask)
9067 {
9068 	struct drm_device *dev = crtc->base.dev;
9069 	struct drm_i915_private *dev_priv = to_i915(dev);
9070 	enum intel_display_power_domain power_domain;
9071 	enum port port;
9072 	enum transcoder cpu_transcoder;
9073 	u32 tmp;
9074 
9075 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9076 		if (port == PORT_A)
9077 			cpu_transcoder = TRANSCODER_DSI_A;
9078 		else
9079 			cpu_transcoder = TRANSCODER_DSI_C;
9080 
9081 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9082 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9083 			continue;
9084 		*power_domain_mask |= BIT_ULL(power_domain);
9085 
9086 		/*
9087 		 * The PLL needs to be enabled with a valid divider
9088 		 * configuration, otherwise accessing DSI registers will hang
9089 		 * the machine. See BSpec North Display Engine
9090 		 * registers/MIPI[BXT]. We can break out here early, since we
9091 		 * need the same DSI PLL to be enabled for both DSI ports.
9092 		 */
9093 		if (!intel_dsi_pll_is_enabled(dev_priv))
9094 			break;
9095 
9096 		/* XXX: this works for video mode only */
9097 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9098 		if (!(tmp & DPI_ENABLE))
9099 			continue;
9100 
9101 		tmp = I915_READ(MIPI_CTRL(port));
9102 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9103 			continue;
9104 
9105 		pipe_config->cpu_transcoder = cpu_transcoder;
9106 		break;
9107 	}
9108 
9109 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
9110 }
9111 
9112 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9113 				       struct intel_crtc_state *pipe_config)
9114 {
9115 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9116 	struct intel_shared_dpll *pll;
9117 	enum port port;
9118 	uint32_t tmp;
9119 
9120 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9121 
9122 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9123 
9124 	if (IS_CANNONLAKE(dev_priv))
9125 		cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9126 	else if (IS_GEN9_BC(dev_priv))
9127 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
9128 	else if (IS_GEN9_LP(dev_priv))
9129 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
9130 	else
9131 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
9132 
9133 	pll = pipe_config->shared_dpll;
9134 	if (pll) {
9135 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9136 						 &pipe_config->dpll_hw_state));
9137 	}
9138 
9139 	/*
9140 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9141 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
9142 	 * the PCH transcoder is on.
9143 	 */
9144 	if (INTEL_GEN(dev_priv) < 9 &&
9145 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9146 		pipe_config->has_pch_encoder = true;
9147 
9148 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9149 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9150 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9151 
9152 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9153 	}
9154 }
9155 
9156 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9157 				    struct intel_crtc_state *pipe_config)
9158 {
9159 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9160 	enum intel_display_power_domain power_domain;
9161 	u64 power_domain_mask;
9162 	bool active;
9163 
9164 	intel_crtc_init_scalers(crtc, pipe_config);
9165 
9166 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9167 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9168 		return false;
9169 	power_domain_mask = BIT_ULL(power_domain);
9170 
9171 	pipe_config->shared_dpll = NULL;
9172 
9173 	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9174 
9175 	if (IS_GEN9_LP(dev_priv) &&
9176 	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9177 		WARN_ON(active);
9178 		active = true;
9179 	}
9180 
9181 	if (!active)
9182 		goto out;
9183 
9184 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9185 		haswell_get_ddi_port_state(crtc, pipe_config);
9186 		intel_get_pipe_timings(crtc, pipe_config);
9187 	}
9188 
9189 	intel_get_pipe_src_size(crtc, pipe_config);
9190 
9191 	pipe_config->gamma_mode =
9192 		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9193 
9194 	if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) {
9195 		u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
9196 		bool clrspace_yuv = tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV;
9197 
9198 		if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
9199 			bool blend_mode_420 = tmp &
9200 					      PIPEMISC_YUV420_MODE_FULL_BLEND;
9201 
9202 			pipe_config->ycbcr420 = tmp & PIPEMISC_YUV420_ENABLE;
9203 			if (pipe_config->ycbcr420 != clrspace_yuv ||
9204 			    pipe_config->ycbcr420 != blend_mode_420)
9205 				DRM_DEBUG_KMS("Bad 4:2:0 mode (%08x)\n", tmp);
9206 		} else if (clrspace_yuv) {
9207 			DRM_DEBUG_KMS("YCbCr 4:2:0 Unsupported\n");
9208 		}
9209 	}
9210 
9211 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9212 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9213 		power_domain_mask |= BIT_ULL(power_domain);
9214 		if (INTEL_GEN(dev_priv) >= 9)
9215 			skylake_get_pfit_config(crtc, pipe_config);
9216 		else
9217 			ironlake_get_pfit_config(crtc, pipe_config);
9218 	}
9219 
9220 	if (IS_HASWELL(dev_priv))
9221 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9222 			(I915_READ(IPS_CTL) & IPS_ENABLE);
9223 
9224 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9225 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9226 		pipe_config->pixel_multiplier =
9227 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9228 	} else {
9229 		pipe_config->pixel_multiplier = 1;
9230 	}
9231 
9232 out:
9233 	for_each_power_domain(power_domain, power_domain_mask)
9234 		intel_display_power_put(dev_priv, power_domain);
9235 
9236 	return active;
9237 }
9238 
9239 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9240 {
9241 	struct drm_i915_private *dev_priv =
9242 		to_i915(plane_state->base.plane->dev);
9243 	const struct drm_framebuffer *fb = plane_state->base.fb;
9244 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9245 	u32 base;
9246 
9247 	if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9248 		base = obj->phys_handle->busaddr;
9249 	else
9250 		base = intel_plane_ggtt_offset(plane_state);
9251 
9252 	base += plane_state->main.offset;
9253 
9254 	/* ILK+ do this automagically */
9255 	if (HAS_GMCH_DISPLAY(dev_priv) &&
9256 	    plane_state->base.rotation & DRM_MODE_ROTATE_180)
9257 		base += (plane_state->base.crtc_h *
9258 			 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9259 
9260 	return base;
9261 }
9262 
9263 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9264 {
9265 	int x = plane_state->base.crtc_x;
9266 	int y = plane_state->base.crtc_y;
9267 	u32 pos = 0;
9268 
9269 	if (x < 0) {
9270 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9271 		x = -x;
9272 	}
9273 	pos |= x << CURSOR_X_SHIFT;
9274 
9275 	if (y < 0) {
9276 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9277 		y = -y;
9278 	}
9279 	pos |= y << CURSOR_Y_SHIFT;
9280 
9281 	return pos;
9282 }
9283 
9284 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9285 {
9286 	const struct drm_mode_config *config =
9287 		&plane_state->base.plane->dev->mode_config;
9288 	int width = plane_state->base.crtc_w;
9289 	int height = plane_state->base.crtc_h;
9290 
9291 	return width > 0 && width <= config->cursor_width &&
9292 		height > 0 && height <= config->cursor_height;
9293 }
9294 
9295 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9296 			      struct intel_plane_state *plane_state)
9297 {
9298 	const struct drm_framebuffer *fb = plane_state->base.fb;
9299 	int src_x, src_y;
9300 	u32 offset;
9301 	int ret;
9302 
9303 	ret = drm_plane_helper_check_state(&plane_state->base,
9304 					   &plane_state->clip,
9305 					   DRM_PLANE_HELPER_NO_SCALING,
9306 					   DRM_PLANE_HELPER_NO_SCALING,
9307 					   true, true);
9308 	if (ret)
9309 		return ret;
9310 
9311 	if (!fb)
9312 		return 0;
9313 
9314 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9315 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
9316 		return -EINVAL;
9317 	}
9318 
9319 	src_x = plane_state->base.src_x >> 16;
9320 	src_y = plane_state->base.src_y >> 16;
9321 
9322 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9323 	offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9324 
9325 	if (src_x != 0 || src_y != 0) {
9326 		DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9327 		return -EINVAL;
9328 	}
9329 
9330 	plane_state->main.offset = offset;
9331 
9332 	return 0;
9333 }
9334 
9335 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9336 			   const struct intel_plane_state *plane_state)
9337 {
9338 	const struct drm_framebuffer *fb = plane_state->base.fb;
9339 
9340 	return CURSOR_ENABLE |
9341 		CURSOR_GAMMA_ENABLE |
9342 		CURSOR_FORMAT_ARGB |
9343 		CURSOR_STRIDE(fb->pitches[0]);
9344 }
9345 
9346 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9347 {
9348 	int width = plane_state->base.crtc_w;
9349 
9350 	/*
9351 	 * 845g/865g are only limited by the width of their cursors,
9352 	 * the height is arbitrary up to the precision of the register.
9353 	 */
9354 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9355 }
9356 
9357 static int i845_check_cursor(struct intel_plane *plane,
9358 			     struct intel_crtc_state *crtc_state,
9359 			     struct intel_plane_state *plane_state)
9360 {
9361 	const struct drm_framebuffer *fb = plane_state->base.fb;
9362 	int ret;
9363 
9364 	ret = intel_check_cursor(crtc_state, plane_state);
9365 	if (ret)
9366 		return ret;
9367 
9368 	/* if we want to turn off the cursor ignore width and height */
9369 	if (!fb)
9370 		return 0;
9371 
9372 	/* Check for which cursor types we support */
9373 	if (!i845_cursor_size_ok(plane_state)) {
9374 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9375 			  plane_state->base.crtc_w,
9376 			  plane_state->base.crtc_h);
9377 		return -EINVAL;
9378 	}
9379 
9380 	switch (fb->pitches[0]) {
9381 	case 256:
9382 	case 512:
9383 	case 1024:
9384 	case 2048:
9385 		break;
9386 	default:
9387 		DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9388 			      fb->pitches[0]);
9389 		return -EINVAL;
9390 	}
9391 
9392 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9393 
9394 	return 0;
9395 }
9396 
9397 static void i845_update_cursor(struct intel_plane *plane,
9398 			       const struct intel_crtc_state *crtc_state,
9399 			       const struct intel_plane_state *plane_state)
9400 {
9401 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9402 	u32 cntl = 0, base = 0, pos = 0, size = 0;
9403 	unsigned long irqflags;
9404 
9405 	if (plane_state && plane_state->base.visible) {
9406 		unsigned int width = plane_state->base.crtc_w;
9407 		unsigned int height = plane_state->base.crtc_h;
9408 
9409 		cntl = plane_state->ctl;
9410 		size = (height << 12) | width;
9411 
9412 		base = intel_cursor_base(plane_state);
9413 		pos = intel_cursor_position(plane_state);
9414 	}
9415 
9416 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9417 
9418 	/* On these chipsets we can only modify the base/size/stride
9419 	 * whilst the cursor is disabled.
9420 	 */
9421 	if (plane->cursor.base != base ||
9422 	    plane->cursor.size != size ||
9423 	    plane->cursor.cntl != cntl) {
9424 		I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9425 		I915_WRITE_FW(CURBASE(PIPE_A), base);
9426 		I915_WRITE_FW(CURSIZE, size);
9427 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
9428 		I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9429 
9430 		plane->cursor.base = base;
9431 		plane->cursor.size = size;
9432 		plane->cursor.cntl = cntl;
9433 	} else {
9434 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
9435 	}
9436 
9437 	POSTING_READ_FW(CURCNTR(PIPE_A));
9438 
9439 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9440 }
9441 
9442 static void i845_disable_cursor(struct intel_plane *plane,
9443 				struct intel_crtc *crtc)
9444 {
9445 	i845_update_cursor(plane, NULL, NULL);
9446 }
9447 
9448 static bool i845_cursor_get_hw_state(struct intel_plane *plane)
9449 {
9450 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9451 	enum intel_display_power_domain power_domain;
9452 	bool ret;
9453 
9454 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
9455 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9456 		return false;
9457 
9458 	ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
9459 
9460 	intel_display_power_put(dev_priv, power_domain);
9461 
9462 	return ret;
9463 }
9464 
9465 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9466 			   const struct intel_plane_state *plane_state)
9467 {
9468 	struct drm_i915_private *dev_priv =
9469 		to_i915(plane_state->base.plane->dev);
9470 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9471 	u32 cntl;
9472 
9473 	cntl = MCURSOR_GAMMA_ENABLE;
9474 
9475 	if (HAS_DDI(dev_priv))
9476 		cntl |= CURSOR_PIPE_CSC_ENABLE;
9477 
9478 	cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9479 
9480 	switch (plane_state->base.crtc_w) {
9481 	case 64:
9482 		cntl |= CURSOR_MODE_64_ARGB_AX;
9483 		break;
9484 	case 128:
9485 		cntl |= CURSOR_MODE_128_ARGB_AX;
9486 		break;
9487 	case 256:
9488 		cntl |= CURSOR_MODE_256_ARGB_AX;
9489 		break;
9490 	default:
9491 		MISSING_CASE(plane_state->base.crtc_w);
9492 		return 0;
9493 	}
9494 
9495 	if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9496 		cntl |= CURSOR_ROTATE_180;
9497 
9498 	return cntl;
9499 }
9500 
9501 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9502 {
9503 	struct drm_i915_private *dev_priv =
9504 		to_i915(plane_state->base.plane->dev);
9505 	int width = plane_state->base.crtc_w;
9506 	int height = plane_state->base.crtc_h;
9507 
9508 	if (!intel_cursor_size_ok(plane_state))
9509 		return false;
9510 
9511 	/* Cursor width is limited to a few power-of-two sizes */
9512 	switch (width) {
9513 	case 256:
9514 	case 128:
9515 	case 64:
9516 		break;
9517 	default:
9518 		return false;
9519 	}
9520 
9521 	/*
9522 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9523 	 * height from 8 lines up to the cursor width, when the
9524 	 * cursor is not rotated. Everything else requires square
9525 	 * cursors.
9526 	 */
9527 	if (HAS_CUR_FBC(dev_priv) &&
9528 	    plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9529 		if (height < 8 || height > width)
9530 			return false;
9531 	} else {
9532 		if (height != width)
9533 			return false;
9534 	}
9535 
9536 	return true;
9537 }
9538 
9539 static int i9xx_check_cursor(struct intel_plane *plane,
9540 			     struct intel_crtc_state *crtc_state,
9541 			     struct intel_plane_state *plane_state)
9542 {
9543 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9544 	const struct drm_framebuffer *fb = plane_state->base.fb;
9545 	enum i915_pipe pipe = plane->pipe;
9546 	int ret;
9547 
9548 	ret = intel_check_cursor(crtc_state, plane_state);
9549 	if (ret)
9550 		return ret;
9551 
9552 	/* if we want to turn off the cursor ignore width and height */
9553 	if (!fb)
9554 		return 0;
9555 
9556 	/* Check for which cursor types we support */
9557 	if (!i9xx_cursor_size_ok(plane_state)) {
9558 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9559 			  plane_state->base.crtc_w,
9560 			  plane_state->base.crtc_h);
9561 		return -EINVAL;
9562 	}
9563 
9564 	if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9565 		DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9566 			      fb->pitches[0], plane_state->base.crtc_w);
9567 		return -EINVAL;
9568 	}
9569 
9570 	/*
9571 	 * There's something wrong with the cursor on CHV pipe C.
9572 	 * If it straddles the left edge of the screen then
9573 	 * moving it away from the edge or disabling it often
9574 	 * results in a pipe underrun, and often that can lead to
9575 	 * dead pipe (constant underrun reported, and it scans
9576 	 * out just a solid color). To recover from that, the
9577 	 * display power well must be turned off and on again.
9578 	 * Refuse the put the cursor into that compromised position.
9579 	 */
9580 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9581 	    plane_state->base.visible && plane_state->base.crtc_x < 0) {
9582 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9583 		return -EINVAL;
9584 	}
9585 
9586 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9587 
9588 	return 0;
9589 }
9590 
9591 static void i9xx_update_cursor(struct intel_plane *plane,
9592 			       const struct intel_crtc_state *crtc_state,
9593 			       const struct intel_plane_state *plane_state)
9594 {
9595 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9596 	enum i915_pipe pipe = plane->pipe;
9597 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9598 	unsigned long irqflags;
9599 
9600 	if (plane_state && plane_state->base.visible) {
9601 		cntl = plane_state->ctl;
9602 
9603 		if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9604 			fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9605 
9606 		base = intel_cursor_base(plane_state);
9607 		pos = intel_cursor_position(plane_state);
9608 	}
9609 
9610 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9611 
9612 	/*
9613 	 * On some platforms writing CURCNTR first will also
9614 	 * cause CURPOS to be armed by the CURBASE write.
9615 	 * Without the CURCNTR write the CURPOS write would
9616 	 * arm itself. Thus we always start the full update
9617 	 * with a CURCNTR write.
9618 	 *
9619 	 * On other platforms CURPOS always requires the
9620 	 * CURBASE write to arm the update. Additonally
9621 	 * a write to any of the cursor register will cancel
9622 	 * an already armed cursor update. Thus leaving out
9623 	 * the CURBASE write after CURPOS could lead to a
9624 	 * cursor that doesn't appear to move, or even change
9625 	 * shape. Thus we always write CURBASE.
9626 	 *
9627 	 * CURCNTR and CUR_FBC_CTL are always
9628 	 * armed by the CURBASE write only.
9629 	 */
9630 	if (plane->cursor.base != base ||
9631 	    plane->cursor.size != fbc_ctl ||
9632 	    plane->cursor.cntl != cntl) {
9633 		I915_WRITE_FW(CURCNTR(pipe), cntl);
9634 		if (HAS_CUR_FBC(dev_priv))
9635 			I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9636 		I915_WRITE_FW(CURPOS(pipe), pos);
9637 		I915_WRITE_FW(CURBASE(pipe), base);
9638 
9639 		plane->cursor.base = base;
9640 		plane->cursor.size = fbc_ctl;
9641 		plane->cursor.cntl = cntl;
9642 	} else {
9643 		I915_WRITE_FW(CURPOS(pipe), pos);
9644 		I915_WRITE_FW(CURBASE(pipe), base);
9645 	}
9646 
9647 	POSTING_READ_FW(CURBASE(pipe));
9648 
9649 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9650 }
9651 
9652 static void i9xx_disable_cursor(struct intel_plane *plane,
9653 				struct intel_crtc *crtc)
9654 {
9655 	i9xx_update_cursor(plane, NULL, NULL);
9656 }
9657 
9658 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane)
9659 {
9660 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9661 	enum intel_display_power_domain power_domain;
9662 	enum i915_pipe pipe = plane->pipe;
9663 	bool ret;
9664 
9665 	/*
9666 	 * Not 100% correct for planes that can move between pipes,
9667 	 * but that's only the case for gen2-3 which don't have any
9668 	 * display power wells.
9669 	 */
9670 	power_domain = POWER_DOMAIN_PIPE(pipe);
9671 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9672 		return false;
9673 
9674 	ret = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
9675 
9676 	intel_display_power_put(dev_priv, power_domain);
9677 
9678 	return ret;
9679 }
9680 
9681 /* VESA 640x480x72Hz mode to set on the pipe */
9682 static const struct drm_display_mode load_detect_mode = {
9683 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9684 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9685 };
9686 
9687 struct drm_framebuffer *
9688 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9689 			 struct drm_mode_fb_cmd2 *mode_cmd)
9690 {
9691 	struct intel_framebuffer *intel_fb;
9692 	int ret;
9693 
9694 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9695 	if (!intel_fb)
9696 		return ERR_PTR(-ENOMEM);
9697 
9698 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9699 	if (ret)
9700 		goto err;
9701 
9702 	return &intel_fb->base;
9703 
9704 err:
9705 	kfree(intel_fb);
9706 	return ERR_PTR(ret);
9707 }
9708 
9709 static u32
9710 intel_framebuffer_pitch_for_width(int width, int bpp)
9711 {
9712 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9713 	return ALIGN(pitch, 64);
9714 }
9715 
9716 static u32
9717 intel_framebuffer_size_for_mode(const struct drm_display_mode *mode, int bpp)
9718 {
9719 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9720 	return PAGE_ALIGN(pitch * mode->vdisplay);
9721 }
9722 
9723 static struct drm_framebuffer *
9724 intel_framebuffer_create_for_mode(struct drm_device *dev,
9725 				  const struct drm_display_mode *mode,
9726 				  int depth, int bpp)
9727 {
9728 	struct drm_framebuffer *fb;
9729 	struct drm_i915_gem_object *obj;
9730 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9731 
9732 	obj = i915_gem_object_create(to_i915(dev),
9733 				    intel_framebuffer_size_for_mode(mode, bpp));
9734 	if (IS_ERR(obj))
9735 		return ERR_CAST(obj);
9736 
9737 	mode_cmd.width = mode->hdisplay;
9738 	mode_cmd.height = mode->vdisplay;
9739 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9740 								bpp);
9741 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9742 
9743 	fb = intel_framebuffer_create(obj, &mode_cmd);
9744 	if (IS_ERR(fb))
9745 		i915_gem_object_put(obj);
9746 
9747 	return fb;
9748 }
9749 
9750 static struct drm_framebuffer *
9751 mode_fits_in_fbdev(struct drm_device *dev,
9752 		   const struct drm_display_mode *mode)
9753 {
9754 #ifdef CONFIG_DRM_FBDEV_EMULATION
9755 	struct drm_i915_private *dev_priv = to_i915(dev);
9756 	struct drm_i915_gem_object *obj;
9757 	struct drm_framebuffer *fb;
9758 
9759 	if (!dev_priv->fbdev)
9760 		return NULL;
9761 
9762 	if (!dev_priv->fbdev->fb)
9763 		return NULL;
9764 
9765 	obj = dev_priv->fbdev->fb->obj;
9766 	BUG_ON(!obj);
9767 
9768 	fb = &dev_priv->fbdev->fb->base;
9769 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9770 							       fb->format->cpp[0] * 8))
9771 		return NULL;
9772 
9773 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
9774 		return NULL;
9775 
9776 	drm_framebuffer_get(fb);
9777 	return fb;
9778 #else
9779 	return NULL;
9780 #endif
9781 }
9782 
9783 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9784 					   struct drm_crtc *crtc,
9785 					   const struct drm_display_mode *mode,
9786 					   struct drm_framebuffer *fb,
9787 					   int x, int y)
9788 {
9789 	struct drm_plane_state *plane_state;
9790 	int hdisplay, vdisplay;
9791 	int ret;
9792 
9793 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9794 	if (IS_ERR(plane_state))
9795 		return PTR_ERR(plane_state);
9796 
9797 	if (mode)
9798 		drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9799 	else
9800 		hdisplay = vdisplay = 0;
9801 
9802 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9803 	if (ret)
9804 		return ret;
9805 	drm_atomic_set_fb_for_plane(plane_state, fb);
9806 	plane_state->crtc_x = 0;
9807 	plane_state->crtc_y = 0;
9808 	plane_state->crtc_w = hdisplay;
9809 	plane_state->crtc_h = vdisplay;
9810 	plane_state->src_x = x << 16;
9811 	plane_state->src_y = y << 16;
9812 	plane_state->src_w = hdisplay << 16;
9813 	plane_state->src_h = vdisplay << 16;
9814 
9815 	return 0;
9816 }
9817 
9818 int intel_get_load_detect_pipe(struct drm_connector *connector,
9819 			       const struct drm_display_mode *mode,
9820 			       struct intel_load_detect_pipe *old,
9821 			       struct drm_modeset_acquire_ctx *ctx)
9822 {
9823 	struct intel_crtc *intel_crtc;
9824 	struct intel_encoder *intel_encoder =
9825 		intel_attached_encoder(connector);
9826 	struct drm_crtc *possible_crtc;
9827 	struct drm_encoder *encoder = &intel_encoder->base;
9828 	struct drm_crtc *crtc = NULL;
9829 	struct drm_device *dev = encoder->dev;
9830 	struct drm_i915_private *dev_priv = to_i915(dev);
9831 	struct drm_framebuffer *fb;
9832 	struct drm_mode_config *config = &dev->mode_config;
9833 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
9834 	struct drm_connector_state *connector_state;
9835 	struct intel_crtc_state *crtc_state;
9836 	int ret, i = -1;
9837 
9838 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9839 		      connector->base.id, connector->name,
9840 		      encoder->base.id, encoder->name);
9841 
9842 	old->restore_state = NULL;
9843 
9844 	WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9845 
9846 	/*
9847 	 * Algorithm gets a little messy:
9848 	 *
9849 	 *   - if the connector already has an assigned crtc, use it (but make
9850 	 *     sure it's on first)
9851 	 *
9852 	 *   - try to find the first unused crtc that can drive this connector,
9853 	 *     and use that if we find one
9854 	 */
9855 
9856 	/* See if we already have a CRTC for this connector */
9857 	if (connector->state->crtc) {
9858 		crtc = connector->state->crtc;
9859 
9860 		ret = drm_modeset_lock(&crtc->mutex, ctx);
9861 		if (ret)
9862 			goto fail;
9863 
9864 		/* Make sure the crtc and connector are running */
9865 		goto found;
9866 	}
9867 
9868 	/* Find an unused one (if possible) */
9869 	for_each_crtc(dev, possible_crtc) {
9870 		i++;
9871 		if (!(encoder->possible_crtcs & (1 << i)))
9872 			continue;
9873 
9874 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9875 		if (ret)
9876 			goto fail;
9877 
9878 		if (possible_crtc->state->enable) {
9879 			drm_modeset_unlock(&possible_crtc->mutex);
9880 			continue;
9881 		}
9882 
9883 		crtc = possible_crtc;
9884 		break;
9885 	}
9886 
9887 	/*
9888 	 * If we didn't find an unused CRTC, don't use any.
9889 	 */
9890 	if (!crtc) {
9891 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
9892 		ret = -ENODEV;
9893 		goto fail;
9894 	}
9895 
9896 found:
9897 	intel_crtc = to_intel_crtc(crtc);
9898 
9899 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9900 	if (ret)
9901 		goto fail;
9902 
9903 	state = drm_atomic_state_alloc(dev);
9904 	restore_state = drm_atomic_state_alloc(dev);
9905 	if (!state || !restore_state) {
9906 		ret = -ENOMEM;
9907 		goto fail;
9908 	}
9909 
9910 	state->acquire_ctx = ctx;
9911 	restore_state->acquire_ctx = ctx;
9912 
9913 	connector_state = drm_atomic_get_connector_state(state, connector);
9914 	if (IS_ERR(connector_state)) {
9915 		ret = PTR_ERR(connector_state);
9916 		goto fail;
9917 	}
9918 
9919 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9920 	if (ret)
9921 		goto fail;
9922 
9923 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9924 	if (IS_ERR(crtc_state)) {
9925 		ret = PTR_ERR(crtc_state);
9926 		goto fail;
9927 	}
9928 
9929 	crtc_state->base.active = crtc_state->base.enable = true;
9930 
9931 	if (!mode)
9932 		mode = &load_detect_mode;
9933 
9934 	/* We need a framebuffer large enough to accommodate all accesses
9935 	 * that the plane may generate whilst we perform load detection.
