xref: /dragonfly/sys/dev/drm/i915/intel_display.c (revision 65030a6a)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50 
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 	return work->mmio_work.func;
54 }
55 
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 	DRM_FORMAT_C8,
59 	DRM_FORMAT_RGB565,
60 	DRM_FORMAT_XRGB1555,
61 	DRM_FORMAT_XRGB8888,
62 };
63 
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 	DRM_FORMAT_C8,
67 	DRM_FORMAT_RGB565,
68 	DRM_FORMAT_XRGB8888,
69 	DRM_FORMAT_XBGR8888,
70 	DRM_FORMAT_XRGB2101010,
71 	DRM_FORMAT_XBGR2101010,
72 };
73 
74 static const uint32_t skl_primary_formats[] = {
75 	DRM_FORMAT_C8,
76 	DRM_FORMAT_RGB565,
77 	DRM_FORMAT_XRGB8888,
78 	DRM_FORMAT_XBGR8888,
79 	DRM_FORMAT_ARGB8888,
80 	DRM_FORMAT_ABGR8888,
81 	DRM_FORMAT_XRGB2101010,
82 	DRM_FORMAT_XBGR2101010,
83 	DRM_FORMAT_YUYV,
84 	DRM_FORMAT_YVYU,
85 	DRM_FORMAT_UYVY,
86 	DRM_FORMAT_VYUY,
87 };
88 
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 	DRM_FORMAT_ARGB8888,
92 };
93 
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 				struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 				   struct intel_crtc_state *pipe_config);
98 
99 static int intel_framebuffer_init(struct drm_device *dev,
100 				  struct intel_framebuffer *ifb,
101 				  struct drm_mode_fb_cmd2 *mode_cmd,
102 				  struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 					 struct intel_link_m_n *m_n,
108 					 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 			    const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 			    const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_i915_private *dev_priv,
119 			     struct intel_crtc *crtc,
120 			     struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128 
129 struct intel_limit {
130 	struct {
131 		int min, max;
132 	} dot, vco, n, m, m1, m2, p, p1;
133 
134 	struct {
135 		int dot_limit;
136 		int p2_slow, p2_fast;
137 	} p2;
138 };
139 
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144 
145 	/* Obtain SKU information */
146 	mutex_lock(&dev_priv->sb_lock);
147 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 		CCK_FUSE_HPLL_FREQ_MASK;
149 	mutex_unlock(&dev_priv->sb_lock);
150 
151 	return vco_freq[hpll_freq] * 1000;
152 }
153 
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 		      const char *name, u32 reg, int ref_freq)
156 {
157 	u32 val;
158 	int divider;
159 
160 	mutex_lock(&dev_priv->sb_lock);
161 	val = vlv_cck_read(dev_priv, reg);
162 	mutex_unlock(&dev_priv->sb_lock);
163 
164 	divider = val & CCK_FREQUENCY_VALUES;
165 
166 	WARN((val & CCK_FREQUENCY_STATUS) !=
167 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 	     "%s change in progress\n", name);
169 
170 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172 
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 				  const char *name, u32 reg)
175 {
176 	if (dev_priv->hpll_freq == 0)
177 		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178 
179 	return vlv_get_cck_clock(dev_priv, name, reg,
180 				 dev_priv->hpll_freq);
181 }
182 
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 	return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188 
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 	/* RAWCLK_FREQ_VLV register updated from power well code */
193 	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 				      CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196 
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 	uint32_t clkcfg;
201 
202 	/* hrawclock is 1/4 the FSB frequency */
203 	clkcfg = I915_READ(CLKCFG);
204 	switch (clkcfg & CLKCFG_FSB_MASK) {
205 	case CLKCFG_FSB_400:
206 		return 100000;
207 	case CLKCFG_FSB_533:
208 		return 133333;
209 	case CLKCFG_FSB_667:
210 		return 166667;
211 	case CLKCFG_FSB_800:
212 		return 200000;
213 	case CLKCFG_FSB_1067:
214 		return 266667;
215 	case CLKCFG_FSB_1333:
216 		return 333333;
217 	/* these two are just a guess; one of them might be right */
218 	case CLKCFG_FSB_1600:
219 	case CLKCFG_FSB_1600_ALT:
220 		return 400000;
221 	default:
222 		return 133333;
223 	}
224 }
225 
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 	if (HAS_PCH_SPLIT(dev_priv))
229 		dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 		dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 	else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 		dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 	else
235 		return; /* no rawclk on other platforms, or no need to know it */
236 
237 	DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239 
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 		return;
244 
245 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 						      CCK_CZ_CLOCK_CONTROL);
247 
248 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250 
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 		    const struct intel_crtc_state *pipe_config)
254 {
255 	if (HAS_DDI(dev_priv))
256 		return pipe_config->port_clock; /* SPLL */
257 	else if (IS_GEN5(dev_priv))
258 		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 	else
260 		return 270000;
261 }
262 
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 	.dot = { .min = 25000, .max = 350000 },
265 	.vco = { .min = 908000, .max = 1512000 },
266 	.n = { .min = 2, .max = 16 },
267 	.m = { .min = 96, .max = 140 },
268 	.m1 = { .min = 18, .max = 26 },
269 	.m2 = { .min = 6, .max = 16 },
270 	.p = { .min = 4, .max = 128 },
271 	.p1 = { .min = 2, .max = 33 },
272 	.p2 = { .dot_limit = 165000,
273 		.p2_slow = 4, .p2_fast = 2 },
274 };
275 
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 	.dot = { .min = 25000, .max = 350000 },
278 	.vco = { .min = 908000, .max = 1512000 },
279 	.n = { .min = 2, .max = 16 },
280 	.m = { .min = 96, .max = 140 },
281 	.m1 = { .min = 18, .max = 26 },
282 	.m2 = { .min = 6, .max = 16 },
283 	.p = { .min = 4, .max = 128 },
284 	.p1 = { .min = 2, .max = 33 },
285 	.p2 = { .dot_limit = 165000,
286 		.p2_slow = 4, .p2_fast = 4 },
287 };
288 
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 	.dot = { .min = 25000, .max = 350000 },
291 	.vco = { .min = 908000, .max = 1512000 },
292 	.n = { .min = 2, .max = 16 },
293 	.m = { .min = 96, .max = 140 },
294 	.m1 = { .min = 18, .max = 26 },
295 	.m2 = { .min = 6, .max = 16 },
296 	.p = { .min = 4, .max = 128 },
297 	.p1 = { .min = 1, .max = 6 },
298 	.p2 = { .dot_limit = 165000,
299 		.p2_slow = 14, .p2_fast = 7 },
300 };
301 
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 	.dot = { .min = 20000, .max = 400000 },
304 	.vco = { .min = 1400000, .max = 2800000 },
305 	.n = { .min = 1, .max = 6 },
306 	.m = { .min = 70, .max = 120 },
307 	.m1 = { .min = 8, .max = 18 },
308 	.m2 = { .min = 3, .max = 7 },
309 	.p = { .min = 5, .max = 80 },
310 	.p1 = { .min = 1, .max = 8 },
311 	.p2 = { .dot_limit = 200000,
312 		.p2_slow = 10, .p2_fast = 5 },
313 };
314 
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 	.dot = { .min = 20000, .max = 400000 },
317 	.vco = { .min = 1400000, .max = 2800000 },
318 	.n = { .min = 1, .max = 6 },
319 	.m = { .min = 70, .max = 120 },
320 	.m1 = { .min = 8, .max = 18 },
321 	.m2 = { .min = 3, .max = 7 },
322 	.p = { .min = 7, .max = 98 },
323 	.p1 = { .min = 1, .max = 8 },
324 	.p2 = { .dot_limit = 112000,
325 		.p2_slow = 14, .p2_fast = 7 },
326 };
327 
328 
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 	.dot = { .min = 25000, .max = 270000 },
331 	.vco = { .min = 1750000, .max = 3500000},
332 	.n = { .min = 1, .max = 4 },
333 	.m = { .min = 104, .max = 138 },
334 	.m1 = { .min = 17, .max = 23 },
335 	.m2 = { .min = 5, .max = 11 },
336 	.p = { .min = 10, .max = 30 },
337 	.p1 = { .min = 1, .max = 3},
338 	.p2 = { .dot_limit = 270000,
339 		.p2_slow = 10,
340 		.p2_fast = 10
341 	},
342 };
343 
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 	.dot = { .min = 22000, .max = 400000 },
346 	.vco = { .min = 1750000, .max = 3500000},
347 	.n = { .min = 1, .max = 4 },
348 	.m = { .min = 104, .max = 138 },
349 	.m1 = { .min = 16, .max = 23 },
350 	.m2 = { .min = 5, .max = 11 },
351 	.p = { .min = 5, .max = 80 },
352 	.p1 = { .min = 1, .max = 8},
353 	.p2 = { .dot_limit = 165000,
354 		.p2_slow = 10, .p2_fast = 5 },
355 };
356 
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 	.dot = { .min = 20000, .max = 115000 },
359 	.vco = { .min = 1750000, .max = 3500000 },
360 	.n = { .min = 1, .max = 3 },
361 	.m = { .min = 104, .max = 138 },
362 	.m1 = { .min = 17, .max = 23 },
363 	.m2 = { .min = 5, .max = 11 },
364 	.p = { .min = 28, .max = 112 },
365 	.p1 = { .min = 2, .max = 8 },
366 	.p2 = { .dot_limit = 0,
367 		.p2_slow = 14, .p2_fast = 14
368 	},
369 };
370 
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 	.dot = { .min = 80000, .max = 224000 },
373 	.vco = { .min = 1750000, .max = 3500000 },
374 	.n = { .min = 1, .max = 3 },
375 	.m = { .min = 104, .max = 138 },
376 	.m1 = { .min = 17, .max = 23 },
377 	.m2 = { .min = 5, .max = 11 },
378 	.p = { .min = 14, .max = 42 },
379 	.p1 = { .min = 2, .max = 6 },
380 	.p2 = { .dot_limit = 0,
381 		.p2_slow = 7, .p2_fast = 7
382 	},
383 };
384 
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 	.dot = { .min = 20000, .max = 400000},
387 	.vco = { .min = 1700000, .max = 3500000 },
388 	/* Pineview's Ncounter is a ring counter */
389 	.n = { .min = 3, .max = 6 },
390 	.m = { .min = 2, .max = 256 },
391 	/* Pineview only has one combined m divider, which we treat as m2. */
392 	.m1 = { .min = 0, .max = 0 },
393 	.m2 = { .min = 0, .max = 254 },
394 	.p = { .min = 5, .max = 80 },
395 	.p1 = { .min = 1, .max = 8 },
396 	.p2 = { .dot_limit = 200000,
397 		.p2_slow = 10, .p2_fast = 5 },
398 };
399 
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 	.dot = { .min = 20000, .max = 400000 },
402 	.vco = { .min = 1700000, .max = 3500000 },
403 	.n = { .min = 3, .max = 6 },
404 	.m = { .min = 2, .max = 256 },
405 	.m1 = { .min = 0, .max = 0 },
406 	.m2 = { .min = 0, .max = 254 },
407 	.p = { .min = 7, .max = 112 },
408 	.p1 = { .min = 1, .max = 8 },
409 	.p2 = { .dot_limit = 112000,
410 		.p2_slow = 14, .p2_fast = 14 },
411 };
412 
413 /* Ironlake / Sandybridge
414  *
415  * We calculate clock using (register_value + 2) for N/M1/M2, so here
416  * the range value for them is (actual_value - 2).
417  */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 	.dot = { .min = 25000, .max = 350000 },
420 	.vco = { .min = 1760000, .max = 3510000 },
421 	.n = { .min = 1, .max = 5 },
422 	.m = { .min = 79, .max = 127 },
423 	.m1 = { .min = 12, .max = 22 },
424 	.m2 = { .min = 5, .max = 9 },
425 	.p = { .min = 5, .max = 80 },
426 	.p1 = { .min = 1, .max = 8 },
427 	.p2 = { .dot_limit = 225000,
428 		.p2_slow = 10, .p2_fast = 5 },
429 };
430 
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 	.dot = { .min = 25000, .max = 350000 },
433 	.vco = { .min = 1760000, .max = 3510000 },
434 	.n = { .min = 1, .max = 3 },
435 	.m = { .min = 79, .max = 118 },
436 	.m1 = { .min = 12, .max = 22 },
437 	.m2 = { .min = 5, .max = 9 },
438 	.p = { .min = 28, .max = 112 },
439 	.p1 = { .min = 2, .max = 8 },
440 	.p2 = { .dot_limit = 225000,
441 		.p2_slow = 14, .p2_fast = 14 },
442 };
443 
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 	.dot = { .min = 25000, .max = 350000 },
446 	.vco = { .min = 1760000, .max = 3510000 },
447 	.n = { .min = 1, .max = 3 },
448 	.m = { .min = 79, .max = 127 },
449 	.m1 = { .min = 12, .max = 22 },
450 	.m2 = { .min = 5, .max = 9 },
451 	.p = { .min = 14, .max = 56 },
452 	.p1 = { .min = 2, .max = 8 },
453 	.p2 = { .dot_limit = 225000,
454 		.p2_slow = 7, .p2_fast = 7 },
455 };
456 
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 	.dot = { .min = 25000, .max = 350000 },
460 	.vco = { .min = 1760000, .max = 3510000 },
461 	.n = { .min = 1, .max = 2 },
462 	.m = { .min = 79, .max = 126 },
463 	.m1 = { .min = 12, .max = 22 },
464 	.m2 = { .min = 5, .max = 9 },
465 	.p = { .min = 28, .max = 112 },
466 	.p1 = { .min = 2, .max = 8 },
467 	.p2 = { .dot_limit = 225000,
468 		.p2_slow = 14, .p2_fast = 14 },
469 };
470 
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 	.dot = { .min = 25000, .max = 350000 },
473 	.vco = { .min = 1760000, .max = 3510000 },
474 	.n = { .min = 1, .max = 3 },
475 	.m = { .min = 79, .max = 126 },
476 	.m1 = { .min = 12, .max = 22 },
477 	.m2 = { .min = 5, .max = 9 },
478 	.p = { .min = 14, .max = 42 },
479 	.p1 = { .min = 2, .max = 6 },
480 	.p2 = { .dot_limit = 225000,
481 		.p2_slow = 7, .p2_fast = 7 },
482 };
483 
484 static const struct intel_limit intel_limits_vlv = {
485 	 /*
486 	  * These are the data rate limits (measured in fast clocks)
487 	  * since those are the strictest limits we have. The fast
488 	  * clock and actual rate limits are more relaxed, so checking
489 	  * them would make no difference.
490 	  */
491 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 	.vco = { .min = 4000000, .max = 6000000 },
493 	.n = { .min = 1, .max = 7 },
494 	.m1 = { .min = 2, .max = 3 },
495 	.m2 = { .min = 11, .max = 156 },
496 	.p1 = { .min = 2, .max = 3 },
497 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499 
500 static const struct intel_limit intel_limits_chv = {
501 	/*
502 	 * These are the data rate limits (measured in fast clocks)
503 	 * since those are the strictest limits we have.  The fast
504 	 * clock and actual rate limits are more relaxed, so checking
505 	 * them would make no difference.
506 	 */
507 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
508 	.vco = { .min = 4800000, .max = 6480000 },
509 	.n = { .min = 1, .max = 1 },
510 	.m1 = { .min = 2, .max = 2 },
511 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
512 	.p1 = { .min = 2, .max = 4 },
513 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
514 };
515 
516 static const struct intel_limit intel_limits_bxt = {
517 	/* FIXME: find real dot limits */
518 	.dot = { .min = 0, .max = INT_MAX },
519 	.vco = { .min = 4800000, .max = 6700000 },
520 	.n = { .min = 1, .max = 1 },
521 	.m1 = { .min = 2, .max = 2 },
522 	/* FIXME: find real m2 limits */
523 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
524 	.p1 = { .min = 2, .max = 4 },
525 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527 
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 	return drm_atomic_crtc_needs_modeset(state);
532 }
533 
534 /*
535  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538  * The helpers' return value is the rate of the clock that is fed to the
539  * display engine's pipe which can be the above fast dot clock rate or a
540  * divided-down version of it.
541  */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 	clock->m = clock->m2 + 2;
546 	clock->p = clock->p1 * clock->p2;
547 	if (WARN_ON(clock->n == 0 || clock->p == 0))
548 		return 0;
549 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551 
552 	return clock->dot;
553 }
554 
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559 
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 	clock->m = i9xx_dpll_compute_m(clock);
563 	clock->p = clock->p1 * clock->p2;
564 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 		return 0;
566 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568 
569 	return clock->dot;
570 }
571 
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 	clock->m = clock->m1 * clock->m2;
575 	clock->p = clock->p1 * clock->p2;
576 	if (WARN_ON(clock->n == 0 || clock->p == 0))
577 		return 0;
578 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580 
581 	return clock->dot / 5;
582 }
583 
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 	clock->m = clock->m1 * clock->m2;
587 	clock->p = clock->p1 * clock->p2;
588 	if (WARN_ON(clock->n == 0 || clock->p == 0))
589 		return 0;
590 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 			clock->n << 22);
592 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593 
594 	return clock->dot / 5;
595 }
596 
597 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599  * Returns whether the given set of divisors are valid for a given refclk with
600  * the given connectors.
601  */
602 
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 			       const struct intel_limit *limit,
605 			       const struct dpll *clock)
606 {
607 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
608 		INTELPllInvalid("n out of range\n");
609 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610 		INTELPllInvalid("p1 out of range\n");
611 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
612 		INTELPllInvalid("m2 out of range\n");
613 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
614 		INTELPllInvalid("m1 out of range\n");
615 
616 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 	    !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618 		if (clock->m1 <= clock->m2)
619 			INTELPllInvalid("m1 <= m2\n");
620 
621 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 	    !IS_BROXTON(dev_priv)) {
623 		if (clock->p < limit->p.min || limit->p.max < clock->p)
624 			INTELPllInvalid("p out of range\n");
625 		if (clock->m < limit->m.min || limit->m.max < clock->m)
626 			INTELPllInvalid("m out of range\n");
627 	}
628 
629 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 		INTELPllInvalid("vco out of range\n");
631 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 	 * connector, etc., rather than just a single range.
633 	 */
634 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 		INTELPllInvalid("dot out of range\n");
636 
637 	return true;
638 }
639 
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 		   const struct intel_crtc_state *crtc_state,
643 		   int target)
644 {
645 	struct drm_device *dev = crtc_state->base.crtc->dev;
646 
647 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 		/*
649 		 * For LVDS just rely on its current settings for dual-channel.
650 		 * We haven't figured out how to reliably set up different
651 		 * single/dual channel state, if we even can.
652 		 */
653 		if (intel_is_dual_link_lvds(dev))
654 			return limit->p2.p2_fast;
655 		else
656 			return limit->p2.p2_slow;
657 	} else {
658 		if (target < limit->p2.dot_limit)
659 			return limit->p2.p2_slow;
660 		else
661 			return limit->p2.p2_fast;
662 	}
663 }
664 
665 /*
666  * Returns a set of divisors for the desired target clock with the given
667  * refclk, or FALSE.  The returned values represent the clock equation:
668  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669  *
670  * Target and reference clocks are specified in kHz.
671  *
672  * If match_clock is provided, then best_clock P divider must match the P
673  * divider from @match_clock used for LVDS downclocking.
674  */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 		    struct intel_crtc_state *crtc_state,
678 		    int target, int refclk, struct dpll *match_clock,
679 		    struct dpll *best_clock)
680 {
681 	struct drm_device *dev = crtc_state->base.crtc->dev;
682 	struct dpll clock;
683 	int err = target;
684 
685 	memset(best_clock, 0, sizeof(*best_clock));
686 
687 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688 
689 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 	     clock.m1++) {
691 		for (clock.m2 = limit->m2.min;
692 		     clock.m2 <= limit->m2.max; clock.m2++) {
693 			if (clock.m2 >= clock.m1)
694 				break;
695 			for (clock.n = limit->n.min;
696 			     clock.n <= limit->n.max; clock.n++) {
697 				for (clock.p1 = limit->p1.min;
698 					clock.p1 <= limit->p1.max; clock.p1++) {
699 					int this_err;
700 
701 					i9xx_calc_dpll_params(refclk, &clock);
702 					if (!intel_PLL_is_valid(to_i915(dev),
703 								limit,
704 								&clock))
705 						continue;
706 					if (match_clock &&
707 					    clock.p != match_clock->p)
708 						continue;
709 
710 					this_err = abs(clock.dot - target);
711 					if (this_err < err) {
712 						*best_clock = clock;
713 						err = this_err;
714 					}
715 				}
716 			}
717 		}
718 	}
719 
720 	return (err != target);
721 }
722 
723 /*
724  * Returns a set of divisors for the desired target clock with the given
725  * refclk, or FALSE.  The returned values represent the clock equation:
726  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727  *
728  * Target and reference clocks are specified in kHz.
729  *
730  * If match_clock is provided, then best_clock P divider must match the P
731  * divider from @match_clock used for LVDS downclocking.
732  */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 		   struct intel_crtc_state *crtc_state,
736 		   int target, int refclk, struct dpll *match_clock,
737 		   struct dpll *best_clock)
738 {
739 	struct drm_device *dev = crtc_state->base.crtc->dev;
740 	struct dpll clock;
741 	int err = target;
742 
743 	memset(best_clock, 0, sizeof(*best_clock));
744 
745 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746 
747 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 	     clock.m1++) {
749 		for (clock.m2 = limit->m2.min;
750 		     clock.m2 <= limit->m2.max; clock.m2++) {
751 			for (clock.n = limit->n.min;
752 			     clock.n <= limit->n.max; clock.n++) {
753 				for (clock.p1 = limit->p1.min;
754 					clock.p1 <= limit->p1.max; clock.p1++) {
755 					int this_err;
756 
757 					pnv_calc_dpll_params(refclk, &clock);
758 					if (!intel_PLL_is_valid(to_i915(dev),
759 								limit,
760 								&clock))
761 						continue;
762 					if (match_clock &&
763 					    clock.p != match_clock->p)
764 						continue;
765 
766 					this_err = abs(clock.dot - target);
767 					if (this_err < err) {
768 						*best_clock = clock;
769 						err = this_err;
770 					}
771 				}
772 			}
773 		}
774 	}
775 
776 	return (err != target);
777 }
778 
779 /*
780  * Returns a set of divisors for the desired target clock with the given
781  * refclk, or FALSE.  The returned values represent the clock equation:
782  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783  *
784  * Target and reference clocks are specified in kHz.
785  *
786  * If match_clock is provided, then best_clock P divider must match the P
787  * divider from @match_clock used for LVDS downclocking.
788  */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 		   struct intel_crtc_state *crtc_state,
792 		   int target, int refclk, struct dpll *match_clock,
793 		   struct dpll *best_clock)
794 {
795 	struct drm_device *dev = crtc_state->base.crtc->dev;
796 	struct dpll clock;
797 	int max_n;
798 	bool found = false;
799 	/* approximately equals target * 0.00585 */
800 	int err_most = (target >> 8) + (target >> 9);
801 
802 	memset(best_clock, 0, sizeof(*best_clock));
803 
804 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805 
806 	max_n = limit->n.max;
807 	/* based on hardware requirement, prefer smaller n to precision */
808 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 		/* based on hardware requirement, prefere larger m1,m2 */
810 		for (clock.m1 = limit->m1.max;
811 		     clock.m1 >= limit->m1.min; clock.m1--) {
812 			for (clock.m2 = limit->m2.max;
813 			     clock.m2 >= limit->m2.min; clock.m2--) {
814 				for (clock.p1 = limit->p1.max;
815 				     clock.p1 >= limit->p1.min; clock.p1--) {
816 					int this_err;
817 
818 					i9xx_calc_dpll_params(refclk, &clock);
819 					if (!intel_PLL_is_valid(to_i915(dev),
820 								limit,
821 								&clock))
822 						continue;
823 
824 					this_err = abs(clock.dot - target);
825 					if (this_err < err_most) {
826 						*best_clock = clock;
827 						err_most = this_err;
828 						max_n = clock.n;
829 						found = true;
830 					}
831 				}
832 			}
833 		}
834 	}
835 	return found;
836 }
837 
838 /*
839  * Check if the calculated PLL configuration is more optimal compared to the
840  * best configuration and error found so far. Return the calculated error.
841  */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 			       const struct dpll *calculated_clock,
844 			       const struct dpll *best_clock,
845 			       unsigned int best_error_ppm,
846 			       unsigned int *error_ppm)
847 {
848 	/*
849 	 * For CHV ignore the error and consider only the P value.
850 	 * Prefer a bigger P value based on HW requirements.
851 	 */
852 	if (IS_CHERRYVIEW(to_i915(dev))) {
853 		*error_ppm = 0;
854 
855 		return calculated_clock->p > best_clock->p;
856 	}
857 
858 	if (WARN_ON_ONCE(!target_freq))
859 		return false;
860 
861 	*error_ppm = div_u64(1000000ULL *
862 				abs(target_freq - calculated_clock->dot),
863 			     target_freq);
864 	/*
865 	 * Prefer a better P value over a better (smaller) error if the error
866 	 * is small. Ensure this preference for future configurations too by
867 	 * setting the error to 0.
868 	 */
869 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 		*error_ppm = 0;
871 
872 		return true;
873 	}
874 
875 	return *error_ppm + 10 < best_error_ppm;
876 }
877 
878 /*
879  * Returns a set of divisors for the desired target clock with the given
880  * refclk, or FALSE.  The returned values represent the clock equation:
881  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882  */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 		   struct intel_crtc_state *crtc_state,
886 		   int target, int refclk, struct dpll *match_clock,
887 		   struct dpll *best_clock)
888 {
889 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 	struct drm_device *dev = crtc->base.dev;
891 	struct dpll clock;
892 	unsigned int bestppm = 1000000;
893 	/* min update 19.2 MHz */
894 	int max_n = min(limit->n.max, refclk / 19200);
895 	bool found = false;
896 
897 	target *= 5; /* fast clock */
898 
899 	memset(best_clock, 0, sizeof(*best_clock));
900 
901 	/* based on hardware requirement, prefer smaller n to precision */
902 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 				clock.p = clock.p1 * clock.p2;
907 				/* based on hardware requirement, prefer bigger m1,m2 values */
908 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 					unsigned int ppm;
910 
911 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 								     refclk * clock.m1);
913 
914 					vlv_calc_dpll_params(refclk, &clock);
915 
916 					if (!intel_PLL_is_valid(to_i915(dev),
917 								limit,
918 								&clock))
919 						continue;
920 
921 					if (!vlv_PLL_is_optimal(dev, target,
922 								&clock,
923 								best_clock,
924 								bestppm, &ppm))
925 						continue;
926 
927 					*best_clock = clock;
928 					bestppm = ppm;
929 					found = true;
930 				}
931 			}
932 		}
933 	}
934 
935 	return found;
936 }
937 
938 /*
939  * Returns a set of divisors for the desired target clock with the given
940  * refclk, or FALSE.  The returned values represent the clock equation:
941  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942  */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 		   struct intel_crtc_state *crtc_state,
946 		   int target, int refclk, struct dpll *match_clock,
947 		   struct dpll *best_clock)
948 {
949 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 	struct drm_device *dev = crtc->base.dev;
951 	unsigned int best_error_ppm;
952 	struct dpll clock;
953 	uint64_t m2;
954 	int found = false;
955 
956 	memset(best_clock, 0, sizeof(*best_clock));
957 	best_error_ppm = 1000000;
958 
959 	/*
960 	 * Based on hardware doc, the n always set to 1, and m1 always
961 	 * set to 2.  If requires to support 200Mhz refclk, we need to
962 	 * revisit this because n may not 1 anymore.
963 	 */
964 	clock.n = 1, clock.m1 = 2;
965 	target *= 5;	/* fast clock */
966 
967 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 		for (clock.p2 = limit->p2.p2_fast;
969 				clock.p2 >= limit->p2.p2_slow;
970 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 			unsigned int error_ppm;
972 
973 			clock.p = clock.p1 * clock.p2;
974 
975 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 					clock.n) << 22, refclk * clock.m1);
977 
978 			if (m2 > INT_MAX/clock.m1)
979 				continue;
980 
981 			clock.m2 = m2;
982 
983 			chv_calc_dpll_params(refclk, &clock);
984 
985 			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 				continue;
987 
988 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 						best_error_ppm, &error_ppm))
990 				continue;
991 
992 			*best_clock = clock;
993 			best_error_ppm = error_ppm;
994 			found = true;
995 		}
996 	}
997 
998 	return found;
999 }
1000 
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 			struct dpll *best_clock)
1003 {
1004 	int refclk = 100000;
1005 	const struct intel_limit *limit = &intel_limits_bxt;
1006 
1007 	return chv_find_best_dpll(limit, crtc_state,
1008 				  target_clock, refclk, NULL, best_clock);
1009 }
1010 
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1012 {
1013 	/* Be paranoid as we can arrive here with only partial
1014 	 * state retrieved from the hardware during setup.
1015 	 *
1016 	 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 	 * as Haswell has gained clock readout/fastboot support.
1018 	 *
1019 	 * We can ditch the crtc->primary->fb check as soon as we can
1020 	 * properly reconstruct framebuffers.
1021 	 *
1022 	 * FIXME: The intel_crtc->active here should be switched to
1023 	 * crtc->state->active once we have proper CRTC states wired up
1024 	 * for atomic.
1025 	 */
1026 	return crtc->active && crtc->base.primary->state->fb &&
1027 		crtc->config->base.adjusted_mode.crtc_clock;
1028 }
1029 
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031 					     enum i915_pipe pipe)
1032 {
1033 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034 
1035 	return crtc->config->cpu_transcoder;
1036 }
1037 
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1039 {
1040 	i915_reg_t reg = PIPEDSL(pipe);
1041 	u32 line1, line2;
1042 	u32 line_mask;
1043 
1044 	if (IS_GEN2(dev_priv))
1045 		line_mask = DSL_LINEMASK_GEN2;
1046 	else
1047 		line_mask = DSL_LINEMASK_GEN3;
1048 
1049 	line1 = I915_READ(reg) & line_mask;
1050 	msleep(5);
1051 	line2 = I915_READ(reg) & line_mask;
1052 
1053 	return line1 == line2;
1054 }
1055 
1056 /*
1057  * intel_wait_for_pipe_off - wait for pipe to turn off
1058  * @crtc: crtc whose pipe to wait for
1059  *
1060  * After disabling a pipe, we can't wait for vblank in the usual way,
1061  * spinning on the vblank interrupt status bit, since we won't actually
1062  * see an interrupt when the pipe is disabled.
1063  *
1064  * On Gen4 and above:
1065  *   wait for the pipe register state bit to turn off
1066  *
1067  * Otherwise:
1068  *   wait for the display line value to settle (it usually
1069  *   ends up stopping at the start of the next frame).
1070  *
1071  */
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073 {
1074 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 	enum i915_pipe pipe = crtc->pipe;
1077 
1078 	if (INTEL_GEN(dev_priv) >= 4) {
1079 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1080 
1081 		/* Wait for the Pipe State to go off */
1082 		if (intel_wait_for_register(dev_priv,
1083 					    reg, I965_PIPECONF_ACTIVE, 0,
1084 					    100))
1085 			WARN(1, "pipe_off wait timed out\n");
1086 	} else {
1087 		/* Wait for the display line to settle */
1088 		if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089 			WARN(1, "pipe_off wait timed out\n");
1090 	}
1091 }
1092 
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 		enum i915_pipe pipe, bool state)
1096 {
1097 	u32 val;
1098 	bool cur_state;
1099 
1100 	val = I915_READ(DPLL(pipe));
1101 	cur_state = !!(val & DPLL_VCO_ENABLE);
1102 	I915_STATE_WARN(cur_state != state,
1103 	     "PLL state assertion failure (expected %s, current %s)\n",
1104 			onoff(state), onoff(cur_state));
1105 }
1106 
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 	u32 val;
1111 	bool cur_state;
1112 
1113 	mutex_lock(&dev_priv->sb_lock);
1114 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 	mutex_unlock(&dev_priv->sb_lock);
1116 
1117 	cur_state = val & DSI_PLL_VCO_EN;
1118 	I915_STATE_WARN(cur_state != state,
1119 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 			onoff(state), onoff(cur_state));
1121 }
1122 
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 			  enum i915_pipe pipe, bool state)
1125 {
1126 	bool cur_state;
1127 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 								      pipe);
1129 
1130 	if (HAS_DDI(dev_priv)) {
1131 		/* DDI does not have a specific FDI_TX register */
1132 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 	} else {
1135 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 		cur_state = !!(val & FDI_TX_ENABLE);
1137 	}
1138 	I915_STATE_WARN(cur_state != state,
1139 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1140 			onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144 
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 			  enum i915_pipe pipe, bool state)
1147 {
1148 	u32 val;
1149 	bool cur_state;
1150 
1151 	val = I915_READ(FDI_RX_CTL(pipe));
1152 	cur_state = !!(val & FDI_RX_ENABLE);
1153 	I915_STATE_WARN(cur_state != state,
1154 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1155 			onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159 
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 				      enum i915_pipe pipe)
1162 {
1163 	u32 val;
1164 
1165 	/* ILK FDI PLL is always enabled */
1166 	if (IS_GEN5(dev_priv))
1167 		return;
1168 
1169 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 	if (HAS_DDI(dev_priv))
1171 		return;
1172 
1173 	val = I915_READ(FDI_TX_CTL(pipe));
1174 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176 
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 		       enum i915_pipe pipe, bool state)
1179 {
1180 	u32 val;
1181 	bool cur_state;
1182 
1183 	val = I915_READ(FDI_RX_CTL(pipe));
1184 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 	I915_STATE_WARN(cur_state != state,
1186 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 			onoff(state), onoff(cur_state));
1188 }
1189 
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1191 {
1192 	i915_reg_t pp_reg;
1193 	u32 val;
1194 	enum i915_pipe panel_pipe = PIPE_A;
1195 	bool locked = true;
1196 
1197 	if (WARN_ON(HAS_DDI(dev_priv)))
1198 		return;
1199 
1200 	if (HAS_PCH_SPLIT(dev_priv)) {
1201 		u32 port_sel;
1202 
1203 		pp_reg = PP_CONTROL(0);
1204 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205 
1206 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 			panel_pipe = PIPE_B;
1209 		/* XXX: else fix for eDP */
1210 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211 		/* presumably write lock depends on pipe, not port select */
1212 		pp_reg = PP_CONTROL(pipe);
1213 		panel_pipe = pipe;
1214 	} else {
1215 		pp_reg = PP_CONTROL(0);
1216 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 			panel_pipe = PIPE_B;
1218 	}
1219 
1220 	val = I915_READ(pp_reg);
1221 	if (!(val & PANEL_POWER_ON) ||
1222 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223 		locked = false;
1224 
1225 	I915_STATE_WARN(panel_pipe == pipe && locked,
1226 	     "panel assertion failure, pipe %c regs locked\n",
1227 	     pipe_name(pipe));
1228 }
1229 
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231 			  enum i915_pipe pipe, bool state)
1232 {
1233 	bool cur_state;
1234 
1235 	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1236 		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237 	else
1238 		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239 
1240 	I915_STATE_WARN(cur_state != state,
1241 	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 			pipe_name(pipe), onoff(state), onoff(cur_state));
1243 }
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246 
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248 		 enum i915_pipe pipe, bool state)
1249 {
1250 	bool cur_state;
1251 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252 								      pipe);
1253 	enum intel_display_power_domain power_domain;
1254 
1255 	/* if we need the pipe quirk it must be always on */
1256 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258 		state = true;
1259 
1260 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263 		cur_state = !!(val & PIPECONF_ENABLE);
1264 
1265 		intel_display_power_put(dev_priv, power_domain);
1266 	} else {
1267 		cur_state = false;
1268 	}
1269 
1270 	I915_STATE_WARN(cur_state != state,
1271 	     "pipe %c assertion failure (expected %s, current %s)\n",
1272 			pipe_name(pipe), onoff(state), onoff(cur_state));
1273 }
1274 
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276 			 enum plane plane, bool state)
1277 {
1278 	u32 val;
1279 	bool cur_state;
1280 
1281 	val = I915_READ(DSPCNTR(plane));
1282 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283 	I915_STATE_WARN(cur_state != state,
1284 	     "plane %c assertion failure (expected %s, current %s)\n",
1285 			plane_name(plane), onoff(state), onoff(cur_state));
1286 }
1287 
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290 
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292 				   enum i915_pipe pipe)
1293 {
1294 	int i;
1295 
1296 	/* Primary planes are fixed to pipes on gen4+ */
1297 	if (INTEL_GEN(dev_priv) >= 4) {
1298 		u32 val = I915_READ(DSPCNTR(pipe));
1299 		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300 		     "plane %c assertion failure, should be disabled but not\n",
1301 		     plane_name(pipe));
1302 		return;
1303 	}
1304 
1305 	/* Need to check both planes against the pipe */
1306 	for_each_pipe(dev_priv, i) {
1307 		u32 val = I915_READ(DSPCNTR(i));
1308 		enum i915_pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309 			DISPPLANE_SEL_PIPE_SHIFT;
1310 		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 		     plane_name(i), pipe_name(pipe));
1313 	}
1314 }
1315 
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317 				    enum i915_pipe pipe)
1318 {
1319 	int sprite;
1320 
1321 	if (INTEL_GEN(dev_priv) >= 9) {
1322 		for_each_sprite(dev_priv, pipe, sprite) {
1323 			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324 			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325 			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 			     sprite, pipe_name(pipe));
1327 		}
1328 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329 		for_each_sprite(dev_priv, pipe, sprite) {
1330 			u32 val = I915_READ(SPCNTR(pipe, sprite));
1331 			I915_STATE_WARN(val & SP_ENABLE,
1332 			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 			     sprite_name(pipe, sprite), pipe_name(pipe));
1334 		}
1335 	} else if (INTEL_GEN(dev_priv) >= 7) {
1336 		u32 val = I915_READ(SPRCTL(pipe));
1337 		I915_STATE_WARN(val & SPRITE_ENABLE,
1338 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 		     plane_name(pipe), pipe_name(pipe));
1340 	} else if (INTEL_GEN(dev_priv) >= 5) {
1341 		u32 val = I915_READ(DVSCNTR(pipe));
1342 		I915_STATE_WARN(val & DVS_ENABLE,
1343 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 		     plane_name(pipe), pipe_name(pipe));
1345 	}
1346 }
1347 
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1349 {
1350 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351 		drm_crtc_vblank_put(crtc);
1352 }
1353 
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 				    enum i915_pipe pipe)
1356 {
1357 	u32 val;
1358 	bool enabled;
1359 
1360 	val = I915_READ(PCH_TRANSCONF(pipe));
1361 	enabled = !!(val & TRANS_ENABLE);
1362 	I915_STATE_WARN(enabled,
1363 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364 	     pipe_name(pipe));
1365 }
1366 
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1369 {
1370 	if ((val & DP_PORT_EN) == 0)
1371 		return false;
1372 
1373 	if (HAS_PCH_CPT(dev_priv)) {
1374 		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 			return false;
1377 	} else if (IS_CHERRYVIEW(dev_priv)) {
1378 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 			return false;
1380 	} else {
1381 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 			return false;
1383 	}
1384 	return true;
1385 }
1386 
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 			      enum i915_pipe pipe, u32 val)
1389 {
1390 	if ((val & SDVO_ENABLE) == 0)
1391 		return false;
1392 
1393 	if (HAS_PCH_CPT(dev_priv)) {
1394 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 			return false;
1396 	} else if (IS_CHERRYVIEW(dev_priv)) {
1397 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 			return false;
1399 	} else {
1400 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 			return false;
1402 	}
1403 	return true;
1404 }
1405 
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 			      enum i915_pipe pipe, u32 val)
1408 {
1409 	if ((val & LVDS_PORT_EN) == 0)
1410 		return false;
1411 
1412 	if (HAS_PCH_CPT(dev_priv)) {
1413 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 			return false;
1415 	} else {
1416 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 			return false;
1418 	}
1419 	return true;
1420 }
1421 
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 			      enum i915_pipe pipe, u32 val)
1424 {
1425 	if ((val & ADPA_DAC_ENABLE) == 0)
1426 		return false;
1427 	if (HAS_PCH_CPT(dev_priv)) {
1428 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 			return false;
1430 	} else {
1431 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 			return false;
1433 	}
1434 	return true;
1435 }
1436 
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 				   enum i915_pipe pipe, i915_reg_t reg,
1439 				   u32 port_sel)
1440 {
1441 	u32 val = I915_READ(reg);
1442 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1445 
1446 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447 	     && (val & DP_PIPEB_SELECT),
1448 	     "IBX PCH dp port still using transcoder B\n");
1449 }
1450 
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452 				     enum i915_pipe pipe, i915_reg_t reg)
1453 {
1454 	u32 val = I915_READ(reg);
1455 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1458 
1459 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460 	     && (val & SDVO_PIPE_B_SELECT),
1461 	     "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463 
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465 				      enum i915_pipe pipe)
1466 {
1467 	u32 val;
1468 
1469 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472 
1473 	val = I915_READ(PCH_ADPA);
1474 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 	     pipe_name(pipe));
1477 
1478 	val = I915_READ(PCH_LVDS);
1479 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481 	     pipe_name(pipe));
1482 
1483 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486 }
1487 
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489 			    const struct intel_crtc_state *pipe_config)
1490 {
1491 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 	enum i915_pipe pipe = crtc->pipe;
1493 
1494 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495 	POSTING_READ(DPLL(pipe));
1496 	udelay(150);
1497 
1498 	if (intel_wait_for_register(dev_priv,
1499 				    DPLL(pipe),
1500 				    DPLL_LOCK_VLV,
1501 				    DPLL_LOCK_VLV,
1502 				    1))
1503 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504 }
1505 
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507 			   const struct intel_crtc_state *pipe_config)
1508 {
1509 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 	enum i915_pipe pipe = crtc->pipe;
1511 
1512 	assert_pipe_disabled(dev_priv, pipe);
1513 
1514 	/* PLL is protected by panel, make sure we can write it */
1515 	assert_panel_unlocked(dev_priv, pipe);
1516 
1517 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518 		_vlv_enable_pll(crtc, pipe_config);
1519 
1520 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521 	POSTING_READ(DPLL_MD(pipe));
1522 }
1523 
1524 
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526 			    const struct intel_crtc_state *pipe_config)
1527 {
1528 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529 	enum i915_pipe pipe = crtc->pipe;
1530 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531 	u32 tmp;
1532 
1533 	mutex_lock(&dev_priv->sb_lock);
1534 
1535 	/* Enable back the 10bit clock to display controller */
1536 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537 	tmp |= DPIO_DCLKP_EN;
1538 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539 
1540 	mutex_unlock(&dev_priv->sb_lock);
1541 
1542 	/*
1543 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544 	 */
1545 	udelay(1);
1546 
1547 	/* Enable PLL */
1548 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549 
1550 	/* Check PLL is locked */
1551 	if (intel_wait_for_register(dev_priv,
1552 				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553 				    1))
1554 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1555 }
1556 
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558 			   const struct intel_crtc_state *pipe_config)
1559 {
1560 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 	enum i915_pipe pipe = crtc->pipe;
1562 
1563 	assert_pipe_disabled(dev_priv, pipe);
1564 
1565 	/* PLL is protected by panel, make sure we can write it */
1566 	assert_panel_unlocked(dev_priv, pipe);
1567 
1568 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569 		_chv_enable_pll(crtc, pipe_config);
1570 
1571 	if (pipe != PIPE_A) {
1572 		/*
1573 		 * WaPixelRepeatModeFixForC0:chv
1574 		 *
1575 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 		 * the value from DPLLBMD to either pipe B or C.
1577 		 */
1578 		I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580 		I915_WRITE(CBR4_VLV, 0);
1581 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582 
1583 		/*
1584 		 * DPLLB VGA mode also seems to cause problems.
1585 		 * We should always have it disabled.
1586 		 */
1587 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588 	} else {
1589 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590 		POSTING_READ(DPLL_MD(pipe));
1591 	}
1592 }
1593 
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595 {
1596 	struct intel_crtc *crtc;
1597 	int count = 0;
1598 
1599 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1600 		count += crtc->base.state->active &&
1601 			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602 	}
1603 
1604 	return count;
1605 }
1606 
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610 	i915_reg_t reg = DPLL(crtc->pipe);
1611 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1612 
1613 	assert_pipe_disabled(dev_priv, crtc->pipe);
1614 
1615 	/* PLL is protected by panel, make sure we can write it */
1616 	if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617 		assert_panel_unlocked(dev_priv, crtc->pipe);
1618 
1619 	/* Enable DVO 2x clock on both PLLs if necessary */
1620 	if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621 		/*
1622 		 * It appears to be important that we don't enable this
1623 		 * for the current pipe before otherwise configuring the
1624 		 * PLL. No idea how this should be handled if multiple
1625 		 * DVO outputs are enabled simultaneosly.
1626 		 */
1627 		dpll |= DPLL_DVO_2X_MODE;
1628 		I915_WRITE(DPLL(!crtc->pipe),
1629 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630 	}
1631 
1632 	/*
1633 	 * Apparently we need to have VGA mode enabled prior to changing
1634 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 	 * dividers, even though the register value does change.
1636 	 */
1637 	I915_WRITE(reg, 0);
1638 
1639 	I915_WRITE(reg, dpll);
1640 
1641 	/* Wait for the clocks to stabilize. */
1642 	POSTING_READ(reg);
1643 	udelay(150);
1644 
1645 	if (INTEL_GEN(dev_priv) >= 4) {
1646 		I915_WRITE(DPLL_MD(crtc->pipe),
1647 			   crtc->config->dpll_hw_state.dpll_md);
1648 	} else {
1649 		/* The pixel multiplier can only be updated once the
1650 		 * DPLL is enabled and the clocks are stable.
1651 		 *
1652 		 * So write it again.
1653 		 */
1654 		I915_WRITE(reg, dpll);
1655 	}
1656 
1657 	/* We do this three times for luck */
1658 	I915_WRITE(reg, dpll);
1659 	POSTING_READ(reg);
1660 	udelay(150); /* wait for warmup */
1661 	I915_WRITE(reg, dpll);
1662 	POSTING_READ(reg);
1663 	udelay(150); /* wait for warmup */
1664 	I915_WRITE(reg, dpll);
1665 	POSTING_READ(reg);
1666 	udelay(150); /* wait for warmup */
1667 }
1668 
1669 /**
1670  * i9xx_disable_pll - disable a PLL
1671  * @dev_priv: i915 private structure
1672  * @pipe: pipe PLL to disable
1673  *
1674  * Disable the PLL for @pipe, making sure the pipe is off first.
1675  *
1676  * Note!  This is for pre-ILK only.
1677  */
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1679 {
1680 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681 	enum i915_pipe pipe = crtc->pipe;
1682 
1683 	/* Disable DVO 2x clock on both PLLs if necessary */
1684 	if (IS_I830(dev_priv) &&
1685 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686 	    !intel_num_dvo_pipes(dev_priv)) {
1687 		I915_WRITE(DPLL(PIPE_B),
1688 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689 		I915_WRITE(DPLL(PIPE_A),
1690 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691 	}
1692 
1693 	/* Don't disable pipe or pipe PLLs if needed */
1694 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696 		return;
1697 
1698 	/* Make sure the pipe isn't still relying on us */
1699 	assert_pipe_disabled(dev_priv, pipe);
1700 
1701 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702 	POSTING_READ(DPLL(pipe));
1703 }
1704 
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1706 {
1707 	u32 val;
1708 
1709 	/* Make sure the pipe isn't still relying on us */
1710 	assert_pipe_disabled(dev_priv, pipe);
1711 
1712 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1713 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714 	if (pipe != PIPE_A)
1715 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716 
1717 	I915_WRITE(DPLL(pipe), val);
1718 	POSTING_READ(DPLL(pipe));
1719 }
1720 
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1722 {
1723 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724 	u32 val;
1725 
1726 	/* Make sure the pipe isn't still relying on us */
1727 	assert_pipe_disabled(dev_priv, pipe);
1728 
1729 	val = DPLL_SSC_REF_CLK_CHV |
1730 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731 	if (pipe != PIPE_A)
1732 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733 
1734 	I915_WRITE(DPLL(pipe), val);
1735 	POSTING_READ(DPLL(pipe));
1736 
1737 	mutex_lock(&dev_priv->sb_lock);
1738 
1739 	/* Disable 10bit clock to display controller */
1740 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741 	val &= ~DPIO_DCLKP_EN;
1742 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743 
1744 	mutex_unlock(&dev_priv->sb_lock);
1745 }
1746 
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 			 struct intel_digital_port *dport,
1749 			 unsigned int expected_mask)
1750 {
1751 	u32 port_mask;
1752 	i915_reg_t dpll_reg;
1753 
1754 	switch (dport->port) {
1755 	case PORT_B:
1756 		port_mask = DPLL_PORTB_READY_MASK;
1757 		dpll_reg = DPLL(0);
1758 		break;
1759 	case PORT_C:
1760 		port_mask = DPLL_PORTC_READY_MASK;
1761 		dpll_reg = DPLL(0);
1762 		expected_mask <<= 4;
1763 		break;
1764 	case PORT_D:
1765 		port_mask = DPLL_PORTD_READY_MASK;
1766 		dpll_reg = DPIO_PHY_STATUS;
1767 		break;
1768 	default:
1769 		BUG();
1770 	}
1771 
1772 	if (intel_wait_for_register(dev_priv,
1773 				    dpll_reg, port_mask, expected_mask,
1774 				    1000))
1775 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777 }
1778 
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 					   enum i915_pipe pipe)
1781 {
1782 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783 								pipe);
1784 	i915_reg_t reg;
1785 	uint32_t val, pipeconf_val;
1786 
1787 	/* Make sure PCH DPLL is enabled */
1788 	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789 
1790 	/* FDI must be feeding us bits for PCH ports */
1791 	assert_fdi_tx_enabled(dev_priv, pipe);
1792 	assert_fdi_rx_enabled(dev_priv, pipe);
1793 
1794 	if (HAS_PCH_CPT(dev_priv)) {
1795 		/* Workaround: Set the timing override bit before enabling the
1796 		 * pch transcoder. */
1797 		reg = TRANS_CHICKEN2(pipe);
1798 		val = I915_READ(reg);
1799 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800 		I915_WRITE(reg, val);
1801 	}
1802 
1803 	reg = PCH_TRANSCONF(pipe);
1804 	val = I915_READ(reg);
1805 	pipeconf_val = I915_READ(PIPECONF(pipe));
1806 
1807 	if (HAS_PCH_IBX(dev_priv)) {
1808 		/*
1809 		 * Make the BPC in transcoder be consistent with
1810 		 * that in pipeconf reg. For HDMI we must use 8bpc
1811 		 * here for both 8bpc and 12bpc.
1812 		 */
1813 		val &= ~PIPECONF_BPC_MASK;
1814 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815 			val |= PIPECONF_8BPC;
1816 		else
1817 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1818 	}
1819 
1820 	val &= ~TRANS_INTERLACE_MASK;
1821 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822 		if (HAS_PCH_IBX(dev_priv) &&
1823 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824 			val |= TRANS_LEGACY_INTERLACED_ILK;
1825 		else
1826 			val |= TRANS_INTERLACED;
1827 	else
1828 		val |= TRANS_PROGRESSIVE;
1829 
1830 	I915_WRITE(reg, val | TRANS_ENABLE);
1831 	if (intel_wait_for_register(dev_priv,
1832 				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833 				    100))
1834 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835 }
1836 
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 				      enum transcoder cpu_transcoder)
1839 {
1840 	u32 val, pipeconf_val;
1841 
1842 	/* FDI must be feeding us bits for PCH ports */
1843 	assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
1844 	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845 
1846 	/* Workaround: set timing override bit. */
1847 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850 
1851 	val = TRANS_ENABLE;
1852 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853 
1854 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855 	    PIPECONF_INTERLACED_ILK)
1856 		val |= TRANS_INTERLACED;
1857 	else
1858 		val |= TRANS_PROGRESSIVE;
1859 
1860 	I915_WRITE(LPT_TRANSCONF, val);
1861 	if (intel_wait_for_register(dev_priv,
1862 				    LPT_TRANSCONF,
1863 				    TRANS_STATE_ENABLE,
1864 				    TRANS_STATE_ENABLE,
1865 				    100))
1866 		DRM_ERROR("Failed to enable PCH transcoder\n");
1867 }
1868 
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870 					    enum i915_pipe pipe)
1871 {
1872 	i915_reg_t reg;
1873 	uint32_t val;
1874 
1875 	/* FDI relies on the transcoder */
1876 	assert_fdi_tx_disabled(dev_priv, pipe);
1877 	assert_fdi_rx_disabled(dev_priv, pipe);
1878 
1879 	/* Ports must be off as well */
1880 	assert_pch_ports_disabled(dev_priv, pipe);
1881 
1882 	reg = PCH_TRANSCONF(pipe);
1883 	val = I915_READ(reg);
1884 	val &= ~TRANS_ENABLE;
1885 	I915_WRITE(reg, val);
1886 	/* wait for PCH transcoder off, transcoder state */
1887 	if (intel_wait_for_register(dev_priv,
1888 				    reg, TRANS_STATE_ENABLE, 0,
1889 				    50))
1890 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891 
1892 	if (HAS_PCH_CPT(dev_priv)) {
1893 		/* Workaround: Clear the timing override chicken bit again. */
1894 		reg = TRANS_CHICKEN2(pipe);
1895 		val = I915_READ(reg);
1896 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 		I915_WRITE(reg, val);
1898 	}
1899 }
1900 
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902 {
1903 	u32 val;
1904 
1905 	val = I915_READ(LPT_TRANSCONF);
1906 	val &= ~TRANS_ENABLE;
1907 	I915_WRITE(LPT_TRANSCONF, val);
1908 	/* wait for PCH transcoder off, transcoder state */
1909 	if (intel_wait_for_register(dev_priv,
1910 				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911 				    50))
1912 		DRM_ERROR("Failed to disable PCH transcoder\n");
1913 
1914 	/* Workaround: clear timing override bit. */
1915 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918 }
1919 
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921 {
1922 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923 
1924 	WARN_ON(!crtc->config->has_pch_encoder);
1925 
1926 	if (HAS_PCH_LPT(dev_priv))
1927 		return TRANSCODER_A;
1928 	else
1929 		return (enum transcoder) crtc->pipe;
1930 }
1931 
1932 /**
1933  * intel_enable_pipe - enable a pipe, asserting requirements
1934  * @crtc: crtc responsible for the pipe
1935  *
1936  * Enable @crtc's pipe, making sure that various hardware specific requirements
1937  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938  */
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1940 {
1941 	struct drm_device *dev = crtc->base.dev;
1942 	struct drm_i915_private *dev_priv = to_i915(dev);
1943 	enum i915_pipe pipe = crtc->pipe;
1944 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945 	i915_reg_t reg;
1946 	u32 val;
1947 
1948 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949 
1950 	assert_planes_disabled(dev_priv, pipe);
1951 	assert_cursor_disabled(dev_priv, pipe);
1952 	assert_sprites_disabled(dev_priv, pipe);
1953 
1954 	/*
1955 	 * A pipe without a PLL won't actually be able to drive bits from
1956 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1957 	 * need the check.
1958 	 */
1959 	if (HAS_GMCH_DISPLAY(dev_priv)) {
1960 		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961 			assert_dsi_pll_enabled(dev_priv);
1962 		else
1963 			assert_pll_enabled(dev_priv, pipe);
1964 	} else {
1965 		if (crtc->config->has_pch_encoder) {
1966 			/* if driving the PCH, we need FDI enabled */
1967 			assert_fdi_rx_pll_enabled(dev_priv,
1968 						  (enum i915_pipe) intel_crtc_pch_transcoder(crtc));
1969 			assert_fdi_tx_pll_enabled(dev_priv,
1970 						  (enum i915_pipe) cpu_transcoder);
1971 		}
1972 		/* FIXME: assert CPU port conditions for SNB+ */
1973 	}
1974 
1975 	reg = PIPECONF(cpu_transcoder);
1976 	val = I915_READ(reg);
1977 	if (val & PIPECONF_ENABLE) {
1978 		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979 			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980 		return;
1981 	}
1982 
1983 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1984 	POSTING_READ(reg);
1985 
1986 	/*
1987 	 * Until the pipe starts DSL will read as 0, which would cause
1988 	 * an apparent vblank timestamp jump, which messes up also the
1989 	 * frame count when it's derived from the timestamps. So let's
1990 	 * wait for the pipe to start properly before we call
1991 	 * drm_crtc_vblank_on()
1992 	 */
1993 	if (dev->max_vblank_count == 0 &&
1994 	    wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995 		DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996 }
1997 
1998 /**
1999  * intel_disable_pipe - disable a pipe, asserting requirements
2000  * @crtc: crtc whose pipes is to be disabled
2001  *
2002  * Disable the pipe of @crtc, making sure that various hardware
2003  * specific requirements are met, if applicable, e.g. plane
2004  * disabled, panel fitter off, etc.
2005  *
2006  * Will wait until the pipe has shut down before returning.
2007  */
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2009 {
2010 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012 	enum i915_pipe pipe = crtc->pipe;
2013 	i915_reg_t reg;
2014 	u32 val;
2015 
2016 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017 
2018 	/*
2019 	 * Make sure planes won't keep trying to pump pixels to us,
2020 	 * or we might hang the display.
2021 	 */
2022 	assert_planes_disabled(dev_priv, pipe);
2023 	assert_cursor_disabled(dev_priv, pipe);
2024 	assert_sprites_disabled(dev_priv, pipe);
2025 
2026 	reg = PIPECONF(cpu_transcoder);
2027 	val = I915_READ(reg);
2028 	if ((val & PIPECONF_ENABLE) == 0)
2029 		return;
2030 
2031 	/*
2032 	 * Double wide has implications for planes
2033 	 * so best keep it disabled when not needed.
2034 	 */
2035 	if (crtc->config->double_wide)
2036 		val &= ~PIPECONF_DOUBLE_WIDE;
2037 
2038 	/* Don't disable pipe or pipe PLLs if needed */
2039 	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040 	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041 		val &= ~PIPECONF_ENABLE;
2042 
2043 	I915_WRITE(reg, val);
2044 	if ((val & PIPECONF_ENABLE) == 0)
2045 		intel_wait_for_pipe_off(crtc);
2046 }
2047 
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049 {
2050 	return IS_GEN2(dev_priv) ? 2048 : 4096;
2051 }
2052 
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054 					   uint64_t fb_modifier, unsigned int cpp)
2055 {
2056 	switch (fb_modifier) {
2057 	case DRM_FORMAT_MOD_NONE:
2058 		return cpp;
2059 	case I915_FORMAT_MOD_X_TILED:
2060 		if (IS_GEN2(dev_priv))
2061 			return 128;
2062 		else
2063 			return 512;
2064 	case I915_FORMAT_MOD_Y_TILED:
2065 		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066 			return 128;
2067 		else
2068 			return 512;
2069 	case I915_FORMAT_MOD_Yf_TILED:
2070 		switch (cpp) {
2071 		case 1:
2072 			return 64;
2073 		case 2:
2074 		case 4:
2075 			return 128;
2076 		case 8:
2077 		case 16:
2078 			return 256;
2079 		default:
2080 			MISSING_CASE(cpp);
2081 			return cpp;
2082 		}
2083 		break;
2084 	default:
2085 		MISSING_CASE(fb_modifier);
2086 		return cpp;
2087 	}
2088 }
2089 
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091 			       uint64_t fb_modifier, unsigned int cpp)
2092 {
2093 	if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094 		return 1;
2095 	else
2096 		return intel_tile_size(dev_priv) /
2097 			intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098 }
2099 
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102 			    unsigned int *tile_width,
2103 			    unsigned int *tile_height,
2104 			    uint64_t fb_modifier,
2105 			    unsigned int cpp)
2106 {
2107 	unsigned int tile_width_bytes =
2108 		intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109 
2110 	*tile_width = tile_width_bytes / cpp;
2111 	*tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112 }
2113 
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116 		      uint32_t pixel_format, uint64_t fb_modifier)
2117 {
2118 	unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119 	unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120 
2121 	return ALIGN(height, tile_height);
2122 }
2123 
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125 {
2126 	unsigned int size = 0;
2127 	int i;
2128 
2129 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2131 
2132 	return size;
2133 }
2134 
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137 			const struct drm_framebuffer *fb,
2138 			unsigned int rotation)
2139 {
2140 	if (drm_rotation_90_or_270(rotation)) {
2141 		*view = i915_ggtt_view_rotated;
2142 		view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2143 	} else {
2144 		*view = i915_ggtt_view_normal;
2145 	}
2146 }
2147 
2148 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2149 {
2150 	if (INTEL_INFO(dev_priv)->gen >= 9)
2151 		return 256 * 1024;
2152 	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2153 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2154 		return 128 * 1024;
2155 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2156 		return 4 * 1024;
2157 	else
2158 		return 0;
2159 }
2160 
2161 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2162 					 uint64_t fb_modifier)
2163 {
2164 	switch (fb_modifier) {
2165 	case DRM_FORMAT_MOD_NONE:
2166 		return intel_linear_alignment(dev_priv);
2167 	case I915_FORMAT_MOD_X_TILED:
2168 		if (INTEL_INFO(dev_priv)->gen >= 9)
2169 			return 256 * 1024;
2170 		return 0;
2171 	case I915_FORMAT_MOD_Y_TILED:
2172 	case I915_FORMAT_MOD_Yf_TILED:
2173 		return 1 * 1024 * 1024;
2174 	default:
2175 		MISSING_CASE(fb_modifier);
2176 		return 0;
2177 	}
2178 }
2179 
2180 struct i915_vma *
2181 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2182 {
2183 	struct drm_device *dev = fb->dev;
2184 	struct drm_i915_private *dev_priv = to_i915(dev);
2185 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2186 	struct i915_ggtt_view view;
2187 	struct i915_vma *vma;
2188 	u32 alignment;
2189 
2190 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2191 
2192 	alignment = intel_surf_alignment(dev_priv, fb->modifier);
2193 
2194 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2195 
2196 	/* Note that the w/a also requires 64 PTE of padding following the
2197 	 * bo. We currently fill all unused PTE with the shadow page and so
2198 	 * we should always have valid PTE following the scanout preventing
2199 	 * the VT-d warning.
2200 	 */
2201 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2202 		alignment = 256 * 1024;
2203 
2204 	/*
2205 	 * Global gtt pte registers are special registers which actually forward
2206 	 * writes to a chunk of system memory. Which means that there is no risk
2207 	 * that the register values disappear as soon as we call
2208 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2209 	 * pin/unpin/fence and not more.
2210 	 */
2211 	intel_runtime_pm_get(dev_priv);
2212 
2213 	vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2214 	if (IS_ERR(vma))
2215 		goto err;
2216 
2217 	if (i915_vma_is_map_and_fenceable(vma)) {
2218 		/* Install a fence for tiled scan-out. Pre-i965 always needs a
2219 		 * fence, whereas 965+ only requires a fence if using
2220 		 * framebuffer compression.  For simplicity, we always, when
2221 		 * possible, install a fence as the cost is not that onerous.
2222 		 *
2223 		 * If we fail to fence the tiled scanout, then either the
2224 		 * modeset will reject the change (which is highly unlikely as
2225 		 * the affected systems, all but one, do not have unmappable
2226 		 * space) or we will not be able to enable full powersaving
2227 		 * techniques (also likely not to apply due to various limits
2228 		 * FBC and the like impose on the size of the buffer, which
2229 		 * presumably we violated anyway with this unmappable buffer).
2230 		 * Anyway, it is presumably better to stumble onwards with
2231 		 * something and try to run the system in a "less than optimal"
2232 		 * mode that matches the user configuration.
2233 		 */
2234 		if (i915_vma_get_fence(vma) == 0)
2235 			i915_vma_pin_fence(vma);
2236 	}
2237 
2238 	i915_vma_get(vma);
2239 err:
2240 	intel_runtime_pm_put(dev_priv);
2241 	return vma;
2242 }
2243 
2244 void intel_unpin_fb_vma(struct i915_vma *vma)
2245 {
2246 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
2247 
2248 	if (WARN_ON_ONCE(!vma))
2249 		return;
2250 
2251 	i915_vma_unpin_fence(vma);
2252 	i915_gem_object_unpin_from_display_plane(vma);
2253 	i915_vma_put(vma);
2254 }
2255 
2256 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2257 			  unsigned int rotation)
2258 {
2259 	if (drm_rotation_90_or_270(rotation))
2260 		return to_intel_framebuffer(fb)->rotated[plane].pitch;
2261 	else
2262 		return fb->pitches[plane];
2263 }
2264 
2265 /*
2266  * Convert the x/y offsets into a linear offset.
2267  * Only valid with 0/180 degree rotation, which is fine since linear
2268  * offset is only used with linear buffers on pre-hsw and tiled buffers
2269  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2270  */
2271 u32 intel_fb_xy_to_linear(int x, int y,
2272 			  const struct intel_plane_state *state,
2273 			  int plane)
2274 {
2275 	const struct drm_framebuffer *fb = state->base.fb;
2276 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2277 	unsigned int pitch = fb->pitches[plane];
2278 
2279 	return y * pitch + x * cpp;
2280 }
2281 
2282 /*
2283  * Add the x/y offsets derived from fb->offsets[] to the user
2284  * specified plane src x/y offsets. The resulting x/y offsets
2285  * specify the start of scanout from the beginning of the gtt mapping.
2286  */
2287 void intel_add_fb_offsets(int *x, int *y,
2288 			  const struct intel_plane_state *state,
2289 			  int plane)
2290 
2291 {
2292 	const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2293 	unsigned int rotation = state->base.rotation;
2294 
2295 	if (drm_rotation_90_or_270(rotation)) {
2296 		*x += intel_fb->rotated[plane].x;
2297 		*y += intel_fb->rotated[plane].y;
2298 	} else {
2299 		*x += intel_fb->normal[plane].x;
2300 		*y += intel_fb->normal[plane].y;
2301 	}
2302 }
2303 
2304 /*
2305  * Input tile dimensions and pitch must already be
2306  * rotated to match x and y, and in pixel units.
2307  */
2308 static u32 _intel_adjust_tile_offset(int *x, int *y,
2309 				     unsigned int tile_width,
2310 				     unsigned int tile_height,
2311 				     unsigned int tile_size,
2312 				     unsigned int pitch_tiles,
2313 				     u32 old_offset,
2314 				     u32 new_offset)
2315 {
2316 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2317 	unsigned int tiles;
2318 
2319 	WARN_ON(old_offset & (tile_size - 1));
2320 	WARN_ON(new_offset & (tile_size - 1));
2321 	WARN_ON(new_offset > old_offset);
2322 
2323 	tiles = (old_offset - new_offset) / tile_size;
2324 
2325 	*y += tiles / pitch_tiles * tile_height;
2326 	*x += tiles % pitch_tiles * tile_width;
2327 
2328 	/* minimize x in case it got needlessly big */
2329 	*y += *x / pitch_pixels * tile_height;
2330 	*x %= pitch_pixels;
2331 
2332 	return new_offset;
2333 }
2334 
2335 /*
2336  * Adjust the tile offset by moving the difference into
2337  * the x/y offsets.
