xref: /dragonfly/sys/dev/drm/i915/intel_display.c (revision a4fe36f1)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <drm/drm_edid.h>
32 #include <drm/drmP.h>
33 #include "intel_drv.h"
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_crtc_helper.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_rect.h>
43 
44 /* Primary plane formats for gen <= 3 */
45 static const uint32_t i8xx_primary_formats[] = {
46 	DRM_FORMAT_C8,
47 	DRM_FORMAT_RGB565,
48 	DRM_FORMAT_XRGB1555,
49 	DRM_FORMAT_XRGB8888,
50 };
51 
52 /* Primary plane formats for gen >= 4 */
53 static const uint32_t i965_primary_formats[] = {
54 	DRM_FORMAT_C8,
55 	DRM_FORMAT_RGB565,
56 	DRM_FORMAT_XRGB8888,
57 	DRM_FORMAT_XBGR8888,
58 	DRM_FORMAT_XRGB2101010,
59 	DRM_FORMAT_XBGR2101010,
60 };
61 
62 static const uint32_t skl_primary_formats[] = {
63 	DRM_FORMAT_C8,
64 	DRM_FORMAT_RGB565,
65 	DRM_FORMAT_XRGB8888,
66 	DRM_FORMAT_XBGR8888,
67 	DRM_FORMAT_ARGB8888,
68 	DRM_FORMAT_ABGR8888,
69 	DRM_FORMAT_XRGB2101010,
70 	DRM_FORMAT_XBGR2101010,
71 };
72 
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 	DRM_FORMAT_ARGB8888,
76 };
77 
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79 
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 				struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 				   struct intel_crtc_state *pipe_config);
84 
85 static int intel_framebuffer_init(struct drm_device *dev,
86 				  struct intel_framebuffer *ifb,
87 				  struct drm_mode_fb_cmd2 *mode_cmd,
88 				  struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92 					 struct intel_link_m_n *m_n,
93 					 struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98 			    const struct intel_crtc_state *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100 			    const struct intel_crtc_state *pipe_config);
101 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
102 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
103 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
104 	struct intel_crtc_state *crtc_state);
105 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
106 			   int num_connectors);
107 static void intel_modeset_setup_hw_state(struct drm_device *dev);
108 
109 typedef struct {
110 	int	min, max;
111 } intel_range_t;
112 
113 typedef struct {
114 	int	dot_limit;
115 	int	p2_slow, p2_fast;
116 } intel_p2_t;
117 
118 typedef struct intel_limit intel_limit_t;
119 struct intel_limit {
120 	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
121 	intel_p2_t	    p2;
122 };
123 
124 int
125 intel_pch_rawclk(struct drm_device *dev)
126 {
127 	struct drm_i915_private *dev_priv = dev->dev_private;
128 
129 	WARN_ON(!HAS_PCH_SPLIT(dev));
130 
131 	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
132 }
133 
134 static inline u32 /* units of 100MHz */
135 intel_fdi_link_freq(struct drm_device *dev)
136 {
137 	if (IS_GEN5(dev)) {
138 		struct drm_i915_private *dev_priv = dev->dev_private;
139 		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
140 	} else
141 		return 27;
142 }
143 
144 static const intel_limit_t intel_limits_i8xx_dac = {
145 	.dot = { .min = 25000, .max = 350000 },
146 	.vco = { .min = 908000, .max = 1512000 },
147 	.n = { .min = 2, .max = 16 },
148 	.m = { .min = 96, .max = 140 },
149 	.m1 = { .min = 18, .max = 26 },
150 	.m2 = { .min = 6, .max = 16 },
151 	.p = { .min = 4, .max = 128 },
152 	.p1 = { .min = 2, .max = 33 },
153 	.p2 = { .dot_limit = 165000,
154 		.p2_slow = 4, .p2_fast = 2 },
155 };
156 
157 static const intel_limit_t intel_limits_i8xx_dvo = {
158 	.dot = { .min = 25000, .max = 350000 },
159 	.vco = { .min = 908000, .max = 1512000 },
160 	.n = { .min = 2, .max = 16 },
161 	.m = { .min = 96, .max = 140 },
162 	.m1 = { .min = 18, .max = 26 },
163 	.m2 = { .min = 6, .max = 16 },
164 	.p = { .min = 4, .max = 128 },
165 	.p1 = { .min = 2, .max = 33 },
166 	.p2 = { .dot_limit = 165000,
167 		.p2_slow = 4, .p2_fast = 4 },
168 };
169 
170 static const intel_limit_t intel_limits_i8xx_lvds = {
171 	.dot = { .min = 25000, .max = 350000 },
172 	.vco = { .min = 908000, .max = 1512000 },
173 	.n = { .min = 2, .max = 16 },
174 	.m = { .min = 96, .max = 140 },
175 	.m1 = { .min = 18, .max = 26 },
176 	.m2 = { .min = 6, .max = 16 },
177 	.p = { .min = 4, .max = 128 },
178 	.p1 = { .min = 1, .max = 6 },
179 	.p2 = { .dot_limit = 165000,
180 		.p2_slow = 14, .p2_fast = 7 },
181 };
182 
183 static const intel_limit_t intel_limits_i9xx_sdvo = {
184 	.dot = { .min = 20000, .max = 400000 },
185 	.vco = { .min = 1400000, .max = 2800000 },
186 	.n = { .min = 1, .max = 6 },
187 	.m = { .min = 70, .max = 120 },
188 	.m1 = { .min = 8, .max = 18 },
189 	.m2 = { .min = 3, .max = 7 },
190 	.p = { .min = 5, .max = 80 },
191 	.p1 = { .min = 1, .max = 8 },
192 	.p2 = { .dot_limit = 200000,
193 		.p2_slow = 10, .p2_fast = 5 },
194 };
195 
196 static const intel_limit_t intel_limits_i9xx_lvds = {
197 	.dot = { .min = 20000, .max = 400000 },
198 	.vco = { .min = 1400000, .max = 2800000 },
199 	.n = { .min = 1, .max = 6 },
200 	.m = { .min = 70, .max = 120 },
201 	.m1 = { .min = 8, .max = 18 },
202 	.m2 = { .min = 3, .max = 7 },
203 	.p = { .min = 7, .max = 98 },
204 	.p1 = { .min = 1, .max = 8 },
205 	.p2 = { .dot_limit = 112000,
206 		.p2_slow = 14, .p2_fast = 7 },
207 };
208 
209 
210 static const intel_limit_t intel_limits_g4x_sdvo = {
211 	.dot = { .min = 25000, .max = 270000 },
212 	.vco = { .min = 1750000, .max = 3500000},
213 	.n = { .min = 1, .max = 4 },
214 	.m = { .min = 104, .max = 138 },
215 	.m1 = { .min = 17, .max = 23 },
216 	.m2 = { .min = 5, .max = 11 },
217 	.p = { .min = 10, .max = 30 },
218 	.p1 = { .min = 1, .max = 3},
219 	.p2 = { .dot_limit = 270000,
220 		.p2_slow = 10,
221 		.p2_fast = 10
222 	},
223 };
224 
225 static const intel_limit_t intel_limits_g4x_hdmi = {
226 	.dot = { .min = 22000, .max = 400000 },
227 	.vco = { .min = 1750000, .max = 3500000},
228 	.n = { .min = 1, .max = 4 },
229 	.m = { .min = 104, .max = 138 },
230 	.m1 = { .min = 16, .max = 23 },
231 	.m2 = { .min = 5, .max = 11 },
232 	.p = { .min = 5, .max = 80 },
233 	.p1 = { .min = 1, .max = 8},
234 	.p2 = { .dot_limit = 165000,
235 		.p2_slow = 10, .p2_fast = 5 },
236 };
237 
238 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
239 	.dot = { .min = 20000, .max = 115000 },
240 	.vco = { .min = 1750000, .max = 3500000 },
241 	.n = { .min = 1, .max = 3 },
242 	.m = { .min = 104, .max = 138 },
243 	.m1 = { .min = 17, .max = 23 },
244 	.m2 = { .min = 5, .max = 11 },
245 	.p = { .min = 28, .max = 112 },
246 	.p1 = { .min = 2, .max = 8 },
247 	.p2 = { .dot_limit = 0,
248 		.p2_slow = 14, .p2_fast = 14
249 	},
250 };
251 
252 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
253 	.dot = { .min = 80000, .max = 224000 },
254 	.vco = { .min = 1750000, .max = 3500000 },
255 	.n = { .min = 1, .max = 3 },
256 	.m = { .min = 104, .max = 138 },
257 	.m1 = { .min = 17, .max = 23 },
258 	.m2 = { .min = 5, .max = 11 },
259 	.p = { .min = 14, .max = 42 },
260 	.p1 = { .min = 2, .max = 6 },
261 	.p2 = { .dot_limit = 0,
262 		.p2_slow = 7, .p2_fast = 7
263 	},
264 };
265 
266 static const intel_limit_t intel_limits_pineview_sdvo = {
267 	.dot = { .min = 20000, .max = 400000},
268 	.vco = { .min = 1700000, .max = 3500000 },
269 	/* Pineview's Ncounter is a ring counter */
270 	.n = { .min = 3, .max = 6 },
271 	.m = { .min = 2, .max = 256 },
272 	/* Pineview only has one combined m divider, which we treat as m2. */
273 	.m1 = { .min = 0, .max = 0 },
274 	.m2 = { .min = 0, .max = 254 },
275 	.p = { .min = 5, .max = 80 },
276 	.p1 = { .min = 1, .max = 8 },
277 	.p2 = { .dot_limit = 200000,
278 		.p2_slow = 10, .p2_fast = 5 },
279 };
280 
281 static const intel_limit_t intel_limits_pineview_lvds = {
282 	.dot = { .min = 20000, .max = 400000 },
283 	.vco = { .min = 1700000, .max = 3500000 },
284 	.n = { .min = 3, .max = 6 },
285 	.m = { .min = 2, .max = 256 },
286 	.m1 = { .min = 0, .max = 0 },
287 	.m2 = { .min = 0, .max = 254 },
288 	.p = { .min = 7, .max = 112 },
289 	.p1 = { .min = 1, .max = 8 },
290 	.p2 = { .dot_limit = 112000,
291 		.p2_slow = 14, .p2_fast = 14 },
292 };
293 
294 /* Ironlake / Sandybridge
295  *
296  * We calculate clock using (register_value + 2) for N/M1/M2, so here
297  * the range value for them is (actual_value - 2).
298  */
299 static const intel_limit_t intel_limits_ironlake_dac = {
300 	.dot = { .min = 25000, .max = 350000 },
301 	.vco = { .min = 1760000, .max = 3510000 },
302 	.n = { .min = 1, .max = 5 },
303 	.m = { .min = 79, .max = 127 },
304 	.m1 = { .min = 12, .max = 22 },
305 	.m2 = { .min = 5, .max = 9 },
306 	.p = { .min = 5, .max = 80 },
307 	.p1 = { .min = 1, .max = 8 },
308 	.p2 = { .dot_limit = 225000,
309 		.p2_slow = 10, .p2_fast = 5 },
310 };
311 
312 static const intel_limit_t intel_limits_ironlake_single_lvds = {
313 	.dot = { .min = 25000, .max = 350000 },
314 	.vco = { .min = 1760000, .max = 3510000 },
315 	.n = { .min = 1, .max = 3 },
316 	.m = { .min = 79, .max = 118 },
317 	.m1 = { .min = 12, .max = 22 },
318 	.m2 = { .min = 5, .max = 9 },
319 	.p = { .min = 28, .max = 112 },
320 	.p1 = { .min = 2, .max = 8 },
321 	.p2 = { .dot_limit = 225000,
322 		.p2_slow = 14, .p2_fast = 14 },
323 };
324 
325 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
326 	.dot = { .min = 25000, .max = 350000 },
327 	.vco = { .min = 1760000, .max = 3510000 },
328 	.n = { .min = 1, .max = 3 },
329 	.m = { .min = 79, .max = 127 },
330 	.m1 = { .min = 12, .max = 22 },
331 	.m2 = { .min = 5, .max = 9 },
332 	.p = { .min = 14, .max = 56 },
333 	.p1 = { .min = 2, .max = 8 },
334 	.p2 = { .dot_limit = 225000,
335 		.p2_slow = 7, .p2_fast = 7 },
336 };
337 
338 /* LVDS 100mhz refclk limits. */
339 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
340 	.dot = { .min = 25000, .max = 350000 },
341 	.vco = { .min = 1760000, .max = 3510000 },
342 	.n = { .min = 1, .max = 2 },
343 	.m = { .min = 79, .max = 126 },
344 	.m1 = { .min = 12, .max = 22 },
345 	.m2 = { .min = 5, .max = 9 },
346 	.p = { .min = 28, .max = 112 },
347 	.p1 = { .min = 2, .max = 8 },
348 	.p2 = { .dot_limit = 225000,
349 		.p2_slow = 14, .p2_fast = 14 },
350 };
351 
352 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
353 	.dot = { .min = 25000, .max = 350000 },
354 	.vco = { .min = 1760000, .max = 3510000 },
355 	.n = { .min = 1, .max = 3 },
356 	.m = { .min = 79, .max = 126 },
357 	.m1 = { .min = 12, .max = 22 },
358 	.m2 = { .min = 5, .max = 9 },
359 	.p = { .min = 14, .max = 42 },
360 	.p1 = { .min = 2, .max = 6 },
361 	.p2 = { .dot_limit = 225000,
362 		.p2_slow = 7, .p2_fast = 7 },
363 };
364 
365 static const intel_limit_t intel_limits_vlv = {
366 	 /*
367 	  * These are the data rate limits (measured in fast clocks)
368 	  * since those are the strictest limits we have. The fast
369 	  * clock and actual rate limits are more relaxed, so checking
370 	  * them would make no difference.
371 	  */
372 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
373 	.vco = { .min = 4000000, .max = 6000000 },
374 	.n = { .min = 1, .max = 7 },
375 	.m1 = { .min = 2, .max = 3 },
376 	.m2 = { .min = 11, .max = 156 },
377 	.p1 = { .min = 2, .max = 3 },
378 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
379 };
380 
381 static const intel_limit_t intel_limits_chv = {
382 	/*
383 	 * These are the data rate limits (measured in fast clocks)
384 	 * since those are the strictest limits we have.  The fast
385 	 * clock and actual rate limits are more relaxed, so checking
386 	 * them would make no difference.
387 	 */
388 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
389 	.vco = { .min = 4800000, .max = 6480000 },
390 	.n = { .min = 1, .max = 1 },
391 	.m1 = { .min = 2, .max = 2 },
392 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
393 	.p1 = { .min = 2, .max = 4 },
394 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
395 };
396 
397 static const intel_limit_t intel_limits_bxt = {
398 	/* FIXME: find real dot limits */
399 	.dot = { .min = 0, .max = INT_MAX },
400 	.vco = { .min = 4800000, .max = 6700000 },
401 	.n = { .min = 1, .max = 1 },
402 	.m1 = { .min = 2, .max = 2 },
403 	/* FIXME: find real m2 limits */
404 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
405 	.p1 = { .min = 2, .max = 4 },
406 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
407 };
408 
409 static bool
410 needs_modeset(struct drm_crtc_state *state)
411 {
412 	return drm_atomic_crtc_needs_modeset(state);
413 }
414 
415 /**
416  * Returns whether any output on the specified pipe is of the specified type
417  */
418 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
419 {
420 	struct drm_device *dev = crtc->base.dev;
421 	struct intel_encoder *encoder;
422 
423 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
424 		if (encoder->type == type)
425 			return true;
426 
427 	return false;
428 }
429 
430 /**
431  * Returns whether any output on the specified pipe will have the specified
432  * type after a staged modeset is complete, i.e., the same as
433  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
434  * encoder->crtc.
435  */
436 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
437 				      int type)
438 {
439 	struct drm_atomic_state *state = crtc_state->base.state;
440 	struct drm_connector *connector;
441 	struct drm_connector_state *connector_state;
442 	struct intel_encoder *encoder;
443 	int i, num_connectors = 0;
444 
445 	for_each_connector_in_state(state, connector, connector_state, i) {
446 		if (connector_state->crtc != crtc_state->base.crtc)
447 			continue;
448 
449 		num_connectors++;
450 
451 		encoder = to_intel_encoder(connector_state->best_encoder);
452 		if (encoder->type == type)
453 			return true;
454 	}
455 
456 	WARN_ON(num_connectors == 0);
457 
458 	return false;
459 }
460 
461 static const intel_limit_t *
462 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
463 {
464 	struct drm_device *dev = crtc_state->base.crtc->dev;
465 	const intel_limit_t *limit;
466 
467 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
468 		if (intel_is_dual_link_lvds(dev)) {
469 			if (refclk == 100000)
470 				limit = &intel_limits_ironlake_dual_lvds_100m;
471 			else
472 				limit = &intel_limits_ironlake_dual_lvds;
473 		} else {
474 			if (refclk == 100000)
475 				limit = &intel_limits_ironlake_single_lvds_100m;
476 			else
477 				limit = &intel_limits_ironlake_single_lvds;
478 		}
479 	} else
480 		limit = &intel_limits_ironlake_dac;
481 
482 	return limit;
483 }
484 
485 static const intel_limit_t *
486 intel_g4x_limit(struct intel_crtc_state *crtc_state)
487 {
488 	struct drm_device *dev = crtc_state->base.crtc->dev;
489 	const intel_limit_t *limit;
490 
491 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
492 		if (intel_is_dual_link_lvds(dev))
493 			limit = &intel_limits_g4x_dual_channel_lvds;
494 		else
495 			limit = &intel_limits_g4x_single_channel_lvds;
496 	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
497 		   intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
498 		limit = &intel_limits_g4x_hdmi;
499 	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
500 		limit = &intel_limits_g4x_sdvo;
501 	} else /* The option is for other outputs */
502 		limit = &intel_limits_i9xx_sdvo;
503 
504 	return limit;
505 }
506 
507 static const intel_limit_t *
508 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
509 {
510 	struct drm_device *dev = crtc_state->base.crtc->dev;
511 	const intel_limit_t *limit;
512 
513 	if (IS_BROXTON(dev))
514 		limit = &intel_limits_bxt;
515 	else if (HAS_PCH_SPLIT(dev))
516 		limit = intel_ironlake_limit(crtc_state, refclk);
517 	else if (IS_G4X(dev)) {
518 		limit = intel_g4x_limit(crtc_state);
519 	} else if (IS_PINEVIEW(dev)) {
520 		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
521 			limit = &intel_limits_pineview_lvds;
522 		else
523 			limit = &intel_limits_pineview_sdvo;
524 	} else if (IS_CHERRYVIEW(dev)) {
525 		limit = &intel_limits_chv;
526 	} else if (IS_VALLEYVIEW(dev)) {
527 		limit = &intel_limits_vlv;
528 	} else if (!IS_GEN2(dev)) {
529 		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
530 			limit = &intel_limits_i9xx_lvds;
531 		else
532 			limit = &intel_limits_i9xx_sdvo;
533 	} else {
534 		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
535 			limit = &intel_limits_i8xx_lvds;
536 		else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
537 			limit = &intel_limits_i8xx_dvo;
538 		else
539 			limit = &intel_limits_i8xx_dac;
540 	}
541 	return limit;
542 }
543 
544 /*
545  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
546  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
547  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
548  * The helpers' return value is the rate of the clock that is fed to the
549  * display engine's pipe which can be the above fast dot clock rate or a
550  * divided-down version of it.
551  */
552 /* m1 is reserved as 0 in Pineview, n is a ring counter */
553 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
554 {
555 	clock->m = clock->m2 + 2;
556 	clock->p = clock->p1 * clock->p2;
557 	if (WARN_ON(clock->n == 0 || clock->p == 0))
558 		return 0;
559 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
560 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
561 
562 	return clock->dot;
563 }
564 
565 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
566 {
567 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
568 }
569 
570 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
571 {
572 	clock->m = i9xx_dpll_compute_m(clock);
573 	clock->p = clock->p1 * clock->p2;
574 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
575 		return 0;
576 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
577 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
578 
579 	return clock->dot;
580 }
581 
582 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
583 {
584 	clock->m = clock->m1 * clock->m2;
585 	clock->p = clock->p1 * clock->p2;
586 	if (WARN_ON(clock->n == 0 || clock->p == 0))
587 		return 0;
588 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
589 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
590 
591 	return clock->dot / 5;
592 }
593 
594 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
595 {
596 	clock->m = clock->m1 * clock->m2;
597 	clock->p = clock->p1 * clock->p2;
598 	if (WARN_ON(clock->n == 0 || clock->p == 0))
599 		return 0;
600 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
601 			clock->n << 22);
602 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603 
604 	return clock->dot / 5;
605 }
606 
607 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
608 /**
609  * Returns whether the given set of divisors are valid for a given refclk with
610  * the given connectors.
611  */
612 
613 static bool intel_PLL_is_valid(struct drm_device *dev,
614 			       const intel_limit_t *limit,
615 			       const intel_clock_t *clock)
616 {
617 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
618 		INTELPllInvalid("n out of range\n");
619 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
620 		INTELPllInvalid("p1 out of range\n");
621 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
622 		INTELPllInvalid("m2 out of range\n");
623 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
624 		INTELPllInvalid("m1 out of range\n");
625 
626 	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
627 		if (clock->m1 <= clock->m2)
628 			INTELPllInvalid("m1 <= m2\n");
629 
630 	if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
631 		if (clock->p < limit->p.min || limit->p.max < clock->p)
632 			INTELPllInvalid("p out of range\n");
633 		if (clock->m < limit->m.min || limit->m.max < clock->m)
634 			INTELPllInvalid("m out of range\n");
635 	}
636 
637 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
638 		INTELPllInvalid("vco out of range\n");
639 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
640 	 * connector, etc., rather than just a single range.
641 	 */
642 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
643 		INTELPllInvalid("dot out of range\n");
644 
645 	return true;
646 }
647 
648 static int
649 i9xx_select_p2_div(const intel_limit_t *limit,
650 		   const struct intel_crtc_state *crtc_state,
651 		   int target)
652 {
653 	struct drm_device *dev = crtc_state->base.crtc->dev;
654 
655 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
656 		/*
657 		 * For LVDS just rely on its current settings for dual-channel.
658 		 * We haven't figured out how to reliably set up different
659 		 * single/dual channel state, if we even can.
660 		 */
661 		if (intel_is_dual_link_lvds(dev))
662 			return limit->p2.p2_fast;
663 		else
664 			return limit->p2.p2_slow;
665 	} else {
666 		if (target < limit->p2.dot_limit)
667 			return limit->p2.p2_slow;
668 		else
669 			return limit->p2.p2_fast;
670 	}
671 }
672 
673 static bool
674 i9xx_find_best_dpll(const intel_limit_t *limit,
675 		    struct intel_crtc_state *crtc_state,
676 		    int target, int refclk, intel_clock_t *match_clock,
677 		    intel_clock_t *best_clock)
678 {
679 	struct drm_device *dev = crtc_state->base.crtc->dev;
680 	intel_clock_t clock;
681 	int err = target;
682 
683 	memset(best_clock, 0, sizeof(*best_clock));
684 
685 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686 
687 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 	     clock.m1++) {
689 		for (clock.m2 = limit->m2.min;
690 		     clock.m2 <= limit->m2.max; clock.m2++) {
691 			if (clock.m2 >= clock.m1)
692 				break;
693 			for (clock.n = limit->n.min;
694 			     clock.n <= limit->n.max; clock.n++) {
695 				for (clock.p1 = limit->p1.min;
696 					clock.p1 <= limit->p1.max; clock.p1++) {
697 					int this_err;
698 
699 					i9xx_calc_dpll_params(refclk, &clock);
700 					if (!intel_PLL_is_valid(dev, limit,
701 								&clock))
702 						continue;
703 					if (match_clock &&
704 					    clock.p != match_clock->p)
705 						continue;
706 
707 					this_err = abs(clock.dot - target);
708 					if (this_err < err) {
709 						*best_clock = clock;
710 						err = this_err;
711 					}
712 				}
713 			}
714 		}
715 	}
716 
717 	return (err != target);
718 }
719 
720 static bool
721 pnv_find_best_dpll(const intel_limit_t *limit,
722 		   struct intel_crtc_state *crtc_state,
723 		   int target, int refclk, intel_clock_t *match_clock,
724 		   intel_clock_t *best_clock)
725 {
726 	struct drm_device *dev = crtc_state->base.crtc->dev;
727 	intel_clock_t clock;
728 	int err = target;
729 
730 	memset(best_clock, 0, sizeof(*best_clock));
731 
732 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
733 
734 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
735 	     clock.m1++) {
736 		for (clock.m2 = limit->m2.min;
737 		     clock.m2 <= limit->m2.max; clock.m2++) {
738 			for (clock.n = limit->n.min;
739 			     clock.n <= limit->n.max; clock.n++) {
740 				for (clock.p1 = limit->p1.min;
741 					clock.p1 <= limit->p1.max; clock.p1++) {
742 					int this_err;
743 
744 					pnv_calc_dpll_params(refclk, &clock);
745 					if (!intel_PLL_is_valid(dev, limit,
746 								&clock))
747 						continue;
748 					if (match_clock &&
749 					    clock.p != match_clock->p)
750 						continue;
751 
752 					this_err = abs(clock.dot - target);
753 					if (this_err < err) {
754 						*best_clock = clock;
755 						err = this_err;
756 					}
757 				}
758 			}
759 		}
760 	}
761 
762 	return (err != target);
763 }
764 
765 static bool
766 g4x_find_best_dpll(const intel_limit_t *limit,
767 		   struct intel_crtc_state *crtc_state,
768 		   int target, int refclk, intel_clock_t *match_clock,
769 		   intel_clock_t *best_clock)
770 {
771 	struct drm_device *dev = crtc_state->base.crtc->dev;
772 	intel_clock_t clock;
773 	int max_n;
774 	bool found = false;
775 	/* approximately equals target * 0.00585 */
776 	int err_most = (target >> 8) + (target >> 9);
777 
778 	memset(best_clock, 0, sizeof(*best_clock));
779 
780 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
781 
782 	max_n = limit->n.max;
783 	/* based on hardware requirement, prefer smaller n to precision */
784 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785 		/* based on hardware requirement, prefere larger m1,m2 */
786 		for (clock.m1 = limit->m1.max;
787 		     clock.m1 >= limit->m1.min; clock.m1--) {
788 			for (clock.m2 = limit->m2.max;
789 			     clock.m2 >= limit->m2.min; clock.m2--) {
790 				for (clock.p1 = limit->p1.max;
791 				     clock.p1 >= limit->p1.min; clock.p1--) {
792 					int this_err;
793 
794 					i9xx_calc_dpll_params(refclk, &clock);
795 					if (!intel_PLL_is_valid(dev, limit,
796 								&clock))
797 						continue;
798 
799 					this_err = abs(clock.dot - target);
800 					if (this_err < err_most) {
801 						*best_clock = clock;
802 						err_most = this_err;
803 						max_n = clock.n;
804 						found = true;
805 					}
806 				}
807 			}
808 		}
809 	}
810 	return found;
811 }
812 
813 /*
814  * Check if the calculated PLL configuration is more optimal compared to the
815  * best configuration and error found so far. Return the calculated error.