9936 	 * We can not rely on the fbcon either being present (we get called
9937 	 * during its initialisation to detect all boot displays, or it may
9938 	 * not even exist) or that it is large enough to satisfy the
9939 	 * requested mode.
9940 	 */
9941 	fb = mode_fits_in_fbdev(dev, mode);
9942 	if (fb == NULL) {
9943 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9944 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9945 	} else
9946 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9947 	if (IS_ERR(fb)) {
9948 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9949 		ret = PTR_ERR(fb);
9950 		goto fail;
9951 	}
9952 
9953 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9954 	drm_framebuffer_put(fb);
9955 	if (ret)
9956 		goto fail;
9957 
9958 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9959 	if (ret)
9960 		goto fail;
9961 
9962 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9963 	if (!ret)
9964 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9965 	if (!ret)
9966 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9967 	if (ret) {
9968 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9969 		goto fail;
9970 	}
9971 
9972 	ret = drm_atomic_commit(state);
9973 	if (ret) {
9974 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9975 		goto fail;
9976 	}
9977 
9978 	old->restore_state = restore_state;
9979 	drm_atomic_state_put(state);
9980 
9981 	/* let the connector get through one full cycle before testing */
9982 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9983 	return true;
9984 
9985 fail:
9986 	if (state) {
9987 		drm_atomic_state_put(state);
9988 		state = NULL;
9989 	}
9990 	if (restore_state) {
9991 		drm_atomic_state_put(restore_state);
9992 		restore_state = NULL;
9993 	}
9994 
9995 	if (ret == -EDEADLK)
9996 		return ret;
9997 
9998 	return false;
9999 }
10000 
10001 void intel_release_load_detect_pipe(struct drm_connector *connector,
10002 				    struct intel_load_detect_pipe *old,
10003 				    struct drm_modeset_acquire_ctx *ctx)
10004 {
10005 	struct intel_encoder *intel_encoder =
10006 		intel_attached_encoder(connector);
10007 	struct drm_encoder *encoder = &intel_encoder->base;
10008 	struct drm_atomic_state *state = old->restore_state;
10009 	int ret;
10010 
10011 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10012 		      connector->base.id, connector->name,
10013 		      encoder->base.id, encoder->name);
10014 
10015 	if (!state)
10016 		return;
10017 
10018 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
10019 	if (ret)
10020 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10021 	drm_atomic_state_put(state);
10022 }
10023 
10024 static int i9xx_pll_refclk(struct drm_device *dev,
10025 			   const struct intel_crtc_state *pipe_config)
10026 {
10027 	struct drm_i915_private *dev_priv = to_i915(dev);
10028 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10029 
10030 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10031 		return dev_priv->vbt.lvds_ssc_freq;
10032 	else if (HAS_PCH_SPLIT(dev_priv))
10033 		return 120000;
10034 	else if (!IS_GEN2(dev_priv))
10035 		return 96000;
10036 	else
10037 		return 48000;
10038 }
10039 
10040 /* Returns the clock of the currently programmed mode of the given pipe. */
10041 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10042 				struct intel_crtc_state *pipe_config)
10043 {
10044 	struct drm_device *dev = crtc->base.dev;
10045 	struct drm_i915_private *dev_priv = to_i915(dev);
10046 	int pipe = pipe_config->cpu_transcoder;
10047 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10048 	u32 fp;
10049 	struct dpll clock;
10050 	int port_clock;
10051 	int refclk = i9xx_pll_refclk(dev, pipe_config);
10052 
10053 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10054 		fp = pipe_config->dpll_hw_state.fp0;
10055 	else
10056 		fp = pipe_config->dpll_hw_state.fp1;
10057 
10058 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10059 	if (IS_PINEVIEW(dev_priv)) {
10060 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10061 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10062 	} else {
10063 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10064 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10065 	}
10066 
10067 	if (!IS_GEN2(dev_priv)) {
10068 		if (IS_PINEVIEW(dev_priv))
10069 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10070 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10071 		else
10072 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10073 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
10074 
10075 		switch (dpll & DPLL_MODE_MASK) {
10076 		case DPLLB_MODE_DAC_SERIAL:
10077 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10078 				5 : 10;
10079 			break;
10080 		case DPLLB_MODE_LVDS:
10081 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10082 				7 : 14;
10083 			break;
10084 		default:
10085 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10086 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10087 			return;
10088 		}
10089 
10090 		if (IS_PINEVIEW(dev_priv))
10091 			port_clock = pnv_calc_dpll_params(refclk, &clock);
10092 		else
10093 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
10094 	} else {
10095 		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
10096 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10097 
10098 		if (is_lvds) {
10099 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10100 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
10101 
10102 			if (lvds & LVDS_CLKB_POWER_UP)
10103 				clock.p2 = 7;
10104 			else
10105 				clock.p2 = 14;
10106 		} else {
10107 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10108 				clock.p1 = 2;
10109 			else {
10110 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10111 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10112 			}
10113 			if (dpll & PLL_P2_DIVIDE_BY_4)
10114 				clock.p2 = 4;
10115 			else
10116 				clock.p2 = 2;
10117 		}
10118 
10119 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
10120 	}
10121 
10122 	/*
10123 	 * This value includes pixel_multiplier. We will use
10124 	 * port_clock to compute adjusted_mode.crtc_clock in the
10125 	 * encoder's get_config() function.
10126 	 */
10127 	pipe_config->port_clock = port_clock;
10128 }
10129 
10130 int intel_dotclock_calculate(int link_freq,
10131 			     const struct intel_link_m_n *m_n)
10132 {
10133 	/*
10134 	 * The calculation for the data clock is:
10135 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10136 	 * But we want to avoid losing precison if possible, so:
10137 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10138 	 *
10139 	 * and the link clock is simpler:
10140 	 * link_clock = (m * link_clock) / n
10141 	 */
10142 
10143 	if (!m_n->link_n)
10144 		return 0;
10145 
10146 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
10147 }
10148 
10149 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10150 				   struct intel_crtc_state *pipe_config)
10151 {
10152 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10153 
10154 	/* read out port_clock from the DPLL */
10155 	i9xx_crtc_clock_get(crtc, pipe_config);
10156 
10157 	/*
10158 	 * In case there is an active pipe without active ports,
10159 	 * we may need some idea for the dotclock anyway.
10160 	 * Calculate one based on the FDI configuration.
10161 	 */
10162 	pipe_config->base.adjusted_mode.crtc_clock =
10163 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10164 					 &pipe_config->fdi_m_n);
10165 }
10166 
10167 /* Returns the currently programmed mode of the given encoder. */
10168 struct drm_display_mode *
10169 intel_encoder_current_mode(struct intel_encoder *encoder)
10170 {
10171 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
10172 	struct intel_crtc_state *crtc_state;
10173 	struct drm_display_mode *mode;
10174 	struct intel_crtc *crtc;
10175 	enum i915_pipe pipe;
10176 
10177 	if (!encoder->get_hw_state(encoder, &pipe))
10178 		return NULL;
10179 
10180 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10181 
10182 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10183 	if (!mode)
10184 		return NULL;
10185 
10186 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
10187 	if (!crtc_state) {
10188 		kfree(mode);
10189 		return NULL;
10190 	}
10191 
10192 	crtc_state->base.crtc = &crtc->base;
10193 
10194 	if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
10195 		kfree(crtc_state);
10196 		kfree(mode);
10197 		return NULL;
10198 	}
10199 
10200 	encoder->get_config(encoder, crtc_state);
10201 
10202 	intel_mode_from_pipe_config(mode, crtc_state);
10203 
10204 	kfree(crtc_state);
10205 
10206 	return mode;
10207 }
10208 
10209 static void intel_crtc_destroy(struct drm_crtc *crtc)
10210 {
10211 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10212 
10213 	drm_crtc_cleanup(crtc);
10214 	kfree(intel_crtc);
10215 }
10216 
10217 /**
10218  * intel_wm_need_update - Check whether watermarks need updating
10219  * @plane: drm plane
10220  * @state: new plane state
10221  *
10222  * Check current plane state versus the new one to determine whether
10223  * watermarks need to be recalculated.
10224  *
10225  * Returns true or false.
10226  */
10227 static bool intel_wm_need_update(struct drm_plane *plane,
10228 				 struct drm_plane_state *state)
10229 {
10230 	struct intel_plane_state *new = to_intel_plane_state(state);
10231 	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10232 
10233 	/* Update watermarks on tiling or size changes. */
10234 	if (new->base.visible != cur->base.visible)
10235 		return true;
10236 
10237 	if (!cur->base.fb || !new->base.fb)
10238 		return false;
10239 
10240 	if (cur->base.fb->modifier != new->base.fb->modifier ||
10241 	    cur->base.rotation != new->base.rotation ||
10242 	    drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10243 	    drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10244 	    drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10245 	    drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10246 		return true;
10247 
10248 	return false;
10249 }
10250 
10251 static bool needs_scaling(const struct intel_plane_state *state)
10252 {
10253 	int src_w = drm_rect_width(&state->base.src) >> 16;
10254 	int src_h = drm_rect_height(&state->base.src) >> 16;
10255 	int dst_w = drm_rect_width(&state->base.dst);
10256 	int dst_h = drm_rect_height(&state->base.dst);
10257 
10258 	return (src_w != dst_w || src_h != dst_h);
10259 }
10260 
10261 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
10262 				    struct drm_crtc_state *crtc_state,
10263 				    const struct intel_plane_state *old_plane_state,
10264 				    struct drm_plane_state *plane_state)
10265 {
10266 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10267 	struct drm_crtc *crtc = crtc_state->crtc;
10268 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10269 	struct intel_plane *plane = to_intel_plane(plane_state->plane);
10270 	struct drm_device *dev = crtc->dev;
10271 	struct drm_i915_private *dev_priv = to_i915(dev);
10272 	bool mode_changed = needs_modeset(crtc_state);
10273 	bool was_crtc_enabled = old_crtc_state->base.active;
10274 	bool is_crtc_enabled = crtc_state->active;
10275 	bool turn_off, turn_on, visible, was_visible;
10276 	struct drm_framebuffer *fb = plane_state->fb;
10277 	int ret;
10278 
10279 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10280 		ret = skl_update_scaler_plane(
10281 			to_intel_crtc_state(crtc_state),
10282 			to_intel_plane_state(plane_state));
10283 		if (ret)
10284 			return ret;
10285 	}
10286 
10287 	was_visible = old_plane_state->base.visible;
10288 	visible = plane_state->visible;
10289 
10290 	if (!was_crtc_enabled && WARN_ON(was_visible))
10291 		was_visible = false;
10292 
10293 	/*
10294 	 * Visibility is calculated as if the crtc was on, but
10295 	 * after scaler setup everything depends on it being off
10296 	 * when the crtc isn't active.
10297 	 *
10298 	 * FIXME this is wrong for watermarks. Watermarks should also
10299 	 * be computed as if the pipe would be active. Perhaps move
10300 	 * per-plane wm computation to the .check_plane() hook, and
10301 	 * only combine the results from all planes in the current place?
10302 	 */
10303 	if (!is_crtc_enabled) {
10304 		plane_state->visible = visible = false;
10305 		to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10306 	}
10307 
10308 	if (!was_visible && !visible)
10309 		return 0;
10310 
10311 	if (fb != old_plane_state->base.fb)
10312 		pipe_config->fb_changed = true;
10313 
10314 	turn_off = was_visible && (!visible || mode_changed);
10315 	turn_on = visible && (!was_visible || mode_changed);
10316 
10317 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10318 			 intel_crtc->base.base.id, intel_crtc->base.name,
10319 			 plane->base.base.id, plane->base.name,
10320 			 fb ? fb->base.id : -1);
10321 
10322 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10323 			 plane->base.base.id, plane->base.name,
10324 			 was_visible, visible,
10325 			 turn_off, turn_on, mode_changed);
10326 
10327 	if (turn_on) {
10328 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10329 			pipe_config->update_wm_pre = true;
10330 
10331 		/* must disable cxsr around plane enable/disable */
10332 		if (plane->id != PLANE_CURSOR)
10333 			pipe_config->disable_cxsr = true;
10334 	} else if (turn_off) {
10335 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10336 			pipe_config->update_wm_post = true;
10337 
10338 		/* must disable cxsr around plane enable/disable */
10339 		if (plane->id != PLANE_CURSOR)
10340 			pipe_config->disable_cxsr = true;
10341 	} else if (intel_wm_need_update(&plane->base, plane_state)) {
10342 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
10343 			/* FIXME bollocks */
10344 			pipe_config->update_wm_pre = true;
10345 			pipe_config->update_wm_post = true;
10346 		}
10347 	}
10348 
10349 	if (visible || was_visible)
10350 		pipe_config->fb_bits |= plane->frontbuffer_bit;
10351 
10352 	/*
10353 	 * WaCxSRDisabledForSpriteScaling:ivb
10354 	 *
10355 	 * cstate->update_wm was already set above, so this flag will
10356 	 * take effect when we commit and program watermarks.
10357 	 */
10358 	if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10359 	    needs_scaling(to_intel_plane_state(plane_state)) &&
10360 	    !needs_scaling(old_plane_state))
10361 		pipe_config->disable_lp_wm = true;
10362 
10363 	return 0;
10364 }
10365 
10366 static bool encoders_cloneable(const struct intel_encoder *a,
10367 			       const struct intel_encoder *b)
10368 {
10369 	/* masks could be asymmetric, so check both ways */
10370 	return a == b || (a->cloneable & (1 << b->type) &&
10371 			  b->cloneable & (1 << a->type));
10372 }
10373 
10374 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10375 					 struct intel_crtc *crtc,
10376 					 struct intel_encoder *encoder)
10377 {
10378 	struct intel_encoder *source_encoder;
10379 	struct drm_connector *connector;
10380 	struct drm_connector_state *connector_state;
10381 	int i;
10382 
10383 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10384 		if (connector_state->crtc != &crtc->base)
10385 			continue;
10386 
10387 		source_encoder =
10388 			to_intel_encoder(connector_state->best_encoder);
10389 		if (!encoders_cloneable(encoder, source_encoder))
10390 			return false;
10391 	}
10392 
10393 	return true;
10394 }
10395 
10396 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10397 				   struct drm_crtc_state *crtc_state)
10398 {
10399 	struct drm_device *dev = crtc->dev;
10400 	struct drm_i915_private *dev_priv = to_i915(dev);
10401 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10402 	struct intel_crtc_state *pipe_config =
10403 		to_intel_crtc_state(crtc_state);
10404 	struct drm_atomic_state *state = crtc_state->state;
10405 	int ret;
10406 	bool mode_changed = needs_modeset(crtc_state);
10407 
10408 	if (mode_changed && !crtc_state->active)
10409 		pipe_config->update_wm_post = true;
10410 
10411 	if (mode_changed && crtc_state->enable &&
10412 	    dev_priv->display.crtc_compute_clock &&
10413 	    !WARN_ON(pipe_config->shared_dpll)) {
10414 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10415 							   pipe_config);
10416 		if (ret)
10417 			return ret;
10418 	}
10419 
10420 	if (crtc_state->color_mgmt_changed) {
10421 		ret = intel_color_check(crtc, crtc_state);
10422 		if (ret)
10423 			return ret;
10424 
10425 		/*
10426 		 * Changing color management on Intel hardware is
10427 		 * handled as part of planes update.
10428 		 */
10429 		crtc_state->planes_changed = true;
10430 	}
10431 
10432 	ret = 0;
10433 	if (dev_priv->display.compute_pipe_wm) {
10434 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
10435 		if (ret) {
10436 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10437 			return ret;
10438 		}
10439 	}
10440 
10441 	if (dev_priv->display.compute_intermediate_wm &&
10442 	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
10443 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10444 			return 0;
10445 
10446 		/*
10447 		 * Calculate 'intermediate' watermarks that satisfy both the
10448 		 * old state and the new state.  We can program these
10449 		 * immediately.
10450 		 */
10451 		ret = dev_priv->display.compute_intermediate_wm(dev,
10452 								intel_crtc,
10453 								pipe_config);
10454 		if (ret) {
10455 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10456 			return ret;
10457 		}
10458 	} else if (dev_priv->display.compute_intermediate_wm) {
10459 		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10460 			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10461 	}
10462 
10463 	if (INTEL_GEN(dev_priv) >= 9) {
10464 		if (mode_changed)
10465 			ret = skl_update_scaler_crtc(pipe_config);
10466 
10467 		if (!ret)
10468 			ret = skl_check_pipe_max_pixel_rate(intel_crtc,
10469 							    pipe_config);
10470 		if (!ret)
10471 			ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10472 							 pipe_config);
10473 	}
10474 
10475 	return ret;
10476 }
10477 
10478 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
10479 	.atomic_begin = intel_begin_crtc_commit,
10480 	.atomic_flush = intel_finish_crtc_commit,
10481 	.atomic_check = intel_crtc_atomic_check,
10482 };
10483 
10484 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10485 {
10486 	struct intel_connector *connector;
10487 	struct drm_connector_list_iter conn_iter;
10488 
10489 	drm_connector_list_iter_begin(dev, &conn_iter);
10490 	for_each_intel_connector_iter(connector, &conn_iter) {
10491 		if (connector->base.state->crtc)
10492 			drm_connector_unreference(&connector->base);
10493 
10494 		if (connector->base.encoder) {
10495 			connector->base.state->best_encoder =
10496 				connector->base.encoder;
10497 			connector->base.state->crtc =
10498 				connector->base.encoder->crtc;
10499 
10500 			drm_connector_reference(&connector->base);
10501 		} else {
10502 			connector->base.state->best_encoder = NULL;
10503 			connector->base.state->crtc = NULL;
10504 		}
10505 	}
10506 	drm_connector_list_iter_end(&conn_iter);
10507 }
10508 
10509 static void
10510 connected_sink_compute_bpp(struct intel_connector *connector,
10511 			   struct intel_crtc_state *pipe_config)
10512 {
10513 	const struct drm_display_info *info = &connector->base.display_info;
10514 	int bpp = pipe_config->pipe_bpp;
10515 
10516 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10517 		      connector->base.base.id,
10518 		      connector->base.name);
10519 
10520 	/* Don't use an invalid EDID bpc value */
10521 	if (info->bpc != 0 && info->bpc * 3 < bpp) {
10522 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10523 			      bpp, info->bpc * 3);
10524 		pipe_config->pipe_bpp = info->bpc * 3;
10525 	}
10526 
10527 	/* Clamp bpp to 8 on screens without EDID 1.4 */
10528 	if (info->bpc == 0 && bpp > 24) {
10529 		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10530 			      bpp);
10531 		pipe_config->pipe_bpp = 24;
10532 	}
10533 }
10534 
10535 static int
10536 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10537 			  struct intel_crtc_state *pipe_config)
10538 {
10539 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10540 	struct drm_atomic_state *state;
10541 	struct drm_connector *connector;
10542 	struct drm_connector_state *connector_state;
10543 	int bpp, i;
10544 
10545 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
10546 	    IS_CHERRYVIEW(dev_priv)))
10547 		bpp = 10*3;
10548 	else if (INTEL_GEN(dev_priv) >= 5)
10549 		bpp = 12*3;
10550 	else
10551 		bpp = 8*3;
10552 
10553 
10554 	pipe_config->pipe_bpp = bpp;
10555 
10556 	state = pipe_config->base.state;
10557 
10558 	/* Clamp display bpp to EDID value */
10559 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10560 		if (connector_state->crtc != &crtc->base)
10561 			continue;
10562 
10563 		connected_sink_compute_bpp(to_intel_connector(connector),
10564 					   pipe_config);
10565 	}
10566 
10567 	return bpp;
10568 }
10569 
10570 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10571 {
10572 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10573 			"type: 0x%x flags: 0x%x\n",
10574 		mode->crtc_clock,
10575 		mode->crtc_hdisplay, mode->crtc_hsync_start,
10576 		mode->crtc_hsync_end, mode->crtc_htotal,
10577 		mode->crtc_vdisplay, mode->crtc_vsync_start,
10578 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10579 }
10580 
10581 static inline void
10582 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
10583 		      unsigned int lane_count, struct intel_link_m_n *m_n)
10584 {
10585 	DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10586 		      id, lane_count,
10587 		      m_n->gmch_m, m_n->gmch_n,
10588 		      m_n->link_m, m_n->link_n, m_n->tu);
10589 }
10590 
10591 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
10592 
10593 static const char * const output_type_str[] = {
10594 	OUTPUT_TYPE(UNUSED),
10595 	OUTPUT_TYPE(ANALOG),
10596 	OUTPUT_TYPE(DVO),
10597 	OUTPUT_TYPE(SDVO),
10598 	OUTPUT_TYPE(LVDS),
10599 	OUTPUT_TYPE(TVOUT),
10600 	OUTPUT_TYPE(HDMI),
10601 	OUTPUT_TYPE(DP),
10602 	OUTPUT_TYPE(EDP),
10603 	OUTPUT_TYPE(DSI),
10604 	OUTPUT_TYPE(UNKNOWN),
10605 	OUTPUT_TYPE(DP_MST),
10606 };
10607 
10608 #undef OUTPUT_TYPE
10609 
10610 static void snprintf_output_types(char *buf, size_t len,
10611 				  unsigned int output_types)
10612 {
10613 	char *str = buf;
10614 	int i;
10615 
10616 	str[0] = '\0';
10617 
10618 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
10619 		int r;
10620 
10621 		if ((output_types & BIT(i)) == 0)
10622 			continue;
10623 
10624 		r = snprintf(str, len, "%s%s",
10625 			     str != buf ? "," : "", output_type_str[i]);
10626 		if (r >= len)
10627 			break;
10628 		str += r;
10629 		len -= r;
10630 
10631 		output_types &= ~BIT(i);
10632 	}
10633 
10634 	WARN_ON_ONCE(output_types != 0);
10635 }
10636 
10637 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10638 				   struct intel_crtc_state *pipe_config,
10639 				   const char *context)
10640 {
10641 	struct drm_device *dev = crtc->base.dev;
10642 	struct drm_i915_private *dev_priv = to_i915(dev);
10643 	struct drm_plane *plane;
10644 	struct intel_plane *intel_plane;
10645 	struct intel_plane_state *state;
10646 	struct drm_framebuffer *fb;
10647 	char buf[64];
10648 
10649 	DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
10650 		      crtc->base.base.id, crtc->base.name, context);
10651 
10652 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
10653 	DRM_DEBUG_KMS("output_types: %s (0x%x)\n",
10654 		      buf, pipe_config->output_types);
10655 
10656 	DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
10657 		      transcoder_name(pipe_config->cpu_transcoder),
10658 		      pipe_config->pipe_bpp, pipe_config->dither);
10659 
10660 	if (pipe_config->has_pch_encoder)
10661 		intel_dump_m_n_config(pipe_config, "fdi",
10662 				      pipe_config->fdi_lanes,
10663 				      &pipe_config->fdi_m_n);
10664 
10665 	if (pipe_config->ycbcr420)
10666 		DRM_DEBUG_KMS("YCbCr 4:2:0 output enabled\n");
10667 
10668 	if (intel_crtc_has_dp_encoder(pipe_config)) {
10669 		intel_dump_m_n_config(pipe_config, "dp m_n",
10670 				pipe_config->lane_count, &pipe_config->dp_m_n);
10671 		if (pipe_config->has_drrs)
10672 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
10673 					      pipe_config->lane_count,
10674 					      &pipe_config->dp_m2_n2);
10675 	}
10676 
10677 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10678 		      pipe_config->has_audio, pipe_config->has_infoframe);
10679 
10680 	DRM_DEBUG_KMS("requested mode:\n");
10681 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
10682 	DRM_DEBUG_KMS("adjusted mode:\n");
10683 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10684 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10685 	DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
10686 		      pipe_config->port_clock,
10687 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h,
10688 		      pipe_config->pixel_rate);
10689 
10690 	if (INTEL_GEN(dev_priv) >= 9)
10691 		DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
10692 			      crtc->num_scalers,
10693 			      pipe_config->scaler_state.scaler_users,
10694 		              pipe_config->scaler_state.scaler_id);
10695 
10696 	if (HAS_GMCH_DISPLAY(dev_priv))
10697 		DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10698 			      pipe_config->gmch_pfit.control,
10699 			      pipe_config->gmch_pfit.pgm_ratios,
10700 			      pipe_config->gmch_pfit.lvds_border_bits);
10701 	else
10702 		DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10703 			      pipe_config->pch_pfit.pos,
10704 			      pipe_config->pch_pfit.size,
10705 		              enableddisabled(pipe_config->pch_pfit.enabled));
10706 
10707 	DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
10708 		      pipe_config->ips_enabled, pipe_config->double_wide);
10709 
10710 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
10711 
10712 	DRM_DEBUG_KMS("planes on this crtc\n");
10713 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
10714 		struct drm_format_name_buf format_name;
10715 		intel_plane = to_intel_plane(plane);
10716 		if (intel_plane->pipe != crtc->pipe)
10717 			continue;
10718 
10719 		state = to_intel_plane_state(plane->state);
10720 		fb = state->base.fb;
10721 		if (!fb) {
10722 			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
10723 				      plane->base.id, plane->name, state->scaler_id);
10724 			continue;
10725 		}
10726 
10727 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
10728 			      plane->base.id, plane->name,
10729 			      fb->base.id, fb->width, fb->height,
10730 			      drm_get_format_name(fb->format->format, &format_name));
10731 		if (INTEL_GEN(dev_priv) >= 9)
10732 			DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
10733 				      state->scaler_id,
10734 				      state->base.src.x1 >> 16,
10735 				      state->base.src.y1 >> 16,
10736 				      drm_rect_width(&state->base.src) >> 16,
10737 				      drm_rect_height(&state->base.src) >> 16,
10738 				      state->base.dst.x1, state->base.dst.y1,
10739 				      drm_rect_width(&state->base.dst),
10740 				      drm_rect_height(&state->base.dst));
10741 	}
10742 }
10743 
10744 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
10745 {
10746 	struct drm_device *dev = state->dev;
10747 	struct drm_connector *connector;
10748 	struct drm_connector_list_iter conn_iter;
10749 	unsigned int used_ports = 0;
10750 	unsigned int used_mst_ports = 0;
10751 
10752 	/*
10753 	 * Walk the connector list instead of the encoder
10754 	 * list to detect the problem on ddi platforms
10755 	 * where there's just one encoder per digital port.