2338  */
2339 static u32 intel_adjust_tile_offset(int *x, int *y,
2340 				    const struct intel_plane_state *state, int plane,
2341 				    u32 old_offset, u32 new_offset)
2342 {
2343 	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2344 	const struct drm_framebuffer *fb = state->base.fb;
2345 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2346 	unsigned int rotation = state->base.rotation;
2347 	unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2348 
2349 	WARN_ON(new_offset > old_offset);
2350 
2351 	if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2352 		unsigned int tile_size, tile_width, tile_height;
2353 		unsigned int pitch_tiles;
2354 
2355 		tile_size = intel_tile_size(dev_priv);
2356 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2357 				fb->modifier, cpp);
2358 
2359 		if (drm_rotation_90_or_270(rotation)) {
2360 			pitch_tiles = pitch / tile_height;
2361 			swap(tile_width, tile_height);
2362 		} else {
2363 			pitch_tiles = pitch / (tile_width * cpp);
2364 		}
2365 
2366 		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
2367 					  tile_size, pitch_tiles,
2368 					  old_offset, new_offset);
2369 	} else {
2370 		old_offset += *y * pitch + *x * cpp;
2371 
2372 		*y = (old_offset - new_offset) / pitch;
2373 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2374 	}
2375 
2376 	return new_offset;
2377 }
2378 
2379 /*
2380  * Computes the linear offset to the base tile and adjusts
2381  * x, y. bytes per pixel is assumed to be a power-of-two.
2382  *
2383  * In the 90/270 rotated case, x and y are assumed
2384  * to be already rotated to match the rotated GTT view, and
2385  * pitch is the tile_height aligned framebuffer height.
2386  *
2387  * This function is used when computing the derived information
2388  * under intel_framebuffer, so using any of that information
2389  * here is not allowed. Anything under drm_framebuffer can be
2390  * used. This is why the user has to pass in the pitch since it
2391  * is specified in the rotated orientation.
2392  */
2393 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2394 				      int *x, int *y,
2395 				      const struct drm_framebuffer *fb, int plane,
2396 				      unsigned int pitch,
2397 				      unsigned int rotation,
2398 				      u32 alignment)
2399 {
2400 	uint64_t fb_modifier = fb->modifier;
2401 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2402 	u32 offset, offset_aligned;
2403 
2404 	if (alignment)
2405 		alignment--;
2406 
2407 	if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2408 		unsigned int tile_size, tile_width, tile_height;
2409 		unsigned int tile_rows, tiles, pitch_tiles;
2410 
2411 		tile_size = intel_tile_size(dev_priv);
2412 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2413 				fb_modifier, cpp);
2414 
2415 		if (drm_rotation_90_or_270(rotation)) {
2416 			pitch_tiles = pitch / tile_height;
2417 			swap(tile_width, tile_height);
2418 		} else {
2419 			pitch_tiles = pitch / (tile_width * cpp);
2420 		}
2421 
2422 		tile_rows = *y / tile_height;
2423 		*y %= tile_height;
2424 
2425 		tiles = *x / tile_width;
2426 		*x %= tile_width;
2427 
2428 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2429 		offset_aligned = offset & ~alignment;
2430 
2431 		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
2432 					  tile_size, pitch_tiles,
2433 					  offset, offset_aligned);
2434 	} else {
2435 		offset = *y * pitch + *x * cpp;
2436 		offset_aligned = offset & ~alignment;
2437 
2438 		*y = (offset & alignment) / pitch;
2439 		*x = ((offset & alignment) - *y * pitch) / cpp;
2440 	}
2441 
2442 	return offset_aligned;
2443 }
2444 
2445 u32 intel_compute_tile_offset(int *x, int *y,
2446 			      const struct intel_plane_state *state,
2447 			      int plane)
2448 {
2449 	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2450 	const struct drm_framebuffer *fb = state->base.fb;
2451 	unsigned int rotation = state->base.rotation;
2452 	int pitch = intel_fb_pitch(fb, plane, rotation);
2453 	u32 alignment;
2454 
2455 	/* AUX_DIST needs only 4K alignment */
2456 	if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2457 		alignment = 4096;
2458 	else
2459 		alignment = intel_surf_alignment(dev_priv, fb->modifier);
2460 
2461 	return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2462 					  rotation, alignment);
2463 }
2464 
2465 /* Convert the fb->offset[] linear offset into x/y offsets */
2466 static void intel_fb_offset_to_xy(int *x, int *y,
2467 				  const struct drm_framebuffer *fb, int plane)
2468 {
2469 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2470 	unsigned int pitch = fb->pitches[plane];
2471 	u32 linear_offset = fb->offsets[plane];
2472 
2473 	*y = linear_offset / pitch;
2474 	*x = linear_offset % pitch / cpp;
2475 }
2476 
2477 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2478 {
2479 	switch (fb_modifier) {
2480 	case I915_FORMAT_MOD_X_TILED:
2481 		return I915_TILING_X;
2482 	case I915_FORMAT_MOD_Y_TILED:
2483 		return I915_TILING_Y;
2484 	default:
2485 		return I915_TILING_NONE;
2486 	}
2487 }
2488 
2489 static int
2490 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2491 		   struct drm_framebuffer *fb)
2492 {
2493 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2494 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2495 	u32 gtt_offset_rotated = 0;
2496 	unsigned int max_size = 0;
2497 	uint32_t format = fb->pixel_format;
2498 	int i, num_planes = drm_format_num_planes(format);
2499 	unsigned int tile_size = intel_tile_size(dev_priv);
2500 
2501 	for (i = 0; i < num_planes; i++) {
2502 		unsigned int width, height;
2503 		unsigned int cpp, size;
2504 		u32 offset;
2505 		int x, y;
2506 
2507 		cpp = drm_format_plane_cpp(format, i);
2508 		width = drm_format_plane_width(fb->width, format, i);
2509 		height = drm_format_plane_height(fb->height, format, i);
2510 
2511 		intel_fb_offset_to_xy(&x, &y, fb, i);
2512 
2513 		/*
2514 		 * The fence (if used) is aligned to the start of the object
2515 		 * so having the framebuffer wrap around across the edge of the
2516 		 * fenced region doesn't really work. We have no API to configure
2517 		 * the fence start offset within the object (nor could we probably
2518 		 * on gen2/3). So it's just easier if we just require that the
2519 		 * fb layout agrees with the fence layout. We already check that the
2520 		 * fb stride matches the fence stride elsewhere.
2521 		 */
2522 		if (i915_gem_object_is_tiled(intel_fb->obj) &&
2523 		    (x + width) * cpp > fb->pitches[i]) {
2524 			DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2525 				  i, fb->offsets[i]);
2526 			return -EINVAL;
2527 		}
2528 
2529 		/*
2530 		 * First pixel of the framebuffer from
2531 		 * the start of the normal gtt mapping.
2532 		 */
2533 		intel_fb->normal[i].x = x;
2534 		intel_fb->normal[i].y = y;
2535 
2536 		offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2537 						    fb, 0, fb->pitches[i],
2538 						    DRM_ROTATE_0, tile_size);
2539 		offset /= tile_size;
2540 
2541 		if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2542 			unsigned int tile_width, tile_height;
2543 			unsigned int pitch_tiles;
2544 			struct drm_rect r;
2545 
2546 			intel_tile_dims(dev_priv, &tile_width, &tile_height,
2547 					fb->modifier, cpp);
2548 
2549 			rot_info->plane[i].offset = offset;
2550 			rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2551 			rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2552 			rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2553 
2554 			intel_fb->rotated[i].pitch =
2555 				rot_info->plane[i].height * tile_height;
2556 
2557 			/* how many tiles does this plane need */
2558 			size = rot_info->plane[i].stride * rot_info->plane[i].height;
2559 			/*
2560 			 * If the plane isn't horizontally tile aligned,
2561 			 * we need one more tile.
2562 			 */
2563 			if (x != 0)
2564 				size++;
2565 
2566 			/* rotate the x/y offsets to match the GTT view */
2567 			r.x1 = x;
2568 			r.y1 = y;
2569 			r.x2 = x + width;
2570 			r.y2 = y + height;
2571 			drm_rect_rotate(&r,
2572 					rot_info->plane[i].width * tile_width,
2573 					rot_info->plane[i].height * tile_height,
2574 					DRM_ROTATE_270);
2575 			x = r.x1;
2576 			y = r.y1;
2577 
2578 			/* rotate the tile dimensions to match the GTT view */
2579 			pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2580 			swap(tile_width, tile_height);
2581 
2582 			/*
2583 			 * We only keep the x/y offsets, so push all of the
2584 			 * gtt offset into the x/y offsets.
2585 			 */
2586 			_intel_adjust_tile_offset(&x, &y,
2587 						  tile_width, tile_height,
2588 						  tile_size, pitch_tiles,
2589 						  gtt_offset_rotated * tile_size, 0);
2590 
2591 			gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2592 
2593 			/*
2594 			 * First pixel of the framebuffer from
2595 			 * the start of the rotated gtt mapping.
2596 			 */
2597 			intel_fb->rotated[i].x = x;
2598 			intel_fb->rotated[i].y = y;
2599 		} else {
2600 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2601 					    x * cpp, tile_size);
2602 		}
2603 
2604 		/* how many tiles in total needed in the bo */
2605 		max_size = max(max_size, offset + size);
2606 	}
2607 
2608 	if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2609 		DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2610 			  max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2611 		return -EINVAL;
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 static int i9xx_format_to_fourcc(int format)
2618 {
2619 	switch (format) {
2620 	case DISPPLANE_8BPP:
2621 		return DRM_FORMAT_C8;
2622 	case DISPPLANE_BGRX555:
2623 		return DRM_FORMAT_XRGB1555;
2624 	case DISPPLANE_BGRX565:
2625 		return DRM_FORMAT_RGB565;
2626 	default:
2627 	case DISPPLANE_BGRX888:
2628 		return DRM_FORMAT_XRGB8888;
2629 	case DISPPLANE_RGBX888:
2630 		return DRM_FORMAT_XBGR8888;
2631 	case DISPPLANE_BGRX101010:
2632 		return DRM_FORMAT_XRGB2101010;
2633 	case DISPPLANE_RGBX101010:
2634 		return DRM_FORMAT_XBGR2101010;
2635 	}
2636 }
2637 
2638 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2639 {
2640 	switch (format) {
2641 	case PLANE_CTL_FORMAT_RGB_565:
2642 		return DRM_FORMAT_RGB565;
2643 	default:
2644 	case PLANE_CTL_FORMAT_XRGB_8888:
2645 		if (rgb_order) {
2646 			if (alpha)
2647 				return DRM_FORMAT_ABGR8888;
2648 			else
2649 				return DRM_FORMAT_XBGR8888;
2650 		} else {
2651 			if (alpha)
2652 				return DRM_FORMAT_ARGB8888;
2653 			else
2654 				return DRM_FORMAT_XRGB8888;
2655 		}
2656 	case PLANE_CTL_FORMAT_XRGB_2101010:
2657 		if (rgb_order)
2658 			return DRM_FORMAT_XBGR2101010;
2659 		else
2660 			return DRM_FORMAT_XRGB2101010;
2661 	}
2662 }
2663 
2664 static bool
2665 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2666 			      struct intel_initial_plane_config *plane_config)
2667 {
2668 	struct drm_device *dev = crtc->base.dev;
2669 	struct drm_i915_private *dev_priv = to_i915(dev);
2670 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2671 	struct drm_i915_gem_object *obj = NULL;
2672 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2673 	struct drm_framebuffer *fb = &plane_config->fb->base;
2674 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2675 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2676 				    PAGE_SIZE);
2677 
2678 	size_aligned -= base_aligned;
2679 
2680 	if (plane_config->size == 0)
2681 		return false;
2682 
2683 	/* If the FB is too big, just don't use it since fbdev is not very
2684 	 * important and we should probably use that space with FBC or other
2685 	 * features. */
2686 	if (size_aligned * 2 > ggtt->stolen_usable_size)
2687 		return false;
2688 
2689 	mutex_lock(&dev->struct_mutex);
2690 
2691 	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2692 							     base_aligned,
2693 							     base_aligned,
2694 							     size_aligned);
2695 	if (!obj) {
2696 		mutex_unlock(&dev->struct_mutex);
2697 		return false;
2698 	}
2699 
2700 	if (plane_config->tiling == I915_TILING_X)
2701 		obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2702 
2703 	mode_cmd.pixel_format = fb->pixel_format;
2704 	mode_cmd.width = fb->width;
2705 	mode_cmd.height = fb->height;
2706 	mode_cmd.pitches[0] = fb->pitches[0];
2707 	mode_cmd.modifier[0] = fb->modifier;
2708 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2709 
2710 	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2711 				   &mode_cmd, obj)) {
2712 		DRM_DEBUG_KMS("intel fb init failed\n");
2713 		goto out_unref_obj;
2714 	}
2715 
2716 	mutex_unlock(&dev->struct_mutex);
2717 
2718 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2719 	return true;
2720 
2721 out_unref_obj:
2722 	i915_gem_object_put(obj);
2723 	mutex_unlock(&dev->struct_mutex);
2724 	return false;
2725 }
2726 
2727 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2728 static void
2729 update_state_fb(struct drm_plane *plane)
2730 {
2731 	if (plane->fb == plane->state->fb)
2732 		return;
2733 
2734 	if (plane->state->fb)
2735 		drm_framebuffer_unreference(plane->state->fb);
2736 	plane->state->fb = plane->fb;
2737 	if (plane->state->fb)
2738 		drm_framebuffer_reference(plane->state->fb);
2739 }
2740 
2741 static void
2742 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2743 			     struct intel_initial_plane_config *plane_config)
2744 {
2745 	struct drm_device *dev = intel_crtc->base.dev;
2746 	struct drm_i915_private *dev_priv = to_i915(dev);
2747 	struct drm_crtc *c;
2748 	struct drm_i915_gem_object *obj;
2749 	struct drm_plane *primary = intel_crtc->base.primary;
2750 	struct drm_plane_state *plane_state = primary->state;
2751 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2752 	struct intel_plane *intel_plane = to_intel_plane(primary);
2753 	struct intel_plane_state *intel_state =
2754 		to_intel_plane_state(plane_state);
2755 	struct drm_framebuffer *fb;
2756 
2757 	if (!plane_config->fb)
2758 		return;
2759 
2760 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2761 		fb = &plane_config->fb->base;
2762 		goto valid_fb;
2763 	}
2764 
2765 	kfree(plane_config->fb);
2766 
2767 	/*
2768 	 * Failed to alloc the obj, check to see if we should share
2769 	 * an fb with another CRTC instead
2770 	 */
2771 	for_each_crtc(dev, c) {
2772 		struct intel_plane_state *state;
2773 
2774 		if (c == &intel_crtc->base)
2775 			continue;
2776 
2777 		if (!to_intel_crtc(c)->active)
2778 			continue;
2779 
2780 		state = to_intel_plane_state(c->primary->state);
2781 		if (!state->vma)
2782 			continue;
2783 
2784 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
2785 			fb = c->primary->fb;
2786 			drm_framebuffer_reference(fb);
2787 			goto valid_fb;
2788 		}
2789 	}
2790 
2791 	/*
2792 	 * We've failed to reconstruct the BIOS FB.  Current display state
2793 	 * indicates that the primary plane is visible, but has a NULL FB,
2794 	 * which will lead to problems later if we don't fix it up.  The
2795 	 * simplest solution is to just disable the primary plane now and
2796 	 * pretend the BIOS never had it enabled.
2797 	 */
2798 	to_intel_plane_state(plane_state)->base.visible = false;
2799 	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2800 	intel_pre_disable_primary_noatomic(&intel_crtc->base);
2801 	intel_plane->disable_plane(primary, &intel_crtc->base);
2802 
2803 	return;
2804 
2805 valid_fb:
2806 	mutex_lock(&dev->struct_mutex);
2807 	intel_state->vma =
2808 		intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2809 	mutex_unlock(&dev->struct_mutex);
2810 	if (IS_ERR(intel_state->vma)) {
2811 		DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2812 			  intel_crtc->pipe, PTR_ERR(intel_state->vma));
2813 
2814 		intel_state->vma = NULL;
2815 		drm_framebuffer_unreference(fb);
2816 		return;
2817 	}
2818 
2819 	plane_state->src_x = 0;
2820 	plane_state->src_y = 0;
2821 	plane_state->src_w = fb->width << 16;
2822 	plane_state->src_h = fb->height << 16;
2823 
2824 	plane_state->crtc_x = 0;
2825 	plane_state->crtc_y = 0;
2826 	plane_state->crtc_w = fb->width;
2827 	plane_state->crtc_h = fb->height;
2828 
2829 	intel_state->base.src = drm_plane_state_src(plane_state);
2830 	intel_state->base.dst = drm_plane_state_dest(plane_state);
2831 
2832 	obj = intel_fb_obj(fb);
2833 	if (i915_gem_object_is_tiled(obj))
2834 		dev_priv->preserve_bios_swizzle = true;
2835 
2836 	drm_framebuffer_reference(fb);
2837 	primary->fb = primary->state->fb = fb;
2838 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2839 	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2840 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2841 		  &obj->frontbuffer_bits);
2842 }
2843 
2844 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2845 			       unsigned int rotation)
2846 {
2847 	int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2848 
2849 	switch (fb->modifier) {
2850 	case DRM_FORMAT_MOD_NONE:
2851 	case I915_FORMAT_MOD_X_TILED:
2852 		switch (cpp) {
2853 		case 8:
2854 			return 4096;
2855 		case 4:
2856 		case 2:
2857 		case 1:
2858 			return 8192;
2859 		default:
2860 			MISSING_CASE(cpp);
2861 			break;
2862 		}
2863 		break;
2864 	case I915_FORMAT_MOD_Y_TILED:
2865 	case I915_FORMAT_MOD_Yf_TILED:
2866 		switch (cpp) {
2867 		case 8:
2868 			return 2048;
2869 		case 4:
2870 			return 4096;
2871 		case 2:
2872 		case 1:
2873 			return 8192;
2874 		default:
2875 			MISSING_CASE(cpp);
2876 			break;
2877 		}
2878 		break;
2879 	default:
2880 		MISSING_CASE(fb->modifier);
2881 	}
2882 
2883 	return 2048;
2884 }
2885 
2886 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2887 {
2888 	const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2889 	const struct drm_framebuffer *fb = plane_state->base.fb;
2890 	unsigned int rotation = plane_state->base.rotation;
2891 	int x = plane_state->base.src.x1 >> 16;
2892 	int y = plane_state->base.src.y1 >> 16;
2893 	int w = drm_rect_width(&plane_state->base.src) >> 16;
2894 	int h = drm_rect_height(&plane_state->base.src) >> 16;
2895 	int max_width = skl_max_plane_width(fb, 0, rotation);
2896 	int max_height = 4096;
2897 	u32 alignment, offset, aux_offset = plane_state->aux.offset;
2898 
2899 	if (w > max_width || h > max_height) {
2900 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2901 			      w, h, max_width, max_height);
2902 		return -EINVAL;
2903 	}
2904 
2905 	intel_add_fb_offsets(&x, &y, plane_state, 0);
2906 	offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2907 
2908 	alignment = intel_surf_alignment(dev_priv, fb->modifier);
2909 
2910 	/*
2911 	 * AUX surface offset is specified as the distance from the
2912 	 * main surface offset, and it must be non-negative. Make
2913 	 * sure that is what we will get.
2914 	 */
2915 	if (offset > aux_offset)
2916 		offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2917 						  offset, aux_offset & ~(alignment - 1));
2918 
2919 	/*
2920 	 * When using an X-tiled surface, the plane blows up
2921 	 * if the x offset + width exceed the stride.
2922 	 *
2923 	 * TODO: linear and Y-tiled seem fine, Yf untested,
2924 	 */
2925 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2926 		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2927 
2928 		while ((x + w) * cpp > fb->pitches[0]) {
2929 			if (offset == 0) {
2930 				DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2931 				return -EINVAL;
2932 			}
2933 
2934 			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2935 							  offset, offset - alignment);
2936 		}
2937 	}
2938 
2939 	plane_state->main.offset = offset;
2940 	plane_state->main.x = x;
2941 	plane_state->main.y = y;
2942 
2943 	return 0;
2944 }
2945 
2946 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2947 {
2948 	const struct drm_framebuffer *fb = plane_state->base.fb;
2949 	unsigned int rotation = plane_state->base.rotation;
2950 	int max_width = skl_max_plane_width(fb, 1, rotation);
2951 	int max_height = 4096;
2952 	int x = plane_state->base.src.x1 >> 17;
2953 	int y = plane_state->base.src.y1 >> 17;
2954 	int w = drm_rect_width(&plane_state->base.src) >> 17;
2955 	int h = drm_rect_height(&plane_state->base.src) >> 17;
2956 	u32 offset;
2957 
2958 	intel_add_fb_offsets(&x, &y, plane_state, 1);
2959 	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2960 
2961 	/* FIXME not quite sure how/if these apply to the chroma plane */
2962 	if (w > max_width || h > max_height) {
2963 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2964 			      w, h, max_width, max_height);
2965 		return -EINVAL;
2966 	}
2967 
2968 	plane_state->aux.offset = offset;
2969 	plane_state->aux.x = x;
2970 	plane_state->aux.y = y;
2971 
2972 	return 0;
2973 }
2974 
2975 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2976 {
2977 	const struct drm_framebuffer *fb = plane_state->base.fb;
2978 	unsigned int rotation = plane_state->base.rotation;
2979 	int ret;
2980 
2981 	if (!plane_state->base.visible)
2982 		return 0;
2983 
2984 	/* Rotate src coordinates to match rotated GTT view */
2985 	if (drm_rotation_90_or_270(rotation))
2986 		drm_rect_rotate(&plane_state->base.src,
2987 				fb->width << 16, fb->height << 16,
2988 				DRM_ROTATE_270);
2989 
2990 	/*
2991 	 * Handle the AUX surface first since
2992 	 * the main surface setup depends on it.
2993 	 */
2994 	if (fb->pixel_format == DRM_FORMAT_NV12) {
2995 		ret = skl_check_nv12_aux_surface(plane_state);
2996 		if (ret)
2997 			return ret;
2998 	} else {
2999 		plane_state->aux.offset = ~0xfff;
3000 		plane_state->aux.x = 0;
3001 		plane_state->aux.y = 0;
3002 	}
3003 
3004 	ret = skl_check_main_surface(plane_state);
3005 	if (ret)
3006 		return ret;
3007 
3008 	return 0;
3009 }
3010 
3011 static void i9xx_update_primary_plane(struct drm_plane *primary,
3012 				      const struct intel_crtc_state *crtc_state,
3013 				      const struct intel_plane_state *plane_state)
3014 {
3015 	struct drm_i915_private *dev_priv = to_i915(primary->dev);
3016 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3017 	struct drm_framebuffer *fb = plane_state->base.fb;
3018 	int plane = intel_crtc->plane;
3019 	u32 linear_offset;
3020 	u32 dspcntr;
3021 	i915_reg_t reg = DSPCNTR(plane);
3022 	unsigned int rotation = plane_state->base.rotation;
3023 	int x = plane_state->base.src.x1 >> 16;
3024 	int y = plane_state->base.src.y1 >> 16;
3025 
3026 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3027 
3028 	dspcntr |= DISPLAY_PLANE_ENABLE;
3029 
3030 	if (INTEL_GEN(dev_priv) < 4) {
3031 		if (intel_crtc->pipe == PIPE_B)
3032 			dspcntr |= DISPPLANE_SEL_PIPE_B;
3033 
3034 		/* pipesrc and dspsize control the size that is scaled from,
3035 		 * which should always be the user's requested size.
3036 		 */
3037 		I915_WRITE(DSPSIZE(plane),
3038 			   ((crtc_state->pipe_src_h - 1) << 16) |
3039 			   (crtc_state->pipe_src_w - 1));
3040 		I915_WRITE(DSPPOS(plane), 0);
3041 	} else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3042 		I915_WRITE(PRIMSIZE(plane),
3043 			   ((crtc_state->pipe_src_h - 1) << 16) |
3044 			   (crtc_state->pipe_src_w - 1));
3045 		I915_WRITE(PRIMPOS(plane), 0);
3046 		I915_WRITE(PRIMCNSTALPHA(plane), 0);
3047 	}
3048 
3049 	switch (fb->pixel_format) {
3050 	case DRM_FORMAT_C8:
3051 		dspcntr |= DISPPLANE_8BPP;
3052 		break;
3053 	case DRM_FORMAT_XRGB1555:
3054 		dspcntr |= DISPPLANE_BGRX555;
3055 		break;
3056 	case DRM_FORMAT_RGB565:
3057 		dspcntr |= DISPPLANE_BGRX565;
3058 		break;
3059 	case DRM_FORMAT_XRGB8888:
3060 		dspcntr |= DISPPLANE_BGRX888;
3061 		break;
3062 	case DRM_FORMAT_XBGR8888:
3063 		dspcntr |= DISPPLANE_RGBX888;
3064 		break;
3065 	case DRM_FORMAT_XRGB2101010:
3066 		dspcntr |= DISPPLANE_BGRX101010;
3067 		break;
3068 	case DRM_FORMAT_XBGR2101010:
3069 		dspcntr |= DISPPLANE_RGBX101010;
3070 		break;
3071 	default:
3072 		BUG();
3073 	}
3074 
3075 	if (INTEL_GEN(dev_priv) >= 4 &&
3076 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
3077 		dspcntr |= DISPPLANE_TILED;
3078 
3079 	if (rotation & DRM_ROTATE_180)
3080 		dspcntr |= DISPPLANE_ROTATE_180;
3081 
3082 	if (rotation & DRM_REFLECT_X)
3083 		dspcntr |= DISPPLANE_MIRROR;
3084 
3085 	if (IS_G4X(dev_priv))
3086 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3087 
3088 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3089 
3090 	if (INTEL_GEN(dev_priv) >= 4)
3091 		intel_crtc->dspaddr_offset =
3092 			intel_compute_tile_offset(&x, &y, plane_state, 0);
3093 
3094 	if (rotation & DRM_ROTATE_180) {
3095 		x += crtc_state->pipe_src_w - 1;
3096 		y += crtc_state->pipe_src_h - 1;
3097 	} else if (rotation & DRM_REFLECT_X) {
3098 		x += crtc_state->pipe_src_w - 1;
3099 	}
3100 
3101 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3102 
3103 	if (INTEL_GEN(dev_priv) < 4)
3104 		intel_crtc->dspaddr_offset = linear_offset;
3105 
3106 	intel_crtc->adjusted_x = x;
3107 	intel_crtc->adjusted_y = y;
3108 
3109 	I915_WRITE(reg, dspcntr);
3110 
3111 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3112 	if (INTEL_GEN(dev_priv) >= 4) {
3113 		I915_WRITE(DSPSURF(plane),
3114 			   intel_plane_ggtt_offset(plane_state) +
3115 			   intel_crtc->dspaddr_offset);
3116 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3117 		I915_WRITE(DSPLINOFF(plane), linear_offset);
3118 	} else {
3119 		I915_WRITE(DSPADDR(plane),
3120 			   intel_plane_ggtt_offset(plane_state) +
3121 			   intel_crtc->dspaddr_offset);
3122 	}
3123 	POSTING_READ(reg);
3124 }
3125 
3126 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3127 				       struct drm_crtc *crtc)
3128 {
3129 	struct drm_device *dev = crtc->dev;
3130 	struct drm_i915_private *dev_priv = to_i915(dev);
3131 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3132 	int plane = intel_crtc->plane;
3133 
3134 	I915_WRITE(DSPCNTR(plane), 0);
3135 	if (INTEL_INFO(dev_priv)->gen >= 4)
3136 		I915_WRITE(DSPSURF(plane), 0);
3137 	else
3138 		I915_WRITE(DSPADDR(plane), 0);
3139 	POSTING_READ(DSPCNTR(plane));
3140 }
3141 
3142 static void ironlake_update_primary_plane(struct drm_plane *primary,
3143 					  const struct intel_crtc_state *crtc_state,
3144 					  const struct intel_plane_state *plane_state)
3145 {
3146 	struct drm_device *dev = primary->dev;
3147 	struct drm_i915_private *dev_priv = to_i915(dev);
3148 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3149 	struct drm_framebuffer *fb = plane_state->base.fb;
3150 	int plane = intel_crtc->plane;
3151 	u32 linear_offset;
3152 	u32 dspcntr;
3153 	i915_reg_t reg = DSPCNTR(plane);
3154 	unsigned int rotation = plane_state->base.rotation;
3155 	int x = plane_state->base.src.x1 >> 16;
3156 	int y = plane_state->base.src.y1 >> 16;
3157 
3158 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3159 	dspcntr |= DISPLAY_PLANE_ENABLE;
3160 
3161 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3162 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3163 
3164 	switch (fb->pixel_format) {
3165 	case DRM_FORMAT_C8:
3166 		dspcntr |= DISPPLANE_8BPP;
3167 		break;
3168 	case DRM_FORMAT_RGB565:
3169 		dspcntr |= DISPPLANE_BGRX565;
3170 		break;
3171 	case DRM_FORMAT_XRGB8888:
3172 		dspcntr |= DISPPLANE_BGRX888;
3173 		break;
3174 	case DRM_FORMAT_XBGR8888:
3175 		dspcntr |= DISPPLANE_RGBX888;
3176 		break;
3177 	case DRM_FORMAT_XRGB2101010:
3178 		dspcntr |= DISPPLANE_BGRX101010;
3179 		break;
3180 	case DRM_FORMAT_XBGR2101010:
3181 		dspcntr |= DISPPLANE_RGBX101010;
3182 		break;
3183 	default:
3184 		BUG();
3185 	}
3186 
3187 	if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3188 		dspcntr |= DISPPLANE_TILED;
3189 
3190 	if (rotation & DRM_ROTATE_180)
3191 		dspcntr |= DISPPLANE_ROTATE_180;
3192 
3193 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3194 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3195 
3196 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3197 
3198 	intel_crtc->dspaddr_offset =
3199 		intel_compute_tile_offset(&x, &y, plane_state, 0);
3200 
3201 	/* HSW+ does this automagically in hardware */
3202 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3203 	    rotation & DRM_ROTATE_180) {
3204 		x += crtc_state->pipe_src_w - 1;
3205 		y += crtc_state->pipe_src_h - 1;
3206 	}
3207 
3208 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3209 
3210 	intel_crtc->adjusted_x = x;
3211 	intel_crtc->adjusted_y = y;
3212 
3213 	I915_WRITE(reg, dspcntr);
3214 
3215 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3216 	I915_WRITE(DSPSURF(plane),
3217 		   intel_plane_ggtt_offset(plane_state) +
3218 		   intel_crtc->dspaddr_offset);
3219 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3220 		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3221 	} else {
3222 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3223 		I915_WRITE(DSPLINOFF(plane), linear_offset);
3224 	}
3225 	POSTING_READ(reg);
3226 }
3227 
3228 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3229 			      uint64_t fb_modifier, uint32_t pixel_format)
3230 {
3231 	if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3232 		return 64;
3233 	} else {
3234 		int cpp = drm_format_plane_cpp(pixel_format, 0);
3235 
3236 		return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3237 	}
3238 }
3239 
3240 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3241 {
3242 	struct drm_device *dev = intel_crtc->base.dev;
3243 	struct drm_i915_private *dev_priv = to_i915(dev);
3244 
3245 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3246 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3247 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3248 }
3249 
3250 /*
3251  * This function detaches (aka. unbinds) unused scalers in hardware
3252  */
3253 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3254 {
3255 	struct intel_crtc_scaler_state *scaler_state;
3256 	int i;
3257 
3258 	scaler_state = &intel_crtc->config->scaler_state;
3259 
3260 	/* loop through and disable scalers that aren't in use */
3261 	for (i = 0; i < intel_crtc->num_scalers; i++) {
3262 		if (!scaler_state->scalers[i].in_use)
3263 			skl_detach_scaler(intel_crtc, i);
3264 	}
3265 }
3266 
3267 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3268 		     unsigned int rotation)
3269 {
3270 	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3271 	u32 stride = intel_fb_pitch(fb, plane, rotation);
3272 
3273 	/*
3274 	 * The stride is either expressed as a multiple of 64 bytes chunks for
3275 	 * linear buffers or in number of tiles for tiled buffers.
3276 	 */
3277 	if (drm_rotation_90_or_270(rotation)) {
3278 		int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3279 
3280 		stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3281 	} else {
3282 		stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3283 						    fb->pixel_format);
3284 	}
3285 
3286 	return stride;
3287 }
3288 
3289 u32 skl_plane_ctl_format(uint32_t pixel_format)
3290 {
3291 	switch (pixel_format) {
3292 	case DRM_FORMAT_C8:
3293 		return PLANE_CTL_FORMAT_INDEXED;
3294 	case DRM_FORMAT_RGB565:
3295 		return PLANE_CTL_FORMAT_RGB_565;
3296 	case DRM_FORMAT_XBGR8888:
3297 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3298 	case DRM_FORMAT_XRGB8888:
3299 		return PLANE_CTL_FORMAT_XRGB_8888;
3300 	/*
3301 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3302 	 * to be already pre-multiplied. We need to add a knob (or a different
3303 	 * DRM_FORMAT) for user-space to configure that.
3304 	 */
3305 	case DRM_FORMAT_ABGR8888:
3306 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3307 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3308 	case DRM_FORMAT_ARGB8888:
3309 		return PLANE_CTL_FORMAT_XRGB_8888 |
3310 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3311 	case DRM_FORMAT_XRGB2101010:
3312 		return PLANE_CTL_FORMAT_XRGB_2101010;
3313 	case DRM_FORMAT_XBGR2101010:
3314 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3315 	case DRM_FORMAT_YUYV:
3316 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3317 	case DRM_FORMAT_YVYU:
3318 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3319 	case DRM_FORMAT_UYVY:
3320 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3321 	case DRM_FORMAT_VYUY:
3322 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3323 	default:
3324 		MISSING_CASE(pixel_format);
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3331 {
3332 	switch (fb_modifier) {
3333 	case DRM_FORMAT_MOD_NONE:
3334 		break;
3335 	case I915_FORMAT_MOD_X_TILED:
3336 		return PLANE_CTL_TILED_X;
3337 	case I915_FORMAT_MOD_Y_TILED:
3338 		return PLANE_CTL_TILED_Y;
3339 	case I915_FORMAT_MOD_Yf_TILED:
3340 		return PLANE_CTL_TILED_YF;
3341 	default:
3342 		MISSING_CASE(fb_modifier);
3343 	}
3344 
3345 	return 0;
3346 }
3347 
3348 u32 skl_plane_ctl_rotation(unsigned int rotation)
3349 {
3350 	switch (rotation) {
3351 	case DRM_ROTATE_0:
3352 		break;
3353 	/*
3354 	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3355 	 * while i915 HW rotation is clockwise, thats why this swapping.
3356 	 */
3357 	case DRM_ROTATE_90:
3358 		return PLANE_CTL_ROTATE_270;
3359 	case DRM_ROTATE_180:
3360 		return PLANE_CTL_ROTATE_180;
3361 	case DRM_ROTATE_270:
3362 		return PLANE_CTL_ROTATE_90;
3363 	default:
3364 		MISSING_CASE(rotation);
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 static void skylake_update_primary_plane(struct drm_plane *plane,
3371 					 const struct intel_crtc_state *crtc_state,
3372 					 const struct intel_plane_state *plane_state)
3373 {
3374 	struct drm_device *dev = plane->dev;
3375 	struct drm_i915_private *dev_priv = to_i915(dev);
3376 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3377 	struct drm_framebuffer *fb = plane_state->base.fb;
3378 	int pipe = intel_crtc->pipe;
3379 	u32 plane_ctl;
3380 	unsigned int rotation = plane_state->base.rotation;
3381 	u32 stride = skl_plane_stride(fb, 0, rotation);
3382 	u32 surf_addr = plane_state->main.offset;
3383 	int scaler_id = plane_state->scaler_id;
3384 	int src_x = plane_state->main.x;
3385 	int src_y = plane_state->main.y;
3386 	int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3387 	int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3388 	int dst_x = plane_state->base.dst.x1;
3389 	int dst_y = plane_state->base.dst.y1;
3390 	int dst_w = drm_rect_width(&plane_state->base.dst);
3391 	int dst_h = drm_rect_height(&plane_state->base.dst);
3392 
3393 	plane_ctl = PLANE_CTL_ENABLE |
3394 		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3395 		    PLANE_CTL_PIPE_CSC_ENABLE;
3396 
3397 	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3398 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3399 	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3400 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3401 
3402 	/* Sizes are 0 based */
3403 	src_w--;
3404 	src_h--;
3405 	dst_w--;
3406 	dst_h--;
3407 
3408 	intel_crtc->dspaddr_offset = surf_addr;
3409 
3410 	intel_crtc->adjusted_x = src_x;
3411 	intel_crtc->adjusted_y = src_y;
3412 
3413 	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3414 	I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3415 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3416 	I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3417 
3418 	if (scaler_id >= 0) {
3419 		uint32_t ps_ctrl = 0;
3420 
3421 		WARN_ON(!dst_w || !dst_h);
3422 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3423 			crtc_state->scaler_state.scalers[scaler_id].mode;
3424 		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3425 		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3426 		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3427 		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3428 		I915_WRITE(PLANE_POS(pipe, 0), 0);
3429 	} else {
3430 		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3431 	}
3432 
3433 	I915_WRITE(PLANE_SURF(pipe, 0),
3434 		   intel_plane_ggtt_offset(plane_state) + surf_addr);
3435 
3436 	POSTING_READ(PLANE_SURF(pipe, 0));
3437 }
3438 
3439 static void skylake_disable_primary_plane(struct drm_plane *primary,
3440 					  struct drm_crtc *crtc)
3441 {
3442 	struct drm_device *dev = crtc->dev;
3443 	struct drm_i915_private *dev_priv = to_i915(dev);
3444 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 	int pipe = intel_crtc->pipe;
3446 
3447 	I915_WRITE(PLANE_CTL(pipe, 0), 0);
3448 	I915_WRITE(PLANE_SURF(pipe, 0), 0);
3449 	POSTING_READ(PLANE_SURF(pipe, 0));
3450 }
3451 
3452 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3453 static int
3454 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3455 			   int x, int y, enum mode_set_atomic state)
3456 {
3457 	/* Support for kgdboc is disabled, this needs a major rework. */
3458 	DRM_ERROR("legacy panic handler not supported any more.\n");
3459 
3460 	return -ENODEV;
3461 }
3462 
3463 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3464 {
3465 	struct intel_crtc *crtc;
3466 
3467 	for_each_intel_crtc(&dev_priv->drm, crtc)
3468 		intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3469 }
3470 
3471 static void intel_update_primary_planes(struct drm_device *dev)
3472 {
3473 	struct drm_crtc *crtc;
3474 
3475 	for_each_crtc(dev, crtc) {
3476 		struct intel_plane *plane = to_intel_plane(crtc->primary);
3477 		struct intel_plane_state *plane_state =
3478 			to_intel_plane_state(plane->base.state);
3479 
3480 		if (plane_state->base.visible)
3481 			plane->update_plane(&plane->base,
3482 					    to_intel_crtc_state(crtc->state),
3483 					    plane_state);
3484 	}
3485 }
3486 
3487 static int
3488 __intel_display_resume(struct drm_device *dev,
3489 		       struct drm_atomic_state *state)
3490 {
3491 	struct drm_crtc_state *crtc_state;
3492 	struct drm_crtc *crtc;
3493 	int i, ret;
3494 
3495 	intel_modeset_setup_hw_state(dev);
3496 	i915_redisable_vga(to_i915(dev));
3497 
3498 	if (!state)
3499 		return 0;
3500 
3501 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
3502 		/*
3503 		 * Force recalculation even if we restore
3504 		 * current state. With fast modeset this may not result
3505 		 * in a modeset when the state is compatible.
3506 		 */
3507 		crtc_state->mode_changed = true;
3508 	}
3509 
3510 	/* ignore any reset values/BIOS leftovers in the WM registers */
3511 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
3512 
3513 	ret = drm_atomic_commit(state);
3514 
3515 	WARN_ON(ret == -EDEADLK);
3516 	return ret;
3517 }
3518 
3519 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3520 {
3521 	return intel_has_gpu_reset(dev_priv) &&
3522 		INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3523 }
3524 
3525 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3526 {
3527 	struct drm_device *dev = &dev_priv->drm;
3528 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3529 	struct drm_atomic_state *state;
3530 	int ret;
3531 
3532 	/*
3533 	 * Need mode_config.mutex so that we don't
3534 	 * trample ongoing ->detect() and whatnot.
3535 	 */
3536 	mutex_lock(&dev->mode_config.mutex);
3537 	drm_modeset_acquire_init(ctx, 0);
3538 	while (1) {
3539 		ret = drm_modeset_lock_all_ctx(dev, ctx);
3540 		if (ret != -EDEADLK)
3541 			break;
3542 
3543 		drm_modeset_backoff(ctx);
3544 	}
3545 
3546 	/* reset doesn't touch the display, but flips might get nuked anyway, */
3547 	if (!i915.force_reset_modeset_test &&
3548 	    !gpu_reset_clobbers_display(dev_priv))
3549 		return;
3550 
3551 	/*
3552 	 * Disabling the crtcs gracefully seems nicer. Also the
3553 	 * g33 docs say we should at least disable all the planes.
3554 	 */
3555 	state = drm_atomic_helper_duplicate_state(dev, ctx);
3556 	if (IS_ERR(state)) {
3557 		ret = PTR_ERR(state);
3558 		state = NULL;
3559 		DRM_ERROR("Duplicating state failed with %i\n", ret);
3560 		goto err;
3561 	}
3562 
3563 	ret = drm_atomic_helper_disable_all(dev, ctx);
3564 	if (ret) {
3565 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3566 		goto err;
3567 	}
3568 
3569 	dev_priv->modeset_restore_state = state;
3570 	state->acquire_ctx = ctx;
3571 	return;
3572 
3573 err:
3574 	drm_atomic_state_put(state);
3575 }
3576 
3577 void intel_finish_reset(struct drm_i915_private *dev_priv)
3578 {
3579 	struct drm_device *dev = &dev_priv->drm;
3580 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3581 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3582 	int ret;
3583 
3584 	/*
3585 	 * Flips in the rings will be nuked by the reset,
3586 	 * so complete all pending flips so that user space
3587 	 * will get its events and not get stuck.
3588 	 */
3589 	intel_complete_page_flips(dev_priv);
3590 
3591 	dev_priv->modeset_restore_state = NULL;
3592 
3593 	/* reset doesn't touch the display */
3594 	if (!gpu_reset_clobbers_display(dev_priv)) {
3595 		if (!state) {
3596 			/*
3597 			 * Flips in the rings have been nuked by the reset,
3598 			 * so update the base address of all primary
3599 			 * planes to the the last fb to make sure we're
3600 			 * showing the correct fb after a reset.
3601 			 *
3602 			 * FIXME: Atomic will make this obsolete since we won't schedule
3603 			 * CS-based flips (which might get lost in gpu resets) any more.
3604 			 */
3605 			intel_update_primary_planes(dev);
3606 		} else {
3607 			ret = __intel_display_resume(dev, state);
3608 			if (ret)
3609 				DRM_ERROR("Restoring old state failed with %i\n", ret);
3610 		}
3611 	} else {
3612 		/*
3613 		 * The display has been reset as well,
3614 		 * so need a full re-initialization.
3615 		 */
3616 		intel_runtime_pm_disable_interrupts(dev_priv);
3617 		intel_runtime_pm_enable_interrupts(dev_priv);
3618 
3619 		intel_pps_unlock_regs_wa(dev_priv);
3620 		intel_modeset_init_hw(dev);
3621 
3622 		spin_lock_irq(&dev_priv->irq_lock);
3623 		if (dev_priv->display.hpd_irq_setup)
3624 			dev_priv->display.hpd_irq_setup(dev_priv);
3625 		spin_unlock_irq(&dev_priv->irq_lock);
3626 
3627 		ret = __intel_display_resume(dev, state);
3628 		if (ret)
3629 			DRM_ERROR("Restoring old state failed with %i\n", ret);
3630 
3631 		intel_hpd_init(dev_priv);
3632 	}
3633 
3634 	if (state)
3635 		drm_atomic_state_put(state);
3636 	drm_modeset_drop_locks(ctx);
3637 	drm_modeset_acquire_fini(ctx);
3638 	mutex_unlock(&dev->mode_config.mutex);
3639 }
3640 
3641 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3642 {
3643 	struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3644 
3645 	if (i915_reset_in_progress(error))
3646 		return true;
3647 
3648 	if (crtc->reset_count != i915_reset_count(error))
3649 		return true;
3650 
3651 	return false;
3652 }
3653 
3654 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3655 {
3656 	struct drm_device *dev = crtc->dev;
3657 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3658 	bool pending;
3659 
3660 	if (abort_flip_on_reset(intel_crtc))
3661 		return false;
3662 
3663 	spin_lock_irq(&dev->event_lock);
3664 	pending = to_intel_crtc(crtc)->flip_work != NULL;
3665 	spin_unlock_irq(&dev->event_lock);
3666 
3667 	return pending;
3668 }
3669 
3670 static void intel_update_pipe_config(struct intel_crtc *crtc,
3671 				     struct intel_crtc_state *old_crtc_state)
3672 {
3673 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3674 	struct intel_crtc_state *pipe_config =
3675 		to_intel_crtc_state(crtc->base.state);
3676 
3677 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3678 	crtc->base.mode = crtc->base.state->mode;
3679 
3680 	/*
3681 	 * Update pipe size and adjust fitter if needed: the reason for this is
3682 	 * that in compute_mode_changes we check the native mode (not the pfit
3683 	 * mode) to see if we can flip rather than do a full mode set. In the
3684 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3685 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3686 	 * sized surface.
3687 	 */
3688 
3689 	I915_WRITE(PIPESRC(crtc->pipe),
3690 		   ((pipe_config->pipe_src_w - 1) << 16) |
3691 		   (pipe_config->pipe_src_h - 1));
3692 
3693 	/* on skylake this is done by detaching scalers */
3694 	if (INTEL_GEN(dev_priv) >= 9) {
3695 		skl_detach_scalers(crtc);
3696 
3697 		if (pipe_config->pch_pfit.enabled)
3698 			skylake_pfit_enable(crtc);
3699 	} else if (HAS_PCH_SPLIT(dev_priv)) {
3700 		if (pipe_config->pch_pfit.enabled)
3701 			ironlake_pfit_enable(crtc);
3702 		else if (old_crtc_state->pch_pfit.enabled)
3703 			ironlake_pfit_disable(crtc, true);
3704 	}
3705 }
3706 
3707 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3708 {
3709 	struct drm_device *dev = crtc->dev;
3710 	struct drm_i915_private *dev_priv = to_i915(dev);
3711 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3712 	int pipe = intel_crtc->pipe;
3713 	i915_reg_t reg;
3714 	u32 temp;
3715 
3716 	/* enable normal train */
3717 	reg = FDI_TX_CTL(pipe);
3718 	temp = I915_READ(reg);
3719 	if (IS_IVYBRIDGE(dev_priv)) {
3720 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3721 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3722 	} else {
3723 		temp &= ~FDI_LINK_TRAIN_NONE;
3724 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3725 	}
3726 	I915_WRITE(reg, temp);
3727 
3728 	reg = FDI_RX_CTL(pipe);
3729 	temp = I915_READ(reg);
3730 	if (HAS_PCH_CPT(dev_priv)) {
3731 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3732 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3733 	} else {
3734 		temp &= ~FDI_LINK_TRAIN_NONE;
3735 		temp |= FDI_LINK_TRAIN_NONE;
3736 	}
3737 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3738 
3739 	/* wait one idle pattern time */
3740 	POSTING_READ(reg);
3741 	udelay(1000);
3742 
3743 	/* IVB wants error correction enabled */
3744 	if (IS_IVYBRIDGE(dev_priv))
3745 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3746 			   FDI_FE_ERRC_ENABLE);
3747 }
3748 
3749 /* The FDI link training functions for ILK/Ibexpeak. */
3750 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3751 {
3752 	struct drm_device *dev = crtc->dev;
3753 	struct drm_i915_private *dev_priv = to_i915(dev);
3754 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3755 	int pipe = intel_crtc->pipe;
3756 	i915_reg_t reg;
3757 	u32 temp, tries;
3758 
3759 	/* FDI needs bits from pipe first */
3760 	assert_pipe_enabled(dev_priv, pipe);
3761 
3762 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3763 	   for train result */
3764 	reg = FDI_RX_IMR(pipe);
3765 	temp = I915_READ(reg);
3766 	temp &= ~FDI_RX_SYMBOL_LOCK;
3767 	temp &= ~FDI_RX_BIT_LOCK;
3768 	I915_WRITE(reg, temp);
3769 	I915_READ(reg);
3770 	udelay(150);
3771 
3772 	/* enable CPU FDI TX and PCH FDI RX */
3773 	reg = FDI_TX_CTL(pipe);
3774 	temp = I915_READ(reg);
3775 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3776 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3777 	temp &= ~FDI_LINK_TRAIN_NONE;
3778 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3779 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3780 
3781 	reg = FDI_RX_CTL(pipe);
3782 	temp = I915_READ(reg);
3783 	temp &= ~FDI_LINK_TRAIN_NONE;
3784 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3785 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3786 
3787 	POSTING_READ(reg);
3788 	udelay(150);
3789 
3790 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3791 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3792 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3793 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3794 
3795 	reg = FDI_RX_IIR(pipe);
3796 	for (tries = 0; tries < 5; tries++) {
3797 		temp = I915_READ(reg);
3798 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3799 
3800 		if ((temp & FDI_RX_BIT_LOCK)) {
3801 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3802 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3803 			break;
3804 		}
3805 	}
3806 	if (tries == 5)
3807 		DRM_ERROR("FDI train 1 fail!\n");
3808 
3809 	/* Train 2 */
3810 	reg = FDI_TX_CTL(pipe);
3811 	temp = I915_READ(reg);
3812 	temp &= ~FDI_LINK_TRAIN_NONE;
3813 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3814 	I915_WRITE(reg, temp);
3815 
3816 	reg = FDI_RX_CTL(pipe);
3817 	temp = I915_READ(reg);
3818 	temp &= ~FDI_LINK_TRAIN_NONE;
3819 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3820 	I915_WRITE(reg, temp);
3821 
3822 	POSTING_READ(reg);
3823 	udelay(150);
3824 
3825 	reg = FDI_RX_IIR(pipe);
3826 	for (tries = 0; tries < 5; tries++) {
3827 		temp = I915_READ(reg);
3828 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3829 
3830 		if (temp & FDI_RX_SYMBOL_LOCK) {
3831 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3832 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3833 			break;
3834 		}
3835 	}
3836 	if (tries == 5)
3837 		DRM_ERROR("FDI train 2 fail!\n");
3838 
3839 	DRM_DEBUG_KMS("FDI train done\n");
3840 
3841 }
3842 
3843 static const int snb_b_fdi_train_param[] = {
3844 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3845 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3846 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3847 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3848 };
3849 
3850 /* The FDI link training functions for SNB/Cougarpoint. */
3851 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3852 {
3853 	struct drm_device *dev = crtc->dev;
3854 	struct drm_i915_private *dev_priv = to_i915(dev);
3855 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3856 	int pipe = intel_crtc->pipe;
3857 	i915_reg_t reg;
3858 	u32 temp, i, retry;
3859 
3860 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3861 	   for train result */
3862 	reg = FDI_RX_IMR(pipe);
3863 	temp = I915_READ(reg);
3864 	temp &= ~FDI_RX_SYMBOL_LOCK;
3865 	temp &= ~FDI_RX_BIT_LOCK;
3866 	I915_WRITE(reg, temp);
3867 
3868 	POSTING_READ(reg);
3869 	udelay(150);
3870 
3871 	/* enable CPU FDI TX and PCH FDI RX */
3872 	reg = FDI_TX_CTL(pipe);
3873 	temp = I915_READ(reg);
3874 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3875 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3876 	temp &= ~FDI_LINK_TRAIN_NONE;
3877 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3878 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3879 	/* SNB-B */
3880 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3881 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3882 
3883 	I915_WRITE(FDI_RX_MISC(pipe),
3884 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3885 
3886 	reg = FDI_RX_CTL(pipe);
3887 	temp = I915_READ(reg);
3888 	if (HAS_PCH_CPT(dev_priv)) {
3889 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3890 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3891 	} else {
3892 		temp &= ~FDI_LINK_TRAIN_NONE;
3893 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3894 	}
3895 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3896 
3897 	POSTING_READ(reg);
3898 	udelay(150);
3899 
3900 	for (i = 0; i < 4; i++) {
3901 		reg = FDI_TX_CTL(pipe);
3902 		temp = I915_READ(reg);
3903 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3904 		temp |= snb_b_fdi_train_param[i];
3905 		I915_WRITE(reg, temp);
3906 
3907 		POSTING_READ(reg);
3908 		udelay(500);
3909 
3910 		for (retry = 0; retry < 5; retry++) {
3911 			reg = FDI_RX_IIR(pipe);
3912 			temp = I915_READ(reg);
3913 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3914 			if (temp & FDI_RX_BIT_LOCK) {
3915 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3916 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3917 				break;
3918 			}
3919 			udelay(50);
3920 		}
3921 		if (retry < 5)
3922 			break;
3923 	}
3924 	if (i == 4)
3925 		DRM_ERROR("FDI train 1 fail!\n");
3926 
3927 	/* Train 2 */
3928 	reg = FDI_TX_CTL(pipe);
3929 	temp = I915_READ(reg);
3930 	temp &= ~FDI_LINK_TRAIN_NONE;
3931 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3932 	if (IS_GEN6(dev_priv)) {
3933 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3934 		/* SNB-B */
3935 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3936 	}
3937 	I915_WRITE(reg, temp);
3938 
3939 	reg = FDI_RX_CTL(pipe);
3940 	temp = I915_READ(reg);
3941 	if (HAS_PCH_CPT(dev_priv)) {
3942 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3943 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3944 	} else {
3945 		temp &= ~FDI_LINK_TRAIN_NONE;
3946 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3947 	}
3948 	I915_WRITE(reg, temp);
3949 
3950 	POSTING_READ(reg);
3951 	udelay(150);
3952 
3953 	for (i = 0; i < 4; i++) {
3954 		reg = FDI_TX_CTL(pipe);
3955 		temp = I915_READ(reg);
3956 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3957 		temp |= snb_b_fdi_train_param[i];
3958 		I915_WRITE(reg, temp);
3959 
3960 		POSTING_READ(reg);
3961 		udelay(500);
3962 
3963 		for (retry = 0; retry < 5; retry++) {
3964 			reg = FDI_RX_IIR(pipe);
3965 			temp = I915_READ(reg);
3966 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3967 			if (temp & FDI_RX_SYMBOL_LOCK) {
3968 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3969 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3970 				break;
3971 			}
3972 			udelay(50);
3973 		}
3974 		if (retry < 5)
3975 			break;
3976 	}
3977 	if (i == 4)
3978 		DRM_ERROR("FDI train 2 fail!\n");
3979 
3980 	DRM_DEBUG_KMS("FDI train done.\n");
3981 }
3982 
3983 /* Manual link training for Ivy Bridge A0 parts */
3984 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3985 {
3986 	struct drm_device *dev = crtc->dev;
3987 	struct drm_i915_private *dev_priv = to_i915(dev);
3988 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3989 	int pipe = intel_crtc->pipe;
3990 	i915_reg_t reg;
3991 	u32 temp, i, j;
3992 
3993 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3994 	   for train result */
3995 	reg = FDI_RX_IMR(pipe);
3996 	temp = I915_READ(reg);
3997 	temp &= ~FDI_RX_SYMBOL_LOCK;
3998 	temp &= ~FDI_RX_BIT_LOCK;
3999 	I915_WRITE(reg, temp);
4000 
4001 	POSTING_READ(reg);
4002 	udelay(150);
4003 
4004 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4005 		      I915_READ(FDI_RX_IIR(pipe)));
4006 
4007 	/* Try each vswing and preemphasis setting twice before moving on */
4008 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4009 		/* disable first in case we need to retry */
4010 		reg = FDI_TX_CTL(pipe);
4011 		temp = I915_READ(reg);
4012 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4013 		temp &= ~FDI_TX_ENABLE;
4014 		I915_WRITE(reg, temp);
4015 
4016 		reg = FDI_RX_CTL(pipe);
4017 		temp = I915_READ(reg);
4018 		temp &= ~FDI_LINK_TRAIN_AUTO;
4019 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4020 		temp &= ~FDI_RX_ENABLE;
4021 		I915_WRITE(reg, temp);
4022 
4023 		/* enable CPU FDI TX and PCH FDI RX */
4024 		reg = FDI_TX_CTL(pipe);
4025 		temp = I915_READ(reg);
4026 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
4027 		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4028 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4029 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4030 		temp |= snb_b_fdi_train_param[j/2];
4031 		temp |= FDI_COMPOSITE_SYNC;
4032 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
4033 
4034 		I915_WRITE(FDI_RX_MISC(pipe),
4035 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4036 
4037 		reg = FDI_RX_CTL(pipe);
4038 		temp = I915_READ(reg);
4039 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4040 		temp |= FDI_COMPOSITE_SYNC;
4041 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
4042 
4043 		POSTING_READ(reg);
4044 		udelay(1); /* should be 0.5us */
4045 
4046 		for (i = 0; i < 4; i++) {
4047 			reg = FDI_RX_IIR(pipe);
4048 			temp = I915_READ(reg);
4049 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4050 
4051 			if (temp & FDI_RX_BIT_LOCK ||
4052 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4053 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4054 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4055 					      i);
4056 				break;
4057 			}
4058 			udelay(1); /* should be 0.5us */
4059 		}
4060 		if (i == 4) {
4061 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4062 			continue;
4063 		}
4064 
4065 		/* Train 2 */
4066 		reg = FDI_TX_CTL(pipe);
4067 		temp = I915_READ(reg);
4068 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4069 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4070 		I915_WRITE(reg, temp);
4071 
4072 		reg = FDI_RX_CTL(pipe);
4073 		temp = I915_READ(reg);
4074 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4075 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4076 		I915_WRITE(reg, temp);
4077 
4078 		POSTING_READ(reg);
4079 		udelay(2); /* should be 1.5us */
4080 
4081 		for (i = 0; i < 4; i++) {
4082 			reg = FDI_RX_IIR(pipe);
4083 			temp = I915_READ(reg);
4084 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4085 
4086 			if (temp & FDI_RX_SYMBOL_LOCK ||
4087 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4088 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4089 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4090 					      i);
4091 				goto train_done;
4092 			}
4093 			udelay(2); /* should be 1.5us */
4094 		}
4095 		if (i == 4)
4096 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4097 	}
4098 
4099 train_done:
4100 	DRM_DEBUG_KMS("FDI train done.\n");
4101 }
4102 
4103 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4104 {
4105 	struct drm_device *dev = intel_crtc->base.dev;
4106 	struct drm_i915_private *dev_priv = to_i915(dev);
4107 	int pipe = intel_crtc->pipe;
4108 	i915_reg_t reg;
4109 	u32 temp;
4110 
4111 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4112 	reg = FDI_RX_CTL(pipe);
4113 	temp = I915_READ(reg);
4114 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4115 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4116 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4117 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4118 
4119 	POSTING_READ(reg);
4120 	udelay(200);
4121 
4122 	/* Switch from Rawclk to PCDclk */
4123 	temp = I915_READ(reg);
4124 	I915_WRITE(reg, temp | FDI_PCDCLK);
4125 
4126 	POSTING_READ(reg);
4127 	udelay(200);
4128 
4129 	/* Enable CPU FDI TX PLL, always on for Ironlake */
4130 	reg = FDI_TX_CTL(pipe);
4131 	temp = I915_READ(reg);
4132 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4133 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4134 
4135 		POSTING_READ(reg);
4136 		udelay(100);
4137 	}
4138 }
4139 
4140 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4141 {
4142 	struct drm_device *dev = intel_crtc->base.dev;
4143 	struct drm_i915_private *dev_priv = to_i915(dev);
4144 	int pipe = intel_crtc->pipe;
4145 	i915_reg_t reg;
4146 	u32 temp;
4147 
4148 	/* Switch from PCDclk to Rawclk */
4149 	reg = FDI_RX_CTL(pipe);
4150 	temp = I915_READ(reg);
4151 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
4152 
4153 	/* Disable CPU FDI TX PLL */
4154 	reg = FDI_TX_CTL(pipe);
4155 	temp = I915_READ(reg);
4156 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4157 
4158 	POSTING_READ(reg);
4159 	udelay(100);
4160 
4161 	reg = FDI_RX_CTL(pipe);
4162 	temp = I915_READ(reg);
4163 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4164 
4165 	/* Wait for the clocks to turn off. */
4166 	POSTING_READ(reg);
4167 	udelay(100);
4168 }
4169 
4170 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4171 {
4172 	struct drm_device *dev = crtc->dev;
4173 	struct drm_i915_private *dev_priv = to_i915(dev);
4174 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175 	int pipe = intel_crtc->pipe;
4176 	i915_reg_t reg;
4177 	u32 temp;
4178 
4179 	/* disable CPU FDI tx and PCH FDI rx */
4180 	reg = FDI_TX_CTL(pipe);
4181 	temp = I915_READ(reg);
4182 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4183 	POSTING_READ(reg);
4184 
4185 	reg = FDI_RX_CTL(pipe);
4186 	temp = I915_READ(reg);
4187 	temp &= ~(0x7 << 16);
4188 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4189 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4190 
4191 	POSTING_READ(reg);
4192 	udelay(100);
4193 
4194 	/* Ironlake workaround, disable clock pointer after downing FDI */
4195 	if (HAS_PCH_IBX(dev_priv))
4196 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4197 
4198 	/* still set train pattern 1 */
4199 	reg = FDI_TX_CTL(pipe);
4200 	temp = I915_READ(reg);
4201 	temp &= ~FDI_LINK_TRAIN_NONE;
4202 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4203 	I915_WRITE(reg, temp);
4204 
4205 	reg = FDI_RX_CTL(pipe);
4206 	temp = I915_READ(reg);
4207 	if (HAS_PCH_CPT(dev_priv)) {
4208 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4209 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4210 	} else {
4211 		temp &= ~FDI_LINK_TRAIN_NONE;
4212 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4213 	}
4214 	/* BPC in FDI rx is consistent with that in PIPECONF */
4215 	temp &= ~(0x07 << 16);
4216 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4217 	I915_WRITE(reg, temp);
4218 
4219 	POSTING_READ(reg);
4220 	udelay(100);
4221 }
4222 
4223 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4224 {
4225 	struct drm_i915_private *dev_priv = to_i915(dev);
4226 	struct intel_crtc *crtc;
4227 
4228 	/* Note that we don't need to be called with mode_config.lock here
4229 	 * as our list of CRTC objects is static for the lifetime of the
4230 	 * device and so cannot disappear as we iterate. Similarly, we can
4231 	 * happily treat the predicates as racy, atomic checks as userspace
4232 	 * cannot claim and pin a new fb without at least acquring the
4233 	 * struct_mutex and so serialising with us.
4234 	 */
4235 	for_each_intel_crtc(dev, crtc) {
4236 		if (atomic_read(&crtc->unpin_work_count) == 0)
4237 			continue;
4238 
4239 		if (crtc->flip_work)
4240 			intel_wait_for_vblank(dev_priv, crtc->pipe);
4241 
4242 		return true;
4243 	}
4244 
4245 	return false;
4246 }
4247 
4248 static void page_flip_completed(struct intel_crtc *intel_crtc)
4249 {
4250 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4251 	struct intel_flip_work *work = intel_crtc->flip_work;
4252 
4253 	intel_crtc->flip_work = NULL;
4254 
4255 	if (work->event)
4256 		drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4257 
4258 	drm_crtc_vblank_put(&intel_crtc->base);
4259 
4260 	wake_up_all(&dev_priv->pending_flip_queue);
4261 	trace_i915_flip_complete(intel_crtc->plane,
4262 				 work->pending_flip_obj);
4263 
4264 	queue_work(dev_priv->wq, &work->unpin_work);
4265 }
4266 
4267 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4268 {
4269 	struct drm_device *dev = crtc->dev;
4270 	struct drm_i915_private *dev_priv = to_i915(dev);
4271 	long ret;
4272 
4273 	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4274 
4275 	ret = wait_event_interruptible_timeout(
4276 					dev_priv->pending_flip_queue,
4277 					!intel_crtc_has_pending_flip(crtc),
4278 					60*HZ);
4279 
4280 	if (ret < 0)
4281 		return ret;
4282 
4283 	if (ret == 0) {
4284 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285 		struct intel_flip_work *work;
4286 
4287 		spin_lock_irq(&dev->event_lock);
4288 		work = intel_crtc->flip_work;
4289 		if (work && !is_mmio_work(work)) {
4290 			WARN_ONCE(1, "Removing stuck page flip\n");
4291 			page_flip_completed(intel_crtc);
4292 		}
4293 		spin_unlock_irq(&dev->event_lock);
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4300 {
4301 	u32 temp;
4302 
4303 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4304 
4305 	mutex_lock(&dev_priv->sb_lock);
4306 
4307 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4308 	temp |= SBI_SSCCTL_DISABLE;
4309 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4310 
4311 	mutex_unlock(&dev_priv->sb_lock);
4312 }
4313 
4314 /* Program iCLKIP clock to the desired frequency */
4315 static void lpt_program_iclkip(struct drm_crtc *crtc)
4316 {
4317 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4318 	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4319 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
4320 	u32 temp;
4321 
4322 	lpt_disable_iclkip(dev_priv);
4323 
4324 	/* The iCLK virtual clock root frequency is in MHz,
4325 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
4326 	 * divisors, it is necessary to divide one by another, so we
4327 	 * convert the virtual clock precision to KHz here for higher
4328 	 * precision.