816  */
817 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
818 			       const intel_clock_t *calculated_clock,
819 			       const intel_clock_t *best_clock,
820 			       unsigned int best_error_ppm,
821 			       unsigned int *error_ppm)
822 {
823 	/*
824 	 * For CHV ignore the error and consider only the P value.
825 	 * Prefer a bigger P value based on HW requirements.
826 	 */
827 	if (IS_CHERRYVIEW(dev)) {
828 		*error_ppm = 0;
829 
830 		return calculated_clock->p > best_clock->p;
831 	}
832 
833 	if (WARN_ON_ONCE(!target_freq))
834 		return false;
835 
836 	*error_ppm = div_u64(1000000ULL *
837 				abs(target_freq - calculated_clock->dot),
838 			     target_freq);
839 	/*
840 	 * Prefer a better P value over a better (smaller) error if the error
841 	 * is small. Ensure this preference for future configurations too by
842 	 * setting the error to 0.
843 	 */
844 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
845 		*error_ppm = 0;
846 
847 		return true;
848 	}
849 
850 	return *error_ppm + 10 < best_error_ppm;
851 }
852 
853 static bool
854 vlv_find_best_dpll(const intel_limit_t *limit,
855 		   struct intel_crtc_state *crtc_state,
856 		   int target, int refclk, intel_clock_t *match_clock,
857 		   intel_clock_t *best_clock)
858 {
859 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
860 	struct drm_device *dev = crtc->base.dev;
861 	intel_clock_t clock;
862 	unsigned int bestppm = 1000000;
863 	/* min update 19.2 MHz */
864 	int max_n = min(limit->n.max, refclk / 19200);
865 	bool found = false;
866 
867 	target *= 5; /* fast clock */
868 
869 	memset(best_clock, 0, sizeof(*best_clock));
870 
871 	/* based on hardware requirement, prefer smaller n to precision */
872 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
873 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
874 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
875 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
876 				clock.p = clock.p1 * clock.p2;
877 				/* based on hardware requirement, prefer bigger m1,m2 values */
878 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
879 					unsigned int ppm;
880 
881 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
882 								     refclk * clock.m1);
883 
884 					vlv_calc_dpll_params(refclk, &clock);
885 
886 					if (!intel_PLL_is_valid(dev, limit,
887 								&clock))
888 						continue;
889 
890 					if (!vlv_PLL_is_optimal(dev, target,
891 								&clock,
892 								best_clock,
893 								bestppm, &ppm))
894 						continue;
895 
896 					*best_clock = clock;
897 					bestppm = ppm;
898 					found = true;
899 				}
900 			}
901 		}
902 	}
903 
904 	return found;
905 }
906 
907 static bool
908 chv_find_best_dpll(const intel_limit_t *limit,
909 		   struct intel_crtc_state *crtc_state,
910 		   int target, int refclk, intel_clock_t *match_clock,
911 		   intel_clock_t *best_clock)
912 {
913 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
914 	struct drm_device *dev = crtc->base.dev;
915 	unsigned int best_error_ppm;
916 	intel_clock_t clock;
917 	uint64_t m2;
918 	int found = false;
919 
920 	memset(best_clock, 0, sizeof(*best_clock));
921 	best_error_ppm = 1000000;
922 
923 	/*
924 	 * Based on hardware doc, the n always set to 1, and m1 always
925 	 * set to 2.  If requires to support 200Mhz refclk, we need to
926 	 * revisit this because n may not 1 anymore.
927 	 */
928 	clock.n = 1, clock.m1 = 2;
929 	target *= 5;	/* fast clock */
930 
931 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
932 		for (clock.p2 = limit->p2.p2_fast;
933 				clock.p2 >= limit->p2.p2_slow;
934 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
935 			unsigned int error_ppm;
936 
937 			clock.p = clock.p1 * clock.p2;
938 
939 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
940 					clock.n) << 22, refclk * clock.m1);
941 
942 			if (m2 > INT_MAX/clock.m1)
943 				continue;
944 
945 			clock.m2 = m2;
946 
947 			chv_calc_dpll_params(refclk, &clock);
948 
949 			if (!intel_PLL_is_valid(dev, limit, &clock))
950 				continue;
951 
952 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
953 						best_error_ppm, &error_ppm))
954 				continue;
955 
956 			*best_clock = clock;
957 			best_error_ppm = error_ppm;
958 			found = true;
959 		}
960 	}
961 
962 	return found;
963 }
964 
965 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
966 			intel_clock_t *best_clock)
967 {
968 	int refclk = i9xx_get_refclk(crtc_state, 0);
969 
970 	return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
971 				  target_clock, refclk, NULL, best_clock);
972 }
973 
974 bool intel_crtc_active(struct drm_crtc *crtc)
975 {
976 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
977 
978 	/* Be paranoid as we can arrive here with only partial
979 	 * state retrieved from the hardware during setup.
980 	 *
981 	 * We can ditch the adjusted_mode.crtc_clock check as soon
982 	 * as Haswell has gained clock readout/fastboot support.
983 	 *
984 	 * We can ditch the crtc->primary->fb check as soon as we can
985 	 * properly reconstruct framebuffers.
986 	 *
987 	 * FIXME: The intel_crtc->active here should be switched to
988 	 * crtc->state->active once we have proper CRTC states wired up
989 	 * for atomic.
990 	 */
991 	return intel_crtc->active && crtc->primary->state->fb &&
992 		intel_crtc->config->base.adjusted_mode.crtc_clock;
993 }
994 
995 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
996 					     enum i915_pipe pipe)
997 {
998 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
999 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1000 
1001 	return intel_crtc->config->cpu_transcoder;
1002 }
1003 
1004 static bool pipe_dsl_stopped(struct drm_device *dev, enum i915_pipe pipe)
1005 {
1006 	struct drm_i915_private *dev_priv = dev->dev_private;
1007 	u32 reg = PIPEDSL(pipe);
1008 	u32 line1, line2;
1009 	u32 line_mask;
1010 
1011 	if (IS_GEN2(dev))
1012 		line_mask = DSL_LINEMASK_GEN2;
1013 	else
1014 		line_mask = DSL_LINEMASK_GEN3;
1015 
1016 	line1 = I915_READ(reg) & line_mask;
1017 	msleep(5);
1018 	line2 = I915_READ(reg) & line_mask;
1019 
1020 	return line1 == line2;
1021 }
1022 
1023 /*
1024  * intel_wait_for_pipe_off - wait for pipe to turn off
1025  * @crtc: crtc whose pipe to wait for
1026  *
1027  * After disabling a pipe, we can't wait for vblank in the usual way,
1028  * spinning on the vblank interrupt status bit, since we won't actually
1029  * see an interrupt when the pipe is disabled.
1030  *
1031  * On Gen4 and above:
1032  *   wait for the pipe register state bit to turn off
1033  *
1034  * Otherwise:
1035  *   wait for the display line value to settle (it usually
1036  *   ends up stopping at the start of the next frame).
1037  *
1038  */
1039 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1040 {
1041 	struct drm_device *dev = crtc->base.dev;
1042 	struct drm_i915_private *dev_priv = dev->dev_private;
1043 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1044 	enum i915_pipe pipe = crtc->pipe;
1045 
1046 	if (INTEL_INFO(dev)->gen >= 4) {
1047 		int reg = PIPECONF(cpu_transcoder);
1048 
1049 		/* Wait for the Pipe State to go off */
1050 		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1051 			     100))
1052 			WARN(1, "pipe_off wait timed out\n");
1053 	} else {
1054 		/* Wait for the display line to settle */
1055 		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1056 			WARN(1, "pipe_off wait timed out\n");
1057 	}
1058 }
1059 
1060 /*
1061  * ibx_digital_port_connected - is the specified port connected?
1062  * @dev_priv: i915 private structure
1063  * @port: the port to test
1064  *
1065  * Returns true if @port is connected, false otherwise.
1066  */
1067 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1068 				struct intel_digital_port *port)
1069 {
1070 	u32 bit;
1071 
1072 	if (HAS_PCH_IBX(dev_priv->dev)) {
1073 		switch (port->port) {
1074 		case PORT_B:
1075 			bit = SDE_PORTB_HOTPLUG;
1076 			break;
1077 		case PORT_C:
1078 			bit = SDE_PORTC_HOTPLUG;
1079 			break;
1080 		case PORT_D:
1081 			bit = SDE_PORTD_HOTPLUG;
1082 			break;
1083 		default:
1084 			return true;
1085 		}
1086 	} else {
1087 		switch (port->port) {
1088 		case PORT_B:
1089 			bit = SDE_PORTB_HOTPLUG_CPT;
1090 			break;
1091 		case PORT_C:
1092 			bit = SDE_PORTC_HOTPLUG_CPT;
1093 			break;
1094 		case PORT_D:
1095 			bit = SDE_PORTD_HOTPLUG_CPT;
1096 			break;
1097 		case PORT_E:
1098 			bit = SDE_PORTE_HOTPLUG_SPT;
1099 			break;
1100 		default:
1101 			return true;
1102 		}
1103 	}
1104 
1105 	return I915_READ(SDEISR) & bit;
1106 }
1107 
1108 static const char *state_string(bool enabled)
1109 {
1110 	return enabled ? "on" : "off";
1111 }
1112 
1113 /* Only for pre-ILK configs */
1114 void assert_pll(struct drm_i915_private *dev_priv,
1115 		enum i915_pipe pipe, bool state)
1116 {
1117 	int reg;
1118 	u32 val;
1119 	bool cur_state;
1120 
1121 	reg = DPLL(pipe);
1122 	val = I915_READ(reg);
1123 	cur_state = !!(val & DPLL_VCO_ENABLE);
1124 	I915_STATE_WARN(cur_state != state,
1125 	     "PLL state assertion failure (expected %s, current %s)\n",
1126 	     state_string(state), state_string(cur_state));
1127 }
1128 
1129 /* XXX: the dsi pll is shared between MIPI DSI ports */
1130 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1131 {
1132 	u32 val;
1133 	bool cur_state;
1134 
1135 	mutex_lock(&dev_priv->sb_lock);
1136 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1137 	mutex_unlock(&dev_priv->sb_lock);
1138 
1139 	cur_state = val & DSI_PLL_VCO_EN;
1140 	I915_STATE_WARN(cur_state != state,
1141 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1142 	     state_string(state), state_string(cur_state));
1143 }
1144 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1145 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1146 
1147 struct intel_shared_dpll *
1148 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1149 {
1150 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1151 
1152 	if (crtc->config->shared_dpll < 0)
1153 		return NULL;
1154 
1155 	return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1156 }
1157 
1158 /* For ILK+ */
1159 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1160 			struct intel_shared_dpll *pll,
1161 			bool state)
1162 {
1163 	bool cur_state;
1164 	struct intel_dpll_hw_state hw_state;
1165 
1166 	if (WARN (!pll,
1167 		  "asserting DPLL %s with no DPLL\n", state_string(state)))
1168 		return;
1169 
1170 	cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1171 	I915_STATE_WARN(cur_state != state,
1172 	     "%s assertion failure (expected %s, current %s)\n",
1173 	     pll->name, state_string(state), state_string(cur_state));
1174 }
1175 
1176 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1177 			  enum i915_pipe pipe, bool state)
1178 {
1179 	int reg;
1180 	u32 val;
1181 	bool cur_state;
1182 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1183 								      pipe);
1184 
1185 	if (HAS_DDI(dev_priv->dev)) {
1186 		/* DDI does not have a specific FDI_TX register */
1187 		reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1188 		val = I915_READ(reg);
1189 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1190 	} else {
1191 		reg = FDI_TX_CTL(pipe);
1192 		val = I915_READ(reg);
1193 		cur_state = !!(val & FDI_TX_ENABLE);
1194 	}
1195 	I915_STATE_WARN(cur_state != state,
1196 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1197 	     state_string(state), state_string(cur_state));
1198 }
1199 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1200 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1201 
1202 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1203 			  enum i915_pipe pipe, bool state)
1204 {
1205 	int reg;
1206 	u32 val;
1207 	bool cur_state;
1208 
1209 	reg = FDI_RX_CTL(pipe);
1210 	val = I915_READ(reg);
1211 	cur_state = !!(val & FDI_RX_ENABLE);
1212 	I915_STATE_WARN(cur_state != state,
1213 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1214 	     state_string(state), state_string(cur_state));
1215 }
1216 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1217 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1218 
1219 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1220 				      enum i915_pipe pipe)
1221 {
1222 	int reg;
1223 	u32 val;
1224 
1225 	/* ILK FDI PLL is always enabled */
1226 	if (INTEL_INFO(dev_priv->dev)->gen == 5)
1227 		return;
1228 
1229 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1230 	if (HAS_DDI(dev_priv->dev))
1231 		return;
1232 
1233 	reg = FDI_TX_CTL(pipe);
1234 	val = I915_READ(reg);
1235 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1236 }
1237 
1238 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1239 		       enum i915_pipe pipe, bool state)
1240 {
1241 	int reg;
1242 	u32 val;
1243 	bool cur_state;
1244 
1245 	reg = FDI_RX_CTL(pipe);
1246 	val = I915_READ(reg);
1247 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1248 	I915_STATE_WARN(cur_state != state,
1249 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1250 	     state_string(state), state_string(cur_state));
1251 }
1252 
1253 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1254 			   enum i915_pipe pipe)
1255 {
1256 	struct drm_device *dev = dev_priv->dev;
1257 	int pp_reg;
1258 	u32 val;
1259 	enum i915_pipe panel_pipe = PIPE_A;
1260 	bool locked = true;
1261 
1262 	if (WARN_ON(HAS_DDI(dev)))
1263 		return;
1264 
1265 	if (HAS_PCH_SPLIT(dev)) {
1266 		u32 port_sel;
1267 
1268 		pp_reg = PCH_PP_CONTROL;
1269 		port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1270 
1271 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1272 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1273 			panel_pipe = PIPE_B;
1274 		/* XXX: else fix for eDP */
1275 	} else if (IS_VALLEYVIEW(dev)) {
1276 		/* presumably write lock depends on pipe, not port select */
1277 		pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1278 		panel_pipe = pipe;
1279 	} else {
1280 		pp_reg = PP_CONTROL;
1281 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1282 			panel_pipe = PIPE_B;
1283 	}
1284 
1285 	val = I915_READ(pp_reg);
1286 	if (!(val & PANEL_POWER_ON) ||
1287 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1288 		locked = false;
1289 
1290 	I915_STATE_WARN(panel_pipe == pipe && locked,
1291 	     "panel assertion failure, pipe %c regs locked\n",
1292 	     pipe_name(pipe));
1293 }
1294 
1295 static void assert_cursor(struct drm_i915_private *dev_priv,
1296 			  enum i915_pipe pipe, bool state)
1297 {
1298 	struct drm_device *dev = dev_priv->dev;
1299 	bool cur_state;
1300 
1301 	if (IS_845G(dev) || IS_I865G(dev))
1302 		cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1303 	else
1304 		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1305 
1306 	I915_STATE_WARN(cur_state != state,
1307 	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1308 	     pipe_name(pipe), state_string(state), state_string(cur_state));
1309 }
1310 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1311 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1312 
1313 void assert_pipe(struct drm_i915_private *dev_priv,
1314 		 enum i915_pipe pipe, bool state)
1315 {
1316 	int reg;
1317 	u32 val;
1318 	bool cur_state;
1319 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1320 								      pipe);
1321 
1322 	/* if we need the pipe quirk it must be always on */
1323 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1324 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1325 		state = true;
1326 
1327 	if (!intel_display_power_is_enabled(dev_priv,
1328 				POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1329 		cur_state = false;
1330 	} else {
1331 		reg = PIPECONF(cpu_transcoder);
1332 		val = I915_READ(reg);
1333 		cur_state = !!(val & PIPECONF_ENABLE);
1334 	}
1335 
1336 	I915_STATE_WARN(cur_state != state,
1337 	     "pipe %c assertion failure (expected %s, current %s)\n",
1338 	     pipe_name(pipe), state_string(state), state_string(cur_state));
1339 }
1340 
1341 static void assert_plane(struct drm_i915_private *dev_priv,
1342 			 enum plane plane, bool state)
1343 {
1344 	int reg;
1345 	u32 val;
1346 	bool cur_state;
1347 
1348 	reg = DSPCNTR(plane);
1349 	val = I915_READ(reg);
1350 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1351 	I915_STATE_WARN(cur_state != state,
1352 	     "plane %c assertion failure (expected %s, current %s)\n",
1353 	     plane_name(plane), state_string(state), state_string(cur_state));
1354 }
1355 
1356 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1357 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1358 
1359 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1360 				   enum i915_pipe pipe)
1361 {
1362 	struct drm_device *dev = dev_priv->dev;
1363 	int reg, i;
1364 	u32 val;
1365 	int cur_pipe;
1366 
1367 	/* Primary planes are fixed to pipes on gen4+ */
1368 	if (INTEL_INFO(dev)->gen >= 4) {
1369 		reg = DSPCNTR(pipe);
1370 		val = I915_READ(reg);
1371 		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1372 		     "plane %c assertion failure, should be disabled but not\n",
1373 		     plane_name(pipe));
1374 		return;
1375 	}
1376 
1377 	/* Need to check both planes against the pipe */
1378 	for_each_pipe(dev_priv, i) {
1379 		reg = DSPCNTR(i);
1380 		val = I915_READ(reg);
1381 		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1382 			DISPPLANE_SEL_PIPE_SHIFT;
1383 		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1384 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1385 		     plane_name(i), pipe_name(pipe));
1386 	}
1387 }
1388 
1389 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1390 				    enum i915_pipe pipe)
1391 {
1392 	struct drm_device *dev = dev_priv->dev;
1393 	int reg, sprite;
1394 	u32 val;
1395 
1396 	if (INTEL_INFO(dev)->gen >= 9) {
1397 		for_each_sprite(dev_priv, pipe, sprite) {
1398 			val = I915_READ(PLANE_CTL(pipe, sprite));
1399 			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1400 			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1401 			     sprite, pipe_name(pipe));
1402 		}
1403 	} else if (IS_VALLEYVIEW(dev)) {
1404 		for_each_sprite(dev_priv, pipe, sprite) {
1405 			reg = SPCNTR(pipe, sprite);
1406 			val = I915_READ(reg);
1407 			I915_STATE_WARN(val & SP_ENABLE,
1408 			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1409 			     sprite_name(pipe, sprite), pipe_name(pipe));
1410 		}
1411 	} else if (INTEL_INFO(dev)->gen >= 7) {
1412 		reg = SPRCTL(pipe);
1413 		val = I915_READ(reg);
1414 		I915_STATE_WARN(val & SPRITE_ENABLE,
1415 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1416 		     plane_name(pipe), pipe_name(pipe));
1417 	} else if (INTEL_INFO(dev)->gen >= 5) {
1418 		reg = DVSCNTR(pipe);
1419 		val = I915_READ(reg);
1420 		I915_STATE_WARN(val & DVS_ENABLE,
1421 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1422 		     plane_name(pipe), pipe_name(pipe));
1423 	}
1424 }
1425 
1426 static void assert_vblank_disabled(struct drm_crtc *crtc)
1427 {
1428 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1429 		drm_crtc_vblank_put(crtc);
1430 }
1431 
1432 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1433 {
1434 	u32 val;
1435 	bool enabled;
1436 
1437 	I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1438 
1439 	val = I915_READ(PCH_DREF_CONTROL);
1440 	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1441 			    DREF_SUPERSPREAD_SOURCE_MASK));
1442 	I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1443 }
1444 
1445 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1446 					   enum i915_pipe pipe)
1447 {
1448 	int reg;
1449 	u32 val;
1450 	bool enabled;
1451 
1452 	reg = PCH_TRANSCONF(pipe);
1453 	val = I915_READ(reg);
1454 	enabled = !!(val & TRANS_ENABLE);
1455 	I915_STATE_WARN(enabled,
1456 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1457 	     pipe_name(pipe));
1458 }
1459 
1460 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1461 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1462 {
1463 	if ((val & DP_PORT_EN) == 0)
1464 		return false;
1465 
1466 	if (HAS_PCH_CPT(dev_priv->dev)) {
1467 		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1468 		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1469 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1470 			return false;
1471 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1472 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1473 			return false;
1474 	} else {
1475 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1476 			return false;
1477 	}
1478 	return true;
1479 }
1480 
1481 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1482 			      enum i915_pipe pipe, u32 val)
1483 {
1484 	if ((val & SDVO_ENABLE) == 0)
1485 		return false;
1486 
1487 	if (HAS_PCH_CPT(dev_priv->dev)) {
1488 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1489 			return false;
1490 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1491 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1492 			return false;
1493 	} else {
1494 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1495 			return false;
1496 	}
1497 	return true;
1498 }
1499 
1500 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1501 			      enum i915_pipe pipe, u32 val)
1502 {
1503 	if ((val & LVDS_PORT_EN) == 0)
1504 		return false;
1505 
1506 	if (HAS_PCH_CPT(dev_priv->dev)) {
1507 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1508 			return false;
1509 	} else {
1510 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1511 			return false;
1512 	}
1513 	return true;
1514 }
1515 
1516 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1517 			      enum i915_pipe pipe, u32 val)
1518 {
1519 	if ((val & ADPA_DAC_ENABLE) == 0)
1520 		return false;
1521 	if (HAS_PCH_CPT(dev_priv->dev)) {
1522 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1523 			return false;
1524 	} else {
1525 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1526 			return false;
1527 	}
1528 	return true;
1529 }
1530 
1531 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1532 				   enum i915_pipe pipe, int reg, u32 port_sel)
1533 {
1534 	u32 val = I915_READ(reg);
1535 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1536 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1537 	     reg, pipe_name(pipe));
1538 
1539 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1540 	     && (val & DP_PIPEB_SELECT),
1541 	     "IBX PCH dp port still using transcoder B\n");
1542 }
1543 
1544 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1545 				     enum i915_pipe pipe, int reg)
1546 {
1547 	u32 val = I915_READ(reg);
1548 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1549 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1550 	     reg, pipe_name(pipe));
1551 
1552 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1553 	     && (val & SDVO_PIPE_B_SELECT),
1554 	     "IBX PCH hdmi port still using transcoder B\n");
1555 }
1556 
1557 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1558 				      enum i915_pipe pipe)
1559 {
1560 	int reg;
1561 	u32 val;
1562 
1563 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1564 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1565 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1566 
1567 	reg = PCH_ADPA;
1568 	val = I915_READ(reg);
1569 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1570 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1571 	     pipe_name(pipe));
1572 
1573 	reg = PCH_LVDS;
1574 	val = I915_READ(reg);
1575 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1576 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1577 	     pipe_name(pipe));
1578 
1579 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1580 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1581 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1582 }
1583 
1584 static void intel_init_dpio(struct drm_device *dev)
1585 {
1586 	struct drm_i915_private *dev_priv = dev->dev_private;
1587 
1588 	if (!IS_VALLEYVIEW(dev))
1589 		return;
1590 
1591 	/*
1592 	 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1593 	 * CHV x1 PHY (DP/HDMI D)
1594 	 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1595 	 */
1596 	if (IS_CHERRYVIEW(dev)) {
1597 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1598 		DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1599 	} else {
1600 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1601 	}
1602 }
1603 
1604 static void vlv_enable_pll(struct intel_crtc *crtc,
1605 			   const struct intel_crtc_state *pipe_config)
1606 {
1607 	struct drm_device *dev = crtc->base.dev;
1608 	struct drm_i915_private *dev_priv = dev->dev_private;
1609 	int reg = DPLL(crtc->pipe);
1610 	u32 dpll = pipe_config->dpll_hw_state.dpll;
1611 
1612 	assert_pipe_disabled(dev_priv, crtc->pipe);
1613 
1614 	/* No really, not for ILK+ */
1615 	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1616 
1617 	/* PLL is protected by panel, make sure we can write it */
1618 	if (IS_MOBILE(dev_priv->dev))
1619 		assert_panel_unlocked(dev_priv, crtc->pipe);
1620 
1621 	I915_WRITE(reg, dpll);
1622 	POSTING_READ(reg);
1623 	udelay(150);
1624 
1625 	if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1626 		DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1627 
1628 	I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1629 	POSTING_READ(DPLL_MD(crtc->pipe));
1630 
1631 	/* We do this three times for luck */
1632 	I915_WRITE(reg, dpll);
1633 	POSTING_READ(reg);
1634 	udelay(150); /* wait for warmup */
1635 	I915_WRITE(reg, dpll);
1636 	POSTING_READ(reg);
1637 	udelay(150); /* wait for warmup */
1638 	I915_WRITE(reg, dpll);
1639 	POSTING_READ(reg);
1640 	udelay(150); /* wait for warmup */
1641 }
1642 
1643 static void chv_enable_pll(struct intel_crtc *crtc,
1644 			   const struct intel_crtc_state *pipe_config)
1645 {
1646 	struct drm_device *dev = crtc->base.dev;
1647 	struct drm_i915_private *dev_priv = dev->dev_private;
1648 	int pipe = crtc->pipe;
1649 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1650 	u32 tmp;
1651 
1652 	assert_pipe_disabled(dev_priv, crtc->pipe);
1653 
1654 	BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1655 
1656 	mutex_lock(&dev_priv->sb_lock);
1657 
1658 	/* Enable back the 10bit clock to display controller */
1659 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1660 	tmp |= DPIO_DCLKP_EN;
1661 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1662 
1663 	mutex_unlock(&dev_priv->sb_lock);
1664 
1665 	/*
1666 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1667 	 */
1668 	udelay(1);
1669 
1670 	/* Enable PLL */
1671 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1672 
1673 	/* Check PLL is locked */
1674 	if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1675 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1676 
1677 	/* not sure when this should be written */
1678 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1679 	POSTING_READ(DPLL_MD(pipe));
1680 }
1681 
1682 static int intel_num_dvo_pipes(struct drm_device *dev)
1683 {
1684 	struct intel_crtc *crtc;
1685 	int count = 0;
1686 
1687 	for_each_intel_crtc(dev, crtc)
1688 		count += crtc->base.state->active &&
1689 			intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1690 
1691 	return count;
1692 }
1693 
1694 static void i9xx_enable_pll(struct intel_crtc *crtc)
1695 {
1696 	struct drm_device *dev = crtc->base.dev;
1697 	struct drm_i915_private *dev_priv = dev->dev_private;
1698 	int reg = DPLL(crtc->pipe);
1699 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1700 
1701 	assert_pipe_disabled(dev_priv, crtc->pipe);
1702 
1703 	/* No really, not for ILK+ */
1704 	BUG_ON(INTEL_INFO(dev)->gen >= 5);
1705 
1706 	/* PLL is protected by panel, make sure we can write it */
1707 	if (IS_MOBILE(dev) && !IS_I830(dev))
1708 		assert_panel_unlocked(dev_priv, crtc->pipe);
1709 
1710 	/* Enable DVO 2x clock on both PLLs if necessary */
1711 	if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1712 		/*
1713 		 * It appears to be important that we don't enable this
1714 		 * for the current pipe before otherwise configuring the
1715 		 * PLL. No idea how this should be handled if multiple
1716 		 * DVO outputs are enabled simultaneosly.