10756 	 */
10757 	drm_connector_list_iter_begin(dev, &conn_iter);
10758 	drm_for_each_connector_iter(connector, &conn_iter) {
10759 		struct drm_connector_state *connector_state;
10760 		struct intel_encoder *encoder;
10761 
10762 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
10763 		if (!connector_state)
10764 			connector_state = connector->state;
10765 
10766 		if (!connector_state->best_encoder)
10767 			continue;
10768 
10769 		encoder = to_intel_encoder(connector_state->best_encoder);
10770 
10771 		WARN_ON(!connector_state->crtc);
10772 
10773 		switch (encoder->type) {
10774 			unsigned int port_mask;
10775 		case INTEL_OUTPUT_UNKNOWN:
10776 			if (WARN_ON(!HAS_DDI(to_i915(dev))))
10777 				break;
10778 		case INTEL_OUTPUT_DP:
10779 		case INTEL_OUTPUT_HDMI:
10780 		case INTEL_OUTPUT_EDP:
10781 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10782 
10783 			/* the same port mustn't appear more than once */
10784 			if (used_ports & port_mask)
10785 				return false;
10786 
10787 			used_ports |= port_mask;
10788 			break;
10789 		case INTEL_OUTPUT_DP_MST:
10790 			used_mst_ports |=
10791 				1 << enc_to_mst(&encoder->base)->primary->port;
10792 			break;
10793 		default:
10794 			break;
10795 		}
10796 	}
10797 	drm_connector_list_iter_end(&conn_iter);
10798 
10799 	/* can't mix MST and SST/HDMI on the same port */
10800 	if (used_ports & used_mst_ports)
10801 		return false;
10802 
10803 	return true;
10804 }
10805 
10806 static void
10807 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10808 {
10809 	struct drm_i915_private *dev_priv =
10810 		to_i915(crtc_state->base.crtc->dev);
10811 	struct intel_crtc_scaler_state scaler_state;
10812 	struct intel_dpll_hw_state dpll_hw_state;
10813 	struct intel_shared_dpll *shared_dpll;
10814 	struct intel_crtc_wm_state wm_state;
10815 	bool force_thru, ips_force_disable;
10816 
10817 	/* FIXME: before the switch to atomic started, a new pipe_config was
10818 	 * kzalloc'd. Code that depends on any field being zero should be
10819 	 * fixed, so that the crtc_state can be safely duplicated. For now,
10820 	 * only fields that are know to not cause problems are preserved. */
10821 
10822 	scaler_state = crtc_state->scaler_state;
10823 	shared_dpll = crtc_state->shared_dpll;
10824 	dpll_hw_state = crtc_state->dpll_hw_state;
10825 	force_thru = crtc_state->pch_pfit.force_thru;
10826 	ips_force_disable = crtc_state->ips_force_disable;
10827 	if (IS_G4X(dev_priv) ||
10828 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10829 		wm_state = crtc_state->wm;
10830 
10831 	/* Keep base drm_crtc_state intact, only clear our extended struct */
10832 	BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
10833 	memset(&crtc_state->base + 1, 0,
10834 	       sizeof(*crtc_state) - sizeof(crtc_state->base));
10835 
10836 	crtc_state->scaler_state = scaler_state;
10837 	crtc_state->shared_dpll = shared_dpll;
10838 	crtc_state->dpll_hw_state = dpll_hw_state;
10839 	crtc_state->pch_pfit.force_thru = force_thru;
10840 	crtc_state->ips_force_disable = ips_force_disable;
10841 	if (IS_G4X(dev_priv) ||
10842 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10843 		crtc_state->wm = wm_state;
10844 }
10845 
10846 static int
10847 intel_modeset_pipe_config(struct drm_crtc *crtc,
10848 			  struct intel_crtc_state *pipe_config)
10849 {
10850 	struct drm_atomic_state *state = pipe_config->base.state;
10851 	struct intel_encoder *encoder;
10852 	struct drm_connector *connector;
10853 	struct drm_connector_state *connector_state;
10854 	int base_bpp, ret = -EINVAL;
10855 	int i;
10856 	bool retry = true;
10857 
10858 	clear_intel_crtc_state(pipe_config);
10859 
10860 	pipe_config->cpu_transcoder =
10861 		(enum transcoder) to_intel_crtc(crtc)->pipe;
10862 
10863 	/*
10864 	 * Sanitize sync polarity flags based on requested ones. If neither
10865 	 * positive or negative polarity is requested, treat this as meaning
10866 	 * negative polarity.
10867 	 */
10868 	if (!(pipe_config->base.adjusted_mode.flags &
10869 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10870 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10871 
10872 	if (!(pipe_config->base.adjusted_mode.flags &
10873 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10874 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10875 
10876 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10877 					     pipe_config);
10878 	if (base_bpp < 0)
10879 		goto fail;
10880 
10881 	/*
10882 	 * Determine the real pipe dimensions. Note that stereo modes can
10883 	 * increase the actual pipe size due to the frame doubling and
10884 	 * insertion of additional space for blanks between the frame. This
10885 	 * is stored in the crtc timings. We use the requested mode to do this
10886 	 * computation to clearly distinguish it from the adjusted mode, which
10887 	 * can be changed by the connectors in the below retry loop.
10888 	 */
10889 	drm_mode_get_hv_timing(&pipe_config->base.mode,
10890 			       &pipe_config->pipe_src_w,
10891 			       &pipe_config->pipe_src_h);
10892 
10893 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10894 		if (connector_state->crtc != crtc)
10895 			continue;
10896 
10897 		encoder = to_intel_encoder(connector_state->best_encoder);
10898 
10899 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
10900 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10901 			goto fail;
10902 		}
10903 
10904 		/*
10905 		 * Determine output_types before calling the .compute_config()
10906 		 * hooks so that the hooks can use this information safely.
10907 		 */
10908 		pipe_config->output_types |= 1 << encoder->type;
10909 	}
10910 
10911 encoder_retry:
10912 	/* Ensure the port clock defaults are reset when retrying. */
10913 	pipe_config->port_clock = 0;
10914 	pipe_config->pixel_multiplier = 1;
10915 
10916 	/* Fill in default crtc timings, allow encoders to overwrite them. */
10917 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10918 			      CRTC_STEREO_DOUBLE);
10919 
10920 	/* Pass our mode to the connectors and the CRTC to give them a chance to
10921 	 * adjust it according to limitations or connector properties, and also
10922 	 * a chance to reject the mode entirely.
10923 	 */
10924 	for_each_new_connector_in_state(state, connector, connector_state, i) {
10925 		if (connector_state->crtc != crtc)
10926 			continue;
10927 
10928 		encoder = to_intel_encoder(connector_state->best_encoder);
10929 
10930 		if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
10931 			DRM_DEBUG_KMS("Encoder config failure\n");
10932 			goto fail;
10933 		}
10934 	}
10935 
10936 	/* Set default port clock if not overwritten by the encoder. Needs to be
10937 	 * done afterwards in case the encoder adjusts the mode. */
10938 	if (!pipe_config->port_clock)
10939 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10940 			* pipe_config->pixel_multiplier;
10941 
10942 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10943 	if (ret < 0) {
10944 		DRM_DEBUG_KMS("CRTC fixup failed\n");
10945 		goto fail;
10946 	}
10947 
10948 	if (ret == RETRY) {
10949 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
10950 			ret = -EINVAL;
10951 			goto fail;
10952 		}
10953 
10954 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10955 		retry = false;
10956 		goto encoder_retry;
10957 	}
10958 
10959 	/* Dithering seems to not pass-through bits correctly when it should, so
10960 	 * only enable it on 6bpc panels and when its not a compliance
10961 	 * test requesting 6bpc video pattern.
10962 	 */
10963 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
10964 		!pipe_config->dither_force_disable;
10965 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
10966 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10967 
10968 fail:
10969 	return ret;
10970 }
10971 
10972 static void
10973 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
10974 {
10975 	struct drm_crtc *crtc;
10976 	struct drm_crtc_state *new_crtc_state;
10977 	int i;
10978 
10979 	/* Double check state. */
10980 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
10981 		to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
10982 
10983 		/*
10984 		 * Update legacy state to satisfy fbc code. This can
10985 		 * be removed when fbc uses the atomic state.
10986 		 */
10987 		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
10988 			struct drm_plane_state *plane_state = crtc->primary->state;
10989 
10990 			crtc->primary->fb = plane_state->fb;
10991 			crtc->x = plane_state->src_x >> 16;
10992 			crtc->y = plane_state->src_y >> 16;
10993 		}
10994 	}
10995 }
10996 
10997 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10998 {
10999 	int diff;
11000 
11001 	if (clock1 == clock2)
11002 		return true;
11003 
11004 	if (!clock1 || !clock2)
11005 		return false;
11006 
11007 	diff = abs(clock1 - clock2);
11008 
11009 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11010 		return true;
11011 
11012 	return false;
11013 }
11014 
11015 static bool
11016 intel_compare_m_n(unsigned int m, unsigned int n,
11017 		  unsigned int m2, unsigned int n2,
11018 		  bool exact)
11019 {
11020 	if (m == m2 && n == n2)
11021 		return true;
11022 
11023 	if (exact || !m || !n || !m2 || !n2)
11024 		return false;
11025 
11026 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11027 
11028 	if (n > n2) {
11029 		while (n > n2) {
11030 			m2 <<= 1;
11031 			n2 <<= 1;
11032 		}
11033 	} else if (n < n2) {
11034 		while (n < n2) {
11035 			m <<= 1;
11036 			n <<= 1;
11037 		}
11038 	}
11039 
11040 	if (n != n2)
11041 		return false;
11042 
11043 	return intel_fuzzy_clock_check(m, m2);
11044 }
11045 
11046 static bool
11047 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11048 		       struct intel_link_m_n *m2_n2,
11049 		       bool adjust)
11050 {
11051 	if (m_n->tu == m2_n2->tu &&
11052 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11053 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11054 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
11055 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
11056 		if (adjust)
11057 			*m2_n2 = *m_n;
11058 
11059 		return true;
11060 	}
11061 
11062 	return false;
11063 }
11064 
11065 static void __printf(3, 4)
11066 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11067 {
11068 	char *level;
11069 	unsigned int category;
11070 	struct va_format vaf;
11071 	va_list args;
11072 
11073 	if (adjust) {
11074 		level = KERN_DEBUG;
11075 		category = DRM_UT_KMS;
11076 	} else {
11077 		level = KERN_ERR;
11078 		category = DRM_UT_NONE;
11079 	}
11080 
11081 	va_start(args, format);
11082 	vaf.fmt = format;
11083 	vaf.va = &args;
11084 
11085 	drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11086 
11087 	va_end(args);
11088 }
11089 
11090 static bool
11091 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11092 			  struct intel_crtc_state *current_config,
11093 			  struct intel_crtc_state *pipe_config,
11094 			  bool adjust)
11095 {
11096 	bool ret = true;
11097 
11098 #define PIPE_CONF_CHECK_X(name)	\
11099 	if (current_config->name != pipe_config->name) { \
11100 		pipe_config_err(adjust, __stringify(name), \
11101 			  "(expected 0x%08x, found 0x%08x)\n", \
11102 			  current_config->name, \
11103 			  pipe_config->name); \
11104 		ret = false; \
11105 	}
11106 
11107 #define PIPE_CONF_CHECK_I(name)	\
11108 	if (current_config->name != pipe_config->name) { \
11109 		pipe_config_err(adjust, __stringify(name), \
11110 			  "(expected %i, found %i)\n", \
11111 			  current_config->name, \
11112 			  pipe_config->name); \
11113 		ret = false; \
11114 	}
11115 
11116 #define PIPE_CONF_CHECK_P(name)	\
11117 	if (current_config->name != pipe_config->name) { \
11118 		pipe_config_err(adjust, __stringify(name), \
11119 			  "(expected %p, found %p)\n", \
11120 			  current_config->name, \
11121 			  pipe_config->name); \
11122 		ret = false; \
11123 	}
11124 
11125 #define PIPE_CONF_CHECK_M_N(name) \
11126 	if (!intel_compare_link_m_n(&current_config->name, \
11127 				    &pipe_config->name,\
11128 				    adjust)) { \
11129 		pipe_config_err(adjust, __stringify(name), \
11130 			  "(expected tu %i gmch %i/%i link %i/%i, " \
11131 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
11132 			  current_config->name.tu, \
11133 			  current_config->name.gmch_m, \
11134 			  current_config->name.gmch_n, \
11135 			  current_config->name.link_m, \
11136 			  current_config->name.link_n, \
11137 			  pipe_config->name.tu, \
11138 			  pipe_config->name.gmch_m, \
11139 			  pipe_config->name.gmch_n, \
11140 			  pipe_config->name.link_m, \
11141 			  pipe_config->name.link_n); \
11142 		ret = false; \
11143 	}
11144 
11145 /* This is required for BDW+ where there is only one set of registers for
11146  * switching between high and low RR.
11147  * This macro can be used whenever a comparison has to be made between one
11148  * hw state and multiple sw state variables.
11149  */
11150 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11151 	if (!intel_compare_link_m_n(&current_config->name, \
11152 				    &pipe_config->name, adjust) && \
11153 	    !intel_compare_link_m_n(&current_config->alt_name, \
11154 				    &pipe_config->name, adjust)) { \
11155 		pipe_config_err(adjust, __stringify(name), \
11156 			  "(expected tu %i gmch %i/%i link %i/%i, " \
11157 			  "or tu %i gmch %i/%i link %i/%i, " \
11158 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
11159 			  current_config->name.tu, \
11160 			  current_config->name.gmch_m, \
11161 			  current_config->name.gmch_n, \
11162 			  current_config->name.link_m, \
11163 			  current_config->name.link_n, \
11164 			  current_config->alt_name.tu, \
11165 			  current_config->alt_name.gmch_m, \
11166 			  current_config->alt_name.gmch_n, \
11167 			  current_config->alt_name.link_m, \
11168 			  current_config->alt_name.link_n, \
11169 			  pipe_config->name.tu, \
11170 			  pipe_config->name.gmch_m, \
11171 			  pipe_config->name.gmch_n, \
11172 			  pipe_config->name.link_m, \
11173 			  pipe_config->name.link_n); \
11174 		ret = false; \
11175 	}
11176 
11177 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
11178 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
11179 		pipe_config_err(adjust, __stringify(name), \
11180 			  "(%x) (expected %i, found %i)\n", \
11181 			  (mask), \
11182 			  current_config->name & (mask), \
11183 			  pipe_config->name & (mask)); \
11184 		ret = false; \
11185 	}
11186 
11187 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11188 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11189 		pipe_config_err(adjust, __stringify(name), \
11190 			  "(expected %i, found %i)\n", \
11191 			  current_config->name, \
11192 			  pipe_config->name); \
11193 		ret = false; \
11194 	}
11195 
11196 #define PIPE_CONF_QUIRK(quirk)	\
11197 	((current_config->quirks | pipe_config->quirks) & (quirk))
11198 
11199 	PIPE_CONF_CHECK_I(cpu_transcoder);
11200 
11201 	PIPE_CONF_CHECK_I(has_pch_encoder);
11202 	PIPE_CONF_CHECK_I(fdi_lanes);
11203 	PIPE_CONF_CHECK_M_N(fdi_m_n);
11204 
11205 	PIPE_CONF_CHECK_I(lane_count);
11206 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11207 
11208 	if (INTEL_GEN(dev_priv) < 8) {
11209 		PIPE_CONF_CHECK_M_N(dp_m_n);
11210 
11211 		if (current_config->has_drrs)
11212 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
11213 	} else
11214 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11215 
11216 	PIPE_CONF_CHECK_X(output_types);
11217 
11218 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11219 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11220 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11221 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11222 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11223 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11224 
11225 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11226 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11227 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11228 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11229 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11230 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11231 
11232 	PIPE_CONF_CHECK_I(pixel_multiplier);
11233 	PIPE_CONF_CHECK_I(has_hdmi_sink);
11234 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11235 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11236 		PIPE_CONF_CHECK_I(limited_color_range);
11237 
11238 	PIPE_CONF_CHECK_I(hdmi_scrambling);
11239 	PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11240 	PIPE_CONF_CHECK_I(has_infoframe);
11241 	PIPE_CONF_CHECK_I(ycbcr420);
11242 
11243 	PIPE_CONF_CHECK_I(has_audio);
11244 
11245 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11246 			      DRM_MODE_FLAG_INTERLACE);
11247 
11248 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11249 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11250 				      DRM_MODE_FLAG_PHSYNC);
11251 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11252 				      DRM_MODE_FLAG_NHSYNC);
11253 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11254 				      DRM_MODE_FLAG_PVSYNC);
11255 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11256 				      DRM_MODE_FLAG_NVSYNC);
11257 	}
11258 
11259 	PIPE_CONF_CHECK_X(gmch_pfit.control);
11260 	/* pfit ratios are autocomputed by the hw on gen4+ */
11261 	if (INTEL_GEN(dev_priv) < 4)
11262 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11263 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11264 
11265 	if (!adjust) {
11266 		PIPE_CONF_CHECK_I(pipe_src_w);
11267 		PIPE_CONF_CHECK_I(pipe_src_h);
11268 
11269 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
11270 		if (current_config->pch_pfit.enabled) {
11271 			PIPE_CONF_CHECK_X(pch_pfit.pos);
11272 			PIPE_CONF_CHECK_X(pch_pfit.size);
11273 		}
11274 
11275 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11276 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11277 	}
11278 
11279 	/* BDW+ don't expose a synchronous way to read the state */
11280 	if (IS_HASWELL(dev_priv))
11281 		PIPE_CONF_CHECK_I(ips_enabled);
11282 
11283 	PIPE_CONF_CHECK_I(double_wide);
11284 
11285 	PIPE_CONF_CHECK_P(shared_dpll);
11286 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11287 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11288 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11289 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11290 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11291 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11292 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11293 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11294 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11295 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
11296 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
11297 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
11298 	PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
11299 	PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
11300 	PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
11301 	PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
11302 	PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
11303 	PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
11304 	PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
11305 	PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
11306 	PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
11307 
11308 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11309 	PIPE_CONF_CHECK_X(dsi_pll.div);
11310 
11311 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11312 		PIPE_CONF_CHECK_I(pipe_bpp);
11313 
11314 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11315 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11316 
11317 #undef PIPE_CONF_CHECK_X
11318 #undef PIPE_CONF_CHECK_I
11319 #undef PIPE_CONF_CHECK_P
11320 #undef PIPE_CONF_CHECK_FLAGS
11321 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11322 #undef PIPE_CONF_QUIRK
11323 
11324 	return ret;
11325 }
11326 
11327 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11328 					   const struct intel_crtc_state *pipe_config)
11329 {
11330 	if (pipe_config->has_pch_encoder) {
11331 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11332 							    &pipe_config->fdi_m_n);
11333 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11334 
11335 		/*
11336 		 * FDI already provided one idea for the dotclock.
11337 		 * Yell if the encoder disagrees.
11338 		 */
11339 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11340 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11341 		     fdi_dotclock, dotclock);
11342 	}
11343 }
11344 
11345 static void verify_wm_state(struct drm_crtc *crtc,
11346 			    struct drm_crtc_state *new_state)
11347 {
11348 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11349 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
11350 	struct skl_pipe_wm hw_wm, *sw_wm;
11351 	struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11352 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11353 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11354 	const enum i915_pipe pipe = intel_crtc->pipe;
11355 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
11356 
11357 	if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11358 		return;
11359 
11360 	skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11361 	sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11362 
11363 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11364 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
11365 
11366 	/* planes */
11367 	for_each_universal_plane(dev_priv, pipe, plane) {
11368 		hw_plane_wm = &hw_wm.planes[plane];
11369 		sw_plane_wm = &sw_wm->planes[plane];
11370 
11371 		/* Watermarks */
11372 		for (level = 0; level <= max_level; level++) {
11373 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11374 						&sw_plane_wm->wm[level]))
11375 				continue;
11376 
11377 			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11378 				  pipe_name(pipe), plane + 1, level,
11379 				  sw_plane_wm->wm[level].plane_en,
11380 				  sw_plane_wm->wm[level].plane_res_b,
11381 				  sw_plane_wm->wm[level].plane_res_l,
11382 				  hw_plane_wm->wm[level].plane_en,
11383 				  hw_plane_wm->wm[level].plane_res_b,
11384 				  hw_plane_wm->wm[level].plane_res_l);
11385 		}
11386 
11387 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11388 					 &sw_plane_wm->trans_wm)) {
11389 			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11390 				  pipe_name(pipe), plane + 1,
11391 				  sw_plane_wm->trans_wm.plane_en,
11392 				  sw_plane_wm->trans_wm.plane_res_b,
11393 				  sw_plane_wm->trans_wm.plane_res_l,
11394 				  hw_plane_wm->trans_wm.plane_en,
11395 				  hw_plane_wm->trans_wm.plane_res_b,
11396 				  hw_plane_wm->trans_wm.plane_res_l);
11397 		}
11398 
11399 		/* DDB */
11400 		hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11401 		sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11402 
11403 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11404 			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11405 				  pipe_name(pipe), plane + 1,
11406 				  sw_ddb_entry->start, sw_ddb_entry->end,
11407 				  hw_ddb_entry->start, hw_ddb_entry->end);
11408 		}
11409 	}
11410 
11411 	/*
11412 	 * cursor
11413 	 * If the cursor plane isn't active, we may not have updated it's ddb
11414 	 * allocation. In that case since the ddb allocation will be updated
11415 	 * once the plane becomes visible, we can skip this check
11416 	 */
11417 	if (1) {
11418 		hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11419 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11420 
11421 		/* Watermarks */
11422 		for (level = 0; level <= max_level; level++) {
11423 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11424 						&sw_plane_wm->wm[level]))
11425 				continue;
11426 
11427 			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11428 				  pipe_name(pipe), level,
11429 				  sw_plane_wm->wm[level].plane_en,
11430 				  sw_plane_wm->wm[level].plane_res_b,
11431 				  sw_plane_wm->wm[level].plane_res_l,
11432 				  hw_plane_wm->wm[level].plane_en,
11433 				  hw_plane_wm->wm[level].plane_res_b,
11434 				  hw_plane_wm->wm[level].plane_res_l);
11435 		}
11436 
11437 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11438 					 &sw_plane_wm->trans_wm)) {
11439 			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11440 				  pipe_name(pipe),
11441 				  sw_plane_wm->trans_wm.plane_en,
11442 				  sw_plane_wm->trans_wm.plane_res_b,
11443 				  sw_plane_wm->trans_wm.plane_res_l,
11444 				  hw_plane_wm->trans_wm.plane_en,
11445 				  hw_plane_wm->trans_wm.plane_res_b,
11446 				  hw_plane_wm->trans_wm.plane_res_l);
11447 		}
11448 
11449 		/* DDB */
11450 		hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11451 		sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11452 
11453 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11454 			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11455 				  pipe_name(pipe),
11456 				  sw_ddb_entry->start, sw_ddb_entry->end,
11457 				  hw_ddb_entry->start, hw_ddb_entry->end);
11458 		}
11459 	}
11460 }
11461 
11462 static void
11463 verify_connector_state(struct drm_device *dev,
11464 		       struct drm_atomic_state *state,
11465 		       struct drm_crtc *crtc)
11466 {
11467 	struct drm_connector *connector;
11468 	struct drm_connector_state *new_conn_state;
11469 	int i;
11470 
11471 	for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11472 		struct drm_encoder *encoder = connector->encoder;
11473 		struct drm_crtc_state *crtc_state = NULL;
11474 
11475 		if (new_conn_state->crtc != crtc)
11476 			continue;
11477 
11478 		if (crtc)
11479 			crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
11480 
11481 		intel_connector_verify_state(crtc_state, new_conn_state);
11482 
11483 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11484 		     "connector's atomic encoder doesn't match legacy encoder\n");
11485 	}
11486 }
11487 
11488 static void
11489 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11490 {
11491 	struct intel_encoder *encoder;
11492 	struct drm_connector *connector;
11493 	struct drm_connector_state *old_conn_state, *new_conn_state;
11494 	int i;
11495 
11496 	for_each_intel_encoder(dev, encoder) {
11497 		bool enabled = false, found = false;
11498 		enum i915_pipe pipe;
11499 
11500 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11501 			      encoder->base.base.id,
11502 			      encoder->base.name);
11503 
11504 		for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11505 						   new_conn_state, i) {
11506 			if (old_conn_state->best_encoder == &encoder->base)
11507 				found = true;
11508 
11509 			if (new_conn_state->best_encoder != &encoder->base)
11510 				continue;
11511 			found = enabled = true;
11512 
11513 			I915_STATE_WARN(new_conn_state->crtc !=
11514 					encoder->base.crtc,
11515 			     "connector's crtc doesn't match encoder crtc\n");
11516 		}
11517 
11518 		if (!found)
11519 			continue;
11520 
11521 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
11522 		     "encoder's enabled state mismatch "
11523 		     "(expected %i, found %i)\n",
11524 		     !!encoder->base.crtc, enabled);
11525 
11526 		if (!encoder->base.crtc) {
11527 			bool active;
11528 
11529 			active = encoder->get_hw_state(encoder, &pipe);
11530 			I915_STATE_WARN(active,
11531 			     "encoder detached but still enabled on pipe %c.\n",
11532 			     pipe_name(pipe));
11533 		}
11534 	}
11535 }
11536 
11537 static void
11538 verify_crtc_state(struct drm_crtc *crtc,
11539 		  struct drm_crtc_state *old_crtc_state,
11540 		  struct drm_crtc_state *new_crtc_state)
11541 {
11542 	struct drm_device *dev = crtc->dev;
11543 	struct drm_i915_private *dev_priv = to_i915(dev);
11544 	struct intel_encoder *encoder;
11545 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11546 	struct intel_crtc_state *pipe_config, *sw_config;
11547 	struct drm_atomic_state *old_state;
11548 	bool active;
11549 
11550 	old_state = old_crtc_state->state;
11551 	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
11552 	pipe_config = to_intel_crtc_state(old_crtc_state);
11553 	memset(pipe_config, 0, sizeof(*pipe_config));
11554 	pipe_config->base.crtc = crtc;
11555 	pipe_config->base.state = old_state;
11556 
11557 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
11558 
11559 	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
11560 
11561 	/* we keep both pipes enabled on 830 */
11562 	if (IS_I830(dev_priv))
11563 		active = new_crtc_state->active;
11564 
11565 	I915_STATE_WARN(new_crtc_state->active != active,
11566 	     "crtc active state doesn't match with hw state "
11567 	     "(expected %i, found %i)\n", new_crtc_state->active, active);
11568 
11569 	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
11570 	     "transitional active state does not match atomic hw state "
11571 	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
11572 
11573 	for_each_encoder_on_crtc(dev, crtc, encoder) {
11574 		enum i915_pipe pipe;
11575 
11576 		active = encoder->get_hw_state(encoder, &pipe);
11577 		I915_STATE_WARN(active != new_crtc_state->active,
11578 			"[ENCODER:%i] active %i with crtc active %i\n",
11579 			encoder->base.base.id, active, new_crtc_state->active);
11580 
11581 		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
11582 				"Encoder connected to wrong pipe %c\n",
11583 				pipe_name(pipe));
11584 
11585 		if (active) {
11586 			pipe_config->output_types |= 1 << encoder->type;
11587 			encoder->get_config(encoder, pipe_config);
11588 		}
11589 	}
11590 
11591 	intel_crtc_compute_pixel_rate(pipe_config);
11592 
11593 	if (!new_crtc_state->active)
11594 		return;
11595 
11596 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
11597 
11598 	sw_config = to_intel_crtc_state(new_crtc_state);
11599 	if (!intel_pipe_config_compare(dev_priv, sw_config,
11600 				       pipe_config, false)) {
11601 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
11602 		intel_dump_pipe_config(intel_crtc, pipe_config,
11603 				       "[hw state]");
11604 		intel_dump_pipe_config(intel_crtc, sw_config,
11605 				       "[sw state]");
11606 	}
11607 }
11608 
11609 static void
11610 verify_single_dpll_state(struct drm_i915_private *dev_priv,
11611 			 struct intel_shared_dpll *pll,
11612 			 struct drm_crtc *crtc,
11613 			 struct drm_crtc_state *new_state)
11614 {
11615 	struct intel_dpll_hw_state dpll_hw_state;
11616 	unsigned crtc_mask;
11617 	bool active;
11618 
11619 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11620 
11621 	DRM_DEBUG_KMS("%s\n", pll->name);
11622 
11623 	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
11624 
11625 	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
11626 		I915_STATE_WARN(!pll->on && pll->active_mask,
11627 		     "pll in active use but not on in sw tracking\n");
11628 		I915_STATE_WARN(pll->on && !pll->active_mask,
11629 		     "pll is on but not used by any active crtc\n");
11630 		I915_STATE_WARN(pll->on != active,
11631 		     "pll on state mismatch (expected %i, found %i)\n",
11632 		     pll->on, active);
11633 	}
11634 
11635 	if (!crtc) {
11636 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
11637 				"more active pll users than references: %x vs %x\n",
11638 				pll->active_mask, pll->state.crtc_mask);
11639 
11640 		return;
11641 	}
11642 
11643 	crtc_mask = 1 << drm_crtc_index(crtc);
11644 
11645 	if (new_state->active)
11646 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
11647 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
11648 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11649 	else
11650 		I915_STATE_WARN(pll->active_mask & crtc_mask,
11651 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
11652 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11653 
11654 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
11655 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
11656 			crtc_mask, pll->state.crtc_mask);
11657 
11658 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
11659 					  &dpll_hw_state,
11660 					  sizeof(dpll_hw_state)),
11661 			"pll hw state mismatch\n");
11662 }
11663 
11664 static void
11665 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
11666 			 struct drm_crtc_state *old_crtc_state,
11667 			 struct drm_crtc_state *new_crtc_state)
11668 {
11669 	struct drm_i915_private *dev_priv = to_i915(dev);
11670 	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
11671 	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
11672 
11673 	if (new_state->shared_dpll)
11674 		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
11675 
11676 	if (old_state->shared_dpll &&
11677 	    old_state->shared_dpll != new_state->shared_dpll) {
11678 		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
11679 		struct intel_shared_dpll *pll = old_state->shared_dpll;
11680 
11681 		I915_STATE_WARN(pll->active_mask & crtc_mask,
11682 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
11683 				pipe_name(drm_crtc_index(crtc)));
11684 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
11685 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
11686 				pipe_name(drm_crtc_index(crtc)));
11687 	}
11688 }
11689 
11690 static void
11691 intel_modeset_verify_crtc(struct drm_crtc *crtc,
11692 			  struct drm_atomic_state *state,
11693 			  struct drm_crtc_state *old_state,
11694 			  struct drm_crtc_state *new_state)
11695 {
11696 	if (!needs_modeset(new_state) &&
11697 	    !to_intel_crtc_state(new_state)->update_pipe)
11698 		return;
11699 
11700 	verify_wm_state(crtc, new_state);
11701 	verify_connector_state(crtc->dev, state, crtc);
11702 	verify_crtc_state(crtc, old_state, new_state);
11703 	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
11704 }
11705 
11706 static void
11707 verify_disabled_dpll_state(struct drm_device *dev)
11708 {
11709 	struct drm_i915_private *dev_priv = to_i915(dev);
11710 	int i;
11711 
11712 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
11713 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
11714 }
11715 
11716 static void
11717 intel_modeset_verify_disabled(struct drm_device *dev,
11718 			      struct drm_atomic_state *state)
11719 {
11720 	verify_encoder_state(dev, state);
11721 	verify_connector_state(dev, state, NULL);
11722 	verify_disabled_dpll_state(dev);
11723 }
11724 
11725 static void update_scanline_offset(struct intel_crtc *crtc)
11726 {
11727 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11728 
11729 	/*
11730 	 * The scanline counter increments at the leading edge of hsync.