4329 	 */
4330 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4331 		u32 iclk_virtual_root_freq = 172800 * 1000;
4332 		u32 iclk_pi_range = 64;
4333 		u32 desired_divisor;
4334 
4335 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4336 						    clock << auxdiv);
4337 		divsel = (desired_divisor / iclk_pi_range) - 2;
4338 		phaseinc = desired_divisor % iclk_pi_range;
4339 
4340 		/*
4341 		 * Near 20MHz is a corner case which is
4342 		 * out of range for the 7-bit divisor
4343 		 */
4344 		if (divsel <= 0x7f)
4345 			break;
4346 	}
4347 
4348 	/* This should not happen with any sane values */
4349 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4350 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4351 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4352 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4353 
4354 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4355 			clock,
4356 			auxdiv,
4357 			divsel,
4358 			phasedir,
4359 			phaseinc);
4360 
4361 	mutex_lock(&dev_priv->sb_lock);
4362 
4363 	/* Program SSCDIVINTPHASE6 */
4364 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4365 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4366 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4367 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4368 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4369 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4370 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4371 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4372 
4373 	/* Program SSCAUXDIV */
4374 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4375 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4376 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4377 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4378 
4379 	/* Enable modulator and associated divider */
4380 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4381 	temp &= ~SBI_SSCCTL_DISABLE;
4382 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4383 
4384 	mutex_unlock(&dev_priv->sb_lock);
4385 
4386 	/* Wait for initialization time */
4387 	udelay(24);
4388 
4389 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4390 }
4391 
4392 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4393 {
4394 	u32 divsel, phaseinc, auxdiv;
4395 	u32 iclk_virtual_root_freq = 172800 * 1000;
4396 	u32 iclk_pi_range = 64;
4397 	u32 desired_divisor;
4398 	u32 temp;
4399 
4400 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4401 		return 0;
4402 
4403 	mutex_lock(&dev_priv->sb_lock);
4404 
4405 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4406 	if (temp & SBI_SSCCTL_DISABLE) {
4407 		mutex_unlock(&dev_priv->sb_lock);
4408 		return 0;
4409 	}
4410 
4411 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4412 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4413 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4414 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4415 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4416 
4417 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4418 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4419 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4420 
4421 	mutex_unlock(&dev_priv->sb_lock);
4422 
4423 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4424 
4425 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4426 				 desired_divisor << auxdiv);
4427 }
4428 
4429 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4430 						enum i915_pipe pch_transcoder)
4431 {
4432 	struct drm_device *dev = crtc->base.dev;
4433 	struct drm_i915_private *dev_priv = to_i915(dev);
4434 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4435 
4436 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4437 		   I915_READ(HTOTAL(cpu_transcoder)));
4438 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4439 		   I915_READ(HBLANK(cpu_transcoder)));
4440 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4441 		   I915_READ(HSYNC(cpu_transcoder)));
4442 
4443 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4444 		   I915_READ(VTOTAL(cpu_transcoder)));
4445 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4446 		   I915_READ(VBLANK(cpu_transcoder)));
4447 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4448 		   I915_READ(VSYNC(cpu_transcoder)));
4449 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4450 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4451 }
4452 
4453 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4454 {
4455 	struct drm_i915_private *dev_priv = to_i915(dev);
4456 	uint32_t temp;
4457 
4458 	temp = I915_READ(SOUTH_CHICKEN1);
4459 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4460 		return;
4461 
4462 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4463 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4464 
4465 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4466 	if (enable)
4467 		temp |= FDI_BC_BIFURCATION_SELECT;
4468 
4469 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4470 	I915_WRITE(SOUTH_CHICKEN1, temp);
4471 	POSTING_READ(SOUTH_CHICKEN1);
4472 }
4473 
4474 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4475 {
4476 	struct drm_device *dev = intel_crtc->base.dev;
4477 
4478 	switch (intel_crtc->pipe) {
4479 	case PIPE_A:
4480 		break;
4481 	case PIPE_B:
4482 		if (intel_crtc->config->fdi_lanes > 2)
4483 			cpt_set_fdi_bc_bifurcation(dev, false);
4484 		else
4485 			cpt_set_fdi_bc_bifurcation(dev, true);
4486 
4487 		break;
4488 	case PIPE_C:
4489 		cpt_set_fdi_bc_bifurcation(dev, true);
4490 
4491 		break;
4492 	default:
4493 		BUG();
4494 	}
4495 }
4496 
4497 /* Return which DP Port should be selected for Transcoder DP control */
4498 static enum port
4499 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4500 {
4501 	struct drm_device *dev = crtc->dev;
4502 	struct intel_encoder *encoder;
4503 
4504 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4505 		if (encoder->type == INTEL_OUTPUT_DP ||
4506 		    encoder->type == INTEL_OUTPUT_EDP)
4507 			return enc_to_dig_port(&encoder->base)->port;
4508 	}
4509 
4510 	return -1;
4511 }
4512 
4513 /*
4514  * Enable PCH resources required for PCH ports:
4515  *   - PCH PLLs
4516  *   - FDI training & RX/TX
4517  *   - update transcoder timings
4518  *   - DP transcoding bits
4519  *   - transcoder
4520  */
4521 static void ironlake_pch_enable(struct drm_crtc *crtc)
4522 {
4523 	struct drm_device *dev = crtc->dev;
4524 	struct drm_i915_private *dev_priv = to_i915(dev);
4525 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4526 	int pipe = intel_crtc->pipe;
4527 	u32 temp;
4528 
4529 	assert_pch_transcoder_disabled(dev_priv, pipe);
4530 
4531 	if (IS_IVYBRIDGE(dev_priv))
4532 		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4533 
4534 	/* Write the TU size bits before fdi link training, so that error
4535 	 * detection works. */
4536 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4537 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4538 
4539 	/* For PCH output, training FDI link */
4540 	dev_priv->display.fdi_link_train(crtc);
4541 
4542 	/* We need to program the right clock selection before writing the pixel
4543 	 * mutliplier into the DPLL. */
4544 	if (HAS_PCH_CPT(dev_priv)) {
4545 		u32 sel;
4546 
4547 		temp = I915_READ(PCH_DPLL_SEL);
4548 		temp |= TRANS_DPLL_ENABLE(pipe);
4549 		sel = TRANS_DPLLB_SEL(pipe);
4550 		if (intel_crtc->config->shared_dpll ==
4551 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4552 			temp |= sel;
4553 		else
4554 			temp &= ~sel;
4555 		I915_WRITE(PCH_DPLL_SEL, temp);
4556 	}
4557 
4558 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4559 	 * transcoder, and we actually should do this to not upset any PCH
4560 	 * transcoder that already use the clock when we share it.
4561 	 *
4562 	 * Note that enable_shared_dpll tries to do the right thing, but
4563 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4564 	 * the right LVDS enable sequence. */
4565 	intel_enable_shared_dpll(intel_crtc);
4566 
4567 	/* set transcoder timing, panel must allow it */
4568 	assert_panel_unlocked(dev_priv, pipe);
4569 	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4570 
4571 	intel_fdi_normal_train(crtc);
4572 
4573 	/* For PCH DP, enable TRANS_DP_CTL */
4574 	if (HAS_PCH_CPT(dev_priv) &&
4575 	    intel_crtc_has_dp_encoder(intel_crtc->config)) {
4576 		const struct drm_display_mode *adjusted_mode =
4577 			&intel_crtc->config->base.adjusted_mode;
4578 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4579 		i915_reg_t reg = TRANS_DP_CTL(pipe);
4580 		temp = I915_READ(reg);
4581 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4582 			  TRANS_DP_SYNC_MASK |
4583 			  TRANS_DP_BPC_MASK);
4584 		temp |= TRANS_DP_OUTPUT_ENABLE;
4585 		temp |= bpc << 9; /* same format but at 11:9 */
4586 
4587 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4588 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4589 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4590 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4591 
4592 		switch (intel_trans_dp_port_sel(crtc)) {
4593 		case PORT_B:
4594 			temp |= TRANS_DP_PORT_SEL_B;
4595 			break;
4596 		case PORT_C:
4597 			temp |= TRANS_DP_PORT_SEL_C;
4598 			break;
4599 		case PORT_D:
4600 			temp |= TRANS_DP_PORT_SEL_D;
4601 			break;
4602 		default:
4603 			BUG();
4604 		}
4605 
4606 		I915_WRITE(reg, temp);
4607 	}
4608 
4609 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4610 }
4611 
4612 static void lpt_pch_enable(struct drm_crtc *crtc)
4613 {
4614 	struct drm_device *dev = crtc->dev;
4615 	struct drm_i915_private *dev_priv = to_i915(dev);
4616 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4617 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4618 
4619 	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4620 
4621 	lpt_program_iclkip(crtc);
4622 
4623 	/* Set transcoder timing. */
4624 	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4625 
4626 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4627 }
4628 
4629 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4630 {
4631 	struct drm_i915_private *dev_priv = to_i915(dev);
4632 	i915_reg_t dslreg = PIPEDSL(pipe);
4633 	u32 temp;
4634 
4635 	temp = I915_READ(dslreg);
4636 	udelay(500);
4637 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4638 		if (wait_for(I915_READ(dslreg) != temp, 5))
4639 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4640 	}
4641 }
4642 
4643 static int
4644 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4645 		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4646 		  int src_w, int src_h, int dst_w, int dst_h)
4647 {
4648 	struct intel_crtc_scaler_state *scaler_state =
4649 		&crtc_state->scaler_state;
4650 	struct intel_crtc *intel_crtc =
4651 		to_intel_crtc(crtc_state->base.crtc);
4652 	int need_scaling;
4653 
4654 	need_scaling = drm_rotation_90_or_270(rotation) ?
4655 		(src_h != dst_w || src_w != dst_h):
4656 		(src_w != dst_w || src_h != dst_h);
4657 
4658 	/*
4659 	 * if plane is being disabled or scaler is no more required or force detach
4660 	 *  - free scaler binded to this plane/crtc
4661 	 *  - in order to do this, update crtc->scaler_usage
4662 	 *
4663 	 * Here scaler state in crtc_state is set free so that
4664 	 * scaler can be assigned to other user. Actual register
4665 	 * update to free the scaler is done in plane/panel-fit programming.
4666 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4667 	 */
4668 	if (force_detach || !need_scaling) {
4669 		if (*scaler_id >= 0) {
4670 			scaler_state->scaler_users &= ~(1 << scaler_user);
4671 			scaler_state->scalers[*scaler_id].in_use = 0;
4672 
4673 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4674 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4675 				intel_crtc->pipe, scaler_user, *scaler_id,
4676 				scaler_state->scaler_users);
4677 			*scaler_id = -1;
4678 		}
4679 		return 0;
4680 	}
4681 
4682 	/* range checks */
4683 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4684 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4685 
4686 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4687 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4688 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4689 			"size is out of scaler range\n",
4690 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4691 		return -EINVAL;
4692 	}
4693 
4694 	/* mark this plane as a scaler user in crtc_state */
4695 	scaler_state->scaler_users |= (1 << scaler_user);
4696 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4697 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4698 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4699 		scaler_state->scaler_users);
4700 
4701 	return 0;
4702 }
4703 
4704 /**
4705  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4706  *
4707  * @state: crtc's scaler state
4708  *
4709  * Return
4710  *     0 - scaler_usage updated successfully
4711  *    error - requested scaling cannot be supported or other error condition
4712  */
4713 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4714 {
4715 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4716 
4717 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4718 		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4719 		state->pipe_src_w, state->pipe_src_h,
4720 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4721 }
4722 
4723 /**
4724  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4725  *
4726  * @state: crtc's scaler state
4727  * @plane_state: atomic plane state to update
4728  *
4729  * Return
4730  *     0 - scaler_usage updated successfully
4731  *    error - requested scaling cannot be supported or other error condition
4732  */
4733 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4734 				   struct intel_plane_state *plane_state)
4735 {
4736 
4737 	struct intel_plane *intel_plane =
4738 		to_intel_plane(plane_state->base.plane);
4739 	struct drm_framebuffer *fb = plane_state->base.fb;
4740 	int ret;
4741 
4742 	bool force_detach = !fb || !plane_state->base.visible;
4743 
4744 	ret = skl_update_scaler(crtc_state, force_detach,
4745 				drm_plane_index(&intel_plane->base),
4746 				&plane_state->scaler_id,
4747 				plane_state->base.rotation,
4748 				drm_rect_width(&plane_state->base.src) >> 16,
4749 				drm_rect_height(&plane_state->base.src) >> 16,
4750 				drm_rect_width(&plane_state->base.dst),
4751 				drm_rect_height(&plane_state->base.dst));
4752 
4753 	if (ret || plane_state->scaler_id < 0)
4754 		return ret;
4755 
4756 	/* check colorkey */
4757 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4758 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4759 			      intel_plane->base.base.id,
4760 			      intel_plane->base.name);
4761 		return -EINVAL;
4762 	}
4763 
4764 	/* Check src format */
4765 	switch (fb->pixel_format) {
4766 	case DRM_FORMAT_RGB565:
4767 	case DRM_FORMAT_XBGR8888:
4768 	case DRM_FORMAT_XRGB8888:
4769 	case DRM_FORMAT_ABGR8888:
4770 	case DRM_FORMAT_ARGB8888:
4771 	case DRM_FORMAT_XRGB2101010:
4772 	case DRM_FORMAT_XBGR2101010:
4773 	case DRM_FORMAT_YUYV:
4774 	case DRM_FORMAT_YVYU:
4775 	case DRM_FORMAT_UYVY:
4776 	case DRM_FORMAT_VYUY:
4777 		break;
4778 	default:
4779 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4780 			      intel_plane->base.base.id, intel_plane->base.name,
4781 			      fb->base.id, fb->pixel_format);
4782 		return -EINVAL;
4783 	}
4784 
4785 	return 0;
4786 }
4787 
4788 static void skylake_scaler_disable(struct intel_crtc *crtc)
4789 {
4790 	int i;
4791 
4792 	for (i = 0; i < crtc->num_scalers; i++)
4793 		skl_detach_scaler(crtc, i);
4794 }
4795 
4796 static void skylake_pfit_enable(struct intel_crtc *crtc)
4797 {
4798 	struct drm_device *dev = crtc->base.dev;
4799 	struct drm_i915_private *dev_priv = to_i915(dev);
4800 	int pipe = crtc->pipe;
4801 	struct intel_crtc_scaler_state *scaler_state =
4802 		&crtc->config->scaler_state;
4803 
4804 	if (crtc->config->pch_pfit.enabled) {
4805 		int id;
4806 
4807 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4808 			return;
4809 
4810 		id = scaler_state->scaler_id;
4811 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4812 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4813 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4814 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4815 	}
4816 }
4817 
4818 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4819 {
4820 	struct drm_device *dev = crtc->base.dev;
4821 	struct drm_i915_private *dev_priv = to_i915(dev);
4822 	int pipe = crtc->pipe;
4823 
4824 	if (crtc->config->pch_pfit.enabled) {
4825 		/* Force use of hard-coded filter coefficients
4826 		 * as some pre-programmed values are broken,
4827 		 * e.g. x201.
4828 		 */
4829 		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4830 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4831 						 PF_PIPE_SEL_IVB(pipe));
4832 		else
4833 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4834 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4835 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4836 	}
4837 }
4838 
4839 void hsw_enable_ips(struct intel_crtc *crtc)
4840 {
4841 	struct drm_device *dev = crtc->base.dev;
4842 	struct drm_i915_private *dev_priv = to_i915(dev);
4843 
4844 	if (!crtc->config->ips_enabled)
4845 		return;
4846 
4847 	/*
4848 	 * We can only enable IPS after we enable a plane and wait for a vblank
4849 	 * This function is called from post_plane_update, which is run after
4850 	 * a vblank wait.
4851 	 */
4852 
4853 	assert_plane_enabled(dev_priv, crtc->plane);
4854 	if (IS_BROADWELL(dev_priv)) {
4855 		mutex_lock(&dev_priv->rps.hw_lock);
4856 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4857 		mutex_unlock(&dev_priv->rps.hw_lock);
4858 		/* Quoting Art Runyan: "its not safe to expect any particular
4859 		 * value in IPS_CTL bit 31 after enabling IPS through the
4860 		 * mailbox." Moreover, the mailbox may return a bogus state,
4861 		 * so we need to just enable it and continue on.
4862 		 */
4863 	} else {
4864 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4865 		/* The bit only becomes 1 in the next vblank, so this wait here
4866 		 * is essentially intel_wait_for_vblank. If we don't have this
4867 		 * and don't wait for vblanks until the end of crtc_enable, then
4868 		 * the HW state readout code will complain that the expected
4869 		 * IPS_CTL value is not the one we read. */
4870 		if (intel_wait_for_register(dev_priv,
4871 					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4872 					    50))
4873 			DRM_ERROR("Timed out waiting for IPS enable\n");
4874 	}
4875 }
4876 
4877 void hsw_disable_ips(struct intel_crtc *crtc)
4878 {
4879 	struct drm_device *dev = crtc->base.dev;
4880 	struct drm_i915_private *dev_priv = to_i915(dev);
4881 
4882 	if (!crtc->config->ips_enabled)
4883 		return;
4884 
4885 	assert_plane_enabled(dev_priv, crtc->plane);
4886 	if (IS_BROADWELL(dev_priv)) {
4887 		mutex_lock(&dev_priv->rps.hw_lock);
4888 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4889 		mutex_unlock(&dev_priv->rps.hw_lock);
4890 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4891 		if (intel_wait_for_register(dev_priv,
4892 					    IPS_CTL, IPS_ENABLE, 0,
4893 					    42))
4894 			DRM_ERROR("Timed out waiting for IPS disable\n");
4895 	} else {
4896 		I915_WRITE(IPS_CTL, 0);
4897 		POSTING_READ(IPS_CTL);
4898 	}
4899 
4900 	/* We need to wait for a vblank before we can disable the plane. */
4901 	intel_wait_for_vblank(dev_priv, crtc->pipe);
4902 }
4903 
4904 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4905 {
4906 	if (intel_crtc->overlay) {
4907 		struct drm_device *dev = intel_crtc->base.dev;
4908 		struct drm_i915_private *dev_priv = to_i915(dev);
4909 
4910 		mutex_lock(&dev->struct_mutex);
4911 		dev_priv->mm.interruptible = false;
4912 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4913 		dev_priv->mm.interruptible = true;
4914 		mutex_unlock(&dev->struct_mutex);
4915 	}
4916 
4917 	/* Let userspace switch the overlay on again. In most cases userspace
4918 	 * has to recompute where to put it anyway.
4919 	 */
4920 }
4921 
4922 /**
4923  * intel_post_enable_primary - Perform operations after enabling primary plane
4924  * @crtc: the CRTC whose primary plane was just enabled
4925  *
4926  * Performs potentially sleeping operations that must be done after the primary
4927  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4928  * called due to an explicit primary plane update, or due to an implicit
4929  * re-enable that is caused when a sprite plane is updated to no longer
4930  * completely hide the primary plane.
4931  */
4932 static void
4933 intel_post_enable_primary(struct drm_crtc *crtc)
4934 {
4935 	struct drm_device *dev = crtc->dev;
4936 	struct drm_i915_private *dev_priv = to_i915(dev);
4937 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4938 	int pipe = intel_crtc->pipe;
4939 
4940 	/*
4941 	 * FIXME IPS should be fine as long as one plane is
4942 	 * enabled, but in practice it seems to have problems
4943 	 * when going from primary only to sprite only and vice
4944 	 * versa.
4945 	 */
4946 	hsw_enable_ips(intel_crtc);
4947 
4948 	/*
4949 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4950 	 * So don't enable underrun reporting before at least some planes
4951 	 * are enabled.
4952 	 * FIXME: Need to fix the logic to work when we turn off all planes
4953 	 * but leave the pipe running.
4954 	 */
4955 	if (IS_GEN2(dev_priv))
4956 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4957 
4958 	/* Underruns don't always raise interrupts, so check manually. */
4959 	intel_check_cpu_fifo_underruns(dev_priv);
4960 	intel_check_pch_fifo_underruns(dev_priv);
4961 }
4962 
4963 /* FIXME move all this to pre_plane_update() with proper state tracking */
4964 static void
4965 intel_pre_disable_primary(struct drm_crtc *crtc)
4966 {
4967 	struct drm_device *dev = crtc->dev;
4968 	struct drm_i915_private *dev_priv = to_i915(dev);
4969 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4970 	int pipe = intel_crtc->pipe;
4971 
4972 	/*
4973 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4974 	 * So diasble underrun reporting before all the planes get disabled.
4975 	 * FIXME: Need to fix the logic to work when we turn off all planes
4976 	 * but leave the pipe running.
4977 	 */
4978 	if (IS_GEN2(dev_priv))
4979 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4980 
4981 	/*
4982 	 * FIXME IPS should be fine as long as one plane is
4983 	 * enabled, but in practice it seems to have problems
4984 	 * when going from primary only to sprite only and vice
4985 	 * versa.
4986 	 */
4987 	hsw_disable_ips(intel_crtc);
4988 }
4989 
4990 /* FIXME get rid of this and use pre_plane_update */
4991 static void
4992 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4993 {
4994 	struct drm_device *dev = crtc->dev;
4995 	struct drm_i915_private *dev_priv = to_i915(dev);
4996 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4997 	int pipe = intel_crtc->pipe;
4998 
4999 	intel_pre_disable_primary(crtc);
5000 
5001 	/*
5002 	 * Vblank time updates from the shadow to live plane control register
5003 	 * are blocked if the memory self-refresh mode is active at that
5004 	 * moment. So to make sure the plane gets truly disabled, disable
5005 	 * first the self-refresh mode. The self-refresh enable bit in turn
5006 	 * will be checked/applied by the HW only at the next frame start
5007 	 * event which is after the vblank start event, so we need to have a
5008 	 * wait-for-vblank between disabling the plane and the pipe.
5009 	 */
5010 	if (HAS_GMCH_DISPLAY(dev_priv)) {
5011 		intel_set_memory_cxsr(dev_priv, false);
5012 		dev_priv->wm.vlv.cxsr = false;
5013 		intel_wait_for_vblank(dev_priv, pipe);
5014 	}
5015 }
5016 
5017 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5018 {
5019 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5020 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5021 	struct intel_crtc_state *pipe_config =
5022 		to_intel_crtc_state(crtc->base.state);
5023 	struct drm_plane *primary = crtc->base.primary;
5024 	struct drm_plane_state *old_pri_state =
5025 		drm_atomic_get_existing_plane_state(old_state, primary);
5026 
5027 	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5028 
5029 	crtc->wm.cxsr_allowed = true;
5030 
5031 	if (pipe_config->update_wm_post && pipe_config->base.active)
5032 		intel_update_watermarks(crtc);
5033 
5034 	if (old_pri_state) {
5035 		struct intel_plane_state *primary_state =
5036 			to_intel_plane_state(primary->state);
5037 		struct intel_plane_state *old_primary_state =
5038 			to_intel_plane_state(old_pri_state);
5039 
5040 		intel_fbc_post_update(crtc);
5041 
5042 		if (primary_state->base.visible &&
5043 		    (needs_modeset(&pipe_config->base) ||
5044 		     !old_primary_state->base.visible))
5045 			intel_post_enable_primary(&crtc->base);
5046 	}
5047 }
5048 
5049 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5050 {
5051 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5052 	struct drm_device *dev = crtc->base.dev;
5053 	struct drm_i915_private *dev_priv = to_i915(dev);
5054 	struct intel_crtc_state *pipe_config =
5055 		to_intel_crtc_state(crtc->base.state);
5056 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5057 	struct drm_plane *primary = crtc->base.primary;
5058 	struct drm_plane_state *old_pri_state =
5059 		drm_atomic_get_existing_plane_state(old_state, primary);
5060 	bool modeset = needs_modeset(&pipe_config->base);
5061 	struct intel_atomic_state *old_intel_state =
5062 		to_intel_atomic_state(old_state);
5063 
5064 	if (old_pri_state) {
5065 		struct intel_plane_state *primary_state =
5066 			to_intel_plane_state(primary->state);
5067 		struct intel_plane_state *old_primary_state =
5068 			to_intel_plane_state(old_pri_state);
5069 
5070 		intel_fbc_pre_update(crtc, pipe_config, primary_state);
5071 
5072 		if (old_primary_state->base.visible &&
5073 		    (modeset || !primary_state->base.visible))
5074 			intel_pre_disable_primary(&crtc->base);
5075 	}
5076 
5077 	if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5078 		crtc->wm.cxsr_allowed = false;
5079 
5080 		/*
5081 		 * Vblank time updates from the shadow to live plane control register
5082 		 * are blocked if the memory self-refresh mode is active at that
5083 		 * moment. So to make sure the plane gets truly disabled, disable
5084 		 * first the self-refresh mode. The self-refresh enable bit in turn
5085 		 * will be checked/applied by the HW only at the next frame start
5086 		 * event which is after the vblank start event, so we need to have a
5087 		 * wait-for-vblank between disabling the plane and the pipe.
5088 		 */
5089 		if (old_crtc_state->base.active) {
5090 			intel_set_memory_cxsr(dev_priv, false);
5091 			dev_priv->wm.vlv.cxsr = false;
5092 			intel_wait_for_vblank(dev_priv, crtc->pipe);
5093 		}
5094 	}
5095 
5096 	/*
5097 	 * IVB workaround: must disable low power watermarks for at least
5098 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
5099 	 * when scaling is disabled.
5100 	 *
5101 	 * WaCxSRDisabledForSpriteScaling:ivb
5102 	 */
5103 	if (pipe_config->disable_lp_wm) {
5104 		ilk_disable_lp_wm(dev);
5105 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5106 	}
5107 
5108 	/*
5109 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
5110 	 * watermark programming here.
5111 	 */
5112 	if (needs_modeset(&pipe_config->base))
5113 		return;
5114 
5115 	/*
5116 	 * For platforms that support atomic watermarks, program the
5117 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5118 	 * will be the intermediate values that are safe for both pre- and
5119 	 * post- vblank; when vblank happens, the 'active' values will be set
5120 	 * to the final 'target' values and we'll do this again to get the
5121 	 * optimal watermarks.  For gen9+ platforms, the values we program here
5122 	 * will be the final target values which will get automatically latched
5123 	 * at vblank time; no further programming will be necessary.
5124 	 *
5125 	 * If a platform hasn't been transitioned to atomic watermarks yet,
5126 	 * we'll continue to update watermarks the old way, if flags tell
5127 	 * us to.
5128 	 */
5129 	if (dev_priv->display.initial_watermarks != NULL)
5130 		dev_priv->display.initial_watermarks(old_intel_state,
5131 						     pipe_config);
5132 	else if (pipe_config->update_wm_pre)
5133 		intel_update_watermarks(crtc);
5134 }
5135 
5136 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5137 {
5138 	struct drm_device *dev = crtc->dev;
5139 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5140 	struct drm_plane *p;
5141 	int pipe = intel_crtc->pipe;
5142 
5143 	intel_crtc_dpms_overlay_disable(intel_crtc);
5144 
5145 	drm_for_each_plane_mask(p, dev, plane_mask)
5146 		to_intel_plane(p)->disable_plane(p, crtc);
5147 
5148 	/*
5149 	 * FIXME: Once we grow proper nuclear flip support out of this we need
5150 	 * to compute the mask of flip planes precisely. For the time being
5151 	 * consider this a flip to a NULL plane.
5152 	 */
5153 	intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5154 }
5155 
5156 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5157 					  struct intel_crtc_state *crtc_state,
5158 					  struct drm_atomic_state *old_state)
5159 {
5160 	struct drm_connector_state *old_conn_state;
5161 	struct drm_connector *conn;
5162 	int i;
5163 
5164 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5165 		struct drm_connector_state *conn_state = conn->state;
5166 		struct intel_encoder *encoder =
5167 			to_intel_encoder(conn_state->best_encoder);
5168 
5169 		if (conn_state->crtc != crtc)
5170 			continue;
5171 
5172 		if (encoder->pre_pll_enable)
5173 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5174 	}
5175 }
5176 
5177 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5178 				      struct intel_crtc_state *crtc_state,
5179 				      struct drm_atomic_state *old_state)
5180 {
5181 	struct drm_connector_state *old_conn_state;
5182 	struct drm_connector *conn;
5183 	int i;
5184 
5185 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5186 		struct drm_connector_state *conn_state = conn->state;
5187 		struct intel_encoder *encoder =
5188 			to_intel_encoder(conn_state->best_encoder);
5189 
5190 		if (conn_state->crtc != crtc)
5191 			continue;
5192 
5193 		if (encoder->pre_enable)
5194 			encoder->pre_enable(encoder, crtc_state, conn_state);
5195 	}
5196 }
5197 
5198 static void intel_encoders_enable(struct drm_crtc *crtc,
5199 				  struct intel_crtc_state *crtc_state,
5200 				  struct drm_atomic_state *old_state)
5201 {
5202 	struct drm_connector_state *old_conn_state;
5203 	struct drm_connector *conn;
5204 	int i;
5205 
5206 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5207 		struct drm_connector_state *conn_state = conn->state;
5208 		struct intel_encoder *encoder =
5209 			to_intel_encoder(conn_state->best_encoder);
5210 
5211 		if (conn_state->crtc != crtc)
5212 			continue;
5213 
5214 		encoder->enable(encoder, crtc_state, conn_state);
5215 		intel_opregion_notify_encoder(encoder, true);
5216 	}
5217 }
5218 
5219 static void intel_encoders_disable(struct drm_crtc *crtc,
5220 				   struct intel_crtc_state *old_crtc_state,
5221 				   struct drm_atomic_state *old_state)
5222 {
5223 	struct drm_connector_state *old_conn_state;
5224 	struct drm_connector *conn;
5225 	int i;
5226 
5227 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5228 		struct intel_encoder *encoder =
5229 			to_intel_encoder(old_conn_state->best_encoder);
5230 
5231 		if (old_conn_state->crtc != crtc)
5232 			continue;
5233 
5234 		intel_opregion_notify_encoder(encoder, false);
5235 		encoder->disable(encoder, old_crtc_state, old_conn_state);
5236 	}
5237 }
5238 
5239 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5240 					struct intel_crtc_state *old_crtc_state,
5241 					struct drm_atomic_state *old_state)
5242 {
5243 	struct drm_connector_state *old_conn_state;
5244 	struct drm_connector *conn;
5245 	int i;
5246 
5247 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5248 		struct intel_encoder *encoder =
5249 			to_intel_encoder(old_conn_state->best_encoder);
5250 
5251 		if (old_conn_state->crtc != crtc)
5252 			continue;
5253 
5254 		if (encoder->post_disable)
5255 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5256 	}
5257 }
5258 
5259 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5260 					    struct intel_crtc_state *old_crtc_state,
5261 					    struct drm_atomic_state *old_state)
5262 {
5263 	struct drm_connector_state *old_conn_state;
5264 	struct drm_connector *conn;
5265 	int i;
5266 
5267 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5268 		struct intel_encoder *encoder =
5269 			to_intel_encoder(old_conn_state->best_encoder);
5270 
5271 		if (old_conn_state->crtc != crtc)
5272 			continue;
5273 
5274 		if (encoder->post_pll_disable)
5275 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5276 	}
5277 }
5278 
5279 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5280 				 struct drm_atomic_state *old_state)
5281 {
5282 	struct drm_crtc *crtc = pipe_config->base.crtc;
5283 	struct drm_device *dev = crtc->dev;
5284 	struct drm_i915_private *dev_priv = to_i915(dev);
5285 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5286 	int pipe = intel_crtc->pipe;
5287 	struct intel_atomic_state *old_intel_state =
5288 		to_intel_atomic_state(old_state);
5289 
5290 	if (WARN_ON(intel_crtc->active))
5291 		return;
5292 
5293 	/*
5294 	 * Sometimes spurious CPU pipe underruns happen during FDI
5295 	 * training, at least with VGA+HDMI cloning. Suppress them.
5296 	 *
5297 	 * On ILK we get an occasional spurious CPU pipe underruns
5298 	 * between eDP port A enable and vdd enable. Also PCH port
5299 	 * enable seems to result in the occasional CPU pipe underrun.
5300 	 *
5301 	 * Spurious PCH underruns also occur during PCH enabling.
5302 	 */
5303 	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5304 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5305 	if (intel_crtc->config->has_pch_encoder)
5306 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5307 
5308 	if (intel_crtc->config->has_pch_encoder)
5309 		intel_prepare_shared_dpll(intel_crtc);
5310 
5311 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5312 		intel_dp_set_m_n(intel_crtc, M1_N1);
5313 
5314 	intel_set_pipe_timings(intel_crtc);
5315 	intel_set_pipe_src_size(intel_crtc);
5316 
5317 	if (intel_crtc->config->has_pch_encoder) {
5318 		intel_cpu_transcoder_set_m_n(intel_crtc,
5319 				     &intel_crtc->config->fdi_m_n, NULL);
5320 	}
5321 
5322 	ironlake_set_pipeconf(crtc);
5323 
5324 	intel_crtc->active = true;
5325 
5326 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5327 
5328 	if (intel_crtc->config->has_pch_encoder) {
5329 		/* Note: FDI PLL enabling _must_ be done before we enable the
5330 		 * cpu pipes, hence this is separate from all the other fdi/pch
5331 		 * enabling. */
5332 		ironlake_fdi_pll_enable(intel_crtc);
5333 	} else {
5334 		assert_fdi_tx_disabled(dev_priv, pipe);
5335 		assert_fdi_rx_disabled(dev_priv, pipe);
5336 	}
5337 
5338 	ironlake_pfit_enable(intel_crtc);
5339 
5340 	/*
5341 	 * On ILK+ LUT must be loaded before the pipe is running but with
5342 	 * clocks enabled
5343 	 */
5344 	intel_color_load_luts(&pipe_config->base);
5345 
5346 	if (dev_priv->display.initial_watermarks != NULL)
5347 		dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5348 	intel_enable_pipe(intel_crtc);
5349 
5350 	if (intel_crtc->config->has_pch_encoder)
5351 		ironlake_pch_enable(crtc);
5352 
5353 	assert_vblank_disabled(crtc);
5354 	drm_crtc_vblank_on(crtc);
5355 
5356 	intel_encoders_enable(crtc, pipe_config, old_state);
5357 
5358 	if (HAS_PCH_CPT(dev_priv))
5359 		cpt_verify_modeset(dev, intel_crtc->pipe);
5360 
5361 	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
5362 	if (intel_crtc->config->has_pch_encoder)
5363 		intel_wait_for_vblank(dev_priv, pipe);
5364 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5365 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5366 }
5367 
5368 /* IPS only exists on ULT machines and is tied to pipe A. */
5369 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5370 {
5371 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5372 }
5373 
5374 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5375 				struct drm_atomic_state *old_state)
5376 {
5377 	struct drm_crtc *crtc = pipe_config->base.crtc;
5378 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5379 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5380 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5381 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5382 	struct intel_atomic_state *old_intel_state =
5383 		to_intel_atomic_state(old_state);
5384 
5385 	if (WARN_ON(intel_crtc->active))
5386 		return;
5387 
5388 	if (intel_crtc->config->has_pch_encoder)
5389 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5390 						      false);
5391 
5392 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5393 
5394 	if (intel_crtc->config->shared_dpll)
5395 		intel_enable_shared_dpll(intel_crtc);
5396 
5397 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5398 		intel_dp_set_m_n(intel_crtc, M1_N1);
5399 
5400 	if (!transcoder_is_dsi(cpu_transcoder))
5401 		intel_set_pipe_timings(intel_crtc);
5402 
5403 	intel_set_pipe_src_size(intel_crtc);
5404 
5405 	if (cpu_transcoder != TRANSCODER_EDP &&
5406 	    !transcoder_is_dsi(cpu_transcoder)) {
5407 		I915_WRITE(PIPE_MULT(cpu_transcoder),
5408 			   intel_crtc->config->pixel_multiplier - 1);
5409 	}
5410 
5411 	if (intel_crtc->config->has_pch_encoder) {
5412 		intel_cpu_transcoder_set_m_n(intel_crtc,
5413 				     &intel_crtc->config->fdi_m_n, NULL);
5414 	}
5415 
5416 	if (!transcoder_is_dsi(cpu_transcoder))
5417 		haswell_set_pipeconf(crtc);
5418 
5419 	haswell_set_pipemisc(crtc);
5420 
5421 	intel_color_set_csc(&pipe_config->base);
5422 
5423 	intel_crtc->active = true;
5424 
5425 	if (intel_crtc->config->has_pch_encoder)
5426 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5427 	else
5428 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5429 
5430 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5431 
5432 	if (intel_crtc->config->has_pch_encoder)
5433 		dev_priv->display.fdi_link_train(crtc);
5434 
5435 	if (!transcoder_is_dsi(cpu_transcoder))
5436 		intel_ddi_enable_pipe_clock(intel_crtc);
5437 
5438 	if (INTEL_GEN(dev_priv) >= 9)
5439 		skylake_pfit_enable(intel_crtc);
5440 	else
5441 		ironlake_pfit_enable(intel_crtc);
5442 
5443 	/*
5444 	 * On ILK+ LUT must be loaded before the pipe is running but with
5445 	 * clocks enabled
5446 	 */
5447 	intel_color_load_luts(&pipe_config->base);
5448 
5449 	intel_ddi_set_pipe_settings(crtc);
5450 	if (!transcoder_is_dsi(cpu_transcoder))
5451 		intel_ddi_enable_transcoder_func(crtc);
5452 
5453 	if (dev_priv->display.initial_watermarks != NULL)
5454 		dev_priv->display.initial_watermarks(old_intel_state,
5455 						     pipe_config);
5456 	else
5457 		intel_update_watermarks(intel_crtc);
5458 
5459 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5460 	if (!transcoder_is_dsi(cpu_transcoder))
5461 		intel_enable_pipe(intel_crtc);
5462 
5463 	if (intel_crtc->config->has_pch_encoder)
5464 		lpt_pch_enable(crtc);
5465 
5466 	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5467 		intel_ddi_set_vc_payload_alloc(crtc, true);
5468 
5469 	assert_vblank_disabled(crtc);
5470 	drm_crtc_vblank_on(crtc);
5471 
5472 	intel_encoders_enable(crtc, pipe_config, old_state);
5473 
5474 	if (intel_crtc->config->has_pch_encoder) {
5475 		intel_wait_for_vblank(dev_priv, pipe);
5476 		intel_wait_for_vblank(dev_priv, pipe);
5477 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5478 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5479 						      true);
5480 	}
5481 
5482 	/* If we change the relative order between pipe/planes enabling, we need
5483 	 * to change the workaround. */
5484 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5485 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5486 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5487 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5488 	}
5489 }
5490 
5491 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5492 {
5493 	struct drm_device *dev = crtc->base.dev;
5494 	struct drm_i915_private *dev_priv = to_i915(dev);
5495 	int pipe = crtc->pipe;
5496 
5497 	/* To avoid upsetting the power well on haswell only disable the pfit if
5498 	 * it's in use. The hw state code will make sure we get this right. */
5499 	if (force || crtc->config->pch_pfit.enabled) {
5500 		I915_WRITE(PF_CTL(pipe), 0);
5501 		I915_WRITE(PF_WIN_POS(pipe), 0);
5502 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5503 	}
5504 }
5505 
5506 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5507 				  struct drm_atomic_state *old_state)
5508 {
5509 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5510 	struct drm_device *dev = crtc->dev;
5511 	struct drm_i915_private *dev_priv = to_i915(dev);
5512 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5513 	int pipe = intel_crtc->pipe;
5514 
5515 	/*
5516 	 * Sometimes spurious CPU pipe underruns happen when the
5517 	 * pipe is already disabled, but FDI RX/TX is still enabled.
5518 	 * Happens at least with VGA+HDMI cloning. Suppress them.
5519 	 */
5520 	if (intel_crtc->config->has_pch_encoder) {
5521 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5522 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5523 	}
5524 
5525 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5526 
5527 	drm_crtc_vblank_off(crtc);
5528 	assert_vblank_disabled(crtc);
5529 
5530 	intel_disable_pipe(intel_crtc);
5531 
5532 	ironlake_pfit_disable(intel_crtc, false);
5533 
5534 	if (intel_crtc->config->has_pch_encoder)
5535 		ironlake_fdi_disable(crtc);
5536 
5537 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5538 
5539 	if (intel_crtc->config->has_pch_encoder) {
5540 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5541 
5542 		if (HAS_PCH_CPT(dev_priv)) {
5543 			i915_reg_t reg;
5544 			u32 temp;
5545 
5546 			/* disable TRANS_DP_CTL */
5547 			reg = TRANS_DP_CTL(pipe);
5548 			temp = I915_READ(reg);
5549 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5550 				  TRANS_DP_PORT_SEL_MASK);
5551 			temp |= TRANS_DP_PORT_SEL_NONE;
5552 			I915_WRITE(reg, temp);
5553 
5554 			/* disable DPLL_SEL */
5555 			temp = I915_READ(PCH_DPLL_SEL);
5556 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5557 			I915_WRITE(PCH_DPLL_SEL, temp);
5558 		}
5559 
5560 		ironlake_fdi_pll_disable(intel_crtc);
5561 	}
5562 
5563 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5564 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5565 }
5566 
5567 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5568 				 struct drm_atomic_state *old_state)
5569 {
5570 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5571 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5572 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5573 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5574 
5575 	if (intel_crtc->config->has_pch_encoder)
5576 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5577 						      false);
5578 
5579 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5580 
5581 	drm_crtc_vblank_off(crtc);
5582 	assert_vblank_disabled(crtc);
5583 
5584 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5585 	if (!transcoder_is_dsi(cpu_transcoder))
5586 		intel_disable_pipe(intel_crtc);
5587 
5588 	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5589 		intel_ddi_set_vc_payload_alloc(crtc, false);
5590 
5591 	if (!transcoder_is_dsi(cpu_transcoder))
5592 		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5593 
5594 	if (INTEL_GEN(dev_priv) >= 9)
5595 		skylake_scaler_disable(intel_crtc);
5596 	else
5597 		ironlake_pfit_disable(intel_crtc, false);
5598 
5599 	if (!transcoder_is_dsi(cpu_transcoder))
5600 		intel_ddi_disable_pipe_clock(intel_crtc);
5601 
5602 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5603 
5604 	if (old_crtc_state->has_pch_encoder)
5605 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5606 						      true);
5607 }
5608 
5609 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5610 {
5611 	struct drm_device *dev = crtc->base.dev;
5612 	struct drm_i915_private *dev_priv = to_i915(dev);
5613 	struct intel_crtc_state *pipe_config = crtc->config;
5614 
5615 	if (!pipe_config->gmch_pfit.control)
5616 		return;
5617 
5618 	/*
5619 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5620 	 * according to register description and PRM.
5621 	 */
5622 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5623 	assert_pipe_disabled(dev_priv, crtc->pipe);
5624 
5625 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5626 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5627 
5628 	/* Border color in case we don't scale up to the full screen. Black by
5629 	 * default, change to something else for debugging. */
5630 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5631 }
5632 
5633 static enum intel_display_power_domain port_to_power_domain(enum port port)
5634 {
5635 	switch (port) {
5636 	case PORT_A:
5637 		return POWER_DOMAIN_PORT_DDI_A_LANES;
5638 	case PORT_B:
5639 		return POWER_DOMAIN_PORT_DDI_B_LANES;
5640 	case PORT_C:
5641 		return POWER_DOMAIN_PORT_DDI_C_LANES;
5642 	case PORT_D:
5643 		return POWER_DOMAIN_PORT_DDI_D_LANES;
5644 	case PORT_E:
5645 		return POWER_DOMAIN_PORT_DDI_E_LANES;
5646 	default:
5647 		MISSING_CASE(port);
5648 		return POWER_DOMAIN_PORT_OTHER;
5649 	}
5650 }
5651 
5652 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5653 {
5654 	switch (port) {
5655 	case PORT_A:
5656 		return POWER_DOMAIN_AUX_A;
5657 	case PORT_B:
5658 		return POWER_DOMAIN_AUX_B;
5659 	case PORT_C:
5660 		return POWER_DOMAIN_AUX_C;
5661 	case PORT_D:
5662 		return POWER_DOMAIN_AUX_D;
5663 	case PORT_E:
5664 		/* FIXME: Check VBT for actual wiring of PORT E */
5665 		return POWER_DOMAIN_AUX_D;
5666 	default:
5667 		MISSING_CASE(port);
5668 		return POWER_DOMAIN_AUX_A;
5669 	}
5670 }
5671 
5672 enum intel_display_power_domain
5673 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5674 {
5675 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5676 	struct intel_digital_port *intel_dig_port;
5677 
5678 	switch (intel_encoder->type) {
5679 	case INTEL_OUTPUT_UNKNOWN:
5680 		/* Only DDI platforms should ever use this output type */
5681 		WARN_ON_ONCE(!HAS_DDI(dev_priv));
5682 	case INTEL_OUTPUT_DP:
5683 	case INTEL_OUTPUT_HDMI:
5684 	case INTEL_OUTPUT_EDP:
5685 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5686 		return port_to_power_domain(intel_dig_port->port);
5687 	case INTEL_OUTPUT_DP_MST:
5688 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5689 		return port_to_power_domain(intel_dig_port->port);
5690 	case INTEL_OUTPUT_ANALOG:
5691 		return POWER_DOMAIN_PORT_CRT;
5692 	case INTEL_OUTPUT_DSI:
5693 		return POWER_DOMAIN_PORT_DSI;
5694 	default:
5695 		return POWER_DOMAIN_PORT_OTHER;
5696 	}
5697 }
5698 
5699 enum intel_display_power_domain
5700 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5701 {
5702 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5703 	struct intel_digital_port *intel_dig_port;
5704 
5705 	switch (intel_encoder->type) {
5706 	case INTEL_OUTPUT_UNKNOWN:
5707 	case INTEL_OUTPUT_HDMI:
5708 		/*
5709 		 * Only DDI platforms should ever use these output types.
5710 		 * We can get here after the HDMI detect code has already set
5711 		 * the type of the shared encoder. Since we can't be sure
5712 		 * what's the status of the given connectors, play safe and
5713 		 * run the DP detection too.
5714 		 */
5715 		WARN_ON_ONCE(!HAS_DDI(dev_priv));
5716 	case INTEL_OUTPUT_DP:
5717 	case INTEL_OUTPUT_EDP:
5718 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5719 		return port_to_aux_power_domain(intel_dig_port->port);
5720 	case INTEL_OUTPUT_DP_MST:
5721 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5722 		return port_to_aux_power_domain(intel_dig_port->port);
5723 	default:
5724 		MISSING_CASE(intel_encoder->type);
5725 		return POWER_DOMAIN_AUX_A;
5726 	}
5727 }
5728 
5729 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5730 					    struct intel_crtc_state *crtc_state)
5731 {
5732 	struct drm_device *dev = crtc->dev;
5733 	struct drm_encoder *encoder;
5734 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5735 	enum i915_pipe pipe = intel_crtc->pipe;
5736 	unsigned long mask;
5737 	enum transcoder transcoder = crtc_state->cpu_transcoder;
5738 
5739 	if (!crtc_state->base.active)
5740 		return 0;
5741 
5742 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5743 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5744 	if (crtc_state->pch_pfit.enabled ||
5745 	    crtc_state->pch_pfit.force_thru)
5746 		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5747 
5748 	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5749 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5750 
5751 		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5752 	}
5753 
5754 	if (crtc_state->shared_dpll)
5755 		mask |= BIT(POWER_DOMAIN_PLLS);
5756 
5757 	return mask;
5758 }
5759 
5760 static unsigned long
5761 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5762 			       struct intel_crtc_state *crtc_state)
5763 {
5764 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5765 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5766 	enum intel_display_power_domain domain;
5767 	unsigned long domains, new_domains, old_domains;
5768 
5769 	old_domains = intel_crtc->enabled_power_domains;
5770 	intel_crtc->enabled_power_domains = new_domains =
5771 		get_crtc_power_domains(crtc, crtc_state);
5772 
5773 	domains = new_domains & ~old_domains;
5774 
5775 	for_each_power_domain(domain, domains)
5776 		intel_display_power_get(dev_priv, domain);
5777 
5778 	return old_domains & ~new_domains;
5779 }
5780 
5781 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5782 				      unsigned long domains)
5783 {
5784 	enum intel_display_power_domain domain;
5785 
5786 	for_each_power_domain(domain, domains)
5787 		intel_display_power_put(dev_priv, domain);
5788 }
5789 
5790 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5791 {
5792 	int max_cdclk_freq = dev_priv->max_cdclk_freq;
5793 
5794 	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5795 	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5796 		return max_cdclk_freq;
5797 	else if (IS_CHERRYVIEW(dev_priv))
5798 		return max_cdclk_freq*95/100;
5799 	else if (INTEL_INFO(dev_priv)->gen < 4)
5800 		return 2*max_cdclk_freq*90/100;
5801 	else
5802 		return max_cdclk_freq*90/100;
5803 }
5804 
5805 static int skl_calc_cdclk(int max_pixclk, int vco);
5806 
5807 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5808 {
5809 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5810 		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5811 		int max_cdclk, vco;
5812 
5813 		vco = dev_priv->skl_preferred_vco_freq;
5814 		WARN_ON(vco != 8100000 && vco != 8640000);
5815 
5816 		/*
5817 		 * Use the lower (vco 8640) cdclk values as a
5818 		 * first guess. skl_calc_cdclk() will correct it
5819 		 * if the preferred vco is 8100 instead.
5820 		 */
5821 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5822 			max_cdclk = 617143;
5823 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5824 			max_cdclk = 540000;
5825 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5826 			max_cdclk = 432000;
5827 		else
5828 			max_cdclk = 308571;
5829 
5830 		dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5831 	} else if (IS_BROXTON(dev_priv)) {
5832 		dev_priv->max_cdclk_freq = 624000;
5833 	} else if (IS_BROADWELL(dev_priv))  {
5834 		/*
5835 		 * FIXME with extra cooling we can allow
5836 		 * 540 MHz for ULX and 675 Mhz for ULT.
5837 		 * How can we know if extra cooling is
5838 		 * available? PCI ID, VTB, something else?
5839 		 */
5840 		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5841 			dev_priv->max_cdclk_freq = 450000;
5842 		else if (IS_BDW_ULX(dev_priv))
5843 			dev_priv->max_cdclk_freq = 450000;
5844 		else if (IS_BDW_ULT(dev_priv))
5845 			dev_priv->max_cdclk_freq = 540000;
5846 		else
5847 			dev_priv->max_cdclk_freq = 675000;
5848 	} else if (IS_CHERRYVIEW(dev_priv)) {
5849 		dev_priv->max_cdclk_freq = 320000;
5850 	} else if (IS_VALLEYVIEW(dev_priv)) {
5851 		dev_priv->max_cdclk_freq = 400000;
5852 	} else {
5853 		/* otherwise assume cdclk is fixed */
5854 		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5855 	}
5856 
5857 	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5858 
5859 	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5860 			 dev_priv->max_cdclk_freq);
5861 
5862 	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5863 			 dev_priv->max_dotclk_freq);
5864 }
5865 
5866 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5867 {
5868 	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5869 
5870 	if (INTEL_GEN(dev_priv) >= 9)
5871 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5872 				 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5873 				 dev_priv->cdclk_pll.ref);
5874 	else
5875 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5876 				 dev_priv->cdclk_freq);
5877 
5878 	/*
5879 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5880 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
5881 	 * of cdclk that generates 4MHz reference clock freq which is used to
5882 	 * generate GMBus clock. This will vary with the cdclk freq.
5883 	 */
5884 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5885 		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5886 }
5887 
5888 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5889 static int skl_cdclk_decimal(int cdclk)
5890 {
5891 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5892 }
5893 
5894 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5895 {
5896 	int ratio;
5897 
5898 	if (cdclk == dev_priv->cdclk_pll.ref)
5899 		return 0;
5900 
5901 	switch (cdclk) {
5902 	default:
5903 		MISSING_CASE(cdclk);
5904 	case 144000:
5905 	case 288000:
5906 	case 384000:
5907 	case 576000:
5908 		ratio = 60;
5909 		break;
5910 	case 624000:
5911 		ratio = 65;
5912 		break;
5913 	}
5914 
5915 	return dev_priv->cdclk_pll.ref * ratio;
5916 }
5917 
5918 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5919 {
5920 	I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5921 
5922 	/* Timeout 200us */
5923 	if (intel_wait_for_register(dev_priv,
5924 				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5925 				    1))
5926 		DRM_ERROR("timeout waiting for DE PLL unlock\n");
5927 
5928 	dev_priv->cdclk_pll.vco = 0;
5929 }
5930 
5931 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5932 {
5933 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5934 	u32 val;
5935 
5936 	val = I915_READ(BXT_DE_PLL_CTL);
5937 	val &= ~BXT_DE_PLL_RATIO_MASK;
5938 	val |= BXT_DE_PLL_RATIO(ratio);
5939 	I915_WRITE(BXT_DE_PLL_CTL, val);
5940 
5941 	I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5942 
5943 	/* Timeout 200us */
5944 	if (intel_wait_for_register(dev_priv,
5945 				    BXT_DE_PLL_ENABLE,
5946 				    BXT_DE_PLL_LOCK,
5947 				    BXT_DE_PLL_LOCK,
5948 				    1))
5949 		DRM_ERROR("timeout waiting for DE PLL lock\n");
5950 
5951 	dev_priv->cdclk_pll.vco = vco;
5952 }
5953 
5954 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5955 {
5956 	u32 val, divider;
5957 	int vco, ret;
5958 
5959 	vco = bxt_de_pll_vco(dev_priv, cdclk);
5960 
5961 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5962 
5963 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
5964 	switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5965 	case 8:
5966 		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5967 		break;
5968 	case 4:
5969 		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5970 		break;
5971 	case 3:
5972 		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5973 		break;
5974 	case 2:
5975 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5976 		break;
5977 	default:
5978 		WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5979 		WARN_ON(vco != 0);
5980 
5981 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5982 		break;
5983 	}
5984 
5985 	/* Inform power controller of upcoming frequency change */
5986 	mutex_lock(&dev_priv->rps.hw_lock);
5987 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5988 				      0x80000000);
5989 	mutex_unlock(&dev_priv->rps.hw_lock);
5990 
5991 	if (ret) {
5992 		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5993 			  ret, cdclk);
5994 		return;
5995 	}
5996 
5997 	if (dev_priv->cdclk_pll.vco != 0 &&
5998 	    dev_priv->cdclk_pll.vco != vco)
5999 		bxt_de_pll_disable(dev_priv);
6000 
6001 	if (dev_priv->cdclk_pll.vco != vco)
6002 		bxt_de_pll_enable(dev_priv, vco);
6003 
6004 	val = divider | skl_cdclk_decimal(cdclk);
6005 	/*
6006 	 * FIXME if only the cd2x divider needs changing, it could be done
6007 	 * without shutting off the pipe (if only one pipe is active).
6008 	 */
6009 	val |= BXT_CDCLK_CD2X_PIPE_NONE;
6010 	/*
6011 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6012 	 * enable otherwise.
6013 	 */
6014 	if (cdclk >= 500000)
6015 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6016 	I915_WRITE(CDCLK_CTL, val);
6017 
6018 	mutex_lock(&dev_priv->rps.hw_lock);
6019 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6020 				      DIV_ROUND_UP(cdclk, 25000));
6021 	mutex_unlock(&dev_priv->rps.hw_lock);
6022 
6023 	if (ret) {
6024 		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6025 			  ret, cdclk);
6026 		return;
6027 	}
6028 
6029 	intel_update_cdclk(dev_priv);
6030 }
6031 
6032 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6033 {
6034 	u32 cdctl, expected;
6035 
6036 	intel_update_cdclk(dev_priv);
6037 
6038 	if (dev_priv->cdclk_pll.vco == 0 ||
6039 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6040 		goto sanitize;
6041 
6042 	/* DPLL okay; verify the cdclock
6043 	 *
6044 	 * Some BIOS versions leave an incorrect decimal frequency value and
6045 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6046 	 * so sanitize this register.
6047 	 */
6048 	cdctl = I915_READ(CDCLK_CTL);
6049 	/*
6050 	 * Let's ignore the pipe field, since BIOS could have configured the
6051 	 * dividers both synching to an active pipe, or asynchronously
6052 	 * (PIPE_NONE).
6053 	 */
6054 	cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6055 
6056 	expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6057 		   skl_cdclk_decimal(dev_priv->cdclk_freq);
6058 	/*
6059 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6060 	 * enable otherwise.
6061 	 */
6062 	if (dev_priv->cdclk_freq >= 500000)
6063 		expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6064 
6065 	if (cdctl == expected)
6066 		/* All well; nothing to sanitize */
6067 		return;
6068 
6069 sanitize:
6070 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6071 
6072 	/* force cdclk programming */
6073 	dev_priv->cdclk_freq = 0;
6074 
6075 	/* force full PLL disable + enable */
6076 	dev_priv->cdclk_pll.vco = -1;
6077 }
6078 
6079 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6080 {
6081 	bxt_sanitize_cdclk(dev_priv);
6082 
6083 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6084 		return;
6085 
6086 	/*
6087 	 * FIXME:
6088 	 * - The initial CDCLK needs to be read from VBT.
6089 	 *   Need to make this change after VBT has changes for BXT.
6090 	 */
6091 	bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6092 }
6093 
6094 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6095 {
6096 	bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6097 }
6098 
6099 static int skl_calc_cdclk(int max_pixclk, int vco)
6100 {
6101 	if (vco == 8640000) {
6102 		if (max_pixclk > 540000)
6103 			return 617143;
6104 		else if (max_pixclk > 432000)
6105 			return 540000;
6106 		else if (max_pixclk > 308571)
6107 			return 432000;
6108 		else
6109 			return 308571;
6110 	} else {
6111 		if (max_pixclk > 540000)
6112 			return 675000;
6113 		else if (max_pixclk > 450000)
6114 			return 540000;
6115 		else if (max_pixclk > 337500)
6116 			return 450000;
6117 		else
6118 			return 337500;
6119 	}
6120 }
6121 
6122 static void
6123 skl_dpll0_update(struct drm_i915_private *dev_priv)
6124 {
6125 	u32 val;
6126 
6127 	dev_priv->cdclk_pll.ref = 24000;
6128 	dev_priv->cdclk_pll.vco = 0;
6129 
6130 	val = I915_READ(LCPLL1_CTL);
6131 	if ((val & LCPLL_PLL_ENABLE) == 0)
6132 		return;
6133 
6134 	if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6135 		return;
6136 
6137 	val = I915_READ(DPLL_CTRL1);
6138 
6139 	if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6140 			    DPLL_CTRL1_SSC(SKL_DPLL0) |
6141 			    DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6142 		    DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6143 		return;
6144 
6145 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6146 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6147 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6148 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6149 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6150 		dev_priv->cdclk_pll.vco = 8100000;
6151 		break;
6152 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6153 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6154 		dev_priv->cdclk_pll.vco = 8640000;
6155 		break;
6156 	default:
6157 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6158 		break;
6159 	}
6160 }
6161 
6162 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6163 {
6164 	bool changed = dev_priv->skl_preferred_vco_freq != vco;
6165 
6166 	dev_priv->skl_preferred_vco_freq = vco;
6167 
6168 	if (changed)
6169 		intel_update_max_cdclk(dev_priv);
6170 }
6171 
6172 static void
6173 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6174 {
6175 	int min_cdclk = skl_calc_cdclk(0, vco);
6176 	u32 val;
6177 
6178 	WARN_ON(vco != 8100000 && vco != 8640000);
6179 
6180 	/* select the minimum CDCLK before enabling DPLL 0 */
6181 	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6182 	I915_WRITE(CDCLK_CTL, val);
6183 	POSTING_READ(CDCLK_CTL);
6184 
6185 	/*
6186 	 * We always enable DPLL0 with the lowest link rate possible, but still
6187 	 * taking into account the VCO required to operate the eDP panel at the
6188 	 * desired frequency. The usual DP link rates operate with a VCO of
6189 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6190 	 * The modeset code is responsible for the selection of the exact link
6191 	 * rate later on, with the constraint of choosing a frequency that
6192 	 * works with vco.
6193 	 */
6194 	val = I915_READ(DPLL_CTRL1);
6195 
6196 	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6197 		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6198 	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6199 	if (vco == 8640000)
6200 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6201 					    SKL_DPLL0);
6202 	else
6203 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6204 					    SKL_DPLL0);
6205 
6206 	I915_WRITE(DPLL_CTRL1, val);
6207 	POSTING_READ(DPLL_CTRL1);
6208 
6209 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6210 
6211 	if (intel_wait_for_register(dev_priv,
6212 				    LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6213 				    5))
6214 		DRM_ERROR("DPLL0 not locked\n");
6215 
6216 	dev_priv->cdclk_pll.vco = vco;
6217 
6218 	/* We'll want to keep using the current vco from now on. */
6219 	skl_set_preferred_cdclk_vco(dev_priv, vco);
6220 }
6221 
6222 static void
6223 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6224 {
6225 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6226 	if (intel_wait_for_register(dev_priv,
6227 				   LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6228 				   1))
6229 		DRM_ERROR("Couldn't disable DPLL0\n");
6230 
6231 	dev_priv->cdclk_pll.vco = 0;
6232 }
6233 
6234 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6235 {
6236 	u32 freq_select, pcu_ack;
6237 	int ret;
6238 
6239 	WARN_ON((cdclk == 24000) != (vco == 0));
6240 
6241 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6242 
6243 	mutex_lock(&dev_priv->rps.hw_lock);
6244 	ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6245 				SKL_CDCLK_PREPARE_FOR_CHANGE,
6246 				SKL_CDCLK_READY_FOR_CHANGE,
6247 				SKL_CDCLK_READY_FOR_CHANGE, 3);
6248 	mutex_unlock(&dev_priv->rps.hw_lock);
6249 	if (ret) {
6250 		DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6251 			  ret);
6252 		return;
6253 	}
6254 
6255 	/* set CDCLK_CTL */
6256 	switch (cdclk) {
6257 	case 450000:
6258 	case 432000:
6259 		freq_select = CDCLK_FREQ_450_432;
6260 		pcu_ack = 1;
6261 		break;
6262 	case 540000:
6263 		freq_select = CDCLK_FREQ_540;
6264 		pcu_ack = 2;
6265 		break;
6266 	case 308571:
6267 	case 337500:
6268 	default:
6269 		freq_select = CDCLK_FREQ_337_308;
6270 		pcu_ack = 0;
6271 		break;
6272 	case 617143:
6273 	case 675000:
6274 		freq_select = CDCLK_FREQ_675_617;
6275 		pcu_ack = 3;
6276 		break;
6277 	}
6278 
6279 	if (dev_priv->cdclk_pll.vco != 0 &&
6280 	    dev_priv->cdclk_pll.vco != vco)
6281 		skl_dpll0_disable(dev_priv);
6282 
6283 	if (dev_priv->cdclk_pll.vco != vco)
6284 		skl_dpll0_enable(dev_priv, vco);
6285 
6286 	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6287 	POSTING_READ(CDCLK_CTL);
6288 
6289 	/* inform PCU of the change */
6290 	mutex_lock(&dev_priv->rps.hw_lock);
6291 	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6292 	mutex_unlock(&dev_priv->rps.hw_lock);
6293 
6294 	intel_update_cdclk(dev_priv);
6295 }
6296 
6297 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6298 
6299 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6300 {
6301 	skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6302 }
6303 
6304 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6305 {
6306 	int cdclk, vco;
6307 
6308 	skl_sanitize_cdclk(dev_priv);
6309 
6310 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6311 		/*
6312 		 * Use the current vco as our initial
6313 		 * guess as to what the preferred vco is.
6314 		 */
6315 		if (dev_priv->skl_preferred_vco_freq == 0)
6316 			skl_set_preferred_cdclk_vco(dev_priv,
6317 						    dev_priv->cdclk_pll.vco);
6318 		return;
6319 	}
6320 
6321 	vco = dev_priv->skl_preferred_vco_freq;
6322 	if (vco == 0)
6323 		vco = 8100000;
6324 	cdclk = skl_calc_cdclk(0, vco);
6325 
6326 	skl_set_cdclk(dev_priv, cdclk, vco);
6327 }
6328 
6329 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6330 {
6331 	uint32_t cdctl, expected;
6332 
6333 	/*
6334 	 * check if the pre-os intialized the display
6335 	 * There is SWF18 scratchpad register defined which is set by the
6336 	 * pre-os which can be used by the OS drivers to check the status
6337 	 */
6338 	if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6339 		goto sanitize;
6340 
6341 	intel_update_cdclk(dev_priv);
6342 	/* Is PLL enabled and locked ? */
6343 	if (dev_priv->cdclk_pll.vco == 0 ||
6344 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6345 		goto sanitize;
6346 
6347 	/* DPLL okay; verify the cdclock
6348 	 *
6349 	 * Noticed in some instances that the freq selection is correct but
6350 	 * decimal part is programmed wrong from BIOS where pre-os does not
6351 	 * enable display. Verify the same as well.
6352 	 */
6353 	cdctl = I915_READ(CDCLK_CTL);
6354 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6355 		skl_cdclk_decimal(dev_priv->cdclk_freq);
6356 	if (cdctl == expected)
6357 		/* All well; nothing to sanitize */
6358 		return;
6359 
6360 sanitize:
6361 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6362 
6363 	/* force cdclk programming */
6364 	dev_priv->cdclk_freq = 0;
6365 	/* force full PLL disable + enable */
6366 	dev_priv->cdclk_pll.vco = -1;
6367 }
6368 
6369 /* Adjust CDclk dividers to allow high res or save power if possible */
6370 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6371 {
6372 	struct drm_i915_private *dev_priv = to_i915(dev);
6373 	u32 val, cmd;
6374 
6375 	WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6376 					!= dev_priv->cdclk_freq);
6377 
6378 	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6379 		cmd = 2;
6380 	else if (cdclk == 266667)
6381 		cmd = 1;
6382 	else
6383 		cmd = 0;
6384 
6385 	mutex_lock(&dev_priv->rps.hw_lock);
6386 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6387 	val &= ~DSPFREQGUAR_MASK;
6388 	val |= (cmd << DSPFREQGUAR_SHIFT);
6389 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6390 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6391 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6392 		     50)) {
6393 		DRM_ERROR("timed out waiting for CDclk change\n");
6394 	}
6395 	mutex_unlock(&dev_priv->rps.hw_lock);
6396 
6397 	mutex_lock(&dev_priv->sb_lock);
6398 
6399 	if (cdclk == 400000) {
6400 		u32 divider;
6401 
6402 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6403 
6404 		/* adjust cdclk divider */
6405 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6406 		val &= ~CCK_FREQUENCY_VALUES;
6407 		val |= divider;
6408 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6409 
6410 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6411 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6412 			     50))
6413 			DRM_ERROR("timed out waiting for CDclk change\n");
6414 	}
6415 
6416 	/* adjust self-refresh exit latency value */
6417 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6418 	val &= ~0x7f;
6419 
6420 	/*
6421 	 * For high bandwidth configs, we set a higher latency in the bunit
6422 	 * so that the core display fetch happens in time to avoid underruns.
6423 	 */
6424 	if (cdclk == 400000)
6425 		val |= 4500 / 250; /* 4.5 usec */
6426 	else
6427 		val |= 3000 / 250; /* 3.0 usec */
6428 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6429 
6430 	mutex_unlock(&dev_priv->sb_lock);
6431 
6432 	intel_update_cdclk(dev_priv);
6433 }
6434 
6435 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6436 {
6437 	struct drm_i915_private *dev_priv = to_i915(dev);
6438 	u32 val, cmd;
6439 
6440 	WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6441 						!= dev_priv->cdclk_freq);
6442 
6443 	switch (cdclk) {
6444 	case 333333:
6445 	case 320000:
6446 	case 266667:
6447 	case 200000:
6448 		break;
6449 	default:
6450 		MISSING_CASE(cdclk);
6451 		return;
6452 	}
6453 
6454 	/*
6455 	 * Specs are full of misinformation, but testing on actual
6456 	 * hardware has shown that we just need to write the desired
6457 	 * CCK divider into the Punit register.
6458 	 */
6459 	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6460 
6461 	mutex_lock(&dev_priv->rps.hw_lock);
6462 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6463 	val &= ~DSPFREQGUAR_MASK_CHV;
6464 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6465 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6466 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6467 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6468 		     50)) {
6469 		DRM_ERROR("timed out waiting for CDclk change\n");
6470 	}
6471 	mutex_unlock(&dev_priv->rps.hw_lock);
6472 
6473 	intel_update_cdclk(dev_priv);
6474 }
6475 
6476 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6477 				 int max_pixclk)
6478 {
6479 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6480 	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6481 
6482 	/*
6483 	 * Really only a few cases to deal with, as only 4 CDclks are supported:
6484 	 *   200MHz
6485 	 *   267MHz
6486 	 *   320/333MHz (depends on HPLL freq)
6487 	 *   400MHz (VLV only)
6488 	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6489 	 * of the lower bin and adjust if needed.
6490 	 *
6491 	 * We seem to get an unstable or solid color picture at 200MHz.
6492 	 * Not sure what's wrong. For now use 200MHz only when all pipes
6493 	 * are off.