1717 		 */
1718 		dpll |= DPLL_DVO_2X_MODE;
1719 		I915_WRITE(DPLL(!crtc->pipe),
1720 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1721 	}
1722 
1723 	/*
1724 	 * Apparently we need to have VGA mode enabled prior to changing
1725 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1726 	 * dividers, even though the register value does change.
1727 	 */
1728 	I915_WRITE(reg, 0);
1729 
1730 	I915_WRITE(reg, dpll);
1731 
1732 	/* Wait for the clocks to stabilize. */
1733 	POSTING_READ(reg);
1734 	udelay(150);
1735 
1736 	if (INTEL_INFO(dev)->gen >= 4) {
1737 		I915_WRITE(DPLL_MD(crtc->pipe),
1738 			   crtc->config->dpll_hw_state.dpll_md);
1739 	} else {
1740 		/* The pixel multiplier can only be updated once the
1741 		 * DPLL is enabled and the clocks are stable.
1742 		 *
1743 		 * So write it again.
1744 		 */
1745 		I915_WRITE(reg, dpll);
1746 	}
1747 
1748 	/* We do this three times for luck */
1749 	I915_WRITE(reg, dpll);
1750 	POSTING_READ(reg);
1751 	udelay(150); /* wait for warmup */
1752 	I915_WRITE(reg, dpll);
1753 	POSTING_READ(reg);
1754 	udelay(150); /* wait for warmup */
1755 	I915_WRITE(reg, dpll);
1756 	POSTING_READ(reg);
1757 	udelay(150); /* wait for warmup */
1758 }
1759 
1760 /**
1761  * i9xx_disable_pll - disable a PLL
1762  * @dev_priv: i915 private structure
1763  * @pipe: pipe PLL to disable
1764  *
1765  * Disable the PLL for @pipe, making sure the pipe is off first.
1766  *
1767  * Note!  This is for pre-ILK only.
1768  */
1769 static void i9xx_disable_pll(struct intel_crtc *crtc)
1770 {
1771 	struct drm_device *dev = crtc->base.dev;
1772 	struct drm_i915_private *dev_priv = dev->dev_private;
1773 	enum i915_pipe pipe = crtc->pipe;
1774 
1775 	/* Disable DVO 2x clock on both PLLs if necessary */
1776 	if (IS_I830(dev) &&
1777 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1778 	    !intel_num_dvo_pipes(dev)) {
1779 		I915_WRITE(DPLL(PIPE_B),
1780 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1781 		I915_WRITE(DPLL(PIPE_A),
1782 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1783 	}
1784 
1785 	/* Don't disable pipe or pipe PLLs if needed */
1786 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1787 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1788 		return;
1789 
1790 	/* Make sure the pipe isn't still relying on us */
1791 	assert_pipe_disabled(dev_priv, pipe);
1792 
1793 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1794 	POSTING_READ(DPLL(pipe));
1795 }
1796 
1797 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1798 {
1799 	u32 val;
1800 
1801 	/* Make sure the pipe isn't still relying on us */
1802 	assert_pipe_disabled(dev_priv, pipe);
1803 
1804 	/*
1805 	 * Leave integrated clock source and reference clock enabled for pipe B.
1806 	 * The latter is needed for VGA hotplug / manual detection.
1807 	 */
1808 	val = DPLL_VGA_MODE_DIS;
1809 	if (pipe == PIPE_B)
1810 		val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1811 	I915_WRITE(DPLL(pipe), val);
1812 	POSTING_READ(DPLL(pipe));
1813 
1814 }
1815 
1816 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1817 {
1818 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1819 	u32 val;
1820 
1821 	/* Make sure the pipe isn't still relying on us */
1822 	assert_pipe_disabled(dev_priv, pipe);
1823 
1824 	/* Set PLL en = 0 */
1825 	val = DPLL_SSC_REF_CLK_CHV |
1826 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1827 	if (pipe != PIPE_A)
1828 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1829 	I915_WRITE(DPLL(pipe), val);
1830 	POSTING_READ(DPLL(pipe));
1831 
1832 	mutex_lock(&dev_priv->sb_lock);
1833 
1834 	/* Disable 10bit clock to display controller */
1835 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1836 	val &= ~DPIO_DCLKP_EN;
1837 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1838 
1839 	/* disable left/right clock distribution */
1840 	if (pipe != PIPE_B) {
1841 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1842 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1843 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1844 	} else {
1845 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1846 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1847 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1848 	}
1849 
1850 	mutex_unlock(&dev_priv->sb_lock);
1851 }
1852 
1853 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1854 			 struct intel_digital_port *dport,
1855 			 unsigned int expected_mask)
1856 {
1857 	u32 port_mask;
1858 	int dpll_reg;
1859 
1860 	switch (dport->port) {
1861 	case PORT_B:
1862 		port_mask = DPLL_PORTB_READY_MASK;
1863 		dpll_reg = DPLL(0);
1864 		break;
1865 	case PORT_C:
1866 		port_mask = DPLL_PORTC_READY_MASK;
1867 		dpll_reg = DPLL(0);
1868 		expected_mask <<= 4;
1869 		break;
1870 	case PORT_D:
1871 		port_mask = DPLL_PORTD_READY_MASK;
1872 		dpll_reg = DPIO_PHY_STATUS;
1873 		break;
1874 	default:
1875 		BUG();
1876 	}
1877 
1878 	if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1879 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1880 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1881 }
1882 
1883 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1884 {
1885 	struct drm_device *dev = crtc->base.dev;
1886 	struct drm_i915_private *dev_priv = dev->dev_private;
1887 	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1888 
1889 	if (WARN_ON(pll == NULL))
1890 		return;
1891 
1892 	WARN_ON(!pll->config.crtc_mask);
1893 	if (pll->active == 0) {
1894 		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1895 		WARN_ON(pll->on);
1896 		assert_shared_dpll_disabled(dev_priv, pll);
1897 
1898 		pll->mode_set(dev_priv, pll);
1899 	}
1900 }
1901 
1902 /**
1903  * intel_enable_shared_dpll - enable PCH PLL
1904  * @dev_priv: i915 private structure
1905  * @pipe: pipe PLL to enable
1906  *
1907  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1908  * drives the transcoder clock.
1909  */
1910 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1911 {
1912 	struct drm_device *dev = crtc->base.dev;
1913 	struct drm_i915_private *dev_priv = dev->dev_private;
1914 	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1915 
1916 	if (WARN_ON(pll == NULL))
1917 		return;
1918 
1919 	if (WARN_ON(pll->config.crtc_mask == 0))
1920 		return;
1921 
1922 	DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1923 		      pll->name, pll->active, pll->on,
1924 		      crtc->base.base.id);
1925 
1926 	if (pll->active++) {
1927 		WARN_ON(!pll->on);
1928 		assert_shared_dpll_enabled(dev_priv, pll);
1929 		return;
1930 	}
1931 	WARN_ON(pll->on);
1932 
1933 	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1934 
1935 	DRM_DEBUG_KMS("enabling %s\n", pll->name);
1936 	pll->enable(dev_priv, pll);
1937 	pll->on = true;
1938 }
1939 
1940 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1941 {
1942 	struct drm_device *dev = crtc->base.dev;
1943 	struct drm_i915_private *dev_priv = dev->dev_private;
1944 	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1945 
1946 	/* PCH only available on ILK+ */
1947 	if (INTEL_INFO(dev)->gen < 5)
1948 		return;
1949 
1950 	if (pll == NULL)
1951 		return;
1952 
1953 	if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1954 		return;
1955 
1956 	DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1957 		      pll->name, pll->active, pll->on,
1958 		      crtc->base.base.id);
1959 
1960 	if (WARN_ON(pll->active == 0)) {
1961 		assert_shared_dpll_disabled(dev_priv, pll);
1962 		return;
1963 	}
1964 
1965 	assert_shared_dpll_enabled(dev_priv, pll);
1966 	WARN_ON(!pll->on);
1967 	if (--pll->active)
1968 		return;
1969 
1970 	DRM_DEBUG_KMS("disabling %s\n", pll->name);
1971 	pll->disable(dev_priv, pll);
1972 	pll->on = false;
1973 
1974 	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1975 }
1976 
1977 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1978 					   enum i915_pipe pipe)
1979 {
1980 	struct drm_device *dev = dev_priv->dev;
1981 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1982 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983 	uint32_t reg, val, pipeconf_val;
1984 
1985 	/* PCH only available on ILK+ */
1986 	BUG_ON(!HAS_PCH_SPLIT(dev));
1987 
1988 	/* Make sure PCH DPLL is enabled */
1989 	assert_shared_dpll_enabled(dev_priv,
1990 				   intel_crtc_to_shared_dpll(intel_crtc));
1991 
1992 	/* FDI must be feeding us bits for PCH ports */
1993 	assert_fdi_tx_enabled(dev_priv, pipe);
1994 	assert_fdi_rx_enabled(dev_priv, pipe);
1995 
1996 	if (HAS_PCH_CPT(dev)) {
1997 		/* Workaround: Set the timing override bit before enabling the
1998 		 * pch transcoder. */
1999 		reg = TRANS_CHICKEN2(pipe);
2000 		val = I915_READ(reg);
2001 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2002 		I915_WRITE(reg, val);
2003 	}
2004 
2005 	reg = PCH_TRANSCONF(pipe);
2006 	val = I915_READ(reg);
2007 	pipeconf_val = I915_READ(PIPECONF(pipe));
2008 
2009 	if (HAS_PCH_IBX(dev_priv->dev)) {
2010 		/*
2011 		 * Make the BPC in transcoder be consistent with
2012 		 * that in pipeconf reg. For HDMI we must use 8bpc
2013 		 * here for both 8bpc and 12bpc.
2014 		 */
2015 		val &= ~PIPECONF_BPC_MASK;
2016 		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2017 			val |= PIPECONF_8BPC;
2018 		else
2019 			val |= pipeconf_val & PIPECONF_BPC_MASK;
2020 	}
2021 
2022 	val &= ~TRANS_INTERLACE_MASK;
2023 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2024 		if (HAS_PCH_IBX(dev_priv->dev) &&
2025 		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2026 			val |= TRANS_LEGACY_INTERLACED_ILK;
2027 		else
2028 			val |= TRANS_INTERLACED;
2029 	else
2030 		val |= TRANS_PROGRESSIVE;
2031 
2032 	I915_WRITE(reg, val | TRANS_ENABLE);
2033 	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2034 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2035 }
2036 
2037 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2038 				      enum transcoder cpu_transcoder)
2039 {
2040 	u32 val, pipeconf_val;
2041 
2042 	/* PCH only available on ILK+ */
2043 	BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2044 
2045 	/* FDI must be feeding us bits for PCH ports */
2046 	assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
2047 	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2048 
2049 	/* Workaround: set timing override bit. */
2050 	val = I915_READ(_TRANSA_CHICKEN2);
2051 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2052 	I915_WRITE(_TRANSA_CHICKEN2, val);
2053 
2054 	val = TRANS_ENABLE;
2055 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2056 
2057 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2058 	    PIPECONF_INTERLACED_ILK)
2059 		val |= TRANS_INTERLACED;
2060 	else
2061 		val |= TRANS_PROGRESSIVE;
2062 
2063 	I915_WRITE(LPT_TRANSCONF, val);
2064 	if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2065 		DRM_ERROR("Failed to enable PCH transcoder\n");
2066 }
2067 
2068 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2069 					    enum i915_pipe pipe)
2070 {
2071 	struct drm_device *dev = dev_priv->dev;
2072 	uint32_t reg, val;
2073 
2074 	/* FDI relies on the transcoder */
2075 	assert_fdi_tx_disabled(dev_priv, pipe);
2076 	assert_fdi_rx_disabled(dev_priv, pipe);
2077 
2078 	/* Ports must be off as well */
2079 	assert_pch_ports_disabled(dev_priv, pipe);
2080 
2081 	reg = PCH_TRANSCONF(pipe);
2082 	val = I915_READ(reg);
2083 	val &= ~TRANS_ENABLE;
2084 	I915_WRITE(reg, val);
2085 	/* wait for PCH transcoder off, transcoder state */
2086 	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2087 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2088 
2089 	if (!HAS_PCH_IBX(dev)) {
2090 		/* Workaround: Clear the timing override chicken bit again. */
2091 		reg = TRANS_CHICKEN2(pipe);
2092 		val = I915_READ(reg);
2093 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2094 		I915_WRITE(reg, val);
2095 	}
2096 }
2097 
2098 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2099 {
2100 	u32 val;
2101 
2102 	val = I915_READ(LPT_TRANSCONF);
2103 	val &= ~TRANS_ENABLE;
2104 	I915_WRITE(LPT_TRANSCONF, val);
2105 	/* wait for PCH transcoder off, transcoder state */
2106 	if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2107 		DRM_ERROR("Failed to disable PCH transcoder\n");
2108 
2109 	/* Workaround: clear timing override bit. */
2110 	val = I915_READ(_TRANSA_CHICKEN2);
2111 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2112 	I915_WRITE(_TRANSA_CHICKEN2, val);
2113 }
2114 
2115 /**
2116  * intel_enable_pipe - enable a pipe, asserting requirements
2117  * @crtc: crtc responsible for the pipe
2118  *
2119  * Enable @crtc's pipe, making sure that various hardware specific requirements
2120  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2121  */
2122 static void intel_enable_pipe(struct intel_crtc *crtc)
2123 {
2124 	struct drm_device *dev = crtc->base.dev;
2125 	struct drm_i915_private *dev_priv = dev->dev_private;
2126 	enum i915_pipe pipe = crtc->pipe;
2127 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2128 								      pipe);
2129 	enum i915_pipe pch_transcoder;
2130 	int reg;
2131 	u32 val;
2132 
2133 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2134 
2135 	assert_planes_disabled(dev_priv, pipe);
2136 	assert_cursor_disabled(dev_priv, pipe);
2137 	assert_sprites_disabled(dev_priv, pipe);
2138 
2139 	if (HAS_PCH_LPT(dev_priv->dev))
2140 		pch_transcoder = TRANSCODER_A;
2141 	else
2142 		pch_transcoder = pipe;
2143 
2144 	/*
2145 	 * A pipe without a PLL won't actually be able to drive bits from
2146 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2147 	 * need the check.
2148 	 */
2149 	if (HAS_GMCH_DISPLAY(dev_priv->dev))
2150 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2151 			assert_dsi_pll_enabled(dev_priv);
2152 		else
2153 			assert_pll_enabled(dev_priv, pipe);
2154 	else {
2155 		if (crtc->config->has_pch_encoder) {
2156 			/* if driving the PCH, we need FDI enabled */
2157 			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2158 			assert_fdi_tx_pll_enabled(dev_priv,
2159 						  (enum i915_pipe) cpu_transcoder);
2160 		}
2161 		/* FIXME: assert CPU port conditions for SNB+ */
2162 	}
2163 
2164 	reg = PIPECONF(cpu_transcoder);
2165 	val = I915_READ(reg);
2166 	if (val & PIPECONF_ENABLE) {
2167 		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2168 			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2169 		return;
2170 	}
2171 
2172 	I915_WRITE(reg, val | PIPECONF_ENABLE);
2173 	POSTING_READ(reg);
2174 }
2175 
2176 /**
2177  * intel_disable_pipe - disable a pipe, asserting requirements
2178  * @crtc: crtc whose pipes is to be disabled
2179  *
2180  * Disable the pipe of @crtc, making sure that various hardware
2181  * specific requirements are met, if applicable, e.g. plane
2182  * disabled, panel fitter off, etc.
2183  *
2184  * Will wait until the pipe has shut down before returning.
2185  */
2186 static void intel_disable_pipe(struct intel_crtc *crtc)
2187 {
2188 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2189 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2190 	enum i915_pipe pipe = crtc->pipe;
2191 	int reg;
2192 	u32 val;
2193 
2194 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2195 
2196 	/*
2197 	 * Make sure planes won't keep trying to pump pixels to us,
2198 	 * or we might hang the display.
2199 	 */
2200 	assert_planes_disabled(dev_priv, pipe);
2201 	assert_cursor_disabled(dev_priv, pipe);
2202 	assert_sprites_disabled(dev_priv, pipe);
2203 
2204 	reg = PIPECONF(cpu_transcoder);
2205 	val = I915_READ(reg);
2206 	if ((val & PIPECONF_ENABLE) == 0)
2207 		return;
2208 
2209 	/*
2210 	 * Double wide has implications for planes
2211 	 * so best keep it disabled when not needed.
2212 	 */
2213 	if (crtc->config->double_wide)
2214 		val &= ~PIPECONF_DOUBLE_WIDE;
2215 
2216 	/* Don't disable pipe or pipe PLLs if needed */
2217 	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2218 	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2219 		val &= ~PIPECONF_ENABLE;
2220 
2221 	I915_WRITE(reg, val);
2222 	if ((val & PIPECONF_ENABLE) == 0)
2223 		intel_wait_for_pipe_off(crtc);
2224 }
2225 
2226 static bool need_vtd_wa(struct drm_device *dev)
2227 {
2228 #ifdef CONFIG_INTEL_IOMMU
2229 	if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2230 		return true;
2231 #endif
2232 	return false;
2233 }
2234 
2235 unsigned int
2236 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2237 		  uint64_t fb_format_modifier)
2238 {
2239 	unsigned int tile_height;
2240 	uint32_t pixel_bytes;
2241 
2242 	switch (fb_format_modifier) {
2243 	case DRM_FORMAT_MOD_NONE:
2244 		tile_height = 1;
2245 		break;
2246 	case I915_FORMAT_MOD_X_TILED:
2247 		tile_height = IS_GEN2(dev) ? 16 : 8;
2248 		break;
2249 	case I915_FORMAT_MOD_Y_TILED:
2250 		tile_height = 32;
2251 		break;
2252 	case I915_FORMAT_MOD_Yf_TILED:
2253 		pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2254 		switch (pixel_bytes) {
2255 		default:
2256 		case 1:
2257 			tile_height = 64;
2258 			break;
2259 		case 2:
2260 		case 4:
2261 			tile_height = 32;
2262 			break;
2263 		case 8:
2264 			tile_height = 16;
2265 			break;
2266 		case 16:
2267 			WARN_ONCE(1,
2268 				  "128-bit pixels are not supported for display!");
2269 			tile_height = 16;
2270 			break;
2271 		}
2272 		break;
2273 	default:
2274 		MISSING_CASE(fb_format_modifier);
2275 		tile_height = 1;
2276 		break;
2277 	}
2278 
2279 	return tile_height;
2280 }
2281 
2282 unsigned int
2283 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2284 		      uint32_t pixel_format, uint64_t fb_format_modifier)
2285 {
2286 	return ALIGN(height, intel_tile_height(dev, pixel_format,
2287 					       fb_format_modifier));
2288 }
2289 
2290 static int
2291 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2292 			const struct drm_plane_state *plane_state)
2293 {
2294 	struct intel_rotation_info *info = &view->rotation_info;
2295 	unsigned int tile_height, tile_pitch;
2296 
2297 	*view = i915_ggtt_view_normal;
2298 
2299 	if (!plane_state)
2300 		return 0;
2301 
2302 	if (!intel_rotation_90_or_270(plane_state->rotation))
2303 		return 0;
2304 
2305 	*view = i915_ggtt_view_rotated;
2306 
2307 	info->height = fb->height;
2308 	info->pixel_format = fb->pixel_format;
2309 	info->pitch = fb->pitches[0];
2310 	info->fb_modifier = fb->modifier[0];
2311 
2312 	tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2313 					fb->modifier[0]);
2314 	tile_pitch = PAGE_SIZE / tile_height;
2315 	info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2316 	info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2317 	info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2318 
2319 	return 0;
2320 }
2321 
2322 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2323 {
2324 	if (INTEL_INFO(dev_priv)->gen >= 9)
2325 		return 256 * 1024;
2326 	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2327 		 IS_VALLEYVIEW(dev_priv))
2328 		return 128 * 1024;
2329 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2330 		return 4 * 1024;
2331 	else
2332 		return 0;
2333 }
2334 
2335 int
2336 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2337 			   struct drm_framebuffer *fb,
2338 			   const struct drm_plane_state *plane_state,
2339 			   struct intel_engine_cs *pipelined,
2340 			   struct drm_i915_gem_request **pipelined_request)
2341 {
2342 	struct drm_device *dev = fb->dev;
2343 	struct drm_i915_private *dev_priv = dev->dev_private;
2344 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2345 	struct i915_ggtt_view view;
2346 	u32 alignment;
2347 	int ret;
2348 
2349 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2350 
2351 	switch (fb->modifier[0]) {
2352 	case DRM_FORMAT_MOD_NONE:
2353 		alignment = intel_linear_alignment(dev_priv);
2354 		break;
2355 	case I915_FORMAT_MOD_X_TILED:
2356 		if (INTEL_INFO(dev)->gen >= 9)
2357 			alignment = 256 * 1024;
2358 		else {
2359 			/* pin() will align the object as required by fence */
2360 			alignment = 0;
2361 		}
2362 		break;
2363 	case I915_FORMAT_MOD_Y_TILED:
2364 	case I915_FORMAT_MOD_Yf_TILED:
2365 		if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2366 			  "Y tiling bo slipped through, driver bug!\n"))
2367 			return -EINVAL;
2368 		alignment = 1 * 1024 * 1024;
2369 		break;
2370 	default:
2371 		MISSING_CASE(fb->modifier[0]);
2372 		return -EINVAL;
2373 	}
2374 
2375 	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2376 	if (ret)
2377 		return ret;
2378 
2379 	/* Note that the w/a also requires 64 PTE of padding following the
2380 	 * bo. We currently fill all unused PTE with the shadow page and so
2381 	 * we should always have valid PTE following the scanout preventing
2382 	 * the VT-d warning.
2383 	 */
2384 	if (need_vtd_wa(dev) && alignment < 256 * 1024)
2385 		alignment = 256 * 1024;
2386 
2387 	/*
2388 	 * Global gtt pte registers are special registers which actually forward
2389 	 * writes to a chunk of system memory. Which means that there is no risk
2390 	 * that the register values disappear as soon as we call
2391 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2392 	 * pin/unpin/fence and not more.
2393 	 */
2394 	intel_runtime_pm_get(dev_priv);
2395 
2396 	dev_priv->mm.interruptible = false;
2397 	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2398 						   pipelined_request, &view);
2399 	if (ret)
2400 		goto err_interruptible;
2401 
2402 	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2403 	 * fence, whereas 965+ only requires a fence if using
2404 	 * framebuffer compression.  For simplicity, we always install
2405 	 * a fence as the cost is not that onerous.
2406 	 */
2407 	ret = i915_gem_object_get_fence(obj);
2408 	if (ret == -EDEADLK) {
2409 		/*
2410 		 * -EDEADLK means there are no free fences
2411 		 * no pending flips.
2412 		 *
2413 		 * This is propagated to atomic, but it uses
2414 		 * -EDEADLK to force a locking recovery, so
2415 		 * change the returned error to -EBUSY.