11731 	 *
11732 	 * On most platforms it starts counting from vtotal-1 on the
11733 	 * first active line. That means the scanline counter value is
11734 	 * always one less than what we would expect. Ie. just after
11735 	 * start of vblank, which also occurs at start of hsync (on the
11736 	 * last active line), the scanline counter will read vblank_start-1.
11737 	 *
11738 	 * On gen2 the scanline counter starts counting from 1 instead
11739 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11740 	 * to keep the value positive), instead of adding one.
11741 	 *
11742 	 * On HSW+ the behaviour of the scanline counter depends on the output
11743 	 * type. For DP ports it behaves like most other platforms, but on HDMI
11744 	 * there's an extra 1 line difference. So we need to add two instead of
11745 	 * one to the value.
11746 	 *
11747 	 * On VLV/CHV DSI the scanline counter would appear to increment
11748 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
11749 	 * that means we can't tell whether we're in vblank or not while
11750 	 * we're on that particular line. We must still set scanline_offset
11751 	 * to 1 so that the vblank timestamps come out correct when we query
11752 	 * the scanline counter from within the vblank interrupt handler.
11753 	 * However if queried just before the start of vblank we'll get an
11754 	 * answer that's slightly in the future.
11755 	 */
11756 	if (IS_GEN2(dev_priv)) {
11757 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
11758 		int vtotal;
11759 
11760 		vtotal = adjusted_mode->crtc_vtotal;
11761 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
11762 			vtotal /= 2;
11763 
11764 		crtc->scanline_offset = vtotal - 1;
11765 	} else if (HAS_DDI(dev_priv) &&
11766 		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
11767 		crtc->scanline_offset = 2;
11768 	} else
11769 		crtc->scanline_offset = 1;
11770 }
11771 
11772 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
11773 {
11774 	struct drm_device *dev = state->dev;
11775 	struct drm_i915_private *dev_priv = to_i915(dev);
11776 	struct drm_crtc *crtc;
11777 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11778 	int i;
11779 
11780 	if (!dev_priv->display.crtc_compute_clock)
11781 		return;
11782 
11783 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11784 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11785 		struct intel_shared_dpll *old_dpll =
11786 			to_intel_crtc_state(old_crtc_state)->shared_dpll;
11787 
11788 		if (!needs_modeset(new_crtc_state))
11789 			continue;
11790 
11791 		to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
11792 
11793 		if (!old_dpll)
11794 			continue;
11795 
11796 		intel_release_shared_dpll(old_dpll, intel_crtc, state);
11797 	}
11798 }
11799 
11800 /*
11801  * This implements the workaround described in the "notes" section of the mode
11802  * set sequence documentation. When going from no pipes or single pipe to
11803  * multiple pipes, and planes are enabled after the pipe, we need to wait at
11804  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
11805  */
11806 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
11807 {
11808 	struct drm_crtc_state *crtc_state;
11809 	struct intel_crtc *intel_crtc;
11810 	struct drm_crtc *crtc;
11811 	struct intel_crtc_state *first_crtc_state = NULL;
11812 	struct intel_crtc_state *other_crtc_state = NULL;
11813 	enum i915_pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
11814 	int i;
11815 
11816 	/* look at all crtc's that are going to be enabled in during modeset */
11817 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
11818 		intel_crtc = to_intel_crtc(crtc);
11819 
11820 		if (!crtc_state->active || !needs_modeset(crtc_state))
11821 			continue;
11822 
11823 		if (first_crtc_state) {
11824 			other_crtc_state = to_intel_crtc_state(crtc_state);
11825 			break;
11826 		} else {
11827 			first_crtc_state = to_intel_crtc_state(crtc_state);
11828 			first_pipe = intel_crtc->pipe;
11829 		}
11830 	}
11831 
11832 	/* No workaround needed? */
11833 	if (!first_crtc_state)
11834 		return 0;
11835 
11836 	/* w/a possibly needed, check how many crtc's are already enabled. */
11837 	for_each_intel_crtc(state->dev, intel_crtc) {
11838 		struct intel_crtc_state *pipe_config;
11839 
11840 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11841 		if (IS_ERR(pipe_config))
11842 			return PTR_ERR(pipe_config);
11843 
11844 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
11845 
11846 		if (!pipe_config->base.active ||
11847 		    needs_modeset(&pipe_config->base))
11848 			continue;
11849 
11850 		/* 2 or more enabled crtcs means no need for w/a */
11851 		if (enabled_pipe != INVALID_PIPE)
11852 			return 0;
11853 
11854 		enabled_pipe = intel_crtc->pipe;
11855 	}
11856 
11857 	if (enabled_pipe != INVALID_PIPE)
11858 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
11859 	else if (other_crtc_state)
11860 		other_crtc_state->hsw_workaround_pipe = first_pipe;
11861 
11862 	return 0;
11863 }
11864 
11865 static int intel_lock_all_pipes(struct drm_atomic_state *state)
11866 {
11867 	struct drm_crtc *crtc;
11868 
11869 	/* Add all pipes to the state */
11870 	for_each_crtc(state->dev, crtc) {
11871 		struct drm_crtc_state *crtc_state;
11872 
11873 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
11874 		if (IS_ERR(crtc_state))
11875 			return PTR_ERR(crtc_state);
11876 	}
11877 
11878 	return 0;
11879 }
11880 
11881 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
11882 {
11883 	struct drm_crtc *crtc;
11884 
11885 	/*
11886 	 * Add all pipes to the state, and force
11887 	 * a modeset on all the active ones.
11888 	 */
11889 	for_each_crtc(state->dev, crtc) {
11890 		struct drm_crtc_state *crtc_state;
11891 		int ret;
11892 
11893 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
11894 		if (IS_ERR(crtc_state))
11895 			return PTR_ERR(crtc_state);
11896 
11897 		if (!crtc_state->active || needs_modeset(crtc_state))
11898 			continue;
11899 
11900 		crtc_state->mode_changed = true;
11901 
11902 		ret = drm_atomic_add_affected_connectors(state, crtc);
11903 		if (ret)
11904 			return ret;
11905 
11906 		ret = drm_atomic_add_affected_planes(state, crtc);
11907 		if (ret)
11908 			return ret;
11909 	}
11910 
11911 	return 0;
11912 }
11913 
11914 static int intel_modeset_checks(struct drm_atomic_state *state)
11915 {
11916 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
11917 	struct drm_i915_private *dev_priv = to_i915(state->dev);
11918 	struct drm_crtc *crtc;
11919 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11920 	int ret = 0, i;
11921 
11922 	if (!check_digital_port_conflicts(state)) {
11923 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11924 		return -EINVAL;
11925 	}
11926 
11927 	intel_state->modeset = true;
11928 	intel_state->active_crtcs = dev_priv->active_crtcs;
11929 	intel_state->cdclk.logical = dev_priv->cdclk.logical;
11930 	intel_state->cdclk.actual = dev_priv->cdclk.actual;
11931 
11932 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11933 		if (new_crtc_state->active)
11934 			intel_state->active_crtcs |= 1 << i;
11935 		else
11936 			intel_state->active_crtcs &= ~(1 << i);
11937 
11938 		if (old_crtc_state->active != new_crtc_state->active)
11939 			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
11940 	}
11941 
11942 	/*
11943 	 * See if the config requires any additional preparation, e.g.
11944 	 * to adjust global state with pipes off.  We need to do this
11945 	 * here so we can get the modeset_pipe updated config for the new
11946 	 * mode set on this crtc.  For other crtcs we need to use the
11947 	 * adjusted_mode bits in the crtc directly.
11948 	 */
11949 	if (dev_priv->display.modeset_calc_cdclk) {
11950 		ret = dev_priv->display.modeset_calc_cdclk(state);
11951 		if (ret < 0)
11952 			return ret;
11953 
11954 		/*
11955 		 * Writes to dev_priv->cdclk.logical must protected by
11956 		 * holding all the crtc locks, even if we don't end up
11957 		 * touching the hardware
11958 		 */
11959 		if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
11960 					       &intel_state->cdclk.logical)) {
11961 			ret = intel_lock_all_pipes(state);
11962 			if (ret < 0)
11963 				return ret;
11964 		}
11965 
11966 		/* All pipes must be switched off while we change the cdclk. */
11967 		if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
11968 					       &intel_state->cdclk.actual)) {
11969 			ret = intel_modeset_all_pipes(state);
11970 			if (ret < 0)
11971 				return ret;
11972 		}
11973 
11974 		DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
11975 			      intel_state->cdclk.logical.cdclk,
11976 			      intel_state->cdclk.actual.cdclk);
11977 	} else {
11978 		to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
11979 	}
11980 
11981 	intel_modeset_clear_plls(state);
11982 
11983 	if (IS_HASWELL(dev_priv))
11984 		return haswell_mode_set_planes_workaround(state);
11985 
11986 	return 0;
11987 }
11988 
11989 /*
11990  * Handle calculation of various watermark data at the end of the atomic check
11991  * phase.  The code here should be run after the per-crtc and per-plane 'check'
11992  * handlers to ensure that all derived state has been updated.
11993  */
11994 static int calc_watermark_data(struct drm_atomic_state *state)
11995 {
11996 	struct drm_device *dev = state->dev;
11997 	struct drm_i915_private *dev_priv = to_i915(dev);
11998 
11999 	/* Is there platform-specific watermark information to calculate? */
12000 	if (dev_priv->display.compute_global_watermarks)
12001 		return dev_priv->display.compute_global_watermarks(state);
12002 
12003 	return 0;
12004 }
12005 
12006 /**
12007  * intel_atomic_check - validate state object
12008  * @dev: drm device
12009  * @state: state to validate
12010  */
12011 static int intel_atomic_check(struct drm_device *dev,
12012 			      struct drm_atomic_state *state)
12013 {
12014 	struct drm_i915_private *dev_priv = to_i915(dev);
12015 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12016 	struct drm_crtc *crtc;
12017 	struct drm_crtc_state *old_crtc_state, *crtc_state;
12018 	int ret, i;
12019 	bool any_ms = false;
12020 
12021 	ret = drm_atomic_helper_check_modeset(dev, state);
12022 	if (ret)
12023 		return ret;
12024 
12025 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12026 		struct intel_crtc_state *pipe_config =
12027 			to_intel_crtc_state(crtc_state);
12028 
12029 		/* Catch I915_MODE_FLAG_INHERITED */
12030 		if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12031 			crtc_state->mode_changed = true;
12032 
12033 		if (!needs_modeset(crtc_state))
12034 			continue;
12035 
12036 		if (!crtc_state->enable) {
12037 			any_ms = true;
12038 			continue;
12039 		}
12040 
12041 		/* FIXME: For only active_changed we shouldn't need to do any
12042 		 * state recomputation at all. */
12043 
12044 		ret = drm_atomic_add_affected_connectors(state, crtc);
12045 		if (ret)
12046 			return ret;
12047 
12048 		ret = intel_modeset_pipe_config(crtc, pipe_config);
12049 		if (ret) {
12050 			intel_dump_pipe_config(to_intel_crtc(crtc),
12051 					       pipe_config, "[failed]");
12052 			return ret;
12053 		}
12054 
12055 		if (i915_modparams.fastboot &&
12056 		    intel_pipe_config_compare(dev_priv,
12057 					to_intel_crtc_state(old_crtc_state),
12058 					pipe_config, true)) {
12059 			crtc_state->mode_changed = false;
12060 			pipe_config->update_pipe = true;
12061 		}
12062 
12063 		if (needs_modeset(crtc_state))
12064 			any_ms = true;
12065 
12066 		ret = drm_atomic_add_affected_planes(state, crtc);
12067 		if (ret)
12068 			return ret;
12069 
12070 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12071 				       needs_modeset(crtc_state) ?
12072 				       "[modeset]" : "[fastset]");
12073 	}
12074 
12075 	if (any_ms) {
12076 		ret = intel_modeset_checks(state);
12077 
12078 		if (ret)
12079 			return ret;
12080 	} else {
12081 		intel_state->cdclk.logical = dev_priv->cdclk.logical;
12082 	}
12083 
12084 	ret = drm_atomic_helper_check_planes(dev, state);
12085 	if (ret)
12086 		return ret;
12087 
12088 	intel_fbc_choose_crtc(dev_priv, state);
12089 	return calc_watermark_data(state);
12090 }
12091 
12092 static int intel_atomic_prepare_commit(struct drm_device *dev,
12093 				       struct drm_atomic_state *state)
12094 {
12095 	return drm_atomic_helper_prepare_planes(dev, state);
12096 }
12097 
12098 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12099 {
12100 	struct drm_device *dev = crtc->base.dev;
12101 
12102 	if (!dev->max_vblank_count)
12103 		return drm_crtc_accurate_vblank_count(&crtc->base);
12104 
12105 	return dev->driver->get_vblank_counter(dev, crtc->pipe);
12106 }
12107 
12108 static void intel_update_crtc(struct drm_crtc *crtc,
12109 			      struct drm_atomic_state *state,
12110 			      struct drm_crtc_state *old_crtc_state,
12111 			      struct drm_crtc_state *new_crtc_state)
12112 {
12113 	struct drm_device *dev = crtc->dev;
12114 	struct drm_i915_private *dev_priv = to_i915(dev);
12115 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12116 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12117 	bool modeset = needs_modeset(new_crtc_state);
12118 
12119 	if (modeset) {
12120 		update_scanline_offset(intel_crtc);
12121 		dev_priv->display.crtc_enable(pipe_config, state);
12122 	} else {
12123 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12124 				       pipe_config);
12125 	}
12126 
12127 	if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12128 		intel_fbc_enable(
12129 		    intel_crtc, pipe_config,
12130 		    to_intel_plane_state(crtc->primary->state));
12131 	}
12132 
12133 	drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12134 }
12135 
12136 static void intel_update_crtcs(struct drm_atomic_state *state)
12137 {
12138 	struct drm_crtc *crtc;
12139 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12140 	int i;
12141 
12142 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12143 		if (!new_crtc_state->active)
12144 			continue;
12145 
12146 		intel_update_crtc(crtc, state, old_crtc_state,
12147 				  new_crtc_state);
12148 	}
12149 }
12150 
12151 static void skl_update_crtcs(struct drm_atomic_state *state)
12152 {
12153 	struct drm_i915_private *dev_priv = to_i915(state->dev);
12154 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12155 	struct drm_crtc *crtc;
12156 	struct intel_crtc *intel_crtc;
12157 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12158 	struct intel_crtc_state *cstate;
12159 	unsigned int updated = 0;
12160 	bool progress;
12161 	enum i915_pipe pipe;
12162 	int i;
12163 
12164 	const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12165 
12166 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12167 		/* ignore allocations for crtc's that have been turned off. */
12168 		if (new_crtc_state->active)
12169 			entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12170 
12171 	/*
12172 	 * Whenever the number of active pipes changes, we need to make sure we
12173 	 * update the pipes in the right order so that their ddb allocations
12174 	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12175 	 * cause pipe underruns and other bad stuff.
12176 	 */
12177 	do {
12178 		progress = false;
12179 
12180 		for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12181 			bool vbl_wait = false;
12182 			unsigned int cmask = drm_crtc_mask(crtc);
12183 
12184 			intel_crtc = to_intel_crtc(crtc);
12185 			cstate = to_intel_crtc_state(new_crtc_state);
12186 			pipe = intel_crtc->pipe;
12187 
12188 			if (updated & cmask || !cstate->base.active)
12189 				continue;
12190 
12191 			if (skl_ddb_allocation_overlaps(dev_priv,
12192 							entries,
12193 							&cstate->wm.skl.ddb,
12194 							i))
12195 				continue;
12196 
12197 			updated |= cmask;
12198 			entries[i] = &cstate->wm.skl.ddb;
12199 
12200 			/*
12201 			 * If this is an already active pipe, it's DDB changed,
12202 			 * and this isn't the last pipe that needs updating
12203 			 * then we need to wait for a vblank to pass for the
12204 			 * new ddb allocation to take effect.
12205 			 */
12206 			if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12207 						 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12208 			    !new_crtc_state->active_changed &&
12209 			    intel_state->wm_results.dirty_pipes != updated)
12210 				vbl_wait = true;
12211 
12212 			intel_update_crtc(crtc, state, old_crtc_state,
12213 					  new_crtc_state);
12214 
12215 			if (vbl_wait)
12216 				intel_wait_for_vblank(dev_priv, pipe);
12217 
12218 			progress = true;
12219 		}
12220 	} while (progress);
12221 }
12222 
12223 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12224 {
12225 	struct intel_atomic_state *state, *next;
12226 	struct llist_node *freed;
12227 
12228 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12229 	llist_for_each_entry_safe(state, next, freed, freed)
12230 		drm_atomic_state_put(&state->base);
12231 }
12232 
12233 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12234 {
12235 	struct drm_i915_private *dev_priv =
12236 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12237 
12238 	intel_atomic_helper_free_state(dev_priv);
12239 }
12240 
12241 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
12242 {
12243 	struct wait_queue_entry wait_fence, wait_reset;
12244 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
12245 
12246 	init_wait_entry(&wait_fence, 0);
12247 	init_wait_entry(&wait_reset, 0);
12248 	for (;;) {
12249 		prepare_to_wait(&intel_state->commit_ready.wait,
12250 				&wait_fence, TASK_UNINTERRUPTIBLE);
12251 		prepare_to_wait(&dev_priv->gpu_error.wait_queue,
12252 				&wait_reset, TASK_UNINTERRUPTIBLE);
12253 
12254 
12255 		if (i915_sw_fence_done(&intel_state->commit_ready)
12256 		    || test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
12257 			break;
12258 
12259 		schedule();
12260 	}
12261 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
12262 	finish_wait(&dev_priv->gpu_error.wait_queue, &wait_reset);
12263 }
12264 
12265 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12266 {
12267 	struct drm_device *dev = state->dev;
12268 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12269 	struct drm_i915_private *dev_priv = to_i915(dev);
12270 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12271 	struct drm_crtc *crtc;
12272 	struct intel_crtc_state *intel_cstate;
12273 	u64 put_domains[I915_MAX_PIPES] = {};
12274 	int i;
12275 
12276 	intel_atomic_commit_fence_wait(intel_state);
12277 
12278 	drm_atomic_helper_wait_for_dependencies(state);
12279 
12280 	if (intel_state->modeset)
12281 		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12282 
12283 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12284 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12285 
12286 		if (needs_modeset(new_crtc_state) ||
12287 		    to_intel_crtc_state(new_crtc_state)->update_pipe) {
12288 
12289 			put_domains[to_intel_crtc(crtc)->pipe] =
12290 				modeset_get_crtc_power_domains(crtc,
12291 					to_intel_crtc_state(new_crtc_state));
12292 		}
12293 
12294 		if (!needs_modeset(new_crtc_state))
12295 			continue;
12296 
12297 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12298 				       to_intel_crtc_state(new_crtc_state));
12299 
12300 		if (old_crtc_state->active) {
12301 			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12302 			dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12303 			intel_crtc->active = false;
12304 			intel_fbc_disable(intel_crtc);
12305 			intel_disable_shared_dpll(intel_crtc);
12306 
12307 			/*
12308 			 * Underruns don't always raise
12309 			 * interrupts, so check manually.
12310 			 */
12311 			intel_check_cpu_fifo_underruns(dev_priv);
12312 			intel_check_pch_fifo_underruns(dev_priv);
12313 
12314 			if (!new_crtc_state->active) {
12315 				/*
12316 				 * Make sure we don't call initial_watermarks
12317 				 * for ILK-style watermark updates.
12318 				 *
12319 				 * No clue what this is supposed to achieve.