6494 	 */
6495 	if (!IS_CHERRYVIEW(dev_priv) &&
6496 	    max_pixclk > freq_320*limit/100)
6497 		return 400000;
6498 	else if (max_pixclk > 266667*limit/100)
6499 		return freq_320;
6500 	else if (max_pixclk > 0)
6501 		return 266667;
6502 	else
6503 		return 200000;
6504 }
6505 
6506 static int bxt_calc_cdclk(int max_pixclk)
6507 {
6508 	if (max_pixclk > 576000)
6509 		return 624000;
6510 	else if (max_pixclk > 384000)
6511 		return 576000;
6512 	else if (max_pixclk > 288000)
6513 		return 384000;
6514 	else if (max_pixclk > 144000)
6515 		return 288000;
6516 	else
6517 		return 144000;
6518 }
6519 
6520 /* Compute the max pixel clock for new configuration. */
6521 static int intel_mode_max_pixclk(struct drm_device *dev,
6522 				 struct drm_atomic_state *state)
6523 {
6524 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6525 	struct drm_i915_private *dev_priv = to_i915(dev);
6526 	struct drm_crtc *crtc;
6527 	struct drm_crtc_state *crtc_state;
6528 	unsigned max_pixclk = 0, i;
6529 	enum i915_pipe pipe;
6530 
6531 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6532 	       sizeof(intel_state->min_pixclk));
6533 
6534 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
6535 		int pixclk = 0;
6536 
6537 		if (crtc_state->enable)
6538 			pixclk = crtc_state->adjusted_mode.crtc_clock;
6539 
6540 		intel_state->min_pixclk[i] = pixclk;
6541 	}
6542 
6543 	for_each_pipe(dev_priv, pipe)
6544 		max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6545 
6546 	return max_pixclk;
6547 }
6548 
6549 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6550 {
6551 	struct drm_device *dev = state->dev;
6552 	struct drm_i915_private *dev_priv = to_i915(dev);
6553 	int max_pixclk = intel_mode_max_pixclk(dev, state);
6554 	struct intel_atomic_state *intel_state =
6555 		to_intel_atomic_state(state);
6556 
6557 	intel_state->cdclk = intel_state->dev_cdclk =
6558 		valleyview_calc_cdclk(dev_priv, max_pixclk);
6559 
6560 	if (!intel_state->active_crtcs)
6561 		intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6562 
6563 	return 0;
6564 }
6565 
6566 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6567 {
6568 	int max_pixclk = ilk_max_pixel_rate(state);
6569 	struct intel_atomic_state *intel_state =
6570 		to_intel_atomic_state(state);
6571 
6572 	intel_state->cdclk = intel_state->dev_cdclk =
6573 		bxt_calc_cdclk(max_pixclk);
6574 
6575 	if (!intel_state->active_crtcs)
6576 		intel_state->dev_cdclk = bxt_calc_cdclk(0);
6577 
6578 	return 0;
6579 }
6580 
6581 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6582 {
6583 	unsigned int credits, default_credits;
6584 
6585 	if (IS_CHERRYVIEW(dev_priv))
6586 		default_credits = PFI_CREDIT(12);
6587 	else
6588 		default_credits = PFI_CREDIT(8);
6589 
6590 	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6591 		/* CHV suggested value is 31 or 63 */
6592 		if (IS_CHERRYVIEW(dev_priv))
6593 			credits = PFI_CREDIT_63;
6594 		else
6595 			credits = PFI_CREDIT(15);
6596 	} else {
6597 		credits = default_credits;
6598 	}
6599 
6600 	/*
6601 	 * WA - write default credits before re-programming
6602 	 * FIXME: should we also set the resend bit here?
6603 	 */
6604 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6605 		   default_credits);
6606 
6607 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6608 		   credits | PFI_CREDIT_RESEND);
6609 
6610 	/*
6611 	 * FIXME is this guaranteed to clear
6612 	 * immediately or should we poll for it?
6613 	 */
6614 	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6615 }
6616 
6617 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6618 {
6619 	struct drm_device *dev = old_state->dev;
6620 	struct drm_i915_private *dev_priv = to_i915(dev);
6621 	struct intel_atomic_state *old_intel_state =
6622 		to_intel_atomic_state(old_state);
6623 	unsigned req_cdclk = old_intel_state->dev_cdclk;
6624 
6625 	/*
6626 	 * FIXME: We can end up here with all power domains off, yet
6627 	 * with a CDCLK frequency other than the minimum. To account
6628 	 * for this take the PIPE-A power domain, which covers the HW
6629 	 * blocks needed for the following programming. This can be
6630 	 * removed once it's guaranteed that we get here either with
6631 	 * the minimum CDCLK set, or the required power domains
6632 	 * enabled.
6633 	 */
6634 	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6635 
6636 	if (IS_CHERRYVIEW(dev_priv))
6637 		cherryview_set_cdclk(dev, req_cdclk);
6638 	else
6639 		valleyview_set_cdclk(dev, req_cdclk);
6640 
6641 	vlv_program_pfi_credits(dev_priv);
6642 
6643 	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6644 }
6645 
6646 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6647 				   struct drm_atomic_state *old_state)
6648 {
6649 	struct drm_crtc *crtc = pipe_config->base.crtc;
6650 	struct drm_device *dev = crtc->dev;
6651 	struct drm_i915_private *dev_priv = to_i915(dev);
6652 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6653 	int pipe = intel_crtc->pipe;
6654 
6655 	if (WARN_ON(intel_crtc->active))
6656 		return;
6657 
6658 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6659 		intel_dp_set_m_n(intel_crtc, M1_N1);
6660 
6661 	intel_set_pipe_timings(intel_crtc);
6662 	intel_set_pipe_src_size(intel_crtc);
6663 
6664 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6665 		struct drm_i915_private *dev_priv = to_i915(dev);
6666 
6667 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6668 		I915_WRITE(CHV_CANVAS(pipe), 0);
6669 	}
6670 
6671 	i9xx_set_pipeconf(intel_crtc);
6672 
6673 	intel_crtc->active = true;
6674 
6675 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6676 
6677 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6678 
6679 	if (IS_CHERRYVIEW(dev_priv)) {
6680 		chv_prepare_pll(intel_crtc, intel_crtc->config);
6681 		chv_enable_pll(intel_crtc, intel_crtc->config);
6682 	} else {
6683 		vlv_prepare_pll(intel_crtc, intel_crtc->config);
6684 		vlv_enable_pll(intel_crtc, intel_crtc->config);
6685 	}
6686 
6687 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
6688 
6689 	i9xx_pfit_enable(intel_crtc);
6690 
6691 	intel_color_load_luts(&pipe_config->base);
6692 
6693 	intel_update_watermarks(intel_crtc);
6694 	intel_enable_pipe(intel_crtc);
6695 
6696 	assert_vblank_disabled(crtc);
6697 	drm_crtc_vblank_on(crtc);
6698 
6699 	intel_encoders_enable(crtc, pipe_config, old_state);
6700 }
6701 
6702 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6703 {
6704 	struct drm_device *dev = crtc->base.dev;
6705 	struct drm_i915_private *dev_priv = to_i915(dev);
6706 
6707 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6708 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6709 }
6710 
6711 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6712 			     struct drm_atomic_state *old_state)
6713 {
6714 	struct drm_crtc *crtc = pipe_config->base.crtc;
6715 	struct drm_device *dev = crtc->dev;
6716 	struct drm_i915_private *dev_priv = to_i915(dev);
6717 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6718 	enum i915_pipe pipe = intel_crtc->pipe;
6719 
6720 	if (WARN_ON(intel_crtc->active))
6721 		return;
6722 
6723 	i9xx_set_pll_dividers(intel_crtc);
6724 
6725 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6726 		intel_dp_set_m_n(intel_crtc, M1_N1);
6727 
6728 	intel_set_pipe_timings(intel_crtc);
6729 	intel_set_pipe_src_size(intel_crtc);
6730 
6731 	i9xx_set_pipeconf(intel_crtc);
6732 
6733 	intel_crtc->active = true;
6734 
6735 	if (!IS_GEN2(dev_priv))
6736 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6737 
6738 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
6739 
6740 	i9xx_enable_pll(intel_crtc);
6741 
6742 	i9xx_pfit_enable(intel_crtc);
6743 
6744 	intel_color_load_luts(&pipe_config->base);
6745 
6746 	intel_update_watermarks(intel_crtc);
6747 	intel_enable_pipe(intel_crtc);
6748 
6749 	assert_vblank_disabled(crtc);
6750 	drm_crtc_vblank_on(crtc);
6751 
6752 	intel_encoders_enable(crtc, pipe_config, old_state);
6753 }
6754 
6755 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6756 {
6757 	struct drm_device *dev = crtc->base.dev;
6758 	struct drm_i915_private *dev_priv = to_i915(dev);
6759 
6760 	if (!crtc->config->gmch_pfit.control)
6761 		return;
6762 
6763 	assert_pipe_disabled(dev_priv, crtc->pipe);
6764 
6765 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6766 			 I915_READ(PFIT_CONTROL));
6767 	I915_WRITE(PFIT_CONTROL, 0);
6768 }
6769 
6770 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6771 			      struct drm_atomic_state *old_state)
6772 {
6773 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
6774 	struct drm_device *dev = crtc->dev;
6775 	struct drm_i915_private *dev_priv = to_i915(dev);
6776 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6777 	int pipe = intel_crtc->pipe;
6778 
6779 	/*
6780 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6781 	 * wait for planes to fully turn off before disabling the pipe.
6782 	 */
6783 	if (IS_GEN2(dev_priv))
6784 		intel_wait_for_vblank(dev_priv, pipe);
6785 
6786 	intel_encoders_disable(crtc, old_crtc_state, old_state);
6787 
6788 	drm_crtc_vblank_off(crtc);
6789 	assert_vblank_disabled(crtc);
6790 
6791 	intel_disable_pipe(intel_crtc);
6792 
6793 	i9xx_pfit_disable(intel_crtc);
6794 
6795 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6796 
6797 	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6798 		if (IS_CHERRYVIEW(dev_priv))
6799 			chv_disable_pll(dev_priv, pipe);
6800 		else if (IS_VALLEYVIEW(dev_priv))
6801 			vlv_disable_pll(dev_priv, pipe);
6802 		else
6803 			i9xx_disable_pll(intel_crtc);
6804 	}
6805 
6806 	intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6807 
6808 	if (!IS_GEN2(dev_priv))
6809 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6810 }
6811 
6812 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6813 {
6814 	struct intel_encoder *encoder;
6815 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6816 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6817 	enum intel_display_power_domain domain;
6818 	unsigned long domains;
6819 	struct drm_atomic_state *state;
6820 	struct intel_crtc_state *crtc_state;
6821 	int ret;
6822 
6823 	if (!intel_crtc->active)
6824 		return;
6825 
6826 	if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6827 		WARN_ON(intel_crtc->flip_work);
6828 
6829 		intel_pre_disable_primary_noatomic(crtc);
6830 
6831 		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6832 		to_intel_plane_state(crtc->primary->state)->base.visible = false;
6833 	}
6834 
6835 	state = drm_atomic_state_alloc(crtc->dev);
6836 	if (!state) {
6837 		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6838 			      crtc->base.id, crtc->name);
6839 		return;
6840 	}
6841 
6842 	state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6843 
6844 	/* Everything's already locked, -EDEADLK can't happen. */
6845 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6846 	ret = drm_atomic_add_affected_connectors(state, crtc);
6847 
6848 	WARN_ON(IS_ERR(crtc_state) || ret);
6849 
6850 	dev_priv->display.crtc_disable(crtc_state, state);
6851 
6852 	drm_atomic_state_put(state);
6853 
6854 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6855 		      crtc->base.id, crtc->name);
6856 
6857 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6858 	crtc->state->active = false;
6859 	intel_crtc->active = false;
6860 	crtc->enabled = false;
6861 	crtc->state->connector_mask = 0;
6862 	crtc->state->encoder_mask = 0;
6863 
6864 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6865 		encoder->base.crtc = NULL;
6866 
6867 	intel_fbc_disable(intel_crtc);
6868 	intel_update_watermarks(intel_crtc);
6869 	intel_disable_shared_dpll(intel_crtc);
6870 
6871 	domains = intel_crtc->enabled_power_domains;
6872 	for_each_power_domain(domain, domains)
6873 		intel_display_power_put(dev_priv, domain);
6874 	intel_crtc->enabled_power_domains = 0;
6875 
6876 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6877 	dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6878 }
6879 
6880 /*
6881  * turn all crtc's off, but do not adjust state
6882  * This has to be paired with a call to intel_modeset_setup_hw_state.
6883  */
6884 int intel_display_suspend(struct drm_device *dev)
6885 {
6886 	struct drm_i915_private *dev_priv = to_i915(dev);
6887 	struct drm_atomic_state *state;
6888 	int ret;
6889 
6890 	state = drm_atomic_helper_suspend(dev);
6891 	ret = PTR_ERR_OR_ZERO(state);
6892 	if (ret)
6893 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6894 	else
6895 		dev_priv->modeset_restore_state = state;
6896 	return ret;
6897 }
6898 
6899 void intel_encoder_destroy(struct drm_encoder *encoder)
6900 {
6901 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6902 
6903 	drm_encoder_cleanup(encoder);
6904 	kfree(intel_encoder);
6905 }
6906 
6907 /* Cross check the actual hw state with our own modeset state tracking (and it's
6908  * internal consistency). */
6909 static void intel_connector_verify_state(struct intel_connector *connector)
6910 {
6911 	struct drm_crtc *crtc = connector->base.state->crtc;
6912 
6913 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6914 		      connector->base.base.id,
6915 		      connector->base.name);
6916 
6917 	if (connector->get_hw_state(connector)) {
6918 		struct intel_encoder *encoder = connector->encoder;
6919 		struct drm_connector_state *conn_state = connector->base.state;
6920 
6921 		I915_STATE_WARN(!crtc,
6922 			 "connector enabled without attached crtc\n");
6923 
6924 		if (!crtc)
6925 			return;
6926 
6927 		I915_STATE_WARN(!crtc->state->active,
6928 		      "connector is active, but attached crtc isn't\n");
6929 
6930 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6931 			return;
6932 
6933 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6934 			"atomic encoder doesn't match attached encoder\n");
6935 
6936 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6937 			"attached encoder crtc differs from connector crtc\n");
6938 	} else {
6939 		I915_STATE_WARN(crtc && crtc->state->active,
6940 			"attached crtc is active, but connector isn't\n");
6941 		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6942 			"best encoder set without crtc!\n");
6943 	}
6944 }
6945 
6946 int intel_connector_init(struct intel_connector *connector)
6947 {
6948 	drm_atomic_helper_connector_reset(&connector->base);
6949 
6950 	if (!connector->base.state)
6951 		return -ENOMEM;
6952 
6953 	return 0;
6954 }
6955 
6956 struct intel_connector *intel_connector_alloc(void)
6957 {
6958 	struct intel_connector *connector;
6959 
6960 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6961 	if (!connector)
6962 		return NULL;
6963 
6964 	if (intel_connector_init(connector) < 0) {
6965 		kfree(connector);
6966 		return NULL;
6967 	}
6968 
6969 	return connector;
6970 }
6971 
6972 /* Simple connector->get_hw_state implementation for encoders that support only
6973  * one connector and no cloning and hence the encoder state determines the state
6974  * of the connector. */
6975 bool intel_connector_get_hw_state(struct intel_connector *connector)
6976 {
6977 	enum i915_pipe pipe = 0;
6978 	struct intel_encoder *encoder = connector->encoder;
6979 
6980 	return encoder->get_hw_state(encoder, &pipe);
6981 }
6982 
6983 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6984 {
6985 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6986 		return crtc_state->fdi_lanes;
6987 
6988 	return 0;
6989 }
6990 
6991 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum i915_pipe pipe,
6992 				     struct intel_crtc_state *pipe_config)
6993 {
6994 	struct drm_i915_private *dev_priv = to_i915(dev);
6995 	struct drm_atomic_state *state = pipe_config->base.state;
6996 	struct intel_crtc *other_crtc;
6997 	struct intel_crtc_state *other_crtc_state;
6998 
6999 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7000 		      pipe_name(pipe), pipe_config->fdi_lanes);
7001 	if (pipe_config->fdi_lanes > 4) {
7002 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7003 			      pipe_name(pipe), pipe_config->fdi_lanes);
7004 		return -EINVAL;
7005 	}
7006 
7007 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7008 		if (pipe_config->fdi_lanes > 2) {
7009 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7010 				      pipe_config->fdi_lanes);
7011 			return -EINVAL;
7012 		} else {
7013 			return 0;
7014 		}
7015 	}
7016 
7017 	if (INTEL_INFO(dev_priv)->num_pipes == 2)
7018 		return 0;
7019 
7020 	/* Ivybridge 3 pipe is really complicated */
7021 	switch (pipe) {
7022 	case PIPE_A:
7023 		return 0;
7024 	case PIPE_B:
7025 		if (pipe_config->fdi_lanes <= 2)
7026 			return 0;
7027 
7028 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7029 		other_crtc_state =
7030 			intel_atomic_get_crtc_state(state, other_crtc);
7031 		if (IS_ERR(other_crtc_state))
7032 			return PTR_ERR(other_crtc_state);
7033 
7034 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7035 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7036 				      pipe_name(pipe), pipe_config->fdi_lanes);
7037 			return -EINVAL;
7038 		}
7039 		return 0;
7040 	case PIPE_C:
7041 		if (pipe_config->fdi_lanes > 2) {
7042 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7043 				      pipe_name(pipe), pipe_config->fdi_lanes);
7044 			return -EINVAL;
7045 		}
7046 
7047 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7048 		other_crtc_state =
7049 			intel_atomic_get_crtc_state(state, other_crtc);
7050 		if (IS_ERR(other_crtc_state))
7051 			return PTR_ERR(other_crtc_state);
7052 
7053 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7054 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7055 			return -EINVAL;
7056 		}
7057 		return 0;
7058 	default:
7059 		BUG();
7060 	}
7061 }
7062 
7063 #define RETRY 1
7064 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7065 				       struct intel_crtc_state *pipe_config)
7066 {
7067 	struct drm_device *dev = intel_crtc->base.dev;
7068 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7069 	int lane, link_bw, fdi_dotclock, ret;
7070 	bool needs_recompute = false;
7071 
7072 retry:
7073 	/* FDI is a binary signal running at ~2.7GHz, encoding
7074 	 * each output octet as 10 bits. The actual frequency
7075 	 * is stored as a divider into a 100MHz clock, and the
7076 	 * mode pixel clock is stored in units of 1KHz.
7077 	 * Hence the bw of each lane in terms of the mode signal
7078 	 * is:
7079 	 */
7080 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7081 
7082 	fdi_dotclock = adjusted_mode->crtc_clock;
7083 
7084 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7085 					   pipe_config->pipe_bpp);
7086 
7087 	pipe_config->fdi_lanes = lane;
7088 
7089 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7090 			       link_bw, &pipe_config->fdi_m_n);
7091 
7092 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7093 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7094 		pipe_config->pipe_bpp -= 2*3;
7095 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7096 			      pipe_config->pipe_bpp);
7097 		needs_recompute = true;
7098 		pipe_config->bw_constrained = true;
7099 
7100 		goto retry;
7101 	}
7102 
7103 	if (needs_recompute)
7104 		return RETRY;
7105 
7106 	return ret;
7107 }
7108 
7109 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7110 				     struct intel_crtc_state *pipe_config)
7111 {
7112 	if (pipe_config->pipe_bpp > 24)
7113 		return false;
7114 
7115 	/* HSW can handle pixel rate up to cdclk? */
7116 	if (IS_HASWELL(dev_priv))
7117 		return true;
7118 
7119 	/*
7120 	 * We compare against max which means we must take
7121 	 * the increased cdclk requirement into account when
7122 	 * calculating the new cdclk.
7123 	 *
7124 	 * Should measure whether using a lower cdclk w/o IPS
7125 	 */
7126 	return ilk_pipe_pixel_rate(pipe_config) <=
7127 		dev_priv->max_cdclk_freq * 95 / 100;
7128 }
7129 
7130 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7131 				   struct intel_crtc_state *pipe_config)
7132 {
7133 	struct drm_device *dev = crtc->base.dev;
7134 	struct drm_i915_private *dev_priv = to_i915(dev);
7135 
7136 	pipe_config->ips_enabled = i915.enable_ips &&
7137 		hsw_crtc_supports_ips(crtc) &&
7138 		pipe_config_supports_ips(dev_priv, pipe_config);
7139 }
7140 
7141 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7142 {
7143 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7144 
7145 	/* GDG double wide on either pipe, otherwise pipe A only */
7146 	return INTEL_INFO(dev_priv)->gen < 4 &&
7147 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7148 }
7149 
7150 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7151 				     struct intel_crtc_state *pipe_config)
7152 {
7153 	struct drm_device *dev = crtc->base.dev;
7154 	struct drm_i915_private *dev_priv = to_i915(dev);
7155 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7156 	int clock_limit = dev_priv->max_dotclk_freq;
7157 
7158 	if (INTEL_GEN(dev_priv) < 4) {
7159 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7160 
7161 		/*
7162 		 * Enable double wide mode when the dot clock
7163 		 * is > 90% of the (display) core speed.
7164 		 */
7165 		if (intel_crtc_supports_double_wide(crtc) &&
7166 		    adjusted_mode->crtc_clock > clock_limit) {
7167 			clock_limit = dev_priv->max_dotclk_freq;
7168 			pipe_config->double_wide = true;
7169 		}
7170 	}
7171 
7172 	if (adjusted_mode->crtc_clock > clock_limit) {
7173 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7174 			      adjusted_mode->crtc_clock, clock_limit,
7175 			      yesno(pipe_config->double_wide));
7176 		return -EINVAL;
7177 	}
7178 
7179 	/*
7180 	 * Pipe horizontal size must be even in:
7181 	 * - DVO ganged mode
7182 	 * - LVDS dual channel mode
7183 	 * - Double wide pipe
7184 	 */
7185 	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7186 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7187 		pipe_config->pipe_src_w &= ~1;
7188 
7189 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
7190 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7191 	 */
7192 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7193 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7194 		return -EINVAL;
7195 
7196 	if (HAS_IPS(dev_priv))
7197 		hsw_compute_ips_config(crtc, pipe_config);
7198 
7199 	if (pipe_config->has_pch_encoder)
7200 		return ironlake_fdi_compute_config(crtc, pipe_config);
7201 
7202 	return 0;
7203 }
7204 
7205 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7206 {
7207 	u32 cdctl;
7208 
7209 	skl_dpll0_update(dev_priv);
7210 
7211 	if (dev_priv->cdclk_pll.vco == 0)
7212 		return dev_priv->cdclk_pll.ref;
7213 
7214 	cdctl = I915_READ(CDCLK_CTL);
7215 
7216 	if (dev_priv->cdclk_pll.vco == 8640000) {
7217 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7218 		case CDCLK_FREQ_450_432:
7219 			return 432000;
7220 		case CDCLK_FREQ_337_308:
7221 			return 308571;
7222 		case CDCLK_FREQ_540:
7223 			return 540000;
7224 		case CDCLK_FREQ_675_617:
7225 			return 617143;
7226 		default:
7227 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7228 		}
7229 	} else {
7230 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7231 		case CDCLK_FREQ_450_432:
7232 			return 450000;
7233 		case CDCLK_FREQ_337_308:
7234 			return 337500;
7235 		case CDCLK_FREQ_540:
7236 			return 540000;
7237 		case CDCLK_FREQ_675_617:
7238 			return 675000;
7239 		default:
7240 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7241 		}
7242 	}
7243 
7244 	return dev_priv->cdclk_pll.ref;
7245 }
7246 
7247 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7248 {
7249 	u32 val;
7250 
7251 	dev_priv->cdclk_pll.ref = 19200;
7252 	dev_priv->cdclk_pll.vco = 0;
7253 
7254 	val = I915_READ(BXT_DE_PLL_ENABLE);
7255 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7256 		return;
7257 
7258 	if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7259 		return;
7260 
7261 	val = I915_READ(BXT_DE_PLL_CTL);
7262 	dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7263 		dev_priv->cdclk_pll.ref;
7264 }
7265 
7266 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7267 {
7268 	u32 divider;
7269 	int div, vco;
7270 
7271 	bxt_de_pll_update(dev_priv);
7272 
7273 	vco = dev_priv->cdclk_pll.vco;
7274 	if (vco == 0)
7275 		return dev_priv->cdclk_pll.ref;
7276 
7277 	divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7278 
7279 	switch (divider) {
7280 	case BXT_CDCLK_CD2X_DIV_SEL_1:
7281 		div = 2;
7282 		break;
7283 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7284 		div = 3;
7285 		break;
7286 	case BXT_CDCLK_CD2X_DIV_SEL_2:
7287 		div = 4;
7288 		break;
7289 	case BXT_CDCLK_CD2X_DIV_SEL_4:
7290 		div = 8;
7291 		break;
7292 	default:
7293 		MISSING_CASE(divider);
7294 		return dev_priv->cdclk_pll.ref;
7295 	}
7296 
7297 	return DIV_ROUND_CLOSEST(vco, div);
7298 }
7299 
7300 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7301 {
7302 	uint32_t lcpll = I915_READ(LCPLL_CTL);
7303 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7304 
7305 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
7306 		return 800000;
7307 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7308 		return 450000;
7309 	else if (freq == LCPLL_CLK_FREQ_450)
7310 		return 450000;
7311 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7312 		return 540000;
7313 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7314 		return 337500;
7315 	else
7316 		return 675000;
7317 }
7318 
7319 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7320 {
7321 	uint32_t lcpll = I915_READ(LCPLL_CTL);
7322 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7323 
7324 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
7325 		return 800000;
7326 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7327 		return 450000;
7328 	else if (freq == LCPLL_CLK_FREQ_450)
7329 		return 450000;
7330 	else if (IS_HSW_ULT(dev_priv))
7331 		return 337500;
7332 	else
7333 		return 540000;
7334 }
7335 
7336 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7337 {
7338 	return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7339 				      CCK_DISPLAY_CLOCK_CONTROL);
7340 }
7341 
7342 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7343 {
7344 	return 450000;
7345 }
7346 
7347 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7348 {
7349 	return 400000;
7350 }
7351 
7352 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7353 {
7354 	return 333333;
7355 }
7356 
7357 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7358 {
7359 	return 200000;
7360 }
7361 
7362 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7363 {
7364 	struct pci_dev *pdev = dev_priv->drm.pdev;
7365 	u16 gcfgc = 0;
7366 
7367 	pci_read_config_word(pdev, GCFGC, &gcfgc);
7368 
7369 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7370 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7371 		return 266667;
7372 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7373 		return 333333;
7374 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7375 		return 444444;
7376 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7377 		return 200000;
7378 	default:
7379 		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7380 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7381 		return 133333;
7382 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7383 		return 166667;
7384 	}
7385 }
7386 
7387 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7388 {
7389 	struct pci_dev *pdev = dev_priv->drm.pdev;
7390 	u16 gcfgc = 0;
7391 
7392 	pci_read_config_word(pdev, GCFGC, &gcfgc);
7393 
7394 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7395 		return 133333;
7396 	else {
7397 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7398 		case GC_DISPLAY_CLOCK_333_MHZ:
7399 			return 333333;
7400 		default:
7401 		case GC_DISPLAY_CLOCK_190_200_MHZ:
7402 			return 190000;
7403 		}
7404 	}
7405 }
7406 
7407 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7408 {
7409 	return 266667;
7410 }
7411 
7412 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7413 {
7414 	struct pci_dev *pdev = dev_priv->drm.pdev;
7415 	u16 hpllcc = 0;
7416 
7417 	/*
7418 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7419 	 * encoding is different :(
7420 	 * FIXME is this the right way to detect 852GM/852GMV?
7421 	 */
7422 	if (pdev->revision == 0x1)
7423 		return 133333;
7424 
7425 	pci_bus_read_config_word(pdev->bus,
7426 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7427 
7428 	/* Assume that the hardware is in the high speed state.  This
7429 	 * should be the default.
7430 	 */
7431 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7432 	case GC_CLOCK_133_200:
7433 	case GC_CLOCK_133_200_2:
7434 	case GC_CLOCK_100_200:
7435 		return 200000;
7436 	case GC_CLOCK_166_250:
7437 		return 250000;
7438 	case GC_CLOCK_100_133:
7439 		return 133333;
7440 	case GC_CLOCK_133_266:
7441 	case GC_CLOCK_133_266_2:
7442 	case GC_CLOCK_166_266:
7443 		return 266667;
7444 	}
7445 
7446 	/* Shouldn't happen */
7447 	return 0;
7448 }
7449 
7450 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7451 {
7452 	return 133333;
7453 }
7454 
7455 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7456 {
7457 	static const unsigned int blb_vco[8] = {
7458 		[0] = 3200000,
7459 		[1] = 4000000,
7460 		[2] = 5333333,
7461 		[3] = 4800000,
7462 		[4] = 6400000,
7463 	};
7464 	static const unsigned int pnv_vco[8] = {
7465 		[0] = 3200000,
7466 		[1] = 4000000,
7467 		[2] = 5333333,
7468 		[3] = 4800000,
7469 		[4] = 2666667,
7470 	};
7471 	static const unsigned int cl_vco[8] = {
7472 		[0] = 3200000,
7473 		[1] = 4000000,
7474 		[2] = 5333333,
7475 		[3] = 6400000,
7476 		[4] = 3333333,
7477 		[5] = 3566667,
7478 		[6] = 4266667,
7479 	};
7480 	static const unsigned int elk_vco[8] = {
7481 		[0] = 3200000,
7482 		[1] = 4000000,
7483 		[2] = 5333333,
7484 		[3] = 4800000,
7485 	};
7486 	static const unsigned int ctg_vco[8] = {
7487 		[0] = 3200000,
7488 		[1] = 4000000,
7489 		[2] = 5333333,
7490 		[3] = 6400000,
7491 		[4] = 2666667,
7492 		[5] = 4266667,
7493 	};
7494 	const unsigned int *vco_table;
7495 	unsigned int vco;
7496 	uint8_t tmp = 0;
7497 
7498 	/* FIXME other chipsets? */
7499 	if (IS_GM45(dev_priv))
7500 		vco_table = ctg_vco;
7501 	else if (IS_G4X(dev_priv))
7502 		vco_table = elk_vco;
7503 	else if (IS_CRESTLINE(dev_priv))
7504 		vco_table = cl_vco;
7505 	else if (IS_PINEVIEW(dev_priv))
7506 		vco_table = pnv_vco;
7507 	else if (IS_G33(dev_priv))
7508 		vco_table = blb_vco;
7509 	else
7510 		return 0;
7511 
7512 	tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7513 
7514 	vco = vco_table[tmp & 0x7];
7515 	if (vco == 0)
7516 		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7517 	else
7518 		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7519 
7520 	return vco;
7521 }
7522 
7523 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7524 {
7525 	struct pci_dev *pdev = dev_priv->drm.pdev;
7526 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7527 	uint16_t tmp = 0;
7528 
7529 	pci_read_config_word(pdev, GCFGC, &tmp);
7530 
7531 	cdclk_sel = (tmp >> 12) & 0x1;
7532 
7533 	switch (vco) {
7534 	case 2666667:
7535 	case 4000000:
7536 	case 5333333:
7537 		return cdclk_sel ? 333333 : 222222;
7538 	case 3200000:
7539 		return cdclk_sel ? 320000 : 228571;
7540 	default:
7541 		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7542 		return 222222;
7543 	}
7544 }
7545 
7546 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7547 {
7548 	struct pci_dev *pdev = dev_priv->drm.pdev;
7549 	static const uint8_t div_3200[] = { 16, 10,  8 };
7550 	static const uint8_t div_4000[] = { 20, 12, 10 };
7551 	static const uint8_t div_5333[] = { 24, 16, 14 };
7552 	const uint8_t *div_table;
7553 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7554 	uint16_t tmp = 0;
7555 
7556 	pci_read_config_word(pdev, GCFGC, &tmp);
7557 
7558 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7559 
7560 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7561 		goto fail;
7562 
7563 	switch (vco) {
7564 	case 3200000:
7565 		div_table = div_3200;
7566 		break;
7567 	case 4000000:
7568 		div_table = div_4000;
7569 		break;
7570 	case 5333333:
7571 		div_table = div_5333;
7572 		break;
7573 	default:
7574 		goto fail;
7575 	}
7576 
7577 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7578 
7579 fail:
7580 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7581 	return 200000;
7582 }
7583 
7584 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7585 {
7586 	struct pci_dev *pdev = dev_priv->drm.pdev;
7587 	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7588 	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7589 	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7590 	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7591 	const uint8_t *div_table;
7592 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7593 	uint16_t tmp = 0;
7594 
7595 	pci_read_config_word(pdev, GCFGC, &tmp);
7596 
7597 	cdclk_sel = (tmp >> 4) & 0x7;
7598 
7599 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7600 		goto fail;
7601 
7602 	switch (vco) {
7603 	case 3200000:
7604 		div_table = div_3200;
7605 		break;
7606 	case 4000000:
7607 		div_table = div_4000;
7608 		break;
7609 	case 4800000:
7610 		div_table = div_4800;
7611 		break;
7612 	case 5333333:
7613 		div_table = div_5333;
7614 		break;
7615 	default:
7616 		goto fail;
7617 	}
7618 
7619 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7620 
7621 fail:
7622 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7623 	return 190476;
7624 }
7625 
7626 static void
7627 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7628 {
7629 	while (*num > DATA_LINK_M_N_MASK ||
7630 	       *den > DATA_LINK_M_N_MASK) {
7631 		*num >>= 1;
7632 		*den >>= 1;
7633 	}
7634 }
7635 
7636 static void compute_m_n(unsigned int m, unsigned int n,
7637 			uint32_t *ret_m, uint32_t *ret_n)
7638 {
7639 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7640 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7641 	intel_reduce_m_n_ratio(ret_m, ret_n);
7642 }
7643 
7644 void
7645 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7646 		       int pixel_clock, int link_clock,
7647 		       struct intel_link_m_n *m_n)
7648 {
7649 	m_n->tu = 64;
7650 
7651 	compute_m_n(bits_per_pixel * pixel_clock,
7652 		    link_clock * nlanes * 8,
7653 		    &m_n->gmch_m, &m_n->gmch_n);
7654 
7655 	compute_m_n(pixel_clock, link_clock,
7656 		    &m_n->link_m, &m_n->link_n);
7657 }
7658 
7659 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7660 {
7661 	if (i915.panel_use_ssc >= 0)
7662 		return i915.panel_use_ssc != 0;
7663 	return dev_priv->vbt.lvds_use_ssc
7664 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7665 }
7666 
7667 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7668 {
7669 	return (1 << dpll->n) << 16 | dpll->m2;
7670 }
7671 
7672 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7673 {
7674 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7675 }
7676 
7677 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7678 				     struct intel_crtc_state *crtc_state,
7679 				     struct dpll *reduced_clock)
7680 {
7681 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7682 	u32 fp, fp2 = 0;
7683 
7684 	if (IS_PINEVIEW(dev_priv)) {
7685 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7686 		if (reduced_clock)
7687 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7688 	} else {
7689 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7690 		if (reduced_clock)
7691 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7692 	}
7693 
7694 	crtc_state->dpll_hw_state.fp0 = fp;
7695 
7696 	crtc->lowfreq_avail = false;
7697 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7698 	    reduced_clock) {
7699 		crtc_state->dpll_hw_state.fp1 = fp2;
7700 		crtc->lowfreq_avail = true;
7701 	} else {
7702 		crtc_state->dpll_hw_state.fp1 = fp;
7703 	}
7704 }
7705 
7706 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum i915_pipe
7707 		pipe)
7708 {
7709 	u32 reg_val;
7710 
7711 	/*
7712 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7713 	 * and set it to a reasonable value instead.
7714 	 */
7715 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7716 	reg_val &= 0xffffff00;
7717 	reg_val |= 0x00000030;
7718 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7719 
7720 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7721 	reg_val &= 0x8cffffff;
7722 	reg_val = 0x8c000000;
7723 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7724 
7725 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7726 	reg_val &= 0xffffff00;
7727 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7728 
7729 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7730 	reg_val &= 0x00ffffff;
7731 	reg_val |= 0xb0000000;
7732 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7733 }
7734 
7735 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7736 					 struct intel_link_m_n *m_n)
7737 {
7738 	struct drm_device *dev = crtc->base.dev;
7739 	struct drm_i915_private *dev_priv = to_i915(dev);
7740 	int pipe = crtc->pipe;
7741 
7742 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7743 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7744 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7745 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7746 }
7747 
7748 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7749 					 struct intel_link_m_n *m_n,
7750 					 struct intel_link_m_n *m2_n2)
7751 {
7752 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7753 	int pipe = crtc->pipe;
7754 	enum transcoder transcoder = crtc->config->cpu_transcoder;
7755 
7756 	if (INTEL_GEN(dev_priv) >= 5) {
7757 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7758 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7759 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7760 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7761 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7762 		 * for gen < 8) and if DRRS is supported (to make sure the
7763 		 * registers are not unnecessarily accessed).
7764 		 */
7765 		if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7766 		    INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7767 			I915_WRITE(PIPE_DATA_M2(transcoder),
7768 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7769 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7770 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7771 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7772 		}
7773 	} else {
7774 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7775 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7776 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7777 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7778 	}
7779 }
7780 
7781 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7782 {
7783 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7784 
7785 	if (m_n == M1_N1) {
7786 		dp_m_n = &crtc->config->dp_m_n;
7787 		dp_m2_n2 = &crtc->config->dp_m2_n2;
7788 	} else if (m_n == M2_N2) {
7789 
7790 		/*
7791 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7792 		 * needs to be programmed into M1_N1.
7793 		 */
7794 		dp_m_n = &crtc->config->dp_m2_n2;
7795 	} else {
7796 		DRM_ERROR("Unsupported divider value\n");
7797 		return;
7798 	}
7799 
7800 	if (crtc->config->has_pch_encoder)
7801 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7802 	else
7803 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7804 }
7805 
7806 static void vlv_compute_dpll(struct intel_crtc *crtc,
7807 			     struct intel_crtc_state *pipe_config)
7808 {
7809 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7810 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7811 	if (crtc->pipe != PIPE_A)
7812 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7813 
7814 	/* DPLL not used with DSI, but still need the rest set up */
7815 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7816 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7817 			DPLL_EXT_BUFFER_ENABLE_VLV;
7818 
7819 	pipe_config->dpll_hw_state.dpll_md =
7820 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7821 }
7822 
7823 static void chv_compute_dpll(struct intel_crtc *crtc,
7824 			     struct intel_crtc_state *pipe_config)
7825 {
7826 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7827 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7828 	if (crtc->pipe != PIPE_A)
7829 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7830 
7831 	/* DPLL not used with DSI, but still need the rest set up */
7832 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7833 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7834 
7835 	pipe_config->dpll_hw_state.dpll_md =
7836 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7837 }
7838 
7839 static void vlv_prepare_pll(struct intel_crtc *crtc,
7840 			    const struct intel_crtc_state *pipe_config)
7841 {
7842 	struct drm_device *dev = crtc->base.dev;
7843 	struct drm_i915_private *dev_priv = to_i915(dev);
7844 	enum i915_pipe pipe = crtc->pipe;
7845 	u32 mdiv;
7846 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7847 	u32 coreclk, reg_val;
7848 
7849 	/* Enable Refclk */
7850 	I915_WRITE(DPLL(pipe),
7851 		   pipe_config->dpll_hw_state.dpll &
7852 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7853 
7854 	/* No need to actually set up the DPLL with DSI */
7855 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7856 		return;
7857 
7858 	mutex_lock(&dev_priv->sb_lock);
7859 
7860 	bestn = pipe_config->dpll.n;
7861 	bestm1 = pipe_config->dpll.m1;
7862 	bestm2 = pipe_config->dpll.m2;
7863 	bestp1 = pipe_config->dpll.p1;
7864 	bestp2 = pipe_config->dpll.p2;
7865 
7866 	/* See eDP HDMI DPIO driver vbios notes doc */
7867 
7868 	/* PLL B needs special handling */
7869 	if (pipe == PIPE_B)
7870 		vlv_pllb_recal_opamp(dev_priv, pipe);
7871 
7872 	/* Set up Tx target for periodic Rcomp update */
7873 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7874 
7875 	/* Disable target IRef on PLL */
7876 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7877 	reg_val &= 0x00ffffff;
7878 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7879 
7880 	/* Disable fast lock */
7881 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7882 
7883 	/* Set idtafcrecal before PLL is enabled */
7884 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7885 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7886 	mdiv |= ((bestn << DPIO_N_SHIFT));
7887 	mdiv |= (1 << DPIO_K_SHIFT);
7888 
7889 	/*
7890 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7891 	 * but we don't support that).
7892 	 * Note: don't use the DAC post divider as it seems unstable.
7893 	 */
7894 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7895 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7896 
7897 	mdiv |= DPIO_ENABLE_CALIBRATION;
7898 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7899 
7900 	/* Set HBR and RBR LPF coefficients */
7901 	if (pipe_config->port_clock == 162000 ||
7902 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7903 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7904 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7905 				 0x009f0003);
7906 	else
7907 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7908 				 0x00d0000f);
7909 
7910 	if (intel_crtc_has_dp_encoder(pipe_config)) {
7911 		/* Use SSC source */
7912 		if (pipe == PIPE_A)
7913 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7914 					 0x0df40000);
7915 		else
7916 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7917 					 0x0df70000);
7918 	} else { /* HDMI or VGA */
7919 		/* Use bend source */
7920 		if (pipe == PIPE_A)
7921 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7922 					 0x0df70000);
7923 		else
7924 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7925 					 0x0df40000);
7926 	}
7927 
7928 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7929 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7930 	if (intel_crtc_has_dp_encoder(crtc->config))
7931 		coreclk |= 0x01000000;
7932 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7933 
7934 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7935 	mutex_unlock(&dev_priv->sb_lock);
7936 }
7937 
7938 static void chv_prepare_pll(struct intel_crtc *crtc,
7939 			    const struct intel_crtc_state *pipe_config)
7940 {
7941 	struct drm_device *dev = crtc->base.dev;
7942 	struct drm_i915_private *dev_priv = to_i915(dev);
7943 	enum i915_pipe pipe = crtc->pipe;
7944 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7945 	u32 loopfilter, tribuf_calcntr;
7946 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7947 	u32 dpio_val;
7948 	int vco;
7949 
7950 	/* Enable Refclk and SSC */
7951 	I915_WRITE(DPLL(pipe),
7952 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7953 
7954 	/* No need to actually set up the DPLL with DSI */
7955 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7956 		return;
7957 
7958 	bestn = pipe_config->dpll.n;
7959 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7960 	bestm1 = pipe_config->dpll.m1;
7961 	bestm2 = pipe_config->dpll.m2 >> 22;
7962 	bestp1 = pipe_config->dpll.p1;
7963 	bestp2 = pipe_config->dpll.p2;
7964 	vco = pipe_config->dpll.vco;
7965 	dpio_val = 0;
7966 	loopfilter = 0;
7967 
7968 	mutex_lock(&dev_priv->sb_lock);
7969 
7970 	/* p1 and p2 divider */
7971 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7972 			5 << DPIO_CHV_S1_DIV_SHIFT |
7973 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7974 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7975 			1 << DPIO_CHV_K_DIV_SHIFT);
7976 
7977 	/* Feedback post-divider - m2 */
7978 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7979 
7980 	/* Feedback refclk divider - n and m1 */
7981 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7982 			DPIO_CHV_M1_DIV_BY_2 |
7983 			1 << DPIO_CHV_N_DIV_SHIFT);
7984 
7985 	/* M2 fraction division */
7986 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7987 
7988 	/* M2 fraction division enable */
7989 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7990 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7991 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7992 	if (bestm2_frac)
7993 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7994 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7995 
7996 	/* Program digital lock detect threshold */
7997 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7998 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7999 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8000 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8001 	if (!bestm2_frac)
8002 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8003 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8004 
8005 	/* Loop filter */
8006 	if (vco == 5400000) {
8007 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8008 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8009 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8010 		tribuf_calcntr = 0x9;
8011 	} else if (vco <= 6200000) {
8012 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8013 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8014 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8015 		tribuf_calcntr = 0x9;
8016 	} else if (vco <= 6480000) {
8017 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8018 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8019 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8020 		tribuf_calcntr = 0x8;
8021 	} else {
8022 		/* Not supported. Apply the same limits as in the max case */
8023 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8024 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8025 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8026 		tribuf_calcntr = 0;
8027 	}
8028 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8029 
8030 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8031 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8032 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8033 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8034 
8035 	/* AFC Recal */
8036 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8037 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8038 			DPIO_AFC_RECAL);
8039 
8040 	mutex_unlock(&dev_priv->sb_lock);
8041 }
8042 
8043 /**
8044  * vlv_force_pll_on - forcibly enable just the PLL
8045  * @dev_priv: i915 private structure
8046  * @pipe: pipe PLL to enable
8047  * @dpll: PLL configuration
8048  *
8049  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8050  * in cases where we need the PLL enabled even when @pipe is not going to
8051  * be enabled.
8052  */
8053 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
8054 		     const struct dpll *dpll)
8055 {
8056 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8057 	struct intel_crtc_state *pipe_config;
8058 
8059 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8060 	if (!pipe_config)
8061 		return -ENOMEM;
8062 
8063 	pipe_config->base.crtc = &crtc->base;
8064 	pipe_config->pixel_multiplier = 1;
8065 	pipe_config->dpll = *dpll;
8066 
8067 	if (IS_CHERRYVIEW(dev_priv)) {
8068 		chv_compute_dpll(crtc, pipe_config);
8069 		chv_prepare_pll(crtc, pipe_config);
8070 		chv_enable_pll(crtc, pipe_config);
8071 	} else {
8072 		vlv_compute_dpll(crtc, pipe_config);
8073 		vlv_prepare_pll(crtc, pipe_config);
8074 		vlv_enable_pll(crtc, pipe_config);
8075 	}
8076 
8077 	kfree(pipe_config);
8078 
8079 	return 0;
8080 }
8081 
8082 /**
8083  * vlv_force_pll_off - forcibly disable just the PLL
8084  * @dev_priv: i915 private structure
8085  * @pipe: pipe PLL to disable
8086  *
8087  * Disable the PLL for @pipe. To be used in cases where we need
8088  * the PLL enabled even when @pipe is not going to be enabled.
8089  */
8090 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
8091 {
8092 	if (IS_CHERRYVIEW(dev_priv))
8093 		chv_disable_pll(dev_priv, pipe);
8094 	else
8095 		vlv_disable_pll(dev_priv, pipe);
8096 }
8097 
8098 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8099 			      struct intel_crtc_state *crtc_state,
8100 			      struct dpll *reduced_clock)
8101 {
8102 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8103 	u32 dpll;
8104 	struct dpll *clock = &crtc_state->dpll;
8105 
8106 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8107 
8108 	dpll = DPLL_VGA_MODE_DIS;
8109 
8110 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8111 		dpll |= DPLLB_MODE_LVDS;
8112 	else
8113 		dpll |= DPLLB_MODE_DAC_SERIAL;
8114 
8115 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8116 		dpll |= (crtc_state->pixel_multiplier - 1)
8117 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8118 	}
8119 
8120 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8121 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8122 		dpll |= DPLL_SDVO_HIGH_SPEED;
8123 
8124 	if (intel_crtc_has_dp_encoder(crtc_state))
8125 		dpll |= DPLL_SDVO_HIGH_SPEED;
8126 
8127 	/* compute bitmask from p1 value */
8128 	if (IS_PINEVIEW(dev_priv))
8129 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8130 	else {
8131 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8132 		if (IS_G4X(dev_priv) && reduced_clock)
8133 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8134 	}
8135 	switch (clock->p2) {
8136 	case 5:
8137 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8138 		break;
8139 	case 7:
8140 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8141 		break;
8142 	case 10:
8143 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8144 		break;
8145 	case 14:
8146 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8147 		break;
8148 	}
8149 	if (INTEL_GEN(dev_priv) >= 4)
8150 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8151 
8152 	if (crtc_state->sdvo_tv_clock)
8153 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8154 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8155 		 intel_panel_use_ssc(dev_priv))
8156 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8157 	else
8158 		dpll |= PLL_REF_INPUT_DREFCLK;
8159 
8160 	dpll |= DPLL_VCO_ENABLE;
8161 	crtc_state->dpll_hw_state.dpll = dpll;
8162 
8163 	if (INTEL_GEN(dev_priv) >= 4) {
8164 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8165 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8166 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8167 	}
8168 }
8169 
8170 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8171 			      struct intel_crtc_state *crtc_state,
8172 			      struct dpll *reduced_clock)
8173 {
8174 	struct drm_device *dev = crtc->base.dev;
8175 	struct drm_i915_private *dev_priv = to_i915(dev);
8176 	u32 dpll;
8177 	struct dpll *clock = &crtc_state->dpll;
8178 
8179 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8180 
8181 	dpll = DPLL_VGA_MODE_DIS;
8182 
8183 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8184 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8185 	} else {
8186 		if (clock->p1 == 2)
8187 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8188 		else
8189 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8190 		if (clock->p2 == 4)
8191 			dpll |= PLL_P2_DIVIDE_BY_4;
8192 	}
8193 
8194 	if (!IS_I830(dev_priv) &&
8195 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8196 		dpll |= DPLL_DVO_2X_MODE;
8197 
8198 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8199 	    intel_panel_use_ssc(dev_priv))
8200 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8201 	else
8202 		dpll |= PLL_REF_INPUT_DREFCLK;
8203 
8204 	dpll |= DPLL_VCO_ENABLE;
8205 	crtc_state->dpll_hw_state.dpll = dpll;
8206 }
8207 
8208 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8209 {
8210 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8211 	enum i915_pipe pipe = intel_crtc->pipe;
8212 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8213 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8214 	uint32_t crtc_vtotal, crtc_vblank_end;
8215 	int vsyncshift = 0;
8216 
8217 	/* We need to be careful not to changed the adjusted mode, for otherwise
8218 	 * the hw state checker will get angry at the mismatch. */
8219 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8220 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8221 
8222 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8223 		/* the chip adds 2 halflines automatically */
8224 		crtc_vtotal -= 1;
8225 		crtc_vblank_end -= 1;
8226 
8227 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8228 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8229 		else
8230 			vsyncshift = adjusted_mode->crtc_hsync_start -
8231 				adjusted_mode->crtc_htotal / 2;
8232 		if (vsyncshift < 0)
8233 			vsyncshift += adjusted_mode->crtc_htotal;
8234 	}
8235 
8236 	if (INTEL_GEN(dev_priv) > 3)
8237 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8238 
8239 	I915_WRITE(HTOTAL(cpu_transcoder),
8240 		   (adjusted_mode->crtc_hdisplay - 1) |
8241 		   ((adjusted_mode->crtc_htotal - 1) << 16));
8242 	I915_WRITE(HBLANK(cpu_transcoder),
8243 		   (adjusted_mode->crtc_hblank_start - 1) |
8244 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
8245 	I915_WRITE(HSYNC(cpu_transcoder),
8246 		   (adjusted_mode->crtc_hsync_start - 1) |
8247 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
8248 
8249 	I915_WRITE(VTOTAL(cpu_transcoder),
8250 		   (adjusted_mode->crtc_vdisplay - 1) |
8251 		   ((crtc_vtotal - 1) << 16));
8252 	I915_WRITE(VBLANK(cpu_transcoder),
8253 		   (adjusted_mode->crtc_vblank_start - 1) |
8254 		   ((crtc_vblank_end - 1) << 16));
8255 	I915_WRITE(VSYNC(cpu_transcoder),
8256 		   (adjusted_mode->crtc_vsync_start - 1) |
8257 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
8258 
8259 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8260 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8261 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8262 	 * bits. */
8263 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8264 	    (pipe == PIPE_B || pipe == PIPE_C))
8265 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8266 
8267 }
8268 
8269 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8270 {
8271 	struct drm_device *dev = intel_crtc->base.dev;
8272 	struct drm_i915_private *dev_priv = to_i915(dev);
8273 	enum i915_pipe pipe = intel_crtc->pipe;
8274 
8275 	/* pipesrc controls the size that is scaled from, which should
8276 	 * always be the user's requested size.
8277 	 */
8278 	I915_WRITE(PIPESRC(pipe),
8279 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
8280 		   (intel_crtc->config->pipe_src_h - 1));
8281 }
8282 
8283 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8284 				   struct intel_crtc_state *pipe_config)
8285 {
8286 	struct drm_device *dev = crtc->base.dev;
8287 	struct drm_i915_private *dev_priv = to_i915(dev);
8288 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8289 	uint32_t tmp;
8290 
8291 	tmp = I915_READ(HTOTAL(cpu_transcoder));
8292 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8293 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8294 	tmp = I915_READ(HBLANK(cpu_transcoder));
8295 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8296 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8297 	tmp = I915_READ(HSYNC(cpu_transcoder));
8298 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8299 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8300 
8301 	tmp = I915_READ(VTOTAL(cpu_transcoder));
8302 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8303 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8304 	tmp = I915_READ(VBLANK(cpu_transcoder));
8305 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8306 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8307 	tmp = I915_READ(VSYNC(cpu_transcoder));
8308 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8309 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8310 
8311 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8312 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8313 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8314 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8315 	}
8316 }
8317 
8318 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8319 				    struct intel_crtc_state *pipe_config)
8320 {
8321 	struct drm_device *dev = crtc->base.dev;
8322 	struct drm_i915_private *dev_priv = to_i915(dev);
8323 	u32 tmp;
8324 
8325 	tmp = I915_READ(PIPESRC(crtc->pipe));
8326 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8327 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8328 
8329 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8330 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8331 }
8332 
8333 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8334 				 struct intel_crtc_state *pipe_config)
8335 {
8336 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8337 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8338 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8339 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8340 
8341 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8342 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8343 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8344 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8345 
8346 	mode->flags = pipe_config->base.adjusted_mode.flags;
8347 	mode->type = DRM_MODE_TYPE_DRIVER;
8348 
8349 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8350 	mode->flags |= pipe_config->base.adjusted_mode.flags;
8351 
8352 	mode->hsync = drm_mode_hsync(mode);
8353 	mode->vrefresh = drm_mode_vrefresh(mode);
8354 	drm_mode_set_name(mode);
8355 }
8356 
8357 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8358 {
8359 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8360 	uint32_t pipeconf;
8361 
8362 	pipeconf = 0;
8363 
8364 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8365 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8366 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8367 
8368 	if (intel_crtc->config->double_wide)
8369 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8370 
8371 	/* only g4x and later have fancy bpc/dither controls */
8372 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8373 	    IS_CHERRYVIEW(dev_priv)) {
8374 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8375 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8376 			pipeconf |= PIPECONF_DITHER_EN |
8377 				    PIPECONF_DITHER_TYPE_SP;
8378 
8379 		switch (intel_crtc->config->pipe_bpp) {
8380 		case 18:
8381 			pipeconf |= PIPECONF_6BPC;
8382 			break;
8383 		case 24:
8384 			pipeconf |= PIPECONF_8BPC;
8385 			break;
8386 		case 30:
8387 			pipeconf |= PIPECONF_10BPC;
8388 			break;
8389 		default:
8390 			/* Case prevented by intel_choose_pipe_bpp_dither. */
8391 			BUG();
8392 		}
8393 	}
8394 
8395 	if (HAS_PIPE_CXSR(dev_priv)) {
8396 		if (intel_crtc->lowfreq_avail) {
8397 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8398 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8399 		} else {
8400 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8401 		}
8402 	}
8403 
8404 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8405 		if (INTEL_GEN(dev_priv) < 4 ||
8406 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8407 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8408 		else
8409 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8410 	} else
8411 		pipeconf |= PIPECONF_PROGRESSIVE;
8412 
8413 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8414 	     intel_crtc->config->limited_color_range)
8415 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8416 
8417 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8418 	POSTING_READ(PIPECONF(intel_crtc->pipe));
8419 }
8420 
8421 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8422 				   struct intel_crtc_state *crtc_state)
8423 {
8424 	struct drm_device *dev = crtc->base.dev;
8425 	struct drm_i915_private *dev_priv = to_i915(dev);
8426 	const struct intel_limit *limit;
8427 	int refclk = 48000;
8428 
8429 	memset(&crtc_state->dpll_hw_state, 0,
8430 	       sizeof(crtc_state->dpll_hw_state));
8431 
8432 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8433 		if (intel_panel_use_ssc(dev_priv)) {
8434 			refclk = dev_priv->vbt.lvds_ssc_freq;
8435 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8436 		}
8437 
8438 		limit = &intel_limits_i8xx_lvds;
8439 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8440 		limit = &intel_limits_i8xx_dvo;
8441 	} else {
8442 		limit = &intel_limits_i8xx_dac;
8443 	}
8444 
8445 	if (!crtc_state->clock_set &&
8446 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8447 				 refclk, NULL, &crtc_state->dpll)) {
8448 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8449 		return -EINVAL;
8450 	}
8451 
8452 	i8xx_compute_dpll(crtc, crtc_state, NULL);
8453 
8454 	return 0;
8455 }
8456 
8457 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8458 				  struct intel_crtc_state *crtc_state)
8459 {
8460 	struct drm_device *dev = crtc->base.dev;
8461 	struct drm_i915_private *dev_priv = to_i915(dev);
8462 	const struct intel_limit *limit;
8463 	int refclk = 96000;
8464 
8465 	memset(&crtc_state->dpll_hw_state, 0,
8466 	       sizeof(crtc_state->dpll_hw_state));
8467 
8468 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8469 		if (intel_panel_use_ssc(dev_priv)) {
8470 			refclk = dev_priv->vbt.lvds_ssc_freq;
8471 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8472 		}
8473 
8474 		if (intel_is_dual_link_lvds(dev))
8475 			limit = &intel_limits_g4x_dual_channel_lvds;
8476 		else
8477 			limit = &intel_limits_g4x_single_channel_lvds;
8478 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8479 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8480 		limit = &intel_limits_g4x_hdmi;
8481 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8482 		limit = &intel_limits_g4x_sdvo;
8483 	} else {
8484 		/* The option is for other outputs */
8485 		limit = &intel_limits_i9xx_sdvo;
8486 	}
8487 
8488 	if (!crtc_state->clock_set &&
8489 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8490 				refclk, NULL, &crtc_state->dpll)) {
8491 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8492 		return -EINVAL;
8493 	}
8494 
8495 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8496 
8497 	return 0;
8498 }
8499 
8500 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8501 				  struct intel_crtc_state *crtc_state)
8502 {
8503 	struct drm_device *dev = crtc->base.dev;
8504 	struct drm_i915_private *dev_priv = to_i915(dev);
8505 	const struct intel_limit *limit;
8506 	int refclk = 96000;
8507 
8508 	memset(&crtc_state->dpll_hw_state, 0,
8509 	       sizeof(crtc_state->dpll_hw_state));
8510 
8511 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8512 		if (intel_panel_use_ssc(dev_priv)) {
8513 			refclk = dev_priv->vbt.lvds_ssc_freq;
8514 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8515 		}
8516 
8517 		limit = &intel_limits_pineview_lvds;
8518 	} else {
8519 		limit = &intel_limits_pineview_sdvo;
8520 	}
8521 
8522 	if (!crtc_state->clock_set &&
8523 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8524 				refclk, NULL, &crtc_state->dpll)) {
8525 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8526 		return -EINVAL;
8527 	}
8528 
8529 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8530 
8531 	return 0;
8532 }
8533 
8534 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8535 				   struct intel_crtc_state *crtc_state)
8536 {
8537 	struct drm_device *dev = crtc->base.dev;
8538 	struct drm_i915_private *dev_priv = to_i915(dev);
8539 	const struct intel_limit *limit;
8540 	int refclk = 96000;
8541 
8542 	memset(&crtc_state->dpll_hw_state, 0,
8543 	       sizeof(crtc_state->dpll_hw_state));
8544 
8545 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8546 		if (intel_panel_use_ssc(dev_priv)) {
8547 			refclk = dev_priv->vbt.lvds_ssc_freq;
8548 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8549 		}
8550 
8551 		limit = &intel_limits_i9xx_lvds;
8552 	} else {
8553 		limit = &intel_limits_i9xx_sdvo;
8554 	}
8555 
8556 	if (!crtc_state->clock_set &&
8557 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8558 				 refclk, NULL, &crtc_state->dpll)) {
8559 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8560 		return -EINVAL;
8561 	}
8562 
8563 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8564 
8565 	return 0;
8566 }
8567 
8568 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8569 				  struct intel_crtc_state *crtc_state)
8570 {
8571 	int refclk = 100000;
8572 	const struct intel_limit *limit = &intel_limits_chv;
8573 
8574 	memset(&crtc_state->dpll_hw_state, 0,
8575 	       sizeof(crtc_state->dpll_hw_state));
8576 
8577 	if (!crtc_state->clock_set &&
8578 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8579 				refclk, NULL, &crtc_state->dpll)) {
8580 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8581 		return -EINVAL;
8582 	}
8583 
8584 	chv_compute_dpll(crtc, crtc_state);
8585 
8586 	return 0;
8587 }
8588 
8589 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8590 				  struct intel_crtc_state *crtc_state)
8591 {
8592 	int refclk = 100000;
8593 	const struct intel_limit *limit = &intel_limits_vlv;
8594 
8595 	memset(&crtc_state->dpll_hw_state, 0,
8596 	       sizeof(crtc_state->dpll_hw_state));
8597 
8598 	if (!crtc_state->clock_set &&
8599 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8600 				refclk, NULL, &crtc_state->dpll)) {
8601 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8602 		return -EINVAL;
8603 	}
8604 
8605 	vlv_compute_dpll(crtc, crtc_state);
8606 
8607 	return 0;
8608 }
8609 
8610 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8611 				 struct intel_crtc_state *pipe_config)
8612 {
8613 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8614 	uint32_t tmp;
8615 
8616 	if (INTEL_GEN(dev_priv) <= 3 &&
8617 	    (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8618 		return;
8619 
8620 	tmp = I915_READ(PFIT_CONTROL);
8621 	if (!(tmp & PFIT_ENABLE))
8622 		return;
8623 
8624 	/* Check whether the pfit is attached to our pipe. */
8625 	if (INTEL_GEN(dev_priv) < 4) {
8626 		if (crtc->pipe != PIPE_B)
8627 			return;
8628 	} else {
8629 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8630 			return;
8631 	}
8632 
8633 	pipe_config->gmch_pfit.control = tmp;
8634 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8635 }
8636 
8637 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8638 			       struct intel_crtc_state *pipe_config)
8639 {
8640 	struct drm_device *dev = crtc->base.dev;
8641 	struct drm_i915_private *dev_priv = to_i915(dev);
8642 	int pipe = pipe_config->cpu_transcoder;
8643 	struct dpll clock;
8644 	u32 mdiv;
8645 	int refclk = 100000;
8646 
8647 	/* In case of DSI, DPLL will not be used */
8648 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8649 		return;
8650 
8651 	mutex_lock(&dev_priv->sb_lock);
8652 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8653 	mutex_unlock(&dev_priv->sb_lock);
8654 
8655 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8656 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8657 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8658 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8659 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8660 
8661 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8662 }
8663 
8664 static void
8665 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8666 			      struct intel_initial_plane_config *plane_config)
8667 {
8668 	struct drm_device *dev = crtc->base.dev;
8669 	struct drm_i915_private *dev_priv = to_i915(dev);
8670 	u32 val, base, offset;
8671 	int pipe = crtc->pipe, plane = crtc->plane;
8672 	int fourcc, pixel_format;
8673 	unsigned int aligned_height;
8674 	struct drm_framebuffer *fb;
8675 	struct intel_framebuffer *intel_fb;
8676 
8677 	val = I915_READ(DSPCNTR(plane));
8678 	if (!(val & DISPLAY_PLANE_ENABLE))
8679 		return;
8680 
8681 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8682 	if (!intel_fb) {
8683 		DRM_DEBUG_KMS("failed to alloc fb\n");
8684 		return;
8685 	}
8686 
8687 	fb = &intel_fb->base;
8688 
8689 	if (INTEL_GEN(dev_priv) >= 4) {
8690 		if (val & DISPPLANE_TILED) {
8691 			plane_config->tiling = I915_TILING_X;
8692 			fb->modifier = I915_FORMAT_MOD_X_TILED;
8693 		}
8694 	}
8695 
8696 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8697 	fourcc = i9xx_format_to_fourcc(pixel_format);
8698 	fb->pixel_format = fourcc;
8699 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8700 
8701 	if (INTEL_GEN(dev_priv) >= 4) {
8702 		if (plane_config->tiling)
8703 			offset = I915_READ(DSPTILEOFF(plane));
8704 		else
8705 			offset = I915_READ(DSPLINOFF(plane));
8706 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8707 	} else {
8708 		base = I915_READ(DSPADDR(plane));
8709 	}
8710 	plane_config->base = base;
8711 
8712 	val = I915_READ(PIPESRC(pipe));
8713 	fb->width = ((val >> 16) & 0xfff) + 1;
8714 	fb->height = ((val >> 0) & 0xfff) + 1;
8715 
8716 	val = I915_READ(DSPSTRIDE(pipe));
8717 	fb->pitches[0] = val & 0xffffffc0;
8718 
8719 	aligned_height = intel_fb_align_height(dev, fb->height,
8720 					       fb->pixel_format,
8721 					       fb->modifier);
8722 
8723 	plane_config->size = fb->pitches[0] * aligned_height;
8724 
8725 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8726 		      pipe_name(pipe), plane, fb->width, fb->height,
8727 		      fb->bits_per_pixel, base, fb->pitches[0],
8728 		      plane_config->size);
8729 
8730 	plane_config->fb = intel_fb;
8731 }
8732 
8733 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8734 			       struct intel_crtc_state *pipe_config)
8735 {
8736 	struct drm_device *dev = crtc->base.dev;
8737 	struct drm_i915_private *dev_priv = to_i915(dev);
8738 	int pipe = pipe_config->cpu_transcoder;
8739 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8740 	struct dpll clock;
8741 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8742 	int refclk = 100000;
8743 
8744 	/* In case of DSI, DPLL will not be used */
8745 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8746 		return;
8747 
8748 	mutex_lock(&dev_priv->sb_lock);
8749 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8750 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8751 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8752 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8753 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8754 	mutex_unlock(&dev_priv->sb_lock);
8755 
8756 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8757 	clock.m2 = (pll_dw0 & 0xff) << 22;
8758 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8759 		clock.m2 |= pll_dw2 & 0x3fffff;
8760 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8761 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8762 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8763 
8764 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8765 }
8766 
8767 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8768 				 struct intel_crtc_state *pipe_config)
8769 {
8770 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8771 	enum intel_display_power_domain power_domain;
8772 	uint32_t tmp;
8773 	bool ret;
8774 
8775 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8776 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8777 		return false;
8778 
8779 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8780 	pipe_config->shared_dpll = NULL;
8781 
8782 	ret = false;
8783 
8784 	tmp = I915_READ(PIPECONF(crtc->pipe));
8785 	if (!(tmp & PIPECONF_ENABLE))
8786 		goto out;
8787 
8788 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8789 	    IS_CHERRYVIEW(dev_priv)) {
8790 		switch (tmp & PIPECONF_BPC_MASK) {
8791 		case PIPECONF_6BPC:
8792 			pipe_config->pipe_bpp = 18;
8793 			break;
8794 		case PIPECONF_8BPC:
8795 			pipe_config->pipe_bpp = 24;
8796 			break;
8797 		case PIPECONF_10BPC:
8798 			pipe_config->pipe_bpp = 30;
8799 			break;
8800 		default:
8801 			break;
8802 		}
8803 	}
8804 
8805 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8806 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
8807 		pipe_config->limited_color_range = true;
8808 
8809 	if (INTEL_GEN(dev_priv) < 4)
8810 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8811 
8812 	intel_get_pipe_timings(crtc, pipe_config);
8813 	intel_get_pipe_src_size(crtc, pipe_config);
8814 
8815 	i9xx_get_pfit_config(crtc, pipe_config);
8816 
8817 	if (INTEL_GEN(dev_priv) >= 4) {
8818 		/* No way to read it out on pipes B and C */
8819 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8820 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
8821 		else
8822 			tmp = I915_READ(DPLL_MD(crtc->pipe));
8823 		pipe_config->pixel_multiplier =
8824 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8825 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8826 		pipe_config->dpll_hw_state.dpll_md = tmp;
8827 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8828 		   IS_G33(dev_priv)) {
8829 		tmp = I915_READ(DPLL(crtc->pipe));
8830 		pipe_config->pixel_multiplier =
8831 			((tmp & SDVO_MULTIPLIER_MASK)
8832 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8833 	} else {
8834 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8835 		 * port and will be fixed up in the encoder->get_config
8836 		 * function. */
8837 		pipe_config->pixel_multiplier = 1;
8838 	}
8839 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8840 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8841 		/*
8842 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8843 		 * on 830. Filter it out here so that we don't
8844 		 * report errors due to that.