2416 		 */
2417 		ret = -EBUSY;
2418 		goto err_unpin;
2419 	} else if (ret)
2420 		goto err_unpin;
2421 
2422 	i915_gem_object_pin_fence(obj);
2423 
2424 	dev_priv->mm.interruptible = true;
2425 	intel_runtime_pm_put(dev_priv);
2426 	return 0;
2427 
2428 err_unpin:
2429 	i915_gem_object_unpin_from_display_plane(obj, &view);
2430 err_interruptible:
2431 	dev_priv->mm.interruptible = true;
2432 	intel_runtime_pm_put(dev_priv);
2433 	return ret;
2434 }
2435 
2436 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2437 			       const struct drm_plane_state *plane_state)
2438 {
2439 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2440 	struct i915_ggtt_view view;
2441 	int ret;
2442 
2443 	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2444 
2445 	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2446 	WARN_ONCE(ret, "Couldn't get view from plane state!");
2447 
2448 	i915_gem_object_unpin_fence(obj);
2449 	i915_gem_object_unpin_from_display_plane(obj, &view);
2450 }
2451 
2452 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2453  * is assumed to be a power-of-two. */
2454 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2455 					     int *x, int *y,
2456 					     unsigned int tiling_mode,
2457 					     unsigned int cpp,
2458 					     unsigned int pitch)
2459 {
2460 	if (tiling_mode != I915_TILING_NONE) {
2461 		unsigned int tile_rows, tiles;
2462 
2463 		tile_rows = *y / 8;
2464 		*y %= 8;
2465 
2466 		tiles = *x / (512/cpp);
2467 		*x %= 512/cpp;
2468 
2469 		return tile_rows * pitch * 8 + tiles * 4096;
2470 	} else {
2471 		unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2472 		unsigned int offset;
2473 
2474 		offset = *y * pitch + *x * cpp;
2475 		*y = (offset & alignment) / pitch;
2476 		*x = ((offset & alignment) - *y * pitch) / cpp;
2477 		return offset & ~alignment;
2478 	}
2479 }
2480 
2481 static int i9xx_format_to_fourcc(int format)
2482 {
2483 	switch (format) {
2484 	case DISPPLANE_8BPP:
2485 		return DRM_FORMAT_C8;
2486 	case DISPPLANE_BGRX555:
2487 		return DRM_FORMAT_XRGB1555;
2488 	case DISPPLANE_BGRX565:
2489 		return DRM_FORMAT_RGB565;
2490 	default:
2491 	case DISPPLANE_BGRX888:
2492 		return DRM_FORMAT_XRGB8888;
2493 	case DISPPLANE_RGBX888:
2494 		return DRM_FORMAT_XBGR8888;
2495 	case DISPPLANE_BGRX101010:
2496 		return DRM_FORMAT_XRGB2101010;
2497 	case DISPPLANE_RGBX101010:
2498 		return DRM_FORMAT_XBGR2101010;
2499 	}
2500 }
2501 
2502 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2503 {
2504 	switch (format) {
2505 	case PLANE_CTL_FORMAT_RGB_565:
2506 		return DRM_FORMAT_RGB565;
2507 	default:
2508 	case PLANE_CTL_FORMAT_XRGB_8888:
2509 		if (rgb_order) {
2510 			if (alpha)
2511 				return DRM_FORMAT_ABGR8888;
2512 			else
2513 				return DRM_FORMAT_XBGR8888;
2514 		} else {
2515 			if (alpha)
2516 				return DRM_FORMAT_ARGB8888;
2517 			else
2518 				return DRM_FORMAT_XRGB8888;
2519 		}
2520 	case PLANE_CTL_FORMAT_XRGB_2101010:
2521 		if (rgb_order)
2522 			return DRM_FORMAT_XBGR2101010;
2523 		else
2524 			return DRM_FORMAT_XRGB2101010;
2525 	}
2526 }
2527 
2528 static bool
2529 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2530 			      struct intel_initial_plane_config *plane_config)
2531 {
2532 	struct drm_device *dev = crtc->base.dev;
2533 	struct drm_i915_gem_object *obj = NULL;
2534 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2535 	struct drm_framebuffer *fb = &plane_config->fb->base;
2536 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538 				    PAGE_SIZE);
2539 
2540 	size_aligned -= base_aligned;
2541 
2542 	if (plane_config->size == 0)
2543 		return false;
2544 
2545 	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2546 							     base_aligned,
2547 							     base_aligned,
2548 							     size_aligned);
2549 	if (!obj)
2550 		return false;
2551 
2552 	obj->tiling_mode = plane_config->tiling;
2553 	if (obj->tiling_mode == I915_TILING_X)
2554 		obj->stride = fb->pitches[0];
2555 
2556 	mode_cmd.pixel_format = fb->pixel_format;
2557 	mode_cmd.width = fb->width;
2558 	mode_cmd.height = fb->height;
2559 	mode_cmd.pitches[0] = fb->pitches[0];
2560 	mode_cmd.modifier[0] = fb->modifier[0];
2561 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2562 
2563 	mutex_lock(&dev->struct_mutex);
2564 	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2565 				   &mode_cmd, obj)) {
2566 		DRM_DEBUG_KMS("intel fb init failed\n");
2567 		goto out_unref_obj;
2568 	}
2569 	mutex_unlock(&dev->struct_mutex);
2570 
2571 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2572 	return true;
2573 
2574 out_unref_obj:
2575 	drm_gem_object_unreference(&obj->base);
2576 	mutex_unlock(&dev->struct_mutex);
2577 	return false;
2578 }
2579 
2580 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2581 static void
2582 update_state_fb(struct drm_plane *plane)
2583 {
2584 	if (plane->fb == plane->state->fb)
2585 		return;
2586 
2587 	if (plane->state->fb)
2588 		drm_framebuffer_unreference(plane->state->fb);
2589 	plane->state->fb = plane->fb;
2590 	if (plane->state->fb)
2591 		drm_framebuffer_reference(plane->state->fb);
2592 }
2593 
2594 static void
2595 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2596 			     struct intel_initial_plane_config *plane_config)
2597 {
2598 	struct drm_device *dev = intel_crtc->base.dev;
2599 	struct drm_i915_private *dev_priv = dev->dev_private;
2600 	struct drm_crtc *c;
2601 	struct intel_crtc *i;
2602 	struct drm_i915_gem_object *obj;
2603 	struct drm_plane *primary = intel_crtc->base.primary;
2604 	struct drm_plane_state *plane_state = primary->state;
2605 	struct drm_framebuffer *fb;
2606 
2607 	if (!plane_config->fb)
2608 		return;
2609 
2610 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2611 		fb = &plane_config->fb->base;
2612 		goto valid_fb;
2613 	}
2614 
2615 	kfree(plane_config->fb);
2616 
2617 	/*
2618 	 * Failed to alloc the obj, check to see if we should share
2619 	 * an fb with another CRTC instead
2620 	 */
2621 	for_each_crtc(dev, c) {
2622 		i = to_intel_crtc(c);
2623 
2624 		if (c == &intel_crtc->base)
2625 			continue;
2626 
2627 		if (!i->active)
2628 			continue;
2629 
2630 		fb = c->primary->fb;
2631 		if (!fb)
2632 			continue;
2633 
2634 		obj = intel_fb_obj(fb);
2635 		if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2636 			drm_framebuffer_reference(fb);
2637 			goto valid_fb;
2638 		}
2639 	}
2640 
2641 	return;
2642 
2643 valid_fb:
2644 	plane_state->src_x = plane_state->src_y = 0;
2645 	plane_state->src_w = fb->width << 16;
2646 	plane_state->src_h = fb->height << 16;
2647 
2648 	plane_state->crtc_x = plane_state->src_y = 0;
2649 	plane_state->crtc_w = fb->width;
2650 	plane_state->crtc_h = fb->height;
2651 
2652 	obj = intel_fb_obj(fb);
2653 	if (obj->tiling_mode != I915_TILING_NONE)
2654 		dev_priv->preserve_bios_swizzle = true;
2655 
2656 	drm_framebuffer_reference(fb);
2657 	primary->fb = primary->state->fb = fb;
2658 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2659 	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2660 	obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2661 }
2662 
2663 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2664 				      struct drm_framebuffer *fb,
2665 				      int x, int y)
2666 {
2667 	struct drm_device *dev = crtc->dev;
2668 	struct drm_i915_private *dev_priv = dev->dev_private;
2669 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2670 	struct drm_plane *primary = crtc->primary;
2671 	bool visible = to_intel_plane_state(primary->state)->visible;
2672 	struct drm_i915_gem_object *obj;
2673 	int plane = intel_crtc->plane;
2674 	unsigned long linear_offset;
2675 	u32 dspcntr;
2676 	u32 reg = DSPCNTR(plane);
2677 	int pixel_size;
2678 
2679 	if (!visible || !fb) {
2680 		I915_WRITE(reg, 0);
2681 		if (INTEL_INFO(dev)->gen >= 4)
2682 			I915_WRITE(DSPSURF(plane), 0);
2683 		else
2684 			I915_WRITE(DSPADDR(plane), 0);
2685 		POSTING_READ(reg);
2686 		return;
2687 	}
2688 
2689 	obj = intel_fb_obj(fb);
2690 	if (WARN_ON(obj == NULL))
2691 		return;
2692 
2693 	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2694 
2695 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2696 
2697 	dspcntr |= DISPLAY_PLANE_ENABLE;
2698 
2699 	if (INTEL_INFO(dev)->gen < 4) {
2700 		if (intel_crtc->pipe == PIPE_B)
2701 			dspcntr |= DISPPLANE_SEL_PIPE_B;
2702 
2703 		/* pipesrc and dspsize control the size that is scaled from,
2704 		 * which should always be the user's requested size.
2705 		 */
2706 		I915_WRITE(DSPSIZE(plane),
2707 			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2708 			   (intel_crtc->config->pipe_src_w - 1));
2709 		I915_WRITE(DSPPOS(plane), 0);
2710 	} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2711 		I915_WRITE(PRIMSIZE(plane),
2712 			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2713 			   (intel_crtc->config->pipe_src_w - 1));
2714 		I915_WRITE(PRIMPOS(plane), 0);
2715 		I915_WRITE(PRIMCNSTALPHA(plane), 0);
2716 	}
2717 
2718 	switch (fb->pixel_format) {
2719 	case DRM_FORMAT_C8:
2720 		dspcntr |= DISPPLANE_8BPP;
2721 		break;
2722 	case DRM_FORMAT_XRGB1555:
2723 		dspcntr |= DISPPLANE_BGRX555;
2724 		break;
2725 	case DRM_FORMAT_RGB565:
2726 		dspcntr |= DISPPLANE_BGRX565;
2727 		break;
2728 	case DRM_FORMAT_XRGB8888:
2729 		dspcntr |= DISPPLANE_BGRX888;
2730 		break;
2731 	case DRM_FORMAT_XBGR8888:
2732 		dspcntr |= DISPPLANE_RGBX888;
2733 		break;
2734 	case DRM_FORMAT_XRGB2101010:
2735 		dspcntr |= DISPPLANE_BGRX101010;
2736 		break;
2737 	case DRM_FORMAT_XBGR2101010:
2738 		dspcntr |= DISPPLANE_RGBX101010;
2739 		break;
2740 	default:
2741 		BUG();
2742 	}
2743 
2744 	if (INTEL_INFO(dev)->gen >= 4 &&
2745 	    obj->tiling_mode != I915_TILING_NONE)
2746 		dspcntr |= DISPPLANE_TILED;
2747 
2748 	if (IS_G4X(dev))
2749 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2750 
2751 	linear_offset = y * fb->pitches[0] + x * pixel_size;
2752 
2753 	if (INTEL_INFO(dev)->gen >= 4) {
2754 		intel_crtc->dspaddr_offset =
2755 			intel_gen4_compute_page_offset(dev_priv,
2756 						       &x, &y, obj->tiling_mode,
2757 						       pixel_size,
2758 						       fb->pitches[0]);
2759 		linear_offset -= intel_crtc->dspaddr_offset;
2760 	} else {
2761 		intel_crtc->dspaddr_offset = linear_offset;
2762 	}
2763 
2764 	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2765 		dspcntr |= DISPPLANE_ROTATE_180;
2766 
2767 		x += (intel_crtc->config->pipe_src_w - 1);
2768 		y += (intel_crtc->config->pipe_src_h - 1);
2769 
2770 		/* Finding the last pixel of the last line of the display
2771 		data and adding to linear_offset*/
2772 		linear_offset +=
2773 			(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2774 			(intel_crtc->config->pipe_src_w - 1) * pixel_size;
2775 	}
2776 
2777 	I915_WRITE(reg, dspcntr);
2778 
2779 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2780 	if (INTEL_INFO(dev)->gen >= 4) {
2781 		I915_WRITE(DSPSURF(plane),
2782 			   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2783 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2784 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2785 	} else
2786 		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2787 	POSTING_READ(reg);
2788 }
2789 
2790 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2791 					  struct drm_framebuffer *fb,
2792 					  int x, int y)
2793 {
2794 	struct drm_device *dev = crtc->dev;
2795 	struct drm_i915_private *dev_priv = dev->dev_private;
2796 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797 	struct drm_plane *primary = crtc->primary;
2798 	bool visible = to_intel_plane_state(primary->state)->visible;
2799 	struct drm_i915_gem_object *obj;
2800 	int plane = intel_crtc->plane;
2801 	unsigned long linear_offset;
2802 	u32 dspcntr;
2803 	u32 reg = DSPCNTR(plane);
2804 	int pixel_size;
2805 
2806 	if (!visible || !fb) {
2807 		I915_WRITE(reg, 0);
2808 		I915_WRITE(DSPSURF(plane), 0);
2809 		POSTING_READ(reg);
2810 		return;
2811 	}
2812 
2813 	obj = intel_fb_obj(fb);
2814 	if (WARN_ON(obj == NULL))
2815 		return;
2816 
2817 	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2818 
2819 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2820 
2821 	dspcntr |= DISPLAY_PLANE_ENABLE;
2822 
2823 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2824 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2825 
2826 	switch (fb->pixel_format) {
2827 	case DRM_FORMAT_C8:
2828 		dspcntr |= DISPPLANE_8BPP;
2829 		break;
2830 	case DRM_FORMAT_RGB565:
2831 		dspcntr |= DISPPLANE_BGRX565;
2832 		break;
2833 	case DRM_FORMAT_XRGB8888:
2834 		dspcntr |= DISPPLANE_BGRX888;
2835 		break;
2836 	case DRM_FORMAT_XBGR8888:
2837 		dspcntr |= DISPPLANE_RGBX888;
2838 		break;
2839 	case DRM_FORMAT_XRGB2101010:
2840 		dspcntr |= DISPPLANE_BGRX101010;
2841 		break;
2842 	case DRM_FORMAT_XBGR2101010:
2843 		dspcntr |= DISPPLANE_RGBX101010;
2844 		break;
2845 	default:
2846 		BUG();
2847 	}
2848 
2849 	if (obj->tiling_mode != I915_TILING_NONE)
2850 		dspcntr |= DISPPLANE_TILED;
2851 
2852 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2853 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2854 
2855 	linear_offset = y * fb->pitches[0] + x * pixel_size;
2856 	intel_crtc->dspaddr_offset =
2857 		intel_gen4_compute_page_offset(dev_priv,
2858 					       &x, &y, obj->tiling_mode,
2859 					       pixel_size,
2860 					       fb->pitches[0]);
2861 	linear_offset -= intel_crtc->dspaddr_offset;
2862 	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2863 		dspcntr |= DISPPLANE_ROTATE_180;
2864 
2865 		if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2866 			x += (intel_crtc->config->pipe_src_w - 1);
2867 			y += (intel_crtc->config->pipe_src_h - 1);
2868 
2869 			/* Finding the last pixel of the last line of the display
2870 			data and adding to linear_offset*/
2871 			linear_offset +=
2872 				(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2873 				(intel_crtc->config->pipe_src_w - 1) * pixel_size;
2874 		}
2875 	}
2876 
2877 	I915_WRITE(reg, dspcntr);
2878 
2879 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2880 	I915_WRITE(DSPSURF(plane),
2881 		   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2882 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2883 		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2884 	} else {
2885 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2886 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2887 	}
2888 	POSTING_READ(reg);
2889 }
2890 
2891 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2892 			      uint32_t pixel_format)
2893 {
2894 	u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2895 
2896 	/*
2897 	 * The stride is either expressed as a multiple of 64 bytes
2898 	 * chunks for linear buffers or in number of tiles for tiled
2899 	 * buffers.
2900 	 */
2901 	switch (fb_modifier) {
2902 	case DRM_FORMAT_MOD_NONE:
2903 		return 64;
2904 	case I915_FORMAT_MOD_X_TILED:
2905 		if (INTEL_INFO(dev)->gen == 2)
2906 			return 128;
2907 		return 512;
2908 	case I915_FORMAT_MOD_Y_TILED:
2909 		/* No need to check for old gens and Y tiling since this is
2910 		 * about the display engine and those will be blocked before
2911 		 * we get here.
2912 		 */
2913 		return 128;
2914 	case I915_FORMAT_MOD_Yf_TILED:
2915 		if (bits_per_pixel == 8)
2916 			return 64;
2917 		else
2918 			return 128;
2919 	default:
2920 		MISSING_CASE(fb_modifier);
2921 		return 64;
2922 	}
2923 }
2924 
2925 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2926 				     struct drm_i915_gem_object *obj)
2927 {
2928 	const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2929 
2930 	if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2931 		view = &i915_ggtt_view_rotated;
2932 
2933 	return i915_gem_obj_ggtt_offset_view(obj, view);
2934 }
2935 
2936 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2937 {
2938 	struct drm_device *dev = intel_crtc->base.dev;
2939 	struct drm_i915_private *dev_priv = dev->dev_private;
2940 
2941 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2942 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2943 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2944 	DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2945 		intel_crtc->base.base.id, intel_crtc->pipe, id);
2946 }
2947 
2948 /*
2949  * This function detaches (aka. unbinds) unused scalers in hardware
2950  */
2951 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2952 {
2953 	struct intel_crtc_scaler_state *scaler_state;
2954 	int i;
2955 
2956 	scaler_state = &intel_crtc->config->scaler_state;
2957 
2958 	/* loop through and disable scalers that aren't in use */
2959 	for (i = 0; i < intel_crtc->num_scalers; i++) {
2960 		if (!scaler_state->scalers[i].in_use)
2961 			skl_detach_scaler(intel_crtc, i);
2962 	}
2963 }
2964 
2965 u32 skl_plane_ctl_format(uint32_t pixel_format)
2966 {
2967 	switch (pixel_format) {
2968 	case DRM_FORMAT_C8:
2969 		return PLANE_CTL_FORMAT_INDEXED;
2970 	case DRM_FORMAT_RGB565:
2971 		return PLANE_CTL_FORMAT_RGB_565;
2972 	case DRM_FORMAT_XBGR8888:
2973 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2974 	case DRM_FORMAT_XRGB8888:
2975 		return PLANE_CTL_FORMAT_XRGB_8888;
2976 	/*
2977 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2978 	 * to be already pre-multiplied. We need to add a knob (or a different
2979 	 * DRM_FORMAT) for user-space to configure that.
2980 	 */
2981 	case DRM_FORMAT_ABGR8888:
2982 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2983 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2984 	case DRM_FORMAT_ARGB8888:
2985 		return PLANE_CTL_FORMAT_XRGB_8888 |
2986 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2987 	case DRM_FORMAT_XRGB2101010:
2988 		return PLANE_CTL_FORMAT_XRGB_2101010;
2989 	case DRM_FORMAT_XBGR2101010:
2990 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2991 	case DRM_FORMAT_YUYV:
2992 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2993 	case DRM_FORMAT_YVYU:
2994 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2995 	case DRM_FORMAT_UYVY:
2996 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2997 	case DRM_FORMAT_VYUY:
2998 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2999 	default:
3000 		MISSING_CASE(pixel_format);
3001 	}
3002 
3003 	return 0;
3004 }
3005 
3006 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3007 {
3008 	switch (fb_modifier) {
3009 	case DRM_FORMAT_MOD_NONE:
3010 		break;
3011 	case I915_FORMAT_MOD_X_TILED:
3012 		return PLANE_CTL_TILED_X;
3013 	case I915_FORMAT_MOD_Y_TILED:
3014 		return PLANE_CTL_TILED_Y;
3015 	case I915_FORMAT_MOD_Yf_TILED:
3016 		return PLANE_CTL_TILED_YF;
3017 	default:
3018 		MISSING_CASE(fb_modifier);
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 u32 skl_plane_ctl_rotation(unsigned int rotation)
3025 {
3026 	switch (rotation) {
3027 	case BIT(DRM_ROTATE_0):
3028 		break;
3029 	/*
3030 	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3031 	 * while i915 HW rotation is clockwise, thats why this swapping.
3032 	 */
3033 	case BIT(DRM_ROTATE_90):
3034 		return PLANE_CTL_ROTATE_270;
3035 	case BIT(DRM_ROTATE_180):
3036 		return PLANE_CTL_ROTATE_180;
3037 	case BIT(DRM_ROTATE_270):
3038 		return PLANE_CTL_ROTATE_90;
3039 	default:
3040 		MISSING_CASE(rotation);
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3047 					 struct drm_framebuffer *fb,
3048 					 int x, int y)
3049 {
3050 	struct drm_device *dev = crtc->dev;
3051 	struct drm_i915_private *dev_priv = dev->dev_private;
3052 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3053 	struct drm_plane *plane = crtc->primary;
3054 	bool visible = to_intel_plane_state(plane->state)->visible;
3055 	struct drm_i915_gem_object *obj;
3056 	int pipe = intel_crtc->pipe;
3057 	u32 plane_ctl, stride_div, stride;
3058 	u32 tile_height, plane_offset, plane_size;
3059 	unsigned int rotation;
3060 	int x_offset, y_offset;
3061 	unsigned long surf_addr;
3062 	struct intel_crtc_state *crtc_state = intel_crtc->config;
3063 	struct intel_plane_state *plane_state;
3064 	int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3065 	int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3066 	int scaler_id = -1;
3067 
3068 	plane_state = to_intel_plane_state(plane->state);
3069 
3070 	if (!visible || !fb) {
3071 		I915_WRITE(PLANE_CTL(pipe, 0), 0);
3072 		I915_WRITE(PLANE_SURF(pipe, 0), 0);
3073 		POSTING_READ(PLANE_CTL(pipe, 0));
3074 		return;
3075 	}
3076 
3077 	plane_ctl = PLANE_CTL_ENABLE |
3078 		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3079 		    PLANE_CTL_PIPE_CSC_ENABLE;
3080 
3081 	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3082 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3083 	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3084 
3085 	rotation = plane->state->rotation;
3086 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3087 
3088 	obj = intel_fb_obj(fb);
3089 	stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3090 					       fb->pixel_format);
3091 	surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3092 
3093 	/*
3094 	 * FIXME: intel_plane_state->src, dst aren't set when transitional
3095 	 * update_plane helpers are called from legacy paths.
3096 	 * Once full atomic crtc is available, below check can be avoided.
3097 	 */
3098 	if (drm_rect_width(&plane_state->src)) {
3099 		scaler_id = plane_state->scaler_id;
3100 		src_x = plane_state->src.x1 >> 16;
3101 		src_y = plane_state->src.y1 >> 16;
3102 		src_w = drm_rect_width(&plane_state->src) >> 16;
3103 		src_h = drm_rect_height(&plane_state->src) >> 16;
3104 		dst_x = plane_state->dst.x1;
3105 		dst_y = plane_state->dst.y1;
3106 		dst_w = drm_rect_width(&plane_state->dst);
3107 		dst_h = drm_rect_height(&plane_state->dst);
3108 
3109 		WARN_ON(x != src_x || y != src_y);
3110 	} else {
3111 		src_w = intel_crtc->config->pipe_src_w;
3112 		src_h = intel_crtc->config->pipe_src_h;
3113 	}
3114 
3115 	if (intel_rotation_90_or_270(rotation)) {
3116 		/* stride = Surface height in tiles */
3117 		tile_height = intel_tile_height(dev, fb->pixel_format,
3118 						fb->modifier[0]);
3119 		stride = DIV_ROUND_UP(fb->height, tile_height);
3120 		x_offset = stride * tile_height - y - src_h;
3121 		y_offset = x;
3122 		plane_size = (src_w - 1) << 16 | (src_h - 1);
3123 	} else {
3124 		stride = fb->pitches[0] / stride_div;
3125 		x_offset = x;
3126 		y_offset = y;
3127 		plane_size = (src_h - 1) << 16 | (src_w - 1);
3128 	}
3129 	plane_offset = y_offset << 16 | x_offset;
3130 
3131 	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3132 	I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3133 	I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3134 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3135 
3136 	if (scaler_id >= 0) {
3137 		uint32_t ps_ctrl = 0;
3138 
3139 		WARN_ON(!dst_w || !dst_h);
3140 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3141 			crtc_state->scaler_state.scalers[scaler_id].mode;
3142 		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3143 		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3144 		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3145 		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3146 		I915_WRITE(PLANE_POS(pipe, 0), 0);
3147 	} else {
3148 		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3149 	}
3150 
3151 	I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3152 
3153 	POSTING_READ(PLANE_SURF(pipe, 0));
3154 }
3155 
3156 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3157 static int
3158 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3159 			   int x, int y, enum mode_set_atomic state)
3160 {
3161 	struct drm_device *dev = crtc->dev;
3162 	struct drm_i915_private *dev_priv = dev->dev_private;
3163 
3164 	if (dev_priv->fbc.disable_fbc)
3165 		dev_priv->fbc.disable_fbc(dev_priv);
3166 
3167 	dev_priv->display.update_primary_plane(crtc, fb, x, y);
3168 
3169 	return 0;
3170 }
3171 
3172 static void intel_complete_page_flips(struct drm_device *dev)
3173 {
3174 	struct drm_crtc *crtc;
3175 
3176 	for_each_crtc(dev, crtc) {
3177 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3178 		enum plane plane = intel_crtc->plane;
3179 
3180 		intel_prepare_page_flip(dev, plane);
3181 		intel_finish_page_flip_plane(dev, plane);
3182 	}
3183 }
3184 
3185 static void intel_update_primary_planes(struct drm_device *dev)
3186 {
3187 	struct drm_i915_private *dev_priv = dev->dev_private;
3188 	struct drm_crtc *crtc;
3189 
3190 	for_each_crtc(dev, crtc) {
3191 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3192 
3193 		drm_modeset_lock(&crtc->mutex, NULL);
3194 		/*
3195 		 * FIXME: Once we have proper support for primary planes (and
3196 		 * disabling them without disabling the entire crtc) allow again
3197 		 * a NULL crtc->primary->fb.
3198 		 */
3199 		if (intel_crtc->active && crtc->primary->fb)
3200 			dev_priv->display.update_primary_plane(crtc,
3201 							       crtc->primary->fb,
3202 							       crtc->x,
3203 							       crtc->y);
3204 		drm_modeset_unlock(&crtc->mutex);
3205 	}
3206 }
3207 
3208 void intel_prepare_reset(struct drm_device *dev)
3209 {
3210 	/* no reset support for gen2 */
3211 	if (IS_GEN2(dev))
3212 		return;
3213 
3214 	/* reset doesn't touch the display */
3215 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3216 		return;
3217 
3218 	drm_modeset_lock_all(dev);
3219 	/*
3220 	 * Disabling the crtcs gracefully seems nicer. Also the
3221 	 * g33 docs say we should at least disable all the planes.