12320 				 */
12321 				if (INTEL_GEN(dev_priv) >= 9)
12322 					dev_priv->display.initial_watermarks(intel_state,
12323 									     to_intel_crtc_state(new_crtc_state));
12324 			}
12325 		}
12326 	}
12327 
12328 	/* Only after disabling all output pipelines that will be changed can we
12329 	 * update the the output configuration. */
12330 	intel_modeset_update_crtc_state(state);
12331 
12332 	if (intel_state->modeset) {
12333 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12334 
12335 		intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12336 
12337 		/*
12338 		 * SKL workaround: bspec recommends we disable the SAGV when we
12339 		 * have more then one pipe enabled
12340 		 */
12341 		if (!intel_can_enable_sagv(state))
12342 			intel_disable_sagv(dev_priv);
12343 
12344 		intel_modeset_verify_disabled(dev, state);
12345 	}
12346 
12347 	/* Complete the events for pipes that have now been disabled */
12348 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12349 		bool modeset = needs_modeset(new_crtc_state);
12350 
12351 		/* Complete events for now disable pipes here. */
12352 		if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12353 			spin_lock_irq(&dev->event_lock);
12354 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12355 			spin_unlock_irq(&dev->event_lock);
12356 
12357 			new_crtc_state->event = NULL;
12358 		}
12359 	}
12360 
12361 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
12362 	dev_priv->display.update_crtcs(state);
12363 
12364 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12365 	 * already, but still need the state for the delayed optimization. To
12366 	 * fix this:
12367 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12368 	 * - schedule that vblank worker _before_ calling hw_done
12369 	 * - at the start of commit_tail, cancel it _synchrously
12370 	 * - switch over to the vblank wait helper in the core after that since
12371 	 *   we don't need out special handling any more.
12372 	 */
12373 	drm_atomic_helper_wait_for_flip_done(dev, state);
12374 
12375 	/*
12376 	 * Now that the vblank has passed, we can go ahead and program the
12377 	 * optimal watermarks on platforms that need two-step watermark
12378 	 * programming.
12379 	 *
12380 	 * TODO: Move this (and other cleanup) to an async worker eventually.
12381 	 */
12382 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12383 		intel_cstate = to_intel_crtc_state(new_crtc_state);
12384 
12385 		if (dev_priv->display.optimize_watermarks)
12386 			dev_priv->display.optimize_watermarks(intel_state,
12387 							      intel_cstate);
12388 	}
12389 
12390 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12391 		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12392 
12393 		if (put_domains[i])
12394 			modeset_put_power_domains(dev_priv, put_domains[i]);
12395 
12396 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12397 	}
12398 
12399 	if (intel_state->modeset && intel_can_enable_sagv(state))
12400 		intel_enable_sagv(dev_priv);
12401 
12402 	drm_atomic_helper_commit_hw_done(state);
12403 
12404 	if (intel_state->modeset) {
12405 		/* As one of the primary mmio accessors, KMS has a high
12406 		 * likelihood of triggering bugs in unclaimed access. After we
12407 		 * finish modesetting, see if an error has been flagged, and if
12408 		 * so enable debugging for the next modeset - and hope we catch
12409 		 * the culprit.
12410 		 */
12411 		intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12412 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12413 	}
12414 
12415 	drm_atomic_helper_cleanup_planes(dev, state);
12416 
12417 	drm_atomic_helper_commit_cleanup_done(state);
12418 
12419 	drm_atomic_state_put(state);
12420 
12421 	intel_atomic_helper_free_state(dev_priv);
12422 }
12423 
12424 static void intel_atomic_commit_work(struct work_struct *work)
12425 {
12426 	struct drm_atomic_state *state =
12427 		container_of(work, struct drm_atomic_state, commit_work);
12428 
12429 	intel_atomic_commit_tail(state);
12430 }
12431 
12432 static int __i915_sw_fence_call
12433 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12434 			  enum i915_sw_fence_notify notify)
12435 {
12436 	struct intel_atomic_state *state =
12437 		container_of(fence, struct intel_atomic_state, commit_ready);
12438 
12439 	switch (notify) {
12440 	case FENCE_COMPLETE:
12441 		/* we do blocking waits in the worker, nothing to do here */
12442 		break;
12443 	case FENCE_FREE:
12444 		{
12445 			struct intel_atomic_helper *helper =
12446 				&to_i915(state->base.dev)->atomic_helper;
12447 
12448 			if (llist_add(&state->freed, &helper->free_list))
12449 				schedule_work(&helper->free_work);
12450 			break;
12451 		}
12452 	}
12453 
12454 	return NOTIFY_DONE;
12455 }
12456 
12457 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12458 {
12459 	struct drm_plane_state *old_plane_state, *new_plane_state;
12460 	struct drm_plane *plane;
12461 	int i;
12462 
12463 	for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
12464 		i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12465 				  intel_fb_obj(new_plane_state->fb),
12466 				  to_intel_plane(plane)->frontbuffer_bit);
12467 }
12468 
12469 /**
12470  * intel_atomic_commit - commit validated state object
12471  * @dev: DRM device
12472  * @state: the top-level driver state object
12473  * @nonblock: nonblocking commit
12474  *
12475  * This function commits a top-level state object that has been validated
12476  * with drm_atomic_helper_check().
12477  *
12478  * RETURNS
12479  * Zero for success or -errno.
12480  */
12481 static int intel_atomic_commit(struct drm_device *dev,
12482 			       struct drm_atomic_state *state,
12483 			       bool nonblock)
12484 {
12485 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12486 	struct drm_i915_private *dev_priv = to_i915(dev);
12487 	int ret = 0;
12488 
12489 	drm_atomic_state_get(state);
12490 	i915_sw_fence_init(&intel_state->commit_ready,
12491 			   intel_atomic_commit_ready);
12492 
12493 	/*
12494 	 * The intel_legacy_cursor_update() fast path takes care
12495 	 * of avoiding the vblank waits for simple cursor
12496 	 * movement and flips. For cursor on/off and size changes,
12497 	 * we want to perform the vblank waits so that watermark
12498 	 * updates happen during the correct frames. Gen9+ have
12499 	 * double buffered watermarks and so shouldn't need this.
12500 	 *
12501 	 * Unset state->legacy_cursor_update before the call to
12502 	 * drm_atomic_helper_setup_commit() because otherwise
12503 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
12504 	 * we get FIFO underruns because we didn't wait
12505 	 * for vblank.
12506 	 *
12507 	 * FIXME doing watermarks and fb cleanup from a vblank worker
12508 	 * (assuming we had any) would solve these problems.
12509 	 */
12510 	if (INTEL_GEN(dev_priv) < 9 && state->legacy_cursor_update) {
12511 		struct intel_crtc_state *new_crtc_state;
12512 		struct intel_crtc *crtc;
12513 		int i;
12514 
12515 		for_each_new_intel_crtc_in_state(intel_state, crtc, new_crtc_state, i)
12516 			if (new_crtc_state->wm.need_postvbl_update ||
12517 			    new_crtc_state->update_wm_post)
12518 				state->legacy_cursor_update = false;
12519 	}
12520 
12521 	ret = intel_atomic_prepare_commit(dev, state);
12522 	if (ret) {
12523 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
12524 		i915_sw_fence_commit(&intel_state->commit_ready);
12525 		return ret;
12526 	}
12527 
12528 	ret = drm_atomic_helper_setup_commit(state, nonblock);
12529 	if (!ret)
12530 		ret = drm_atomic_helper_swap_state(state, true);
12531 
12532 	if (ret) {
12533 		i915_sw_fence_commit(&intel_state->commit_ready);
12534 
12535 		drm_atomic_helper_cleanup_planes(dev, state);
12536 		return ret;
12537 	}
12538 	dev_priv->wm.distrust_bios_wm = false;
12539 	intel_shared_dpll_swap_state(state);
12540 	intel_atomic_track_fbs(state);
12541 
12542 	if (intel_state->modeset) {
12543 		memcpy(dev_priv->min_cdclk, intel_state->min_cdclk,
12544 		       sizeof(intel_state->min_cdclk));
12545 		dev_priv->active_crtcs = intel_state->active_crtcs;
12546 		dev_priv->cdclk.logical = intel_state->cdclk.logical;
12547 		dev_priv->cdclk.actual = intel_state->cdclk.actual;
12548 	}
12549 
12550 	drm_atomic_state_get(state);
12551 	INIT_WORK(&state->commit_work, intel_atomic_commit_work);
12552 
12553 	i915_sw_fence_commit(&intel_state->commit_ready);
12554 	if (nonblock && intel_state->modeset) {
12555 		queue_work(dev_priv->modeset_wq, &state->commit_work);
12556 	} else if (nonblock) {
12557 		queue_work(system_unbound_wq, &state->commit_work);
12558 	} else {
12559 		if (intel_state->modeset)
12560 			flush_workqueue(dev_priv->modeset_wq);
12561 		intel_atomic_commit_tail(state);
12562 	}
12563 
12564 	return 0;
12565 }
12566 
12567 static const struct drm_crtc_funcs intel_crtc_funcs = {
12568 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
12569 	.set_config = drm_atomic_helper_set_config,
12570 	.destroy = intel_crtc_destroy,
12571 	.page_flip = drm_atomic_helper_page_flip,
12572 	.atomic_duplicate_state = intel_crtc_duplicate_state,
12573 	.atomic_destroy_state = intel_crtc_destroy_state,
12574 	.set_crc_source = intel_crtc_set_crc_source,
12575 };
12576 
12577 struct wait_rps_boost {
12578 	struct wait_queue_entry wait;
12579 
12580 	struct drm_crtc *crtc;
12581 	struct drm_i915_gem_request *request;
12582 };
12583 
12584 static int do_rps_boost(struct wait_queue_entry *_wait,
12585 			unsigned mode, int sync, void *key)
12586 {
12587 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
12588 	struct drm_i915_gem_request *rq = wait->request;
12589 
12590 	gen6_rps_boost(rq, NULL);
12591 	i915_gem_request_put(rq);
12592 
12593 	drm_crtc_vblank_put(wait->crtc);
12594 
12595 	list_del(&wait->wait.entry);
12596 	kfree(wait);
12597 	return 1;
12598 }
12599 
12600 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
12601 				       struct dma_fence *fence)
12602 {
12603 	struct wait_rps_boost *wait;
12604 
12605 	if (!dma_fence_is_i915(fence))
12606 		return;
12607 
12608 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
12609 		return;
12610 
12611 	if (drm_crtc_vblank_get(crtc))
12612 		return;
12613 
12614 	wait = kmalloc(sizeof(*wait), M_DRM, GFP_KERNEL);
12615 	if (!wait) {
12616 		drm_crtc_vblank_put(crtc);
12617 		return;
12618 	}
12619 
12620 	wait->request = to_request(dma_fence_get(fence));
12621 	wait->crtc = crtc;
12622 
12623 	wait->wait.func = do_rps_boost;
12624 	wait->wait.flags = 0;
12625 
12626 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
12627 }
12628 
12629 /**
12630  * intel_prepare_plane_fb - Prepare fb for usage on plane
12631  * @plane: drm plane to prepare for
12632  * @fb: framebuffer to prepare for presentation
12633  *
12634  * Prepares a framebuffer for usage on a display plane.  Generally this
12635  * involves pinning the underlying object and updating the frontbuffer tracking
12636  * bits.  Some older platforms need special physical address handling for
12637  * cursor planes.
12638  *
12639  * Must be called with struct_mutex held.
12640  *
12641  * Returns 0 on success, negative error code on failure.
12642  */
12643 int
12644 intel_prepare_plane_fb(struct drm_plane *plane,
12645 		       struct drm_plane_state *new_state)
12646 {
12647 	struct intel_atomic_state *intel_state =
12648 		to_intel_atomic_state(new_state->state);
12649 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
12650 	struct drm_framebuffer *fb = new_state->fb;
12651 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12652 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
12653 	int ret;
12654 
12655 	if (old_obj) {
12656 		struct drm_crtc_state *crtc_state =
12657 			drm_atomic_get_existing_crtc_state(new_state->state,
12658 							   plane->state->crtc);
12659 
12660 		/* Big Hammer, we also need to ensure that any pending
12661 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
12662 		 * current scanout is retired before unpinning the old
12663 		 * framebuffer. Note that we rely on userspace rendering
12664 		 * into the buffer attached to the pipe they are waiting
12665 		 * on. If not, userspace generates a GPU hang with IPEHR
12666 		 * point to the MI_WAIT_FOR_EVENT.
12667 		 *
12668 		 * This should only fail upon a hung GPU, in which case we
12669 		 * can safely continue.
12670 		 */
12671 		if (needs_modeset(crtc_state)) {
12672 			ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12673 							      old_obj->resv, NULL,
12674 							      false, 0,
12675 							      GFP_KERNEL);
12676 			if (ret < 0)
12677 				return ret;
12678 		}
12679 	}
12680 
12681 	if (new_state->fence) { /* explicit fencing */
12682 		ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
12683 						    new_state->fence,
12684 						    I915_FENCE_TIMEOUT,
12685 						    GFP_KERNEL);
12686 		if (ret < 0)
12687 			return ret;
12688 	}
12689 
12690 	if (!obj)
12691 		return 0;
12692 
12693 	ret = i915_gem_object_pin_pages(obj);
12694 	if (ret)
12695 		return ret;
12696 
12697 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
12698 	if (ret) {
12699 		i915_gem_object_unpin_pages(obj);
12700 		return ret;
12701 	}
12702 
12703 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12704 	    INTEL_INFO(dev_priv)->cursor_needs_physical) {
12705 		const int align = intel_cursor_alignment(dev_priv);
12706 
12707 		ret = i915_gem_object_attach_phys(obj, align);
12708 	} else {
12709 		struct i915_vma *vma;
12710 
12711 		vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
12712 		if (!IS_ERR(vma))
12713 			to_intel_plane_state(new_state)->vma = vma;
12714 		else
12715 			ret =  PTR_ERR(vma);
12716 	}
12717 
12718 	i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12719 
12720 	mutex_unlock(&dev_priv->drm.struct_mutex);
12721 	i915_gem_object_unpin_pages(obj);
12722 	if (ret)
12723 		return ret;
12724 
12725 	if (!new_state->fence) { /* implicit fencing */
12726 		struct dma_fence *fence;
12727 
12728 		ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12729 						      obj->resv, NULL,
12730 						      false, I915_FENCE_TIMEOUT,
12731 						      GFP_KERNEL);
12732 		if (ret < 0)
12733 			return ret;
12734 
12735 		fence = reservation_object_get_excl_rcu(obj->resv);
12736 		if (fence) {
12737 			add_rps_boost_after_vblank(new_state->crtc, fence);
12738 			dma_fence_put(fence);
12739 		}
12740 	} else {
12741 		add_rps_boost_after_vblank(new_state->crtc, new_state->fence);
12742 	}
12743 
12744 	return 0;
12745 }
12746 
12747 /**
12748  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12749  * @plane: drm plane to clean up for
12750  * @fb: old framebuffer that was on plane
12751  *
12752  * Cleans up a framebuffer that has just been removed from a plane.
12753  *
12754  * Must be called with struct_mutex held.
12755  */
12756 void
12757 intel_cleanup_plane_fb(struct drm_plane *plane,
12758 		       struct drm_plane_state *old_state)
12759 {
12760 	struct i915_vma *vma;
12761 
12762 	/* Should only be called after a successful intel_prepare_plane_fb()! */
12763 	vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
12764 	if (vma) {
12765 		mutex_lock(&plane->dev->struct_mutex);
12766 		intel_unpin_fb_vma(vma);
12767 		mutex_unlock(&plane->dev->struct_mutex);
12768 	}
12769 }
12770 
12771 int
12772 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12773 {
12774 	struct drm_i915_private *dev_priv;
12775 	int max_scale;
12776 	int crtc_clock, max_dotclk;
12777 
12778 	if (!intel_crtc || !crtc_state->base.enable)
12779 		return DRM_PLANE_HELPER_NO_SCALING;
12780 
12781 	dev_priv = to_i915(intel_crtc->base.dev);
12782 
12783 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12784 	max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
12785 
12786 	if (IS_GEMINILAKE(dev_priv))
12787 		max_dotclk *= 2;
12788 
12789 	if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
12790 		return DRM_PLANE_HELPER_NO_SCALING;
12791 
12792 	/*
12793 	 * skl max scale is lower of:
12794 	 *    close to 3 but not 3, -1 is for that purpose
12795 	 *            or
12796 	 *    cdclk/crtc_clock
12797 	 */
12798 	max_scale = min((1 << 16) * 3 - 1,
12799 			(1 << 8) * ((max_dotclk << 8) / crtc_clock));
12800 
12801 	return max_scale;
12802 }
12803 
12804 static int
12805 intel_check_primary_plane(struct intel_plane *plane,
12806 			  struct intel_crtc_state *crtc_state,
12807 			  struct intel_plane_state *state)
12808 {
12809 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
12810 	struct drm_crtc *crtc = state->base.crtc;
12811 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
12812 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
12813 	bool can_position = false;
12814 	int ret;
12815 
12816 	if (INTEL_GEN(dev_priv) >= 9) {
12817 		/* use scaler when colorkey is not required */
12818 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
12819 			min_scale = 1;
12820 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
12821 		}
12822 		can_position = true;
12823 	}
12824 
12825 	ret = drm_plane_helper_check_state(&state->base,
12826 					   &state->clip,
12827 					   min_scale, max_scale,
12828 					   can_position, true);
12829 	if (ret)
12830 		return ret;
12831 
12832 	if (!state->base.fb)
12833 		return 0;
12834 
12835 	if (INTEL_GEN(dev_priv) >= 9) {
12836 		ret = skl_check_plane_surface(state);
12837 		if (ret)
12838 			return ret;
12839 
12840 		state->ctl = skl_plane_ctl(crtc_state, state);
12841 	} else {
12842 		ret = i9xx_check_plane_surface(state);
12843 		if (ret)
12844 			return ret;
12845 
12846 		state->ctl = i9xx_plane_ctl(crtc_state, state);
12847 	}
12848 
12849 	return 0;
12850 }
12851 
12852 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
12853 				    struct drm_crtc_state *old_crtc_state)
12854 {
12855 	struct drm_device *dev = crtc->dev;
12856 	struct drm_i915_private *dev_priv = to_i915(dev);
12857 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12858 	struct intel_crtc_state *old_intel_cstate =
12859 		to_intel_crtc_state(old_crtc_state);
12860 	struct intel_atomic_state *old_intel_state =
12861 		to_intel_atomic_state(old_crtc_state->state);
12862 	struct intel_crtc_state *intel_cstate =
12863 		intel_atomic_get_new_crtc_state(old_intel_state, intel_crtc);
12864 	bool modeset = needs_modeset(&intel_cstate->base);
12865 
12866 	if (!modeset &&
12867 	    (intel_cstate->base.color_mgmt_changed ||
12868 	     intel_cstate->update_pipe)) {
12869 		intel_color_set_csc(&intel_cstate->base);
12870 		intel_color_load_luts(&intel_cstate->base);
12871 	}
12872 
12873 	/* Perform vblank evasion around commit operation */
12874 	intel_pipe_update_start(intel_cstate);
12875 
12876 	if (modeset)
12877 		goto out;
12878 
12879 	if (intel_cstate->update_pipe)
12880 		intel_update_pipe_config(old_intel_cstate, intel_cstate);
12881 	else if (INTEL_GEN(dev_priv) >= 9)
12882 		skl_detach_scalers(intel_crtc);
12883 
12884 out:
12885 	if (dev_priv->display.atomic_update_watermarks)
12886 		dev_priv->display.atomic_update_watermarks(old_intel_state,
12887 							   intel_cstate);
12888 }
12889 
12890 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
12891 				     struct drm_crtc_state *old_crtc_state)
12892 {
12893 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12894 	struct intel_atomic_state *old_intel_state =
12895 		to_intel_atomic_state(old_crtc_state->state);
12896 	struct intel_crtc_state *new_crtc_state =
12897 		intel_atomic_get_new_crtc_state(old_intel_state, intel_crtc);
12898 
12899 	intel_pipe_update_end(new_crtc_state);
12900 }
12901 
12902 /**
12903  * intel_plane_destroy - destroy a plane
12904  * @plane: plane to destroy
12905  *
12906  * Common destruction function for all types of planes (primary, cursor,
12907  * sprite).
12908  */
12909 void intel_plane_destroy(struct drm_plane *plane)
12910 {
12911 	drm_plane_cleanup(plane);
12912 	kfree(to_intel_plane(plane));
12913 }
12914 
12915 static bool i8xx_mod_supported(uint32_t format, uint64_t modifier)
12916 {
12917 	switch (format) {
12918 	case DRM_FORMAT_C8:
12919 	case DRM_FORMAT_RGB565:
12920 	case DRM_FORMAT_XRGB1555:
12921 	case DRM_FORMAT_XRGB8888:
12922 		return modifier == DRM_FORMAT_MOD_LINEAR ||
12923 			modifier == I915_FORMAT_MOD_X_TILED;
12924 	default:
12925 		return false;
12926 	}
12927 }
12928 
12929 static bool i965_mod_supported(uint32_t format, uint64_t modifier)
12930 {
12931 	switch (format) {
12932 	case DRM_FORMAT_C8:
12933 	case DRM_FORMAT_RGB565:
12934 	case DRM_FORMAT_XRGB8888:
12935 	case DRM_FORMAT_XBGR8888:
12936 	case DRM_FORMAT_XRGB2101010:
12937 	case DRM_FORMAT_XBGR2101010:
12938 		return modifier == DRM_FORMAT_MOD_LINEAR ||
12939 			modifier == I915_FORMAT_MOD_X_TILED;
12940 	default:
12941 		return false;
12942 	}
12943 }
12944 
12945 static bool skl_mod_supported(uint32_t format, uint64_t modifier)
12946 {
12947 	switch (format) {
12948 	case DRM_FORMAT_XRGB8888:
12949 	case DRM_FORMAT_XBGR8888:
12950 	case DRM_FORMAT_ARGB8888:
12951 	case DRM_FORMAT_ABGR8888:
12952 		if (modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
12953 		    modifier == I915_FORMAT_MOD_Y_TILED_CCS)
12954 			return true;
12955 		/* fall through */
12956 	case DRM_FORMAT_RGB565:
12957 	case DRM_FORMAT_XRGB2101010:
12958 	case DRM_FORMAT_XBGR2101010:
12959 	case DRM_FORMAT_YUYV:
12960 	case DRM_FORMAT_YVYU:
12961 	case DRM_FORMAT_UYVY:
12962 	case DRM_FORMAT_VYUY:
12963 		if (modifier == I915_FORMAT_MOD_Yf_TILED)
12964 			return true;
12965 		/* fall through */
12966 	case DRM_FORMAT_C8:
12967 		if (modifier == DRM_FORMAT_MOD_LINEAR ||
12968 		    modifier == I915_FORMAT_MOD_X_TILED ||
12969 		    modifier == I915_FORMAT_MOD_Y_TILED)
12970 			return true;
12971 		/* fall through */
12972 	default:
12973 		return false;
12974 	}
12975 }
12976 
12977 static bool intel_primary_plane_format_mod_supported(struct drm_plane *plane,
12978 						     uint32_t format,
12979 						     uint64_t modifier)
12980 {
12981 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
12982 
12983 	if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
12984 		return false;
12985 
12986 	if ((modifier >> 56) != DRM_FORMAT_MOD_VENDOR_INTEL &&
12987 	    modifier != DRM_FORMAT_MOD_LINEAR)
12988 		return false;
12989 
12990 	if (INTEL_GEN(dev_priv) >= 9)
12991 		return skl_mod_supported(format, modifier);
12992 	else if (INTEL_GEN(dev_priv) >= 4)
12993 		return i965_mod_supported(format, modifier);
12994 	else
12995 		return i8xx_mod_supported(format, modifier);
12996 
12997 	unreachable();
12998 }
12999 
13000 static bool intel_cursor_plane_format_mod_supported(struct drm_plane *plane,
13001 						    uint32_t format,
13002 						    uint64_t modifier)
13003 {
13004 	if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
13005 		return false;
13006 
13007 	return modifier == DRM_FORMAT_MOD_LINEAR && format == DRM_FORMAT_ARGB8888;
13008 }
13009 
13010 static struct drm_plane_funcs intel_plane_funcs = {
13011 	.update_plane = drm_atomic_helper_update_plane,
13012 	.disable_plane = drm_atomic_helper_disable_plane,
13013 	.destroy = intel_plane_destroy,
13014 	.atomic_get_property = intel_plane_atomic_get_property,
13015 	.atomic_set_property = intel_plane_atomic_set_property,
13016 	.atomic_duplicate_state = intel_plane_duplicate_state,
13017 	.atomic_destroy_state = intel_plane_destroy_state,
13018 	.format_mod_supported = intel_primary_plane_format_mod_supported,
13019 };
13020 
13021 static int
13022 intel_legacy_cursor_update(struct drm_plane *plane,
13023 			   struct drm_crtc *crtc,
13024 			   struct drm_framebuffer *fb,
13025 			   int crtc_x, int crtc_y,
13026 			   unsigned int crtc_w, unsigned int crtc_h,
13027 			   uint32_t src_x, uint32_t src_y,
13028 			   uint32_t src_w, uint32_t src_h,
13029 			   struct drm_modeset_acquire_ctx *ctx)
13030 {
13031 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13032 	int ret;
13033 	struct drm_plane_state *old_plane_state, *new_plane_state;
13034 	struct intel_plane *intel_plane = to_intel_plane(plane);
13035 	struct drm_framebuffer *old_fb;
13036 	struct drm_crtc_state *crtc_state = crtc->state;
13037 	struct i915_vma *old_vma, *vma;
13038 
13039 	/*
13040 	 * When crtc is inactive or there is a modeset pending,
13041 	 * wait for it to complete in the slowpath
13042 	 */
13043 	if (!crtc_state->active || needs_modeset(crtc_state) ||
13044 	    to_intel_crtc_state(crtc_state)->update_pipe)
13045 		goto slow;
13046 
13047 	old_plane_state = plane->state;
13048 	/*
13049 	 * Don't do an async update if there is an outstanding commit modifying
13050 	 * the plane.  This prevents our async update's changes from getting
13051 	 * overridden by a previous synchronous update's state.
13052 	 */
13053 	if (old_plane_state->commit &&
13054 	    !try_wait_for_completion(&old_plane_state->commit->hw_done))
13055 		goto slow;
13056 
13057 	/*
13058 	 * If any parameters change that may affect watermarks,
13059 	 * take the slowpath. Only changing fb or position should be
13060 	 * in the fastpath.