8845 		 */
8846 		if (IS_I830(dev_priv))
8847 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8848 
8849 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8850 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8851 	} else {
8852 		/* Mask out read-only status bits. */
8853 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8854 						     DPLL_PORTC_READY_MASK |
8855 						     DPLL_PORTB_READY_MASK);
8856 	}
8857 
8858 	if (IS_CHERRYVIEW(dev_priv))
8859 		chv_crtc_clock_get(crtc, pipe_config);
8860 	else if (IS_VALLEYVIEW(dev_priv))
8861 		vlv_crtc_clock_get(crtc, pipe_config);
8862 	else
8863 		i9xx_crtc_clock_get(crtc, pipe_config);
8864 
8865 	/*
8866 	 * Normally the dotclock is filled in by the encoder .get_config()
8867 	 * but in case the pipe is enabled w/o any ports we need a sane
8868 	 * default.
8869 	 */
8870 	pipe_config->base.adjusted_mode.crtc_clock =
8871 		pipe_config->port_clock / pipe_config->pixel_multiplier;
8872 
8873 	ret = true;
8874 
8875 out:
8876 	intel_display_power_put(dev_priv, power_domain);
8877 
8878 	return ret;
8879 }
8880 
8881 static void ironlake_init_pch_refclk(struct drm_device *dev)
8882 {
8883 	struct drm_i915_private *dev_priv = to_i915(dev);
8884 	struct intel_encoder *encoder;
8885 	int i;
8886 	u32 val, final;
8887 	bool has_lvds = false;
8888 	bool has_cpu_edp = false;
8889 	bool has_panel = false;
8890 	bool has_ck505 = false;
8891 	bool can_ssc = false;
8892 	bool using_ssc_source = false;
8893 
8894 	/* We need to take the global config into account */
8895 	for_each_intel_encoder(dev, encoder) {
8896 		switch (encoder->type) {
8897 		case INTEL_OUTPUT_LVDS:
8898 			has_panel = true;
8899 			has_lvds = true;
8900 			break;
8901 		case INTEL_OUTPUT_EDP:
8902 			has_panel = true;
8903 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8904 				has_cpu_edp = true;
8905 			break;
8906 		default:
8907 			break;
8908 		}
8909 	}
8910 
8911 	if (HAS_PCH_IBX(dev_priv)) {
8912 		has_ck505 = dev_priv->vbt.display_clock_mode;
8913 		can_ssc = has_ck505;
8914 	} else {
8915 		has_ck505 = false;
8916 		can_ssc = true;
8917 	}
8918 
8919 	/* Check if any DPLLs are using the SSC source */
8920 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8921 		u32 temp = I915_READ(PCH_DPLL(i));
8922 
8923 		if (!(temp & DPLL_VCO_ENABLE))
8924 			continue;
8925 
8926 		if ((temp & PLL_REF_INPUT_MASK) ==
8927 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8928 			using_ssc_source = true;
8929 			break;
8930 		}
8931 	}
8932 
8933 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8934 		      has_panel, has_lvds, has_ck505, using_ssc_source);
8935 
8936 	/* Ironlake: try to setup display ref clock before DPLL
8937 	 * enabling. This is only under driver's control after
8938 	 * PCH B stepping, previous chipset stepping should be
8939 	 * ignoring this setting.
8940 	 */
8941 	val = I915_READ(PCH_DREF_CONTROL);
8942 
8943 	/* As we must carefully and slowly disable/enable each source in turn,
8944 	 * compute the final state we want first and check if we need to
8945 	 * make any changes at all.
8946 	 */
8947 	final = val;
8948 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8949 	if (has_ck505)
8950 		final |= DREF_NONSPREAD_CK505_ENABLE;
8951 	else
8952 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8953 
8954 	final &= ~DREF_SSC_SOURCE_MASK;
8955 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8956 	final &= ~DREF_SSC1_ENABLE;
8957 
8958 	if (has_panel) {
8959 		final |= DREF_SSC_SOURCE_ENABLE;
8960 
8961 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8962 			final |= DREF_SSC1_ENABLE;
8963 
8964 		if (has_cpu_edp) {
8965 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8966 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8967 			else
8968 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8969 		} else
8970 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8971 	} else if (using_ssc_source) {
8972 		final |= DREF_SSC_SOURCE_ENABLE;
8973 		final |= DREF_SSC1_ENABLE;
8974 	}
8975 
8976 	if (final == val)
8977 		return;
8978 
8979 	/* Always enable nonspread source */
8980 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
8981 
8982 	if (has_ck505)
8983 		val |= DREF_NONSPREAD_CK505_ENABLE;
8984 	else
8985 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
8986 
8987 	if (has_panel) {
8988 		val &= ~DREF_SSC_SOURCE_MASK;
8989 		val |= DREF_SSC_SOURCE_ENABLE;
8990 
8991 		/* SSC must be turned on before enabling the CPU output  */
8992 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8993 			DRM_DEBUG_KMS("Using SSC on panel\n");
8994 			val |= DREF_SSC1_ENABLE;
8995 		} else
8996 			val &= ~DREF_SSC1_ENABLE;
8997 
8998 		/* Get SSC going before enabling the outputs */
8999 		I915_WRITE(PCH_DREF_CONTROL, val);
9000 		POSTING_READ(PCH_DREF_CONTROL);
9001 		udelay(200);
9002 
9003 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9004 
9005 		/* Enable CPU source on CPU attached eDP */
9006 		if (has_cpu_edp) {
9007 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9008 				DRM_DEBUG_KMS("Using SSC on eDP\n");
9009 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9010 			} else
9011 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9012 		} else
9013 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9014 
9015 		I915_WRITE(PCH_DREF_CONTROL, val);
9016 		POSTING_READ(PCH_DREF_CONTROL);
9017 		udelay(200);
9018 	} else {
9019 		DRM_DEBUG_KMS("Disabling CPU source output\n");
9020 
9021 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9022 
9023 		/* Turn off CPU output */
9024 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9025 
9026 		I915_WRITE(PCH_DREF_CONTROL, val);
9027 		POSTING_READ(PCH_DREF_CONTROL);
9028 		udelay(200);
9029 
9030 		if (!using_ssc_source) {
9031 			DRM_DEBUG_KMS("Disabling SSC source\n");
9032 
9033 			/* Turn off the SSC source */
9034 			val &= ~DREF_SSC_SOURCE_MASK;
9035 			val |= DREF_SSC_SOURCE_DISABLE;
9036 
9037 			/* Turn off SSC1 */
9038 			val &= ~DREF_SSC1_ENABLE;
9039 
9040 			I915_WRITE(PCH_DREF_CONTROL, val);
9041 			POSTING_READ(PCH_DREF_CONTROL);
9042 			udelay(200);
9043 		}
9044 	}
9045 
9046 	BUG_ON(val != final);
9047 }
9048 
9049 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9050 {
9051 	uint32_t tmp;
9052 
9053 	tmp = I915_READ(SOUTH_CHICKEN2);
9054 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9055 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9056 
9057 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9058 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9059 		DRM_ERROR("FDI mPHY reset assert timeout\n");
9060 
9061 	tmp = I915_READ(SOUTH_CHICKEN2);
9062 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9063 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9064 
9065 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9066 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9067 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9068 }
9069 
9070 /* WaMPhyProgramming:hsw */
9071 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9072 {
9073 	uint32_t tmp;
9074 
9075 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9076 	tmp &= ~(0xFF << 24);
9077 	tmp |= (0x12 << 24);
9078 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9079 
9080 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9081 	tmp |= (1 << 11);
9082 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9083 
9084 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9085 	tmp |= (1 << 11);
9086 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9087 
9088 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9089 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9090 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9091 
9092 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9093 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9094 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9095 
9096 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9097 	tmp &= ~(7 << 13);
9098 	tmp |= (5 << 13);
9099 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9100 
9101 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9102 	tmp &= ~(7 << 13);
9103 	tmp |= (5 << 13);
9104 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9105 
9106 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9107 	tmp &= ~0xFF;
9108 	tmp |= 0x1C;
9109 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9110 
9111 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9112 	tmp &= ~0xFF;
9113 	tmp |= 0x1C;
9114 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9115 
9116 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9117 	tmp &= ~(0xFF << 16);
9118 	tmp |= (0x1C << 16);
9119 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9120 
9121 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9122 	tmp &= ~(0xFF << 16);
9123 	tmp |= (0x1C << 16);
9124 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9125 
9126 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9127 	tmp |= (1 << 27);
9128 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9129 
9130 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9131 	tmp |= (1 << 27);
9132 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9133 
9134 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9135 	tmp &= ~(0xF << 28);
9136 	tmp |= (4 << 28);
9137 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9138 
9139 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9140 	tmp &= ~(0xF << 28);
9141 	tmp |= (4 << 28);
9142 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9143 }
9144 
9145 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9146  * Programming" based on the parameters passed:
9147  * - Sequence to enable CLKOUT_DP
9148  * - Sequence to enable CLKOUT_DP without spread
9149  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9150  */
9151 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9152 				 bool with_fdi)
9153 {
9154 	struct drm_i915_private *dev_priv = to_i915(dev);
9155 	uint32_t reg, tmp;
9156 
9157 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9158 		with_spread = true;
9159 	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9160 	    with_fdi, "LP PCH doesn't have FDI\n"))
9161 		with_fdi = false;
9162 
9163 	mutex_lock(&dev_priv->sb_lock);
9164 
9165 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9166 	tmp &= ~SBI_SSCCTL_DISABLE;
9167 	tmp |= SBI_SSCCTL_PATHALT;
9168 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9169 
9170 	udelay(24);
9171 
9172 	if (with_spread) {
9173 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9174 		tmp &= ~SBI_SSCCTL_PATHALT;
9175 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9176 
9177 		if (with_fdi) {
9178 			lpt_reset_fdi_mphy(dev_priv);
9179 			lpt_program_fdi_mphy(dev_priv);
9180 		}
9181 	}
9182 
9183 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9184 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9185 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9186 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9187 
9188 	mutex_unlock(&dev_priv->sb_lock);
9189 }
9190 
9191 /* Sequence to disable CLKOUT_DP */
9192 static void lpt_disable_clkout_dp(struct drm_device *dev)
9193 {
9194 	struct drm_i915_private *dev_priv = to_i915(dev);
9195 	uint32_t reg, tmp;
9196 
9197 	mutex_lock(&dev_priv->sb_lock);
9198 
9199 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9200 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9201 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9202 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9203 
9204 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9205 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9206 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9207 			tmp |= SBI_SSCCTL_PATHALT;
9208 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9209 			udelay(32);
9210 		}
9211 		tmp |= SBI_SSCCTL_DISABLE;
9212 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9213 	}
9214 
9215 	mutex_unlock(&dev_priv->sb_lock);
9216 }
9217 
9218 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9219 
9220 static const uint16_t sscdivintphase[] = {
9221 	[BEND_IDX( 50)] = 0x3B23,
9222 	[BEND_IDX( 45)] = 0x3B23,
9223 	[BEND_IDX( 40)] = 0x3C23,
9224 	[BEND_IDX( 35)] = 0x3C23,
9225 	[BEND_IDX( 30)] = 0x3D23,
9226 	[BEND_IDX( 25)] = 0x3D23,
9227 	[BEND_IDX( 20)] = 0x3E23,
9228 	[BEND_IDX( 15)] = 0x3E23,
9229 	[BEND_IDX( 10)] = 0x3F23,
9230 	[BEND_IDX(  5)] = 0x3F23,
9231 	[BEND_IDX(  0)] = 0x0025,
9232 	[BEND_IDX( -5)] = 0x0025,
9233 	[BEND_IDX(-10)] = 0x0125,
9234 	[BEND_IDX(-15)] = 0x0125,
9235 	[BEND_IDX(-20)] = 0x0225,
9236 	[BEND_IDX(-25)] = 0x0225,
9237 	[BEND_IDX(-30)] = 0x0325,
9238 	[BEND_IDX(-35)] = 0x0325,
9239 	[BEND_IDX(-40)] = 0x0425,
9240 	[BEND_IDX(-45)] = 0x0425,
9241 	[BEND_IDX(-50)] = 0x0525,
9242 };
9243 
9244 /*
9245  * Bend CLKOUT_DP
9246  * steps -50 to 50 inclusive, in steps of 5
9247  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9248  * change in clock period = -(steps / 10) * 5.787 ps
9249  */
9250 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9251 {
9252 	uint32_t tmp;
9253 	int idx = BEND_IDX(steps);
9254 
9255 	if (WARN_ON(steps % 5 != 0))
9256 		return;
9257 
9258 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9259 		return;
9260 
9261 	mutex_lock(&dev_priv->sb_lock);
9262 
9263 	if (steps % 10 != 0)
9264 		tmp = 0xAAAAAAAB;
9265 	else
9266 		tmp = 0x00000000;
9267 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9268 
9269 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9270 	tmp &= 0xffff0000;
9271 	tmp |= sscdivintphase[idx];
9272 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9273 
9274 	mutex_unlock(&dev_priv->sb_lock);
9275 }
9276 
9277 #undef BEND_IDX
9278 
9279 static void lpt_init_pch_refclk(struct drm_device *dev)
9280 {
9281 	struct intel_encoder *encoder;
9282 	bool has_vga = false;
9283 
9284 	for_each_intel_encoder(dev, encoder) {
9285 		switch (encoder->type) {
9286 		case INTEL_OUTPUT_ANALOG:
9287 			has_vga = true;
9288 			break;
9289 		default:
9290 			break;
9291 		}
9292 	}
9293 
9294 	if (has_vga) {
9295 		lpt_bend_clkout_dp(to_i915(dev), 0);
9296 		lpt_enable_clkout_dp(dev, true, true);
9297 	} else {
9298 		lpt_disable_clkout_dp(dev);
9299 	}
9300 }
9301 
9302 /*
9303  * Initialize reference clocks when the driver loads
9304  */
9305 void intel_init_pch_refclk(struct drm_device *dev)
9306 {
9307 	struct drm_i915_private *dev_priv = to_i915(dev);
9308 
9309 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9310 		ironlake_init_pch_refclk(dev);
9311 	else if (HAS_PCH_LPT(dev_priv))
9312 		lpt_init_pch_refclk(dev);
9313 }
9314 
9315 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9316 {
9317 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9318 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9319 	int pipe = intel_crtc->pipe;
9320 	uint32_t val;
9321 
9322 	val = 0;
9323 
9324 	switch (intel_crtc->config->pipe_bpp) {
9325 	case 18:
9326 		val |= PIPECONF_6BPC;
9327 		break;
9328 	case 24:
9329 		val |= PIPECONF_8BPC;
9330 		break;
9331 	case 30:
9332 		val |= PIPECONF_10BPC;
9333 		break;
9334 	case 36:
9335 		val |= PIPECONF_12BPC;
9336 		break;
9337 	default:
9338 		/* Case prevented by intel_choose_pipe_bpp_dither. */
9339 		BUG();
9340 	}
9341 
9342 	if (intel_crtc->config->dither)
9343 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9344 
9345 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9346 		val |= PIPECONF_INTERLACED_ILK;
9347 	else
9348 		val |= PIPECONF_PROGRESSIVE;
9349 
9350 	if (intel_crtc->config->limited_color_range)
9351 		val |= PIPECONF_COLOR_RANGE_SELECT;
9352 
9353 	I915_WRITE(PIPECONF(pipe), val);
9354 	POSTING_READ(PIPECONF(pipe));
9355 }
9356 
9357 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9358 {
9359 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9360 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9361 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9362 	u32 val = 0;
9363 
9364 	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9365 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9366 
9367 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9368 		val |= PIPECONF_INTERLACED_ILK;
9369 	else
9370 		val |= PIPECONF_PROGRESSIVE;
9371 
9372 	I915_WRITE(PIPECONF(cpu_transcoder), val);
9373 	POSTING_READ(PIPECONF(cpu_transcoder));
9374 }
9375 
9376 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9377 {
9378 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9379 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9380 
9381 	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9382 		u32 val = 0;
9383 
9384 		switch (intel_crtc->config->pipe_bpp) {
9385 		case 18:
9386 			val |= PIPEMISC_DITHER_6_BPC;
9387 			break;
9388 		case 24:
9389 			val |= PIPEMISC_DITHER_8_BPC;
9390 			break;
9391 		case 30:
9392 			val |= PIPEMISC_DITHER_10_BPC;
9393 			break;
9394 		case 36:
9395 			val |= PIPEMISC_DITHER_12_BPC;
9396 			break;
9397 		default:
9398 			/* Case prevented by pipe_config_set_bpp. */
9399 			BUG();
9400 		}
9401 
9402 		if (intel_crtc->config->dither)
9403 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9404 
9405 		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9406 	}
9407 }
9408 
9409 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9410 {
9411 	/*
9412 	 * Account for spread spectrum to avoid
9413 	 * oversubscribing the link. Max center spread
9414 	 * is 2.5%; use 5% for safety's sake.
9415 	 */
9416 	u32 bps = target_clock * bpp * 21 / 20;
9417 	return DIV_ROUND_UP(bps, link_bw * 8);
9418 }
9419 
9420 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9421 {
9422 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9423 }
9424 
9425 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9426 				  struct intel_crtc_state *crtc_state,
9427 				  struct dpll *reduced_clock)
9428 {
9429 	struct drm_crtc *crtc = &intel_crtc->base;
9430 	struct drm_device *dev = crtc->dev;
9431 	struct drm_i915_private *dev_priv = to_i915(dev);
9432 	u32 dpll, fp, fp2;
9433 	int factor;
9434 
9435 	/* Enable autotuning of the PLL clock (if permissible) */
9436 	factor = 21;
9437 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9438 		if ((intel_panel_use_ssc(dev_priv) &&
9439 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
9440 		    (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9441 			factor = 25;
9442 	} else if (crtc_state->sdvo_tv_clock)
9443 		factor = 20;
9444 
9445 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9446 
9447 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9448 		fp |= FP_CB_TUNE;
9449 
9450 	if (reduced_clock) {
9451 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
9452 
9453 		if (reduced_clock->m < factor * reduced_clock->n)
9454 			fp2 |= FP_CB_TUNE;
9455 	} else {
9456 		fp2 = fp;
9457 	}
9458 
9459 	dpll = 0;
9460 
9461 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9462 		dpll |= DPLLB_MODE_LVDS;
9463 	else
9464 		dpll |= DPLLB_MODE_DAC_SERIAL;
9465 
9466 	dpll |= (crtc_state->pixel_multiplier - 1)
9467 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9468 
9469 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9470 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9471 		dpll |= DPLL_SDVO_HIGH_SPEED;
9472 
9473 	if (intel_crtc_has_dp_encoder(crtc_state))
9474 		dpll |= DPLL_SDVO_HIGH_SPEED;
9475 
9476 	/*
9477 	 * The high speed IO clock is only really required for
9478 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9479 	 * possible to share the DPLL between CRT and HDMI. Enabling
9480 	 * the clock needlessly does no real harm, except use up a
9481 	 * bit of power potentially.
9482 	 *
9483 	 * We'll limit this to IVB with 3 pipes, since it has only two
9484 	 * DPLLs and so DPLL sharing is the only way to get three pipes
9485 	 * driving PCH ports at the same time. On SNB we could do this,
9486 	 * and potentially avoid enabling the second DPLL, but it's not
9487 	 * clear if it''s a win or loss power wise. No point in doing
9488 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9489 	 */
9490 	if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9491 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9492 		dpll |= DPLL_SDVO_HIGH_SPEED;
9493 
9494 	/* compute bitmask from p1 value */
9495 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9496 	/* also FPA1 */
9497 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9498 
9499 	switch (crtc_state->dpll.p2) {
9500 	case 5:
9501 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9502 		break;
9503 	case 7:
9504 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9505 		break;
9506 	case 10:
9507 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9508 		break;
9509 	case 14:
9510 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9511 		break;
9512 	}
9513 
9514 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9515 	    intel_panel_use_ssc(dev_priv))
9516 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9517 	else
9518 		dpll |= PLL_REF_INPUT_DREFCLK;
9519 
9520 	dpll |= DPLL_VCO_ENABLE;
9521 
9522 	crtc_state->dpll_hw_state.dpll = dpll;
9523 	crtc_state->dpll_hw_state.fp0 = fp;
9524 	crtc_state->dpll_hw_state.fp1 = fp2;
9525 }
9526 
9527 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9528 				       struct intel_crtc_state *crtc_state)
9529 {
9530 	struct drm_device *dev = crtc->base.dev;
9531 	struct drm_i915_private *dev_priv = to_i915(dev);
9532 	struct dpll reduced_clock;
9533 	bool has_reduced_clock = false;
9534 	struct intel_shared_dpll *pll;
9535 	const struct intel_limit *limit;
9536 	int refclk = 120000;
9537 
9538 	memset(&crtc_state->dpll_hw_state, 0,
9539 	       sizeof(crtc_state->dpll_hw_state));
9540 
9541 	crtc->lowfreq_avail = false;
9542 
9543 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9544 	if (!crtc_state->has_pch_encoder)
9545 		return 0;
9546 
9547 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9548 		if (intel_panel_use_ssc(dev_priv)) {
9549 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9550 				      dev_priv->vbt.lvds_ssc_freq);
9551 			refclk = dev_priv->vbt.lvds_ssc_freq;
9552 		}
9553 
9554 		if (intel_is_dual_link_lvds(dev)) {
9555 			if (refclk == 100000)
9556 				limit = &intel_limits_ironlake_dual_lvds_100m;
9557 			else
9558 				limit = &intel_limits_ironlake_dual_lvds;
9559 		} else {
9560 			if (refclk == 100000)
9561 				limit = &intel_limits_ironlake_single_lvds_100m;
9562 			else
9563 				limit = &intel_limits_ironlake_single_lvds;
9564 		}
9565 	} else {
9566 		limit = &intel_limits_ironlake_dac;
9567 	}
9568 
9569 	if (!crtc_state->clock_set &&
9570 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9571 				refclk, NULL, &crtc_state->dpll)) {
9572 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
9573 		return -EINVAL;
9574 	}
9575 
9576 	ironlake_compute_dpll(crtc, crtc_state,
9577 			      has_reduced_clock ? &reduced_clock : NULL);
9578 
9579 	pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9580 	if (pll == NULL) {
9581 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9582 				 pipe_name(crtc->pipe));
9583 		return -EINVAL;
9584 	}
9585 
9586 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9587 	    has_reduced_clock)
9588 		crtc->lowfreq_avail = true;
9589 
9590 	return 0;
9591 }
9592 
9593 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9594 					 struct intel_link_m_n *m_n)
9595 {
9596 	struct drm_device *dev = crtc->base.dev;
9597 	struct drm_i915_private *dev_priv = to_i915(dev);
9598 	enum i915_pipe pipe = crtc->pipe;
9599 
9600 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9601 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9602 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9603 		& ~TU_SIZE_MASK;
9604 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9605 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9606 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9607 }
9608 
9609 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9610 					 enum transcoder transcoder,
9611 					 struct intel_link_m_n *m_n,
9612 					 struct intel_link_m_n *m2_n2)
9613 {
9614 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9615 	enum i915_pipe pipe = crtc->pipe;
9616 
9617 	if (INTEL_GEN(dev_priv) >= 5) {
9618 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9619 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9620 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9621 			& ~TU_SIZE_MASK;
9622 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9623 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9624 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9625 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9626 		 * gen < 8) and if DRRS is supported (to make sure the
9627 		 * registers are not unnecessarily read).
9628 		 */
9629 		if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9630 			crtc->config->has_drrs) {
9631 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9632 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9633 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9634 					& ~TU_SIZE_MASK;
9635 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9636 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9637 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9638 		}
9639 	} else {
9640 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9641 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9642 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9643 			& ~TU_SIZE_MASK;
9644 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9645 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9646 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9647 	}
9648 }
9649 
9650 void intel_dp_get_m_n(struct intel_crtc *crtc,
9651 		      struct intel_crtc_state *pipe_config)
9652 {
9653 	if (pipe_config->has_pch_encoder)
9654 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9655 	else
9656 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9657 					     &pipe_config->dp_m_n,
9658 					     &pipe_config->dp_m2_n2);
9659 }
9660 
9661 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9662 					struct intel_crtc_state *pipe_config)
9663 {
9664 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9665 				     &pipe_config->fdi_m_n, NULL);
9666 }
9667 
9668 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9669 				    struct intel_crtc_state *pipe_config)
9670 {
9671 	struct drm_device *dev = crtc->base.dev;
9672 	struct drm_i915_private *dev_priv = to_i915(dev);
9673 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9674 	uint32_t ps_ctrl = 0;
9675 	int id = -1;
9676 	int i;
9677 
9678 	/* find scaler attached to this pipe */
9679 	for (i = 0; i < crtc->num_scalers; i++) {
9680 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9681 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9682 			id = i;
9683 			pipe_config->pch_pfit.enabled = true;
9684 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9685 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9686 			break;
9687 		}
9688 	}
9689 
9690 	scaler_state->scaler_id = id;
9691 	if (id >= 0) {
9692 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9693 	} else {
9694 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9695 	}
9696 }
9697 
9698 static void
9699 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9700 				 struct intel_initial_plane_config *plane_config)
9701 {
9702 	struct drm_device *dev = crtc->base.dev;
9703 	struct drm_i915_private *dev_priv = to_i915(dev);
9704 	u32 val, base, offset, stride_mult, tiling;
9705 	int pipe = crtc->pipe;
9706 	int fourcc, pixel_format;
9707 	unsigned int aligned_height;
9708 	struct drm_framebuffer *fb;
9709 	struct intel_framebuffer *intel_fb;
9710 
9711 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9712 	if (!intel_fb) {
9713 		DRM_DEBUG_KMS("failed to alloc fb\n");
9714 		return;
9715 	}
9716 
9717 	fb = &intel_fb->base;
9718 
9719 	val = I915_READ(PLANE_CTL(pipe, 0));
9720 	if (!(val & PLANE_CTL_ENABLE))
9721 		goto error;
9722 
9723 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9724 	fourcc = skl_format_to_fourcc(pixel_format,
9725 				      val & PLANE_CTL_ORDER_RGBX,
9726 				      val & PLANE_CTL_ALPHA_MASK);
9727 	fb->pixel_format = fourcc;
9728 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9729 
9730 	tiling = val & PLANE_CTL_TILED_MASK;
9731 	switch (tiling) {
9732 	case PLANE_CTL_TILED_LINEAR:
9733 		fb->modifier = DRM_FORMAT_MOD_NONE;
9734 		break;
9735 	case PLANE_CTL_TILED_X:
9736 		plane_config->tiling = I915_TILING_X;
9737 		fb->modifier = I915_FORMAT_MOD_X_TILED;
9738 		break;
9739 	case PLANE_CTL_TILED_Y:
9740 		fb->modifier = I915_FORMAT_MOD_Y_TILED;
9741 		break;
9742 	case PLANE_CTL_TILED_YF:
9743 		fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9744 		break;
9745 	default:
9746 		MISSING_CASE(tiling);
9747 		goto error;
9748 	}
9749 
9750 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9751 	plane_config->base = base;
9752 
9753 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9754 
9755 	val = I915_READ(PLANE_SIZE(pipe, 0));
9756 	fb->height = ((val >> 16) & 0xfff) + 1;
9757 	fb->width = ((val >> 0) & 0x1fff) + 1;
9758 
9759 	val = I915_READ(PLANE_STRIDE(pipe, 0));
9760 	stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9761 						fb->pixel_format);
9762 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9763 
9764 	aligned_height = intel_fb_align_height(dev, fb->height,
9765 					       fb->pixel_format,
9766 					       fb->modifier);
9767 
9768 	plane_config->size = fb->pitches[0] * aligned_height;
9769 
9770 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9771 		      pipe_name(pipe), fb->width, fb->height,
9772 		      fb->bits_per_pixel, base, fb->pitches[0],
9773 		      plane_config->size);
9774 
9775 	plane_config->fb = intel_fb;
9776 	return;
9777 
9778 error:
9779 	kfree(intel_fb);
9780 }
9781 
9782 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9783 				     struct intel_crtc_state *pipe_config)
9784 {
9785 	struct drm_device *dev = crtc->base.dev;
9786 	struct drm_i915_private *dev_priv = to_i915(dev);
9787 	uint32_t tmp;
9788 
9789 	tmp = I915_READ(PF_CTL(crtc->pipe));
9790 
9791 	if (tmp & PF_ENABLE) {
9792 		pipe_config->pch_pfit.enabled = true;
9793 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9794 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9795 
9796 		/* We currently do not free assignements of panel fitters on
9797 		 * ivb/hsw (since we don't use the higher upscaling modes which
9798 		 * differentiates them) so just WARN about this case for now. */
9799 		if (IS_GEN7(dev_priv)) {
9800 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9801 				PF_PIPE_SEL_IVB(crtc->pipe));
9802 		}
9803 	}
9804 }
9805 
9806 static void
9807 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9808 				  struct intel_initial_plane_config *plane_config)
9809 {
9810 	struct drm_device *dev = crtc->base.dev;
9811 	struct drm_i915_private *dev_priv = to_i915(dev);
9812 	u32 val, base, offset;
9813 	int pipe = crtc->pipe;
9814 	int fourcc, pixel_format;
9815 	unsigned int aligned_height;
9816 	struct drm_framebuffer *fb;
9817 	struct intel_framebuffer *intel_fb;
9818 
9819 	val = I915_READ(DSPCNTR(pipe));
9820 	if (!(val & DISPLAY_PLANE_ENABLE))
9821 		return;
9822 
9823 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9824 	if (!intel_fb) {
9825 		DRM_DEBUG_KMS("failed to alloc fb\n");
9826 		return;
9827 	}
9828 
9829 	fb = &intel_fb->base;
9830 
9831 	if (INTEL_GEN(dev_priv) >= 4) {
9832 		if (val & DISPPLANE_TILED) {
9833 			plane_config->tiling = I915_TILING_X;
9834 			fb->modifier = I915_FORMAT_MOD_X_TILED;
9835 		}
9836 	}
9837 
9838 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9839 	fourcc = i9xx_format_to_fourcc(pixel_format);
9840 	fb->pixel_format = fourcc;
9841 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9842 
9843 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9844 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9845 		offset = I915_READ(DSPOFFSET(pipe));
9846 	} else {
9847 		if (plane_config->tiling)
9848 			offset = I915_READ(DSPTILEOFF(pipe));
9849 		else
9850 			offset = I915_READ(DSPLINOFF(pipe));
9851 	}
9852 	plane_config->base = base;
9853 
9854 	val = I915_READ(PIPESRC(pipe));
9855 	fb->width = ((val >> 16) & 0xfff) + 1;
9856 	fb->height = ((val >> 0) & 0xfff) + 1;
9857 
9858 	val = I915_READ(DSPSTRIDE(pipe));
9859 	fb->pitches[0] = val & 0xffffffc0;
9860 
9861 	aligned_height = intel_fb_align_height(dev, fb->height,
9862 					       fb->pixel_format,
9863 					       fb->modifier);
9864 
9865 	plane_config->size = fb->pitches[0] * aligned_height;
9866 
9867 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9868 		      pipe_name(pipe), fb->width, fb->height,
9869 		      fb->bits_per_pixel, base, fb->pitches[0],
9870 		      plane_config->size);
9871 
9872 	plane_config->fb = intel_fb;
9873 }
9874 
9875 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9876 				     struct intel_crtc_state *pipe_config)
9877 {
9878 	struct drm_device *dev = crtc->base.dev;
9879 	struct drm_i915_private *dev_priv = to_i915(dev);
9880 	enum intel_display_power_domain power_domain;
9881 	uint32_t tmp;
9882 	bool ret;
9883 
9884 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9885 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9886 		return false;
9887 
9888 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9889 	pipe_config->shared_dpll = NULL;
9890 
9891 	ret = false;
9892 	tmp = I915_READ(PIPECONF(crtc->pipe));
9893 	if (!(tmp & PIPECONF_ENABLE))
9894 		goto out;
9895 
9896 	switch (tmp & PIPECONF_BPC_MASK) {
9897 	case PIPECONF_6BPC:
9898 		pipe_config->pipe_bpp = 18;
9899 		break;
9900 	case PIPECONF_8BPC:
9901 		pipe_config->pipe_bpp = 24;
9902 		break;
9903 	case PIPECONF_10BPC:
9904 		pipe_config->pipe_bpp = 30;
9905 		break;
9906 	case PIPECONF_12BPC:
9907 		pipe_config->pipe_bpp = 36;
9908 		break;
9909 	default:
9910 		break;
9911 	}
9912 
9913 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9914 		pipe_config->limited_color_range = true;
9915 
9916 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9917 		struct intel_shared_dpll *pll;
9918 		enum intel_dpll_id pll_id;
9919 
9920 		pipe_config->has_pch_encoder = true;
9921 
9922 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9923 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9924 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9925 
9926 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9927 
9928 		if (HAS_PCH_IBX(dev_priv)) {
9929 			/*
9930 			 * The pipe->pch transcoder and pch transcoder->pll
9931 			 * mapping is fixed.
9932 			 */
9933 			pll_id = (enum intel_dpll_id) crtc->pipe;
9934 		} else {
9935 			tmp = I915_READ(PCH_DPLL_SEL);
9936 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9937 				pll_id = DPLL_ID_PCH_PLL_B;
9938 			else
9939 				pll_id= DPLL_ID_PCH_PLL_A;
9940 		}
9941 
9942 		pipe_config->shared_dpll =
9943 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
9944 		pll = pipe_config->shared_dpll;
9945 
9946 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9947 						 &pipe_config->dpll_hw_state));
9948 
9949 		tmp = pipe_config->dpll_hw_state.dpll;
9950 		pipe_config->pixel_multiplier =
9951 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9952 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9953 
9954 		ironlake_pch_clock_get(crtc, pipe_config);
9955 	} else {
9956 		pipe_config->pixel_multiplier = 1;
9957 	}
9958 
9959 	intel_get_pipe_timings(crtc, pipe_config);
9960 	intel_get_pipe_src_size(crtc, pipe_config);
9961 
9962 	ironlake_get_pfit_config(crtc, pipe_config);
9963 
9964 	ret = true;
9965 
9966 out:
9967 	intel_display_power_put(dev_priv, power_domain);
9968 
9969 	return ret;
9970 }
9971 
9972 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9973 {
9974 	struct drm_device *dev = &dev_priv->drm;
9975 	struct intel_crtc *crtc;
9976 
9977 	for_each_intel_crtc(dev, crtc)
9978 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9979 		     pipe_name(crtc->pipe));
9980 
9981 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9982 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9983 	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9984 	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9985 	I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
9986 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9987 	     "CPU PWM1 enabled\n");
9988 	if (IS_HASWELL(dev_priv))
9989 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9990 		     "CPU PWM2 enabled\n");
9991 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9992 	     "PCH PWM1 enabled\n");
9993 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9994 	     "Utility pin enabled\n");
9995 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9996 
9997 	/*
9998 	 * In theory we can still leave IRQs enabled, as long as only the HPD
9999 	 * interrupts remain enabled. We used to check for that, but since it's
10000 	 * gen-specific and since we only disable LCPLL after we fully disable
10001 	 * the interrupts, the check below should be enough.
10002 	 */
10003 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10004 }
10005 
10006 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10007 {
10008 	if (IS_HASWELL(dev_priv))
10009 		return I915_READ(D_COMP_HSW);
10010 	else
10011 		return I915_READ(D_COMP_BDW);
10012 }
10013 
10014 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10015 {
10016 	if (IS_HASWELL(dev_priv)) {
10017 		mutex_lock(&dev_priv->rps.hw_lock);
10018 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10019 					    val))
10020 			DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10021 		mutex_unlock(&dev_priv->rps.hw_lock);
10022 	} else {
10023 		I915_WRITE(D_COMP_BDW, val);
10024 		POSTING_READ(D_COMP_BDW);
10025 	}
10026 }
10027 
10028 /*
10029  * This function implements pieces of two sequences from BSpec:
10030  * - Sequence for display software to disable LCPLL
10031  * - Sequence for display software to allow package C8+
10032  * The steps implemented here are just the steps that actually touch the LCPLL
10033  * register. Callers should take care of disabling all the display engine
10034  * functions, doing the mode unset, fixing interrupts, etc.
10035  */
10036 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10037 			      bool switch_to_fclk, bool allow_power_down)
10038 {
10039 	uint32_t val;
10040 
10041 	assert_can_disable_lcpll(dev_priv);
10042 
10043 	val = I915_READ(LCPLL_CTL);
10044 
10045 	if (switch_to_fclk) {
10046 		val |= LCPLL_CD_SOURCE_FCLK;
10047 		I915_WRITE(LCPLL_CTL, val);
10048 
10049 		if (wait_for_us(I915_READ(LCPLL_CTL) &
10050 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
10051 			DRM_ERROR("Switching to FCLK failed\n");
10052 
10053 		val = I915_READ(LCPLL_CTL);
10054 	}
10055 
10056 	val |= LCPLL_PLL_DISABLE;
10057 	I915_WRITE(LCPLL_CTL, val);
10058 	POSTING_READ(LCPLL_CTL);
10059 
10060 	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10061 		DRM_ERROR("LCPLL still locked\n");
10062 
10063 	val = hsw_read_dcomp(dev_priv);
10064 	val |= D_COMP_COMP_DISABLE;
10065 	hsw_write_dcomp(dev_priv, val);
10066 	ndelay(100);
10067 
10068 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10069 		     1))
10070 		DRM_ERROR("D_COMP RCOMP still in progress\n");
10071 
10072 	if (allow_power_down) {
10073 		val = I915_READ(LCPLL_CTL);
10074 		val |= LCPLL_POWER_DOWN_ALLOW;
10075 		I915_WRITE(LCPLL_CTL, val);
10076 		POSTING_READ(LCPLL_CTL);
10077 	}
10078 }
10079 
10080 /*
10081  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10082  * source.
10083  */
10084 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10085 {
10086 	uint32_t val;
10087 
10088 	val = I915_READ(LCPLL_CTL);
10089 
10090 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10091 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10092 		return;
10093 
10094 	/*
10095 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
10096 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10097 	 */
10098 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10099 
10100 	if (val & LCPLL_POWER_DOWN_ALLOW) {
10101 		val &= ~LCPLL_POWER_DOWN_ALLOW;
10102 		I915_WRITE(LCPLL_CTL, val);
10103 		POSTING_READ(LCPLL_CTL);
10104 	}
10105 
10106 	val = hsw_read_dcomp(dev_priv);
10107 	val |= D_COMP_COMP_FORCE;
10108 	val &= ~D_COMP_COMP_DISABLE;
10109 	hsw_write_dcomp(dev_priv, val);
10110 
10111 	val = I915_READ(LCPLL_CTL);
10112 	val &= ~LCPLL_PLL_DISABLE;
10113 	I915_WRITE(LCPLL_CTL, val);
10114 
10115 	if (intel_wait_for_register(dev_priv,
10116 				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10117 				    5))
10118 		DRM_ERROR("LCPLL not locked yet\n");
10119 
10120 	if (val & LCPLL_CD_SOURCE_FCLK) {
10121 		val = I915_READ(LCPLL_CTL);
10122 		val &= ~LCPLL_CD_SOURCE_FCLK;
10123 		I915_WRITE(LCPLL_CTL, val);
10124 
10125 		if (wait_for_us((I915_READ(LCPLL_CTL) &
10126 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10127 			DRM_ERROR("Switching back to LCPLL failed\n");
10128 	}
10129 
10130 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10131 	intel_update_cdclk(dev_priv);
10132 }
10133 
10134 /*
10135  * Package states C8 and deeper are really deep PC states that can only be
10136  * reached when all the devices on the system allow it, so even if the graphics
10137  * device allows PC8+, it doesn't mean the system will actually get to these
10138  * states. Our driver only allows PC8+ when going into runtime PM.
10139  *
10140  * The requirements for PC8+ are that all the outputs are disabled, the power
10141  * well is disabled and most interrupts are disabled, and these are also
10142  * requirements for runtime PM. When these conditions are met, we manually do
10143  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10144  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10145  * hang the machine.
10146  *
10147  * When we really reach PC8 or deeper states (not just when we allow it) we lose
10148  * the state of some registers, so when we come back from PC8+ we need to
10149  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10150  * need to take care of the registers kept by RC6. Notice that this happens even
10151  * if we don't put the device in PCI D3 state (which is what currently happens
10152  * because of the runtime PM support).
10153  *
10154  * For more, read "Display Sequences for Package C8" on the hardware
10155  * documentation.
10156  */
10157 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10158 {
10159 	struct drm_device *dev = &dev_priv->drm;
10160 	uint32_t val;
10161 
10162 	DRM_DEBUG_KMS("Enabling package C8+\n");
10163 
10164 	if (HAS_PCH_LPT_LP(dev_priv)) {
10165 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10166 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10167 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10168 	}
10169 
10170 	lpt_disable_clkout_dp(dev);
10171 	hsw_disable_lcpll(dev_priv, true, true);
10172 }
10173 
10174 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10175 {
10176 	struct drm_device *dev = &dev_priv->drm;
10177 	uint32_t val;
10178 
10179 	DRM_DEBUG_KMS("Disabling package C8+\n");
10180 
10181 	hsw_restore_lcpll(dev_priv);
10182 	lpt_init_pch_refclk(dev);
10183 
10184 	if (HAS_PCH_LPT_LP(dev_priv)) {
10185 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10186 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10187 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10188 	}
10189 }
10190 
10191 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10192 {
10193 	struct drm_device *dev = old_state->dev;
10194 	struct intel_atomic_state *old_intel_state =
10195 		to_intel_atomic_state(old_state);
10196 	unsigned int req_cdclk = old_intel_state->dev_cdclk;
10197 
10198 	bxt_set_cdclk(to_i915(dev), req_cdclk);
10199 }
10200 
10201 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10202 					  int pixel_rate)
10203 {
10204 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10205 
10206 	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10207 	if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10208 		pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10209 
10210 	/* BSpec says "Do not use DisplayPort with CDCLK less than
10211 	 * 432 MHz, audio enabled, port width x4, and link rate
10212 	 * HBR2 (5.4 GHz), or else there may be audio corruption or
10213 	 * screen corruption."
10214 	 */
10215 	if (intel_crtc_has_dp_encoder(crtc_state) &&
10216 	    crtc_state->has_audio &&
10217 	    crtc_state->port_clock >= 540000 &&
10218 	    crtc_state->lane_count == 4)
10219 		pixel_rate = max(432000, pixel_rate);
10220 
10221 	return pixel_rate;
10222 }
10223 
10224 /* compute the max rate for new configuration */
10225 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10226 {
10227 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10228 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10229 	struct drm_crtc *crtc;
10230 	struct drm_crtc_state *cstate;
10231 	struct intel_crtc_state *crtc_state;
10232 	unsigned max_pixel_rate = 0, i;
10233 	enum i915_pipe pipe;
10234 
10235 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10236 	       sizeof(intel_state->min_pixclk));
10237 
10238 	for_each_crtc_in_state(state, crtc, cstate, i) {
10239 		int pixel_rate;
10240 
10241 		crtc_state = to_intel_crtc_state(cstate);
10242 		if (!crtc_state->base.enable) {
10243 			intel_state->min_pixclk[i] = 0;
10244 			continue;
10245 		}
10246 
10247 		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10248 
10249 		if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10250 			pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10251 								    pixel_rate);
10252 
10253 		intel_state->min_pixclk[i] = pixel_rate;
10254 	}
10255 
10256 	for_each_pipe(dev_priv, pipe)
10257 		max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10258 
10259 	return max_pixel_rate;
10260 }
10261 
10262 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10263 {
10264 	struct drm_i915_private *dev_priv = to_i915(dev);
10265 	uint32_t val, data;
10266 	int ret;
10267 
10268 	if (WARN((I915_READ(LCPLL_CTL) &
10269 		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10270 		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10271 		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10272 		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10273 		 "trying to change cdclk frequency with cdclk not enabled\n"))
10274 		return;
10275 
10276 	mutex_lock(&dev_priv->rps.hw_lock);
10277 	ret = sandybridge_pcode_write(dev_priv,
10278 				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10279 	mutex_unlock(&dev_priv->rps.hw_lock);
10280 	if (ret) {
10281 		DRM_ERROR("failed to inform pcode about cdclk change\n");
10282 		return;
10283 	}
10284 
10285 	val = I915_READ(LCPLL_CTL);
10286 	val |= LCPLL_CD_SOURCE_FCLK;
10287 	I915_WRITE(LCPLL_CTL, val);
10288 
10289 	if (wait_for_us(I915_READ(LCPLL_CTL) &
10290 			LCPLL_CD_SOURCE_FCLK_DONE, 1))
10291 		DRM_ERROR("Switching to FCLK failed\n");
10292 
10293 	val = I915_READ(LCPLL_CTL);
10294 	val &= ~LCPLL_CLK_FREQ_MASK;
10295 
10296 	switch (cdclk) {
10297 	case 450000:
10298 		val |= LCPLL_CLK_FREQ_450;
10299 		data = 0;
10300 		break;
10301 	case 540000:
10302 		val |= LCPLL_CLK_FREQ_54O_BDW;
10303 		data = 1;
10304 		break;
10305 	case 337500:
10306 		val |= LCPLL_CLK_FREQ_337_5_BDW;
10307 		data = 2;
10308 		break;
10309 	case 675000:
10310 		val |= LCPLL_CLK_FREQ_675_BDW;
10311 		data = 3;
10312 		break;
10313 	default:
10314 		WARN(1, "invalid cdclk frequency\n");
10315 		return;
10316 	}
10317 
10318 	I915_WRITE(LCPLL_CTL, val);
10319 
10320 	val = I915_READ(LCPLL_CTL);
10321 	val &= ~LCPLL_CD_SOURCE_FCLK;
10322 	I915_WRITE(LCPLL_CTL, val);
10323 
10324 	if (wait_for_us((I915_READ(LCPLL_CTL) &
10325 			LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10326 		DRM_ERROR("Switching back to LCPLL failed\n");
10327 
10328 	mutex_lock(&dev_priv->rps.hw_lock);
10329 	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10330 	mutex_unlock(&dev_priv->rps.hw_lock);
10331 
10332 	I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10333 
10334 	intel_update_cdclk(dev_priv);
10335 
10336 	WARN(cdclk != dev_priv->cdclk_freq,
10337 	     "cdclk requested %d kHz but got %d kHz\n",
10338 	     cdclk, dev_priv->cdclk_freq);
10339 }
10340 
10341 static int broadwell_calc_cdclk(int max_pixclk)
10342 {
10343 	if (max_pixclk > 540000)
10344 		return 675000;
10345 	else if (max_pixclk > 450000)
10346 		return 540000;
10347 	else if (max_pixclk > 337500)
10348 		return 450000;
10349 	else
10350 		return 337500;
10351 }
10352 
10353 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10354 {
10355 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10356 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10357 	int max_pixclk = ilk_max_pixel_rate(state);
10358 	int cdclk;
10359 
10360 	/*
10361 	 * FIXME should also account for plane ratio
10362 	 * once 64bpp pixel formats are supported.
10363 	 */
10364 	cdclk = broadwell_calc_cdclk(max_pixclk);
10365 
10366 	if (cdclk > dev_priv->max_cdclk_freq) {
10367 		DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10368 			      cdclk, dev_priv->max_cdclk_freq);
10369 		return -EINVAL;
10370 	}
10371 
10372 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10373 	if (!intel_state->active_crtcs)
10374 		intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10375 
10376 	return 0;
10377 }
10378 
10379 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10380 {
10381 	struct drm_device *dev = old_state->dev;
10382 	struct intel_atomic_state *old_intel_state =
10383 		to_intel_atomic_state(old_state);
10384 	unsigned req_cdclk = old_intel_state->dev_cdclk;
10385 
10386 	broadwell_set_cdclk(dev, req_cdclk);
10387 }
10388 
10389 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10390 {
10391 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10392 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10393 	const int max_pixclk = ilk_max_pixel_rate(state);
10394 	int vco = intel_state->cdclk_pll_vco;
10395 	int cdclk;
10396 
10397 	/*
10398 	 * FIXME should also account for plane ratio
10399 	 * once 64bpp pixel formats are supported.
10400 	 */
10401 	cdclk = skl_calc_cdclk(max_pixclk, vco);
10402 
10403 	/*
10404 	 * FIXME move the cdclk caclulation to
10405 	 * compute_config() so we can fail gracegully.
10406 	 */
10407 	if (cdclk > dev_priv->max_cdclk_freq) {
10408 		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10409 			  cdclk, dev_priv->max_cdclk_freq);
10410 		cdclk = dev_priv->max_cdclk_freq;
10411 	}
10412 
10413 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10414 	if (!intel_state->active_crtcs)
10415 		intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10416 
10417 	return 0;
10418 }
10419 
10420 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10421 {
10422 	struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10423 	struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10424 	unsigned int req_cdclk = intel_state->dev_cdclk;
10425 	unsigned int req_vco = intel_state->cdclk_pll_vco;
10426 
10427 	skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10428 }
10429 
10430 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10431 				      struct intel_crtc_state *crtc_state)
10432 {
10433 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10434 		if (!intel_ddi_pll_select(crtc, crtc_state))
10435 			return -EINVAL;
10436 	}
10437 
10438 	crtc->lowfreq_avail = false;
10439 
10440 	return 0;
10441 }
10442 
10443 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10444 				enum port port,
10445 				struct intel_crtc_state *pipe_config)
10446 {
10447 	enum intel_dpll_id id;
10448 
10449 	switch (port) {
10450 	case PORT_A:
10451 		id = DPLL_ID_SKL_DPLL0;
10452 		break;
10453 	case PORT_B:
10454 		id = DPLL_ID_SKL_DPLL1;
10455 		break;
10456 	case PORT_C:
10457 		id = DPLL_ID_SKL_DPLL2;
10458 		break;
10459 	default:
10460 		DRM_ERROR("Incorrect port type\n");
10461 		return;
10462 	}
10463 
10464 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10465 }
10466 
10467 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10468 				enum port port,
10469 				struct intel_crtc_state *pipe_config)
10470 {
10471 	enum intel_dpll_id id;
10472 	u32 temp;
10473 
10474 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10475 	id = temp >> (port * 3 + 1);
10476 
10477 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10478 		return;
10479 
10480 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10481 }
10482 
10483 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10484 				enum port port,
10485 				struct intel_crtc_state *pipe_config)
10486 {
10487 	enum intel_dpll_id id;
10488 	uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10489 
10490 	switch (ddi_pll_sel) {
10491 	case PORT_CLK_SEL_WRPLL1:
10492 		id = DPLL_ID_WRPLL1;
10493 		break;
10494 	case PORT_CLK_SEL_WRPLL2:
10495 		id = DPLL_ID_WRPLL2;
10496 		break;
10497 	case PORT_CLK_SEL_SPLL:
10498 		id = DPLL_ID_SPLL;
10499 		break;
10500 	case PORT_CLK_SEL_LCPLL_810:
10501 		id = DPLL_ID_LCPLL_810;
10502 		break;
10503 	case PORT_CLK_SEL_LCPLL_1350:
10504 		id = DPLL_ID_LCPLL_1350;
10505 		break;
10506 	case PORT_CLK_SEL_LCPLL_2700:
10507 		id = DPLL_ID_LCPLL_2700;
10508 		break;
10509 	default:
10510 		MISSING_CASE(ddi_pll_sel);
10511 		/* fall through */
10512 	case PORT_CLK_SEL_NONE:
10513 		return;
10514 	}
10515 
10516 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10517 }
10518 
10519 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10520 				     struct intel_crtc_state *pipe_config,
10521 				     unsigned long *power_domain_mask)
10522 {
10523 	struct drm_device *dev = crtc->base.dev;
10524 	struct drm_i915_private *dev_priv = to_i915(dev);
10525 	enum intel_display_power_domain power_domain;
10526 	u32 tmp;
10527 
10528 	/*
10529 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10530 	 * transcoder handled below.
10531 	 */
10532 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10533 
10534 	/*
10535 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10536 	 * consistency and less surprising code; it's in always on power).
10537 	 */
10538 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10539 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
10540 		enum i915_pipe trans_edp_pipe;
10541 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10542 		default:
10543 			WARN(1, "unknown pipe linked to edp transcoder\n");
10544 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10545 		case TRANS_DDI_EDP_INPUT_A_ON:
10546 			trans_edp_pipe = PIPE_A;
10547 			break;
10548 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10549 			trans_edp_pipe = PIPE_B;
10550 			break;
10551 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10552 			trans_edp_pipe = PIPE_C;
10553 			break;
10554 		}
10555 
10556 		if (trans_edp_pipe == crtc->pipe)
10557 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
10558 	}
10559 
10560 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10561 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10562 		return false;
10563 	*power_domain_mask |= BIT(power_domain);
10564 
10565 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10566 
10567 	return tmp & PIPECONF_ENABLE;
10568 }
10569 
10570 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10571 					 struct intel_crtc_state *pipe_config,
10572 					 unsigned long *power_domain_mask)
10573 {
10574 	struct drm_device *dev = crtc->base.dev;
10575 	struct drm_i915_private *dev_priv = to_i915(dev);
10576 	enum intel_display_power_domain power_domain;
10577 	enum port port;
10578 	enum transcoder cpu_transcoder;
10579 	u32 tmp;
10580 
10581 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10582 		if (port == PORT_A)
10583 			cpu_transcoder = TRANSCODER_DSI_A;
10584 		else
10585 			cpu_transcoder = TRANSCODER_DSI_C;
10586 
10587 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10588 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10589 			continue;
10590 		*power_domain_mask |= BIT(power_domain);
10591 
10592 		/*
10593 		 * The PLL needs to be enabled with a valid divider
10594 		 * configuration, otherwise accessing DSI registers will hang
10595 		 * the machine. See BSpec North Display Engine
10596 		 * registers/MIPI[BXT]. We can break out here early, since we
10597 		 * need the same DSI PLL to be enabled for both DSI ports.
10598 		 */
10599 		if (!intel_dsi_pll_is_enabled(dev_priv))
10600 			break;
10601 
10602 		/* XXX: this works for video mode only */
10603 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10604 		if (!(tmp & DPI_ENABLE))
10605 			continue;
10606 
10607 		tmp = I915_READ(MIPI_CTRL(port));
10608 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10609 			continue;
10610 
10611 		pipe_config->cpu_transcoder = cpu_transcoder;
10612 		break;
10613 	}
10614 
10615 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10616 }
10617 
10618 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10619 				       struct intel_crtc_state *pipe_config)
10620 {
10621 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10622 	struct intel_shared_dpll *pll;
10623 	enum port port;
10624 	uint32_t tmp;
10625 
10626 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10627 
10628 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10629 
10630 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10631 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10632 	else if (IS_BROXTON(dev_priv))
10633 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10634 	else
10635 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10636 
10637 	pll = pipe_config->shared_dpll;
10638 	if (pll) {
10639 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10640 						 &pipe_config->dpll_hw_state));
10641 	}
10642 
10643 	/*
10644 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10645 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10646 	 * the PCH transcoder is on.
10647 	 */
10648 	if (INTEL_GEN(dev_priv) < 9 &&
10649 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10650 		pipe_config->has_pch_encoder = true;
10651 
10652 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10653 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10654 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10655 
10656 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10657 	}
10658 }
10659 
10660 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10661 				    struct intel_crtc_state *pipe_config)
10662 {
10663 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10664 	enum intel_display_power_domain power_domain;
10665 	unsigned long power_domain_mask;
10666 	bool active;
10667 
10668 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10669 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10670 		return false;
10671 	power_domain_mask = BIT(power_domain);
10672 
10673 	pipe_config->shared_dpll = NULL;
10674 
10675 	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10676 
10677 	if (IS_BROXTON(dev_priv) &&
10678 	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10679 		WARN_ON(active);
10680 		active = true;
10681 	}
10682 
10683 	if (!active)
10684 		goto out;
10685 
10686 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10687 		haswell_get_ddi_port_state(crtc, pipe_config);
10688 		intel_get_pipe_timings(crtc, pipe_config);
10689 	}
10690 
10691 	intel_get_pipe_src_size(crtc, pipe_config);
10692 
10693 	pipe_config->gamma_mode =
10694 		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10695 
10696 	if (INTEL_GEN(dev_priv) >= 9) {
10697 		skl_init_scalers(dev_priv, crtc, pipe_config);
10698 
10699 		pipe_config->scaler_state.scaler_id = -1;
10700 		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10701 	}
10702 
10703 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10704 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10705 		power_domain_mask |= BIT(power_domain);
10706 		if (INTEL_GEN(dev_priv) >= 9)
10707 			skylake_get_pfit_config(crtc, pipe_config);
10708 		else
10709 			ironlake_get_pfit_config(crtc, pipe_config);
10710 	}
10711 
10712 	if (IS_HASWELL(dev_priv))
10713 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10714 			(I915_READ(IPS_CTL) & IPS_ENABLE);
10715 
10716 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10717 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10718 		pipe_config->pixel_multiplier =
10719 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10720 	} else {
10721 		pipe_config->pixel_multiplier = 1;
10722 	}
10723 
10724 out:
10725 	for_each_power_domain(power_domain, power_domain_mask)
10726 		intel_display_power_put(dev_priv, power_domain);
10727 
10728 	return active;
10729 }
10730 
10731 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10732 			       const struct intel_plane_state *plane_state)
10733 {
10734 	struct drm_device *dev = crtc->dev;
10735 	struct drm_i915_private *dev_priv = to_i915(dev);
10736 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10737 	uint32_t cntl = 0, size = 0;
10738 
10739 	if (plane_state && plane_state->base.visible) {
10740 		unsigned int width = plane_state->base.crtc_w;
10741 		unsigned int height = plane_state->base.crtc_h;
10742 		unsigned int stride = roundup_pow_of_two(width) * 4;
10743 
10744 		switch (stride) {
10745 		default:
10746 			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10747 				  width, stride);
10748 			stride = 256;
10749 			/* fallthrough */
10750 		case 256:
10751 		case 512:
10752 		case 1024:
10753 		case 2048:
10754 			break;
10755 		}
10756 
10757 		cntl |= CURSOR_ENABLE |
10758 			CURSOR_GAMMA_ENABLE |
10759 			CURSOR_FORMAT_ARGB |
10760 			CURSOR_STRIDE(stride);
10761 
10762 		size = (height << 12) | width;
10763 	}
10764 
10765 	if (intel_crtc->cursor_cntl != 0 &&
10766 	    (intel_crtc->cursor_base != base ||
10767 	     intel_crtc->cursor_size != size ||
10768 	     intel_crtc->cursor_cntl != cntl)) {
10769 		/* On these chipsets we can only modify the base/size/stride
10770 		 * whilst the cursor is disabled.
10771 		 */
10772 		I915_WRITE(CURCNTR(PIPE_A), 0);
10773 		POSTING_READ(CURCNTR(PIPE_A));
10774 		intel_crtc->cursor_cntl = 0;
10775 	}
10776 
10777 	if (intel_crtc->cursor_base != base) {
10778 		I915_WRITE(CURBASE(PIPE_A), base);
10779 		intel_crtc->cursor_base = base;
10780 	}
10781 
10782 	if (intel_crtc->cursor_size != size) {
10783 		I915_WRITE(CURSIZE, size);
10784 		intel_crtc->cursor_size = size;
10785 	}
10786 
10787 	if (intel_crtc->cursor_cntl != cntl) {
10788 		I915_WRITE(CURCNTR(PIPE_A), cntl);
10789 		POSTING_READ(CURCNTR(PIPE_A));
10790 		intel_crtc->cursor_cntl = cntl;
10791 	}
10792 }
10793 
10794 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10795 			       const struct intel_plane_state *plane_state)
10796 {
10797 	struct drm_device *dev = crtc->dev;
10798 	struct drm_i915_private *dev_priv = to_i915(dev);
10799 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10800 	int pipe = intel_crtc->pipe;
10801 	uint32_t cntl = 0;
10802 
10803 	if (plane_state && plane_state->base.visible) {
10804 		cntl = MCURSOR_GAMMA_ENABLE;
10805 		switch (plane_state->base.crtc_w) {
10806 			case 64:
10807 				cntl |= CURSOR_MODE_64_ARGB_AX;
10808 				break;
10809 			case 128:
10810 				cntl |= CURSOR_MODE_128_ARGB_AX;
10811 				break;
10812 			case 256:
10813 				cntl |= CURSOR_MODE_256_ARGB_AX;
10814 				break;
10815 			default:
10816 				MISSING_CASE(plane_state->base.crtc_w);
10817 				return;
10818 		}
10819 		cntl |= pipe << 28; /* Connect to correct pipe */
10820 
10821 		if (HAS_DDI(dev_priv))
10822 			cntl |= CURSOR_PIPE_CSC_ENABLE;
10823 
10824 		if (plane_state->base.rotation & DRM_ROTATE_180)
10825 			cntl |= CURSOR_ROTATE_180;
10826 	}
10827 
10828 	if (intel_crtc->cursor_cntl != cntl) {
10829 		I915_WRITE(CURCNTR(pipe), cntl);
10830 		POSTING_READ(CURCNTR(pipe));
10831 		intel_crtc->cursor_cntl = cntl;
10832 	}
10833 
10834 	/* and commit changes on next vblank */
10835 	I915_WRITE(CURBASE(pipe), base);
10836 	POSTING_READ(CURBASE(pipe));
10837 
10838 	intel_crtc->cursor_base = base;
10839 }
10840 
10841 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10842 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10843 				     const struct intel_plane_state *plane_state)
10844 {
10845 	struct drm_device *dev = crtc->dev;
10846 	struct drm_i915_private *dev_priv = to_i915(dev);
10847 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10848 	int pipe = intel_crtc->pipe;
10849 	u32 base = intel_crtc->cursor_addr;
10850 	u32 pos = 0;
10851 
10852 	if (plane_state) {
10853 		int x = plane_state->base.crtc_x;
10854 		int y = plane_state->base.crtc_y;
10855 
10856 		if (x < 0) {
10857 			pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10858 			x = -x;
10859 		}
10860 		pos |= x << CURSOR_X_SHIFT;
10861 
10862 		if (y < 0) {
10863 			pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10864 			y = -y;
10865 		}
10866 		pos |= y << CURSOR_Y_SHIFT;
10867 
10868 		/* ILK+ do this automagically */
10869 		if (HAS_GMCH_DISPLAY(dev_priv) &&
10870 		    plane_state->base.rotation & DRM_ROTATE_180) {
10871 			base += (plane_state->base.crtc_h *
10872 				 plane_state->base.crtc_w - 1) * 4;
10873 		}
10874 	}
10875 
10876 	I915_WRITE(CURPOS(pipe), pos);
10877 
10878 	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10879 		i845_update_cursor(crtc, base, plane_state);
10880 	else
10881 		i9xx_update_cursor(crtc, base, plane_state);
10882 }
10883 
10884 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10885 			   uint32_t width, uint32_t height)
10886 {
10887 	if (width == 0 || height == 0)
10888 		return false;
10889 
10890 	/*
10891 	 * 845g/865g are special in that they are only limited by
10892 	 * the width of their cursors, the height is arbitrary up to
10893 	 * the precision of the register. Everything else requires
10894 	 * square cursors, limited to a few power-of-two sizes.
10895 	 */
10896 	if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10897 		if ((width & 63) != 0)
10898 			return false;
10899 
10900 		if (width > (IS_845G(dev_priv) ? 64 : 512))
10901 			return false;
10902 
10903 		if (height > 1023)
10904 			return false;
10905 	} else {
10906 		switch (width | height) {
10907 		case 256:
10908 		case 128:
10909 			if (IS_GEN2(dev_priv))
10910 				return false;
10911 		case 64:
10912 			break;
10913 		default:
10914 			return false;
10915 		}
10916 	}
10917 
10918 	return true;
10919 }
10920 
10921 /* VESA 640x480x72Hz mode to set on the pipe */
10922 static struct drm_display_mode load_detect_mode = {
10923 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10924 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10925 };
10926 
10927 struct drm_framebuffer *
10928 __intel_framebuffer_create(struct drm_device *dev,
10929 			   struct drm_mode_fb_cmd2 *mode_cmd,
10930 			   struct drm_i915_gem_object *obj)
10931 {
10932 	struct intel_framebuffer *intel_fb;
10933 	int ret;
10934 
10935 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10936 	if (!intel_fb)
10937 		return ERR_PTR(-ENOMEM);
10938 
10939 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10940 	if (ret)
10941 		goto err;
10942 
10943 	return &intel_fb->base;
10944 
10945 err:
10946 	kfree(intel_fb);
10947 	return ERR_PTR(ret);
10948 }
10949 
10950 static struct drm_framebuffer *
10951 intel_framebuffer_create(struct drm_device *dev,
10952 			 struct drm_mode_fb_cmd2 *mode_cmd,
10953 			 struct drm_i915_gem_object *obj)
10954 {
10955 	struct drm_framebuffer *fb;
10956 	int ret;
10957 
10958 	ret = i915_mutex_lock_interruptible(dev);
10959 	if (ret)
10960 		return ERR_PTR(ret);
10961 	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10962 	mutex_unlock(&dev->struct_mutex);
10963 
10964 	return fb;
10965 }
10966 
10967 static u32
10968 intel_framebuffer_pitch_for_width(int width, int bpp)
10969 {
10970 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10971 	return ALIGN(pitch, 64);
10972 }
10973 
10974 static u32
10975 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10976 {
10977 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10978 	return PAGE_ALIGN(pitch * mode->vdisplay);
10979 }
10980 
10981 static struct drm_framebuffer *
10982 intel_framebuffer_create_for_mode(struct drm_device *dev,
10983 				  struct drm_display_mode *mode,
10984 				  int depth, int bpp)
10985 {
10986 	struct drm_framebuffer *fb;
10987 	struct drm_i915_gem_object *obj;
10988 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10989 
10990 	obj = i915_gem_object_create(dev,
10991 				    intel_framebuffer_size_for_mode(mode, bpp));
10992 	if (IS_ERR(obj))
10993 		return ERR_CAST(obj);
10994 
10995 	mode_cmd.width = mode->hdisplay;
10996 	mode_cmd.height = mode->vdisplay;
10997 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10998 								bpp);
10999 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11000 
11001 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11002 	if (IS_ERR(fb))
11003 		i915_gem_object_put(obj);
11004 
11005 	return fb;
11006 }
11007 
11008 static struct drm_framebuffer *
11009 mode_fits_in_fbdev(struct drm_device *dev,
11010 		   struct drm_display_mode *mode)
11011 {
11012 #ifdef CONFIG_DRM_FBDEV_EMULATION
11013 	struct drm_i915_private *dev_priv = to_i915(dev);
11014 	struct drm_i915_gem_object *obj;
11015 	struct drm_framebuffer *fb;
11016 
11017 	if (!dev_priv->fbdev)
11018 		return NULL;
11019 
11020 	if (!dev_priv->fbdev->fb)
11021 		return NULL;
11022 
11023 	obj = dev_priv->fbdev->fb->obj;
11024 	BUG_ON(!obj);
11025 
11026 	fb = &dev_priv->fbdev->fb->base;
11027 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11028 							       fb->bits_per_pixel))
11029 		return NULL;
11030 
11031 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
11032 		return NULL;
11033 
11034 	drm_framebuffer_reference(fb);
11035 	return fb;
11036 #else
11037 	return NULL;
11038 #endif
11039 }
11040 
11041 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11042 					   struct drm_crtc *crtc,
11043 					   struct drm_display_mode *mode,
11044 					   struct drm_framebuffer *fb,
11045 					   int x, int y)
11046 {
11047 	struct drm_plane_state *plane_state;
11048 	int hdisplay, vdisplay;
11049 	int ret;
11050 
11051 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11052 	if (IS_ERR(plane_state))
11053 		return PTR_ERR(plane_state);
11054 
11055 	if (mode)
11056 		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11057 	else
11058 		hdisplay = vdisplay = 0;
11059 
11060 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11061 	if (ret)
11062 		return ret;
11063 	drm_atomic_set_fb_for_plane(plane_state, fb);
11064 	plane_state->crtc_x = 0;
11065 	plane_state->crtc_y = 0;
11066 	plane_state->crtc_w = hdisplay;
11067 	plane_state->crtc_h = vdisplay;
11068 	plane_state->src_x = x << 16;
11069 	plane_state->src_y = y << 16;
11070 	plane_state->src_w = hdisplay << 16;
11071 	plane_state->src_h = vdisplay << 16;
11072 
11073 	return 0;
11074 }
11075 
11076 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11077 				struct drm_display_mode *mode,
11078 				struct intel_load_detect_pipe *old,
11079 				struct drm_modeset_acquire_ctx *ctx)
11080 {
11081 	struct intel_crtc *intel_crtc;
11082 	struct intel_encoder *intel_encoder =
11083 		intel_attached_encoder(connector);
11084 	struct drm_crtc *possible_crtc;
11085 	struct drm_encoder *encoder = &intel_encoder->base;
11086 	struct drm_crtc *crtc = NULL;
11087 	struct drm_device *dev = encoder->dev;
11088 	struct drm_i915_private *dev_priv = to_i915(dev);
11089 	struct drm_framebuffer *fb;
11090 	struct drm_mode_config *config = &dev->mode_config;
11091 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11092 	struct drm_connector_state *connector_state;
11093 	struct intel_crtc_state *crtc_state;
11094 	int ret, i = -1;
11095 
11096 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11097 		      connector->base.id, connector->name,
11098 		      encoder->base.id, encoder->name);
11099 
11100 	old->restore_state = NULL;
11101 
11102 retry:
11103 	ret = drm_modeset_lock(&config->connection_mutex, ctx);
11104 	if (ret)
11105 		goto fail;
11106 
11107 	/*
11108 	 * Algorithm gets a little messy:
11109 	 *
11110 	 *   - if the connector already has an assigned crtc, use it (but make
11111 	 *     sure it's on first)
11112 	 *
11113 	 *   - try to find the first unused crtc that can drive this connector,
11114 	 *     and use that if we find one
11115 	 */
11116 
11117 	/* See if we already have a CRTC for this connector */
11118 	if (connector->state->crtc) {
11119 		crtc = connector->state->crtc;
11120 
11121 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11122 		if (ret)
11123 			goto fail;
11124 
11125 		/* Make sure the crtc and connector are running */
11126 		goto found;
11127 	}
11128 
11129 	/* Find an unused one (if possible) */
11130 	for_each_crtc(dev, possible_crtc) {
11131 		i++;
11132 		if (!(encoder->possible_crtcs & (1 << i)))
11133 			continue;
11134 
11135 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11136 		if (ret)
11137 			goto fail;
11138 
11139 		if (possible_crtc->state->enable) {
11140 			drm_modeset_unlock(&possible_crtc->mutex);
11141 			continue;
11142 		}
11143 
11144 		crtc = possible_crtc;
11145 		break;
11146 	}
11147 
11148 	/*
11149 	 * If we didn't find an unused CRTC, don't use any.