3222 	 */
3223 	intel_display_suspend(dev);
3224 }
3225 
3226 void intel_finish_reset(struct drm_device *dev)
3227 {
3228 	struct drm_i915_private *dev_priv = to_i915(dev);
3229 
3230 	/*
3231 	 * Flips in the rings will be nuked by the reset,
3232 	 * so complete all pending flips so that user space
3233 	 * will get its events and not get stuck.
3234 	 */
3235 	intel_complete_page_flips(dev);
3236 
3237 	/* no reset support for gen2 */
3238 	if (IS_GEN2(dev))
3239 		return;
3240 
3241 	/* reset doesn't touch the display */
3242 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3243 		/*
3244 		 * Flips in the rings have been nuked by the reset,
3245 		 * so update the base address of all primary
3246 		 * planes to the the last fb to make sure we're
3247 		 * showing the correct fb after a reset.
3248 		 */
3249 		intel_update_primary_planes(dev);
3250 		return;
3251 	}
3252 
3253 	/*
3254 	 * The display has been reset as well,
3255 	 * so need a full re-initialization.
3256 	 */
3257 	intel_runtime_pm_disable_interrupts(dev_priv);
3258 	intel_runtime_pm_enable_interrupts(dev_priv);
3259 
3260 	intel_modeset_init_hw(dev);
3261 
3262 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3263 	if (dev_priv->display.hpd_irq_setup)
3264 		dev_priv->display.hpd_irq_setup(dev);
3265 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3266 
3267 	intel_display_resume(dev);
3268 
3269 	intel_hpd_init(dev_priv);
3270 
3271 	drm_modeset_unlock_all(dev);
3272 }
3273 
3274 static void
3275 intel_finish_fb(struct drm_framebuffer *old_fb)
3276 {
3277 	struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3278 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3279 	bool was_interruptible = dev_priv->mm.interruptible;
3280 	int ret;
3281 
3282 	/* Big Hammer, we also need to ensure that any pending
3283 	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3284 	 * current scanout is retired before unpinning the old
3285 	 * framebuffer. Note that we rely on userspace rendering
3286 	 * into the buffer attached to the pipe they are waiting
3287 	 * on. If not, userspace generates a GPU hang with IPEHR
3288 	 * point to the MI_WAIT_FOR_EVENT.
3289 	 *
3290 	 * This should only fail upon a hung GPU, in which case we
3291 	 * can safely continue.
3292 	 */
3293 	dev_priv->mm.interruptible = false;
3294 	ret = i915_gem_object_wait_rendering(obj, true);
3295 	dev_priv->mm.interruptible = was_interruptible;
3296 
3297 	WARN_ON(ret);
3298 }
3299 
3300 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3301 {
3302 	struct drm_device *dev = crtc->dev;
3303 	struct drm_i915_private *dev_priv = dev->dev_private;
3304 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3305 	bool pending;
3306 
3307 	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3308 	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3309 		return false;
3310 
3311 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
3312 	pending = to_intel_crtc(crtc)->unpin_work != NULL;
3313 	lockmgr(&dev->event_lock, LK_RELEASE);
3314 
3315 	return pending;
3316 }
3317 
3318 static void intel_update_pipe_size(struct intel_crtc *crtc)
3319 {
3320 	struct drm_device *dev = crtc->base.dev;
3321 	struct drm_i915_private *dev_priv = dev->dev_private;
3322 	const struct drm_display_mode *adjusted_mode;
3323 
3324 	if (!i915.fastboot)
3325 		return;
3326 
3327 	/*
3328 	 * Update pipe size and adjust fitter if needed: the reason for this is
3329 	 * that in compute_mode_changes we check the native mode (not the pfit
3330 	 * mode) to see if we can flip rather than do a full mode set. In the
3331 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3332 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3333 	 * sized surface.
3334 	 *
3335 	 * To fix this properly, we need to hoist the checks up into
3336 	 * compute_mode_changes (or above), check the actual pfit state and
3337 	 * whether the platform allows pfit disable with pipe active, and only
3338 	 * then update the pipesrc and pfit state, even on the flip path.
3339 	 */
3340 
3341 	adjusted_mode = &crtc->config->base.adjusted_mode;
3342 
3343 	I915_WRITE(PIPESRC(crtc->pipe),
3344 		   ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3345 		   (adjusted_mode->crtc_vdisplay - 1));
3346 	if (!crtc->config->pch_pfit.enabled &&
3347 	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3348 	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3349 		I915_WRITE(PF_CTL(crtc->pipe), 0);
3350 		I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3351 		I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3352 	}
3353 	crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3354 	crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3355 }
3356 
3357 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3358 {
3359 	struct drm_device *dev = crtc->dev;
3360 	struct drm_i915_private *dev_priv = dev->dev_private;
3361 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3362 	int pipe = intel_crtc->pipe;
3363 	u32 reg, temp;
3364 
3365 	/* enable normal train */
3366 	reg = FDI_TX_CTL(pipe);
3367 	temp = I915_READ(reg);
3368 	if (IS_IVYBRIDGE(dev)) {
3369 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3370 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3371 	} else {
3372 		temp &= ~FDI_LINK_TRAIN_NONE;
3373 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3374 	}
3375 	I915_WRITE(reg, temp);
3376 
3377 	reg = FDI_RX_CTL(pipe);
3378 	temp = I915_READ(reg);
3379 	if (HAS_PCH_CPT(dev)) {
3380 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3381 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3382 	} else {
3383 		temp &= ~FDI_LINK_TRAIN_NONE;
3384 		temp |= FDI_LINK_TRAIN_NONE;
3385 	}
3386 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3387 
3388 	/* wait one idle pattern time */
3389 	POSTING_READ(reg);
3390 	udelay(1000);
3391 
3392 	/* IVB wants error correction enabled */
3393 	if (IS_IVYBRIDGE(dev))
3394 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3395 			   FDI_FE_ERRC_ENABLE);
3396 }
3397 
3398 /* The FDI link training functions for ILK/Ibexpeak. */
3399 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3400 {
3401 	struct drm_device *dev = crtc->dev;
3402 	struct drm_i915_private *dev_priv = dev->dev_private;
3403 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3404 	int pipe = intel_crtc->pipe;
3405 	u32 reg, temp, tries;
3406 
3407 	/* FDI needs bits from pipe first */
3408 	assert_pipe_enabled(dev_priv, pipe);
3409 
3410 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3411 	   for train result */
3412 	reg = FDI_RX_IMR(pipe);
3413 	temp = I915_READ(reg);
3414 	temp &= ~FDI_RX_SYMBOL_LOCK;
3415 	temp &= ~FDI_RX_BIT_LOCK;
3416 	I915_WRITE(reg, temp);
3417 	I915_READ(reg);
3418 	udelay(150);
3419 
3420 	/* enable CPU FDI TX and PCH FDI RX */
3421 	reg = FDI_TX_CTL(pipe);
3422 	temp = I915_READ(reg);
3423 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3424 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3425 	temp &= ~FDI_LINK_TRAIN_NONE;
3426 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3427 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3428 
3429 	reg = FDI_RX_CTL(pipe);
3430 	temp = I915_READ(reg);
3431 	temp &= ~FDI_LINK_TRAIN_NONE;
3432 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3433 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3434 
3435 	POSTING_READ(reg);
3436 	udelay(150);
3437 
3438 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3439 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3440 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3441 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3442 
3443 	reg = FDI_RX_IIR(pipe);
3444 	for (tries = 0; tries < 5; tries++) {
3445 		temp = I915_READ(reg);
3446 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3447 
3448 		if ((temp & FDI_RX_BIT_LOCK)) {
3449 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3450 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3451 			break;
3452 		}
3453 	}
3454 	if (tries == 5)
3455 		DRM_ERROR("FDI train 1 fail!\n");
3456 
3457 	/* Train 2 */
3458 	reg = FDI_TX_CTL(pipe);
3459 	temp = I915_READ(reg);
3460 	temp &= ~FDI_LINK_TRAIN_NONE;
3461 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3462 	I915_WRITE(reg, temp);
3463 
3464 	reg = FDI_RX_CTL(pipe);
3465 	temp = I915_READ(reg);
3466 	temp &= ~FDI_LINK_TRAIN_NONE;
3467 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3468 	I915_WRITE(reg, temp);
3469 
3470 	POSTING_READ(reg);
3471 	udelay(150);
3472 
3473 	reg = FDI_RX_IIR(pipe);
3474 	for (tries = 0; tries < 5; tries++) {
3475 		temp = I915_READ(reg);
3476 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3477 
3478 		if (temp & FDI_RX_SYMBOL_LOCK) {
3479 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3480 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3481 			break;
3482 		}
3483 	}
3484 	if (tries == 5)
3485 		DRM_ERROR("FDI train 2 fail!\n");
3486 
3487 	DRM_DEBUG_KMS("FDI train done\n");
3488 
3489 }
3490 
3491 static const int snb_b_fdi_train_param[] = {
3492 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3493 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3494 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3495 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3496 };
3497 
3498 /* The FDI link training functions for SNB/Cougarpoint. */
3499 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3500 {
3501 	struct drm_device *dev = crtc->dev;
3502 	struct drm_i915_private *dev_priv = dev->dev_private;
3503 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3504 	int pipe = intel_crtc->pipe;
3505 	u32 reg, temp, i, retry;
3506 
3507 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3508 	   for train result */
3509 	reg = FDI_RX_IMR(pipe);
3510 	temp = I915_READ(reg);
3511 	temp &= ~FDI_RX_SYMBOL_LOCK;
3512 	temp &= ~FDI_RX_BIT_LOCK;
3513 	I915_WRITE(reg, temp);
3514 
3515 	POSTING_READ(reg);
3516 	udelay(150);
3517 
3518 	/* enable CPU FDI TX and PCH FDI RX */
3519 	reg = FDI_TX_CTL(pipe);
3520 	temp = I915_READ(reg);
3521 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3522 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3523 	temp &= ~FDI_LINK_TRAIN_NONE;
3524 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3525 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3526 	/* SNB-B */
3527 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3528 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3529 
3530 	I915_WRITE(FDI_RX_MISC(pipe),
3531 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3532 
3533 	reg = FDI_RX_CTL(pipe);
3534 	temp = I915_READ(reg);
3535 	if (HAS_PCH_CPT(dev)) {
3536 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3537 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3538 	} else {
3539 		temp &= ~FDI_LINK_TRAIN_NONE;
3540 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3541 	}
3542 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3543 
3544 	POSTING_READ(reg);
3545 	udelay(150);
3546 
3547 	for (i = 0; i < 4; i++) {
3548 		reg = FDI_TX_CTL(pipe);
3549 		temp = I915_READ(reg);
3550 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3551 		temp |= snb_b_fdi_train_param[i];
3552 		I915_WRITE(reg, temp);
3553 
3554 		POSTING_READ(reg);
3555 		udelay(500);
3556 
3557 		for (retry = 0; retry < 5; retry++) {
3558 			reg = FDI_RX_IIR(pipe);
3559 			temp = I915_READ(reg);
3560 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3561 			if (temp & FDI_RX_BIT_LOCK) {
3562 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3563 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3564 				break;
3565 			}
3566 			udelay(50);
3567 		}
3568 		if (retry < 5)
3569 			break;
3570 	}
3571 	if (i == 4)
3572 		DRM_ERROR("FDI train 1 fail!\n");
3573 
3574 	/* Train 2 */
3575 	reg = FDI_TX_CTL(pipe);
3576 	temp = I915_READ(reg);
3577 	temp &= ~FDI_LINK_TRAIN_NONE;
3578 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3579 	if (IS_GEN6(dev)) {
3580 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3581 		/* SNB-B */
3582 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3583 	}
3584 	I915_WRITE(reg, temp);
3585 
3586 	reg = FDI_RX_CTL(pipe);
3587 	temp = I915_READ(reg);
3588 	if (HAS_PCH_CPT(dev)) {
3589 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3590 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3591 	} else {
3592 		temp &= ~FDI_LINK_TRAIN_NONE;
3593 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3594 	}
3595 	I915_WRITE(reg, temp);
3596 
3597 	POSTING_READ(reg);
3598 	udelay(150);
3599 
3600 	for (i = 0; i < 4; i++) {
3601 		reg = FDI_TX_CTL(pipe);
3602 		temp = I915_READ(reg);
3603 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3604 		temp |= snb_b_fdi_train_param[i];
3605 		I915_WRITE(reg, temp);
3606 
3607 		POSTING_READ(reg);
3608 		udelay(500);
3609 
3610 		for (retry = 0; retry < 5; retry++) {
3611 			reg = FDI_RX_IIR(pipe);
3612 			temp = I915_READ(reg);
3613 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3614 			if (temp & FDI_RX_SYMBOL_LOCK) {
3615 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3616 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3617 				break;
3618 			}
3619 			udelay(50);
3620 		}
3621 		if (retry < 5)
3622 			break;
3623 	}
3624 	if (i == 4)
3625 		DRM_ERROR("FDI train 2 fail!\n");
3626 
3627 	DRM_DEBUG_KMS("FDI train done.\n");
3628 }
3629 
3630 /* Manual link training for Ivy Bridge A0 parts */
3631 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3632 {
3633 	struct drm_device *dev = crtc->dev;
3634 	struct drm_i915_private *dev_priv = dev->dev_private;
3635 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3636 	int pipe = intel_crtc->pipe;
3637 	u32 reg, temp, i, j;
3638 
3639 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3640 	   for train result */
3641 	reg = FDI_RX_IMR(pipe);
3642 	temp = I915_READ(reg);
3643 	temp &= ~FDI_RX_SYMBOL_LOCK;
3644 	temp &= ~FDI_RX_BIT_LOCK;
3645 	I915_WRITE(reg, temp);
3646 
3647 	POSTING_READ(reg);
3648 	udelay(150);
3649 
3650 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3651 		      I915_READ(FDI_RX_IIR(pipe)));
3652 
3653 	/* Try each vswing and preemphasis setting twice before moving on */
3654 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3655 		/* disable first in case we need to retry */
3656 		reg = FDI_TX_CTL(pipe);
3657 		temp = I915_READ(reg);
3658 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3659 		temp &= ~FDI_TX_ENABLE;
3660 		I915_WRITE(reg, temp);
3661 
3662 		reg = FDI_RX_CTL(pipe);
3663 		temp = I915_READ(reg);
3664 		temp &= ~FDI_LINK_TRAIN_AUTO;
3665 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3666 		temp &= ~FDI_RX_ENABLE;
3667 		I915_WRITE(reg, temp);
3668 
3669 		/* enable CPU FDI TX and PCH FDI RX */
3670 		reg = FDI_TX_CTL(pipe);
3671 		temp = I915_READ(reg);
3672 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
3673 		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3674 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3675 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3676 		temp |= snb_b_fdi_train_param[j/2];
3677 		temp |= FDI_COMPOSITE_SYNC;
3678 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
3679 
3680 		I915_WRITE(FDI_RX_MISC(pipe),
3681 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3682 
3683 		reg = FDI_RX_CTL(pipe);
3684 		temp = I915_READ(reg);
3685 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3686 		temp |= FDI_COMPOSITE_SYNC;
3687 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
3688 
3689 		POSTING_READ(reg);
3690 		udelay(1); /* should be 0.5us */
3691 
3692 		for (i = 0; i < 4; i++) {
3693 			reg = FDI_RX_IIR(pipe);
3694 			temp = I915_READ(reg);
3695 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3696 
3697 			if (temp & FDI_RX_BIT_LOCK ||
3698 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3699 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3700 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3701 					      i);
3702 				break;
3703 			}
3704 			udelay(1); /* should be 0.5us */
3705 		}
3706 		if (i == 4) {
3707 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3708 			continue;
3709 		}
3710 
3711 		/* Train 2 */
3712 		reg = FDI_TX_CTL(pipe);
3713 		temp = I915_READ(reg);
3714 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3715 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3716 		I915_WRITE(reg, temp);
3717 
3718 		reg = FDI_RX_CTL(pipe);
3719 		temp = I915_READ(reg);
3720 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3721 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3722 		I915_WRITE(reg, temp);
3723 
3724 		POSTING_READ(reg);
3725 		udelay(2); /* should be 1.5us */
3726 
3727 		for (i = 0; i < 4; i++) {
3728 			reg = FDI_RX_IIR(pipe);
3729 			temp = I915_READ(reg);
3730 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3731 
3732 			if (temp & FDI_RX_SYMBOL_LOCK ||
3733 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3734 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3735 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3736 					      i);
3737 				goto train_done;
3738 			}
3739 			udelay(2); /* should be 1.5us */
3740 		}
3741 		if (i == 4)
3742 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3743 	}
3744 
3745 train_done:
3746 	DRM_DEBUG_KMS("FDI train done.\n");
3747 }
3748 
3749 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3750 {
3751 	struct drm_device *dev = intel_crtc->base.dev;
3752 	struct drm_i915_private *dev_priv = dev->dev_private;
3753 	int pipe = intel_crtc->pipe;
3754 	u32 reg, temp;
3755 
3756 
3757 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3758 	reg = FDI_RX_CTL(pipe);
3759 	temp = I915_READ(reg);
3760 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3761 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3762 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3763 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3764 
3765 	POSTING_READ(reg);
3766 	udelay(200);
3767 
3768 	/* Switch from Rawclk to PCDclk */
3769 	temp = I915_READ(reg);
3770 	I915_WRITE(reg, temp | FDI_PCDCLK);
3771 
3772 	POSTING_READ(reg);
3773 	udelay(200);
3774 
3775 	/* Enable CPU FDI TX PLL, always on for Ironlake */
3776 	reg = FDI_TX_CTL(pipe);
3777 	temp = I915_READ(reg);
3778 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3779 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3780 
3781 		POSTING_READ(reg);
3782 		udelay(100);
3783 	}
3784 }
3785 
3786 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3787 {
3788 	struct drm_device *dev = intel_crtc->base.dev;
3789 	struct drm_i915_private *dev_priv = dev->dev_private;
3790 	int pipe = intel_crtc->pipe;
3791 	u32 reg, temp;
3792 
3793 	/* Switch from PCDclk to Rawclk */
3794 	reg = FDI_RX_CTL(pipe);
3795 	temp = I915_READ(reg);
3796 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3797 
3798 	/* Disable CPU FDI TX PLL */
3799 	reg = FDI_TX_CTL(pipe);
3800 	temp = I915_READ(reg);
3801 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3802 
3803 	POSTING_READ(reg);
3804 	udelay(100);
3805 
3806 	reg = FDI_RX_CTL(pipe);
3807 	temp = I915_READ(reg);
3808 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3809 
3810 	/* Wait for the clocks to turn off. */
3811 	POSTING_READ(reg);
3812 	udelay(100);
3813 }
3814 
3815 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3816 {
3817 	struct drm_device *dev = crtc->dev;
3818 	struct drm_i915_private *dev_priv = dev->dev_private;
3819 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3820 	int pipe = intel_crtc->pipe;
3821 	u32 reg, temp;
3822 
3823 	/* disable CPU FDI tx and PCH FDI rx */
3824 	reg = FDI_TX_CTL(pipe);
3825 	temp = I915_READ(reg);
3826 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3827 	POSTING_READ(reg);
3828 
3829 	reg = FDI_RX_CTL(pipe);
3830 	temp = I915_READ(reg);
3831 	temp &= ~(0x7 << 16);
3832 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3833 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3834 
3835 	POSTING_READ(reg);
3836 	udelay(100);
3837 
3838 	/* Ironlake workaround, disable clock pointer after downing FDI */
3839 	if (HAS_PCH_IBX(dev))
3840 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3841 
3842 	/* still set train pattern 1 */
3843 	reg = FDI_TX_CTL(pipe);
3844 	temp = I915_READ(reg);
3845 	temp &= ~FDI_LINK_TRAIN_NONE;
3846 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3847 	I915_WRITE(reg, temp);
3848 
3849 	reg = FDI_RX_CTL(pipe);
3850 	temp = I915_READ(reg);
3851 	if (HAS_PCH_CPT(dev)) {
3852 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3853 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3854 	} else {
3855 		temp &= ~FDI_LINK_TRAIN_NONE;
3856 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3857 	}
3858 	/* BPC in FDI rx is consistent with that in PIPECONF */
3859 	temp &= ~(0x07 << 16);
3860 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3861 	I915_WRITE(reg, temp);
3862 
3863 	POSTING_READ(reg);
3864 	udelay(100);
3865 }
3866 
3867 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3868 {
3869 	struct intel_crtc *crtc;
3870 
3871 	/* Note that we don't need to be called with mode_config.lock here
3872 	 * as our list of CRTC objects is static for the lifetime of the
3873 	 * device and so cannot disappear as we iterate. Similarly, we can
3874 	 * happily treat the predicates as racy, atomic checks as userspace
3875 	 * cannot claim and pin a new fb without at least acquring the
3876 	 * struct_mutex and so serialising with us.
3877 	 */
3878 	for_each_intel_crtc(dev, crtc) {
3879 		if (atomic_read(&crtc->unpin_work_count) == 0)
3880 			continue;
3881 
3882 		if (crtc->unpin_work)
3883 			intel_wait_for_vblank(dev, crtc->pipe);
3884 
3885 		return true;
3886 	}
3887 
3888 	return false;
3889 }
3890 
3891 static void page_flip_completed(struct intel_crtc *intel_crtc)
3892 {
3893 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3894 	struct intel_unpin_work *work = intel_crtc->unpin_work;
3895 
3896 	/* ensure that the unpin work is consistent wrt ->pending. */
3897 	smp_rmb();
3898 	intel_crtc->unpin_work = NULL;
3899 
3900 	if (work->event)
3901 		drm_send_vblank_event(intel_crtc->base.dev,
3902 				      intel_crtc->pipe,
3903 				      work->event);
3904 
3905 	drm_crtc_vblank_put(&intel_crtc->base);
3906 
3907 	wake_up_all(&dev_priv->pending_flip_queue);
3908 	queue_work(dev_priv->wq, &work->work);
3909 
3910 	trace_i915_flip_complete(intel_crtc->plane,
3911 				 work->pending_flip_obj);
3912 }
3913 
3914 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3915 {
3916 	struct drm_device *dev = crtc->dev;
3917 	struct drm_i915_private *dev_priv = dev->dev_private;
3918 
3919 	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3920 	if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3921 				       !intel_crtc_has_pending_flip(crtc),
3922 				       60*HZ) == 0)) {
3923 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3924 
3925 		lockmgr(&dev->event_lock, LK_EXCLUSIVE);
3926 		if (intel_crtc->unpin_work) {
3927 			WARN_ONCE(1, "Removing stuck page flip\n");
3928 			page_flip_completed(intel_crtc);
3929 		}
3930 		lockmgr(&dev->event_lock, LK_RELEASE);
3931 	}
3932 
3933 	if (crtc->primary->fb) {
3934 		mutex_lock(&dev->struct_mutex);
3935 		intel_finish_fb(crtc->primary->fb);
3936 		mutex_unlock(&dev->struct_mutex);
3937 	}
3938 }
3939 
3940 /* Program iCLKIP clock to the desired frequency */
3941 static void lpt_program_iclkip(struct drm_crtc *crtc)
3942 {
3943 	struct drm_device *dev = crtc->dev;
3944 	struct drm_i915_private *dev_priv = dev->dev_private;
3945 	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3946 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
3947 	u32 temp;
3948 
3949 	mutex_lock(&dev_priv->sb_lock);
3950 
3951 	/* It is necessary to ungate the pixclk gate prior to programming
3952 	 * the divisors, and gate it back when it is done.
3953 	 */
3954 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3955 
3956 	/* Disable SSCCTL */
3957 	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3958 			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3959 				SBI_SSCCTL_DISABLE,
3960 			SBI_ICLK);
3961 
3962 	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
3963 	if (clock == 20000) {
3964 		auxdiv = 1;
3965 		divsel = 0x41;
3966 		phaseinc = 0x20;
3967 	} else {
3968 		/* The iCLK virtual clock root frequency is in MHz,
3969 		 * but the adjusted_mode->crtc_clock in in KHz. To get the
3970 		 * divisors, it is necessary to divide one by another, so we
3971 		 * convert the virtual clock precision to KHz here for higher
3972 		 * precision.