13061 	 */
13062 	if (old_plane_state->crtc != crtc ||
13063 	    old_plane_state->src_w != src_w ||
13064 	    old_plane_state->src_h != src_h ||
13065 	    old_plane_state->crtc_w != crtc_w ||
13066 	    old_plane_state->crtc_h != crtc_h ||
13067 	    !old_plane_state->fb != !fb)
13068 		goto slow;
13069 
13070 	new_plane_state = intel_plane_duplicate_state(plane);
13071 	if (!new_plane_state)
13072 		return -ENOMEM;
13073 
13074 	drm_atomic_set_fb_for_plane(new_plane_state, fb);
13075 
13076 	new_plane_state->src_x = src_x;
13077 	new_plane_state->src_y = src_y;
13078 	new_plane_state->src_w = src_w;
13079 	new_plane_state->src_h = src_h;
13080 	new_plane_state->crtc_x = crtc_x;
13081 	new_plane_state->crtc_y = crtc_y;
13082 	new_plane_state->crtc_w = crtc_w;
13083 	new_plane_state->crtc_h = crtc_h;
13084 
13085 	ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13086 						  to_intel_crtc_state(crtc->state), /* FIXME need a new crtc state? */
13087 						  to_intel_plane_state(plane->state),
13088 						  to_intel_plane_state(new_plane_state));
13089 	if (ret)
13090 		goto out_free;
13091 
13092 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13093 	if (ret)
13094 		goto out_free;
13095 
13096 	if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13097 		int align = intel_cursor_alignment(dev_priv);
13098 
13099 		ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13100 		if (ret) {
13101 			DRM_DEBUG_KMS("failed to attach phys object\n");
13102 			goto out_unlock;
13103 		}
13104 	} else {
13105 		vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13106 		if (IS_ERR(vma)) {
13107 			DRM_DEBUG_KMS("failed to pin object\n");
13108 
13109 			ret = PTR_ERR(vma);
13110 			goto out_unlock;
13111 		}
13112 
13113 		to_intel_plane_state(new_plane_state)->vma = vma;
13114 	}
13115 
13116 	old_fb = old_plane_state->fb;
13117 
13118 	i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13119 			  intel_plane->frontbuffer_bit);
13120 
13121 	/* Swap plane state */
13122 	plane->state = new_plane_state;
13123 
13124 	if (plane->state->visible) {
13125 		trace_intel_update_plane(plane, to_intel_crtc(crtc));
13126 		intel_plane->update_plane(intel_plane,
13127 					  to_intel_crtc_state(crtc->state),
13128 					  to_intel_plane_state(plane->state));
13129 	} else {
13130 		trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13131 		intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13132 	}
13133 
13134 	old_vma = fetch_and_zero(&to_intel_plane_state(old_plane_state)->vma);
13135 	if (old_vma)
13136 		intel_unpin_fb_vma(old_vma);
13137 
13138 out_unlock:
13139 	mutex_unlock(&dev_priv->drm.struct_mutex);
13140 out_free:
13141 	if (ret)
13142 		intel_plane_destroy_state(plane, new_plane_state);
13143 	else
13144 		intel_plane_destroy_state(plane, old_plane_state);
13145 	return ret;
13146 
13147 slow:
13148 	return drm_atomic_helper_update_plane(plane, crtc, fb,
13149 					      crtc_x, crtc_y, crtc_w, crtc_h,
13150 					      src_x, src_y, src_w, src_h, ctx);
13151 }
13152 
13153 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13154 	.update_plane = intel_legacy_cursor_update,
13155 	.disable_plane = drm_atomic_helper_disable_plane,
13156 	.destroy = intel_plane_destroy,
13157 	.atomic_get_property = intel_plane_atomic_get_property,
13158 	.atomic_set_property = intel_plane_atomic_set_property,
13159 	.atomic_duplicate_state = intel_plane_duplicate_state,
13160 	.atomic_destroy_state = intel_plane_destroy_state,
13161 	.format_mod_supported = intel_cursor_plane_format_mod_supported,
13162 };
13163 
13164 static struct intel_plane *
13165 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
13166 {
13167 	struct intel_plane *primary = NULL;
13168 	struct intel_plane_state *state = NULL;
13169 	const uint32_t *intel_primary_formats;
13170 	unsigned int supported_rotations;
13171 	unsigned int num_formats;
13172 	const uint64_t *modifiers;
13173 	int ret;
13174 
13175 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13176 	if (!primary) {
13177 		ret = -ENOMEM;
13178 		goto fail;
13179 	}
13180 
13181 	state = intel_create_plane_state(&primary->base);
13182 	if (!state) {
13183 		ret = -ENOMEM;
13184 		goto fail;
13185 	}
13186 
13187 	primary->base.state = &state->base;
13188 
13189 	primary->can_scale = false;
13190 	primary->max_downscale = 1;
13191 	if (INTEL_GEN(dev_priv) >= 9) {
13192 		primary->can_scale = true;
13193 		state->scaler_id = -1;
13194 	}
13195 	primary->pipe = pipe;
13196 	/*
13197 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13198 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13199 	 */
13200 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13201 		primary->plane = (enum plane) !pipe;
13202 	else
13203 		primary->plane = (enum plane) pipe;
13204 	primary->id = PLANE_PRIMARY;
13205 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13206 	primary->check_plane = intel_check_primary_plane;
13207 
13208 	if (INTEL_GEN(dev_priv) >= 10) {
13209 		intel_primary_formats = skl_primary_formats;
13210 		num_formats = ARRAY_SIZE(skl_primary_formats);
13211 		modifiers = skl_format_modifiers_ccs;
13212 
13213 		primary->update_plane = skl_update_plane;
13214 		primary->disable_plane = skl_disable_plane;
13215 		primary->get_hw_state = skl_plane_get_hw_state;
13216 	} else if (INTEL_GEN(dev_priv) >= 9) {
13217 		intel_primary_formats = skl_primary_formats;
13218 		num_formats = ARRAY_SIZE(skl_primary_formats);
13219 		if (pipe < PIPE_C)
13220 			modifiers = skl_format_modifiers_ccs;
13221 		else
13222 			modifiers = skl_format_modifiers_noccs;
13223 
13224 		primary->update_plane = skl_update_plane;
13225 		primary->disable_plane = skl_disable_plane;
13226 		primary->get_hw_state = skl_plane_get_hw_state;
13227 	} else if (INTEL_GEN(dev_priv) >= 4) {
13228 		intel_primary_formats = i965_primary_formats;
13229 		num_formats = ARRAY_SIZE(i965_primary_formats);
13230 		modifiers = i9xx_format_modifiers;
13231 
13232 		primary->update_plane = i9xx_update_primary_plane;
13233 		primary->disable_plane = i9xx_disable_primary_plane;
13234 		primary->get_hw_state = i9xx_plane_get_hw_state;
13235 	} else {
13236 		intel_primary_formats = i8xx_primary_formats;
13237 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
13238 		modifiers = i9xx_format_modifiers;
13239 
13240 		primary->update_plane = i9xx_update_primary_plane;
13241 		primary->disable_plane = i9xx_disable_primary_plane;
13242 		primary->get_hw_state = i9xx_plane_get_hw_state;
13243 	}
13244 
13245 	if (INTEL_GEN(dev_priv) >= 9)
13246 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13247 					       0, &intel_plane_funcs,
13248 					       intel_primary_formats, num_formats,
13249 					       modifiers,
13250 					       DRM_PLANE_TYPE_PRIMARY,
13251 					       "plane 1%c", pipe_name(pipe));
13252 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13253 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13254 					       0, &intel_plane_funcs,
13255 					       intel_primary_formats, num_formats,
13256 					       modifiers,
13257 					       DRM_PLANE_TYPE_PRIMARY,
13258 					       "primary %c", pipe_name(pipe));
13259 	else
13260 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13261 					       0, &intel_plane_funcs,
13262 					       intel_primary_formats, num_formats,
13263 					       modifiers,
13264 					       DRM_PLANE_TYPE_PRIMARY,
13265 					       "plane %c", plane_name(primary->plane));
13266 	if (ret)
13267 		goto fail;
13268 
13269 	if (INTEL_GEN(dev_priv) >= 9) {
13270 		supported_rotations =
13271 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13272 			DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13273 	} else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13274 		supported_rotations =
13275 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13276 			DRM_MODE_REFLECT_X;
13277 	} else if (INTEL_GEN(dev_priv) >= 4) {
13278 		supported_rotations =
13279 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13280 	} else {
13281 		supported_rotations = DRM_MODE_ROTATE_0;
13282 	}
13283 
13284 	if (INTEL_GEN(dev_priv) >= 4)
13285 		drm_plane_create_rotation_property(&primary->base,
13286 						   DRM_MODE_ROTATE_0,
13287 						   supported_rotations);
13288 
13289 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13290 
13291 	return primary;
13292 
13293 fail:
13294 	kfree(state);
13295 	kfree(primary);
13296 
13297 	return ERR_PTR(ret);
13298 }
13299 
13300 static struct intel_plane *
13301 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13302 			  enum i915_pipe pipe)
13303 {
13304 	struct intel_plane *cursor = NULL;
13305 	struct intel_plane_state *state = NULL;
13306 	int ret;
13307 
13308 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13309 	if (!cursor) {
13310 		ret = -ENOMEM;
13311 		goto fail;
13312 	}
13313 
13314 	state = intel_create_plane_state(&cursor->base);
13315 	if (!state) {
13316 		ret = -ENOMEM;
13317 		goto fail;
13318 	}
13319 
13320 	cursor->base.state = &state->base;
13321 
13322 	cursor->can_scale = false;
13323 	cursor->max_downscale = 1;
13324 	cursor->pipe = pipe;
13325 	cursor->plane = pipe;
13326 	cursor->id = PLANE_CURSOR;
13327 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13328 
13329 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13330 		cursor->update_plane = i845_update_cursor;
13331 		cursor->disable_plane = i845_disable_cursor;
13332 		cursor->get_hw_state = i845_cursor_get_hw_state;
13333 		cursor->check_plane = i845_check_cursor;
13334 	} else {
13335 		cursor->update_plane = i9xx_update_cursor;
13336 		cursor->disable_plane = i9xx_disable_cursor;
13337 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
13338 		cursor->check_plane = i9xx_check_cursor;
13339 	}
13340 
13341 	cursor->cursor.base = ~0;
13342 	cursor->cursor.cntl = ~0;
13343 
13344 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13345 		cursor->cursor.size = ~0;
13346 
13347 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13348 				       0, &intel_cursor_plane_funcs,
13349 				       intel_cursor_formats,
13350 				       ARRAY_SIZE(intel_cursor_formats),
13351 				       cursor_format_modifiers,
13352 				       DRM_PLANE_TYPE_CURSOR,
13353 				       "cursor %c", pipe_name(pipe));
13354 	if (ret)
13355 		goto fail;
13356 
13357 	if (INTEL_GEN(dev_priv) >= 4)
13358 		drm_plane_create_rotation_property(&cursor->base,
13359 						   DRM_MODE_ROTATE_0,
13360 						   DRM_MODE_ROTATE_0 |
13361 						   DRM_MODE_ROTATE_180);
13362 
13363 	if (INTEL_GEN(dev_priv) >= 9)
13364 		state->scaler_id = -1;
13365 
13366 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13367 
13368 	return cursor;
13369 
13370 fail:
13371 	kfree(state);
13372 	kfree(cursor);
13373 
13374 	return ERR_PTR(ret);
13375 }
13376 
13377 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13378 				    struct intel_crtc_state *crtc_state)
13379 {
13380 	struct intel_crtc_scaler_state *scaler_state =
13381 		&crtc_state->scaler_state;
13382 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13383 	int i;
13384 
13385 	crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13386 	if (!crtc->num_scalers)
13387 		return;
13388 
13389 	for (i = 0; i < crtc->num_scalers; i++) {
13390 		struct intel_scaler *scaler = &scaler_state->scalers[i];
13391 
13392 		scaler->in_use = 0;
13393 		scaler->mode = PS_SCALER_MODE_DYN;
13394 	}
13395 
13396 	scaler_state->scaler_id = -1;
13397 }
13398 
13399 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
13400 {
13401 	struct intel_crtc *intel_crtc;
13402 	struct intel_crtc_state *crtc_state = NULL;
13403 	struct intel_plane *primary = NULL;
13404 	struct intel_plane *cursor = NULL;
13405 	int sprite, ret;
13406 
13407 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13408 	if (!intel_crtc)
13409 		return -ENOMEM;
13410 
13411 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13412 	if (!crtc_state) {
13413 		ret = -ENOMEM;
13414 		goto fail;
13415 	}
13416 	intel_crtc->config = crtc_state;
13417 	intel_crtc->base.state = &crtc_state->base;
13418 	crtc_state->base.crtc = &intel_crtc->base;
13419 
13420 	primary = intel_primary_plane_create(dev_priv, pipe);
13421 	if (IS_ERR(primary)) {
13422 		ret = PTR_ERR(primary);
13423 		goto fail;
13424 	}
13425 	intel_crtc->plane_ids_mask |= BIT(primary->id);
13426 
13427 	for_each_sprite(dev_priv, pipe, sprite) {
13428 		struct intel_plane *plane;
13429 
13430 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13431 		if (IS_ERR(plane)) {
13432 			ret = PTR_ERR(plane);
13433 			goto fail;
13434 		}
13435 		intel_crtc->plane_ids_mask |= BIT(plane->id);
13436 	}
13437 
13438 	cursor = intel_cursor_plane_create(dev_priv, pipe);
13439 	if (IS_ERR(cursor)) {
13440 		ret = PTR_ERR(cursor);
13441 		goto fail;
13442 	}
13443 	intel_crtc->plane_ids_mask |= BIT(cursor->id);
13444 
13445 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13446 					&primary->base, &cursor->base,
13447 					&intel_crtc_funcs,
13448 					"pipe %c", pipe_name(pipe));
13449 	if (ret)
13450 		goto fail;
13451 
13452 	intel_crtc->pipe = pipe;
13453 	intel_crtc->plane = primary->plane;
13454 
13455 	/* initialize shared scalers */
13456 	intel_crtc_init_scalers(intel_crtc, crtc_state);
13457 
13458 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13459 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13460 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13461 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13462 
13463 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13464 
13465 	intel_color_init(&intel_crtc->base);
13466 
13467 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13468 
13469 	return 0;
13470 
13471 fail:
13472 	/*
13473 	 * drm_mode_config_cleanup() will free up any
13474 	 * crtcs/planes already initialized.
13475 	 */
13476 	kfree(crtc_state);
13477 	kfree(intel_crtc);
13478 
13479 	return ret;
13480 }
13481 
13482 enum i915_pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13483 {
13484 	struct drm_device *dev = connector->base.dev;
13485 
13486 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13487 
13488 	if (!connector->base.state->crtc)
13489 		return INVALID_PIPE;
13490 
13491 	return to_intel_crtc(connector->base.state->crtc)->pipe;
13492 }
13493 
13494 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13495 				struct drm_file *file)
13496 {
13497 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13498 	struct drm_crtc *drmmode_crtc;
13499 	struct intel_crtc *crtc;
13500 
13501 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
13502 	if (!drmmode_crtc)
13503 		return -ENOENT;
13504 
13505 	crtc = to_intel_crtc(drmmode_crtc);
13506 	pipe_from_crtc_id->pipe = crtc->pipe;
13507 
13508 	return 0;
13509 }
13510 
13511 static int intel_encoder_clones(struct intel_encoder *encoder)
13512 {
13513 	struct drm_device *dev = encoder->base.dev;
13514 	struct intel_encoder *source_encoder;
13515 	int index_mask = 0;
13516 	int entry = 0;
13517 
13518 	for_each_intel_encoder(dev, source_encoder) {
13519 		if (encoders_cloneable(encoder, source_encoder))
13520 			index_mask |= (1 << entry);
13521 
13522 		entry++;
13523 	}
13524 
13525 	return index_mask;
13526 }
13527 
13528 static bool has_edp_a(struct drm_i915_private *dev_priv)
13529 {
13530 	if (!IS_MOBILE(dev_priv))
13531 		return false;
13532 
13533 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13534 		return false;
13535 
13536 	if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13537 		return false;
13538 
13539 	return true;
13540 }
13541 
13542 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13543 {
13544 	if (INTEL_GEN(dev_priv) >= 9)
13545 		return false;
13546 
13547 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13548 		return false;
13549 
13550 	if (IS_CHERRYVIEW(dev_priv))
13551 		return false;
13552 
13553 	if (HAS_PCH_LPT_H(dev_priv) &&
13554 	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13555 		return false;
13556 
13557 	/* DDI E can't be used if DDI A requires 4 lanes */
13558 	if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13559 		return false;
13560 
13561 	if (!dev_priv->vbt.int_crt_support)
13562 		return false;
13563 
13564 	return true;
13565 }
13566 
13567 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
13568 {
13569 	int pps_num;
13570 	int pps_idx;
13571 
13572 	if (HAS_DDI(dev_priv))
13573 		return;
13574 	/*
13575 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
13576 	 * everywhere where registers can be write protected.
13577 	 */
13578 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13579 		pps_num = 2;
13580 	else
13581 		pps_num = 1;
13582 
13583 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
13584 		u32 val = I915_READ(PP_CONTROL(pps_idx));
13585 
13586 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
13587 		I915_WRITE(PP_CONTROL(pps_idx), val);
13588 	}
13589 }
13590 
13591 static void intel_pps_init(struct drm_i915_private *dev_priv)
13592 {
13593 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
13594 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
13595 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13596 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
13597 	else
13598 		dev_priv->pps_mmio_base = PPS_BASE;
13599 
13600 	intel_pps_unlock_regs_wa(dev_priv);
13601 }
13602 
13603 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
13604 {
13605 	struct intel_encoder *encoder;
13606 	bool dpd_is_edp = false;
13607 
13608 	intel_pps_init(dev_priv);
13609 
13610 	/*
13611 	 * intel_edp_init_connector() depends on this completing first, to
13612 	 * prevent the registeration of both eDP and LVDS and the incorrect
13613 	 * sharing of the PPS.
13614 	 */
13615 	intel_lvds_init(dev_priv);
13616 
13617 	if (intel_crt_present(dev_priv))
13618 		intel_crt_init(dev_priv);
13619 
13620 	if (IS_GEN9_LP(dev_priv)) {
13621 		/*
13622 		 * FIXME: Broxton doesn't support port detection via the
13623 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13624 		 * detect the ports.
13625 		 */
13626 		intel_ddi_init(dev_priv, PORT_A);
13627 		intel_ddi_init(dev_priv, PORT_B);
13628 		intel_ddi_init(dev_priv, PORT_C);
13629 
13630 		intel_dsi_init(dev_priv);
13631 	} else if (HAS_DDI(dev_priv)) {
13632 		int found;
13633 
13634 		/*
13635 		 * Haswell uses DDI functions to detect digital outputs.
13636 		 * On SKL pre-D0 the strap isn't connected, so we assume
13637 		 * it's there.
13638 		 */
13639 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13640 		/* WaIgnoreDDIAStrap: skl */
13641 		if (found || IS_GEN9_BC(dev_priv))
13642 			intel_ddi_init(dev_priv, PORT_A);
13643 
13644 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
13645 		 * register */
13646 		found = I915_READ(SFUSE_STRAP);
13647 
13648 		if (found & SFUSE_STRAP_DDIB_DETECTED)
13649 			intel_ddi_init(dev_priv, PORT_B);
13650 		if (found & SFUSE_STRAP_DDIC_DETECTED)
13651 			intel_ddi_init(dev_priv, PORT_C);
13652 		if (found & SFUSE_STRAP_DDID_DETECTED)
13653 			intel_ddi_init(dev_priv, PORT_D);
13654 		/*
13655 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13656 		 */
13657 		if (IS_GEN9_BC(dev_priv) &&
13658 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13659 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13660 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13661 			intel_ddi_init(dev_priv, PORT_E);
13662 
13663 	} else if (HAS_PCH_SPLIT(dev_priv)) {
13664 		int found;
13665 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
13666 
13667 		if (has_edp_a(dev_priv))
13668 			intel_dp_init(dev_priv, DP_A, PORT_A);
13669 
13670 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13671 			/* PCH SDVOB multiplex with HDMIB */
13672 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
13673 			if (!found)
13674 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
13675 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13676 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
13677 		}
13678 
13679 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13680 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
13681 
13682 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13683 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
13684 
13685 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
13686 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
13687 
13688 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
13689 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
13690 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
13691 		bool has_edp, has_port;
13692 
13693 		/*
13694 		 * The DP_DETECTED bit is the latched state of the DDC
13695 		 * SDA pin at boot. However since eDP doesn't require DDC
13696 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13697 		 * eDP ports may have been muxed to an alternate function.
13698 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
13699 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
13700 		 * detect eDP ports.
13701 		 *
13702 		 * Sadly the straps seem to be missing sometimes even for HDMI
13703 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
13704 		 * and VBT for the presence of the port. Additionally we can't
13705 		 * trust the port type the VBT declares as we've seen at least
13706 		 * HDMI ports that the VBT claim are DP or eDP.
13707 		 */
13708 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
13709 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
13710 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
13711 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
13712 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
13713 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
13714 
13715 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
13716 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
13717 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
13718 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
13719 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
13720 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
13721 
13722 		if (IS_CHERRYVIEW(dev_priv)) {
13723 			/*
13724 			 * eDP not supported on port D,
13725 			 * so no need to worry about it
13726 			 */
13727 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
13728 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
13729 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
13730 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
13731 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
13732 		}
13733 
13734 		intel_dsi_init(dev_priv);
13735 	} else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
13736 		bool found = false;
13737 
13738 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13739 			DRM_DEBUG_KMS("probing SDVOB\n");
13740 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
13741 			if (!found && IS_G4X(dev_priv)) {
13742 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13743 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
13744 			}
13745 
13746 			if (!found && IS_G4X(dev_priv))
13747 				intel_dp_init(dev_priv, DP_B, PORT_B);
13748 		}
13749 
13750 		/* Before G4X SDVOC doesn't have its own detect register */
13751 
13752 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13753 			DRM_DEBUG_KMS("probing SDVOC\n");
13754 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
13755 		}
13756 
13757 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13758 
13759 			if (IS_G4X(dev_priv)) {
13760 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13761 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
13762 			}
13763 			if (IS_G4X(dev_priv))
13764 				intel_dp_init(dev_priv, DP_C, PORT_C);
13765 		}
13766 
13767 		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
13768 			intel_dp_init(dev_priv, DP_D, PORT_D);
13769 	} else if (IS_GEN2(dev_priv))
13770 		intel_dvo_init(dev_priv);
13771 
13772 	if (SUPPORTS_TV(dev_priv))
13773 		intel_tv_init(dev_priv);
13774 
13775 	intel_psr_init(dev_priv);
13776 
13777 	for_each_intel_encoder(&dev_priv->drm, encoder) {
13778 		encoder->base.possible_crtcs = encoder->crtc_mask;
13779 		encoder->base.possible_clones =
13780 			intel_encoder_clones(encoder);
13781 	}
13782 
13783 	intel_init_pch_refclk(dev_priv);
13784 
13785 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
13786 }
13787 
13788 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13789 {
13790 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13791 
13792 	drm_framebuffer_cleanup(fb);
13793 
13794 	i915_gem_object_lock(intel_fb->obj);
13795 	WARN_ON(!intel_fb->obj->framebuffer_references--);
13796 	i915_gem_object_unlock(intel_fb->obj);
13797 
13798 	i915_gem_object_put(intel_fb->obj);
13799 
13800 	kfree(intel_fb);
13801 }
13802 
13803 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13804 						struct drm_file *file,
13805 						unsigned int *handle)
13806 {
13807 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13808 	struct drm_i915_gem_object *obj = intel_fb->obj;
13809 
13810 	if (obj->userptr.mm) {
13811 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
13812 		return -EINVAL;
13813 	}
13814 
13815 	return drm_gem_handle_create(file, &obj->base, handle);
13816 }
13817 
13818 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
13819 					struct drm_file *file,
13820 					unsigned flags, unsigned color,
13821 					struct drm_clip_rect *clips,
13822 					unsigned num_clips)
13823 {
13824 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13825 
13826 	i915_gem_object_flush_if_display(obj);
13827 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
13828 
13829 	return 0;
13830 }
13831 
13832 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13833 	.destroy = intel_user_framebuffer_destroy,
13834 	.create_handle = intel_user_framebuffer_create_handle,
13835 	.dirty = intel_user_framebuffer_dirty,
13836 };
13837 
13838 static
13839 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
13840 			 uint64_t fb_modifier, uint32_t pixel_format)
13841 {
13842 	u32 gen = INTEL_GEN(dev_priv);
13843 
13844 	if (gen >= 9) {
13845 		int cpp = drm_format_plane_cpp(pixel_format, 0);
13846 
13847 		/* "The stride in bytes must not exceed the of the size of 8K
13848 		 *  pixels and 32K bytes."
13849 		 */
13850 		return min(8192 * cpp, 32768);
13851 	} else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
13852 		return 32*1024;
13853 	} else if (gen >= 4) {
13854 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13855 			return 16*1024;
13856 		else
13857 			return 32*1024;
13858 	} else if (gen >= 3) {
13859 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13860 			return 8*1024;
13861 		else
13862 			return 16*1024;
13863 	} else {
13864 		/* XXX DSPC is limited to 4k tiled */
13865 		return 8*1024;
13866 	}
13867 }
13868 
13869 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
13870 				  struct drm_i915_gem_object *obj,
13871 				  struct drm_mode_fb_cmd2 *mode_cmd)
13872 {
13873 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
13874 	struct drm_framebuffer *fb = &intel_fb->base;
13875 	struct drm_format_name_buf format_name;
13876 	u32 pitch_limit;
13877 	unsigned int tiling, stride;
13878 	int ret = -EINVAL;
13879 	int i;
13880 
13881 	i915_gem_object_lock(obj);
13882 	obj->framebuffer_references++;
13883 	tiling = i915_gem_object_get_tiling(obj);
13884 	stride = i915_gem_object_get_stride(obj);
13885 	i915_gem_object_unlock(obj);
13886 
13887 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13888 		/*
13889 		 * If there's a fence, enforce that
13890 		 * the fb modifier and tiling mode match.