11150 	 */
11151 	if (!crtc) {
11152 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
11153 		goto fail;
11154 	}
11155 
11156 found:
11157 	intel_crtc = to_intel_crtc(crtc);
11158 
11159 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11160 	if (ret)
11161 		goto fail;
11162 
11163 	state = drm_atomic_state_alloc(dev);
11164 	restore_state = drm_atomic_state_alloc(dev);
11165 	if (!state || !restore_state) {
11166 		ret = -ENOMEM;
11167 		goto fail;
11168 	}
11169 
11170 	state->acquire_ctx = ctx;
11171 	restore_state->acquire_ctx = ctx;
11172 
11173 	connector_state = drm_atomic_get_connector_state(state, connector);
11174 	if (IS_ERR(connector_state)) {
11175 		ret = PTR_ERR(connector_state);
11176 		goto fail;
11177 	}
11178 
11179 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11180 	if (ret)
11181 		goto fail;
11182 
11183 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11184 	if (IS_ERR(crtc_state)) {
11185 		ret = PTR_ERR(crtc_state);
11186 		goto fail;
11187 	}
11188 
11189 	crtc_state->base.active = crtc_state->base.enable = true;
11190 
11191 	if (!mode)
11192 		mode = &load_detect_mode;
11193 
11194 	/* We need a framebuffer large enough to accommodate all accesses
11195 	 * that the plane may generate whilst we perform load detection.
11196 	 * We can not rely on the fbcon either being present (we get called
11197 	 * during its initialisation to detect all boot displays, or it may
11198 	 * not even exist) or that it is large enough to satisfy the
11199 	 * requested mode.
11200 	 */
11201 	fb = mode_fits_in_fbdev(dev, mode);
11202 	if (fb == NULL) {
11203 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11204 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11205 	} else
11206 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11207 	if (IS_ERR(fb)) {
11208 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11209 		goto fail;
11210 	}
11211 
11212 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11213 	if (ret)
11214 		goto fail;
11215 
11216 	drm_framebuffer_unreference(fb);
11217 
11218 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11219 	if (ret)
11220 		goto fail;
11221 
11222 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11223 	if (!ret)
11224 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11225 	if (!ret)
11226 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11227 	if (ret) {
11228 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11229 		goto fail;
11230 	}
11231 
11232 	ret = drm_atomic_commit(state);
11233 	if (ret) {
11234 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11235 		goto fail;
11236 	}
11237 
11238 	old->restore_state = restore_state;
11239 	drm_atomic_state_put(state);
11240 
11241 	/* let the connector get through one full cycle before testing */
11242 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11243 	return true;
11244 
11245 fail:
11246 	if (state) {
11247 		drm_atomic_state_put(state);
11248 		state = NULL;
11249 	}
11250 	if (restore_state) {
11251 		drm_atomic_state_put(restore_state);
11252 		restore_state = NULL;
11253 	}
11254 
11255 	if (ret == -EDEADLK) {
11256 		drm_modeset_backoff(ctx);
11257 		goto retry;
11258 	}
11259 
11260 	return false;
11261 }
11262 
11263 void intel_release_load_detect_pipe(struct drm_connector *connector,
11264 				    struct intel_load_detect_pipe *old,
11265 				    struct drm_modeset_acquire_ctx *ctx)
11266 {
11267 	struct intel_encoder *intel_encoder =
11268 		intel_attached_encoder(connector);
11269 	struct drm_encoder *encoder = &intel_encoder->base;
11270 	struct drm_atomic_state *state = old->restore_state;
11271 	int ret;
11272 
11273 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11274 		      connector->base.id, connector->name,
11275 		      encoder->base.id, encoder->name);
11276 
11277 	if (!state)
11278 		return;
11279 
11280 	ret = drm_atomic_commit(state);
11281 	if (ret)
11282 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11283 	drm_atomic_state_put(state);
11284 }
11285 
11286 static int i9xx_pll_refclk(struct drm_device *dev,
11287 			   const struct intel_crtc_state *pipe_config)
11288 {
11289 	struct drm_i915_private *dev_priv = to_i915(dev);
11290 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11291 
11292 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11293 		return dev_priv->vbt.lvds_ssc_freq;
11294 	else if (HAS_PCH_SPLIT(dev_priv))
11295 		return 120000;
11296 	else if (!IS_GEN2(dev_priv))
11297 		return 96000;
11298 	else
11299 		return 48000;
11300 }
11301 
11302 /* Returns the clock of the currently programmed mode of the given pipe. */
11303 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11304 				struct intel_crtc_state *pipe_config)
11305 {
11306 	struct drm_device *dev = crtc->base.dev;
11307 	struct drm_i915_private *dev_priv = to_i915(dev);
11308 	int pipe = pipe_config->cpu_transcoder;
11309 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11310 	u32 fp;
11311 	struct dpll clock;
11312 	int port_clock;
11313 	int refclk = i9xx_pll_refclk(dev, pipe_config);
11314 
11315 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11316 		fp = pipe_config->dpll_hw_state.fp0;
11317 	else
11318 		fp = pipe_config->dpll_hw_state.fp1;
11319 
11320 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11321 	if (IS_PINEVIEW(dev_priv)) {
11322 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11323 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11324 	} else {
11325 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11326 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11327 	}
11328 
11329 	if (!IS_GEN2(dev_priv)) {
11330 		if (IS_PINEVIEW(dev_priv))
11331 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11332 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11333 		else
11334 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11335 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
11336 
11337 		switch (dpll & DPLL_MODE_MASK) {
11338 		case DPLLB_MODE_DAC_SERIAL:
11339 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11340 				5 : 10;
11341 			break;
11342 		case DPLLB_MODE_LVDS:
11343 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11344 				7 : 14;
11345 			break;
11346 		default:
11347 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11348 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
11349 			return;
11350 		}
11351 
11352 		if (IS_PINEVIEW(dev_priv))
11353 			port_clock = pnv_calc_dpll_params(refclk, &clock);
11354 		else
11355 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
11356 	} else {
11357 		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11358 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11359 
11360 		if (is_lvds) {
11361 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11362 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
11363 
11364 			if (lvds & LVDS_CLKB_POWER_UP)
11365 				clock.p2 = 7;
11366 			else
11367 				clock.p2 = 14;
11368 		} else {
11369 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
11370 				clock.p1 = 2;
11371 			else {
11372 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11373 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11374 			}
11375 			if (dpll & PLL_P2_DIVIDE_BY_4)
11376 				clock.p2 = 4;
11377 			else
11378 				clock.p2 = 2;
11379 		}
11380 
11381 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
11382 	}
11383 
11384 	/*
11385 	 * This value includes pixel_multiplier. We will use
11386 	 * port_clock to compute adjusted_mode.crtc_clock in the
11387 	 * encoder's get_config() function.
11388 	 */
11389 	pipe_config->port_clock = port_clock;
11390 }
11391 
11392 int intel_dotclock_calculate(int link_freq,
11393 			     const struct intel_link_m_n *m_n)
11394 {
11395 	/*
11396 	 * The calculation for the data clock is:
11397 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11398 	 * But we want to avoid losing precison if possible, so:
11399 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11400 	 *
11401 	 * and the link clock is simpler:
11402 	 * link_clock = (m * link_clock) / n
11403 	 */
11404 
11405 	if (!m_n->link_n)
11406 		return 0;
11407 
11408 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11409 }
11410 
11411 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11412 				   struct intel_crtc_state *pipe_config)
11413 {
11414 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11415 
11416 	/* read out port_clock from the DPLL */
11417 	i9xx_crtc_clock_get(crtc, pipe_config);
11418 
11419 	/*
11420 	 * In case there is an active pipe without active ports,
11421 	 * we may need some idea for the dotclock anyway.
11422 	 * Calculate one based on the FDI configuration.
11423 	 */
11424 	pipe_config->base.adjusted_mode.crtc_clock =
11425 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11426 					 &pipe_config->fdi_m_n);
11427 }
11428 
11429 /** Returns the currently programmed mode of the given pipe. */
11430 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11431 					     struct drm_crtc *crtc)
11432 {
11433 	struct drm_i915_private *dev_priv = to_i915(dev);
11434 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11435 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11436 	struct drm_display_mode *mode;
11437 	struct intel_crtc_state *pipe_config;
11438 	int htot = I915_READ(HTOTAL(cpu_transcoder));
11439 	int hsync = I915_READ(HSYNC(cpu_transcoder));
11440 	int vtot = I915_READ(VTOTAL(cpu_transcoder));
11441 	int vsync = I915_READ(VSYNC(cpu_transcoder));
11442 	enum i915_pipe pipe = intel_crtc->pipe;
11443 
11444 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11445 	if (!mode)
11446 		return NULL;
11447 
11448 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11449 	if (!pipe_config) {
11450 		kfree(mode);
11451 		return NULL;
11452 	}
11453 
11454 	/*
11455 	 * Construct a pipe_config sufficient for getting the clock info
11456 	 * back out of crtc_clock_get.
11457 	 *
11458 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11459 	 * to use a real value here instead.
11460 	 */
11461 	pipe_config->cpu_transcoder = (enum transcoder) pipe;
11462 	pipe_config->pixel_multiplier = 1;
11463 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11464 	pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11465 	pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11466 	i9xx_crtc_clock_get(intel_crtc, pipe_config);
11467 
11468 	mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11469 	mode->hdisplay = (htot & 0xffff) + 1;
11470 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11471 	mode->hsync_start = (hsync & 0xffff) + 1;
11472 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11473 	mode->vdisplay = (vtot & 0xffff) + 1;
11474 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11475 	mode->vsync_start = (vsync & 0xffff) + 1;
11476 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11477 
11478 	drm_mode_set_name(mode);
11479 
11480 	kfree(pipe_config);
11481 
11482 	return mode;
11483 }
11484 
11485 static void intel_crtc_destroy(struct drm_crtc *crtc)
11486 {
11487 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11488 	struct drm_device *dev = crtc->dev;
11489 	struct intel_flip_work *work;
11490 
11491 	spin_lock_irq(&dev->event_lock);
11492 	work = intel_crtc->flip_work;
11493 	intel_crtc->flip_work = NULL;
11494 	spin_unlock_irq(&dev->event_lock);
11495 
11496 	if (work) {
11497 		cancel_work_sync(&work->mmio_work);
11498 		cancel_work_sync(&work->unpin_work);
11499 		kfree(work);
11500 	}
11501 
11502 	drm_crtc_cleanup(crtc);
11503 
11504 	kfree(intel_crtc);
11505 }
11506 
11507 static void intel_unpin_work_fn(struct work_struct *__work)
11508 {
11509 	struct intel_flip_work *work =
11510 		container_of(__work, struct intel_flip_work, unpin_work);
11511 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11512 	struct drm_device *dev = crtc->base.dev;
11513 	struct drm_plane *primary = crtc->base.primary;
11514 
11515 	if (is_mmio_work(work))
11516 		flush_work(&work->mmio_work);
11517 
11518 	mutex_lock(&dev->struct_mutex);
11519 	intel_unpin_fb_vma(work->old_vma);
11520 	i915_gem_object_put(work->pending_flip_obj);
11521 	mutex_unlock(&dev->struct_mutex);
11522 
11523 	i915_gem_request_put(work->flip_queued_req);
11524 
11525 	intel_frontbuffer_flip_complete(to_i915(dev),
11526 					to_intel_plane(primary)->frontbuffer_bit);
11527 	intel_fbc_post_update(crtc);
11528 	drm_framebuffer_unreference(work->old_fb);
11529 
11530 	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11531 	atomic_dec(&crtc->unpin_work_count);
11532 
11533 	kfree(work);
11534 }
11535 
11536 /* Is 'a' after or equal to 'b'? */
11537 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11538 {
11539 	return !((a - b) & 0x80000000);
11540 }
11541 
11542 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11543 				   struct intel_flip_work *work)
11544 {
11545 	struct drm_device *dev = crtc->base.dev;
11546 	struct drm_i915_private *dev_priv = to_i915(dev);
11547 
11548 	if (abort_flip_on_reset(crtc))
11549 		return true;
11550 
11551 	/*
11552 	 * The relevant registers doen't exist on pre-ctg.
11553 	 * As the flip done interrupt doesn't trigger for mmio
11554 	 * flips on gmch platforms, a flip count check isn't
11555 	 * really needed there. But since ctg has the registers,
11556 	 * include it in the check anyway.
11557 	 */
11558 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11559 		return true;
11560 
11561 	/*
11562 	 * BDW signals flip done immediately if the plane
11563 	 * is disabled, even if the plane enable is already
11564 	 * armed to occur at the next vblank :(
11565 	 */
11566 
11567 	/*
11568 	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11569 	 * used the same base address. In that case the mmio flip might
11570 	 * have completed, but the CS hasn't even executed the flip yet.
11571 	 *
11572 	 * A flip count check isn't enough as the CS might have updated
11573 	 * the base address just after start of vblank, but before we
11574 	 * managed to process the interrupt. This means we'd complete the
11575 	 * CS flip too soon.
11576 	 *
11577 	 * Combining both checks should get us a good enough result. It may
11578 	 * still happen that the CS flip has been executed, but has not
11579 	 * yet actually completed. But in case the base address is the same
11580 	 * anyway, we don't really care.
11581 	 */
11582 	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11583 		crtc->flip_work->gtt_offset &&
11584 		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11585 				    crtc->flip_work->flip_count);
11586 }
11587 
11588 static bool
11589 __pageflip_finished_mmio(struct intel_crtc *crtc,
11590 			       struct intel_flip_work *work)
11591 {
11592 	/*
11593 	 * MMIO work completes when vblank is different from
11594 	 * flip_queued_vblank.
11595 	 *
11596 	 * Reset counter value doesn't matter, this is handled by
11597 	 * i915_wait_request finishing early, so no need to handle
11598 	 * reset here.
11599 	 */
11600 	return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11601 }
11602 
11603 
11604 static bool pageflip_finished(struct intel_crtc *crtc,
11605 			      struct intel_flip_work *work)
11606 {
11607 	if (!atomic_read(&work->pending))
11608 		return false;
11609 
11610 	smp_rmb();
11611 
11612 	if (is_mmio_work(work))
11613 		return __pageflip_finished_mmio(crtc, work);
11614 	else
11615 		return __pageflip_finished_cs(crtc, work);
11616 }
11617 
11618 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11619 {
11620 	struct drm_device *dev = &dev_priv->drm;
11621 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11622 	struct intel_flip_work *work;
11623 	unsigned long flags;
11624 
11625 	/* Ignore early vblank irqs */
11626 	if (!crtc)
11627 		return;
11628 
11629 	/*
11630 	 * This is called both by irq handlers and the reset code (to complete
11631 	 * lost pageflips) so needs the full irqsave spinlocks.
11632 	 */
11633 	spin_lock_irqsave(&dev->event_lock, flags);
11634 	work = crtc->flip_work;
11635 
11636 	if (work != NULL &&
11637 	    !is_mmio_work(work) &&
11638 	    pageflip_finished(crtc, work))
11639 		page_flip_completed(crtc);
11640 
11641 	spin_unlock_irqrestore(&dev->event_lock, flags);
11642 }
11643 
11644 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11645 {
11646 	struct drm_device *dev = &dev_priv->drm;
11647 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11648 	struct intel_flip_work *work;
11649 	unsigned long flags;
11650 
11651 	/* Ignore early vblank irqs */
11652 	if (!crtc)
11653 		return;
11654 
11655 	/*
11656 	 * This is called both by irq handlers and the reset code (to complete
11657 	 * lost pageflips) so needs the full irqsave spinlocks.
11658 	 */
11659 	spin_lock_irqsave(&dev->event_lock, flags);
11660 	work = crtc->flip_work;
11661 
11662 	if (work != NULL &&
11663 	    is_mmio_work(work) &&
11664 	    pageflip_finished(crtc, work))
11665 		page_flip_completed(crtc);
11666 
11667 	spin_unlock_irqrestore(&dev->event_lock, flags);
11668 }
11669 
11670 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11671 					       struct intel_flip_work *work)
11672 {
11673 	work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11674 
11675 	/* Ensure that the work item is consistent when activating it ... */
11676 	smp_mb__before_atomic();
11677 	atomic_set(&work->pending, 1);
11678 }
11679 
11680 static int intel_gen2_queue_flip(struct drm_device *dev,
11681 				 struct drm_crtc *crtc,
11682 				 struct drm_framebuffer *fb,
11683 				 struct drm_i915_gem_object *obj,
11684 				 struct drm_i915_gem_request *req,
11685 				 uint32_t flags)
11686 {
11687 	struct intel_ring *ring = req->ring;
11688 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11689 	u32 flip_mask;
11690 	int ret;
11691 
11692 	ret = intel_ring_begin(req, 6);
11693 	if (ret)
11694 		return ret;
11695 
11696 	/* Can't queue multiple flips, so wait for the previous
11697 	 * one to finish before executing the next.
11698 	 */
11699 	if (intel_crtc->plane)
11700 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11701 	else
11702 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11703 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11704 	intel_ring_emit(ring, MI_NOOP);
11705 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11706 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11707 	intel_ring_emit(ring, fb->pitches[0]);
11708 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11709 	intel_ring_emit(ring, 0); /* aux display base address, unused */
11710 
11711 	return 0;
11712 }
11713 
11714 static int intel_gen3_queue_flip(struct drm_device *dev,
11715 				 struct drm_crtc *crtc,
11716 				 struct drm_framebuffer *fb,
11717 				 struct drm_i915_gem_object *obj,
11718 				 struct drm_i915_gem_request *req,
11719 				 uint32_t flags)
11720 {
11721 	struct intel_ring *ring = req->ring;
11722 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11723 	u32 flip_mask;
11724 	int ret;
11725 
11726 	ret = intel_ring_begin(req, 6);
11727 	if (ret)
11728 		return ret;
11729 
11730 	if (intel_crtc->plane)
11731 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11732 	else
11733 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11734 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11735 	intel_ring_emit(ring, MI_NOOP);
11736 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11737 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11738 	intel_ring_emit(ring, fb->pitches[0]);
11739 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11740 	intel_ring_emit(ring, MI_NOOP);
11741 
11742 	return 0;
11743 }
11744 
11745 static int intel_gen4_queue_flip(struct drm_device *dev,
11746 				 struct drm_crtc *crtc,
11747 				 struct drm_framebuffer *fb,
11748 				 struct drm_i915_gem_object *obj,
11749 				 struct drm_i915_gem_request *req,
11750 				 uint32_t flags)
11751 {
11752 	struct intel_ring *ring = req->ring;
11753 	struct drm_i915_private *dev_priv = to_i915(dev);
11754 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11755 	uint32_t pf, pipesrc;
11756 	int ret;
11757 
11758 	ret = intel_ring_begin(req, 4);
11759 	if (ret)
11760 		return ret;
11761 
11762 	/* i965+ uses the linear or tiled offsets from the
11763 	 * Display Registers (which do not change across a page-flip)
11764 	 * so we need only reprogram the base address.
11765 	 */
11766 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11767 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11768 	intel_ring_emit(ring, fb->pitches[0]);
11769 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11770 			intel_fb_modifier_to_tiling(fb->modifier));
11771 
11772 	/* XXX Enabling the panel-fitter across page-flip is so far
11773 	 * untested on non-native modes, so ignore it for now.
11774 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11775 	 */
11776 	pf = 0;
11777 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11778 	intel_ring_emit(ring, pf | pipesrc);
11779 
11780 	return 0;
11781 }
11782 
11783 static int intel_gen6_queue_flip(struct drm_device *dev,
11784 				 struct drm_crtc *crtc,
11785 				 struct drm_framebuffer *fb,
11786 				 struct drm_i915_gem_object *obj,
11787 				 struct drm_i915_gem_request *req,
11788 				 uint32_t flags)
11789 {
11790 	struct intel_ring *ring = req->ring;
11791 	struct drm_i915_private *dev_priv = to_i915(dev);
11792 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11793 	uint32_t pf, pipesrc;
11794 	int ret;
11795 
11796 	ret = intel_ring_begin(req, 4);
11797 	if (ret)
11798 		return ret;
11799 
11800 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11801 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11802 	intel_ring_emit(ring, fb->pitches[0] |
11803 			intel_fb_modifier_to_tiling(fb->modifier));
11804 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11805 
11806 	/* Contrary to the suggestions in the documentation,
11807 	 * "Enable Panel Fitter" does not seem to be required when page
11808 	 * flipping with a non-native mode, and worse causes a normal
11809 	 * modeset to fail.
11810 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11811 	 */
11812 	pf = 0;
11813 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11814 	intel_ring_emit(ring, pf | pipesrc);
11815 
11816 	return 0;
11817 }
11818 
11819 static int intel_gen7_queue_flip(struct drm_device *dev,
11820 				 struct drm_crtc *crtc,
11821 				 struct drm_framebuffer *fb,
11822 				 struct drm_i915_gem_object *obj,
11823 				 struct drm_i915_gem_request *req,
11824 				 uint32_t flags)
11825 {
11826 	struct drm_i915_private *dev_priv = to_i915(dev);
11827 	struct intel_ring *ring = req->ring;
11828 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11829 	uint32_t plane_bit = 0;
11830 	int len, ret;
11831 
11832 	switch (intel_crtc->plane) {
11833 	case PLANE_A:
11834 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11835 		break;
11836 	case PLANE_B:
11837 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11838 		break;
11839 	case PLANE_C:
11840 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11841 		break;
11842 	default:
11843 		WARN_ONCE(1, "unknown plane in flip command\n");
11844 		return -ENODEV;
11845 	}
11846 
11847 	len = 4;
11848 	if (req->engine->id == RCS) {
11849 		len += 6;
11850 		/*
11851 		 * On Gen 8, SRM is now taking an extra dword to accommodate
11852 		 * 48bits addresses, and we need a NOOP for the batch size to
11853 		 * stay even.
11854 		 */
11855 		if (IS_GEN8(dev_priv))
11856 			len += 2;
11857 	}
11858 
11859 	/*
11860 	 * BSpec MI_DISPLAY_FLIP for IVB:
11861 	 * "The full packet must be contained within the same cache line."
11862 	 *
11863 	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11864 	 * cacheline, if we ever start emitting more commands before
11865 	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11866 	 * then do the cacheline alignment, and finally emit the
11867 	 * MI_DISPLAY_FLIP.
11868 	 */
11869 	ret = intel_ring_cacheline_align(req);
11870 	if (ret)
11871 		return ret;
11872 
11873 	ret = intel_ring_begin(req, len);
11874 	if (ret)
11875 		return ret;
11876 
11877 	/* Unmask the flip-done completion message. Note that the bspec says that
11878 	 * we should do this for both the BCS and RCS, and that we must not unmask
11879 	 * more than one flip event at any time (or ensure that one flip message
11880 	 * can be sent by waiting for flip-done prior to queueing new flips).
11881 	 * Experimentation says that BCS works despite DERRMR masking all
11882 	 * flip-done completion events and that unmasking all planes at once
11883 	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11884 	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11885 	 */
11886 	if (req->engine->id == RCS) {
11887 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11888 		intel_ring_emit_reg(ring, DERRMR);
11889 		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11890 					  DERRMR_PIPEB_PRI_FLIP_DONE |
11891 					  DERRMR_PIPEC_PRI_FLIP_DONE));
11892 		if (IS_GEN8(dev_priv))
11893 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11894 					      MI_SRM_LRM_GLOBAL_GTT);
11895 		else
11896 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11897 					      MI_SRM_LRM_GLOBAL_GTT);
11898 		intel_ring_emit_reg(ring, DERRMR);
11899 		intel_ring_emit(ring,
11900 				i915_ggtt_offset(req->engine->scratch) + 256);
11901 		if (IS_GEN8(dev_priv)) {
11902 			intel_ring_emit(ring, 0);
11903 			intel_ring_emit(ring, MI_NOOP);
11904 		}
11905 	}
11906 
11907 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11908 	intel_ring_emit(ring, fb->pitches[0] |
11909 			intel_fb_modifier_to_tiling(fb->modifier));
11910 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11911 	intel_ring_emit(ring, (MI_NOOP));
11912 
11913 	return 0;
11914 }
11915 
11916 static bool use_mmio_flip(struct intel_engine_cs *engine,
11917 			  struct drm_i915_gem_object *obj)
11918 {
11919 	/*
11920 	 * This is not being used for older platforms, because
11921 	 * non-availability of flip done interrupt forces us to use
11922 	 * CS flips. Older platforms derive flip done using some clever
11923 	 * tricks involving the flip_pending status bits and vblank irqs.
11924 	 * So using MMIO flips there would disrupt this mechanism.
11925 	 */
11926 
11927 	if (engine == NULL)
11928 		return true;
11929 
11930 	if (INTEL_GEN(engine->i915) < 5)
11931 		return false;
11932 
11933 	if (i915.use_mmio_flip < 0)
11934 		return false;
11935 	else if (i915.use_mmio_flip > 0)
11936 		return true;
11937 	else if (i915.enable_execlists)
11938 		return true;
11939 
11940 	return engine != i915_gem_object_last_write_engine(obj);
11941 }
11942 
11943 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11944 			     unsigned int rotation,
11945 			     struct intel_flip_work *work)
11946 {
11947 	struct drm_device *dev = intel_crtc->base.dev;
11948 	struct drm_i915_private *dev_priv = to_i915(dev);
11949 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11950 	const enum i915_pipe pipe = intel_crtc->pipe;
11951 	u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11952 
11953 	ctl = I915_READ(PLANE_CTL(pipe, 0));
11954 	ctl &= ~PLANE_CTL_TILED_MASK;
11955 	switch (fb->modifier) {
11956 	case DRM_FORMAT_MOD_NONE:
11957 		break;
11958 	case I915_FORMAT_MOD_X_TILED:
11959 		ctl |= PLANE_CTL_TILED_X;
11960 		break;
11961 	case I915_FORMAT_MOD_Y_TILED:
11962 		ctl |= PLANE_CTL_TILED_Y;
11963 		break;
11964 	case I915_FORMAT_MOD_Yf_TILED:
11965 		ctl |= PLANE_CTL_TILED_YF;
11966 		break;
11967 	default:
11968 		MISSING_CASE(fb->modifier);
11969 	}
11970 
11971 	/*
11972 	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11973 	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11974 	 */
11975 	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11976 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11977 
11978 	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11979 	POSTING_READ(PLANE_SURF(pipe, 0));
11980 }
11981 
11982 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11983 			     struct intel_flip_work *work)
11984 {
11985 	struct drm_device *dev = intel_crtc->base.dev;
11986 	struct drm_i915_private *dev_priv = to_i915(dev);
11987 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11988 	i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11989 	u32 dspcntr;
11990 
11991 	dspcntr = I915_READ(reg);
11992 
11993 	if (fb->modifier == I915_FORMAT_MOD_X_TILED)
11994 		dspcntr |= DISPPLANE_TILED;
11995 	else
11996 		dspcntr &= ~DISPPLANE_TILED;
11997 
11998 	I915_WRITE(reg, dspcntr);
11999 
12000 	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12001 	POSTING_READ(DSPSURF(intel_crtc->plane));
12002 }
12003 
12004 static void intel_mmio_flip_work_func(struct work_struct *w)
12005 {
12006 	struct intel_flip_work *work =
12007 		container_of(w, struct intel_flip_work, mmio_work);
12008 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12009 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12010 	struct intel_framebuffer *intel_fb =
12011 		to_intel_framebuffer(crtc->base.primary->fb);
12012 	struct drm_i915_gem_object *obj = intel_fb->obj;
12013 
12014 #ifndef __DragonFly__
12015 	WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12016 #else
12017 	/*
12018 	   XXX: on DragonFly, mmio flips sometimes get stuck with the
12019 	   system_unbound_wq thread sleeping in lstim state.
12020 	   Bound the timeout to 10 jiffies for lack of a better immediate fix.
12021 	*/
12022 	WARN_ON(i915_gem_object_wait(obj, 0, 10, NULL) < 0);
12023 #endif
12024 
12025 	intel_pipe_update_start(crtc);
12026 
12027 	if (INTEL_GEN(dev_priv) >= 9)
12028 		skl_do_mmio_flip(crtc, work->rotation, work);
12029 	else
12030 		/* use_mmio_flip() retricts MMIO flips to ilk+ */
12031 		ilk_do_mmio_flip(crtc, work);
12032 
12033 	intel_pipe_update_end(crtc, work);
12034 }
12035 
12036 static int intel_default_queue_flip(struct drm_device *dev,
12037 				    struct drm_crtc *crtc,
12038 				    struct drm_framebuffer *fb,
12039 				    struct drm_i915_gem_object *obj,
12040 				    struct drm_i915_gem_request *req,
12041 				    uint32_t flags)
12042 {
12043 	return -ENODEV;
12044 }
12045 
12046 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12047 				      struct intel_crtc *intel_crtc,
12048 				      struct intel_flip_work *work)
12049 {
12050 	u32 addr, vblank;
12051 
12052 	if (!atomic_read(&work->pending))
12053 		return false;
12054 
12055 	smp_rmb();
12056 
12057 	vblank = intel_crtc_get_vblank_counter(intel_crtc);
12058 	if (work->flip_ready_vblank == 0) {
12059 		if (work->flip_queued_req &&
12060 		    !i915_gem_request_completed(work->flip_queued_req))
12061 			return false;
12062 
12063 		work->flip_ready_vblank = vblank;
12064 	}
12065 
12066 	if (vblank - work->flip_ready_vblank < 3)
12067 		return false;
12068 
12069 	/* Potential stall - if we see that the flip has happened,
12070 	 * assume a missed interrupt. */
12071 	if (INTEL_GEN(dev_priv) >= 4)
12072 		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12073 	else
12074 		addr = I915_READ(DSPADDR(intel_crtc->plane));
12075 
12076 	/* There is a potential issue here with a false positive after a flip
12077 	 * to the same address. We could address this by checking for a
12078 	 * non-incrementing frame counter.
12079 	 */
12080 	return addr == work->gtt_offset;
12081 }
12082 
12083 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12084 {
12085 	struct drm_device *dev = &dev_priv->drm;
12086 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12087 	struct intel_flip_work *work;
12088 
12089 //	WARN_ON(!in_interrupt());
12090 
12091 	if (crtc == NULL)
12092 		return;
12093 
12094 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
12095 	work = crtc->flip_work;
12096 
12097 	if (work != NULL && !is_mmio_work(work) &&
12098 	    __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12099 		WARN_ONCE(1,
12100 			  "Kicking stuck page flip: queued at %d, now %d\n",
12101 			work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12102 		page_flip_completed(crtc);
12103 		work = NULL;
12104 	}
12105 
12106 	if (work != NULL && !is_mmio_work(work) &&
12107 	    intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12108 		intel_queue_rps_boost_for_request(work->flip_queued_req);
12109 	lockmgr(&dev->event_lock, LK_RELEASE);
12110 }
12111 
12112 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12113 				struct drm_framebuffer *fb,
12114 				struct drm_pending_vblank_event *event,
12115 				uint32_t page_flip_flags)
12116 {
12117 	struct drm_device *dev = crtc->dev;
12118 	struct drm_i915_private *dev_priv = to_i915(dev);
12119 	struct drm_framebuffer *old_fb = crtc->primary->fb;
12120 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12121 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12122 	struct drm_plane *primary = crtc->primary;
12123 	enum i915_pipe pipe = intel_crtc->pipe;
12124 	struct intel_flip_work *work;
12125 	struct intel_engine_cs *engine;
12126 	bool mmio_flip;
12127 	struct drm_i915_gem_request *request;
12128 	struct i915_vma *vma;
12129 	int ret;
12130 
12131 	/*
12132 	 * drm_mode_page_flip_ioctl() should already catch this, but double
12133 	 * check to be safe.  In the future we may enable pageflipping from
12134 	 * a disabled primary plane.
12135 	 */
12136 	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12137 		return -EBUSY;
12138 
12139 	/* Can't change pixel format via MI display flips. */
12140 	if (fb->pixel_format != crtc->primary->fb->pixel_format)
12141 		return -EINVAL;
12142 
12143 	/*
12144 	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12145 	 * Note that pitch changes could also affect these register.
12146 	 */
12147 	if (INTEL_GEN(dev_priv) > 3 &&
12148 	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12149 	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
12150 		return -EINVAL;
12151 
12152 	if (i915_terminally_wedged(&dev_priv->gpu_error))
12153 		goto out_hang;
12154 
12155 	work = kzalloc(sizeof(*work), GFP_KERNEL);
12156 	if (work == NULL)
12157 		return -ENOMEM;
12158 
12159 	work->event = event;
12160 	work->crtc = crtc;
12161 	work->old_fb = old_fb;
12162 	INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12163 
12164 	ret = drm_crtc_vblank_get(crtc);
12165 	if (ret)
12166 		goto free_work;
12167 
12168 	/* We borrow the event spin lock for protecting flip_work */
12169 	spin_lock_irq(&dev->event_lock);
12170 	if (intel_crtc->flip_work) {
12171 		/* Before declaring the flip queue wedged, check if
12172 		 * the hardware completed the operation behind our backs.
12173 		 */
12174 		if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12175 			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12176 			page_flip_completed(intel_crtc);
12177 		} else {
12178 			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12179 			spin_unlock_irq(&dev->event_lock);
12180 
12181 			drm_crtc_vblank_put(crtc);
12182 			kfree(work);
12183 			return -EBUSY;
12184 		}
12185 	}
12186 	intel_crtc->flip_work = work;
12187 	spin_unlock_irq(&dev->event_lock);
12188 
12189 	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12190 		flush_workqueue(dev_priv->wq);
12191 
12192 	/* Reference the objects for the scheduled work. */
12193 	drm_framebuffer_reference(work->old_fb);
12194 
12195 	crtc->primary->fb = fb;
12196 	update_state_fb(crtc->primary);
12197 
12198 	work->pending_flip_obj = i915_gem_object_get(obj);
12199 
12200 	ret = i915_mutex_lock_interruptible(dev);
12201 	if (ret)
12202 		goto cleanup;
12203 
12204 	intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12205 	if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12206 		ret = -EIO;
12207 		goto unlock;
12208 	}
12209 
12210 	atomic_inc(&intel_crtc->unpin_work_count);
12211 
12212 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12213 		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12214 
12215 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12216 		engine = dev_priv->engine[BCS];
12217 		if (fb->modifier != old_fb->modifier)
12218 			/* vlv: DISPLAY_FLIP fails to change tiling */
12219 			engine = NULL;
12220 	} else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12221 		engine = dev_priv->engine[BCS];
12222 	} else if (INTEL_GEN(dev_priv) >= 7) {
12223 		engine = i915_gem_object_last_write_engine(obj);
12224 		if (engine == NULL || engine->id != RCS)
12225 			engine = dev_priv->engine[BCS];
12226 	} else {
12227 		engine = dev_priv->engine[RCS];
12228 	}
12229 
12230 	mmio_flip = use_mmio_flip(engine, obj);
12231 
12232 	vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12233 	if (IS_ERR(vma)) {
12234 		ret = PTR_ERR(vma);
12235 		goto cleanup_pending;
12236 	}
12237 
12238 	work->old_vma = to_intel_plane_state(primary->state)->vma;
12239 	to_intel_plane_state(primary->state)->vma = vma;
12240 
12241 	work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
12242 	work->rotation = crtc->primary->state->rotation;
12243 
12244 	/*
12245 	 * There's the potential that the next frame will not be compatible with
12246 	 * FBC, so we want to call pre_update() before the actual page flip.
12247 	 * The problem is that pre_update() caches some information about the fb
12248 	 * object, so we want to do this only after the object is pinned. Let's
12249 	 * be on the safe side and do this immediately before scheduling the
12250 	 * flip.
12251 	 */
12252 	intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12253 			     to_intel_plane_state(primary->state));
12254 
12255 	if (mmio_flip) {
12256 		INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12257 		queue_work(system_unbound_wq, &work->mmio_work);
12258 	} else {
12259 		request = i915_gem_request_alloc(engine, engine->last_context);
12260 		if (IS_ERR(request)) {
12261 			ret = PTR_ERR(request);
12262 			goto cleanup_unpin;
12263 		}
12264 
12265 		ret = i915_gem_request_await_object(request, obj, false);
12266 		if (ret)
12267 			goto cleanup_request;
12268 
12269 		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12270 						   page_flip_flags);
12271 		if (ret)
12272 			goto cleanup_request;
12273 
12274 		intel_mark_page_flip_active(intel_crtc, work);
12275 
12276 		work->flip_queued_req = i915_gem_request_get(request);
12277 		i915_add_request_no_flush(request);
12278 	}
12279 
12280 	i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12281 	i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12282 			  to_intel_plane(primary)->frontbuffer_bit);
12283 	mutex_unlock(&dev->struct_mutex);
12284 
12285 	intel_frontbuffer_flip_prepare(to_i915(dev),
12286 				       to_intel_plane(primary)->frontbuffer_bit);
12287 
12288 	trace_i915_flip_request(intel_crtc->plane, obj);
12289 
12290 	return 0;
12291 
12292 cleanup_request:
12293 	i915_add_request_no_flush(request);
12294 cleanup_unpin:
12295 	to_intel_plane_state(primary->state)->vma = work->old_vma;
12296 	intel_unpin_fb_vma(vma);
12297 cleanup_pending:
12298 	atomic_dec(&intel_crtc->unpin_work_count);
12299 unlock:
12300 	mutex_unlock(&dev->struct_mutex);
12301 cleanup:
12302 	crtc->primary->fb = old_fb;
12303 	update_state_fb(crtc->primary);
12304 
12305 	i915_gem_object_put(obj);
12306 	drm_framebuffer_unreference(work->old_fb);
12307 
12308 	spin_lock_irq(&dev->event_lock);
12309 	intel_crtc->flip_work = NULL;
12310 	spin_unlock_irq(&dev->event_lock);
12311 
12312 	drm_crtc_vblank_put(crtc);
12313 free_work:
12314 	kfree(work);
12315 
12316 	if (ret == -EIO) {
12317 		struct drm_atomic_state *state;
12318 		struct drm_plane_state *plane_state;
12319 
12320 out_hang:
12321 		state = drm_atomic_state_alloc(dev);
12322 		if (!state)
12323 			return -ENOMEM;
12324 		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12325 
12326 retry:
12327 		plane_state = drm_atomic_get_plane_state(state, primary);
12328 		ret = PTR_ERR_OR_ZERO(plane_state);
12329 		if (!ret) {
12330 			drm_atomic_set_fb_for_plane(plane_state, fb);
12331 
12332 			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12333 			if (!ret)
12334 				ret = drm_atomic_commit(state);
12335 		}
12336 
12337 		if (ret == -EDEADLK) {
12338 			drm_modeset_backoff(state->acquire_ctx);
12339 			drm_atomic_state_clear(state);
12340 			goto retry;
12341 		}
12342 
12343 		drm_atomic_state_put(state);
12344 
12345 		if (ret == 0 && event) {
12346 			spin_lock_irq(&dev->event_lock);
12347 			drm_crtc_send_vblank_event(crtc, event);
12348 			spin_unlock_irq(&dev->event_lock);
12349 		}
12350 	}
12351 	return ret;
12352 }
12353 
12354 
12355 /**
12356  * intel_wm_need_update - Check whether watermarks need updating
12357  * @plane: drm plane
12358  * @state: new plane state
12359  *
12360  * Check current plane state versus the new one to determine whether
12361  * watermarks need to be recalculated.
12362  *
12363  * Returns true or false.
12364  */
12365 static bool intel_wm_need_update(struct drm_plane *plane,
12366 				 struct drm_plane_state *state)
12367 {
12368 	struct intel_plane_state *new = to_intel_plane_state(state);
12369 	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12370 
12371 	/* Update watermarks on tiling or size changes. */
12372 	if (new->base.visible != cur->base.visible)
12373 		return true;
12374 
12375 	if (!cur->base.fb || !new->base.fb)
12376 		return false;
12377 
12378 	if (cur->base.fb->modifier != new->base.fb->modifier ||
12379 	    cur->base.rotation != new->base.rotation ||
12380 	    drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12381 	    drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12382 	    drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12383 	    drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12384 		return true;
12385 
12386 	return false;
12387 }
12388 
12389 static bool needs_scaling(struct intel_plane_state *state)
12390 {
12391 	int src_w = drm_rect_width(&state->base.src) >> 16;
12392 	int src_h = drm_rect_height(&state->base.src) >> 16;
12393 	int dst_w = drm_rect_width(&state->base.dst);
12394 	int dst_h = drm_rect_height(&state->base.dst);
12395 
12396 	return (src_w != dst_w || src_h != dst_h);
12397 }
12398 
12399 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12400 				    struct drm_plane_state *plane_state)
12401 {
12402 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12403 	struct drm_crtc *crtc = crtc_state->crtc;
12404 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12405 	struct drm_plane *plane = plane_state->plane;
12406 	struct drm_device *dev = crtc->dev;
12407 	struct drm_i915_private *dev_priv = to_i915(dev);
12408 	struct intel_plane_state *old_plane_state =
12409 		to_intel_plane_state(plane->state);
12410 	bool mode_changed = needs_modeset(crtc_state);
12411 	bool was_crtc_enabled = crtc->state->active;
12412 	bool is_crtc_enabled = crtc_state->active;
12413 	bool turn_off, turn_on, visible, was_visible;
12414 	struct drm_framebuffer *fb = plane_state->fb;
12415 	int ret;
12416 
12417 	if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12418 		ret = skl_update_scaler_plane(
12419 			to_intel_crtc_state(crtc_state),
12420 			to_intel_plane_state(plane_state));
12421 		if (ret)
12422 			return ret;
12423 	}
12424 
12425 	was_visible = old_plane_state->base.visible;
12426 	visible = to_intel_plane_state(plane_state)->base.visible;
12427 
12428 	if (!was_crtc_enabled && WARN_ON(was_visible))
12429 		was_visible = false;
12430 
12431 	/*
12432 	 * Visibility is calculated as if the crtc was on, but
12433 	 * after scaler setup everything depends on it being off
12434 	 * when the crtc isn't active.
12435 	 *
12436 	 * FIXME this is wrong for watermarks. Watermarks should also
12437 	 * be computed as if the pipe would be active. Perhaps move
12438 	 * per-plane wm computation to the .check_plane() hook, and
12439 	 * only combine the results from all planes in the current place?
12440 	 */
12441 	if (!is_crtc_enabled)
12442 		to_intel_plane_state(plane_state)->base.visible = visible = false;
12443 
12444 	if (!was_visible && !visible)
12445 		return 0;
12446 
12447 	if (fb != old_plane_state->base.fb)
12448 		pipe_config->fb_changed = true;
12449 
12450 	turn_off = was_visible && (!visible || mode_changed);
12451 	turn_on = visible && (!was_visible || mode_changed);
12452 
12453 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12454 			 intel_crtc->base.base.id,
12455 			 intel_crtc->base.name,
12456 			 plane->base.id, plane->name,
12457 			 fb ? fb->base.id : -1);
12458 
12459 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12460 			 plane->base.id, plane->name,
12461 			 was_visible, visible,
12462 			 turn_off, turn_on, mode_changed);
12463 
12464 	if (turn_on) {
12465 		pipe_config->update_wm_pre = true;
12466 
12467 		/* must disable cxsr around plane enable/disable */
12468 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12469 			pipe_config->disable_cxsr = true;
12470 	} else if (turn_off) {
12471 		pipe_config->update_wm_post = true;
12472 
12473 		/* must disable cxsr around plane enable/disable */
12474 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12475 			pipe_config->disable_cxsr = true;
12476 	} else if (intel_wm_need_update(plane, plane_state)) {
12477 		/* FIXME bollocks */
12478 		pipe_config->update_wm_pre = true;
12479 		pipe_config->update_wm_post = true;
12480 	}
12481 
12482 	/* Pre-gen9 platforms need two-step watermark updates */
12483 	if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12484 	    INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12485 		to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12486 
12487 	if (visible || was_visible)
12488 		pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12489 
12490 	/*
12491 	 * WaCxSRDisabledForSpriteScaling:ivb
12492 	 *
12493 	 * cstate->update_wm was already set above, so this flag will
12494 	 * take effect when we commit and program watermarks.
12495 	 */
12496 	if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12497 	    needs_scaling(to_intel_plane_state(plane_state)) &&
12498 	    !needs_scaling(old_plane_state))
12499 		pipe_config->disable_lp_wm = true;
12500 
12501 	return 0;
12502 }
12503 
12504 static bool encoders_cloneable(const struct intel_encoder *a,
12505 			       const struct intel_encoder *b)
12506 {
12507 	/* masks could be asymmetric, so check both ways */
12508 	return a == b || (a->cloneable & (1 << b->type) &&
12509 			  b->cloneable & (1 << a->type));
12510 }
12511 
12512 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12513 					 struct intel_crtc *crtc,
12514 					 struct intel_encoder *encoder)
12515 {
12516 	struct intel_encoder *source_encoder;
12517 	struct drm_connector *connector;
12518 	struct drm_connector_state *connector_state;
12519 	int i;
12520 
12521 	for_each_connector_in_state(state, connector, connector_state, i) {
12522 		if (connector_state->crtc != &crtc->base)
12523 			continue;
12524 
12525 		source_encoder =
12526 			to_intel_encoder(connector_state->best_encoder);
12527 		if (!encoders_cloneable(encoder, source_encoder))
12528 			return false;
12529 	}
12530 
12531 	return true;
12532 }
12533 
12534 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12535 				   struct drm_crtc_state *crtc_state)
12536 {
12537 	struct drm_device *dev = crtc->dev;
12538 	struct drm_i915_private *dev_priv = to_i915(dev);
12539 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12540 	struct intel_crtc_state *pipe_config =
12541 		to_intel_crtc_state(crtc_state);
12542 	struct drm_atomic_state *state = crtc_state->state;
12543 	int ret;
12544 	bool mode_changed = needs_modeset(crtc_state);
12545 
12546 	if (mode_changed && !crtc_state->active)
12547 		pipe_config->update_wm_post = true;
12548 
12549 	if (mode_changed && crtc_state->enable &&
12550 	    dev_priv->display.crtc_compute_clock &&
12551 	    !WARN_ON(pipe_config->shared_dpll)) {
12552 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12553 							   pipe_config);
12554 		if (ret)
12555 			return ret;
12556 	}
12557 
12558 	if (crtc_state->color_mgmt_changed) {
12559 		ret = intel_color_check(crtc, crtc_state);
12560 		if (ret)
12561 			return ret;
12562 
12563 		/*
12564 		 * Changing color management on Intel hardware is
12565 		 * handled as part of planes update.
12566 		 */
12567 		crtc_state->planes_changed = true;
12568 	}
12569 
12570 	ret = 0;
12571 	if (dev_priv->display.compute_pipe_wm) {
12572 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
12573 		if (ret) {
12574 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12575 			return ret;
12576 		}
12577 	}
12578 
12579 	if (dev_priv->display.compute_intermediate_wm &&
12580 	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
12581 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12582 			return 0;
12583 
12584 		/*
12585 		 * Calculate 'intermediate' watermarks that satisfy both the
12586 		 * old state and the new state.  We can program these
12587 		 * immediately.
12588 		 */
12589 		ret = dev_priv->display.compute_intermediate_wm(dev,
12590 								intel_crtc,
12591 								pipe_config);
12592 		if (ret) {
12593 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12594 			return ret;
12595 		}
12596 	} else if (dev_priv->display.compute_intermediate_wm) {
12597 		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12598 			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12599 	}
12600 
12601 	if (INTEL_GEN(dev_priv) >= 9) {
12602 		if (mode_changed)
12603 			ret = skl_update_scaler_crtc(pipe_config);
12604 
12605 		if (!ret)
12606 			ret = intel_atomic_setup_scalers(dev, intel_crtc,
12607 							 pipe_config);
12608 	}
12609 
12610 	return ret;
12611 }
12612 
12613 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12614 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
12615 	.atomic_begin = intel_begin_crtc_commit,
12616 	.atomic_flush = intel_finish_crtc_commit,
12617 	.atomic_check = intel_crtc_atomic_check,
12618 };
12619 
12620 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12621 {
12622 	struct intel_connector *connector;
12623 
12624 	for_each_intel_connector(dev, connector) {
12625 		if (connector->base.state->crtc)
12626 			drm_connector_unreference(&connector->base);
12627 
12628 		if (connector->base.encoder) {
12629 			connector->base.state->best_encoder =
12630 				connector->base.encoder;
12631 			connector->base.state->crtc =
12632 				connector->base.encoder->crtc;
12633 
12634 			drm_connector_reference(&connector->base);
12635 		} else {
12636 			connector->base.state->best_encoder = NULL;
12637 			connector->base.state->crtc = NULL;
12638 		}
12639 	}
12640 }
12641 
12642 static void
12643 connected_sink_compute_bpp(struct intel_connector *connector,
12644 			   struct intel_crtc_state *pipe_config)
12645 {
12646 	const struct drm_display_info *info = &connector->base.display_info;
12647 	int bpp = pipe_config->pipe_bpp;
12648 
12649 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12650 		      connector->base.base.id,
12651 		      connector->base.name);
12652 
12653 	/* Don't use an invalid EDID bpc value */
12654 	if (info->bpc != 0 && info->bpc * 3 < bpp) {
12655 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12656 			      bpp, info->bpc * 3);
12657 		pipe_config->pipe_bpp = info->bpc * 3;
12658 	}
12659 
12660 	/* Clamp bpp to 8 on screens without EDID 1.4 */
12661 	if (info->bpc == 0 && bpp > 24) {
12662 		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12663 			      bpp);
12664 		pipe_config->pipe_bpp = 24;
12665 	}
12666 }
12667 
12668 static int
12669 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12670 			  struct intel_crtc_state *pipe_config)
12671 {
12672 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12673 	struct drm_atomic_state *state;
12674 	struct drm_connector *connector;
12675 	struct drm_connector_state *connector_state;
12676 	int bpp, i;
12677 
12678 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12679 	    IS_CHERRYVIEW(dev_priv)))
12680 		bpp = 10*3;
12681 	else if (INTEL_GEN(dev_priv) >= 5)
12682 		bpp = 12*3;
12683 	else
12684 		bpp = 8*3;
12685 
12686 
12687 	pipe_config->pipe_bpp = bpp;
12688 
12689 	state = pipe_config->base.state;
12690 
12691 	/* Clamp display bpp to EDID value */
12692 	for_each_connector_in_state(state, connector, connector_state, i) {
12693 		if (connector_state->crtc != &crtc->base)
12694 			continue;
12695 
12696 		connected_sink_compute_bpp(to_intel_connector(connector),
12697 					   pipe_config);
12698 	}
12699 
12700 	return bpp;
12701 }
12702 
12703 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12704 {
12705 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12706 			"type: 0x%x flags: 0x%x\n",
12707 		mode->crtc_clock,
12708 		mode->crtc_hdisplay, mode->crtc_hsync_start,
12709 		mode->crtc_hsync_end, mode->crtc_htotal,
12710 		mode->crtc_vdisplay, mode->crtc_vsync_start,
12711 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12712 }
12713 
12714 static inline void
12715 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12716 		      unsigned int lane_count, struct intel_link_m_n *m_n)
12717 {
12718 	DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12719 		      id, lane_count,
12720 		      m_n->gmch_m, m_n->gmch_n,
12721 		      m_n->link_m, m_n->link_n, m_n->tu);
12722 }
12723 
12724 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12725 				   struct intel_crtc_state *pipe_config,
12726 				   const char *context)
12727 {
12728 	struct drm_device *dev = crtc->base.dev;
12729 	struct drm_i915_private *dev_priv = to_i915(dev);
12730 	struct drm_plane *plane;
12731 	struct intel_plane *intel_plane;
12732 	struct intel_plane_state *state;
12733 	struct drm_framebuffer *fb;
12734 
12735 	DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12736 		      crtc->base.base.id, crtc->base.name, context);
12737 
12738 	DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12739 		      transcoder_name(pipe_config->cpu_transcoder),
12740 		      pipe_config->pipe_bpp, pipe_config->dither);
12741 
12742 	if (pipe_config->has_pch_encoder)
12743 		intel_dump_m_n_config(pipe_config, "fdi",
12744 				      pipe_config->fdi_lanes,
12745 				      &pipe_config->fdi_m_n);
12746 
12747 	if (intel_crtc_has_dp_encoder(pipe_config)) {
12748 		intel_dump_m_n_config(pipe_config, "dp m_n",
12749 				pipe_config->lane_count, &pipe_config->dp_m_n);
12750 		if (pipe_config->has_drrs)
12751 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
12752 					      pipe_config->lane_count,
12753 					      &pipe_config->dp_m2_n2);
12754 	}
12755 
12756 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12757 		      pipe_config->has_audio, pipe_config->has_infoframe);
12758 
12759 	DRM_DEBUG_KMS("requested mode:\n");
12760 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12761 	DRM_DEBUG_KMS("adjusted mode:\n");
12762 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12763 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12764 	DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12765 		      pipe_config->port_clock,
12766 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12767 
12768 	if (INTEL_GEN(dev_priv) >= 9)
12769 		DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12770 			      crtc->num_scalers,
12771 			      pipe_config->scaler_state.scaler_users,
12772 		              pipe_config->scaler_state.scaler_id);
12773 
12774 	if (HAS_GMCH_DISPLAY(dev_priv))
12775 		DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12776 			      pipe_config->gmch_pfit.control,
12777 			      pipe_config->gmch_pfit.pgm_ratios,
12778 			      pipe_config->gmch_pfit.lvds_border_bits);
12779 	else
12780 		DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12781 			      pipe_config->pch_pfit.pos,
12782 			      pipe_config->pch_pfit.size,
12783 		              enableddisabled(pipe_config->pch_pfit.enabled));
12784 
12785 	DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12786 		      pipe_config->ips_enabled, pipe_config->double_wide);
12787 
12788 	if (IS_BROXTON(dev_priv)) {
12789 		DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12790 			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12791 			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12792 			      pipe_config->dpll_hw_state.ebb0,
12793 			      pipe_config->dpll_hw_state.ebb4,
12794 			      pipe_config->dpll_hw_state.pll0,
12795 			      pipe_config->dpll_hw_state.pll1,
12796 			      pipe_config->dpll_hw_state.pll2,
12797 			      pipe_config->dpll_hw_state.pll3,
12798 			      pipe_config->dpll_hw_state.pll6,
12799 			      pipe_config->dpll_hw_state.pll8,
12800 			      pipe_config->dpll_hw_state.pll9,
12801 			      pipe_config->dpll_hw_state.pll10,
12802 			      pipe_config->dpll_hw_state.pcsdw12);
12803 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12804 		DRM_DEBUG_KMS("dpll_hw_state: "
12805 			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12806 			      pipe_config->dpll_hw_state.ctrl1,
12807 			      pipe_config->dpll_hw_state.cfgcr1,
12808 			      pipe_config->dpll_hw_state.cfgcr2);
12809 	} else if (HAS_DDI(dev_priv)) {
12810 		DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12811 			      pipe_config->dpll_hw_state.wrpll,
12812 			      pipe_config->dpll_hw_state.spll);
12813 	} else {
12814 		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12815 			      "fp0: 0x%x, fp1: 0x%x\n",
12816 			      pipe_config->dpll_hw_state.dpll,
12817 			      pipe_config->dpll_hw_state.dpll_md,
12818 			      pipe_config->dpll_hw_state.fp0,
12819 			      pipe_config->dpll_hw_state.fp1);
12820 	}
12821 
12822 	DRM_DEBUG_KMS("planes on this crtc\n");
12823 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12824 		struct drm_format_name_buf format_name;
12825 		intel_plane = to_intel_plane(plane);
12826 		if (intel_plane->pipe != crtc->pipe)
12827 			continue;
12828 
12829 		state = to_intel_plane_state(plane->state);
12830 		fb = state->base.fb;
12831 		if (!fb) {
12832 			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12833 				      plane->base.id, plane->name, state->scaler_id);
12834 			continue;
12835 		}
12836 
12837 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12838 			      plane->base.id, plane->name,
12839 			      fb->base.id, fb->width, fb->height,
12840 			      drm_get_format_name(fb->pixel_format, &format_name));
12841 		if (INTEL_GEN(dev_priv) >= 9)
12842 			DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12843 				      state->scaler_id,
12844 				      state->base.src.x1 >> 16,
12845 				      state->base.src.y1 >> 16,
12846 				      drm_rect_width(&state->base.src) >> 16,
12847 				      drm_rect_height(&state->base.src) >> 16,
12848 				      state->base.dst.x1, state->base.dst.y1,
12849 				      drm_rect_width(&state->base.dst),
12850 				      drm_rect_height(&state->base.dst));
12851 	}
12852 }
12853 
12854 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12855 {
12856 	struct drm_device *dev = state->dev;
12857 	struct drm_connector *connector;
12858 	unsigned int used_ports = 0;
12859 	unsigned int used_mst_ports = 0;
12860 
12861 	/*
12862 	 * Walk the connector list instead of the encoder
12863 	 * list to detect the problem on ddi platforms
12864 	 * where there's just one encoder per digital port.
12865 	 */
12866 	drm_for_each_connector(connector, dev) {
12867 		struct drm_connector_state *connector_state;
12868 		struct intel_encoder *encoder;
12869 
12870 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12871 		if (!connector_state)
12872 			connector_state = connector->state;
12873 
12874 		if (!connector_state->best_encoder)
12875 			continue;
12876 
12877 		encoder = to_intel_encoder(connector_state->best_encoder);
12878 
12879 		WARN_ON(!connector_state->crtc);
12880 
12881 		switch (encoder->type) {
12882 			unsigned int port_mask;
12883 		case INTEL_OUTPUT_UNKNOWN:
12884 			if (WARN_ON(!HAS_DDI(to_i915(dev))))
12885 				break;
12886 		case INTEL_OUTPUT_DP:
12887 		case INTEL_OUTPUT_HDMI:
12888 		case INTEL_OUTPUT_EDP:
12889 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12890 
12891 			/* the same port mustn't appear more than once */
12892 			if (used_ports & port_mask)
12893 				return false;
12894 
12895 			used_ports |= port_mask;
12896 			break;
12897 		case INTEL_OUTPUT_DP_MST:
12898 			used_mst_ports |=
12899 				1 << enc_to_mst(&encoder->base)->primary->port;
12900 			break;
12901 		default:
12902 			break;
12903 		}
12904 	}
12905 
12906 	/* can't mix MST and SST/HDMI on the same port */
12907 	if (used_ports & used_mst_ports)
12908 		return false;
12909 
12910 	return true;
12911 }
12912 
12913 static void
12914 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12915 {
12916 	struct drm_crtc_state tmp_state;
12917 	struct intel_crtc_scaler_state scaler_state;
12918 	struct intel_dpll_hw_state dpll_hw_state;
12919 	struct intel_shared_dpll *shared_dpll;
12920 	bool force_thru;
12921 
12922 	/* FIXME: before the switch to atomic started, a new pipe_config was
12923 	 * kzalloc'd. Code that depends on any field being zero should be
12924 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12925 	 * only fields that are know to not cause problems are preserved. */
12926 
12927 	tmp_state = crtc_state->base;
12928 	scaler_state = crtc_state->scaler_state;
12929 	shared_dpll = crtc_state->shared_dpll;
12930 	dpll_hw_state = crtc_state->dpll_hw_state;
12931 	force_thru = crtc_state->pch_pfit.force_thru;
12932 
12933 	memset(crtc_state, 0, sizeof *crtc_state);
12934 
12935 	crtc_state->base = tmp_state;
12936 	crtc_state->scaler_state = scaler_state;
12937 	crtc_state->shared_dpll = shared_dpll;
12938 	crtc_state->dpll_hw_state = dpll_hw_state;
12939 	crtc_state->pch_pfit.force_thru = force_thru;
12940 }
12941 
12942 static int
12943 intel_modeset_pipe_config(struct drm_crtc *crtc,
12944 			  struct intel_crtc_state *pipe_config)
12945 {
12946 	struct drm_atomic_state *state = pipe_config->base.state;
12947 	struct intel_encoder *encoder;
12948 	struct drm_connector *connector;
12949 	struct drm_connector_state *connector_state;
12950 	int base_bpp, ret = -EINVAL;
12951 	int i;
12952 	bool retry = true;
12953 
12954 	clear_intel_crtc_state(pipe_config);
12955 
12956 	pipe_config->cpu_transcoder =
12957 		(enum transcoder) to_intel_crtc(crtc)->pipe;
12958 
12959 	/*
12960 	 * Sanitize sync polarity flags based on requested ones. If neither
12961 	 * positive or negative polarity is requested, treat this as meaning
12962 	 * negative polarity.
12963 	 */
12964 	if (!(pipe_config->base.adjusted_mode.flags &
12965 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12966 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12967 
12968 	if (!(pipe_config->base.adjusted_mode.flags &
12969 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12970 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12971 
12972 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12973 					     pipe_config);
12974 	if (base_bpp < 0)
12975 		goto fail;
12976 
12977 	/*
12978 	 * Determine the real pipe dimensions. Note that stereo modes can
12979 	 * increase the actual pipe size due to the frame doubling and
12980 	 * insertion of additional space for blanks between the frame. This
12981 	 * is stored in the crtc timings. We use the requested mode to do this
12982 	 * computation to clearly distinguish it from the adjusted mode, which
12983 	 * can be changed by the connectors in the below retry loop.
12984 	 */
12985 	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12986 			       &pipe_config->pipe_src_w,
12987 			       &pipe_config->pipe_src_h);
12988 
12989 	for_each_connector_in_state(state, connector, connector_state, i) {
12990 		if (connector_state->crtc != crtc)
12991 			continue;
12992 
12993 		encoder = to_intel_encoder(connector_state->best_encoder);
12994 
12995 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12996 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12997 			goto fail;
12998 		}
12999 
13000 		/*
13001 		 * Determine output_types before calling the .compute_config()
13002 		 * hooks so that the hooks can use this information safely.
13003 		 */
13004 		pipe_config->output_types |= 1 << encoder->type;
13005 	}
13006 
13007 encoder_retry:
13008 	/* Ensure the port clock defaults are reset when retrying. */
13009 	pipe_config->port_clock = 0;
13010 	pipe_config->pixel_multiplier = 1;
13011 
13012 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13013 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13014 			      CRTC_STEREO_DOUBLE);
13015 
13016 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13017 	 * adjust it according to limitations or connector properties, and also
13018 	 * a chance to reject the mode entirely.
13019 	 */
13020 	for_each_connector_in_state(state, connector, connector_state, i) {
13021 		if (connector_state->crtc != crtc)
13022 			continue;
13023 
13024 		encoder = to_intel_encoder(connector_state->best_encoder);
13025 
13026 		if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13027 			DRM_DEBUG_KMS("Encoder config failure\n");
13028 			goto fail;
13029 		}
13030 	}
13031 
13032 	/* Set default port clock if not overwritten by the encoder. Needs to be
13033 	 * done afterwards in case the encoder adjusts the mode. */
13034 	if (!pipe_config->port_clock)
13035 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13036 			* pipe_config->pixel_multiplier;
13037 
13038 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13039 	if (ret < 0) {
13040 		DRM_DEBUG_KMS("CRTC fixup failed\n");
13041 		goto fail;
13042 	}
13043 
13044 	if (ret == RETRY) {
13045 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
13046 			ret = -EINVAL;
13047 			goto fail;
13048 		}
13049 
13050 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13051 		retry = false;
13052 		goto encoder_retry;
13053 	}
13054 
13055 	/* Dithering seems to not pass-through bits correctly when it should, so
13056 	 * only enable it on 6bpc panels. */
13057 	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13058 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13059 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13060 
13061 fail:
13062 	return ret;
13063 }
13064 
13065 static void
13066 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13067 {
13068 	struct drm_crtc *crtc;
13069 	struct drm_crtc_state *crtc_state;
13070 	int i;
13071 
13072 	/* Double check state. */
13073 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13074 		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13075 
13076 		/* Update hwmode for vblank functions */
13077 		if (crtc->state->active)
13078 			crtc->hwmode = crtc->state->adjusted_mode;
13079 		else
13080 			crtc->hwmode.crtc_clock = 0;
13081 
13082 		/*
13083 		 * Update legacy state to satisfy fbc code. This can
13084 		 * be removed when fbc uses the atomic state.