3973 		 */
3974 		u32 iclk_virtual_root_freq = 172800 * 1000;
3975 		u32 iclk_pi_range = 64;
3976 		u32 desired_divisor, msb_divisor_value, pi_value;
3977 
3978 		desired_divisor = (iclk_virtual_root_freq / clock);
3979 		msb_divisor_value = desired_divisor / iclk_pi_range;
3980 		pi_value = desired_divisor % iclk_pi_range;
3981 
3982 		auxdiv = 0;
3983 		divsel = msb_divisor_value - 2;
3984 		phaseinc = pi_value;
3985 	}
3986 
3987 	/* This should not happen with any sane values */
3988 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3989 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3990 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3991 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3992 
3993 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3994 			clock,
3995 			auxdiv,
3996 			divsel,
3997 			phasedir,
3998 			phaseinc);
3999 
4000 	/* Program SSCDIVINTPHASE6 */
4001 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4002 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4003 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4004 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4005 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4006 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4007 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4008 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4009 
4010 	/* Program SSCAUXDIV */
4011 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4012 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4013 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4014 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4015 
4016 	/* Enable modulator and associated divider */
4017 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4018 	temp &= ~SBI_SSCCTL_DISABLE;
4019 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4020 
4021 	/* Wait for initialization time */
4022 	udelay(24);
4023 
4024 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4025 
4026 	mutex_unlock(&dev_priv->sb_lock);
4027 }
4028 
4029 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4030 						enum i915_pipe pch_transcoder)
4031 {
4032 	struct drm_device *dev = crtc->base.dev;
4033 	struct drm_i915_private *dev_priv = dev->dev_private;
4034 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4035 
4036 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4037 		   I915_READ(HTOTAL(cpu_transcoder)));
4038 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4039 		   I915_READ(HBLANK(cpu_transcoder)));
4040 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4041 		   I915_READ(HSYNC(cpu_transcoder)));
4042 
4043 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4044 		   I915_READ(VTOTAL(cpu_transcoder)));
4045 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4046 		   I915_READ(VBLANK(cpu_transcoder)));
4047 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4048 		   I915_READ(VSYNC(cpu_transcoder)));
4049 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4050 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4051 }
4052 
4053 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4054 {
4055 	struct drm_i915_private *dev_priv = dev->dev_private;
4056 	uint32_t temp;
4057 
4058 	temp = I915_READ(SOUTH_CHICKEN1);
4059 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4060 		return;
4061 
4062 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4063 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4064 
4065 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4066 	if (enable)
4067 		temp |= FDI_BC_BIFURCATION_SELECT;
4068 
4069 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4070 	I915_WRITE(SOUTH_CHICKEN1, temp);
4071 	POSTING_READ(SOUTH_CHICKEN1);
4072 }
4073 
4074 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4075 {
4076 	struct drm_device *dev = intel_crtc->base.dev;
4077 
4078 	switch (intel_crtc->pipe) {
4079 	case PIPE_A:
4080 		break;
4081 	case PIPE_B:
4082 		if (intel_crtc->config->fdi_lanes > 2)
4083 			cpt_set_fdi_bc_bifurcation(dev, false);
4084 		else
4085 			cpt_set_fdi_bc_bifurcation(dev, true);
4086 
4087 		break;
4088 	case PIPE_C:
4089 		cpt_set_fdi_bc_bifurcation(dev, true);
4090 
4091 		break;
4092 	default:
4093 		BUG();
4094 	}
4095 }
4096 
4097 /*
4098  * Enable PCH resources required for PCH ports:
4099  *   - PCH PLLs
4100  *   - FDI training & RX/TX
4101  *   - update transcoder timings
4102  *   - DP transcoding bits
4103  *   - transcoder
4104  */
4105 static void ironlake_pch_enable(struct drm_crtc *crtc)
4106 {
4107 	struct drm_device *dev = crtc->dev;
4108 	struct drm_i915_private *dev_priv = dev->dev_private;
4109 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4110 	int pipe = intel_crtc->pipe;
4111 	u32 reg, temp;
4112 
4113 	assert_pch_transcoder_disabled(dev_priv, pipe);
4114 
4115 	if (IS_IVYBRIDGE(dev))
4116 		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4117 
4118 	/* Write the TU size bits before fdi link training, so that error
4119 	 * detection works. */
4120 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4121 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4122 
4123 	/* For PCH output, training FDI link */
4124 	dev_priv->display.fdi_link_train(crtc);
4125 
4126 	/* We need to program the right clock selection before writing the pixel
4127 	 * mutliplier into the DPLL. */
4128 	if (HAS_PCH_CPT(dev)) {
4129 		u32 sel;
4130 
4131 		temp = I915_READ(PCH_DPLL_SEL);
4132 		temp |= TRANS_DPLL_ENABLE(pipe);
4133 		sel = TRANS_DPLLB_SEL(pipe);
4134 		if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4135 			temp |= sel;
4136 		else
4137 			temp &= ~sel;
4138 		I915_WRITE(PCH_DPLL_SEL, temp);
4139 	}
4140 
4141 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4142 	 * transcoder, and we actually should do this to not upset any PCH
4143 	 * transcoder that already use the clock when we share it.
4144 	 *
4145 	 * Note that enable_shared_dpll tries to do the right thing, but
4146 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4147 	 * the right LVDS enable sequence. */
4148 	intel_enable_shared_dpll(intel_crtc);
4149 
4150 	/* set transcoder timing, panel must allow it */
4151 	assert_panel_unlocked(dev_priv, pipe);
4152 	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4153 
4154 	intel_fdi_normal_train(crtc);
4155 
4156 	/* For PCH DP, enable TRANS_DP_CTL */
4157 	if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4158 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4159 		reg = TRANS_DP_CTL(pipe);
4160 		temp = I915_READ(reg);
4161 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4162 			  TRANS_DP_SYNC_MASK |
4163 			  TRANS_DP_BPC_MASK);
4164 		temp |= TRANS_DP_OUTPUT_ENABLE;
4165 		temp |= bpc << 9; /* same format but at 11:9 */
4166 
4167 		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4168 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4169 		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4170 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4171 
4172 		switch (intel_trans_dp_port_sel(crtc)) {
4173 		case PCH_DP_B:
4174 			temp |= TRANS_DP_PORT_SEL_B;
4175 			break;
4176 		case PCH_DP_C:
4177 			temp |= TRANS_DP_PORT_SEL_C;
4178 			break;
4179 		case PCH_DP_D:
4180 			temp |= TRANS_DP_PORT_SEL_D;
4181 			break;
4182 		default:
4183 			BUG();
4184 		}
4185 
4186 		I915_WRITE(reg, temp);
4187 	}
4188 
4189 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4190 }
4191 
4192 static void lpt_pch_enable(struct drm_crtc *crtc)
4193 {
4194 	struct drm_device *dev = crtc->dev;
4195 	struct drm_i915_private *dev_priv = dev->dev_private;
4196 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4197 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4198 
4199 	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4200 
4201 	lpt_program_iclkip(crtc);
4202 
4203 	/* Set transcoder timing. */
4204 	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4205 
4206 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4207 }
4208 
4209 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4210 						struct intel_crtc_state *crtc_state)
4211 {
4212 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4213 	struct intel_shared_dpll *pll;
4214 	struct intel_shared_dpll_config *shared_dpll;
4215 	enum intel_dpll_id i;
4216 
4217 	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4218 
4219 	if (HAS_PCH_IBX(dev_priv->dev)) {
4220 		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4221 		i = (enum intel_dpll_id) crtc->pipe;
4222 		pll = &dev_priv->shared_dplls[i];
4223 
4224 		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4225 			      crtc->base.base.id, pll->name);
4226 
4227 		WARN_ON(shared_dpll[i].crtc_mask);
4228 
4229 		goto found;
4230 	}
4231 
4232 	if (IS_BROXTON(dev_priv->dev)) {
4233 		/* PLL is attached to port in bxt */
4234 		struct intel_encoder *encoder;
4235 		struct intel_digital_port *intel_dig_port;
4236 
4237 		encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4238 		if (WARN_ON(!encoder))
4239 			return NULL;
4240 
4241 		intel_dig_port = enc_to_dig_port(&encoder->base);
4242 		/* 1:1 mapping between ports and PLLs */
4243 		i = (enum intel_dpll_id)intel_dig_port->port;
4244 		pll = &dev_priv->shared_dplls[i];
4245 		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4246 			crtc->base.base.id, pll->name);
4247 		WARN_ON(shared_dpll[i].crtc_mask);
4248 
4249 		goto found;
4250 	}
4251 
4252 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4253 		pll = &dev_priv->shared_dplls[i];
4254 
4255 		/* Only want to check enabled timings first */
4256 		if (shared_dpll[i].crtc_mask == 0)
4257 			continue;
4258 
4259 		if (memcmp(&crtc_state->dpll_hw_state,
4260 			   &shared_dpll[i].hw_state,
4261 			   sizeof(crtc_state->dpll_hw_state)) == 0) {
4262 			DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4263 				      crtc->base.base.id, pll->name,
4264 				      shared_dpll[i].crtc_mask,
4265 				      pll->active);
4266 			goto found;
4267 		}
4268 	}
4269 
4270 	/* Ok no matching timings, maybe there's a free one? */
4271 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4272 		pll = &dev_priv->shared_dplls[i];
4273 		if (shared_dpll[i].crtc_mask == 0) {
4274 			DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4275 				      crtc->base.base.id, pll->name);
4276 			goto found;
4277 		}
4278 	}
4279 
4280 	return NULL;
4281 
4282 found:
4283 	if (shared_dpll[i].crtc_mask == 0)
4284 		shared_dpll[i].hw_state =
4285 			crtc_state->dpll_hw_state;
4286 
4287 	crtc_state->shared_dpll = i;
4288 	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4289 			 pipe_name(crtc->pipe));
4290 
4291 	shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4292 
4293 	return pll;
4294 }
4295 
4296 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4297 {
4298 	struct drm_i915_private *dev_priv = to_i915(state->dev);
4299 	struct intel_shared_dpll_config *shared_dpll;
4300 	struct intel_shared_dpll *pll;
4301 	enum intel_dpll_id i;
4302 
4303 	if (!to_intel_atomic_state(state)->dpll_set)
4304 		return;
4305 
4306 	shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4307 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4308 		pll = &dev_priv->shared_dplls[i];
4309 		pll->config = shared_dpll[i];
4310 	}
4311 }
4312 
4313 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4314 {
4315 	struct drm_i915_private *dev_priv = dev->dev_private;
4316 	int dslreg = PIPEDSL(pipe);
4317 	u32 temp;
4318 
4319 	temp = I915_READ(dslreg);
4320 	udelay(500);
4321 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4322 		if (wait_for(I915_READ(dslreg) != temp, 5))
4323 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4324 	}
4325 }
4326 
4327 static int
4328 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4329 		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4330 		  int src_w, int src_h, int dst_w, int dst_h)
4331 {
4332 	struct intel_crtc_scaler_state *scaler_state =
4333 		&crtc_state->scaler_state;
4334 	struct intel_crtc *intel_crtc =
4335 		to_intel_crtc(crtc_state->base.crtc);
4336 	int need_scaling;
4337 
4338 	need_scaling = intel_rotation_90_or_270(rotation) ?
4339 		(src_h != dst_w || src_w != dst_h):
4340 		(src_w != dst_w || src_h != dst_h);
4341 
4342 	/*
4343 	 * if plane is being disabled or scaler is no more required or force detach
4344 	 *  - free scaler binded to this plane/crtc
4345 	 *  - in order to do this, update crtc->scaler_usage
4346 	 *
4347 	 * Here scaler state in crtc_state is set free so that
4348 	 * scaler can be assigned to other user. Actual register
4349 	 * update to free the scaler is done in plane/panel-fit programming.
4350 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4351 	 */
4352 	if (force_detach || !need_scaling) {
4353 		if (*scaler_id >= 0) {
4354 			scaler_state->scaler_users &= ~(1 << scaler_user);
4355 			scaler_state->scalers[*scaler_id].in_use = 0;
4356 
4357 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4358 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4359 				intel_crtc->pipe, scaler_user, *scaler_id,
4360 				scaler_state->scaler_users);
4361 			*scaler_id = -1;
4362 		}
4363 		return 0;
4364 	}
4365 
4366 	/* range checks */
4367 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4368 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4369 
4370 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4371 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4372 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4373 			"size is out of scaler range\n",
4374 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4375 		return -EINVAL;
4376 	}
4377 
4378 	/* mark this plane as a scaler user in crtc_state */
4379 	scaler_state->scaler_users |= (1 << scaler_user);
4380 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4381 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4382 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4383 		scaler_state->scaler_users);
4384 
4385 	return 0;
4386 }
4387 
4388 /**
4389  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4390  *
4391  * @state: crtc's scaler state
4392  *
4393  * Return
4394  *     0 - scaler_usage updated successfully
4395  *    error - requested scaling cannot be supported or other error condition
4396  */
4397 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4398 {
4399 	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4400 	struct drm_display_mode *adjusted_mode =
4401 		&state->base.adjusted_mode;
4402 
4403 	DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4404 		      intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4405 
4406 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4407 		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4408 		state->pipe_src_w, state->pipe_src_h,
4409 		adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4410 }
4411 
4412 /**
4413  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4414  *
4415  * @state: crtc's scaler state
4416  * @plane_state: atomic plane state to update
4417  *
4418  * Return
4419  *     0 - scaler_usage updated successfully
4420  *    error - requested scaling cannot be supported or other error condition
4421  */
4422 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4423 				   struct intel_plane_state *plane_state)
4424 {
4425 
4426 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4427 	struct intel_plane *intel_plane =
4428 		to_intel_plane(plane_state->base.plane);
4429 	struct drm_framebuffer *fb = plane_state->base.fb;
4430 	int ret;
4431 
4432 	bool force_detach = !fb || !plane_state->visible;
4433 
4434 	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4435 		      intel_plane->base.base.id, intel_crtc->pipe,
4436 		      drm_plane_index(&intel_plane->base));
4437 
4438 	ret = skl_update_scaler(crtc_state, force_detach,
4439 				drm_plane_index(&intel_plane->base),
4440 				&plane_state->scaler_id,
4441 				plane_state->base.rotation,
4442 				drm_rect_width(&plane_state->src) >> 16,
4443 				drm_rect_height(&plane_state->src) >> 16,
4444 				drm_rect_width(&plane_state->dst),
4445 				drm_rect_height(&plane_state->dst));
4446 
4447 	if (ret || plane_state->scaler_id < 0)
4448 		return ret;
4449 
4450 	/* check colorkey */
4451 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4452 		DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4453 			      intel_plane->base.base.id);
4454 		return -EINVAL;
4455 	}
4456 
4457 	/* Check src format */
4458 	switch (fb->pixel_format) {
4459 	case DRM_FORMAT_RGB565:
4460 	case DRM_FORMAT_XBGR8888:
4461 	case DRM_FORMAT_XRGB8888:
4462 	case DRM_FORMAT_ABGR8888:
4463 	case DRM_FORMAT_ARGB8888:
4464 	case DRM_FORMAT_XRGB2101010:
4465 	case DRM_FORMAT_XBGR2101010:
4466 	case DRM_FORMAT_YUYV:
4467 	case DRM_FORMAT_YVYU:
4468 	case DRM_FORMAT_UYVY:
4469 	case DRM_FORMAT_VYUY:
4470 		break;
4471 	default:
4472 		DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4473 			intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4474 		return -EINVAL;
4475 	}
4476 
4477 	return 0;
4478 }
4479 
4480 static void skylake_scaler_disable(struct intel_crtc *crtc)
4481 {
4482 	int i;
4483 
4484 	for (i = 0; i < crtc->num_scalers; i++)
4485 		skl_detach_scaler(crtc, i);
4486 }
4487 
4488 static void skylake_pfit_enable(struct intel_crtc *crtc)
4489 {
4490 	struct drm_device *dev = crtc->base.dev;
4491 	struct drm_i915_private *dev_priv = dev->dev_private;
4492 	int pipe = crtc->pipe;
4493 	struct intel_crtc_scaler_state *scaler_state =
4494 		&crtc->config->scaler_state;
4495 
4496 	DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4497 
4498 	if (crtc->config->pch_pfit.enabled) {
4499 		int id;
4500 
4501 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4502 			DRM_ERROR("Requesting pfit without getting a scaler first\n");
4503 			return;
4504 		}
4505 
4506 		id = scaler_state->scaler_id;
4507 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4508 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4509 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4510 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4511 
4512 		DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4513 	}
4514 }
4515 
4516 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4517 {
4518 	struct drm_device *dev = crtc->base.dev;
4519 	struct drm_i915_private *dev_priv = dev->dev_private;
4520 	int pipe = crtc->pipe;
4521 
4522 	if (crtc->config->pch_pfit.enabled) {
4523 		/* Force use of hard-coded filter coefficients
4524 		 * as some pre-programmed values are broken,
4525 		 * e.g. x201.
4526 		 */
4527 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4528 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4529 						 PF_PIPE_SEL_IVB(pipe));
4530 		else
4531 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4532 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4533 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4534 	}
4535 }
4536 
4537 void hsw_enable_ips(struct intel_crtc *crtc)
4538 {
4539 	struct drm_device *dev = crtc->base.dev;
4540 	struct drm_i915_private *dev_priv = dev->dev_private;
4541 
4542 	if (!crtc->config->ips_enabled)
4543 		return;
4544 
4545 	/* We can only enable IPS after we enable a plane and wait for a vblank */
4546 	intel_wait_for_vblank(dev, crtc->pipe);
4547 
4548 	assert_plane_enabled(dev_priv, crtc->plane);
4549 	if (IS_BROADWELL(dev)) {
4550 		mutex_lock(&dev_priv->rps.hw_lock);
4551 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4552 		mutex_unlock(&dev_priv->rps.hw_lock);
4553 		/* Quoting Art Runyan: "its not safe to expect any particular
4554 		 * value in IPS_CTL bit 31 after enabling IPS through the
4555 		 * mailbox." Moreover, the mailbox may return a bogus state,
4556 		 * so we need to just enable it and continue on.
4557 		 */
4558 	} else {
4559 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4560 		/* The bit only becomes 1 in the next vblank, so this wait here
4561 		 * is essentially intel_wait_for_vblank. If we don't have this
4562 		 * and don't wait for vblanks until the end of crtc_enable, then
4563 		 * the HW state readout code will complain that the expected
4564 		 * IPS_CTL value is not the one we read. */
4565 		if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4566 			DRM_ERROR("Timed out waiting for IPS enable\n");
4567 	}
4568 }
4569 
4570 void hsw_disable_ips(struct intel_crtc *crtc)
4571 {
4572 	struct drm_device *dev = crtc->base.dev;
4573 	struct drm_i915_private *dev_priv = dev->dev_private;
4574 
4575 	if (!crtc->config->ips_enabled)
4576 		return;
4577 
4578 	assert_plane_enabled(dev_priv, crtc->plane);
4579 	if (IS_BROADWELL(dev)) {
4580 		mutex_lock(&dev_priv->rps.hw_lock);
4581 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4582 		mutex_unlock(&dev_priv->rps.hw_lock);
4583 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4584 		if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4585 			DRM_ERROR("Timed out waiting for IPS disable\n");
4586 	} else {
4587 		I915_WRITE(IPS_CTL, 0);
4588 		POSTING_READ(IPS_CTL);
4589 	}
4590 
4591 	/* We need to wait for a vblank before we can disable the plane. */
4592 	intel_wait_for_vblank(dev, crtc->pipe);
4593 }
4594 
4595 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4596 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4597 {
4598 	struct drm_device *dev = crtc->dev;
4599 	struct drm_i915_private *dev_priv = dev->dev_private;
4600 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4601 	enum i915_pipe pipe = intel_crtc->pipe;
4602 	int palreg = PALETTE(pipe);
4603 	int i;
4604 	bool reenable_ips = false;
4605 
4606 	/* The clocks have to be on to load the palette. */
4607 	if (!crtc->state->active)
4608 		return;
4609 
4610 	if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4611 		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4612 			assert_dsi_pll_enabled(dev_priv);
4613 		else
4614 			assert_pll_enabled(dev_priv, pipe);
4615 	}
4616 
4617 	/* use legacy palette for Ironlake */
4618 	if (!HAS_GMCH_DISPLAY(dev))
4619 		palreg = LGC_PALETTE(pipe);
4620 
4621 	/* Workaround : Do not read or write the pipe palette/gamma data while
4622 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4623 	 */
4624 	if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4625 	    ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4626 	     GAMMA_MODE_MODE_SPLIT)) {
4627 		hsw_disable_ips(intel_crtc);
4628 		reenable_ips = true;
4629 	}
4630 
4631 	for (i = 0; i < 256; i++) {
4632 		I915_WRITE(palreg + 4 * i,
4633 			   (intel_crtc->lut_r[i] << 16) |
4634 			   (intel_crtc->lut_g[i] << 8) |
4635 			   intel_crtc->lut_b[i]);
4636 	}
4637 
4638 	if (reenable_ips)
4639 		hsw_enable_ips(intel_crtc);
4640 }
4641 
4642 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4643 {
4644 	if (intel_crtc->overlay) {
4645 		struct drm_device *dev = intel_crtc->base.dev;
4646 		struct drm_i915_private *dev_priv = dev->dev_private;
4647 
4648 		mutex_lock(&dev->struct_mutex);
4649 		dev_priv->mm.interruptible = false;
4650 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4651 		dev_priv->mm.interruptible = true;
4652 		mutex_unlock(&dev->struct_mutex);
4653 	}
4654 
4655 	/* Let userspace switch the overlay on again. In most cases userspace
4656 	 * has to recompute where to put it anyway.
4657 	 */
4658 }
4659 
4660 /**
4661  * intel_post_enable_primary - Perform operations after enabling primary plane
4662  * @crtc: the CRTC whose primary plane was just enabled
4663  *
4664  * Performs potentially sleeping operations that must be done after the primary
4665  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4666  * called due to an explicit primary plane update, or due to an implicit
4667  * re-enable that is caused when a sprite plane is updated to no longer
4668  * completely hide the primary plane.
4669  */
4670 static void
4671 intel_post_enable_primary(struct drm_crtc *crtc)
4672 {
4673 	struct drm_device *dev = crtc->dev;
4674 	struct drm_i915_private *dev_priv = dev->dev_private;
4675 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4676 	int pipe = intel_crtc->pipe;
4677 
4678 	/*
4679 	 * BDW signals flip done immediately if the plane
4680 	 * is disabled, even if the plane enable is already
4681 	 * armed to occur at the next vblank :(
4682 	 */
4683 	if (IS_BROADWELL(dev))
4684 		intel_wait_for_vblank(dev, pipe);
4685 
4686 	/*
4687 	 * FIXME IPS should be fine as long as one plane is
4688 	 * enabled, but in practice it seems to have problems
4689 	 * when going from primary only to sprite only and vice
4690 	 * versa.
4691 	 */
4692 	hsw_enable_ips(intel_crtc);
4693 
4694 	/*
4695 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4696 	 * So don't enable underrun reporting before at least some planes
4697 	 * are enabled.
4698 	 * FIXME: Need to fix the logic to work when we turn off all planes
4699 	 * but leave the pipe running.
4700 	 */
4701 	if (IS_GEN2(dev))
4702 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4703 
4704 	/* Underruns don't raise interrupts, so check manually. */
4705 	if (HAS_GMCH_DISPLAY(dev))
4706 		i9xx_check_fifo_underruns(dev_priv);
4707 }
4708 
4709 /**
4710  * intel_pre_disable_primary - Perform operations before disabling primary plane
4711  * @crtc: the CRTC whose primary plane is to be disabled
4712  *
4713  * Performs potentially sleeping operations that must be done before the
4714  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4715  * be called due to an explicit primary plane update, or due to an implicit
4716  * disable that is caused when a sprite plane completely hides the primary
4717  * plane.
4718  */
4719 static void
4720 intel_pre_disable_primary(struct drm_crtc *crtc)
4721 {
4722 	struct drm_device *dev = crtc->dev;
4723 	struct drm_i915_private *dev_priv = dev->dev_private;
4724 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4725 	int pipe = intel_crtc->pipe;
4726 
4727 	/*
4728 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4729 	 * So diasble underrun reporting before all the planes get disabled.
4730 	 * FIXME: Need to fix the logic to work when we turn off all planes
4731 	 * but leave the pipe running.
4732 	 */
4733 	if (IS_GEN2(dev))
4734 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4735 
4736 	/*
4737 	 * Vblank time updates from the shadow to live plane control register
4738 	 * are blocked if the memory self-refresh mode is active at that
4739 	 * moment. So to make sure the plane gets truly disabled, disable
4740 	 * first the self-refresh mode. The self-refresh enable bit in turn
4741 	 * will be checked/applied by the HW only at the next frame start
4742 	 * event which is after the vblank start event, so we need to have a
4743 	 * wait-for-vblank between disabling the plane and the pipe.
4744 	 */
4745 	if (HAS_GMCH_DISPLAY(dev)) {
4746 		intel_set_memory_cxsr(dev_priv, false);
4747 		dev_priv->wm.vlv.cxsr = false;
4748 		intel_wait_for_vblank(dev, pipe);
4749 	}
4750 
4751 	/*
4752 	 * FIXME IPS should be fine as long as one plane is
4753 	 * enabled, but in practice it seems to have problems
4754 	 * when going from primary only to sprite only and vice
4755 	 * versa.
4756 	 */
4757 	hsw_disable_ips(intel_crtc);
4758 }
4759 
4760 static void intel_post_plane_update(struct intel_crtc *crtc)
4761 {
4762 	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4763 	struct drm_device *dev = crtc->base.dev;
4764 	struct drm_i915_private *dev_priv = dev->dev_private;
4765 	struct drm_plane *plane;
4766 
4767 	if (atomic->wait_vblank)
4768 		intel_wait_for_vblank(dev, crtc->pipe);
4769 
4770 	intel_frontbuffer_flip(dev, atomic->fb_bits);
4771 
4772 	if (atomic->disable_cxsr)
4773 		crtc->wm.cxsr_allowed = true;
4774 
4775 	if (crtc->atomic.update_wm_post)
4776 		intel_update_watermarks(&crtc->base);
4777 
4778 	if (atomic->update_fbc)
4779 		intel_fbc_update(dev_priv);
4780 
4781 	if (atomic->post_enable_primary)
4782 		intel_post_enable_primary(&crtc->base);
4783 
4784 	drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4785 		intel_update_sprite_watermarks(plane, &crtc->base,
4786 					       0, 0, 0, false, false);
4787 
4788 	memset(atomic, 0, sizeof(*atomic));
4789 }
4790 
4791 static void intel_pre_plane_update(struct intel_crtc *crtc)
4792 {
4793 	struct drm_device *dev = crtc->base.dev;
4794 	struct drm_i915_private *dev_priv = dev->dev_private;
4795 	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4796 	struct drm_plane *p;
4797 
4798 	/* Track fb's for any planes being disabled */
4799 	drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4800 		struct intel_plane *plane = to_intel_plane(p);
4801 
4802 		mutex_lock(&dev->struct_mutex);
4803 		i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4804 				  plane->frontbuffer_bit);
4805 		mutex_unlock(&dev->struct_mutex);
4806 	}
4807 
4808 	if (atomic->wait_for_flips)
4809 		intel_crtc_wait_for_pending_flips(&crtc->base);
4810 
4811 	if (atomic->disable_fbc)
4812 		intel_fbc_disable_crtc(crtc);
4813 
4814 	if (crtc->atomic.disable_ips)
4815 		hsw_disable_ips(crtc);
4816 
4817 	if (atomic->pre_disable_primary)
4818 		intel_pre_disable_primary(&crtc->base);
4819 
4820 	if (atomic->disable_cxsr) {
4821 		crtc->wm.cxsr_allowed = false;
4822 		intel_set_memory_cxsr(dev_priv, false);
4823 	}
4824 }
4825 
4826 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4827 {
4828 	struct drm_device *dev = crtc->dev;
4829 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4830 	struct drm_plane *p;
4831 	int pipe = intel_crtc->pipe;
4832 
4833 	intel_crtc_dpms_overlay_disable(intel_crtc);
4834 
4835 	drm_for_each_plane_mask(p, dev, plane_mask)
4836 		to_intel_plane(p)->disable_plane(p, crtc);
4837 
4838 	/*
4839 	 * FIXME: Once we grow proper nuclear flip support out of this we need
4840 	 * to compute the mask of flip planes precisely. For the time being
4841 	 * consider this a flip to a NULL plane.