13891 		 */
13892 		if (tiling != I915_TILING_NONE &&
13893 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13894 			DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
13895 			goto err;
13896 		}
13897 	} else {
13898 		if (tiling == I915_TILING_X) {
13899 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13900 		} else if (tiling == I915_TILING_Y) {
13901 			DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
13902 			goto err;
13903 		}
13904 	}
13905 
13906 	/* Passed in modifier sanity checking. */
13907 	switch (mode_cmd->modifier[0]) {
13908 	case I915_FORMAT_MOD_Y_TILED_CCS:
13909 	case I915_FORMAT_MOD_Yf_TILED_CCS:
13910 		switch (mode_cmd->pixel_format) {
13911 		case DRM_FORMAT_XBGR8888:
13912 		case DRM_FORMAT_ABGR8888:
13913 		case DRM_FORMAT_XRGB8888:
13914 		case DRM_FORMAT_ARGB8888:
13915 			break;
13916 		default:
13917 			DRM_DEBUG_KMS("RC supported only with RGB8888 formats\n");
13918 			goto err;
13919 		}
13920 		/* fall through */
13921 	case I915_FORMAT_MOD_Y_TILED:
13922 	case I915_FORMAT_MOD_Yf_TILED:
13923 		if (INTEL_GEN(dev_priv) < 9) {
13924 			DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
13925 				      mode_cmd->modifier[0]);
13926 			goto err;
13927 		}
13928 	case DRM_FORMAT_MOD_LINEAR:
13929 	case I915_FORMAT_MOD_X_TILED:
13930 		break;
13931 	default:
13932 		DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
13933 			      mode_cmd->modifier[0]);
13934 		goto err;
13935 	}
13936 
13937 	/*
13938 	 * gen2/3 display engine uses the fence if present,
13939 	 * so the tiling mode must match the fb modifier exactly.
13940 	 */
13941 	if (INTEL_INFO(dev_priv)->gen < 4 &&
13942 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13943 		DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
13944 		goto err;
13945 	}
13946 
13947 	pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
13948 					   mode_cmd->pixel_format);
13949 	if (mode_cmd->pitches[0] > pitch_limit) {
13950 		DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
13951 			      mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
13952 			      "tiled" : "linear",
13953 			      mode_cmd->pitches[0], pitch_limit);
13954 		goto err;
13955 	}
13956 
13957 	/*
13958 	 * If there's a fence, enforce that
13959 	 * the fb pitch and fence stride match.
13960 	 */
13961 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
13962 		DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
13963 			      mode_cmd->pitches[0], stride);
13964 		goto err;
13965 	}
13966 
13967 	/* Reject formats not supported by any plane early. */
13968 	switch (mode_cmd->pixel_format) {
13969 	case DRM_FORMAT_C8:
13970 	case DRM_FORMAT_RGB565:
13971 	case DRM_FORMAT_XRGB8888:
13972 	case DRM_FORMAT_ARGB8888:
13973 		break;
13974 	case DRM_FORMAT_XRGB1555:
13975 		if (INTEL_GEN(dev_priv) > 3) {
13976 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13977 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
13978 			goto err;
13979 		}
13980 		break;
13981 	case DRM_FORMAT_ABGR8888:
13982 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
13983 		    INTEL_GEN(dev_priv) < 9) {
13984 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13985 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
13986 			goto err;
13987 		}
13988 		break;
13989 	case DRM_FORMAT_XBGR8888:
13990 	case DRM_FORMAT_XRGB2101010:
13991 	case DRM_FORMAT_XBGR2101010:
13992 		if (INTEL_GEN(dev_priv) < 4) {
13993 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13994 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
13995 			goto err;
13996 		}
13997 		break;
13998 	case DRM_FORMAT_ABGR2101010:
13999 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14000 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14001 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14002 			goto err;
14003 		}
14004 		break;
14005 	case DRM_FORMAT_YUYV:
14006 	case DRM_FORMAT_UYVY:
14007 	case DRM_FORMAT_YVYU:
14008 	case DRM_FORMAT_VYUY:
14009 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14010 			DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14011 				      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14012 			goto err;
14013 		}
14014 		break;
14015 	default:
14016 		DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14017 			      drm_get_format_name(mode_cmd->pixel_format, &format_name));
14018 		goto err;
14019 	}
14020 
14021 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14022 	if (mode_cmd->offsets[0] != 0)
14023 		goto err;
14024 
14025 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
14026 
14027 	for (i = 0; i < fb->format->num_planes; i++) {
14028 		u32 stride_alignment;
14029 
14030 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
14031 			DRM_DEBUG_KMS("bad plane %d handle\n", i);
14032 			goto err;
14033 		}
14034 
14035 		stride_alignment = intel_fb_stride_alignment(fb, i);
14036 
14037 		/*
14038 		 * Display WA #0531: skl,bxt,kbl,glk
14039 		 *
14040 		 * Render decompression and plane width > 3840
14041 		 * combined with horizontal panning requires the
14042 		 * plane stride to be a multiple of 4. We'll just
14043 		 * require the entire fb to accommodate that to avoid
14044 		 * potential runtime errors at plane configuration time.
14045 		 */
14046 		if (IS_GEN9(dev_priv) && i == 0 && fb->width > 3840 &&
14047 		    (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
14048 		     fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
14049 			stride_alignment *= 4;
14050 
14051 		if (fb->pitches[i] & (stride_alignment - 1)) {
14052 			DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
14053 				      i, fb->pitches[i], stride_alignment);
14054 			goto err;
14055 		}
14056 	}
14057 
14058 	intel_fb->obj = obj;
14059 
14060 	ret = intel_fill_fb_info(dev_priv, fb);
14061 	if (ret)
14062 		goto err;
14063 
14064 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
14065 	if (ret) {
14066 		DRM_ERROR("framebuffer init failed %d\n", ret);
14067 		goto err;
14068 	}
14069 
14070 	return 0;
14071 
14072 err:
14073 	i915_gem_object_lock(obj);
14074 	obj->framebuffer_references--;
14075 	i915_gem_object_unlock(obj);
14076 	return ret;
14077 }
14078 
14079 static struct drm_framebuffer *
14080 intel_user_framebuffer_create(struct drm_device *dev,
14081 			      struct drm_file *filp,
14082 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
14083 {
14084 	struct drm_framebuffer *fb;
14085 	struct drm_i915_gem_object *obj;
14086 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14087 
14088 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14089 	if (!obj)
14090 		return ERR_PTR(-ENOENT);
14091 
14092 	fb = intel_framebuffer_create(obj, &mode_cmd);
14093 	if (IS_ERR(fb))
14094 		i915_gem_object_put(obj);
14095 
14096 	return fb;
14097 }
14098 
14099 static void intel_atomic_state_free(struct drm_atomic_state *state)
14100 {
14101 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14102 
14103 	drm_atomic_state_default_release(state);
14104 
14105 	i915_sw_fence_fini(&intel_state->commit_ready);
14106 
14107 	kfree(state);
14108 }
14109 
14110 static const struct drm_mode_config_funcs intel_mode_funcs = {
14111 	.fb_create = intel_user_framebuffer_create,
14112 	.get_format_info = intel_get_format_info,
14113 	.output_poll_changed = intel_fbdev_output_poll_changed,
14114 	.atomic_check = intel_atomic_check,
14115 	.atomic_commit = intel_atomic_commit,
14116 	.atomic_state_alloc = intel_atomic_state_alloc,
14117 	.atomic_state_clear = intel_atomic_state_clear,
14118 	.atomic_state_free = intel_atomic_state_free,
14119 };
14120 
14121 /**
14122  * intel_init_display_hooks - initialize the display modesetting hooks
14123  * @dev_priv: device private
14124  */
14125 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14126 {
14127 	intel_init_cdclk_hooks(dev_priv);
14128 
14129 	if (INTEL_INFO(dev_priv)->gen >= 9) {
14130 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14131 		dev_priv->display.get_initial_plane_config =
14132 			skylake_get_initial_plane_config;
14133 		dev_priv->display.crtc_compute_clock =
14134 			haswell_crtc_compute_clock;
14135 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14136 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14137 	} else if (HAS_DDI(dev_priv)) {
14138 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14139 		dev_priv->display.get_initial_plane_config =
14140 			ironlake_get_initial_plane_config;
14141 		dev_priv->display.crtc_compute_clock =
14142 			haswell_crtc_compute_clock;
14143 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14144 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14145 	} else if (HAS_PCH_SPLIT(dev_priv)) {
14146 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14147 		dev_priv->display.get_initial_plane_config =
14148 			ironlake_get_initial_plane_config;
14149 		dev_priv->display.crtc_compute_clock =
14150 			ironlake_crtc_compute_clock;
14151 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
14152 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
14153 	} else if (IS_CHERRYVIEW(dev_priv)) {
14154 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14155 		dev_priv->display.get_initial_plane_config =
14156 			i9xx_get_initial_plane_config;
14157 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14158 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14159 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14160 	} else if (IS_VALLEYVIEW(dev_priv)) {
14161 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14162 		dev_priv->display.get_initial_plane_config =
14163 			i9xx_get_initial_plane_config;
14164 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14165 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14166 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14167 	} else if (IS_G4X(dev_priv)) {
14168 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14169 		dev_priv->display.get_initial_plane_config =
14170 			i9xx_get_initial_plane_config;
14171 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14172 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14173 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14174 	} else if (IS_PINEVIEW(dev_priv)) {
14175 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14176 		dev_priv->display.get_initial_plane_config =
14177 			i9xx_get_initial_plane_config;
14178 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14179 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14180 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14181 	} else if (!IS_GEN2(dev_priv)) {
14182 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14183 		dev_priv->display.get_initial_plane_config =
14184 			i9xx_get_initial_plane_config;
14185 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14186 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14187 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14188 	} else {
14189 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14190 		dev_priv->display.get_initial_plane_config =
14191 			i9xx_get_initial_plane_config;
14192 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14193 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14194 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14195 	}
14196 
14197 	if (IS_GEN5(dev_priv)) {
14198 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14199 	} else if (IS_GEN6(dev_priv)) {
14200 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14201 	} else if (IS_IVYBRIDGE(dev_priv)) {
14202 		/* FIXME: detect B0+ stepping and use auto training */
14203 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14204 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14205 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14206 	}
14207 
14208 	if (INTEL_GEN(dev_priv) >= 9)
14209 		dev_priv->display.update_crtcs = skl_update_crtcs;
14210 	else
14211 		dev_priv->display.update_crtcs = intel_update_crtcs;
14212 }
14213 
14214 /*
14215  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14216  */
14217 static void quirk_ssc_force_disable(struct drm_device *dev)
14218 {
14219 	struct drm_i915_private *dev_priv = to_i915(dev);
14220 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14221 	DRM_INFO("applying lvds SSC disable quirk\n");
14222 }
14223 
14224 /*
14225  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14226  * brightness value
14227  */
14228 static void quirk_invert_brightness(struct drm_device *dev)
14229 {
14230 	struct drm_i915_private *dev_priv = to_i915(dev);
14231 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14232 	DRM_INFO("applying inverted panel brightness quirk\n");
14233 }
14234 
14235 /* Some VBT's incorrectly indicate no backlight is present */
14236 static void quirk_backlight_present(struct drm_device *dev)
14237 {
14238 	struct drm_i915_private *dev_priv = to_i915(dev);
14239 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14240 	DRM_INFO("applying backlight present quirk\n");
14241 }
14242 
14243 /* Toshiba Satellite P50-C-18C requires T12 delay to be min 800ms
14244  * which is 300 ms greater than eDP spec T12 min.
14245  */
14246 static void quirk_increase_t12_delay(struct drm_device *dev)
14247 {
14248 	struct drm_i915_private *dev_priv = to_i915(dev);
14249 
14250 	dev_priv->quirks |= QUIRK_INCREASE_T12_DELAY;
14251 	DRM_INFO("Applying T12 delay quirk\n");
14252 }
14253 
14254 struct intel_quirk {
14255 	int device;
14256 	int subsystem_vendor;
14257 	int subsystem_device;
14258 	void (*hook)(struct drm_device *dev);
14259 };
14260 
14261 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14262 struct intel_dmi_quirk {
14263 	void (*hook)(struct drm_device *dev);
14264 	const struct dmi_system_id (*dmi_id_list)[];
14265 };
14266 
14267 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14268 {
14269 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14270 	return 1;
14271 }
14272 
14273 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14274 	{
14275 		.dmi_id_list = &(const struct dmi_system_id[]) {
14276 			{
14277 				.callback = intel_dmi_reverse_brightness,
14278 				.ident = "NCR Corporation",
14279 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14280 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
14281 				},
14282 			},
14283 			{ }  /* terminating entry */
14284 		},
14285 		.hook = quirk_invert_brightness,
14286 	},
14287 };
14288 
14289 static struct intel_quirk intel_quirks[] = {
14290 	/* Lenovo U160 cannot use SSC on LVDS */
14291 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14292 
14293 	/* Sony Vaio Y cannot use SSC on LVDS */
14294 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14295 
14296 	/* Acer Aspire 5734Z must invert backlight brightness */
14297 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14298 
14299 	/* Acer/eMachines G725 */
14300 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14301 
14302 	/* Acer/eMachines e725 */
14303 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14304 
14305 	/* Acer/Packard Bell NCL20 */
14306 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14307 
14308 	/* Acer Aspire 4736Z */
14309 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14310 
14311 	/* Acer Aspire 5336 */
14312 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14313 
14314 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14315 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14316 
14317 	/* Acer C720 Chromebook (Core i3 4005U) */
14318 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14319 
14320 	/* Apple Macbook 2,1 (Core 2 T7400) */
14321 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14322 
14323 	/* Apple Macbook 4,1 */
14324 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14325 
14326 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
14327 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14328 
14329 	/* HP Chromebook 14 (Celeron 2955U) */
14330 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14331 
14332 	/* Dell Chromebook 11 */
14333 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14334 
14335 	/* Dell Chromebook 11 (2015 version) */
14336 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14337 
14338 	/* Toshiba Satellite P50-C-18C */
14339 	{ 0x191B, 0x1179, 0xF840, quirk_increase_t12_delay },
14340 };
14341 
14342 static void intel_init_quirks(struct drm_device *dev)
14343 {
14344 	struct pci_dev *d = dev->pdev;
14345 	int i;
14346 
14347 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14348 		struct intel_quirk *q = &intel_quirks[i];
14349 
14350 		if (d->device == q->device &&
14351 		    (d->subsystem_vendor == q->subsystem_vendor ||
14352 		     q->subsystem_vendor == PCI_ANY_ID) &&
14353 		    (d->subsystem_device == q->subsystem_device ||
14354 		     q->subsystem_device == PCI_ANY_ID))
14355 			q->hook(dev);
14356 	}
14357 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14358 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14359 			intel_dmi_quirks[i].hook(dev);
14360 	}
14361 }
14362 
14363 /* Disable the VGA plane that we never use */
14364 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14365 {
14366 	struct pci_dev *pdev = dev_priv->drm.pdev;
14367 	u8 sr1;
14368 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14369 
14370 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14371 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14372 	outb(SR01, VGA_SR_INDEX);
14373 	sr1 = inb(VGA_SR_DATA);
14374 	outb(sr1 | 1<<5, VGA_SR_DATA);
14375 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
14376 	udelay(300);
14377 
14378 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14379 	POSTING_READ(vga_reg);
14380 }
14381 
14382 void intel_modeset_init_hw(struct drm_device *dev)
14383 {
14384 	struct drm_i915_private *dev_priv = to_i915(dev);
14385 
14386 	intel_update_cdclk(dev_priv);
14387 	dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14388 }
14389 
14390 /*
14391  * Calculate what we think the watermarks should be for the state we've read
14392  * out of the hardware and then immediately program those watermarks so that
14393  * we ensure the hardware settings match our internal state.
14394  *
14395  * We can calculate what we think WM's should be by creating a duplicate of the
14396  * current state (which was constructed during hardware readout) and running it
14397  * through the atomic check code to calculate new watermark values in the
14398  * state object.
14399  */
14400 static void sanitize_watermarks(struct drm_device *dev)
14401 {
14402 	struct drm_i915_private *dev_priv = to_i915(dev);
14403 	struct drm_atomic_state *state;
14404 	struct intel_atomic_state *intel_state;
14405 	struct drm_crtc *crtc;
14406 	struct drm_crtc_state *cstate;
14407 	struct drm_modeset_acquire_ctx ctx;
14408 	int ret;
14409 	int i;
14410 
14411 	/* Only supported on platforms that use atomic watermark design */
14412 	if (!dev_priv->display.optimize_watermarks)
14413 		return;
14414 
14415 	/*
14416 	 * We need to hold connection_mutex before calling duplicate_state so
14417 	 * that the connector loop is protected.
14418 	 */
14419 	drm_modeset_acquire_init(&ctx, 0);
14420 retry:
14421 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
14422 	if (ret == -EDEADLK) {
14423 		drm_modeset_backoff(&ctx);
14424 		goto retry;
14425 	} else if (WARN_ON(ret)) {
14426 		goto fail;
14427 	}
14428 
14429 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
14430 	if (WARN_ON(IS_ERR(state)))
14431 		goto fail;
14432 
14433 	intel_state = to_intel_atomic_state(state);
14434 
14435 	/*
14436 	 * Hardware readout is the only time we don't want to calculate
14437 	 * intermediate watermarks (since we don't trust the current
14438 	 * watermarks).
14439 	 */
14440 	if (!HAS_GMCH_DISPLAY(dev_priv))
14441 		intel_state->skip_intermediate_wm = true;
14442 
14443 	ret = intel_atomic_check(dev, state);
14444 	if (ret) {
14445 		/*
14446 		 * If we fail here, it means that the hardware appears to be
14447 		 * programmed in a way that shouldn't be possible, given our
14448 		 * understanding of watermark requirements.  This might mean a
14449 		 * mistake in the hardware readout code or a mistake in the
14450 		 * watermark calculations for a given platform.  Raise a WARN
14451 		 * so that this is noticeable.
14452 		 *
14453 		 * If this actually happens, we'll have to just leave the
14454 		 * BIOS-programmed watermarks untouched and hope for the best.
14455 		 */
14456 		WARN(true, "Could not determine valid watermarks for inherited state\n");
14457 		goto put_state;
14458 	}
14459 
14460 	/* Write calculated watermark values back */
14461 	for_each_new_crtc_in_state(state, crtc, cstate, i) {
14462 		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14463 
14464 		cs->wm.need_postvbl_update = true;
14465 		dev_priv->display.optimize_watermarks(intel_state, cs);
14466 
14467 		to_intel_crtc_state(crtc->state)->wm = cs->wm;
14468 	}
14469 
14470 put_state:
14471 	drm_atomic_state_put(state);
14472 fail:
14473 	drm_modeset_drop_locks(&ctx);
14474 	drm_modeset_acquire_fini(&ctx);
14475 }
14476 
14477 int intel_modeset_init(struct drm_device *dev)
14478 {
14479 	struct drm_i915_private *dev_priv = to_i915(dev);
14480 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
14481 	enum i915_pipe pipe;
14482 	struct intel_crtc *crtc;
14483 
14484 	dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
14485 
14486 	drm_mode_config_init(dev);
14487 
14488 	dev->mode_config.min_width = 0;
14489 	dev->mode_config.min_height = 0;
14490 
14491 	dev->mode_config.preferred_depth = 24;
14492 	dev->mode_config.prefer_shadow = 1;
14493 
14494 	dev->mode_config.allow_fb_modifiers = true;
14495 
14496 	dev->mode_config.funcs = &intel_mode_funcs;
14497 
14498 	init_llist_head(&dev_priv->atomic_helper.free_list);
14499 	INIT_WORK(&dev_priv->atomic_helper.free_work,
14500 		  intel_atomic_helper_free_state_worker);
14501 
14502 	intel_init_quirks(dev);
14503 
14504 	intel_init_pm(dev_priv);
14505 
14506 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
14507 		return 0;
14508 
14509 	/*
14510 	 * There may be no VBT; and if the BIOS enabled SSC we can
14511 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
14512 	 * BIOS isn't using it, don't assume it will work even if the VBT
14513 	 * indicates as much.
14514 	 */
14515 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14516 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14517 					    DREF_SSC1_ENABLE);
14518 
14519 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14520 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14521 				     bios_lvds_use_ssc ? "en" : "dis",
14522 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14523 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14524 		}
14525 	}
14526 
14527 	if (IS_GEN2(dev_priv)) {
14528 		dev->mode_config.max_width = 2048;
14529 		dev->mode_config.max_height = 2048;
14530 	} else if (IS_GEN3(dev_priv)) {
14531 		dev->mode_config.max_width = 4096;
14532 		dev->mode_config.max_height = 4096;
14533 	} else {
14534 		dev->mode_config.max_width = 8192;
14535 		dev->mode_config.max_height = 8192;
14536 	}
14537 
14538 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14539 		dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14540 		dev->mode_config.cursor_height = 1023;
14541 	} else if (IS_GEN2(dev_priv)) {
14542 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14543 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14544 	} else {
14545 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14546 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14547 	}
14548 
14549 	dev->mode_config.fb_base = ggtt->mappable_base;
14550 
14551 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
14552 		      INTEL_INFO(dev_priv)->num_pipes,
14553 		      INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
14554 
14555 	for_each_pipe(dev_priv, pipe) {
14556 		int ret;
14557 
14558 		ret = intel_crtc_init(dev_priv, pipe);
14559 		if (ret) {
14560 			drm_mode_config_cleanup(dev);
14561 			return ret;
14562 		}
14563 	}
14564 
14565 	intel_shared_dpll_init(dev);
14566 
14567 	intel_update_czclk(dev_priv);
14568 	intel_modeset_init_hw(dev);
14569 
14570 	if (dev_priv->max_cdclk_freq == 0)
14571 		intel_update_max_cdclk(dev_priv);
14572 
14573 	/* Just disable it once at startup */
14574 	i915_disable_vga(dev_priv);
14575 	intel_setup_outputs(dev_priv);
14576 
14577 	drm_modeset_lock_all(dev);
14578 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
14579 	drm_modeset_unlock_all(dev);
14580 
14581 	for_each_intel_crtc(dev, crtc) {
14582 		struct intel_initial_plane_config plane_config = {};
14583 
14584 		if (!crtc->active)
14585 			continue;
14586 
14587 		/*
14588 		 * Note that reserving the BIOS fb up front prevents us
14589 		 * from stuffing other stolen allocations like the ring
14590 		 * on top.  This prevents some ugliness at boot time, and
14591 		 * can even allow for smooth boot transitions if the BIOS
14592 		 * fb is large enough for the active pipe configuration.
14593 		 */
14594 		dev_priv->display.get_initial_plane_config(crtc,
14595 							   &plane_config);
14596 
14597 		/*
14598 		 * If the fb is shared between multiple heads, we'll
14599 		 * just get the first one.
14600 		 */
14601 		intel_find_initial_plane_obj(crtc, &plane_config);
14602 	}
14603 
14604 	/*
14605 	 * Make sure hardware watermarks really match the state we read out.
14606 	 * Note that we need to do this after reconstructing the BIOS fb's
14607 	 * since the watermark calculation done here will use pstate->fb.
14608 	 */
14609 	if (!HAS_GMCH_DISPLAY(dev_priv))
14610 		sanitize_watermarks(dev);
14611 
14612 	return 0;
14613 }
14614 
14615 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
14616 {
14617 	/* 640x480@60Hz, ~25175 kHz */
14618 	struct dpll clock = {
14619 		.m1 = 18,
14620 		.m2 = 7,
14621 		.p1 = 13,
14622 		.p2 = 4,
14623 		.n = 2,
14624 	};
14625 	u32 dpll, fp;
14626 	int i;
14627 
14628 	WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
14629 
14630 	DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
14631 		      pipe_name(pipe), clock.vco, clock.dot);
14632 
14633 	fp = i9xx_dpll_compute_fp(&clock);
14634 	dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
14635 		DPLL_VGA_MODE_DIS |
14636 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
14637 		PLL_P2_DIVIDE_BY_4 |
14638 		PLL_REF_INPUT_DREFCLK |
14639 		DPLL_VCO_ENABLE;
14640 
14641 	I915_WRITE(FP0(pipe), fp);
14642 	I915_WRITE(FP1(pipe), fp);
14643 
14644 	I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
14645 	I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
14646 	I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
14647 	I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
14648 	I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
14649 	I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
14650 	I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
14651 
14652 	/*
14653 	 * Apparently we need to have VGA mode enabled prior to changing
14654 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
14655 	 * dividers, even though the register value does change.
14656 	 */
14657 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
14658 	I915_WRITE(DPLL(pipe), dpll);
14659 
14660 	/* Wait for the clocks to stabilize. */
14661 	POSTING_READ(DPLL(pipe));
14662 	udelay(150);
14663 
14664 	/* The pixel multiplier can only be updated once the
14665 	 * DPLL is enabled and the clocks are stable.
14666 	 *
14667 	 * So write it again.