13085 		 */
13086 		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13087 			struct drm_plane_state *plane_state = crtc->primary->state;
13088 
13089 			crtc->primary->fb = plane_state->fb;
13090 			crtc->x = plane_state->src_x >> 16;
13091 			crtc->y = plane_state->src_y >> 16;
13092 		}
13093 	}
13094 }
13095 
13096 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13097 {
13098 	int diff;
13099 
13100 	if (clock1 == clock2)
13101 		return true;
13102 
13103 	if (!clock1 || !clock2)
13104 		return false;
13105 
13106 	diff = abs(clock1 - clock2);
13107 
13108 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13109 		return true;
13110 
13111 	return false;
13112 }
13113 
13114 static bool
13115 intel_compare_m_n(unsigned int m, unsigned int n,
13116 		  unsigned int m2, unsigned int n2,
13117 		  bool exact)
13118 {
13119 	if (m == m2 && n == n2)
13120 		return true;
13121 
13122 	if (exact || !m || !n || !m2 || !n2)
13123 		return false;
13124 
13125 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13126 
13127 	if (n > n2) {
13128 		while (n > n2) {
13129 			m2 <<= 1;
13130 			n2 <<= 1;
13131 		}
13132 	} else if (n < n2) {
13133 		while (n < n2) {
13134 			m <<= 1;
13135 			n <<= 1;
13136 		}
13137 	}
13138 
13139 	if (n != n2)
13140 		return false;
13141 
13142 	return intel_fuzzy_clock_check(m, m2);
13143 }
13144 
13145 static bool
13146 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13147 		       struct intel_link_m_n *m2_n2,
13148 		       bool adjust)
13149 {
13150 	if (m_n->tu == m2_n2->tu &&
13151 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13152 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13153 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
13154 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
13155 		if (adjust)
13156 			*m2_n2 = *m_n;
13157 
13158 		return true;
13159 	}
13160 
13161 	return false;
13162 }
13163 
13164 static bool
13165 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13166 			  struct intel_crtc_state *current_config,
13167 			  struct intel_crtc_state *pipe_config,
13168 			  bool adjust)
13169 {
13170 	bool ret = true;
13171 
13172 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13173 	do { \
13174 		if (!adjust) \
13175 			DRM_ERROR(fmt, ##__VA_ARGS__); \
13176 		else \
13177 			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13178 	} while (0)
13179 
13180 #define PIPE_CONF_CHECK_X(name)	\
13181 	if (current_config->name != pipe_config->name) { \
13182 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13183 			  "(expected 0x%08x, found 0x%08x)\n", \
13184 			  current_config->name, \
13185 			  pipe_config->name); \
13186 		ret = false; \
13187 	}
13188 
13189 #define PIPE_CONF_CHECK_I(name)	\
13190 	if (current_config->name != pipe_config->name) { \
13191 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13192 			  "(expected %i, found %i)\n", \
13193 			  current_config->name, \
13194 			  pipe_config->name); \
13195 		ret = false; \
13196 	}
13197 
13198 #define PIPE_CONF_CHECK_P(name)	\
13199 	if (current_config->name != pipe_config->name) { \
13200 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13201 			  "(expected %p, found %p)\n", \
13202 			  current_config->name, \
13203 			  pipe_config->name); \
13204 		ret = false; \
13205 	}
13206 
13207 #define PIPE_CONF_CHECK_M_N(name) \
13208 	if (!intel_compare_link_m_n(&current_config->name, \
13209 				    &pipe_config->name,\
13210 				    adjust)) { \
13211 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13212 			  "(expected tu %i gmch %i/%i link %i/%i, " \
13213 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13214 			  current_config->name.tu, \
13215 			  current_config->name.gmch_m, \
13216 			  current_config->name.gmch_n, \
13217 			  current_config->name.link_m, \
13218 			  current_config->name.link_n, \
13219 			  pipe_config->name.tu, \
13220 			  pipe_config->name.gmch_m, \
13221 			  pipe_config->name.gmch_n, \
13222 			  pipe_config->name.link_m, \
13223 			  pipe_config->name.link_n); \
13224 		ret = false; \
13225 	}
13226 
13227 /* This is required for BDW+ where there is only one set of registers for
13228  * switching between high and low RR.
13229  * This macro can be used whenever a comparison has to be made between one
13230  * hw state and multiple sw state variables.
13231  */
13232 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13233 	if (!intel_compare_link_m_n(&current_config->name, \
13234 				    &pipe_config->name, adjust) && \
13235 	    !intel_compare_link_m_n(&current_config->alt_name, \
13236 				    &pipe_config->name, adjust)) { \
13237 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13238 			  "(expected tu %i gmch %i/%i link %i/%i, " \
13239 			  "or tu %i gmch %i/%i link %i/%i, " \
13240 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13241 			  current_config->name.tu, \
13242 			  current_config->name.gmch_m, \
13243 			  current_config->name.gmch_n, \
13244 			  current_config->name.link_m, \
13245 			  current_config->name.link_n, \
13246 			  current_config->alt_name.tu, \
13247 			  current_config->alt_name.gmch_m, \
13248 			  current_config->alt_name.gmch_n, \
13249 			  current_config->alt_name.link_m, \
13250 			  current_config->alt_name.link_n, \
13251 			  pipe_config->name.tu, \
13252 			  pipe_config->name.gmch_m, \
13253 			  pipe_config->name.gmch_n, \
13254 			  pipe_config->name.link_m, \
13255 			  pipe_config->name.link_n); \
13256 		ret = false; \
13257 	}
13258 
13259 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
13260 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13261 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13262 			  "(expected %i, found %i)\n", \
13263 			  current_config->name & (mask), \
13264 			  pipe_config->name & (mask)); \
13265 		ret = false; \
13266 	}
13267 
13268 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13269 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13270 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13271 			  "(expected %i, found %i)\n", \
13272 			  current_config->name, \
13273 			  pipe_config->name); \
13274 		ret = false; \
13275 	}
13276 
13277 #define PIPE_CONF_QUIRK(quirk)	\
13278 	((current_config->quirks | pipe_config->quirks) & (quirk))
13279 
13280 	PIPE_CONF_CHECK_I(cpu_transcoder);
13281 
13282 	PIPE_CONF_CHECK_I(has_pch_encoder);
13283 	PIPE_CONF_CHECK_I(fdi_lanes);
13284 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13285 
13286 	PIPE_CONF_CHECK_I(lane_count);
13287 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13288 
13289 	if (INTEL_GEN(dev_priv) < 8) {
13290 		PIPE_CONF_CHECK_M_N(dp_m_n);
13291 
13292 		if (current_config->has_drrs)
13293 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13294 	} else
13295 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13296 
13297 	PIPE_CONF_CHECK_X(output_types);
13298 
13299 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13300 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13301 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13302 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13303 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13304 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13305 
13306 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13307 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13308 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13309 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13310 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13311 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13312 
13313 	PIPE_CONF_CHECK_I(pixel_multiplier);
13314 	PIPE_CONF_CHECK_I(has_hdmi_sink);
13315 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13316 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13317 		PIPE_CONF_CHECK_I(limited_color_range);
13318 	PIPE_CONF_CHECK_I(has_infoframe);
13319 
13320 	PIPE_CONF_CHECK_I(has_audio);
13321 
13322 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13323 			      DRM_MODE_FLAG_INTERLACE);
13324 
13325 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13326 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13327 				      DRM_MODE_FLAG_PHSYNC);
13328 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13329 				      DRM_MODE_FLAG_NHSYNC);
13330 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13331 				      DRM_MODE_FLAG_PVSYNC);
13332 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13333 				      DRM_MODE_FLAG_NVSYNC);
13334 	}
13335 
13336 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13337 	/* pfit ratios are autocomputed by the hw on gen4+ */
13338 	if (INTEL_GEN(dev_priv) < 4)
13339 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13340 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13341 
13342 	if (!adjust) {
13343 		PIPE_CONF_CHECK_I(pipe_src_w);
13344 		PIPE_CONF_CHECK_I(pipe_src_h);
13345 
13346 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
13347 		if (current_config->pch_pfit.enabled) {
13348 			PIPE_CONF_CHECK_X(pch_pfit.pos);
13349 			PIPE_CONF_CHECK_X(pch_pfit.size);
13350 		}
13351 
13352 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13353 	}
13354 
13355 	/* BDW+ don't expose a synchronous way to read the state */
13356 	if (IS_HASWELL(dev_priv))
13357 		PIPE_CONF_CHECK_I(ips_enabled);
13358 
13359 	PIPE_CONF_CHECK_I(double_wide);
13360 
13361 	PIPE_CONF_CHECK_P(shared_dpll);
13362 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13363 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13364 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13365 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13366 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13367 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13368 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13369 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13370 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13371 
13372 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13373 	PIPE_CONF_CHECK_X(dsi_pll.div);
13374 
13375 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13376 		PIPE_CONF_CHECK_I(pipe_bpp);
13377 
13378 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13379 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13380 
13381 #undef PIPE_CONF_CHECK_X
13382 #undef PIPE_CONF_CHECK_I
13383 #undef PIPE_CONF_CHECK_P
13384 #undef PIPE_CONF_CHECK_FLAGS
13385 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13386 #undef PIPE_CONF_QUIRK
13387 #undef INTEL_ERR_OR_DBG_KMS
13388 
13389 	return ret;
13390 }
13391 
13392 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13393 					   const struct intel_crtc_state *pipe_config)
13394 {
13395 	if (pipe_config->has_pch_encoder) {
13396 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13397 							    &pipe_config->fdi_m_n);
13398 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13399 
13400 		/*
13401 		 * FDI already provided one idea for the dotclock.
13402 		 * Yell if the encoder disagrees.
13403 		 */
13404 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13405 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13406 		     fdi_dotclock, dotclock);
13407 	}
13408 }
13409 
13410 static void verify_wm_state(struct drm_crtc *crtc,
13411 			    struct drm_crtc_state *new_state)
13412 {
13413 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13414 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
13415 	struct skl_pipe_wm hw_wm, *sw_wm;
13416 	struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13417 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13418 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13419 	const enum i915_pipe pipe = intel_crtc->pipe;
13420 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
13421 
13422 	if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13423 		return;
13424 
13425 	skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13426 	sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13427 
13428 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13429 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
13430 
13431 	/* planes */
13432 	for_each_universal_plane(dev_priv, pipe, plane) {
13433 		hw_plane_wm = &hw_wm.planes[plane];
13434 		sw_plane_wm = &sw_wm->planes[plane];
13435 
13436 		/* Watermarks */
13437 		for (level = 0; level <= max_level; level++) {
13438 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13439 						&sw_plane_wm->wm[level]))
13440 				continue;
13441 
13442 			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13443 				  pipe_name(pipe), plane + 1, level,
13444 				  sw_plane_wm->wm[level].plane_en,
13445 				  sw_plane_wm->wm[level].plane_res_b,
13446 				  sw_plane_wm->wm[level].plane_res_l,
13447 				  hw_plane_wm->wm[level].plane_en,
13448 				  hw_plane_wm->wm[level].plane_res_b,
13449 				  hw_plane_wm->wm[level].plane_res_l);
13450 		}
13451 
13452 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13453 					 &sw_plane_wm->trans_wm)) {
13454 			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13455 				  pipe_name(pipe), plane + 1,
13456 				  sw_plane_wm->trans_wm.plane_en,
13457 				  sw_plane_wm->trans_wm.plane_res_b,
13458 				  sw_plane_wm->trans_wm.plane_res_l,
13459 				  hw_plane_wm->trans_wm.plane_en,
13460 				  hw_plane_wm->trans_wm.plane_res_b,
13461 				  hw_plane_wm->trans_wm.plane_res_l);
13462 		}
13463 
13464 		/* DDB */
13465 		hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13466 		sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13467 
13468 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13469 			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13470 				  pipe_name(pipe), plane + 1,
13471 				  sw_ddb_entry->start, sw_ddb_entry->end,
13472 				  hw_ddb_entry->start, hw_ddb_entry->end);
13473 		}
13474 	}
13475 
13476 	/*
13477 	 * cursor
13478 	 * If the cursor plane isn't active, we may not have updated it's ddb
13479 	 * allocation. In that case since the ddb allocation will be updated
13480 	 * once the plane becomes visible, we can skip this check
13481 	 */
13482 	if (intel_crtc->cursor_addr) {
13483 		hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13484 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13485 
13486 		/* Watermarks */
13487 		for (level = 0; level <= max_level; level++) {
13488 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13489 						&sw_plane_wm->wm[level]))
13490 				continue;
13491 
13492 			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13493 				  pipe_name(pipe), level,
13494 				  sw_plane_wm->wm[level].plane_en,
13495 				  sw_plane_wm->wm[level].plane_res_b,
13496 				  sw_plane_wm->wm[level].plane_res_l,
13497 				  hw_plane_wm->wm[level].plane_en,
13498 				  hw_plane_wm->wm[level].plane_res_b,
13499 				  hw_plane_wm->wm[level].plane_res_l);
13500 		}
13501 
13502 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13503 					 &sw_plane_wm->trans_wm)) {
13504 			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13505 				  pipe_name(pipe),
13506 				  sw_plane_wm->trans_wm.plane_en,
13507 				  sw_plane_wm->trans_wm.plane_res_b,
13508 				  sw_plane_wm->trans_wm.plane_res_l,
13509 				  hw_plane_wm->trans_wm.plane_en,
13510 				  hw_plane_wm->trans_wm.plane_res_b,
13511 				  hw_plane_wm->trans_wm.plane_res_l);
13512 		}
13513 
13514 		/* DDB */
13515 		hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13516 		sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13517 
13518 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13519 			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13520 				  pipe_name(pipe),
13521 				  sw_ddb_entry->start, sw_ddb_entry->end,
13522 				  hw_ddb_entry->start, hw_ddb_entry->end);
13523 		}
13524 	}
13525 }
13526 
13527 static void
13528 verify_connector_state(struct drm_device *dev,
13529 		       struct drm_atomic_state *state,
13530 		       struct drm_crtc *crtc)
13531 {
13532 	struct drm_connector *connector;
13533 	struct drm_connector_state *old_conn_state;
13534 	int i;
13535 
13536 	for_each_connector_in_state(state, connector, old_conn_state, i) {
13537 		struct drm_encoder *encoder = connector->encoder;
13538 		struct drm_connector_state *state = connector->state;
13539 
13540 		if (state->crtc != crtc)
13541 			continue;
13542 
13543 		intel_connector_verify_state(to_intel_connector(connector));
13544 
13545 		I915_STATE_WARN(state->best_encoder != encoder,
13546 		     "connector's atomic encoder doesn't match legacy encoder\n");
13547 	}
13548 }
13549 
13550 static void
13551 verify_encoder_state(struct drm_device *dev)
13552 {
13553 	struct intel_encoder *encoder;
13554 	struct intel_connector *connector;
13555 
13556 	for_each_intel_encoder(dev, encoder) {
13557 		bool enabled = false;
13558 		enum i915_pipe pipe;
13559 
13560 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13561 			      encoder->base.base.id,
13562 			      encoder->base.name);
13563 
13564 		for_each_intel_connector(dev, connector) {
13565 			if (connector->base.state->best_encoder != &encoder->base)
13566 				continue;
13567 			enabled = true;
13568 
13569 			I915_STATE_WARN(connector->base.state->crtc !=
13570 					encoder->base.crtc,
13571 			     "connector's crtc doesn't match encoder crtc\n");
13572 		}
13573 
13574 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13575 		     "encoder's enabled state mismatch "
13576 		     "(expected %i, found %i)\n",
13577 		     !!encoder->base.crtc, enabled);
13578 
13579 		if (!encoder->base.crtc) {
13580 			bool active;
13581 
13582 			active = encoder->get_hw_state(encoder, &pipe);
13583 			I915_STATE_WARN(active,
13584 			     "encoder detached but still enabled on pipe %c.\n",
13585 			     pipe_name(pipe));
13586 		}
13587 	}
13588 }
13589 
13590 static void
13591 verify_crtc_state(struct drm_crtc *crtc,
13592 		  struct drm_crtc_state *old_crtc_state,
13593 		  struct drm_crtc_state *new_crtc_state)
13594 {
13595 	struct drm_device *dev = crtc->dev;
13596 	struct drm_i915_private *dev_priv = to_i915(dev);
13597 	struct intel_encoder *encoder;
13598 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13599 	struct intel_crtc_state *pipe_config, *sw_config;
13600 	struct drm_atomic_state *old_state;
13601 	bool active;
13602 
13603 	old_state = old_crtc_state->state;
13604 	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13605 	pipe_config = to_intel_crtc_state(old_crtc_state);
13606 	memset(pipe_config, 0, sizeof(*pipe_config));
13607 	pipe_config->base.crtc = crtc;
13608 	pipe_config->base.state = old_state;
13609 
13610 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13611 
13612 	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13613 
13614 	/* hw state is inconsistent with the pipe quirk */
13615 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13616 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13617 		active = new_crtc_state->active;
13618 
13619 	I915_STATE_WARN(new_crtc_state->active != active,
13620 	     "crtc active state doesn't match with hw state "
13621 	     "(expected %i, found %i)\n", new_crtc_state->active, active);
13622 
13623 	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13624 	     "transitional active state does not match atomic hw state "
13625 	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13626 
13627 	for_each_encoder_on_crtc(dev, crtc, encoder) {
13628 		enum i915_pipe pipe;
13629 
13630 		active = encoder->get_hw_state(encoder, &pipe);
13631 		I915_STATE_WARN(active != new_crtc_state->active,
13632 			"[ENCODER:%i] active %i with crtc active %i\n",
13633 			encoder->base.base.id, active, new_crtc_state->active);
13634 
13635 		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13636 				"Encoder connected to wrong pipe %c\n",
13637 				pipe_name(pipe));
13638 
13639 		if (active) {
13640 			pipe_config->output_types |= 1 << encoder->type;
13641 			encoder->get_config(encoder, pipe_config);
13642 		}
13643 	}
13644 
13645 	if (!new_crtc_state->active)
13646 		return;
13647 
13648 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13649 
13650 	sw_config = to_intel_crtc_state(crtc->state);
13651 	if (!intel_pipe_config_compare(dev_priv, sw_config,
13652 				       pipe_config, false)) {
13653 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13654 		intel_dump_pipe_config(intel_crtc, pipe_config,
13655 				       "[hw state]");
13656 		intel_dump_pipe_config(intel_crtc, sw_config,
13657 				       "[sw state]");
13658 	}
13659 }
13660 
13661 static void
13662 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13663 			 struct intel_shared_dpll *pll,
13664 			 struct drm_crtc *crtc,
13665 			 struct drm_crtc_state *new_state)
13666 {
13667 	struct intel_dpll_hw_state dpll_hw_state;
13668 	unsigned crtc_mask;
13669 	bool active;
13670 
13671 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13672 
13673 	DRM_DEBUG_KMS("%s\n", pll->name);
13674 
13675 	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13676 
13677 	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13678 		I915_STATE_WARN(!pll->on && pll->active_mask,
13679 		     "pll in active use but not on in sw tracking\n");
13680 		I915_STATE_WARN(pll->on && !pll->active_mask,
13681 		     "pll is on but not used by any active crtc\n");
13682 		I915_STATE_WARN(pll->on != active,
13683 		     "pll on state mismatch (expected %i, found %i)\n",
13684 		     pll->on, active);
13685 	}
13686 
13687 	if (!crtc) {
13688 		I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13689 				"more active pll users than references: %x vs %x\n",
13690 				pll->active_mask, pll->config.crtc_mask);
13691 
13692 		return;
13693 	}
13694 
13695 	crtc_mask = 1 << drm_crtc_index(crtc);
13696 
13697 	if (new_state->active)
13698 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13699 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13700 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13701 	else
13702 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13703 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13704 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13705 
13706 	I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13707 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13708 			crtc_mask, pll->config.crtc_mask);
13709 
13710 	I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13711 					  &dpll_hw_state,
13712 					  sizeof(dpll_hw_state)),
13713 			"pll hw state mismatch\n");
13714 }
13715 
13716 static void
13717 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13718 			 struct drm_crtc_state *old_crtc_state,
13719 			 struct drm_crtc_state *new_crtc_state)
13720 {
13721 	struct drm_i915_private *dev_priv = to_i915(dev);
13722 	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13723 	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13724 
13725 	if (new_state->shared_dpll)
13726 		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13727 
13728 	if (old_state->shared_dpll &&
13729 	    old_state->shared_dpll != new_state->shared_dpll) {
13730 		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13731 		struct intel_shared_dpll *pll = old_state->shared_dpll;
13732 
13733 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13734 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13735 				pipe_name(drm_crtc_index(crtc)));
13736 		I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13737 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13738 				pipe_name(drm_crtc_index(crtc)));
13739 	}
13740 }
13741 
13742 static void
13743 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13744 			  struct drm_atomic_state *state,
13745 			  struct drm_crtc_state *old_state,
13746 			  struct drm_crtc_state *new_state)
13747 {
13748 	if (!needs_modeset(new_state) &&
13749 	    !to_intel_crtc_state(new_state)->update_pipe)
13750 		return;
13751 
13752 	verify_wm_state(crtc, new_state);
13753 	verify_connector_state(crtc->dev, state, crtc);
13754 	verify_crtc_state(crtc, old_state, new_state);
13755 	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13756 }
13757 
13758 static void
13759 verify_disabled_dpll_state(struct drm_device *dev)
13760 {
13761 	struct drm_i915_private *dev_priv = to_i915(dev);
13762 	int i;
13763 
13764 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13765 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13766 }
13767 
13768 static void
13769 intel_modeset_verify_disabled(struct drm_device *dev,
13770 			      struct drm_atomic_state *state)
13771 {
13772 	verify_encoder_state(dev);
13773 	verify_connector_state(dev, state, NULL);
13774 	verify_disabled_dpll_state(dev);
13775 }
13776 
13777 static void update_scanline_offset(struct intel_crtc *crtc)
13778 {
13779 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13780 
13781 	/*
13782 	 * The scanline counter increments at the leading edge of hsync.
13783 	 *
13784 	 * On most platforms it starts counting from vtotal-1 on the
13785 	 * first active line. That means the scanline counter value is
13786 	 * always one less than what we would expect. Ie. just after
13787 	 * start of vblank, which also occurs at start of hsync (on the
13788 	 * last active line), the scanline counter will read vblank_start-1.
13789 	 *
13790 	 * On gen2 the scanline counter starts counting from 1 instead
13791 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13792 	 * to keep the value positive), instead of adding one.
13793 	 *
13794 	 * On HSW+ the behaviour of the scanline counter depends on the output
13795 	 * type. For DP ports it behaves like most other platforms, but on HDMI
13796 	 * there's an extra 1 line difference. So we need to add two instead of
13797 	 * one to the value.
13798 	 */
13799 	if (IS_GEN2(dev_priv)) {
13800 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13801 		int vtotal;
13802 
13803 		vtotal = adjusted_mode->crtc_vtotal;
13804 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13805 			vtotal /= 2;
13806 
13807 		crtc->scanline_offset = vtotal - 1;
13808 	} else if (HAS_DDI(dev_priv) &&
13809 		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13810 		crtc->scanline_offset = 2;
13811 	} else
13812 		crtc->scanline_offset = 1;
13813 }
13814 
13815 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13816 {
13817 	struct drm_device *dev = state->dev;
13818 	struct drm_i915_private *dev_priv = to_i915(dev);
13819 	struct intel_shared_dpll_config *shared_dpll = NULL;
13820 	struct drm_crtc *crtc;
13821 	struct drm_crtc_state *crtc_state;
13822 	int i;
13823 
13824 	if (!dev_priv->display.crtc_compute_clock)
13825 		return;
13826 
13827 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13828 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13829 		struct intel_shared_dpll *old_dpll =
13830 			to_intel_crtc_state(crtc->state)->shared_dpll;
13831 
13832 		if (!needs_modeset(crtc_state))
13833 			continue;
13834 
13835 		to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13836 
13837 		if (!old_dpll)
13838 			continue;
13839 
13840 		if (!shared_dpll)
13841 			shared_dpll = intel_atomic_get_shared_dpll_state(state);
13842 
13843 		intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13844 	}
13845 }
13846 
13847 /*
13848  * This implements the workaround described in the "notes" section of the mode
13849  * set sequence documentation. When going from no pipes or single pipe to
13850  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13851  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13852  */
13853 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13854 {
13855 	struct drm_crtc_state *crtc_state;
13856 	struct intel_crtc *intel_crtc;
13857 	struct drm_crtc *crtc;
13858 	struct intel_crtc_state *first_crtc_state = NULL;
13859 	struct intel_crtc_state *other_crtc_state = NULL;
13860 	enum i915_pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13861 	int i;
13862 
13863 	/* look at all crtc's that are going to be enabled in during modeset */
13864 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13865 		intel_crtc = to_intel_crtc(crtc);
13866 
13867 		if (!crtc_state->active || !needs_modeset(crtc_state))
13868 			continue;
13869 
13870 		if (first_crtc_state) {
13871 			other_crtc_state = to_intel_crtc_state(crtc_state);
13872 			break;
13873 		} else {
13874 			first_crtc_state = to_intel_crtc_state(crtc_state);
13875 			first_pipe = intel_crtc->pipe;
13876 		}
13877 	}
13878 
13879 	/* No workaround needed? */
13880 	if (!first_crtc_state)
13881 		return 0;
13882 
13883 	/* w/a possibly needed, check how many crtc's are already enabled. */
13884 	for_each_intel_crtc(state->dev, intel_crtc) {
13885 		struct intel_crtc_state *pipe_config;
13886 
13887 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13888 		if (IS_ERR(pipe_config))
13889 			return PTR_ERR(pipe_config);
13890 
13891 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13892 
13893 		if (!pipe_config->base.active ||
13894 		    needs_modeset(&pipe_config->base))
13895 			continue;
13896 
13897 		/* 2 or more enabled crtcs means no need for w/a */
13898 		if (enabled_pipe != INVALID_PIPE)
13899 			return 0;
13900 
13901 		enabled_pipe = intel_crtc->pipe;
13902 	}
13903 
13904 	if (enabled_pipe != INVALID_PIPE)
13905 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13906 	else if (other_crtc_state)
13907 		other_crtc_state->hsw_workaround_pipe = first_pipe;
13908 
13909 	return 0;
13910 }
13911 
13912 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13913 {
13914 	struct drm_crtc *crtc;
13915 	struct drm_crtc_state *crtc_state;
13916 	int ret = 0;
13917 
13918 	/* add all active pipes to the state */
13919 	for_each_crtc(state->dev, crtc) {
13920 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13921 		if (IS_ERR(crtc_state))
13922 			return PTR_ERR(crtc_state);
13923 
13924 		if (!crtc_state->active || needs_modeset(crtc_state))
13925 			continue;
13926 
13927 		crtc_state->mode_changed = true;
13928 
13929 		ret = drm_atomic_add_affected_connectors(state, crtc);
13930 		if (ret)
13931 			break;
13932 
13933 		ret = drm_atomic_add_affected_planes(state, crtc);
13934 		if (ret)
13935 			break;
13936 	}
13937 
13938 	return ret;
13939 }
13940 
13941 static int intel_modeset_checks(struct drm_atomic_state *state)
13942 {
13943 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13944 	struct drm_i915_private *dev_priv = to_i915(state->dev);
13945 	struct drm_crtc *crtc;
13946 	struct drm_crtc_state *crtc_state;
13947 	int ret = 0, i;
13948 
13949 	if (!check_digital_port_conflicts(state)) {
13950 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13951 		return -EINVAL;
13952 	}
13953 
13954 	intel_state->modeset = true;
13955 	intel_state->active_crtcs = dev_priv->active_crtcs;
13956 
13957 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13958 		if (crtc_state->active)
13959 			intel_state->active_crtcs |= 1 << i;
13960 		else
13961 			intel_state->active_crtcs &= ~(1 << i);
13962 
13963 		if (crtc_state->active != crtc->state->active)
13964 			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13965 	}
13966 
13967 	/*
13968 	 * See if the config requires any additional preparation, e.g.
13969 	 * to adjust global state with pipes off.  We need to do this
13970 	 * here so we can get the modeset_pipe updated config for the new
13971 	 * mode set on this crtc.  For other crtcs we need to use the
13972 	 * adjusted_mode bits in the crtc directly.
13973 	 */
13974 	if (dev_priv->display.modeset_calc_cdclk) {
13975 		if (!intel_state->cdclk_pll_vco)
13976 			intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13977 		if (!intel_state->cdclk_pll_vco)
13978 			intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13979 
13980 		ret = dev_priv->display.modeset_calc_cdclk(state);
13981 		if (ret < 0)
13982 			return ret;
13983 
13984 		if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13985 		    intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13986 			ret = intel_modeset_all_pipes(state);
13987 
13988 		if (ret < 0)
13989 			return ret;
13990 
13991 		DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13992 			      intel_state->cdclk, intel_state->dev_cdclk);
13993 	} else {
13994 		to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13995 	}
13996 
13997 	intel_modeset_clear_plls(state);
13998 
13999 	if (IS_HASWELL(dev_priv))
14000 		return haswell_mode_set_planes_workaround(state);
14001 
14002 	return 0;
14003 }
14004 
14005 /*
14006  * Handle calculation of various watermark data at the end of the atomic check
14007  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14008  * handlers to ensure that all derived state has been updated.
14009  */
14010 static int calc_watermark_data(struct drm_atomic_state *state)
14011 {
14012 	struct drm_device *dev = state->dev;
14013 	struct drm_i915_private *dev_priv = to_i915(dev);
14014 
14015 	/* Is there platform-specific watermark information to calculate? */
14016 	if (dev_priv->display.compute_global_watermarks)
14017 		return dev_priv->display.compute_global_watermarks(state);
14018 
14019 	return 0;
14020 }
14021 
14022 /**
14023  * intel_atomic_check - validate state object
14024  * @dev: drm device
14025  * @state: state to validate
14026  */
14027 static int intel_atomic_check(struct drm_device *dev,
14028 			      struct drm_atomic_state *state)
14029 {
14030 	struct drm_i915_private *dev_priv = to_i915(dev);
14031 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14032 	struct drm_crtc *crtc;
14033 	struct drm_crtc_state *crtc_state;
14034 	int ret, i;
14035 	bool any_ms = false;
14036 
14037 	ret = drm_atomic_helper_check_modeset(dev, state);
14038 	if (ret)
14039 		return ret;
14040 
14041 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14042 		struct intel_crtc_state *pipe_config =
14043 			to_intel_crtc_state(crtc_state);
14044 
14045 		/* Catch I915_MODE_FLAG_INHERITED */
14046 		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14047 			crtc_state->mode_changed = true;
14048 
14049 		if (!needs_modeset(crtc_state))
14050 			continue;
14051 
14052 		if (!crtc_state->enable) {
14053 			any_ms = true;
14054 			continue;
14055 		}
14056 
14057 		/* FIXME: For only active_changed we shouldn't need to do any
14058 		 * state recomputation at all. */
14059 
14060 		ret = drm_atomic_add_affected_connectors(state, crtc);
14061 		if (ret)
14062 			return ret;
14063 
14064 		ret = intel_modeset_pipe_config(crtc, pipe_config);
14065 		if (ret) {
14066 			intel_dump_pipe_config(to_intel_crtc(crtc),
14067 					       pipe_config, "[failed]");
14068 			return ret;
14069 		}
14070 
14071 		if (i915.fastboot &&
14072 		    intel_pipe_config_compare(dev_priv,
14073 					to_intel_crtc_state(crtc->state),
14074 					pipe_config, true)) {
14075 			crtc_state->mode_changed = false;
14076 			to_intel_crtc_state(crtc_state)->update_pipe = true;
14077 		}
14078 
14079 		if (needs_modeset(crtc_state))
14080 			any_ms = true;
14081 
14082 		ret = drm_atomic_add_affected_planes(state, crtc);
14083 		if (ret)
14084 			return ret;
14085 
14086 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14087 				       needs_modeset(crtc_state) ?
14088 				       "[modeset]" : "[fastset]");
14089 	}
14090 
14091 	if (any_ms) {
14092 		ret = intel_modeset_checks(state);
14093 
14094 		if (ret)
14095 			return ret;
14096 	} else {
14097 		intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14098 	}
14099 
14100 	ret = drm_atomic_helper_check_planes(dev, state);
14101 	if (ret)
14102 		return ret;
14103 
14104 	intel_fbc_choose_crtc(dev_priv, state);
14105 	return calc_watermark_data(state);
14106 }
14107 
14108 static int intel_atomic_prepare_commit(struct drm_device *dev,
14109 				       struct drm_atomic_state *state)
14110 {
14111 	struct drm_i915_private *dev_priv = to_i915(dev);
14112 	struct drm_crtc_state *crtc_state;
14113 	struct drm_crtc *crtc;
14114 	int i, ret;
14115 
14116 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14117 		if (state->legacy_cursor_update)
14118 			continue;
14119 
14120 		ret = intel_crtc_wait_for_pending_flips(crtc);
14121 		if (ret)
14122 			return ret;
14123 
14124 		if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14125 			flush_workqueue(dev_priv->wq);
14126 	}
14127 
14128 	ret = mutex_lock_interruptible(&dev->struct_mutex);
14129 	if (ret)
14130 		return ret;
14131 
14132 	ret = drm_atomic_helper_prepare_planes(dev, state);
14133 	mutex_unlock(&dev->struct_mutex);
14134 
14135 	return ret;
14136 }
14137 
14138 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14139 {
14140 	struct drm_device *dev = crtc->base.dev;
14141 
14142 	if (!dev->max_vblank_count)
14143 		return drm_accurate_vblank_count(&crtc->base);
14144 
14145 	return dev->driver->get_vblank_counter(dev, crtc->pipe);
14146 }
14147 
14148 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14149 					  struct drm_i915_private *dev_priv,
14150 					  unsigned crtc_mask)
14151 {
14152 	unsigned last_vblank_count[I915_MAX_PIPES];
14153 	enum i915_pipe pipe;
14154 	int ret;
14155 
14156 	if (!crtc_mask)
14157 		return;
14158 
14159 	for_each_pipe(dev_priv, pipe) {
14160 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14161 								  pipe);
14162 
14163 		if (!((1 << pipe) & crtc_mask))
14164 			continue;
14165 
14166 		ret = drm_crtc_vblank_get(&crtc->base);
14167 		if (WARN_ON(ret != 0)) {
14168 			crtc_mask &= ~(1 << pipe);
14169 			continue;
14170 		}
14171 
14172 		last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14173 	}
14174 
14175 	for_each_pipe(dev_priv, pipe) {
14176 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14177 								  pipe);
14178 		long lret;
14179 
14180 		if (!((1 << pipe) & crtc_mask))
14181 			continue;
14182 
14183 		lret = wait_event_timeout(dev->vblank[pipe].queue,
14184 				last_vblank_count[pipe] !=
14185 					drm_crtc_vblank_count(&crtc->base),
14186 				msecs_to_jiffies(50));
14187 
14188 		WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14189 
14190 		drm_crtc_vblank_put(&crtc->base);
14191 	}
14192 }
14193 
14194 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14195 {
14196 	/* fb updated, need to unpin old fb */
14197 	if (crtc_state->fb_changed)
14198 		return true;
14199 
14200 	/* wm changes, need vblank before final wm's */
14201 	if (crtc_state->update_wm_post)
14202 		return true;
14203 
14204 	/*
14205 	 * cxsr is re-enabled after vblank.
14206 	 * This is already handled by crtc_state->update_wm_post,
14207 	 * but added for clarity.
14208 	 */
14209 	if (crtc_state->disable_cxsr)
14210 		return true;
14211 
14212 	return false;
14213 }
14214 
14215 static void intel_update_crtc(struct drm_crtc *crtc,
14216 			      struct drm_atomic_state *state,
14217 			      struct drm_crtc_state *old_crtc_state,
14218 			      unsigned int *crtc_vblank_mask)
14219 {
14220 	struct drm_device *dev = crtc->dev;
14221 	struct drm_i915_private *dev_priv = to_i915(dev);
14222 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14223 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14224 	bool modeset = needs_modeset(crtc->state);
14225 
14226 	if (modeset) {
14227 		update_scanline_offset(intel_crtc);
14228 		dev_priv->display.crtc_enable(pipe_config, state);
14229 	} else {
14230 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14231 	}
14232 
14233 	if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14234 		intel_fbc_enable(
14235 		    intel_crtc, pipe_config,
14236 		    to_intel_plane_state(crtc->primary->state));
14237 	}
14238 
14239 	drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14240 
14241 	if (needs_vblank_wait(pipe_config))
14242 		*crtc_vblank_mask |= drm_crtc_mask(crtc);
14243 }
14244 
14245 static void intel_update_crtcs(struct drm_atomic_state *state,
14246 			       unsigned int *crtc_vblank_mask)
14247 {
14248 	struct drm_crtc *crtc;
14249 	struct drm_crtc_state *old_crtc_state;
14250 	int i;
14251 
14252 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14253 		if (!crtc->state->active)
14254 			continue;
14255 
14256 		intel_update_crtc(crtc, state, old_crtc_state,
14257 				  crtc_vblank_mask);
14258 	}
14259 }
14260 
14261 static void skl_update_crtcs(struct drm_atomic_state *state,
14262 			     unsigned int *crtc_vblank_mask)
14263 {
14264 	struct drm_i915_private *dev_priv = to_i915(state->dev);
14265 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14266 	struct drm_crtc *crtc;
14267 	struct intel_crtc *intel_crtc;
14268 	struct drm_crtc_state *old_crtc_state;
14269 	struct intel_crtc_state *cstate;
14270 	unsigned int updated = 0;
14271 	bool progress;
14272 	enum i915_pipe pipe;
14273 	int i;
14274 
14275 	const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14276 
14277 	for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14278 		/* ignore allocations for crtc's that have been turned off. */
14279 		if (crtc->state->active)
14280 			entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14281 
14282 	/*
14283 	 * Whenever the number of active pipes changes, we need to make sure we
14284 	 * update the pipes in the right order so that their ddb allocations
14285 	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14286 	 * cause pipe underruns and other bad stuff.
14287 	 */
14288 	do {
14289 		progress = false;
14290 
14291 		for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14292 			bool vbl_wait = false;
14293 			unsigned int cmask = drm_crtc_mask(crtc);
14294 
14295 			intel_crtc = to_intel_crtc(crtc);
14296 			cstate = to_intel_crtc_state(crtc->state);
14297 			pipe = intel_crtc->pipe;
14298 
14299 			if (updated & cmask || !cstate->base.active)
14300 				continue;
14301 
14302 			if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14303 				continue;
14304 
14305 			updated |= cmask;
14306 			entries[i] = &cstate->wm.skl.ddb;
14307 
14308 			/*
14309 			 * If this is an already active pipe, it's DDB changed,
14310 			 * and this isn't the last pipe that needs updating
14311 			 * then we need to wait for a vblank to pass for the
14312 			 * new ddb allocation to take effect.
14313 			 */
14314 			if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14315 						 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14316 			    !crtc->state->active_changed &&
14317 			    intel_state->wm_results.dirty_pipes != updated)
14318 				vbl_wait = true;
14319 
14320 			intel_update_crtc(crtc, state, old_crtc_state,
14321 					  crtc_vblank_mask);
14322 
14323 			if (vbl_wait)
14324 				intel_wait_for_vblank(dev_priv, pipe);
14325 
14326 			progress = true;
14327 		}
14328 	} while (progress);
14329 }
14330 
14331 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14332 {
14333 	struct drm_device *dev = state->dev;
14334 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14335 	struct drm_i915_private *dev_priv = to_i915(dev);
14336 	struct drm_crtc_state *old_crtc_state;
14337 	struct drm_crtc *crtc;
14338 	struct intel_crtc_state *intel_cstate;
14339 	bool hw_check = intel_state->modeset;
14340 	unsigned long put_domains[I915_MAX_PIPES] = {};
14341 	unsigned crtc_vblank_mask = 0;
14342 	int i;
14343 
14344 	drm_atomic_helper_wait_for_dependencies(state);
14345 
14346 	if (intel_state->modeset)
14347 		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14348 
14349 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14350 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14351 
14352 		if (needs_modeset(crtc->state) ||
14353 		    to_intel_crtc_state(crtc->state)->update_pipe) {
14354 			hw_check = true;
14355 
14356 			put_domains[to_intel_crtc(crtc)->pipe] =
14357 				modeset_get_crtc_power_domains(crtc,
14358 					to_intel_crtc_state(crtc->state));
14359 		}
14360 
14361 		if (!needs_modeset(crtc->state))
14362 			continue;
14363 
14364 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14365 
14366 		if (old_crtc_state->active) {
14367 			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14368 			dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14369 			intel_crtc->active = false;
14370 			intel_fbc_disable(intel_crtc);
14371 			intel_disable_shared_dpll(intel_crtc);
14372 
14373 			/*
14374 			 * Underruns don't always raise
14375 			 * interrupts, so check manually.
14376 			 */
14377 			intel_check_cpu_fifo_underruns(dev_priv);
14378 			intel_check_pch_fifo_underruns(dev_priv);
14379 
14380 			if (!crtc->state->active) {
14381 				/*
14382 				 * Make sure we don't call initial_watermarks
14383 				 * for ILK-style watermark updates.
14384 				 */
14385 				if (dev_priv->display.atomic_update_watermarks)
14386 					dev_priv->display.initial_watermarks(intel_state,
14387 									     to_intel_crtc_state(crtc->state));
14388 				else
14389 					intel_update_watermarks(intel_crtc);
14390 			}
14391 		}
14392 	}
14393 
14394 	/* Only after disabling all output pipelines that will be changed can we
14395 	 * update the the output configuration. */
14396 	intel_modeset_update_crtc_state(state);
14397 
14398 	if (intel_state->modeset) {
14399 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14400 
14401 		if (dev_priv->display.modeset_commit_cdclk &&
14402 		    (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14403 		     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14404 			dev_priv->display.modeset_commit_cdclk(state);
14405 
14406 		/*
14407 		 * SKL workaround: bspec recommends we disable the SAGV when we
14408 		 * have more then one pipe enabled
14409 		 */
14410 		if (!intel_can_enable_sagv(state))
14411 			intel_disable_sagv(dev_priv);
14412 
14413 		intel_modeset_verify_disabled(dev, state);
14414 	}
14415 
14416 	/* Complete the events for pipes that have now been disabled */
14417 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14418 		bool modeset = needs_modeset(crtc->state);
14419 
14420 		/* Complete events for now disable pipes here. */
14421 		if (modeset && !crtc->state->active && crtc->state->event) {
14422 			spin_lock_irq(&dev->event_lock);
14423 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
14424 			spin_unlock_irq(&dev->event_lock);
14425 
14426 			crtc->state->event = NULL;
14427 		}
14428 	}
14429 
14430 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
14431 	dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14432 
14433 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14434 	 * already, but still need the state for the delayed optimization. To
14435 	 * fix this:
14436 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14437 	 * - schedule that vblank worker _before_ calling hw_done
14438 	 * - at the start of commit_tail, cancel it _synchrously
14439 	 * - switch over to the vblank wait helper in the core after that since
14440 	 *   we don't need out special handling any more.
14441 	 */
14442 	if (!state->legacy_cursor_update)
14443 		intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14444 
14445 	/*
14446 	 * Now that the vblank has passed, we can go ahead and program the
14447 	 * optimal watermarks on platforms that need two-step watermark
14448 	 * programming.
14449 	 *
14450 	 * TODO: Move this (and other cleanup) to an async worker eventually.
14451 	 */
14452 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14453 		intel_cstate = to_intel_crtc_state(crtc->state);
14454 
14455 		if (dev_priv->display.optimize_watermarks)
14456 			dev_priv->display.optimize_watermarks(intel_state,
14457 							      intel_cstate);
14458 	}
14459 
14460 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14461 		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14462 
14463 		if (put_domains[i])
14464 			modeset_put_power_domains(dev_priv, put_domains[i]);
14465 
14466 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14467 	}
14468 
14469 	if (intel_state->modeset && intel_can_enable_sagv(state))
14470 		intel_enable_sagv(dev_priv);
14471 
14472 	drm_atomic_helper_commit_hw_done(state);
14473 
14474 	if (intel_state->modeset)
14475 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14476 
14477 	mutex_lock(&dev->struct_mutex);
14478 	drm_atomic_helper_cleanup_planes(dev, state);
14479 	mutex_unlock(&dev->struct_mutex);
14480 
14481 	drm_atomic_helper_commit_cleanup_done(state);
14482 
14483 	drm_atomic_state_put(state);
14484 
14485 	/* As one of the primary mmio accessors, KMS has a high likelihood
14486 	 * of triggering bugs in unclaimed access. After we finish
14487 	 * modesetting, see if an error has been flagged, and if so
14488 	 * enable debugging for the next modeset - and hope we catch
14489 	 * the culprit.
14490 	 *
14491 	 * XXX note that we assume display power is on at this point.
14492 	 * This might hold true now but we need to add pm helper to check
14493 	 * unclaimed only when the hardware is on, as atomic commits
14494 	 * can happen also when the device is completely off.
14495 	 */
14496 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14497 }
14498 
14499 static void intel_atomic_commit_work(struct work_struct *work)
14500 {
14501 	struct drm_atomic_state *state =
14502 		container_of(work, struct drm_atomic_state, commit_work);
14503 
14504 	intel_atomic_commit_tail(state);
14505 }
14506 
14507 static int __i915_sw_fence_call
14508 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14509 			  enum i915_sw_fence_notify notify)
14510 {
14511 	struct intel_atomic_state *state =
14512 		container_of(fence, struct intel_atomic_state, commit_ready);
14513 
14514 	switch (notify) {
14515 	case FENCE_COMPLETE:
14516 		if (state->base.commit_work.func)
14517 			queue_work(system_unbound_wq, &state->base.commit_work);
14518 		break;
14519 
14520 	case FENCE_FREE:
14521 		{
14522 			struct intel_atomic_helper *helper =
14523 				&to_i915(state->base.dev)->atomic_helper;
14524 
14525 			if (llist_add(&state->freed, &helper->free_list))
14526 				schedule_work(&helper->free_work);
14527 			break;
14528 		}
14529 	}
14530 
14531 	return NOTIFY_DONE;
14532 }
14533 
14534 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14535 {
14536 	struct drm_plane_state *old_plane_state;
14537 	struct drm_plane *plane;
14538 	int i;
14539 
14540 	for_each_plane_in_state(state, plane, old_plane_state, i)
14541 		i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14542 				  intel_fb_obj(plane->state->fb),
14543 				  to_intel_plane(plane)->frontbuffer_bit);
14544 }
14545 
14546 /**
14547  * intel_atomic_commit - commit validated state object
14548  * @dev: DRM device
14549  * @state: the top-level driver state object
14550  * @nonblock: nonblocking commit
14551  *
14552  * This function commits a top-level state object that has been validated
14553  * with drm_atomic_helper_check().
14554  *
14555  * RETURNS
14556  * Zero for success or -errno.
14557  */
14558 static int intel_atomic_commit(struct drm_device *dev,
14559 			       struct drm_atomic_state *state,
14560 			       bool nonblock)
14561 {
14562 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14563 	struct drm_i915_private *dev_priv = to_i915(dev);
14564 	int ret = 0;
14565 
14566 	ret = drm_atomic_helper_setup_commit(state, nonblock);
14567 	if (ret)
14568 		return ret;
14569 
14570 	drm_atomic_state_get(state);
14571 	i915_sw_fence_init(&intel_state->commit_ready,
14572 			   intel_atomic_commit_ready);
14573 
14574 	ret = intel_atomic_prepare_commit(dev, state);
14575 	if (ret) {
14576 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14577 		i915_sw_fence_commit(&intel_state->commit_ready);
14578 		return ret;
14579 	}
14580 
14581 	drm_atomic_helper_swap_state(state, true);
14582 	dev_priv->wm.distrust_bios_wm = false;
14583 	intel_shared_dpll_commit(state);
14584 	intel_atomic_track_fbs(state);
14585 
14586 	if (intel_state->modeset) {
14587 		memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14588 		       sizeof(intel_state->min_pixclk));
14589 		dev_priv->active_crtcs = intel_state->active_crtcs;
14590 		dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14591 	}
14592 
14593 	drm_atomic_state_get(state);
14594 	INIT_WORK(&state->commit_work,
14595 		  nonblock ? intel_atomic_commit_work : NULL);
14596 
14597 	i915_sw_fence_commit(&intel_state->commit_ready);
14598 	if (!nonblock) {
14599 		i915_sw_fence_wait(&intel_state->commit_ready);
14600 		intel_atomic_commit_tail(state);
14601 	}
14602 
14603 	return 0;
14604 }
14605 
14606 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14607 {
14608 	struct drm_device *dev = crtc->dev;
14609 	struct drm_atomic_state *state;
14610 	struct drm_crtc_state *crtc_state;
14611 	int ret;
14612 
14613 	state = drm_atomic_state_alloc(dev);
14614 	if (!state) {
14615 		DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14616 			      crtc->base.id, crtc->name);
14617 		return;
14618 	}
14619 
14620 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14621 
14622 retry:
14623 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
14624 	ret = PTR_ERR_OR_ZERO(crtc_state);
14625 	if (!ret) {
14626 		if (!crtc_state->active)
14627 			goto out;
14628 
14629 		crtc_state->mode_changed = true;
14630 		ret = drm_atomic_commit(state);
14631 	}
14632 
14633 	if (ret == -EDEADLK) {
14634 		drm_atomic_state_clear(state);
14635 		drm_modeset_backoff(state->acquire_ctx);
14636 		goto retry;
14637 	}
14638 
14639 out:
14640 	drm_atomic_state_put(state);
14641 }
14642 
14643 /*
14644  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14645  *        drm_atomic_helper_legacy_gamma_set() directly.
14646  */
14647 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14648 					 u16 *red, u16 *green, u16 *blue,
14649 					 uint32_t size)
14650 {
14651 	struct drm_device *dev = crtc->dev;
14652 	struct drm_mode_config *config = &dev->mode_config;
14653 	struct drm_crtc_state *state;
14654 	int ret;
14655 
14656 	ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14657 	if (ret)
14658 		return ret;
14659 
14660 	/*
14661 	 * Make sure we update the legacy properties so this works when
14662 	 * atomic is not enabled.
14663 	 */
14664 
14665 	state = crtc->state;
14666 
14667 	drm_object_property_set_value(&crtc->base,
14668 				      config->degamma_lut_property,
14669 				      (state->degamma_lut) ?
14670 				      state->degamma_lut->base.id : 0);
14671 
14672 	drm_object_property_set_value(&crtc->base,
14673 				      config->ctm_property,
14674 				      (state->ctm) ?
14675 				      state->ctm->base.id : 0);
14676 
14677 	drm_object_property_set_value(&crtc->base,
14678 				      config->gamma_lut_property,
14679 				      (state->gamma_lut) ?
14680 				      state->gamma_lut->base.id : 0);
14681 
14682 	return 0;
14683 }
14684 
14685 static const struct drm_crtc_funcs intel_crtc_funcs = {
14686 	.gamma_set = intel_atomic_legacy_gamma_set,
14687 	.set_config = drm_atomic_helper_set_config,
14688 	.set_property = drm_atomic_helper_crtc_set_property,
14689 	.destroy = intel_crtc_destroy,
14690 	.page_flip = intel_crtc_page_flip,
14691 	.atomic_duplicate_state = intel_crtc_duplicate_state,
14692 	.atomic_destroy_state = intel_crtc_destroy_state,
14693 };
14694 
14695 /**
14696  * intel_prepare_plane_fb - Prepare fb for usage on plane
14697  * @plane: drm plane to prepare for
14698  * @fb: framebuffer to prepare for presentation
14699  *
14700  * Prepares a framebuffer for usage on a display plane.  Generally this
14701  * involves pinning the underlying object and updating the frontbuffer tracking
14702  * bits.  Some older platforms need special physical address handling for
14703  * cursor planes.
14704  *
14705  * Must be called with struct_mutex held.
14706  *
14707  * Returns 0 on success, negative error code on failure.
14708  */
14709 int
14710 intel_prepare_plane_fb(struct drm_plane *plane,
14711 		       struct drm_plane_state *new_state)
14712 {
14713 	struct intel_atomic_state *intel_state =
14714 		to_intel_atomic_state(new_state->state);
14715 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14716 	struct drm_framebuffer *fb = new_state->fb;
14717 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14718 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14719 	int ret;
14720 
14721 	if (!obj && !old_obj)
14722 		return 0;
14723 
14724 	if (old_obj) {
14725 		struct drm_crtc_state *crtc_state =
14726 			drm_atomic_get_existing_crtc_state(new_state->state,
14727 							   plane->state->crtc);
14728 
14729 		/* Big Hammer, we also need to ensure that any pending
14730 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14731 		 * current scanout is retired before unpinning the old
14732 		 * framebuffer. Note that we rely on userspace rendering
14733 		 * into the buffer attached to the pipe they are waiting
14734 		 * on. If not, userspace generates a GPU hang with IPEHR
14735 		 * point to the MI_WAIT_FOR_EVENT.
14736 		 *
14737 		 * This should only fail upon a hung GPU, in which case we
14738 		 * can safely continue.
14739 		 */
14740 		if (needs_modeset(crtc_state)) {
14741 			ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14742 							      old_obj->resv, NULL,
14743 							      false, 0,
14744 							      GFP_KERNEL);
14745 			if (ret < 0)
14746 				return ret;
14747 		}
14748 	}
14749 
14750 	if (new_state->fence) { /* explicit fencing */
14751 		ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14752 						    new_state->fence,
14753 						    I915_FENCE_TIMEOUT,
14754 						    GFP_KERNEL);
14755 		if (ret < 0)
14756 			return ret;
14757 	}
14758 
14759 	if (!obj)
14760 		return 0;
14761 
14762 	if (!new_state->fence) { /* implicit fencing */
14763 		ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14764 						      obj->resv, NULL,
14765 						      false, I915_FENCE_TIMEOUT,
14766 						      GFP_KERNEL);
14767 		if (ret < 0)
14768 			return ret;
14769 
14770 		i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14771 	}
14772 
14773 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14774 	    INTEL_INFO(dev_priv)->cursor_needs_physical) {
14775 		int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14776 		ret = i915_gem_object_attach_phys(obj, align);
14777 		if (ret) {
14778 			DRM_DEBUG_KMS("failed to attach phys object\n");
14779 			return ret;
14780 		}
14781 	} else {
14782 		struct i915_vma *vma;
14783 
14784 		vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14785 		if (IS_ERR(vma)) {
14786 			DRM_DEBUG_KMS("failed to pin object\n");
14787 			return PTR_ERR(vma);
14788 		}
14789 
14790 		to_intel_plane_state(new_state)->vma = vma;
14791 	}
14792 
14793 	return 0;
14794 }
14795 
14796 /**
14797  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14798  * @plane: drm plane to clean up for
14799  * @fb: old framebuffer that was on plane
14800  *
14801  * Cleans up a framebuffer that has just been removed from a plane.
14802  *
14803  * Must be called with struct_mutex held.
14804  */
14805 void
14806 intel_cleanup_plane_fb(struct drm_plane *plane,
14807 		       struct drm_plane_state *old_state)
14808 {
14809 	struct i915_vma *vma;
14810 
14811 	/* Should only be called after a successful intel_prepare_plane_fb()! */
14812 	vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
14813 	if (vma)
14814 		intel_unpin_fb_vma(vma);
14815 }
14816 
14817 int
14818 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14819 {
14820 	int max_scale;
14821 	int crtc_clock, cdclk;
14822 
14823 	if (!intel_crtc || !crtc_state->base.enable)
14824 		return DRM_PLANE_HELPER_NO_SCALING;
14825 
14826 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14827 	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14828 
14829 	if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14830 		return DRM_PLANE_HELPER_NO_SCALING;
14831 
14832 	/*
14833 	 * skl max scale is lower of:
14834 	 *    close to 3 but not 3, -1 is for that purpose
14835 	 *            or
14836 	 *    cdclk/crtc_clock
14837 	 */
14838 	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14839 
14840 	return max_scale;
14841 }
14842 
14843 static int
14844 intel_check_primary_plane(struct drm_plane *plane,
14845 			  struct intel_crtc_state *crtc_state,
14846 			  struct intel_plane_state *state)
14847 {
14848 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14849 	struct drm_crtc *crtc = state->base.crtc;
14850 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14851 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14852 	bool can_position = false;
14853 	int ret;
14854 
14855 	if (INTEL_GEN(dev_priv) >= 9) {
14856 		/* use scaler when colorkey is not required */
14857 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14858 			min_scale = 1;
14859 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14860 		}
14861 		can_position = true;
14862 	}
14863 
14864 	ret = drm_plane_helper_check_state(&state->base,
14865 					   &state->clip,
14866 					   min_scale, max_scale,
14867 					   can_position, true);
14868 	if (ret)
14869 		return ret;
14870 
14871 	if (!state->base.fb)
14872 		return 0;
14873 
14874 	if (INTEL_GEN(dev_priv) >= 9) {
14875 		ret = skl_check_plane_surface(state);
14876 		if (ret)
14877 			return ret;
14878 	}
14879 
14880 	return 0;
14881 }
14882 
14883 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14884 				    struct drm_crtc_state *old_crtc_state)
14885 {
14886 	struct drm_device *dev = crtc->dev;
14887 	struct drm_i915_private *dev_priv = to_i915(dev);
14888 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14889 	struct intel_crtc_state *intel_cstate =
14890 		to_intel_crtc_state(crtc->state);
14891 	struct intel_crtc_state *old_intel_cstate =
14892 		to_intel_crtc_state(old_crtc_state);
14893 	struct intel_atomic_state *old_intel_state =
14894 		to_intel_atomic_state(old_crtc_state->state);
14895 	bool modeset = needs_modeset(crtc->state);
14896 
14897 	if (!modeset &&
14898 	    (intel_cstate->base.color_mgmt_changed ||
14899 	     intel_cstate->update_pipe)) {
14900 		intel_color_set_csc(crtc->state);
14901 		intel_color_load_luts(crtc->state);
14902 	}
14903 
14904 	/* Perform vblank evasion around commit operation */
14905 	intel_pipe_update_start(intel_crtc);
14906 
14907 	if (modeset)
14908 		goto out;
14909 
14910 	if (intel_cstate->update_pipe)
14911 		intel_update_pipe_config(intel_crtc, old_intel_cstate);
14912 	else if (INTEL_GEN(dev_priv) >= 9)
14913 		skl_detach_scalers(intel_crtc);
14914 
14915 out:
14916 	if (dev_priv->display.atomic_update_watermarks)
14917 		dev_priv->display.atomic_update_watermarks(old_intel_state,
14918 							   intel_cstate);
14919 }
14920 
14921 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14922 				     struct drm_crtc_state *old_crtc_state)
14923 {
14924 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14925 
14926 	intel_pipe_update_end(intel_crtc, NULL);
14927 }
14928 
14929 /**
14930  * intel_plane_destroy - destroy a plane
14931  * @plane: plane to destroy
14932  *
14933  * Common destruction function for all types of planes (primary, cursor,
14934  * sprite).
14935  */
14936 void intel_plane_destroy(struct drm_plane *plane)
14937 {
14938 	drm_plane_cleanup(plane);
14939 	kfree(to_intel_plane(plane));
14940 }
14941 
14942 const struct drm_plane_funcs intel_plane_funcs = {
14943 	.update_plane = drm_atomic_helper_update_plane,
14944 	.disable_plane = drm_atomic_helper_disable_plane,
14945 	.destroy = intel_plane_destroy,
14946 	.set_property = drm_atomic_helper_plane_set_property,
14947 	.atomic_get_property = intel_plane_atomic_get_property,
14948 	.atomic_set_property = intel_plane_atomic_set_property,
14949 	.atomic_duplicate_state = intel_plane_duplicate_state,
14950 	.atomic_destroy_state = intel_plane_destroy_state,
14951 };
14952 
14953 static struct intel_plane *
14954 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
14955 {
14956 	struct intel_plane *primary = NULL;
14957 	struct intel_plane_state *state = NULL;
14958 	const uint32_t *intel_primary_formats;
14959 	unsigned int supported_rotations;
14960 	unsigned int num_formats;
14961 	int ret;
14962 
14963 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14964 	if (!primary) {
14965 		ret = -ENOMEM;
14966 		goto fail;
14967 	}
14968 
14969 	state = intel_create_plane_state(&primary->base);
14970 	if (!state) {
14971 		ret = -ENOMEM;
14972 		goto fail;
14973 	}
14974 
14975 	primary->base.state = &state->base;
14976 
14977 	primary->can_scale = false;
14978 	primary->max_downscale = 1;
14979 	if (INTEL_GEN(dev_priv) >= 9) {
14980 		primary->can_scale = true;
14981 		state->scaler_id = -1;
14982 	}
14983 	primary->pipe = pipe;
14984 	/*
14985 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14986 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14987 	 */
14988 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
14989 		primary->plane = (enum plane) !pipe;
14990 	else
14991 		primary->plane = (enum plane) pipe;
14992 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14993 	primary->check_plane = intel_check_primary_plane;
14994 
14995 	if (INTEL_GEN(dev_priv) >= 9) {
14996 		intel_primary_formats = skl_primary_formats;
14997 		num_formats = ARRAY_SIZE(skl_primary_formats);
14998 
14999 		primary->update_plane = skylake_update_primary_plane;
15000 		primary->disable_plane = skylake_disable_primary_plane;
15001 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15002 		intel_primary_formats = i965_primary_formats;
15003 		num_formats = ARRAY_SIZE(i965_primary_formats);
15004 
15005 		primary->update_plane = ironlake_update_primary_plane;
15006 		primary->disable_plane = i9xx_disable_primary_plane;
15007 	} else if (INTEL_GEN(dev_priv) >= 4) {
15008 		intel_primary_formats = i965_primary_formats;
15009 		num_formats = ARRAY_SIZE(i965_primary_formats);
15010 
15011 		primary->update_plane = i9xx_update_primary_plane;
15012 		primary->disable_plane = i9xx_disable_primary_plane;
15013 	} else {
15014 		intel_primary_formats = i8xx_primary_formats;
15015 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
15016 
15017 		primary->update_plane = i9xx_update_primary_plane;
15018 		primary->disable_plane = i9xx_disable_primary_plane;
15019 	}
15020 
15021 	if (INTEL_GEN(dev_priv) >= 9)
15022 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15023 					       0, &intel_plane_funcs,
15024 					       intel_primary_formats, num_formats,
15025 					       DRM_PLANE_TYPE_PRIMARY,
15026 					       "plane 1%c", pipe_name(pipe));
15027 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15028 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15029 					       0, &intel_plane_funcs,
15030 					       intel_primary_formats, num_formats,
15031 					       DRM_PLANE_TYPE_PRIMARY,
15032 					       "primary %c", pipe_name(pipe));
15033 	else
15034 		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15035 					       0, &intel_plane_funcs,
15036 					       intel_primary_formats, num_formats,
15037 					       DRM_PLANE_TYPE_PRIMARY,
15038 					       "plane %c", plane_name(primary->plane));
15039 	if (ret)
15040 		goto fail;
15041 
15042 	if (INTEL_GEN(dev_priv) >= 9) {
15043 		supported_rotations =
15044 			DRM_ROTATE_0 | DRM_ROTATE_90 |
15045 			DRM_ROTATE_180 | DRM_ROTATE_270;
15046 	} else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15047 		supported_rotations =
15048 			DRM_ROTATE_0 | DRM_ROTATE_180 |
15049 			DRM_REFLECT_X;
15050 	} else if (INTEL_GEN(dev_priv) >= 4) {
15051 		supported_rotations =
15052 			DRM_ROTATE_0 | DRM_ROTATE_180;
15053 	} else {
15054 		supported_rotations = DRM_ROTATE_0;
15055 	}
15056 
15057 	if (INTEL_GEN(dev_priv) >= 4)
15058 		drm_plane_create_rotation_property(&primary->base,
15059 						   DRM_ROTATE_0,
15060 						   supported_rotations);
15061 
15062 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15063 
15064 	return primary;
15065 
15066 fail:
15067 	kfree(state);
15068 	kfree(primary);
15069 
15070 	return ERR_PTR(ret);
15071 }
15072 
15073 static int
15074 intel_check_cursor_plane(struct drm_plane *plane,
15075 			 struct intel_crtc_state *crtc_state,
15076 			 struct intel_plane_state *state)
15077 {
15078 	struct drm_framebuffer *fb = state->base.fb;
15079 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15080 	enum i915_pipe pipe = to_intel_plane(plane)->pipe;
15081 	unsigned stride;
15082 	int ret;
15083 
15084 	ret = drm_plane_helper_check_state(&state->base,
15085 					   &state->clip,
15086 					   DRM_PLANE_HELPER_NO_SCALING,
15087 					   DRM_PLANE_HELPER_NO_SCALING,
15088 					   true, true);
15089 	if (ret)
15090 		return ret;
15091 
15092 	/* if we want to turn off the cursor ignore width and height */
15093 	if (!obj)
15094 		return 0;
15095 
15096 	/* Check for which cursor types we support */
15097 	if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15098 			    state->base.crtc_h)) {
15099 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15100 			  state->base.crtc_w, state->base.crtc_h);
15101 		return -EINVAL;
15102 	}
15103 
15104 	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15105 	if (obj->base.size < stride * state->base.crtc_h) {
15106 		DRM_DEBUG_KMS("buffer is too small\n");
15107 		return -ENOMEM;
15108 	}
15109 
15110 	if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15111 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
15112 		return -EINVAL;
15113 	}
15114 
15115 	/*
15116 	 * There's something wrong with the cursor on CHV pipe C.
15117 	 * If it straddles the left edge of the screen then
15118 	 * moving it away from the edge or disabling it often
15119 	 * results in a pipe underrun, and often that can lead to
15120 	 * dead pipe (constant underrun reported, and it scans
15121 	 * out just a solid color). To recover from that, the
15122 	 * display power well must be turned off and on again.
15123 	 * Refuse the put the cursor into that compromised position.