4842 	 */
4843 	intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4844 }
4845 
4846 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4847 {
4848 	struct drm_device *dev = crtc->dev;
4849 	struct drm_i915_private *dev_priv = dev->dev_private;
4850 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4851 	struct intel_encoder *encoder;
4852 	int pipe = intel_crtc->pipe;
4853 
4854 	if (WARN_ON(intel_crtc->active))
4855 		return;
4856 
4857 	if (intel_crtc->config->has_pch_encoder)
4858 		intel_prepare_shared_dpll(intel_crtc);
4859 
4860 	if (intel_crtc->config->has_dp_encoder)
4861 		intel_dp_set_m_n(intel_crtc, M1_N1);
4862 
4863 	intel_set_pipe_timings(intel_crtc);
4864 
4865 	if (intel_crtc->config->has_pch_encoder) {
4866 		intel_cpu_transcoder_set_m_n(intel_crtc,
4867 				     &intel_crtc->config->fdi_m_n, NULL);
4868 	}
4869 
4870 	ironlake_set_pipeconf(crtc);
4871 
4872 	intel_crtc->active = true;
4873 
4874 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4875 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4876 
4877 	for_each_encoder_on_crtc(dev, crtc, encoder)
4878 		if (encoder->pre_enable)
4879 			encoder->pre_enable(encoder);
4880 
4881 	if (intel_crtc->config->has_pch_encoder) {
4882 		/* Note: FDI PLL enabling _must_ be done before we enable the
4883 		 * cpu pipes, hence this is separate from all the other fdi/pch
4884 		 * enabling. */
4885 		ironlake_fdi_pll_enable(intel_crtc);
4886 	} else {
4887 		assert_fdi_tx_disabled(dev_priv, pipe);
4888 		assert_fdi_rx_disabled(dev_priv, pipe);
4889 	}
4890 
4891 	ironlake_pfit_enable(intel_crtc);
4892 
4893 	/*
4894 	 * On ILK+ LUT must be loaded before the pipe is running but with
4895 	 * clocks enabled
4896 	 */
4897 	intel_crtc_load_lut(crtc);
4898 
4899 	intel_update_watermarks(crtc);
4900 	intel_enable_pipe(intel_crtc);
4901 
4902 	if (intel_crtc->config->has_pch_encoder)
4903 		ironlake_pch_enable(crtc);
4904 
4905 	assert_vblank_disabled(crtc);
4906 	drm_crtc_vblank_on(crtc);
4907 
4908 	for_each_encoder_on_crtc(dev, crtc, encoder)
4909 		encoder->enable(encoder);
4910 
4911 	if (HAS_PCH_CPT(dev))
4912 		cpt_verify_modeset(dev, intel_crtc->pipe);
4913 }
4914 
4915 /* IPS only exists on ULT machines and is tied to pipe A. */
4916 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4917 {
4918 	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4919 }
4920 
4921 static void haswell_crtc_enable(struct drm_crtc *crtc)
4922 {
4923 	struct drm_device *dev = crtc->dev;
4924 	struct drm_i915_private *dev_priv = dev->dev_private;
4925 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4926 	struct intel_encoder *encoder;
4927 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4928 	struct intel_crtc_state *pipe_config =
4929 		to_intel_crtc_state(crtc->state);
4930 
4931 	if (WARN_ON(intel_crtc->active))
4932 		return;
4933 
4934 	if (intel_crtc_to_shared_dpll(intel_crtc))
4935 		intel_enable_shared_dpll(intel_crtc);
4936 
4937 	if (intel_crtc->config->has_dp_encoder)
4938 		intel_dp_set_m_n(intel_crtc, M1_N1);
4939 
4940 	intel_set_pipe_timings(intel_crtc);
4941 
4942 	if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4943 		I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4944 			   intel_crtc->config->pixel_multiplier - 1);
4945 	}
4946 
4947 	if (intel_crtc->config->has_pch_encoder) {
4948 		intel_cpu_transcoder_set_m_n(intel_crtc,
4949 				     &intel_crtc->config->fdi_m_n, NULL);
4950 	}
4951 
4952 	haswell_set_pipeconf(crtc);
4953 
4954 	intel_set_pipe_csc(crtc);
4955 
4956 	intel_crtc->active = true;
4957 
4958 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4959 	for_each_encoder_on_crtc(dev, crtc, encoder)
4960 		if (encoder->pre_enable)
4961 			encoder->pre_enable(encoder);
4962 
4963 	if (intel_crtc->config->has_pch_encoder) {
4964 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4965 						      true);
4966 		dev_priv->display.fdi_link_train(crtc);
4967 	}
4968 
4969 	intel_ddi_enable_pipe_clock(intel_crtc);
4970 
4971 	if (INTEL_INFO(dev)->gen == 9)
4972 		skylake_pfit_enable(intel_crtc);
4973 	else if (INTEL_INFO(dev)->gen < 9)
4974 		ironlake_pfit_enable(intel_crtc);
4975 	else
4976 		MISSING_CASE(INTEL_INFO(dev)->gen);
4977 
4978 	/*
4979 	 * On ILK+ LUT must be loaded before the pipe is running but with
4980 	 * clocks enabled
4981 	 */
4982 	intel_crtc_load_lut(crtc);
4983 
4984 	intel_ddi_set_pipe_settings(crtc);
4985 	intel_ddi_enable_transcoder_func(crtc);
4986 
4987 	intel_update_watermarks(crtc);
4988 	intel_enable_pipe(intel_crtc);
4989 
4990 	if (intel_crtc->config->has_pch_encoder)
4991 		lpt_pch_enable(crtc);
4992 
4993 	if (intel_crtc->config->dp_encoder_is_mst)
4994 		intel_ddi_set_vc_payload_alloc(crtc, true);
4995 
4996 	assert_vblank_disabled(crtc);
4997 	drm_crtc_vblank_on(crtc);
4998 
4999 	for_each_encoder_on_crtc(dev, crtc, encoder) {
5000 		encoder->enable(encoder);
5001 		intel_opregion_notify_encoder(encoder, true);
5002 	}
5003 
5004 	/* If we change the relative order between pipe/planes enabling, we need
5005 	 * to change the workaround. */
5006 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5007 	if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5008 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5009 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5010 	}
5011 }
5012 
5013 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5014 {
5015 	struct drm_device *dev = crtc->base.dev;
5016 	struct drm_i915_private *dev_priv = dev->dev_private;
5017 	int pipe = crtc->pipe;
5018 
5019 	/* To avoid upsetting the power well on haswell only disable the pfit if
5020 	 * it's in use. The hw state code will make sure we get this right. */
5021 	if (crtc->config->pch_pfit.enabled) {
5022 		I915_WRITE(PF_CTL(pipe), 0);
5023 		I915_WRITE(PF_WIN_POS(pipe), 0);
5024 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5025 	}
5026 }
5027 
5028 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5029 {
5030 	struct drm_device *dev = crtc->dev;
5031 	struct drm_i915_private *dev_priv = dev->dev_private;
5032 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5033 	struct intel_encoder *encoder;
5034 	int pipe = intel_crtc->pipe;
5035 	u32 reg, temp;
5036 
5037 	for_each_encoder_on_crtc(dev, crtc, encoder)
5038 		encoder->disable(encoder);
5039 
5040 	drm_crtc_vblank_off(crtc);
5041 	assert_vblank_disabled(crtc);
5042 
5043 	if (intel_crtc->config->has_pch_encoder)
5044 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5045 
5046 	intel_disable_pipe(intel_crtc);
5047 
5048 	ironlake_pfit_disable(intel_crtc);
5049 
5050 	if (intel_crtc->config->has_pch_encoder)
5051 		ironlake_fdi_disable(crtc);
5052 
5053 	for_each_encoder_on_crtc(dev, crtc, encoder)
5054 		if (encoder->post_disable)
5055 			encoder->post_disable(encoder);
5056 
5057 	if (intel_crtc->config->has_pch_encoder) {
5058 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5059 
5060 		if (HAS_PCH_CPT(dev)) {
5061 			/* disable TRANS_DP_CTL */
5062 			reg = TRANS_DP_CTL(pipe);
5063 			temp = I915_READ(reg);
5064 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5065 				  TRANS_DP_PORT_SEL_MASK);
5066 			temp |= TRANS_DP_PORT_SEL_NONE;
5067 			I915_WRITE(reg, temp);
5068 
5069 			/* disable DPLL_SEL */
5070 			temp = I915_READ(PCH_DPLL_SEL);
5071 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5072 			I915_WRITE(PCH_DPLL_SEL, temp);
5073 		}
5074 
5075 		ironlake_fdi_pll_disable(intel_crtc);
5076 	}
5077 
5078 	intel_crtc->active = false;
5079 	intel_update_watermarks(crtc);
5080 }
5081 
5082 static void haswell_crtc_disable(struct drm_crtc *crtc)
5083 {
5084 	struct drm_device *dev = crtc->dev;
5085 	struct drm_i915_private *dev_priv = dev->dev_private;
5086 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5087 	struct intel_encoder *encoder;
5088 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5089 
5090 	for_each_encoder_on_crtc(dev, crtc, encoder) {
5091 		intel_opregion_notify_encoder(encoder, false);
5092 		encoder->disable(encoder);
5093 	}
5094 
5095 	drm_crtc_vblank_off(crtc);
5096 	assert_vblank_disabled(crtc);
5097 
5098 	if (intel_crtc->config->has_pch_encoder)
5099 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5100 						      false);
5101 	intel_disable_pipe(intel_crtc);
5102 
5103 	if (intel_crtc->config->dp_encoder_is_mst)
5104 		intel_ddi_set_vc_payload_alloc(crtc, false);
5105 
5106 	intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5107 
5108 	if (INTEL_INFO(dev)->gen == 9)
5109 		skylake_scaler_disable(intel_crtc);
5110 	else if (INTEL_INFO(dev)->gen < 9)
5111 		ironlake_pfit_disable(intel_crtc);
5112 	else
5113 		MISSING_CASE(INTEL_INFO(dev)->gen);
5114 
5115 	intel_ddi_disable_pipe_clock(intel_crtc);
5116 
5117 	if (intel_crtc->config->has_pch_encoder) {
5118 		lpt_disable_pch_transcoder(dev_priv);
5119 		intel_ddi_fdi_disable(crtc);
5120 	}
5121 
5122 	for_each_encoder_on_crtc(dev, crtc, encoder)
5123 		if (encoder->post_disable)
5124 			encoder->post_disable(encoder);
5125 
5126 	intel_crtc->active = false;
5127 	intel_update_watermarks(crtc);
5128 }
5129 
5130 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5131 {
5132 	struct drm_device *dev = crtc->base.dev;
5133 	struct drm_i915_private *dev_priv = dev->dev_private;
5134 	struct intel_crtc_state *pipe_config = crtc->config;
5135 
5136 	if (!pipe_config->gmch_pfit.control)
5137 		return;
5138 
5139 	/*
5140 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5141 	 * according to register description and PRM.
5142 	 */
5143 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5144 	assert_pipe_disabled(dev_priv, crtc->pipe);
5145 
5146 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5147 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5148 
5149 	/* Border color in case we don't scale up to the full screen. Black by
5150 	 * default, change to something else for debugging. */
5151 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5152 }
5153 
5154 static enum intel_display_power_domain port_to_power_domain(enum port port)
5155 {
5156 	switch (port) {
5157 	case PORT_A:
5158 		return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5159 	case PORT_B:
5160 		return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5161 	case PORT_C:
5162 		return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5163 	case PORT_D:
5164 		return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5165 	case PORT_E:
5166 		return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5167 	default:
5168 		WARN_ON_ONCE(1);
5169 		return POWER_DOMAIN_PORT_OTHER;
5170 	}
5171 }
5172 
5173 #define for_each_power_domain(domain, mask)				\
5174 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
5175 		if ((1 << (domain)) & (mask))
5176 
5177 enum intel_display_power_domain
5178 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5179 {
5180 	struct drm_device *dev = intel_encoder->base.dev;
5181 	struct intel_digital_port *intel_dig_port;
5182 
5183 	switch (intel_encoder->type) {
5184 	case INTEL_OUTPUT_UNKNOWN:
5185 		/* Only DDI platforms should ever use this output type */
5186 		WARN_ON_ONCE(!HAS_DDI(dev));
5187 	case INTEL_OUTPUT_DISPLAYPORT:
5188 	case INTEL_OUTPUT_HDMI:
5189 	case INTEL_OUTPUT_EDP:
5190 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5191 		return port_to_power_domain(intel_dig_port->port);
5192 	case INTEL_OUTPUT_DP_MST:
5193 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5194 		return port_to_power_domain(intel_dig_port->port);
5195 	case INTEL_OUTPUT_ANALOG:
5196 		return POWER_DOMAIN_PORT_CRT;
5197 	case INTEL_OUTPUT_DSI:
5198 		return POWER_DOMAIN_PORT_DSI;
5199 	default:
5200 		return POWER_DOMAIN_PORT_OTHER;
5201 	}
5202 }
5203 
5204 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5205 {
5206 	struct drm_device *dev = crtc->dev;
5207 	struct intel_encoder *intel_encoder;
5208 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5209 	enum i915_pipe pipe = intel_crtc->pipe;
5210 	unsigned long mask;
5211 	enum transcoder transcoder;
5212 
5213 	if (!crtc->state->active)
5214 		return 0;
5215 
5216 	transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5217 
5218 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5219 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5220 	if (intel_crtc->config->pch_pfit.enabled ||
5221 	    intel_crtc->config->pch_pfit.force_thru)
5222 		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5223 
5224 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5225 		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5226 
5227 	return mask;
5228 }
5229 
5230 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5231 {
5232 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5233 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5234 	enum intel_display_power_domain domain;
5235 	unsigned long domains, new_domains, old_domains;
5236 
5237 	old_domains = intel_crtc->enabled_power_domains;
5238 	intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5239 
5240 	domains = new_domains & ~old_domains;
5241 
5242 	for_each_power_domain(domain, domains)
5243 		intel_display_power_get(dev_priv, domain);
5244 
5245 	return old_domains & ~new_domains;
5246 }
5247 
5248 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5249 				      unsigned long domains)
5250 {
5251 	enum intel_display_power_domain domain;
5252 
5253 	for_each_power_domain(domain, domains)
5254 		intel_display_power_put(dev_priv, domain);
5255 }
5256 
5257 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5258 {
5259 	struct drm_device *dev = state->dev;
5260 	struct drm_i915_private *dev_priv = dev->dev_private;
5261 	unsigned long put_domains[I915_MAX_PIPES] = {};
5262 	struct drm_crtc_state *crtc_state;
5263 	struct drm_crtc *crtc;
5264 	int i;
5265 
5266 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
5267 		if (needs_modeset(crtc->state))
5268 			put_domains[to_intel_crtc(crtc)->pipe] =
5269 				modeset_get_crtc_power_domains(crtc);
5270 	}
5271 
5272 	if (dev_priv->display.modeset_commit_cdclk) {
5273 		unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5274 
5275 		if (cdclk != dev_priv->cdclk_freq &&
5276 		    !WARN_ON(!state->allow_modeset))
5277 			dev_priv->display.modeset_commit_cdclk(state);
5278 	}
5279 
5280 	for (i = 0; i < I915_MAX_PIPES; i++)
5281 		if (put_domains[i])
5282 			modeset_put_power_domains(dev_priv, put_domains[i]);
5283 }
5284 
5285 static void intel_update_max_cdclk(struct drm_device *dev)
5286 {
5287 	struct drm_i915_private *dev_priv = dev->dev_private;
5288 
5289 	if (IS_SKYLAKE(dev)) {
5290 		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5291 
5292 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5293 			dev_priv->max_cdclk_freq = 675000;
5294 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5295 			dev_priv->max_cdclk_freq = 540000;
5296 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5297 			dev_priv->max_cdclk_freq = 450000;
5298 		else
5299 			dev_priv->max_cdclk_freq = 337500;
5300 	} else if (IS_BROADWELL(dev))  {
5301 		/*
5302 		 * FIXME with extra cooling we can allow
5303 		 * 540 MHz for ULX and 675 Mhz for ULT.
5304 		 * How can we know if extra cooling is
5305 		 * available? PCI ID, VTB, something else?
5306 		 */
5307 		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5308 			dev_priv->max_cdclk_freq = 450000;
5309 		else if (IS_BDW_ULX(dev))
5310 			dev_priv->max_cdclk_freq = 450000;
5311 		else if (IS_BDW_ULT(dev))
5312 			dev_priv->max_cdclk_freq = 540000;
5313 		else
5314 			dev_priv->max_cdclk_freq = 675000;
5315 	} else if (IS_CHERRYVIEW(dev)) {
5316 		dev_priv->max_cdclk_freq = 320000;
5317 	} else if (IS_VALLEYVIEW(dev)) {
5318 		dev_priv->max_cdclk_freq = 400000;
5319 	} else {
5320 		/* otherwise assume cdclk is fixed */
5321 		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5322 	}
5323 
5324 	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5325 			 dev_priv->max_cdclk_freq);
5326 }
5327 
5328 static void intel_update_cdclk(struct drm_device *dev)
5329 {
5330 	struct drm_i915_private *dev_priv = dev->dev_private;
5331 
5332 	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5333 	DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5334 			 dev_priv->cdclk_freq);
5335 
5336 	/*
5337 	 * Program the gmbus_freq based on the cdclk frequency.
5338 	 * BSpec erroneously claims we should aim for 4MHz, but
5339 	 * in fact 1MHz is the correct frequency.
5340 	 */
5341 	if (IS_VALLEYVIEW(dev)) {
5342 		/*
5343 		 * Program the gmbus_freq based on the cdclk frequency.
5344 		 * BSpec erroneously claims we should aim for 4MHz, but
5345 		 * in fact 1MHz is the correct frequency.
5346 		 */
5347 		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5348 	}
5349 
5350 	if (dev_priv->max_cdclk_freq == 0)
5351 		intel_update_max_cdclk(dev);
5352 }
5353 
5354 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5355 {
5356 	struct drm_i915_private *dev_priv = dev->dev_private;
5357 	uint32_t divider;
5358 	uint32_t ratio;
5359 	uint32_t current_freq;
5360 	int ret;
5361 
5362 	/* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5363 	switch (frequency) {
5364 	case 144000:
5365 		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5366 		ratio = BXT_DE_PLL_RATIO(60);
5367 		break;
5368 	case 288000:
5369 		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5370 		ratio = BXT_DE_PLL_RATIO(60);
5371 		break;
5372 	case 384000:
5373 		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5374 		ratio = BXT_DE_PLL_RATIO(60);
5375 		break;
5376 	case 576000:
5377 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5378 		ratio = BXT_DE_PLL_RATIO(60);
5379 		break;
5380 	case 624000:
5381 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5382 		ratio = BXT_DE_PLL_RATIO(65);
5383 		break;
5384 	case 19200:
5385 		/*
5386 		 * Bypass frequency with DE PLL disabled. Init ratio, divider
5387 		 * to suppress GCC warning.
5388 		 */
5389 		ratio = 0;
5390 		divider = 0;
5391 		break;
5392 	default:
5393 		DRM_ERROR("unsupported CDCLK freq %d", frequency);
5394 
5395 		return;
5396 	}
5397 
5398 	mutex_lock(&dev_priv->rps.hw_lock);
5399 	/* Inform power controller of upcoming frequency change */
5400 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5401 				      0x80000000);
5402 	mutex_unlock(&dev_priv->rps.hw_lock);
5403 
5404 	if (ret) {
5405 		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5406 			  ret, frequency);
5407 		return;
5408 	}
5409 
5410 	current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5411 	/* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5412 	current_freq = current_freq * 500 + 1000;
5413 
5414 	/*
5415 	 * DE PLL has to be disabled when
5416 	 * - setting to 19.2MHz (bypass, PLL isn't used)
5417 	 * - before setting to 624MHz (PLL needs toggling)
5418 	 * - before setting to any frequency from 624MHz (PLL needs toggling)
5419 	 */
5420 	if (frequency == 19200 || frequency == 624000 ||
5421 	    current_freq == 624000) {
5422 		I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5423 		/* Timeout 200us */
5424 		if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5425 			     1))
5426 			DRM_ERROR("timout waiting for DE PLL unlock\n");
5427 	}
5428 
5429 	if (frequency != 19200) {
5430 		uint32_t val;
5431 
5432 		val = I915_READ(BXT_DE_PLL_CTL);
5433 		val &= ~BXT_DE_PLL_RATIO_MASK;
5434 		val |= ratio;
5435 		I915_WRITE(BXT_DE_PLL_CTL, val);
5436 
5437 		I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5438 		/* Timeout 200us */
5439 		if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5440 			DRM_ERROR("timeout waiting for DE PLL lock\n");
5441 
5442 		val = I915_READ(CDCLK_CTL);
5443 		val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5444 		val |= divider;
5445 		/*
5446 		 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5447 		 * enable otherwise.
5448 		 */
5449 		val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5450 		if (frequency >= 500000)
5451 			val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5452 
5453 		val &= ~CDCLK_FREQ_DECIMAL_MASK;
5454 		/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5455 		val |= (frequency - 1000) / 500;
5456 		I915_WRITE(CDCLK_CTL, val);
5457 	}
5458 
5459 	mutex_lock(&dev_priv->rps.hw_lock);
5460 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5461 				      DIV_ROUND_UP(frequency, 25000));
5462 	mutex_unlock(&dev_priv->rps.hw_lock);
5463 
5464 	if (ret) {
5465 		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5466 			  ret, frequency);
5467 		return;
5468 	}
5469 
5470 	intel_update_cdclk(dev);
5471 }
5472 
5473 void broxton_init_cdclk(struct drm_device *dev)
5474 {
5475 	struct drm_i915_private *dev_priv = dev->dev_private;
5476 	uint32_t val;
5477 
5478 	/*
5479 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5480 	 * or else the reset will hang because there is no PCH to respond.
5481 	 * Move the handshake programming to initialization sequence.
5482 	 * Previously was left up to BIOS.
5483 	 */
5484 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5485 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5486 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5487 
5488 	/* Enable PG1 for cdclk */
5489 	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5490 
5491 	/* check if cd clock is enabled */
5492 	if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5493 		DRM_DEBUG_KMS("Display already initialized\n");
5494 		return;
5495 	}
5496 
5497 	/*
5498 	 * FIXME:
5499 	 * - The initial CDCLK needs to be read from VBT.
5500 	 *   Need to make this change after VBT has changes for BXT.
5501 	 * - check if setting the max (or any) cdclk freq is really necessary
5502 	 *   here, it belongs to modeset time
5503 	 */
5504 	broxton_set_cdclk(dev, 624000);
5505 
5506 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5507 	POSTING_READ(DBUF_CTL);
5508 
5509 	udelay(10);
5510 
5511 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5512 		DRM_ERROR("DBuf power enable timeout!\n");
5513 }
5514 
5515 void broxton_uninit_cdclk(struct drm_device *dev)
5516 {
5517 	struct drm_i915_private *dev_priv = dev->dev_private;
5518 
5519 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5520 	POSTING_READ(DBUF_CTL);
5521 
5522 	udelay(10);
5523 
5524 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5525 		DRM_ERROR("DBuf power disable timeout!\n");
5526 
5527 	/* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5528 	broxton_set_cdclk(dev, 19200);
5529 
5530 	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5531 }
5532 
5533 static const struct skl_cdclk_entry {
5534 	unsigned int freq;
5535 	unsigned int vco;
5536 } skl_cdclk_frequencies[] = {
5537 	{ .freq = 308570, .vco = 8640 },
5538 	{ .freq = 337500, .vco = 8100 },
5539 	{ .freq = 432000, .vco = 8640 },
5540 	{ .freq = 450000, .vco = 8100 },
5541 	{ .freq = 540000, .vco = 8100 },
5542 	{ .freq = 617140, .vco = 8640 },
5543 	{ .freq = 675000, .vco = 8100 },
5544 };
5545 
5546 static unsigned int skl_cdclk_decimal(unsigned int freq)
5547 {
5548 	return (freq - 1000) / 500;
5549 }
5550 
5551 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5552 {
5553 	unsigned int i;
5554 
5555 	for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5556 		const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5557 
5558 		if (e->freq == freq)
5559 			return e->vco;
5560 	}
5561 
5562 	return 8100;
5563 }
5564 
5565 static void
5566 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5567 {
5568 	unsigned int min_freq;
5569 	u32 val;
5570 
5571 	/* select the minimum CDCLK before enabling DPLL 0 */
5572 	val = I915_READ(CDCLK_CTL);
5573 	val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5574 	val |= CDCLK_FREQ_337_308;
5575 
5576 	if (required_vco == 8640)
5577 		min_freq = 308570;
5578 	else
5579 		min_freq = 337500;
5580 
5581 	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5582 
5583 	I915_WRITE(CDCLK_CTL, val);
5584 	POSTING_READ(CDCLK_CTL);
5585 
5586 	/*
5587 	 * We always enable DPLL0 with the lowest link rate possible, but still
5588 	 * taking into account the VCO required to operate the eDP panel at the
5589 	 * desired frequency. The usual DP link rates operate with a VCO of
5590 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5591 	 * The modeset code is responsible for the selection of the exact link
5592 	 * rate later on, with the constraint of choosing a frequency that
5593 	 * works with required_vco.