14668 	 */
14669 	I915_WRITE(DPLL(pipe), dpll);
14670 
14671 	/* We do this three times for luck */
14672 	for (i = 0; i < 3 ; i++) {
14673 		I915_WRITE(DPLL(pipe), dpll);
14674 		POSTING_READ(DPLL(pipe));
14675 		udelay(150); /* wait for warmup */
14676 	}
14677 
14678 	I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
14679 	POSTING_READ(PIPECONF(pipe));
14680 }
14681 
14682 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
14683 {
14684 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
14685 
14686 	DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
14687 		      pipe_name(pipe));
14688 
14689 	WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
14690 	WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
14691 	WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
14692 	WARN_ON(I915_READ(CURCNTR(PIPE_A)) & CURSOR_MODE);
14693 	WARN_ON(I915_READ(CURCNTR(PIPE_B)) & CURSOR_MODE);
14694 
14695 	I915_WRITE(PIPECONF(pipe), 0);
14696 	POSTING_READ(PIPECONF(pipe));
14697 
14698 	intel_wait_for_pipe_scanline_stopped(crtc);
14699 
14700 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
14701 	POSTING_READ(DPLL(pipe));
14702 }
14703 
14704 static bool intel_plane_mapping_ok(struct intel_crtc *crtc,
14705 				   struct intel_plane *primary)
14706 {
14707 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14708 	enum plane plane = primary->plane;
14709 	u32 val = I915_READ(DSPCNTR(plane));
14710 
14711 	return (val & DISPLAY_PLANE_ENABLE) == 0 ||
14712 		(val & DISPPLANE_SEL_PIPE_MASK) == DISPPLANE_SEL_PIPE(crtc->pipe);
14713 }
14714 
14715 static void
14716 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
14717 {
14718 	struct intel_crtc *crtc;
14719 
14720 	if (INTEL_GEN(dev_priv) >= 4)
14721 		return;
14722 
14723 	for_each_intel_crtc(&dev_priv->drm, crtc) {
14724 		struct intel_plane *plane =
14725 			to_intel_plane(crtc->base.primary);
14726 
14727 		if (intel_plane_mapping_ok(crtc, plane))
14728 			continue;
14729 
14730 		DRM_DEBUG_KMS("%s attached to the wrong pipe, disabling plane\n",
14731 			      plane->base.name);
14732 		intel_plane_disable_noatomic(crtc, plane);
14733 	}
14734 }
14735 
14736 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14737 {
14738 	struct drm_device *dev = crtc->base.dev;
14739 	struct intel_encoder *encoder;
14740 
14741 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14742 		return true;
14743 
14744 	return false;
14745 }
14746 
14747 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
14748 {
14749 	struct drm_device *dev = encoder->base.dev;
14750 	struct intel_connector *connector;
14751 
14752 	for_each_connector_on_encoder(dev, &encoder->base, connector)
14753 		return connector;
14754 
14755 	return NULL;
14756 }
14757 
14758 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
14759 			      enum i915_pipe pch_transcoder)
14760 {
14761 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
14762 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
14763 }
14764 
14765 static void intel_sanitize_crtc(struct intel_crtc *crtc,
14766 				struct drm_modeset_acquire_ctx *ctx)
14767 {
14768 	struct drm_device *dev = crtc->base.dev;
14769 	struct drm_i915_private *dev_priv = to_i915(dev);
14770 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
14771 
14772 	/* Clear any frame start delays used for debugging left by the BIOS */
14773 	if (!transcoder_is_dsi(cpu_transcoder)) {
14774 		i915_reg_t reg = PIPECONF(cpu_transcoder);
14775 
14776 		I915_WRITE(reg,
14777 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14778 	}
14779 
14780 	/* restore vblank interrupts to correct state */
14781 	drm_crtc_vblank_reset(&crtc->base);
14782 	if (crtc->active) {
14783 		struct intel_plane *plane;
14784 
14785 		drm_crtc_vblank_on(&crtc->base);
14786 
14787 		/* Disable everything but the primary plane */
14788 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
14789 			const struct intel_plane_state *plane_state =
14790 				to_intel_plane_state(plane->base.state);
14791 
14792 			if (plane_state->base.visible &&
14793 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
14794 				intel_plane_disable_noatomic(crtc, plane);
14795 		}
14796 	}
14797 
14798 	/* Adjust the state of the output pipe according to whether we
14799 	 * have active connectors/encoders. */
14800 	if (crtc->active && !intel_crtc_has_encoders(crtc))
14801 		intel_crtc_disable_noatomic(&crtc->base, ctx);
14802 
14803 	if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
14804 		/*
14805 		 * We start out with underrun reporting disabled to avoid races.
14806 		 * For correct bookkeeping mark this on active crtcs.
14807 		 *
14808 		 * Also on gmch platforms we dont have any hardware bits to
14809 		 * disable the underrun reporting. Which means we need to start
14810 		 * out with underrun reporting disabled also on inactive pipes,
14811 		 * since otherwise we'll complain about the garbage we read when
14812 		 * e.g. coming up after runtime pm.
14813 		 *
14814 		 * No protection against concurrent access is required - at
14815 		 * worst a fifo underrun happens which also sets this to false.
14816 		 */
14817 		crtc->cpu_fifo_underrun_disabled = true;
14818 		/*
14819 		 * We track the PCH trancoder underrun reporting state
14820 		 * within the crtc. With crtc for pipe A housing the underrun
14821 		 * reporting state for PCH transcoder A, crtc for pipe B housing
14822 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
14823 		 * and marking underrun reporting as disabled for the non-existing
14824 		 * PCH transcoders B and C would prevent enabling the south
14825 		 * error interrupt (see cpt_can_enable_serr_int()).
14826 		 */
14827 		if (has_pch_trancoder(dev_priv, crtc->pipe))
14828 			crtc->pch_fifo_underrun_disabled = true;
14829 	}
14830 }
14831 
14832 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14833 {
14834 	struct intel_connector *connector;
14835 
14836 	/* We need to check both for a crtc link (meaning that the
14837 	 * encoder is active and trying to read from a pipe) and the
14838 	 * pipe itself being active. */
14839 	bool has_active_crtc = encoder->base.crtc &&
14840 		to_intel_crtc(encoder->base.crtc)->active;
14841 
14842 	connector = intel_encoder_find_connector(encoder);
14843 	if (connector && !has_active_crtc) {
14844 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14845 			      encoder->base.base.id,
14846 			      encoder->base.name);
14847 
14848 		/* Connector is active, but has no active pipe. This is
14849 		 * fallout from our resume register restoring. Disable
14850 		 * the encoder manually again. */
14851 		if (encoder->base.crtc) {
14852 			struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
14853 
14854 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14855 				      encoder->base.base.id,
14856 				      encoder->base.name);
14857 			encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14858 			if (encoder->post_disable)
14859 				encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14860 		}
14861 		encoder->base.crtc = NULL;
14862 
14863 		/* Inconsistent output/port/pipe state happens presumably due to
14864 		 * a bug in one of the get_hw_state functions. Or someplace else
14865 		 * in our code, like the register restore mess on resume. Clamp
14866 		 * things to off as a safer default. */
14867 
14868 		connector->base.dpms = DRM_MODE_DPMS_OFF;
14869 		connector->base.encoder = NULL;
14870 	}
14871 	/* Enabled encoders without active connectors will be fixed in
14872 	 * the crtc fixup. */
14873 }
14874 
14875 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
14876 {
14877 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14878 
14879 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14880 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14881 		i915_disable_vga(dev_priv);
14882 	}
14883 }
14884 
14885 void i915_redisable_vga(struct drm_i915_private *dev_priv)
14886 {
14887 	/* This function can be called both from intel_modeset_setup_hw_state or
14888 	 * at a very early point in our resume sequence, where the power well
14889 	 * structures are not yet restored. Since this function is at a very
14890 	 * paranoid "someone might have enabled VGA while we were not looking"
14891 	 * level, just check if the power well is enabled instead of trying to
14892 	 * follow the "don't touch the power well if we don't need it" policy
14893 	 * the rest of the driver uses. */
14894 	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
14895 		return;
14896 
14897 	i915_redisable_vga_power_on(dev_priv);
14898 
14899 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
14900 }
14901 
14902 /* FIXME read out full plane state for all planes */
14903 static void readout_plane_state(struct intel_crtc *crtc)
14904 {
14905 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14906 	struct intel_crtc_state *crtc_state =
14907 		to_intel_crtc_state(crtc->base.state);
14908 	struct intel_plane *plane;
14909 
14910 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14911 		struct intel_plane_state *plane_state =
14912 			to_intel_plane_state(plane->base.state);
14913 		bool visible = plane->get_hw_state(plane);
14914 
14915 		intel_set_plane_visible(crtc_state, plane_state, visible);
14916 	}
14917 }
14918 
14919 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14920 {
14921 	struct drm_i915_private *dev_priv = to_i915(dev);
14922 	enum i915_pipe pipe;
14923 	struct intel_crtc *crtc;
14924 	struct intel_encoder *encoder;
14925 	struct intel_connector *connector;
14926 	struct drm_connector_list_iter conn_iter;
14927 	int i;
14928 
14929 	dev_priv->active_crtcs = 0;
14930 
14931 	for_each_intel_crtc(dev, crtc) {
14932 		struct intel_crtc_state *crtc_state =
14933 			to_intel_crtc_state(crtc->base.state);
14934 
14935 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
14936 		memset(crtc_state, 0, sizeof(*crtc_state));
14937 		crtc_state->base.crtc = &crtc->base;
14938 
14939 		crtc_state->base.active = crtc_state->base.enable =
14940 			dev_priv->display.get_pipe_config(crtc, crtc_state);
14941 
14942 		crtc->base.enabled = crtc_state->base.enable;
14943 		crtc->active = crtc_state->base.active;
14944 
14945 		if (crtc_state->base.active)
14946 			dev_priv->active_crtcs |= 1 << crtc->pipe;
14947 
14948 		readout_plane_state(crtc);
14949 
14950 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
14951 			      crtc->base.base.id, crtc->base.name,
14952 			      enableddisabled(crtc_state->base.active));
14953 	}
14954 
14955 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14956 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14957 
14958 		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
14959 						  &pll->state.hw_state);
14960 		pll->state.crtc_mask = 0;
14961 		for_each_intel_crtc(dev, crtc) {
14962 			struct intel_crtc_state *crtc_state =
14963 				to_intel_crtc_state(crtc->base.state);
14964 
14965 			if (crtc_state->base.active &&
14966 			    crtc_state->shared_dpll == pll)
14967 				pll->state.crtc_mask |= 1 << crtc->pipe;
14968 		}
14969 		pll->active_mask = pll->state.crtc_mask;
14970 
14971 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14972 			      pll->name, pll->state.crtc_mask, pll->on);
14973 	}
14974 
14975 	for_each_intel_encoder(dev, encoder) {
14976 		pipe = 0;
14977 
14978 		if (encoder->get_hw_state(encoder, &pipe)) {
14979 			struct intel_crtc_state *crtc_state;
14980 
14981 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
14982 			crtc_state = to_intel_crtc_state(crtc->base.state);
14983 
14984 			encoder->base.crtc = &crtc->base;
14985 			crtc_state->output_types |= 1 << encoder->type;
14986 			encoder->get_config(encoder, crtc_state);
14987 		} else {
14988 			encoder->base.crtc = NULL;
14989 		}
14990 
14991 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14992 			      encoder->base.base.id, encoder->base.name,
14993 			      enableddisabled(encoder->base.crtc),
14994 			      pipe_name(pipe));
14995 	}
14996 
14997 	drm_connector_list_iter_begin(dev, &conn_iter);
14998 	for_each_intel_connector_iter(connector, &conn_iter) {
14999 		if (connector->get_hw_state(connector)) {
15000 			connector->base.dpms = DRM_MODE_DPMS_ON;
15001 
15002 			encoder = connector->encoder;
15003 			connector->base.encoder = &encoder->base;
15004 
15005 			if (encoder->base.crtc &&
15006 			    encoder->base.crtc->state->active) {
15007 				/*
15008 				 * This has to be done during hardware readout
15009 				 * because anything calling .crtc_disable may
15010 				 * rely on the connector_mask being accurate.
15011 				 */
15012 				encoder->base.crtc->state->connector_mask |=
15013 					1 << drm_connector_index(&connector->base);
15014 				encoder->base.crtc->state->encoder_mask |=
15015 					1 << drm_encoder_index(&encoder->base);
15016 			}
15017 
15018 		} else {
15019 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15020 			connector->base.encoder = NULL;
15021 		}
15022 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15023 			      connector->base.base.id, connector->base.name,
15024 			      enableddisabled(connector->base.encoder));
15025 	}
15026 	drm_connector_list_iter_end(&conn_iter);
15027 
15028 	for_each_intel_crtc(dev, crtc) {
15029 		struct intel_crtc_state *crtc_state =
15030 			to_intel_crtc_state(crtc->base.state);
15031 		int min_cdclk = 0;
15032 
15033 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15034 		if (crtc_state->base.active) {
15035 			intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15036 			intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15037 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15038 
15039 			/*
15040 			 * The initial mode needs to be set in order to keep
15041 			 * the atomic core happy. It wants a valid mode if the
15042 			 * crtc's enabled, so we do the above call.
15043 			 *
15044 			 * But we don't set all the derived state fully, hence
15045 			 * set a flag to indicate that a full recalculation is
15046 			 * needed on the next commit.
15047 			 */
15048 			crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15049 
15050 			intel_crtc_compute_pixel_rate(crtc_state);
15051 
15052 			if (dev_priv->display.modeset_calc_cdclk) {
15053 				min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
15054 				if (WARN_ON(min_cdclk < 0))
15055 					min_cdclk = 0;
15056 			}
15057 
15058 			drm_calc_timestamping_constants(&crtc->base,
15059 							&crtc_state->base.adjusted_mode);
15060 			update_scanline_offset(crtc);
15061 		}
15062 
15063 		dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
15064 
15065 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
15066 	}
15067 }
15068 
15069 static void
15070 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15071 {
15072 	struct intel_encoder *encoder;
15073 
15074 	for_each_intel_encoder(&dev_priv->drm, encoder) {
15075 		u64 get_domains;
15076 		enum intel_display_power_domain domain;
15077 
15078 		if (!encoder->get_power_domains)
15079 			continue;
15080 
15081 		get_domains = encoder->get_power_domains(encoder);
15082 		for_each_power_domain(domain, get_domains)
15083 			intel_display_power_get(dev_priv, domain);
15084 	}
15085 }
15086 
15087 /* Scan out the current hw modeset state,
15088  * and sanitizes it to the current state
15089  */
15090 static void
15091 intel_modeset_setup_hw_state(struct drm_device *dev,
15092 			     struct drm_modeset_acquire_ctx *ctx)
15093 {
15094 	struct drm_i915_private *dev_priv = to_i915(dev);
15095 	enum i915_pipe pipe;
15096 	struct intel_crtc *crtc;
15097 	struct intel_encoder *encoder;
15098 	int i;
15099 
15100 	if (IS_HASWELL(dev_priv)) {
15101 		/*
15102 		 * WaRsPkgCStateDisplayPMReq:hsw
15103 		 * System hang if this isn't done before disabling all planes!
15104 		 */
15105 		I915_WRITE(CHICKEN_PAR1_1,
15106 			   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
15107 	}
15108 
15109 	intel_modeset_readout_hw_state(dev);
15110 
15111 	/* HW state is read out, now we need to sanitize this mess. */
15112 	get_encoder_power_domains(dev_priv);
15113 
15114 	intel_sanitize_plane_mapping(dev_priv);
15115 
15116 	for_each_intel_encoder(dev, encoder) {
15117 		intel_sanitize_encoder(encoder);
15118 	}
15119 
15120 	for_each_pipe(dev_priv, pipe) {
15121 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15122 
15123 		intel_sanitize_crtc(crtc, ctx);
15124 		intel_dump_pipe_config(crtc, crtc->config,
15125 				       "[setup_hw_state]");
15126 	}
15127 
15128 	intel_modeset_update_connector_atomic_state(dev);
15129 
15130 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15131 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15132 
15133 		if (!pll->on || pll->active_mask)
15134 			continue;
15135 
15136 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15137 
15138 		pll->funcs.disable(dev_priv, pll);
15139 		pll->on = false;
15140 	}
15141 
15142 	if (IS_G4X(dev_priv)) {
15143 		g4x_wm_get_hw_state(dev);
15144 		g4x_wm_sanitize(dev_priv);
15145 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15146 		vlv_wm_get_hw_state(dev);
15147 		vlv_wm_sanitize(dev_priv);
15148 	} else if (INTEL_GEN(dev_priv) >= 9) {
15149 		skl_wm_get_hw_state(dev);
15150 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15151 		ilk_wm_get_hw_state(dev);
15152 	}
15153 
15154 	for_each_intel_crtc(dev, crtc) {
15155 		u64 put_domains;
15156 
15157 		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15158 		if (WARN_ON(put_domains))
15159 			modeset_put_power_domains(dev_priv, put_domains);
15160 	}
15161 	intel_display_set_init_power(dev_priv, false);
15162 
15163 	intel_power_domains_verify_state(dev_priv);
15164 
15165 	intel_fbc_init_pipe_state(dev_priv);
15166 }
15167 
15168 void intel_display_resume(struct drm_device *dev)
15169 {
15170 	struct drm_i915_private *dev_priv = to_i915(dev);
15171 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15172 	struct drm_modeset_acquire_ctx ctx;
15173 	int ret;
15174 
15175 	dev_priv->modeset_restore_state = NULL;
15176 	if (state)
15177 		state->acquire_ctx = &ctx;
15178 
15179 	drm_modeset_acquire_init(&ctx, 0);
15180 
15181 	while (1) {
15182 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
15183 		if (ret != -EDEADLK)
15184 			break;
15185 
15186 		drm_modeset_backoff(&ctx);
15187 	}
15188 
15189 	if (!ret)
15190 		ret = __intel_display_resume(dev, state, &ctx);
15191 
15192 	intel_enable_ipc(dev_priv);
15193 	drm_modeset_drop_locks(&ctx);
15194 	drm_modeset_acquire_fini(&ctx);
15195 
15196 	if (ret)
15197 		DRM_ERROR("Restoring old state failed with %i\n", ret);
15198 	if (state)
15199 		drm_atomic_state_put(state);
15200 }
15201 
15202 void intel_modeset_gem_init(struct drm_device *dev)
15203 {
15204 	struct drm_i915_private *dev_priv = to_i915(dev);
15205 
15206 	intel_init_gt_powersave(dev_priv);
15207 
15208 	intel_init_clock_gating(dev_priv);
15209 
15210 	intel_setup_overlay(dev_priv);
15211 }
15212 
15213 int intel_connector_register(struct drm_connector *connector)
15214 {
15215 	struct intel_connector *intel_connector = to_intel_connector(connector);
15216 	int ret;
15217 
15218 	ret = intel_backlight_device_register(intel_connector);
15219 	if (ret)
15220 		goto err;
15221 
15222 	return 0;
15223 
15224 err:
15225 	return ret;
15226 }
15227 
15228 void intel_connector_unregister(struct drm_connector *connector)
15229 {
15230 	struct intel_connector *intel_connector = to_intel_connector(connector);
15231 
15232 	intel_backlight_device_unregister(intel_connector);
15233 	intel_panel_destroy_backlight(connector);
15234 }
15235 
15236 static void intel_hpd_poll_fini(struct drm_device *dev)
15237 {
15238 	struct intel_connector *connector;
15239 	struct drm_connector_list_iter conn_iter;
15240 
15241 	/* First disable polling... */
15242 	drm_kms_helper_poll_fini(dev);
15243 
15244 	/* Then kill the work that may have been queued by hpd. */
15245 	drm_connector_list_iter_begin(dev, &conn_iter);
15246 	for_each_intel_connector_iter(connector, &conn_iter) {
15247 		if (connector->modeset_retry_work.func)
15248 			cancel_work_sync(&connector->modeset_retry_work);
15249 	}
15250 	drm_connector_list_iter_end(&conn_iter);
15251 }
15252 
15253 void intel_modeset_cleanup(struct drm_device *dev)
15254 {
15255 	struct drm_i915_private *dev_priv = to_i915(dev);
15256 
15257 	flush_work(&dev_priv->atomic_helper.free_work);
15258 	WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15259 
15260 	intel_disable_gt_powersave(dev_priv);
15261 
15262 	/*
15263 	 * Interrupts and polling as the first thing to avoid creating havoc.
15264 	 * Too much stuff here (turning of connectors, ...) would
15265 	 * experience fancy races otherwise.
15266 	 */
15267 	intel_irq_uninstall(dev_priv);
15268 
15269 	/*
15270 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
15271 	 * poll handlers. Hence disable polling after hpd handling is shut down.
15272 	 */
15273 	intel_hpd_poll_fini(dev);
15274 
15275 	/* poll work can call into fbdev, hence clean that up afterwards */
15276 	intel_fbdev_fini(dev_priv);
15277 
15278 	intel_unregister_dsm_handler();
15279 
15280 	intel_fbc_global_disable(dev_priv);
15281 
15282 	/* flush any delayed tasks or pending work */
15283 	flush_scheduled_work();
15284 
15285 	drm_mode_config_cleanup(dev);
15286 
15287 	intel_cleanup_overlay(dev_priv);
15288 
15289 	intel_cleanup_gt_powersave(dev_priv);
15290 
15291 	intel_teardown_gmbus(dev_priv);
15292 
15293 	destroy_workqueue(dev_priv->modeset_wq);
15294 }
15295 
15296 void intel_connector_attach_encoder(struct intel_connector *connector,
15297 				    struct intel_encoder *encoder)
15298 {
15299 	connector->encoder = encoder;
15300 	drm_mode_connector_attach_encoder(&connector->base,
15301 					  &encoder->base);
15302 }
15303 
15304 /*
15305  * set vga decode state - true == enable VGA decode
15306  */
15307 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15308 {
15309 	unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15310 	u16 gmch_ctrl;
15311 
15312 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15313 		DRM_ERROR("failed to read control word\n");
15314 		return -EIO;
15315 	}
15316 
15317 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15318 		return 0;
15319 
15320 	if (state)
15321 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15322 	else
15323 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15324 
15325 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15326 		DRM_ERROR("failed to write control word\n");
15327 		return -EIO;
15328 	}
15329 
15330 	return 0;
15331 }
15332 
15333 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15334 
15335 struct intel_display_error_state {
15336 
15337 	u32 power_well_driver;
15338 
15339 	int num_transcoders;
15340 
15341 	struct intel_cursor_error_state {
15342 		u32 control;
15343 		u32 position;
15344 		u32 base;
15345 		u32 size;
15346 	} cursor[I915_MAX_PIPES];
15347 
15348 	struct intel_pipe_error_state {
15349 		bool power_domain_on;
15350 		u32 source;
15351 		u32 stat;
15352 	} pipe[I915_MAX_PIPES];
15353 
15354 	struct intel_plane_error_state {
15355 		u32 control;
15356 		u32 stride;
15357 		u32 size;
15358 		u32 pos;
15359 		u32 addr;
15360 		u32 surface;
15361 		u32 tile_offset;
15362 	} plane[I915_MAX_PIPES];
15363 
15364 	struct intel_transcoder_error_state {
15365 		bool power_domain_on;
15366 		enum transcoder cpu_transcoder;
15367 
15368 		u32 conf;
15369 
15370 		u32 htotal;
15371 		u32 hblank;
15372 		u32 hsync;
15373 		u32 vtotal;
15374 		u32 vblank;
15375 		u32 vsync;
15376 	} transcoder[4];
15377 };
15378 
15379 struct intel_display_error_state *
15380 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15381 {
15382 	struct intel_display_error_state *error;
15383 	int transcoders[] = {
15384 		TRANSCODER_A,
15385 		TRANSCODER_B,
15386 		TRANSCODER_C,
15387 		TRANSCODER_EDP,
15388 	};
15389 	int i;
15390 
15391 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
15392 		return NULL;
15393 
15394 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
15395 	if (error == NULL)
15396 		return NULL;
15397 
15398 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15399 		error->power_well_driver =
15400 			I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL));
15401 
15402 	for_each_pipe(dev_priv, i) {
15403 		error->pipe[i].power_domain_on =
15404 			__intel_display_power_is_enabled(dev_priv,
15405 							 POWER_DOMAIN_PIPE(i));
15406 		if (!error->pipe[i].power_domain_on)
15407 			continue;
15408 
15409 		error->cursor[i].control = I915_READ(CURCNTR(i));
15410 		error->cursor[i].position = I915_READ(CURPOS(i));
15411 		error->cursor[i].base = I915_READ(CURBASE(i));
15412 
15413 		error->plane[i].control = I915_READ(DSPCNTR(i));
15414 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15415 		if (INTEL_GEN(dev_priv) <= 3) {
15416 			error->plane[i].size = I915_READ(DSPSIZE(i));
15417 			error->plane[i].pos = I915_READ(DSPPOS(i));
15418 		}
15419 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15420 			error->plane[i].addr = I915_READ(DSPADDR(i));
15421 		if (INTEL_GEN(dev_priv) >= 4) {
15422 			error->plane[i].surface = I915_READ(DSPSURF(i));
15423 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15424 		}
15425 
15426 		error->pipe[i].source = I915_READ(PIPESRC(i));
15427 
15428 		if (HAS_GMCH_DISPLAY(dev_priv))
15429 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
15430 	}
15431 
15432 	/* Note: this does not include DSI transcoders. */
15433 	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15434 	if (HAS_DDI(dev_priv))
15435 		error->num_transcoders++; /* Account for eDP. */
15436 
15437 	for (i = 0; i < error->num_transcoders; i++) {
15438 		enum transcoder cpu_transcoder = transcoders[i];
15439 
15440 		error->transcoder[i].power_domain_on =
15441 			__intel_display_power_is_enabled(dev_priv,
15442 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15443 		if (!error->transcoder[i].power_domain_on)
15444 			continue;
15445 
15446 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
15447 
15448 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15449 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15450 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15451 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15452 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15453 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15454 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15455 	}
15456 
15457 	return error;
15458 }
15459 
15460 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15461 
15462 void
15463 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15464 				struct intel_display_error_state *error)
15465 {
15466 	struct drm_i915_private *dev_priv = m->i915;
15467 	int i;
15468 
15469 	if (!error)
15470 		return;
15471 
15472 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15473 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15474 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
15475 			   error->power_well_driver);
15476 	for_each_pipe(dev_priv, i) {
15477 		err_printf(m, "Pipe [%d]:\n", i);
15478 		err_printf(m, "  Power: %s\n",
15479 			   onoff(error->pipe[i].power_domain_on));
15480 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15481 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15482 
15483 		err_printf(m, "Plane [%d]:\n", i);
15484 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15485 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15486 		if (INTEL_GEN(dev_priv) <= 3) {
15487 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15488 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15489 		}
15490 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15491 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15492 		if (INTEL_GEN(dev_priv) >= 4) {
15493 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15494 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15495 		}
15496 
15497 		err_printf(m, "Cursor [%d]:\n", i);
15498 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15499 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15500 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15501 	}
15502 
15503 	for (i = 0; i < error->num_transcoders; i++) {
15504 		err_printf(m, "CPU transcoder: %s\n",
15505 			   transcoder_name(error->transcoder[i].cpu_transcoder));
15506 		err_printf(m, "  Power: %s\n",
15507 			   onoff(error->transcoder[i].power_domain_on));
15508 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15509 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15510 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15511 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15512 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15513 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15514 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15515 	}
15516 }
15517 
15518 #endif
15519