15124 	 */
15125 	if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15126 	    state->base.visible && state->base.crtc_x < 0) {
15127 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15128 		return -EINVAL;
15129 	}
15130 
15131 	return 0;
15132 }
15133 
15134 static void
15135 intel_disable_cursor_plane(struct drm_plane *plane,
15136 			   struct drm_crtc *crtc)
15137 {
15138 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15139 
15140 	intel_crtc->cursor_addr = 0;
15141 	intel_crtc_update_cursor(crtc, NULL);
15142 }
15143 
15144 static void
15145 intel_update_cursor_plane(struct drm_plane *plane,
15146 			  const struct intel_crtc_state *crtc_state,
15147 			  const struct intel_plane_state *state)
15148 {
15149 	struct drm_crtc *crtc = crtc_state->base.crtc;
15150 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15151 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
15152 	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15153 	uint32_t addr;
15154 
15155 	if (!obj)
15156 		addr = 0;
15157 	else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15158 		addr = intel_plane_ggtt_offset(state);
15159 	else
15160 		addr = obj->phys_handle->busaddr;
15161 
15162 	intel_crtc->cursor_addr = addr;
15163 	intel_crtc_update_cursor(crtc, state);
15164 }
15165 
15166 static struct intel_plane *
15167 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
15168 {
15169 	struct intel_plane *cursor = NULL;
15170 	struct intel_plane_state *state = NULL;
15171 	int ret;
15172 
15173 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15174 	if (!cursor) {
15175 		ret = -ENOMEM;
15176 		goto fail;
15177 	}
15178 
15179 	state = intel_create_plane_state(&cursor->base);
15180 	if (!state) {
15181 		ret = -ENOMEM;
15182 		goto fail;
15183 	}
15184 
15185 	cursor->base.state = &state->base;
15186 
15187 	cursor->can_scale = false;
15188 	cursor->max_downscale = 1;
15189 	cursor->pipe = pipe;
15190 	cursor->plane = pipe;
15191 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15192 	cursor->check_plane = intel_check_cursor_plane;
15193 	cursor->update_plane = intel_update_cursor_plane;
15194 	cursor->disable_plane = intel_disable_cursor_plane;
15195 
15196 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15197 				       0, &intel_plane_funcs,
15198 				       intel_cursor_formats,
15199 				       ARRAY_SIZE(intel_cursor_formats),
15200 				       DRM_PLANE_TYPE_CURSOR,
15201 				       "cursor %c", pipe_name(pipe));
15202 	if (ret)
15203 		goto fail;
15204 
15205 	if (INTEL_GEN(dev_priv) >= 4)
15206 		drm_plane_create_rotation_property(&cursor->base,
15207 						   DRM_ROTATE_0,
15208 						   DRM_ROTATE_0 |
15209 						   DRM_ROTATE_180);
15210 
15211 	if (INTEL_GEN(dev_priv) >= 9)
15212 		state->scaler_id = -1;
15213 
15214 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15215 
15216 	return cursor;
15217 
15218 fail:
15219 	kfree(state);
15220 	kfree(cursor);
15221 
15222 	return ERR_PTR(ret);
15223 }
15224 
15225 static void skl_init_scalers(struct drm_i915_private *dev_priv,
15226 			     struct intel_crtc *crtc,
15227 			     struct intel_crtc_state *crtc_state)
15228 {
15229 	struct intel_crtc_scaler_state *scaler_state =
15230 		&crtc_state->scaler_state;
15231 	int i;
15232 
15233 	for (i = 0; i < crtc->num_scalers; i++) {
15234 		struct intel_scaler *scaler = &scaler_state->scalers[i];
15235 
15236 		scaler->in_use = 0;
15237 		scaler->mode = PS_SCALER_MODE_DYN;
15238 	}
15239 
15240 	scaler_state->scaler_id = -1;
15241 }
15242 
15243 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
15244 {
15245 	struct intel_crtc *intel_crtc;
15246 	struct intel_crtc_state *crtc_state = NULL;
15247 	struct intel_plane *primary = NULL;
15248 	struct intel_plane *cursor = NULL;
15249 	int sprite, ret;
15250 
15251 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15252 	if (!intel_crtc)
15253 		return -ENOMEM;
15254 
15255 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15256 	if (!crtc_state) {
15257 		ret = -ENOMEM;
15258 		goto fail;
15259 	}
15260 	intel_crtc->config = crtc_state;
15261 	intel_crtc->base.state = &crtc_state->base;
15262 	crtc_state->base.crtc = &intel_crtc->base;
15263 
15264 	/* initialize shared scalers */
15265 	if (INTEL_GEN(dev_priv) >= 9) {
15266 		if (pipe == PIPE_C)
15267 			intel_crtc->num_scalers = 1;
15268 		else
15269 			intel_crtc->num_scalers = SKL_NUM_SCALERS;
15270 
15271 		skl_init_scalers(dev_priv, intel_crtc, crtc_state);
15272 	}
15273 
15274 	primary = intel_primary_plane_create(dev_priv, pipe);
15275 	if (IS_ERR(primary)) {
15276 		ret = PTR_ERR(primary);
15277 		goto fail;
15278 	}
15279 
15280 	for_each_sprite(dev_priv, pipe, sprite) {
15281 		struct intel_plane *plane;
15282 
15283 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15284 		if (IS_ERR(plane)) {
15285 			ret = PTR_ERR(plane);
15286 			goto fail;
15287 		}
15288 	}
15289 
15290 	cursor = intel_cursor_plane_create(dev_priv, pipe);
15291 	if (IS_ERR(cursor)) {
15292 		ret = PTR_ERR(cursor);
15293 		goto fail;
15294 	}
15295 
15296 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15297 					&primary->base, &cursor->base,
15298 					&intel_crtc_funcs,
15299 					"pipe %c", pipe_name(pipe));
15300 	if (ret)
15301 		goto fail;
15302 
15303 	intel_crtc->pipe = pipe;
15304 	intel_crtc->plane = primary->plane;
15305 
15306 	intel_crtc->cursor_base = ~0;
15307 	intel_crtc->cursor_cntl = ~0;
15308 	intel_crtc->cursor_size = ~0;
15309 
15310 	intel_crtc->wm.cxsr_allowed = true;
15311 
15312 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15313 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15314 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15315 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15316 
15317 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15318 
15319 	intel_color_init(&intel_crtc->base);
15320 
15321 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15322 
15323 	return 0;
15324 
15325 fail:
15326 	/*
15327 	 * drm_mode_config_cleanup() will free up any
15328 	 * crtcs/planes already initialized.
15329 	 */
15330 	kfree(crtc_state);
15331 	kfree(intel_crtc);
15332 
15333 	return ret;
15334 }
15335 
15336 enum i915_pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15337 {
15338 	struct drm_encoder *encoder = connector->base.encoder;
15339 	struct drm_device *dev = connector->base.dev;
15340 
15341 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15342 
15343 	if (!encoder || WARN_ON(!encoder->crtc))
15344 		return INVALID_PIPE;
15345 
15346 	return to_intel_crtc(encoder->crtc)->pipe;
15347 }
15348 
15349 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15350 				struct drm_file *file)
15351 {
15352 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15353 	struct drm_crtc *drmmode_crtc;
15354 	struct intel_crtc *crtc;
15355 
15356 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15357 	if (!drmmode_crtc)
15358 		return -ENOENT;
15359 
15360 	crtc = to_intel_crtc(drmmode_crtc);
15361 	pipe_from_crtc_id->pipe = crtc->pipe;
15362 
15363 	return 0;
15364 }
15365 
15366 static int intel_encoder_clones(struct intel_encoder *encoder)
15367 {
15368 	struct drm_device *dev = encoder->base.dev;
15369 	struct intel_encoder *source_encoder;
15370 	int index_mask = 0;
15371 	int entry = 0;
15372 
15373 	for_each_intel_encoder(dev, source_encoder) {
15374 		if (encoders_cloneable(encoder, source_encoder))
15375 			index_mask |= (1 << entry);
15376 
15377 		entry++;
15378 	}
15379 
15380 	return index_mask;
15381 }
15382 
15383 static bool has_edp_a(struct drm_i915_private *dev_priv)
15384 {
15385 	if (!IS_MOBILE(dev_priv))
15386 		return false;
15387 
15388 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15389 		return false;
15390 
15391 	if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15392 		return false;
15393 
15394 	return true;
15395 }
15396 
15397 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15398 {
15399 	if (INTEL_GEN(dev_priv) >= 9)
15400 		return false;
15401 
15402 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15403 		return false;
15404 
15405 	if (IS_CHERRYVIEW(dev_priv))
15406 		return false;
15407 
15408 	if (HAS_PCH_LPT_H(dev_priv) &&
15409 	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15410 		return false;
15411 
15412 	/* DDI E can't be used if DDI A requires 4 lanes */
15413 	if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15414 		return false;
15415 
15416 	if (!dev_priv->vbt.int_crt_support)
15417 		return false;
15418 
15419 	return true;
15420 }
15421 
15422 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15423 {
15424 	int pps_num;
15425 	int pps_idx;
15426 
15427 	if (HAS_DDI(dev_priv))
15428 		return;
15429 	/*
15430 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15431 	 * everywhere where registers can be write protected.
15432 	 */
15433 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15434 		pps_num = 2;
15435 	else
15436 		pps_num = 1;
15437 
15438 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15439 		u32 val = I915_READ(PP_CONTROL(pps_idx));
15440 
15441 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15442 		I915_WRITE(PP_CONTROL(pps_idx), val);
15443 	}
15444 }
15445 
15446 static void intel_pps_init(struct drm_i915_private *dev_priv)
15447 {
15448 	if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15449 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
15450 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15451 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
15452 	else
15453 		dev_priv->pps_mmio_base = PPS_BASE;
15454 
15455 	intel_pps_unlock_regs_wa(dev_priv);
15456 }
15457 
15458 static void intel_setup_outputs(struct drm_device *dev)
15459 {
15460 	struct drm_i915_private *dev_priv = to_i915(dev);
15461 	struct intel_encoder *encoder;
15462 	bool dpd_is_edp = false;
15463 
15464 	intel_pps_init(dev_priv);
15465 
15466 	/*
15467 	 * intel_edp_init_connector() depends on this completing first, to
15468 	 * prevent the registeration of both eDP and LVDS and the incorrect
15469 	 * sharing of the PPS.
15470 	 */
15471 	intel_lvds_init(dev);
15472 
15473 	if (intel_crt_present(dev_priv))
15474 		intel_crt_init(dev);
15475 
15476 	if (IS_BROXTON(dev_priv)) {
15477 		/*
15478 		 * FIXME: Broxton doesn't support port detection via the
15479 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15480 		 * detect the ports.
15481 		 */
15482 		intel_ddi_init(dev, PORT_A);
15483 		intel_ddi_init(dev, PORT_B);
15484 		intel_ddi_init(dev, PORT_C);
15485 
15486 		intel_dsi_init(dev);
15487 	} else if (HAS_DDI(dev_priv)) {
15488 		int found;
15489 
15490 		/*
15491 		 * Haswell uses DDI functions to detect digital outputs.
15492 		 * On SKL pre-D0 the strap isn't connected, so we assume
15493 		 * it's there.
15494 		 */
15495 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15496 		/* WaIgnoreDDIAStrap: skl */
15497 		if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15498 			intel_ddi_init(dev, PORT_A);
15499 
15500 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
15501 		 * register */
15502 		found = I915_READ(SFUSE_STRAP);
15503 
15504 		if (found & SFUSE_STRAP_DDIB_DETECTED)
15505 			intel_ddi_init(dev, PORT_B);
15506 		if (found & SFUSE_STRAP_DDIC_DETECTED)
15507 			intel_ddi_init(dev, PORT_C);
15508 		if (found & SFUSE_STRAP_DDID_DETECTED)
15509 			intel_ddi_init(dev, PORT_D);
15510 		/*
15511 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15512 		 */
15513 		if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15514 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15515 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15516 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15517 			intel_ddi_init(dev, PORT_E);
15518 
15519 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15520 		int found;
15521 		dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15522 
15523 		if (has_edp_a(dev_priv))
15524 			intel_dp_init(dev, DP_A, PORT_A);
15525 
15526 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15527 			/* PCH SDVOB multiplex with HDMIB */
15528 			found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15529 			if (!found)
15530 				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15531 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15532 				intel_dp_init(dev, PCH_DP_B, PORT_B);
15533 		}
15534 
15535 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15536 			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15537 
15538 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15539 			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15540 
15541 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
15542 			intel_dp_init(dev, PCH_DP_C, PORT_C);
15543 
15544 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
15545 			intel_dp_init(dev, PCH_DP_D, PORT_D);
15546 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15547 		bool has_edp, has_port;
15548 
15549 		/*
15550 		 * The DP_DETECTED bit is the latched state of the DDC
15551 		 * SDA pin at boot. However since eDP doesn't require DDC
15552 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15553 		 * eDP ports may have been muxed to an alternate function.
15554 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
15555 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
15556 		 * detect eDP ports.
15557 		 *
15558 		 * Sadly the straps seem to be missing sometimes even for HDMI
15559 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15560 		 * and VBT for the presence of the port. Additionally we can't
15561 		 * trust the port type the VBT declares as we've seen at least
15562 		 * HDMI ports that the VBT claim are DP or eDP.
15563 		 */
15564 		has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15565 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15566 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15567 			has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15568 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15569 			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15570 
15571 		has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15572 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15573 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15574 			has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15575 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15576 			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15577 
15578 		if (IS_CHERRYVIEW(dev_priv)) {
15579 			/*
15580 			 * eDP not supported on port D,
15581 			 * so no need to worry about it
15582 			 */
15583 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15584 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15585 				intel_dp_init(dev, CHV_DP_D, PORT_D);
15586 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15587 				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15588 		}
15589 
15590 		intel_dsi_init(dev);
15591 	} else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15592 		bool found = false;
15593 
15594 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15595 			DRM_DEBUG_KMS("probing SDVOB\n");
15596 			found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15597 			if (!found && IS_G4X(dev_priv)) {
15598 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15599 				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15600 			}
15601 
15602 			if (!found && IS_G4X(dev_priv))
15603 				intel_dp_init(dev, DP_B, PORT_B);
15604 		}
15605 
15606 		/* Before G4X SDVOC doesn't have its own detect register */
15607 
15608 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15609 			DRM_DEBUG_KMS("probing SDVOC\n");
15610 			found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15611 		}
15612 
15613 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15614 
15615 			if (IS_G4X(dev_priv)) {
15616 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15617 				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15618 			}
15619 			if (IS_G4X(dev_priv))
15620 				intel_dp_init(dev, DP_C, PORT_C);
15621 		}
15622 
15623 		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15624 			intel_dp_init(dev, DP_D, PORT_D);
15625 	} else if (IS_GEN2(dev_priv))
15626 		intel_dvo_init(dev);
15627 
15628 	if (SUPPORTS_TV(dev_priv))
15629 		intel_tv_init(dev);
15630 
15631 	intel_psr_init(dev);
15632 
15633 	for_each_intel_encoder(dev, encoder) {
15634 		encoder->base.possible_crtcs = encoder->crtc_mask;
15635 		encoder->base.possible_clones =
15636 			intel_encoder_clones(encoder);
15637 	}
15638 
15639 	intel_init_pch_refclk(dev);
15640 
15641 	drm_helper_move_panel_connectors_to_head(dev);
15642 }
15643 
15644 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15645 {
15646 	struct drm_device *dev = fb->dev;
15647 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15648 
15649 	drm_framebuffer_cleanup(fb);
15650 	mutex_lock(&dev->struct_mutex);
15651 	WARN_ON(!intel_fb->obj->framebuffer_references--);
15652 	i915_gem_object_put(intel_fb->obj);
15653 	mutex_unlock(&dev->struct_mutex);
15654 	kfree(intel_fb);
15655 }
15656 
15657 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15658 						struct drm_file *file,
15659 						unsigned int *handle)
15660 {
15661 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15662 	struct drm_i915_gem_object *obj = intel_fb->obj;
15663 
15664 	if (obj->userptr.mm) {
15665 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15666 		return -EINVAL;
15667 	}
15668 
15669 	return drm_gem_handle_create(file, &obj->base, handle);
15670 }
15671 
15672 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15673 					struct drm_file *file,
15674 					unsigned flags, unsigned color,
15675 					struct drm_clip_rect *clips,
15676 					unsigned num_clips)
15677 {
15678 	struct drm_device *dev = fb->dev;
15679 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15680 	struct drm_i915_gem_object *obj = intel_fb->obj;
15681 
15682 	mutex_lock(&dev->struct_mutex);
15683 	if (obj->pin_display && obj->cache_dirty)
15684 		i915_gem_clflush_object(obj, true);
15685 	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15686 	mutex_unlock(&dev->struct_mutex);
15687 
15688 	return 0;
15689 }
15690 
15691 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15692 	.destroy = intel_user_framebuffer_destroy,
15693 	.create_handle = intel_user_framebuffer_create_handle,
15694 	.dirty = intel_user_framebuffer_dirty,
15695 };
15696 
15697 static
15698 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15699 			 uint64_t fb_modifier, uint32_t pixel_format)
15700 {
15701 	u32 gen = INTEL_INFO(dev_priv)->gen;
15702 
15703 	if (gen >= 9) {
15704 		int cpp = drm_format_plane_cpp(pixel_format, 0);
15705 
15706 		/* "The stride in bytes must not exceed the of the size of 8K
15707 		 *  pixels and 32K bytes."
15708 		 */
15709 		return min(8192 * cpp, 32768);
15710 	} else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15711 		   !IS_CHERRYVIEW(dev_priv)) {
15712 		return 32*1024;
15713 	} else if (gen >= 4) {
15714 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15715 			return 16*1024;
15716 		else
15717 			return 32*1024;
15718 	} else if (gen >= 3) {
15719 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15720 			return 8*1024;
15721 		else
15722 			return 16*1024;
15723 	} else {
15724 		/* XXX DSPC is limited to 4k tiled */
15725 		return 8*1024;
15726 	}
15727 }
15728 
15729 static int intel_framebuffer_init(struct drm_device *dev,
15730 				  struct intel_framebuffer *intel_fb,
15731 				  struct drm_mode_fb_cmd2 *mode_cmd,
15732 				  struct drm_i915_gem_object *obj)
15733 {
15734 	struct drm_i915_private *dev_priv = to_i915(dev);
15735 	unsigned int tiling = i915_gem_object_get_tiling(obj);
15736 	int ret;
15737 	u32 pitch_limit, stride_alignment;
15738 	struct drm_format_name_buf format_name;
15739 
15740 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15741 
15742 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15743 		/*
15744 		 * If there's a fence, enforce that
15745 		 * the fb modifier and tiling mode match.
15746 		 */
15747 		if (tiling != I915_TILING_NONE &&
15748 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15749 			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15750 			return -EINVAL;
15751 		}
15752 	} else {
15753 		if (tiling == I915_TILING_X) {
15754 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15755 		} else if (tiling == I915_TILING_Y) {
15756 			DRM_DEBUG("No Y tiling for legacy addfb\n");
15757 			return -EINVAL;
15758 		}
15759 	}
15760 
15761 	/* Passed in modifier sanity checking. */
15762 	switch (mode_cmd->modifier[0]) {
15763 	case I915_FORMAT_MOD_Y_TILED:
15764 	case I915_FORMAT_MOD_Yf_TILED:
15765 		if (INTEL_GEN(dev_priv) < 9) {
15766 			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15767 				  mode_cmd->modifier[0]);
15768 			return -EINVAL;
15769 		}
15770 	case DRM_FORMAT_MOD_NONE:
15771 	case I915_FORMAT_MOD_X_TILED:
15772 		break;
15773 	default:
15774 		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15775 			  mode_cmd->modifier[0]);
15776 		return -EINVAL;
15777 	}
15778 
15779 	/*
15780 	 * gen2/3 display engine uses the fence if present,
15781 	 * so the tiling mode must match the fb modifier exactly.
15782 	 */
15783 	if (INTEL_INFO(dev_priv)->gen < 4 &&
15784 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15785 		DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15786 		return -EINVAL;
15787 	}
15788 
15789 	stride_alignment = intel_fb_stride_alignment(dev_priv,
15790 						     mode_cmd->modifier[0],
15791 						     mode_cmd->pixel_format);
15792 	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15793 		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15794 			  mode_cmd->pitches[0], stride_alignment);
15795 		return -EINVAL;
15796 	}
15797 
15798 	pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15799 					   mode_cmd->pixel_format);
15800 	if (mode_cmd->pitches[0] > pitch_limit) {
15801 		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15802 			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15803 			  "tiled" : "linear",
15804 			  mode_cmd->pitches[0], pitch_limit);
15805 		return -EINVAL;
15806 	}
15807 
15808 	/*
15809 	 * If there's a fence, enforce that
15810 	 * the fb pitch and fence stride match.
15811 	 */
15812 	if (tiling != I915_TILING_NONE &&
15813 	    mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15814 		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15815 			  mode_cmd->pitches[0],
15816 			  i915_gem_object_get_stride(obj));
15817 		return -EINVAL;
15818 	}
15819 
15820 	/* Reject formats not supported by any plane early. */
15821 	switch (mode_cmd->pixel_format) {
15822 	case DRM_FORMAT_C8:
15823 	case DRM_FORMAT_RGB565:
15824 	case DRM_FORMAT_XRGB8888:
15825 	case DRM_FORMAT_ARGB8888:
15826 		break;
15827 	case DRM_FORMAT_XRGB1555:
15828 		if (INTEL_GEN(dev_priv) > 3) {
15829 			DRM_DEBUG("unsupported pixel format: %s\n",
15830 			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15831 			return -EINVAL;
15832 		}
15833 		break;
15834 	case DRM_FORMAT_ABGR8888:
15835 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15836 		    INTEL_GEN(dev_priv) < 9) {
15837 			DRM_DEBUG("unsupported pixel format: %s\n",
15838 			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15839 			return -EINVAL;
15840 		}
15841 		break;
15842 	case DRM_FORMAT_XBGR8888:
15843 	case DRM_FORMAT_XRGB2101010:
15844 	case DRM_FORMAT_XBGR2101010:
15845 		if (INTEL_GEN(dev_priv) < 4) {
15846 			DRM_DEBUG("unsupported pixel format: %s\n",
15847 			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15848 			return -EINVAL;
15849 		}
15850 		break;
15851 	case DRM_FORMAT_ABGR2101010:
15852 		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15853 			DRM_DEBUG("unsupported pixel format: %s\n",
15854 			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15855 			return -EINVAL;
15856 		}
15857 		break;
15858 	case DRM_FORMAT_YUYV:
15859 	case DRM_FORMAT_UYVY:
15860 	case DRM_FORMAT_YVYU:
15861 	case DRM_FORMAT_VYUY:
15862 		if (INTEL_GEN(dev_priv) < 5) {
15863 			DRM_DEBUG("unsupported pixel format: %s\n",
15864 			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15865 			return -EINVAL;
15866 		}
15867 		break;
15868 	default:
15869 		DRM_DEBUG("unsupported pixel format: %s\n",
15870 		          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15871 		return -EINVAL;
15872 	}
15873 
15874 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15875 	if (mode_cmd->offsets[0] != 0)
15876 		return -EINVAL;
15877 
15878 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15879 	intel_fb->obj = obj;
15880 
15881 	ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15882 	if (ret)
15883 		return ret;
15884 
15885 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15886 	if (ret) {
15887 		DRM_ERROR("framebuffer init failed %d\n", ret);
15888 		return ret;
15889 	}
15890 
15891 	intel_fb->obj->framebuffer_references++;
15892 
15893 	return 0;
15894 }
15895 
15896 static struct drm_framebuffer *
15897 intel_user_framebuffer_create(struct drm_device *dev,
15898 			      struct drm_file *filp,
15899 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
15900 {
15901 	struct drm_framebuffer *fb;
15902 	struct drm_i915_gem_object *obj;
15903 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15904 
15905 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15906 	if (!obj)
15907 		return ERR_PTR(-ENOENT);
15908 
15909 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15910 	if (IS_ERR(fb))
15911 		i915_gem_object_put(obj);
15912 
15913 	return fb;
15914 }
15915 
15916 static const struct drm_mode_config_funcs intel_mode_funcs = {
15917 	.fb_create = intel_user_framebuffer_create,
15918 	.output_poll_changed = intel_fbdev_output_poll_changed,
15919 	.atomic_check = intel_atomic_check,
15920 	.atomic_commit = intel_atomic_commit,
15921 	.atomic_state_alloc = intel_atomic_state_alloc,
15922 	.atomic_state_clear = intel_atomic_state_clear,
15923 };
15924 
15925 /**
15926  * intel_init_display_hooks - initialize the display modesetting hooks
15927  * @dev_priv: device private
15928  */
15929 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15930 {
15931 	if (INTEL_INFO(dev_priv)->gen >= 9) {
15932 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15933 		dev_priv->display.get_initial_plane_config =
15934 			skylake_get_initial_plane_config;
15935 		dev_priv->display.crtc_compute_clock =
15936 			haswell_crtc_compute_clock;
15937 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15938 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15939 	} else if (HAS_DDI(dev_priv)) {
15940 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15941 		dev_priv->display.get_initial_plane_config =
15942 			ironlake_get_initial_plane_config;
15943 		dev_priv->display.crtc_compute_clock =
15944 			haswell_crtc_compute_clock;
15945 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15946 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15947 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15948 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15949 		dev_priv->display.get_initial_plane_config =
15950 			ironlake_get_initial_plane_config;
15951 		dev_priv->display.crtc_compute_clock =
15952 			ironlake_crtc_compute_clock;
15953 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
15954 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
15955 	} else if (IS_CHERRYVIEW(dev_priv)) {
15956 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15957 		dev_priv->display.get_initial_plane_config =
15958 			i9xx_get_initial_plane_config;
15959 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15960 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15961 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15962 	} else if (IS_VALLEYVIEW(dev_priv)) {
15963 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15964 		dev_priv->display.get_initial_plane_config =
15965 			i9xx_get_initial_plane_config;
15966 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15967 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15968 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15969 	} else if (IS_G4X(dev_priv)) {
15970 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15971 		dev_priv->display.get_initial_plane_config =
15972 			i9xx_get_initial_plane_config;
15973 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15974 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15975 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15976 	} else if (IS_PINEVIEW(dev_priv)) {
15977 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15978 		dev_priv->display.get_initial_plane_config =
15979 			i9xx_get_initial_plane_config;
15980 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15981 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15982 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15983 	} else if (!IS_GEN2(dev_priv)) {
15984 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15985 		dev_priv->display.get_initial_plane_config =
15986 			i9xx_get_initial_plane_config;
15987 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15988 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15989 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15990 	} else {
15991 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15992 		dev_priv->display.get_initial_plane_config =
15993 			i9xx_get_initial_plane_config;
15994 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15995 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15996 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15997 	}
15998 
15999 	/* Returns the core display clock speed */
16000 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16001 		dev_priv->display.get_display_clock_speed =
16002 			skylake_get_display_clock_speed;
16003 	else if (IS_BROXTON(dev_priv))
16004 		dev_priv->display.get_display_clock_speed =
16005 			broxton_get_display_clock_speed;
16006 	else if (IS_BROADWELL(dev_priv))
16007 		dev_priv->display.get_display_clock_speed =
16008 			broadwell_get_display_clock_speed;
16009 	else if (IS_HASWELL(dev_priv))
16010 		dev_priv->display.get_display_clock_speed =
16011 			haswell_get_display_clock_speed;
16012 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16013 		dev_priv->display.get_display_clock_speed =
16014 			valleyview_get_display_clock_speed;
16015 	else if (IS_GEN5(dev_priv))
16016 		dev_priv->display.get_display_clock_speed =
16017 			ilk_get_display_clock_speed;
16018 	else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16019 		 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16020 		dev_priv->display.get_display_clock_speed =
16021 			i945_get_display_clock_speed;
16022 	else if (IS_GM45(dev_priv))
16023 		dev_priv->display.get_display_clock_speed =
16024 			gm45_get_display_clock_speed;
16025 	else if (IS_CRESTLINE(dev_priv))
16026 		dev_priv->display.get_display_clock_speed =
16027 			i965gm_get_display_clock_speed;
16028 	else if (IS_PINEVIEW(dev_priv))
16029 		dev_priv->display.get_display_clock_speed =
16030 			pnv_get_display_clock_speed;
16031 	else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16032 		dev_priv->display.get_display_clock_speed =
16033 			g33_get_display_clock_speed;
16034 	else if (IS_I915G(dev_priv))
16035 		dev_priv->display.get_display_clock_speed =
16036 			i915_get_display_clock_speed;
16037 	else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16038 		dev_priv->display.get_display_clock_speed =
16039 			i9xx_misc_get_display_clock_speed;
16040 	else if (IS_I915GM(dev_priv))
16041 		dev_priv->display.get_display_clock_speed =
16042 			i915gm_get_display_clock_speed;
16043 	else if (IS_I865G(dev_priv))
16044 		dev_priv->display.get_display_clock_speed =
16045 			i865_get_display_clock_speed;
16046 	else if (IS_I85X(dev_priv))
16047 		dev_priv->display.get_display_clock_speed =
16048 			i85x_get_display_clock_speed;
16049 	else { /* 830 */
16050 		WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16051 		dev_priv->display.get_display_clock_speed =
16052 			i830_get_display_clock_speed;
16053 	}
16054 
16055 	if (IS_GEN5(dev_priv)) {
16056 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16057 	} else if (IS_GEN6(dev_priv)) {
16058 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16059 	} else if (IS_IVYBRIDGE(dev_priv)) {
16060 		/* FIXME: detect B0+ stepping and use auto training */
16061 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16062 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16063 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16064 	}
16065 
16066 	if (IS_BROADWELL(dev_priv)) {
16067 		dev_priv->display.modeset_commit_cdclk =
16068 			broadwell_modeset_commit_cdclk;
16069 		dev_priv->display.modeset_calc_cdclk =
16070 			broadwell_modeset_calc_cdclk;
16071 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16072 		dev_priv->display.modeset_commit_cdclk =
16073 			valleyview_modeset_commit_cdclk;
16074 		dev_priv->display.modeset_calc_cdclk =
16075 			valleyview_modeset_calc_cdclk;
16076 	} else if (IS_BROXTON(dev_priv)) {
16077 		dev_priv->display.modeset_commit_cdclk =
16078 			bxt_modeset_commit_cdclk;
16079 		dev_priv->display.modeset_calc_cdclk =
16080 			bxt_modeset_calc_cdclk;
16081 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16082 		dev_priv->display.modeset_commit_cdclk =
16083 			skl_modeset_commit_cdclk;
16084 		dev_priv->display.modeset_calc_cdclk =
16085 			skl_modeset_calc_cdclk;
16086 	}
16087 
16088 	if (dev_priv->info.gen >= 9)
16089 		dev_priv->display.update_crtcs = skl_update_crtcs;
16090 	else
16091 		dev_priv->display.update_crtcs = intel_update_crtcs;
16092 
16093 	switch (INTEL_INFO(dev_priv)->gen) {
16094 	case 2:
16095 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
16096 		break;
16097 
16098 	case 3:
16099 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
16100 		break;
16101 
16102 	case 4:
16103 	case 5:
16104 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
16105 		break;
16106 
16107 	case 6:
16108 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
16109 		break;
16110 	case 7:
16111 	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16112 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
16113 		break;
16114 	case 9:
16115 		/* Drop through - unsupported since execlist only. */
16116 	default:
16117 		/* Default just returns -ENODEV to indicate unsupported */
16118 		dev_priv->display.queue_flip = intel_default_queue_flip;
16119 	}
16120 }
16121 
16122 /*
16123  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16124  * resume, or other times.  This quirk makes sure that's the case for
16125  * affected systems.
16126  */
16127 static void quirk_pipea_force(struct drm_device *dev)
16128 {
16129 	struct drm_i915_private *dev_priv = to_i915(dev);
16130 
16131 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16132 	DRM_INFO("applying pipe a force quirk\n");
16133 }
16134 
16135 static void quirk_pipeb_force(struct drm_device *dev)
16136 {
16137 	struct drm_i915_private *dev_priv = to_i915(dev);
16138 
16139 	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16140 	DRM_INFO("applying pipe b force quirk\n");
16141 }
16142 
16143 /*
16144  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16145  */
16146 static void quirk_ssc_force_disable(struct drm_device *dev)
16147 {
16148 	struct drm_i915_private *dev_priv = to_i915(dev);
16149 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16150 	DRM_INFO("applying lvds SSC disable quirk\n");
16151 }
16152 
16153 /*
16154  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16155  * brightness value
16156  */
16157 static void quirk_invert_brightness(struct drm_device *dev)
16158 {
16159 	struct drm_i915_private *dev_priv = to_i915(dev);
16160 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16161 	DRM_INFO("applying inverted panel brightness quirk\n");
16162 }
16163 
16164 /* Some VBT's incorrectly indicate no backlight is present */
16165 static void quirk_backlight_present(struct drm_device *dev)
16166 {
16167 	struct drm_i915_private *dev_priv = to_i915(dev);
16168 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16169 	DRM_INFO("applying backlight present quirk\n");
16170 }
16171 
16172 struct intel_quirk {
16173 	int device;
16174 	int subsystem_vendor;
16175 	int subsystem_device;
16176 	void (*hook)(struct drm_device *dev);
16177 };
16178 
16179 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16180 struct intel_dmi_quirk {
16181 	void (*hook)(struct drm_device *dev);
16182 	const struct dmi_system_id (*dmi_id_list)[];
16183 };
16184 
16185 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16186 {
16187 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16188 	return 1;
16189 }
16190 
16191 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16192 	{
16193 		.dmi_id_list = &(const struct dmi_system_id[]) {
16194 			{
16195 				.callback = intel_dmi_reverse_brightness,
16196 				.ident = "NCR Corporation",
16197 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16198 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
16199 				},
16200 			},
16201 			{ }  /* terminating entry */
16202 		},
16203 		.hook = quirk_invert_brightness,
16204 	},
16205 };
16206 
16207 static struct intel_quirk intel_quirks[] = {
16208 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16209 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16210 
16211 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16212 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16213 
16214 	/* 830 needs to leave pipe A & dpll A up */
16215 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16216 
16217 	/* 830 needs to leave pipe B & dpll B up */
16218 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16219 
16220 	/* Lenovo U160 cannot use SSC on LVDS */
16221 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16222 
16223 	/* Sony Vaio Y cannot use SSC on LVDS */
16224 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16225 
16226 	/* Acer Aspire 5734Z must invert backlight brightness */
16227 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16228 
16229 	/* Acer/eMachines G725 */
16230 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16231 
16232 	/* Acer/eMachines e725 */
16233 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16234 
16235 	/* Acer/Packard Bell NCL20 */
16236 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16237 
16238 	/* Acer Aspire 4736Z */
16239 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16240 
16241 	/* Acer Aspire 5336 */
16242 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16243 
16244 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16245 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16246 
16247 	/* Acer C720 Chromebook (Core i3 4005U) */
16248 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16249 
16250 	/* Apple Macbook 2,1 (Core 2 T7400) */
16251 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16252 
16253 	/* Apple Macbook 4,1 */
16254 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16255 
16256 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
16257 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16258 
16259 	/* HP Chromebook 14 (Celeron 2955U) */
16260 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16261 
16262 	/* Dell Chromebook 11 */
16263 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16264 
16265 	/* Dell Chromebook 11 (2015 version) */
16266 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16267 };
16268 
16269 static void intel_init_quirks(struct drm_device *dev)
16270 {
16271 	struct pci_dev *d = dev->pdev;
16272 	int i;
16273 
16274 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16275 		struct intel_quirk *q = &intel_quirks[i];
16276 
16277 		if (d->device == q->device &&
16278 		    (d->subsystem_vendor == q->subsystem_vendor ||
16279 		     q->subsystem_vendor == PCI_ANY_ID) &&
16280 		    (d->subsystem_device == q->subsystem_device ||
16281 		     q->subsystem_device == PCI_ANY_ID))
16282 			q->hook(dev);
16283 	}
16284 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16285 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16286 			intel_dmi_quirks[i].hook(dev);
16287 	}
16288 }
16289 
16290 /* Disable the VGA plane that we never use */
16291 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16292 {
16293 	struct pci_dev *pdev = dev_priv->drm.pdev;
16294 	u8 sr1;
16295 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16296 
16297 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16298 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16299 	outb(SR01, VGA_SR_INDEX);
16300 	sr1 = inb(VGA_SR_DATA);
16301 	outb(sr1 | 1<<5, VGA_SR_DATA);
16302 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
16303 	udelay(300);
16304 
16305 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16306 	POSTING_READ(vga_reg);
16307 }
16308 
16309 void intel_modeset_init_hw(struct drm_device *dev)
16310 {
16311 	struct drm_i915_private *dev_priv = to_i915(dev);
16312 
16313 	intel_update_cdclk(dev_priv);
16314 
16315 	dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16316 
16317 	intel_init_clock_gating(dev_priv);
16318 }
16319 
16320 /*
16321  * Calculate what we think the watermarks should be for the state we've read
16322  * out of the hardware and then immediately program those watermarks so that
16323  * we ensure the hardware settings match our internal state.
16324  *
16325  * We can calculate what we think WM's should be by creating a duplicate of the
16326  * current state (which was constructed during hardware readout) and running it
16327  * through the atomic check code to calculate new watermark values in the
16328  * state object.
16329  */
16330 static void sanitize_watermarks(struct drm_device *dev)
16331 {
16332 	struct drm_i915_private *dev_priv = to_i915(dev);
16333 	struct drm_atomic_state *state;
16334 	struct intel_atomic_state *intel_state;
16335 	struct drm_crtc *crtc;
16336 	struct drm_crtc_state *cstate;
16337 	struct drm_modeset_acquire_ctx ctx;
16338 	int ret;
16339 	int i;
16340 
16341 	/* Only supported on platforms that use atomic watermark design */
16342 	if (!dev_priv->display.optimize_watermarks)
16343 		return;
16344 
16345 	/*
16346 	 * We need to hold connection_mutex before calling duplicate_state so
16347 	 * that the connector loop is protected.
16348 	 */
16349 	drm_modeset_acquire_init(&ctx, 0);
16350 retry:
16351 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
16352 	if (ret == -EDEADLK) {
16353 		drm_modeset_backoff(&ctx);
16354 		goto retry;
16355 	} else if (WARN_ON(ret)) {
16356 		goto fail;
16357 	}
16358 
16359 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
16360 	if (WARN_ON(IS_ERR(state)))
16361 		goto fail;
16362 
16363 	intel_state = to_intel_atomic_state(state);
16364 
16365 	/*
16366 	 * Hardware readout is the only time we don't want to calculate
16367 	 * intermediate watermarks (since we don't trust the current
16368 	 * watermarks).
16369 	 */
16370 	intel_state->skip_intermediate_wm = true;
16371 
16372 	ret = intel_atomic_check(dev, state);
16373 	if (ret) {
16374 		/*
16375 		 * If we fail here, it means that the hardware appears to be
16376 		 * programmed in a way that shouldn't be possible, given our
16377 		 * understanding of watermark requirements.  This might mean a
16378 		 * mistake in the hardware readout code or a mistake in the
16379 		 * watermark calculations for a given platform.  Raise a WARN
16380 		 * so that this is noticeable.
16381 		 *
16382 		 * If this actually happens, we'll have to just leave the
16383 		 * BIOS-programmed watermarks untouched and hope for the best.
16384 		 */
16385 		WARN(true, "Could not determine valid watermarks for inherited state\n");
16386 		goto put_state;
16387 	}
16388 
16389 	/* Write calculated watermark values back */
16390 	for_each_crtc_in_state(state, crtc, cstate, i) {
16391 		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16392 
16393 		cs->wm.need_postvbl_update = true;
16394 		dev_priv->display.optimize_watermarks(intel_state, cs);
16395 	}
16396 
16397 put_state:
16398 	drm_atomic_state_put(state);
16399 fail:
16400 	drm_modeset_drop_locks(&ctx);
16401 	drm_modeset_acquire_fini(&ctx);
16402 }
16403 
16404 static void intel_atomic_helper_free_state(struct work_struct *work)
16405 {
16406 	struct drm_i915_private *dev_priv =
16407 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16408 	struct intel_atomic_state *state, *next;
16409 	struct llist_node *freed;
16410 
16411 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16412 	llist_for_each_entry_safe(state, next, freed, freed)
16413 		drm_atomic_state_put(&state->base);
16414 }
16415 
16416 int intel_modeset_init(struct drm_device *dev)
16417 {
16418 	struct drm_i915_private *dev_priv = to_i915(dev);
16419 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
16420 	enum i915_pipe pipe;
16421 	struct intel_crtc *crtc;
16422 
16423 	drm_mode_config_init(dev);
16424 
16425 	dev->mode_config.min_width = 0;
16426 	dev->mode_config.min_height = 0;
16427 
16428 	dev->mode_config.preferred_depth = 24;
16429 	dev->mode_config.prefer_shadow = 1;
16430 
16431 	dev->mode_config.allow_fb_modifiers = true;
16432 
16433 	dev->mode_config.funcs = &intel_mode_funcs;
16434 
16435 	INIT_WORK(&dev_priv->atomic_helper.free_work,
16436 		  intel_atomic_helper_free_state);
16437 
16438 	intel_init_quirks(dev);
16439 
16440 	intel_init_pm(dev_priv);
16441 
16442 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
16443 		return 0;
16444 
16445 	/*
16446 	 * There may be no VBT; and if the BIOS enabled SSC we can
16447 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
16448 	 * BIOS isn't using it, don't assume it will work even if the VBT
16449 	 * indicates as much.
16450 	 */
16451 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16452 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16453 					    DREF_SSC1_ENABLE);
16454 
16455 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16456 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16457 				     bios_lvds_use_ssc ? "en" : "dis",
16458 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16459 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16460 		}
16461 	}
16462 
16463 	if (IS_GEN2(dev_priv)) {
16464 		dev->mode_config.max_width = 2048;
16465 		dev->mode_config.max_height = 2048;
16466 	} else if (IS_GEN3(dev_priv)) {
16467 		dev->mode_config.max_width = 4096;
16468 		dev->mode_config.max_height = 4096;
16469 	} else {
16470 		dev->mode_config.max_width = 8192;
16471 		dev->mode_config.max_height = 8192;
16472 	}
16473 
16474 	if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16475 		dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16476 		dev->mode_config.cursor_height = 1023;
16477 	} else if (IS_GEN2(dev_priv)) {
16478 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16479 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16480 	} else {
16481 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16482 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16483 	}
16484 
16485 	dev->mode_config.fb_base = ggtt->mappable_base;
16486 
16487 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
16488 		      INTEL_INFO(dev_priv)->num_pipes,
16489 		      INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16490 
16491 	for_each_pipe(dev_priv, pipe) {
16492 		int ret;
16493 
16494 		ret = intel_crtc_init(dev_priv, pipe);
16495 		if (ret) {
16496 			drm_mode_config_cleanup(dev);
16497 			return ret;
16498 		}
16499 	}
16500 
16501 	intel_shared_dpll_init(dev);
16502 
16503 	intel_update_czclk(dev_priv);
16504 	intel_modeset_init_hw(dev);
16505 
16506 	if (dev_priv->max_cdclk_freq == 0)
16507 		intel_update_max_cdclk(dev_priv);
16508 
16509 	/* Just disable it once at startup */
16510 	i915_disable_vga(dev_priv);
16511 	intel_setup_outputs(dev);
16512 
16513 	drm_modeset_lock_all(dev);
16514 	intel_modeset_setup_hw_state(dev);
16515 	drm_modeset_unlock_all(dev);
16516 
16517 	for_each_intel_crtc(dev, crtc) {
16518 		struct intel_initial_plane_config plane_config = {};
16519 
16520 		if (!crtc->active)
16521 			continue;
16522 
16523 		/*
16524 		 * Note that reserving the BIOS fb up front prevents us
16525 		 * from stuffing other stolen allocations like the ring
16526 		 * on top.  This prevents some ugliness at boot time, and
16527 		 * can even allow for smooth boot transitions if the BIOS
16528 		 * fb is large enough for the active pipe configuration.
16529 		 */
16530 		dev_priv->display.get_initial_plane_config(crtc,
16531 							   &plane_config);
16532 
16533 		/*
16534 		 * If the fb is shared between multiple heads, we'll
16535 		 * just get the first one.
16536 		 */
16537 		intel_find_initial_plane_obj(crtc, &plane_config);
16538 	}
16539 
16540 	/*
16541 	 * Make sure hardware watermarks really match the state we read out.
16542 	 * Note that we need to do this after reconstructing the BIOS fb's
16543 	 * since the watermark calculation done here will use pstate->fb.
16544 	 */
16545 	sanitize_watermarks(dev);
16546 
16547 	return 0;
16548 }
16549 
16550 static void intel_enable_pipe_a(struct drm_device *dev)
16551 {
16552 	struct intel_connector *connector;
16553 	struct drm_connector *crt = NULL;
16554 	struct intel_load_detect_pipe load_detect_temp;
16555 	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16556 
16557 	/* We can't just switch on the pipe A, we need to set things up with a
16558 	 * proper mode and output configuration. As a gross hack, enable pipe A
16559 	 * by enabling the load detect pipe once. */
16560 	for_each_intel_connector(dev, connector) {
16561 		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16562 			crt = &connector->base;
16563 			break;
16564 		}
16565 	}
16566 
16567 	if (!crt)
16568 		return;
16569 
16570 	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16571 		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16572 }
16573 
16574 static bool
16575 intel_check_plane_mapping(struct intel_crtc *crtc)
16576 {
16577 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16578 	u32 val;
16579 
16580 	if (INTEL_INFO(dev_priv)->num_pipes == 1)
16581 		return true;
16582 
16583 	val = I915_READ(DSPCNTR(!crtc->plane));
16584 
16585 	if ((val & DISPLAY_PLANE_ENABLE) &&
16586 	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16587 		return false;
16588 
16589 	return true;
16590 }
16591 
16592 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16593 {
16594 	struct drm_device *dev = crtc->base.dev;
16595 	struct intel_encoder *encoder;
16596 
16597 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16598 		return true;
16599 
16600 	return false;
16601 }
16602 
16603 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16604 {
16605 	struct drm_device *dev = encoder->base.dev;
16606 	struct intel_connector *connector;
16607 
16608 	for_each_connector_on_encoder(dev, &encoder->base, connector)
16609 		return connector;
16610 
16611 	return NULL;
16612 }
16613 
16614 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16615 			      enum transcoder pch_transcoder)
16616 {
16617 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16618 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16619 }
16620 
16621 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16622 {
16623 	struct drm_device *dev = crtc->base.dev;
16624 	struct drm_i915_private *dev_priv = to_i915(dev);
16625 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16626 
16627 	/* Clear any frame start delays used for debugging left by the BIOS */
16628 	if (!transcoder_is_dsi(cpu_transcoder)) {
16629 		i915_reg_t reg = PIPECONF(cpu_transcoder);
16630 
16631 		I915_WRITE(reg,
16632 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16633 	}
16634 
16635 	/* restore vblank interrupts to correct state */
16636 	drm_crtc_vblank_reset(&crtc->base);
16637 	if (crtc->active) {
16638 		struct intel_plane *plane;
16639 
16640 		drm_crtc_vblank_on(&crtc->base);
16641 
16642 		/* Disable everything but the primary plane */
16643 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
16644 			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16645 				continue;
16646 
16647 			plane->disable_plane(&plane->base, &crtc->base);
16648 		}
16649 	}
16650 
16651 	/* We need to sanitize the plane -> pipe mapping first because this will
16652 	 * disable the crtc (and hence change the state) if it is wrong. Note
16653 	 * that gen4+ has a fixed plane -> pipe mapping.  */
16654 	if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16655 		bool plane;
16656 
16657 		DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16658 			      crtc->base.base.id, crtc->base.name);
16659 
16660 		/* Pipe has the wrong plane attached and the plane is active.
16661 		 * Temporarily change the plane mapping and disable everything
16662 		 * ...  */
16663 		plane = crtc->plane;
16664 		to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16665 		crtc->plane = !plane;
16666 		intel_crtc_disable_noatomic(&crtc->base);
16667 		crtc->plane = plane;
16668 	}
16669 
16670 	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16671 	    crtc->pipe == PIPE_A && !crtc->active) {
16672 		/* BIOS forgot to enable pipe A, this mostly happens after
16673 		 * resume. Force-enable the pipe to fix this, the update_dpms
16674 		 * call below we restore the pipe to the right state, but leave
16675 		 * the required bits on. */
16676 		intel_enable_pipe_a(dev);
16677 	}
16678 
16679 	/* Adjust the state of the output pipe according to whether we
16680 	 * have active connectors/encoders. */
16681 	if (crtc->active && !intel_crtc_has_encoders(crtc))
16682 		intel_crtc_disable_noatomic(&crtc->base);
16683 
16684 	if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16685 		/*
16686 		 * We start out with underrun reporting disabled to avoid races.
16687 		 * For correct bookkeeping mark this on active crtcs.
16688 		 *
16689 		 * Also on gmch platforms we dont have any hardware bits to
16690 		 * disable the underrun reporting. Which means we need to start
16691 		 * out with underrun reporting disabled also on inactive pipes,
16692 		 * since otherwise we'll complain about the garbage we read when
16693 		 * e.g. coming up after runtime pm.
16694 		 *
16695 		 * No protection against concurrent access is required - at
16696 		 * worst a fifo underrun happens which also sets this to false.
16697 		 */
16698 		crtc->cpu_fifo_underrun_disabled = true;
16699 		/*
16700 		 * We track the PCH trancoder underrun reporting state
16701 		 * within the crtc. With crtc for pipe A housing the underrun
16702 		 * reporting state for PCH transcoder A, crtc for pipe B housing
16703 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16704 		 * and marking underrun reporting as disabled for the non-existing
16705 		 * PCH transcoders B and C would prevent enabling the south
16706 		 * error interrupt (see cpt_can_enable_serr_int()).
16707 		 */
16708 		if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16709 			crtc->pch_fifo_underrun_disabled = true;
16710 	}
16711 }
16712 
16713 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16714 {
16715 	struct intel_connector *connector;
16716 
16717 	/* We need to check both for a crtc link (meaning that the
16718 	 * encoder is active and trying to read from a pipe) and the
16719 	 * pipe itself being active. */
16720 	bool has_active_crtc = encoder->base.crtc &&
16721 		to_intel_crtc(encoder->base.crtc)->active;
16722 
16723 	connector = intel_encoder_find_connector(encoder);
16724 	if (connector && !has_active_crtc) {
16725 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16726 			      encoder->base.base.id,
16727 			      encoder->base.name);
16728 
16729 		/* Connector is active, but has no active pipe. This is
16730 		 * fallout from our resume register restoring. Disable
16731 		 * the encoder manually again. */
16732 		if (encoder->base.crtc) {
16733 			struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16734 
16735 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16736 				      encoder->base.base.id,
16737 				      encoder->base.name);
16738 			encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16739 			if (encoder->post_disable)
16740 				encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16741 		}
16742 		encoder->base.crtc = NULL;
16743 
16744 		/* Inconsistent output/port/pipe state happens presumably due to
16745 		 * a bug in one of the get_hw_state functions. Or someplace else
16746 		 * in our code, like the register restore mess on resume. Clamp
16747 		 * things to off as a safer default. */
16748 
16749 		connector->base.dpms = DRM_MODE_DPMS_OFF;
16750 		connector->base.encoder = NULL;
16751 	}
16752 	/* Enabled encoders without active connectors will be fixed in
16753 	 * the crtc fixup. */
16754 }
16755 
16756 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16757 {
16758 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16759 
16760 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16761 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16762 		i915_disable_vga(dev_priv);
16763 	}
16764 }
16765 
16766 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16767 {
16768 	/* This function can be called both from intel_modeset_setup_hw_state or
16769 	 * at a very early point in our resume sequence, where the power well
16770 	 * structures are not yet restored. Since this function is at a very
16771 	 * paranoid "someone might have enabled VGA while we were not looking"
16772 	 * level, just check if the power well is enabled instead of trying to
16773 	 * follow the "don't touch the power well if we don't need it" policy
16774 	 * the rest of the driver uses. */
16775 	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16776 		return;
16777 
16778 	i915_redisable_vga_power_on(dev_priv);
16779 
16780 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16781 }
16782 
16783 static bool primary_get_hw_state(struct intel_plane *plane)
16784 {
16785 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16786 
16787 	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16788 }
16789 
16790 /* FIXME read out full plane state for all planes */
16791 static void readout_plane_state(struct intel_crtc *crtc)
16792 {
16793 	struct drm_plane *primary = crtc->base.primary;
16794 	struct intel_plane_state *plane_state =
16795 		to_intel_plane_state(primary->state);
16796 
16797 	plane_state->base.visible = crtc->active &&
16798 		primary_get_hw_state(to_intel_plane(primary));
16799 
16800 	if (plane_state->base.visible)
16801 		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16802 }
16803 
16804 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16805 {
16806 	struct drm_i915_private *dev_priv = to_i915(dev);
16807 	enum i915_pipe pipe;
16808 	struct intel_crtc *crtc;
16809 	struct intel_encoder *encoder;
16810 	struct intel_connector *connector;
16811 	int i;
16812 
16813 	dev_priv->active_crtcs = 0;
16814 
16815 	for_each_intel_crtc(dev, crtc) {
16816 		struct intel_crtc_state *crtc_state = crtc->config;
16817 
16818 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16819 		memset(crtc_state, 0, sizeof(*crtc_state));
16820 		crtc_state->base.crtc = &crtc->base;
16821 
16822 		crtc_state->base.active = crtc_state->base.enable =
16823 			dev_priv->display.get_pipe_config(crtc, crtc_state);
16824 
16825 		crtc->base.enabled = crtc_state->base.enable;
16826 		crtc->active = crtc_state->base.active;
16827 
16828 		if (crtc_state->base.active)
16829 			dev_priv->active_crtcs |= 1 << crtc->pipe;
16830 
16831 		readout_plane_state(crtc);
16832 
16833 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16834 			      crtc->base.base.id, crtc->base.name,
16835 			      enableddisabled(crtc->active));
16836 	}
16837 
16838 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16839 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16840 
16841 		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16842 						  &pll->config.hw_state);
16843 		pll->config.crtc_mask = 0;
16844 		for_each_intel_crtc(dev, crtc) {
16845 			if (crtc->active && crtc->config->shared_dpll == pll)
16846 				pll->config.crtc_mask |= 1 << crtc->pipe;
16847 		}
16848 		pll->active_mask = pll->config.crtc_mask;
16849 
16850 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16851 			      pll->name, pll->config.crtc_mask, pll->on);
16852 	}
16853 
16854 	for_each_intel_encoder(dev, encoder) {
16855 		pipe = 0;
16856 
16857 		if (encoder->get_hw_state(encoder, &pipe)) {
16858 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16859 
16860 			encoder->base.crtc = &crtc->base;
16861 			crtc->config->output_types |= 1 << encoder->type;
16862 			encoder->get_config(encoder, crtc->config);
16863 		} else {
16864 			encoder->base.crtc = NULL;
16865 		}
16866 
16867 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16868 			      encoder->base.base.id, encoder->base.name,
16869 			      enableddisabled(encoder->base.crtc),
16870 			      pipe_name(pipe));
16871 	}
16872 
16873 	for_each_intel_connector(dev, connector) {
16874 		if (connector->get_hw_state(connector)) {
16875 			connector->base.dpms = DRM_MODE_DPMS_ON;
16876 
16877 			encoder = connector->encoder;
16878 			connector->base.encoder = &encoder->base;
16879 
16880 			if (encoder->base.crtc &&
16881 			    encoder->base.crtc->state->active) {
16882 				/*
16883 				 * This has to be done during hardware readout
16884 				 * because anything calling .crtc_disable may
16885 				 * rely on the connector_mask being accurate.
16886 				 */
16887 				encoder->base.crtc->state->connector_mask |=
16888 					1 << drm_connector_index(&connector->base);
16889 				encoder->base.crtc->state->encoder_mask |=
16890 					1 << drm_encoder_index(&encoder->base);
16891 			}
16892 
16893 		} else {
16894 			connector->base.dpms = DRM_MODE_DPMS_OFF;
16895 			connector->base.encoder = NULL;
16896 		}
16897 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16898 			      connector->base.base.id, connector->base.name,
16899 			      enableddisabled(connector->base.encoder));
16900 	}
16901 
16902 	for_each_intel_crtc(dev, crtc) {
16903 		int pixclk = 0;
16904 
16905 		crtc->base.hwmode = crtc->config->base.adjusted_mode;
16906 
16907 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16908 		if (crtc->base.state->active) {
16909 			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16910 			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16911 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16912 
16913 			/*
16914 			 * The initial mode needs to be set in order to keep
16915 			 * the atomic core happy. It wants a valid mode if the
16916 			 * crtc's enabled, so we do the above call.
16917 			 *
16918 			 * At this point some state updated by the connectors
16919 			 * in their ->detect() callback has not run yet, so
16920 			 * no recalculation can be done yet.
16921 			 *
16922 			 * Even if we could do a recalculation and modeset
16923 			 * right now it would cause a double modeset if
16924 			 * fbdev or userspace chooses a different initial mode.
16925 			 *
16926 			 * If that happens, someone indicated they wanted a
16927 			 * mode change, which means it's safe to do a full
16928 			 * recalculation.
16929 			 */
16930 			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16931 
16932 			if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16933 				pixclk = ilk_pipe_pixel_rate(crtc->config);
16934 			else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16935 				pixclk = crtc->config->base.adjusted_mode.crtc_clock;
16936 			else
16937 				WARN_ON(dev_priv->display.modeset_calc_cdclk);
16938 
16939 			/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16940 			if (IS_BROADWELL(dev_priv) && crtc->config->ips_enabled)
16941 				pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16942 
16943 			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16944 			update_scanline_offset(crtc);
16945 		}
16946 
16947 		dev_priv->min_pixclk[crtc->pipe] = pixclk;
16948 
16949 		intel_pipe_config_sanity_check(dev_priv, crtc->config);
16950 	}
16951 }
16952 
16953 /* Scan out the current hw modeset state,
16954  * and sanitizes it to the current state
16955  */
16956 static void
16957 intel_modeset_setup_hw_state(struct drm_device *dev)
16958 {
16959 	struct drm_i915_private *dev_priv = to_i915(dev);
16960 	enum i915_pipe pipe;
16961 	struct intel_crtc *crtc;
16962 	struct intel_encoder *encoder;
16963 	int i;
16964 
16965 	intel_modeset_readout_hw_state(dev);
16966 
16967 	/* HW state is read out, now we need to sanitize this mess. */
16968 	for_each_intel_encoder(dev, encoder) {
16969 		intel_sanitize_encoder(encoder);
16970 	}
16971 
16972 	for_each_pipe(dev_priv, pipe) {
16973 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16974 
16975 		intel_sanitize_crtc(crtc);
16976 		intel_dump_pipe_config(crtc, crtc->config,
16977 				       "[setup_hw_state]");
16978 	}
16979 
16980 	intel_modeset_update_connector_atomic_state(dev);
16981 
16982 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16983 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16984 
16985 		if (!pll->on || pll->active_mask)
16986 			continue;
16987 
16988 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16989 
16990 		pll->funcs.disable(dev_priv, pll);
16991 		pll->on = false;
16992 	}
16993 
16994 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16995 		vlv_wm_get_hw_state(dev);
16996 	else if (IS_GEN9(dev_priv))
16997 		skl_wm_get_hw_state(dev);
16998 	else if (HAS_PCH_SPLIT(dev_priv))
16999 		ilk_wm_get_hw_state(dev);
17000 
17001 	for_each_intel_crtc(dev, crtc) {
17002 		unsigned long put_domains;
17003 
17004 		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17005 		if (WARN_ON(put_domains))
17006 			modeset_put_power_domains(dev_priv, put_domains);
17007 	}
17008 	intel_display_set_init_power(dev_priv, false);
17009 
17010 	intel_fbc_init_pipe_state(dev_priv);
17011 }
17012 
17013 void intel_display_resume(struct drm_device *dev)
17014 {
17015 	struct drm_i915_private *dev_priv = to_i915(dev);
17016 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17017 	struct drm_modeset_acquire_ctx ctx;
17018 	int ret;
17019 
17020 	dev_priv->modeset_restore_state = NULL;
17021 	if (state)
17022 		state->acquire_ctx = &ctx;
17023 
17024 	/*
17025 	 * This is a cludge because with real atomic modeset mode_config.mutex
17026 	 * won't be taken. Unfortunately some probed state like
17027 	 * audio_codec_enable is still protected by mode_config.mutex, so lock
17028 	 * it here for now.
17029 	 */
17030 	mutex_lock(&dev->mode_config.mutex);
17031 	drm_modeset_acquire_init(&ctx, 0);
17032 
17033 	while (1) {
17034 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
17035 		if (ret != -EDEADLK)
17036 			break;
17037 
17038 		drm_modeset_backoff(&ctx);
17039 	}
17040 
17041 	if (!ret)
17042 		ret = __intel_display_resume(dev, state);
17043 
17044 	drm_modeset_drop_locks(&ctx);
17045 	drm_modeset_acquire_fini(&ctx);
17046 	mutex_unlock(&dev->mode_config.mutex);
17047 
17048 	if (ret)
17049 		DRM_ERROR("Restoring old state failed with %i\n", ret);
17050 	if (state)
17051 		drm_atomic_state_put(state);
17052 }
17053 
17054 void intel_modeset_gem_init(struct drm_device *dev)
17055 {
17056 	struct drm_i915_private *dev_priv = to_i915(dev);
17057 
17058 	intel_init_gt_powersave(dev_priv);
17059 
17060 	intel_setup_overlay(dev_priv);
17061 }
17062 
17063 int intel_connector_register(struct drm_connector *connector)
17064 {
17065 	struct intel_connector *intel_connector = to_intel_connector(connector);
17066 	int ret;
17067 
17068 	ret = intel_backlight_device_register(intel_connector);
17069 	if (ret)
17070 		goto err;
17071 
17072 	return 0;
17073 
17074 err:
17075 	return ret;
17076 }
17077 
17078 void intel_connector_unregister(struct drm_connector *connector)
17079 {
17080 	struct intel_connector *intel_connector = to_intel_connector(connector);
17081 
17082 	intel_backlight_device_unregister(intel_connector);
17083 	intel_panel_destroy_backlight(connector);
17084 }
17085 
17086 void intel_modeset_cleanup(struct drm_device *dev)
17087 {
17088 	struct drm_i915_private *dev_priv = to_i915(dev);
17089 
17090 	flush_work(&dev_priv->atomic_helper.free_work);
17091 	WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17092 
17093 	intel_disable_gt_powersave(dev_priv);
17094 
17095 	/*
17096 	 * Interrupts and polling as the first thing to avoid creating havoc.
17097 	 * Too much stuff here (turning of connectors, ...) would
17098 	 * experience fancy races otherwise.
17099 	 */
17100 	intel_irq_uninstall(dev_priv);
17101 
17102 	/*
17103 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
17104 	 * poll handlers. Hence disable polling after hpd handling is shut down.
17105 	 */
17106 	drm_kms_helper_poll_fini(dev);
17107 
17108 	intel_unregister_dsm_handler();
17109 
17110 	intel_fbc_global_disable(dev_priv);
17111 
17112 	/* flush any delayed tasks or pending work */
17113 	flush_scheduled_work();
17114 
17115 	drm_mode_config_cleanup(dev);
17116 
17117 	intel_cleanup_overlay(dev_priv);
17118 
17119 	intel_cleanup_gt_powersave(dev_priv);
17120 
17121 	intel_teardown_gmbus(dev);
17122 }
17123 
17124 void intel_connector_attach_encoder(struct intel_connector *connector,
17125 				    struct intel_encoder *encoder)
17126 {
17127 	connector->encoder = encoder;
17128 	drm_mode_connector_attach_encoder(&connector->base,
17129 					  &encoder->base);
17130 }
17131 
17132 /*
17133  * set vga decode state - true == enable VGA decode
17134  */
17135 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17136 {
17137 	unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17138 	u16 gmch_ctrl;
17139 
17140 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17141 		DRM_ERROR("failed to read control word\n");
17142 		return -EIO;
17143 	}
17144 
17145 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17146 		return 0;
17147 
17148 	if (state)
17149 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17150 	else
17151 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17152 
17153 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17154 		DRM_ERROR("failed to write control word\n");
17155 		return -EIO;
17156 	}
17157 
17158 	return 0;
17159 }
17160 
17161 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17162 
17163 struct intel_display_error_state {
17164 
17165 	u32 power_well_driver;
17166 
17167 	int num_transcoders;
17168 
17169 	struct intel_cursor_error_state {
17170 		u32 control;
17171 		u32 position;
17172 		u32 base;
17173 		u32 size;
17174 	} cursor[I915_MAX_PIPES];
17175 
17176 	struct intel_pipe_error_state {
17177 		bool power_domain_on;
17178 		u32 source;
17179 		u32 stat;
17180 	} pipe[I915_MAX_PIPES];
17181 
17182 	struct intel_plane_error_state {
17183 		u32 control;
17184 		u32 stride;
17185 		u32 size;
17186 		u32 pos;
17187 		u32 addr;
17188 		u32 surface;
17189 		u32 tile_offset;
17190 	} plane[I915_MAX_PIPES];
17191 
17192 	struct intel_transcoder_error_state {
17193 		bool power_domain_on;
17194 		enum transcoder cpu_transcoder;
17195 
17196 		u32 conf;
17197 
17198 		u32 htotal;
17199 		u32 hblank;
17200 		u32 hsync;
17201 		u32 vtotal;
17202 		u32 vblank;
17203 		u32 vsync;
17204 	} transcoder[4];
17205 };
17206 
17207 struct intel_display_error_state *
17208 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17209 {
17210 	struct intel_display_error_state *error;
17211 	int transcoders[] = {
17212 		TRANSCODER_A,
17213 		TRANSCODER_B,
17214 		TRANSCODER_C,
17215 		TRANSCODER_EDP,
17216 	};
17217 	int i;
17218 
17219 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
17220 		return NULL;
17221 
17222 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
17223 	if (error == NULL)
17224 		return NULL;
17225 
17226 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17227 		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17228 
17229 	for_each_pipe(dev_priv, i) {
17230 		error->pipe[i].power_domain_on =
17231 			__intel_display_power_is_enabled(dev_priv,
17232 							 POWER_DOMAIN_PIPE(i));
17233 		if (!error->pipe[i].power_domain_on)
17234 			continue;
17235 
17236 		error->cursor[i].control = I915_READ(CURCNTR(i));
17237 		error->cursor[i].position = I915_READ(CURPOS(i));
17238 		error->cursor[i].base = I915_READ(CURBASE(i));
17239 
17240 		error->plane[i].control = I915_READ(DSPCNTR(i));
17241 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17242 		if (INTEL_GEN(dev_priv) <= 3) {
17243 			error->plane[i].size = I915_READ(DSPSIZE(i));
17244 			error->plane[i].pos = I915_READ(DSPPOS(i));
17245 		}
17246 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17247 			error->plane[i].addr = I915_READ(DSPADDR(i));
17248 		if (INTEL_GEN(dev_priv) >= 4) {
17249 			error->plane[i].surface = I915_READ(DSPSURF(i));
17250 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17251 		}
17252 
17253 		error->pipe[i].source = I915_READ(PIPESRC(i));
17254 
17255 		if (HAS_GMCH_DISPLAY(dev_priv))
17256 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
17257 	}
17258 
17259 	/* Note: this does not include DSI transcoders. */
17260 	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17261 	if (HAS_DDI(dev_priv))
17262 		error->num_transcoders++; /* Account for eDP. */
17263 
17264 	for (i = 0; i < error->num_transcoders; i++) {
17265 		enum transcoder cpu_transcoder = transcoders[i];
17266 
17267 		error->transcoder[i].power_domain_on =
17268 			__intel_display_power_is_enabled(dev_priv,
17269 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17270 		if (!error->transcoder[i].power_domain_on)
17271 			continue;
17272 
17273 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
17274 
17275 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17276 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17277 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17278 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17279 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17280 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17281 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17282 	}
17283 
17284 	return error;
17285 }
17286 
17287 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17288 
17289 void
17290 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17291 				struct drm_i915_private *dev_priv,
17292 				struct intel_display_error_state *error)
17293 {
17294 	int i;
17295 
17296 	if (!error)
17297 		return;
17298 
17299 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17300 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17301 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
17302 			   error->power_well_driver);
17303 	for_each_pipe(dev_priv, i) {
17304 		err_printf(m, "Pipe [%d]:\n", i);
17305 		err_printf(m, "  Power: %s\n",
17306 			   onoff(error->pipe[i].power_domain_on));
17307 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17308 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17309 
17310 		err_printf(m, "Plane [%d]:\n", i);
17311 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17312 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17313 		if (INTEL_GEN(dev_priv) <= 3) {
17314 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17315 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17316 		}
17317 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17318 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17319 		if (INTEL_GEN(dev_priv) >= 4) {
17320 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17321 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17322 		}
17323 
17324 		err_printf(m, "Cursor [%d]:\n", i);
17325 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17326 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17327 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17328 	}
17329 
17330 	for (i = 0; i < error->num_transcoders; i++) {
17331 		err_printf(m, "CPU transcoder: %s\n",
17332 			   transcoder_name(error->transcoder[i].cpu_transcoder));
17333 		err_printf(m, "  Power: %s\n",
17334 			   onoff(error->transcoder[i].power_domain_on));
17335 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17336 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17337 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17338 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17339 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17340 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17341 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17342 	}
17343 }
17344 
17345 #endif
17346