5594 	 */
5595 	val = I915_READ(DPLL_CTRL1);
5596 
5597 	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5598 		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5599 	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5600 	if (required_vco == 8640)
5601 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5602 					    SKL_DPLL0);
5603 	else
5604 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5605 					    SKL_DPLL0);
5606 
5607 	I915_WRITE(DPLL_CTRL1, val);
5608 	POSTING_READ(DPLL_CTRL1);
5609 
5610 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5611 
5612 	if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5613 		DRM_ERROR("DPLL0 not locked\n");
5614 }
5615 
5616 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5617 {
5618 	int ret;
5619 	u32 val;
5620 
5621 	/* inform PCU we want to change CDCLK */
5622 	val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5623 	mutex_lock(&dev_priv->rps.hw_lock);
5624 	ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5625 	mutex_unlock(&dev_priv->rps.hw_lock);
5626 
5627 	return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5628 }
5629 
5630 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5631 {
5632 	unsigned int i;
5633 
5634 	for (i = 0; i < 15; i++) {
5635 		if (skl_cdclk_pcu_ready(dev_priv))
5636 			return true;
5637 		udelay(10);
5638 	}
5639 
5640 	return false;
5641 }
5642 
5643 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5644 {
5645 	struct drm_device *dev = dev_priv->dev;
5646 	u32 freq_select, pcu_ack;
5647 
5648 	DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5649 
5650 	if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5651 		DRM_ERROR("failed to inform PCU about cdclk change\n");
5652 		return;
5653 	}
5654 
5655 	/* set CDCLK_CTL */
5656 	switch(freq) {
5657 	case 450000:
5658 	case 432000:
5659 		freq_select = CDCLK_FREQ_450_432;
5660 		pcu_ack = 1;
5661 		break;
5662 	case 540000:
5663 		freq_select = CDCLK_FREQ_540;
5664 		pcu_ack = 2;
5665 		break;
5666 	case 308570:
5667 	case 337500:
5668 	default:
5669 		freq_select = CDCLK_FREQ_337_308;
5670 		pcu_ack = 0;
5671 		break;
5672 	case 617140:
5673 	case 675000:
5674 		freq_select = CDCLK_FREQ_675_617;
5675 		pcu_ack = 3;
5676 		break;
5677 	}
5678 
5679 	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5680 	POSTING_READ(CDCLK_CTL);
5681 
5682 	/* inform PCU of the change */
5683 	mutex_lock(&dev_priv->rps.hw_lock);
5684 	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5685 	mutex_unlock(&dev_priv->rps.hw_lock);
5686 
5687 	intel_update_cdclk(dev);
5688 }
5689 
5690 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5691 {
5692 	/* disable DBUF power */
5693 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5694 	POSTING_READ(DBUF_CTL);
5695 
5696 	udelay(10);
5697 
5698 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5699 		DRM_ERROR("DBuf power disable timeout\n");
5700 
5701 	/* disable DPLL0 */
5702 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5703 	if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5704 		DRM_ERROR("Couldn't disable DPLL0\n");
5705 
5706 	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5707 }
5708 
5709 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5710 {
5711 	u32 val;
5712 	unsigned int required_vco;
5713 
5714 	/* enable PCH reset handshake */
5715 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5716 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5717 
5718 	/* enable PG1 and Misc I/O */
5719 	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5720 
5721 	/* DPLL0 not enabled (happens on early BIOS versions) */
5722 	if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5723 		/* enable DPLL0 */
5724 		required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5725 		skl_dpll0_enable(dev_priv, required_vco);
5726 	}
5727 
5728 	/* set CDCLK to the frequency the BIOS chose */
5729 	skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5730 
5731 	/* enable DBUF power */
5732 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5733 	POSTING_READ(DBUF_CTL);
5734 
5735 	udelay(10);
5736 
5737 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5738 		DRM_ERROR("DBuf power enable timeout\n");
5739 }
5740 
5741 /* returns HPLL frequency in kHz */
5742 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5743 {
5744 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5745 
5746 	/* Obtain SKU information */
5747 	mutex_lock(&dev_priv->sb_lock);
5748 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5749 		CCK_FUSE_HPLL_FREQ_MASK;
5750 	mutex_unlock(&dev_priv->sb_lock);
5751 
5752 	return vco_freq[hpll_freq] * 1000;
5753 }
5754 
5755 /* Adjust CDclk dividers to allow high res or save power if possible */
5756 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5757 {
5758 	struct drm_i915_private *dev_priv = dev->dev_private;
5759 	u32 val, cmd;
5760 
5761 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5762 					!= dev_priv->cdclk_freq);
5763 
5764 	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5765 		cmd = 2;
5766 	else if (cdclk == 266667)
5767 		cmd = 1;
5768 	else
5769 		cmd = 0;
5770 
5771 	mutex_lock(&dev_priv->rps.hw_lock);
5772 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5773 	val &= ~DSPFREQGUAR_MASK;
5774 	val |= (cmd << DSPFREQGUAR_SHIFT);
5775 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5776 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5777 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5778 		     50)) {
5779 		DRM_ERROR("timed out waiting for CDclk change\n");
5780 	}
5781 	mutex_unlock(&dev_priv->rps.hw_lock);
5782 
5783 	mutex_lock(&dev_priv->sb_lock);
5784 
5785 	if (cdclk == 400000) {
5786 		u32 divider;
5787 
5788 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5789 
5790 		/* adjust cdclk divider */
5791 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5792 		val &= ~DISPLAY_FREQUENCY_VALUES;
5793 		val |= divider;
5794 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5795 
5796 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5797 			      DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5798 			     50))
5799 			DRM_ERROR("timed out waiting for CDclk change\n");
5800 	}
5801 
5802 	/* adjust self-refresh exit latency value */
5803 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5804 	val &= ~0x7f;
5805 
5806 	/*
5807 	 * For high bandwidth configs, we set a higher latency in the bunit
5808 	 * so that the core display fetch happens in time to avoid underruns.
5809 	 */
5810 	if (cdclk == 400000)
5811 		val |= 4500 / 250; /* 4.5 usec */
5812 	else
5813 		val |= 3000 / 250; /* 3.0 usec */
5814 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5815 
5816 	mutex_unlock(&dev_priv->sb_lock);
5817 
5818 	intel_update_cdclk(dev);
5819 }
5820 
5821 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5822 {
5823 	struct drm_i915_private *dev_priv = dev->dev_private;
5824 	u32 val, cmd;
5825 
5826 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5827 						!= dev_priv->cdclk_freq);
5828 
5829 	switch (cdclk) {
5830 	case 333333:
5831 	case 320000:
5832 	case 266667:
5833 	case 200000:
5834 		break;
5835 	default:
5836 		MISSING_CASE(cdclk);
5837 		return;
5838 	}
5839 
5840 	/*
5841 	 * Specs are full of misinformation, but testing on actual
5842 	 * hardware has shown that we just need to write the desired
5843 	 * CCK divider into the Punit register.
5844 	 */
5845 	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5846 
5847 	mutex_lock(&dev_priv->rps.hw_lock);
5848 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5849 	val &= ~DSPFREQGUAR_MASK_CHV;
5850 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5851 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5852 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5853 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5854 		     50)) {
5855 		DRM_ERROR("timed out waiting for CDclk change\n");
5856 	}
5857 	mutex_unlock(&dev_priv->rps.hw_lock);
5858 
5859 	intel_update_cdclk(dev);
5860 }
5861 
5862 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5863 				 int max_pixclk)
5864 {
5865 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5866 	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5867 
5868 	/*
5869 	 * Really only a few cases to deal with, as only 4 CDclks are supported:
5870 	 *   200MHz
5871 	 *   267MHz
5872 	 *   320/333MHz (depends on HPLL freq)
5873 	 *   400MHz (VLV only)
5874 	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5875 	 * of the lower bin and adjust if needed.
5876 	 *
5877 	 * We seem to get an unstable or solid color picture at 200MHz.
5878 	 * Not sure what's wrong. For now use 200MHz only when all pipes
5879 	 * are off.
5880 	 */
5881 	if (!IS_CHERRYVIEW(dev_priv) &&
5882 	    max_pixclk > freq_320*limit/100)
5883 		return 400000;
5884 	else if (max_pixclk > 266667*limit/100)
5885 		return freq_320;
5886 	else if (max_pixclk > 0)
5887 		return 266667;
5888 	else
5889 		return 200000;
5890 }
5891 
5892 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5893 			      int max_pixclk)
5894 {
5895 	/*
5896 	 * FIXME:
5897 	 * - remove the guardband, it's not needed on BXT
5898 	 * - set 19.2MHz bypass frequency if there are no active pipes
5899 	 */
5900 	if (max_pixclk > 576000*9/10)
5901 		return 624000;
5902 	else if (max_pixclk > 384000*9/10)
5903 		return 576000;
5904 	else if (max_pixclk > 288000*9/10)
5905 		return 384000;
5906 	else if (max_pixclk > 144000*9/10)
5907 		return 288000;
5908 	else
5909 		return 144000;
5910 }
5911 
5912 /* Compute the max pixel clock for new configuration. Uses atomic state if
5913  * that's non-NULL, look at current state otherwise. */
5914 static int intel_mode_max_pixclk(struct drm_device *dev,
5915 				 struct drm_atomic_state *state)
5916 {
5917 	struct intel_crtc *intel_crtc;
5918 	struct intel_crtc_state *crtc_state;
5919 	int max_pixclk = 0;
5920 
5921 	for_each_intel_crtc(dev, intel_crtc) {
5922 		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5923 		if (IS_ERR(crtc_state))
5924 			return PTR_ERR(crtc_state);
5925 
5926 		if (!crtc_state->base.enable)
5927 			continue;
5928 
5929 		max_pixclk = max(max_pixclk,
5930 				 crtc_state->base.adjusted_mode.crtc_clock);
5931 	}
5932 
5933 	return max_pixclk;
5934 }
5935 
5936 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5937 {
5938 	struct drm_device *dev = state->dev;
5939 	struct drm_i915_private *dev_priv = dev->dev_private;
5940 	int max_pixclk = intel_mode_max_pixclk(dev, state);
5941 
5942 	if (max_pixclk < 0)
5943 		return max_pixclk;
5944 
5945 	to_intel_atomic_state(state)->cdclk =
5946 		valleyview_calc_cdclk(dev_priv, max_pixclk);
5947 
5948 	return 0;
5949 }
5950 
5951 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5952 {
5953 	struct drm_device *dev = state->dev;
5954 	struct drm_i915_private *dev_priv = dev->dev_private;
5955 	int max_pixclk = intel_mode_max_pixclk(dev, state);
5956 
5957 	if (max_pixclk < 0)
5958 		return max_pixclk;
5959 
5960 	to_intel_atomic_state(state)->cdclk =
5961 		broxton_calc_cdclk(dev_priv, max_pixclk);
5962 
5963 	return 0;
5964 }
5965 
5966 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5967 {
5968 	unsigned int credits, default_credits;
5969 
5970 	if (IS_CHERRYVIEW(dev_priv))
5971 		default_credits = PFI_CREDIT(12);
5972 	else
5973 		default_credits = PFI_CREDIT(8);
5974 
5975 	if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5976 		/* CHV suggested value is 31 or 63 */
5977 		if (IS_CHERRYVIEW(dev_priv))
5978 			credits = PFI_CREDIT_63;
5979 		else
5980 			credits = PFI_CREDIT(15);
5981 	} else {
5982 		credits = default_credits;
5983 	}
5984 
5985 	/*
5986 	 * WA - write default credits before re-programming
5987 	 * FIXME: should we also set the resend bit here?
5988 	 */
5989 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5990 		   default_credits);
5991 
5992 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5993 		   credits | PFI_CREDIT_RESEND);
5994 
5995 	/*
5996 	 * FIXME is this guaranteed to clear
5997 	 * immediately or should we poll for it?
5998 	 */
5999 	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6000 }
6001 
6002 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6003 {
6004 	struct drm_device *dev = old_state->dev;
6005 	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6006 	struct drm_i915_private *dev_priv = dev->dev_private;
6007 
6008 	/*
6009 	 * FIXME: We can end up here with all power domains off, yet
6010 	 * with a CDCLK frequency other than the minimum. To account
6011 	 * for this take the PIPE-A power domain, which covers the HW
6012 	 * blocks needed for the following programming. This can be
6013 	 * removed once it's guaranteed that we get here either with
6014 	 * the minimum CDCLK set, or the required power domains
6015 	 * enabled.
6016 	 */
6017 	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6018 
6019 	if (IS_CHERRYVIEW(dev))
6020 		cherryview_set_cdclk(dev, req_cdclk);
6021 	else
6022 		valleyview_set_cdclk(dev, req_cdclk);
6023 
6024 	vlv_program_pfi_credits(dev_priv);
6025 
6026 	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6027 }
6028 
6029 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6030 {
6031 	struct drm_device *dev = crtc->dev;
6032 	struct drm_i915_private *dev_priv = to_i915(dev);
6033 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6034 	struct intel_encoder *encoder;
6035 	int pipe = intel_crtc->pipe;
6036 	bool is_dsi;
6037 
6038 	if (WARN_ON(intel_crtc->active))
6039 		return;
6040 
6041 	is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6042 
6043 	if (!is_dsi) {
6044 		if (IS_CHERRYVIEW(dev))
6045 			chv_prepare_pll(intel_crtc, intel_crtc->config);
6046 		else
6047 			vlv_prepare_pll(intel_crtc, intel_crtc->config);
6048 	}
6049 
6050 	if (intel_crtc->config->has_dp_encoder)
6051 		intel_dp_set_m_n(intel_crtc, M1_N1);
6052 
6053 	intel_set_pipe_timings(intel_crtc);
6054 
6055 	if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6056 		struct drm_i915_private *dev_priv = dev->dev_private;
6057 
6058 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6059 		I915_WRITE(CHV_CANVAS(pipe), 0);
6060 	}
6061 
6062 	i9xx_set_pipeconf(intel_crtc);
6063 
6064 	intel_crtc->active = true;
6065 
6066 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6067 
6068 	for_each_encoder_on_crtc(dev, crtc, encoder)
6069 		if (encoder->pre_pll_enable)
6070 			encoder->pre_pll_enable(encoder);
6071 
6072 	if (!is_dsi) {
6073 		if (IS_CHERRYVIEW(dev))
6074 			chv_enable_pll(intel_crtc, intel_crtc->config);
6075 		else
6076 			vlv_enable_pll(intel_crtc, intel_crtc->config);
6077 	}
6078 
6079 	for_each_encoder_on_crtc(dev, crtc, encoder)
6080 		if (encoder->pre_enable)
6081 			encoder->pre_enable(encoder);
6082 
6083 	i9xx_pfit_enable(intel_crtc);
6084 
6085 	intel_crtc_load_lut(crtc);
6086 
6087 	intel_enable_pipe(intel_crtc);
6088 
6089 	assert_vblank_disabled(crtc);
6090 	drm_crtc_vblank_on(crtc);
6091 
6092 	for_each_encoder_on_crtc(dev, crtc, encoder)
6093 		encoder->enable(encoder);
6094 }
6095 
6096 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6097 {
6098 	struct drm_device *dev = crtc->base.dev;
6099 	struct drm_i915_private *dev_priv = dev->dev_private;
6100 
6101 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6102 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6103 }
6104 
6105 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6106 {
6107 	struct drm_device *dev = crtc->dev;
6108 	struct drm_i915_private *dev_priv = to_i915(dev);
6109 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6110 	struct intel_encoder *encoder;
6111 	int pipe = intel_crtc->pipe;
6112 
6113 	if (WARN_ON(intel_crtc->active))
6114 		return;
6115 
6116 	i9xx_set_pll_dividers(intel_crtc);
6117 
6118 	if (intel_crtc->config->has_dp_encoder)
6119 		intel_dp_set_m_n(intel_crtc, M1_N1);
6120 
6121 	intel_set_pipe_timings(intel_crtc);
6122 
6123 	i9xx_set_pipeconf(intel_crtc);
6124 
6125 	intel_crtc->active = true;
6126 
6127 	if (!IS_GEN2(dev))
6128 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6129 
6130 	for_each_encoder_on_crtc(dev, crtc, encoder)
6131 		if (encoder->pre_enable)
6132 			encoder->pre_enable(encoder);
6133 
6134 	i9xx_enable_pll(intel_crtc);
6135 
6136 	i9xx_pfit_enable(intel_crtc);
6137 
6138 	intel_crtc_load_lut(crtc);
6139 
6140 	intel_update_watermarks(crtc);
6141 	intel_enable_pipe(intel_crtc);
6142 
6143 	assert_vblank_disabled(crtc);
6144 	drm_crtc_vblank_on(crtc);
6145 
6146 	for_each_encoder_on_crtc(dev, crtc, encoder)
6147 		encoder->enable(encoder);
6148 }
6149 
6150 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6151 {
6152 	struct drm_device *dev = crtc->base.dev;
6153 	struct drm_i915_private *dev_priv = dev->dev_private;
6154 
6155 	if (!crtc->config->gmch_pfit.control)
6156 		return;
6157 
6158 	assert_pipe_disabled(dev_priv, crtc->pipe);
6159 
6160 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6161 			 I915_READ(PFIT_CONTROL));
6162 	I915_WRITE(PFIT_CONTROL, 0);
6163 }
6164 
6165 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6166 {
6167 	struct drm_device *dev = crtc->dev;
6168 	struct drm_i915_private *dev_priv = dev->dev_private;
6169 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6170 	struct intel_encoder *encoder;
6171 	int pipe = intel_crtc->pipe;
6172 
6173 	/*
6174 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6175 	 * wait for planes to fully turn off before disabling the pipe.
6176 	 * We also need to wait on all gmch platforms because of the
6177 	 * self-refresh mode constraint explained above.
6178 	 */
6179 	intel_wait_for_vblank(dev, pipe);
6180 
6181 	for_each_encoder_on_crtc(dev, crtc, encoder)
6182 		encoder->disable(encoder);
6183 
6184 	drm_crtc_vblank_off(crtc);
6185 	assert_vblank_disabled(crtc);
6186 
6187 	intel_disable_pipe(intel_crtc);
6188 
6189 	i9xx_pfit_disable(intel_crtc);
6190 
6191 	for_each_encoder_on_crtc(dev, crtc, encoder)
6192 		if (encoder->post_disable)
6193 			encoder->post_disable(encoder);
6194 
6195 	if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6196 		if (IS_CHERRYVIEW(dev))
6197 			chv_disable_pll(dev_priv, pipe);
6198 		else if (IS_VALLEYVIEW(dev))
6199 			vlv_disable_pll(dev_priv, pipe);
6200 		else
6201 			i9xx_disable_pll(intel_crtc);
6202 	}
6203 
6204 	if (!IS_GEN2(dev))
6205 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6206 
6207 	intel_crtc->active = false;
6208 	intel_update_watermarks(crtc);
6209 }
6210 
6211 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6212 {
6213 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6214 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6215 	enum intel_display_power_domain domain;
6216 	unsigned long domains;
6217 
6218 	if (!intel_crtc->active)
6219 		return;
6220 
6221 	if (to_intel_plane_state(crtc->primary->state)->visible) {
6222 		intel_crtc_wait_for_pending_flips(crtc);
6223 		intel_pre_disable_primary(crtc);
6224 	}
6225 
6226 	intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6227 	dev_priv->display.crtc_disable(crtc);
6228 	intel_disable_shared_dpll(intel_crtc);
6229 
6230 	domains = intel_crtc->enabled_power_domains;
6231 	for_each_power_domain(domain, domains)
6232 		intel_display_power_put(dev_priv, domain);
6233 	intel_crtc->enabled_power_domains = 0;
6234 }
6235 
6236 /*
6237  * turn all crtc's off, but do not adjust state
6238  * This has to be paired with a call to intel_modeset_setup_hw_state.
6239  */
6240 int intel_display_suspend(struct drm_device *dev)
6241 {
6242 	struct drm_mode_config *config = &dev->mode_config;
6243 	struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6244 	struct drm_atomic_state *state;
6245 	struct drm_crtc *crtc;
6246 	unsigned crtc_mask = 0;
6247 	int ret = 0;
6248 
6249 	if (WARN_ON(!ctx))
6250 		return 0;
6251 
6252 #if 0
6253 	lockdep_assert_held(&ctx->ww_ctx);
6254 #endif
6255 	state = drm_atomic_state_alloc(dev);
6256 	if (WARN_ON(!state))
6257 		return -ENOMEM;
6258 
6259 	state->acquire_ctx = ctx;
6260 	state->allow_modeset = true;
6261 
6262 	for_each_crtc(dev, crtc) {
6263 		struct drm_crtc_state *crtc_state =
6264 			drm_atomic_get_crtc_state(state, crtc);
6265 
6266 		ret = PTR_ERR_OR_ZERO(crtc_state);
6267 		if (ret)
6268 			goto free;
6269 
6270 		if (!crtc_state->active)
6271 			continue;
6272 
6273 		crtc_state->active = false;
6274 		crtc_mask |= 1 << drm_crtc_index(crtc);
6275 	}
6276 
6277 	if (crtc_mask) {
6278 		ret = drm_atomic_commit(state);
6279 
6280 		if (!ret) {
6281 			for_each_crtc(dev, crtc)
6282 				if (crtc_mask & (1 << drm_crtc_index(crtc)))
6283 					crtc->state->active = true;
6284 
6285 			return ret;
6286 		}
6287 	}
6288 
6289 free:
6290 	if (ret)
6291 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6292 	drm_atomic_state_free(state);
6293 	return ret;
6294 }
6295 
6296 void intel_encoder_destroy(struct drm_encoder *encoder)
6297 {
6298 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6299 
6300 	drm_encoder_cleanup(encoder);
6301 	kfree(intel_encoder);
6302 }
6303 
6304 /* Cross check the actual hw state with our own modeset state tracking (and it's
6305  * internal consistency). */
6306 static void intel_connector_check_state(struct intel_connector *connector)
6307 {
6308 	struct drm_crtc *crtc = connector->base.state->crtc;
6309 
6310 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6311 		      connector->base.base.id,
6312 		      connector->base.name);
6313 
6314 	if (connector->get_hw_state(connector)) {
6315 		struct intel_encoder *encoder = connector->encoder;
6316 		struct drm_connector_state *conn_state = connector->base.state;
6317 
6318 		I915_STATE_WARN(!crtc,
6319 			 "connector enabled without attached crtc\n");
6320 
6321 		if (!crtc)
6322 			return;
6323 
6324 		I915_STATE_WARN(!crtc->state->active,
6325 		      "connector is active, but attached crtc isn't\n");
6326 
6327 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6328 			return;
6329 
6330 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6331 			"atomic encoder doesn't match attached encoder\n");
6332 
6333 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6334 			"attached encoder crtc differs from connector crtc\n");
6335 	} else {
6336 		I915_STATE_WARN(crtc && crtc->state->active,
6337 			"attached crtc is active, but connector isn't\n");
6338 		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6339 			"best encoder set without crtc!\n");
6340 	}
6341 }
6342 
6343 int intel_connector_init(struct intel_connector *connector)
6344 {
6345 	struct drm_connector_state *connector_state;
6346 
6347 	connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6348 	if (!connector_state)
6349 		return -ENOMEM;
6350 
6351 	connector->base.state = connector_state;
6352 	return 0;
6353 }
6354 
6355 struct intel_connector *intel_connector_alloc(void)
6356 {
6357 	struct intel_connector *connector;
6358 
6359 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6360 	if (!connector)
6361 		return NULL;
6362 
6363 	if (intel_connector_init(connector) < 0) {
6364 		kfree(connector);
6365 		return NULL;
6366 	}
6367 
6368 	return connector;
6369 }
6370 
6371 /* Simple connector->get_hw_state implementation for encoders that support only
6372  * one connector and no cloning and hence the encoder state determines the state
6373  * of the connector. */
6374 bool intel_connector_get_hw_state(struct intel_connector *connector)
6375 {
6376 	enum i915_pipe pipe = 0;
6377 	struct intel_encoder *encoder = connector->encoder;
6378 
6379 	return encoder->get_hw_state(encoder, &pipe);
6380 }
6381 
6382 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6383 {
6384 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6385 		return crtc_state->fdi_lanes;
6386 
6387 	return 0;
6388 }
6389 
6390 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum i915_pipe pipe,
6391 				     struct intel_crtc_state *pipe_config)
6392 {
6393 	struct drm_atomic_state *state = pipe_config->base.state;
6394 	struct intel_crtc *other_crtc;
6395 	struct intel_crtc_state *other_crtc_state;
6396 
6397 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6398 		      pipe_name(pipe), pipe_config->fdi_lanes);
6399 	if (pipe_config->fdi_lanes > 4) {
6400 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6401 			      pipe_name(pipe), pipe_config->fdi_lanes);
6402 		return -EINVAL;
6403 	}
6404 
6405 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6406 		if (pipe_config->fdi_lanes > 2) {
6407 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6408 				      pipe_config->fdi_lanes);
6409 			return -EINVAL;
6410 		} else {
6411 			return 0;
6412 		}
6413 	}
6414 
6415 	if (INTEL_INFO(dev)->num_pipes == 2)
6416 		return 0;
6417 
6418 	/* Ivybridge 3 pipe is really complicated */
6419 	switch (pipe) {
6420 	case PIPE_A:
6421 		return 0;
6422 	case PIPE_B:
6423 		if (pipe_config->fdi_lanes <= 2)
6424 			return 0;
6425 
6426 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6427 		other_crtc_state =
6428 			intel_atomic_get_crtc_state(state, other_crtc);
6429 		if (IS_ERR(other_crtc_state))
6430 			return PTR_ERR(other_crtc_state);
6431 
6432 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6433 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6434 				      pipe_name(pipe), pipe_config->fdi_lanes);
6435 			return -EINVAL;
6436 		}
6437 		return 0;
6438 	case PIPE_C:
6439 		if (pipe_config->fdi_lanes > 2) {
6440 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6441 				      pipe_name(pipe), pipe_config->fdi_lanes);
6442 			return -EINVAL;
6443 		}
6444 
6445 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6446 		other_crtc_state =
6447 			intel_atomic_get_crtc_state(state, other_crtc);
6448 		if (IS_ERR(other_crtc_state))
6449 			return PTR_ERR(other_crtc_state);
6450 
6451 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6452 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6453 			return -EINVAL;
6454 		}
6455 		return 0;
6456 	default:
6457 		BUG();
6458 	}
6459 }
6460 
6461 #define RETRY 1
6462 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6463 				       struct intel_crtc_state *pipe_config)
6464 {
6465 	struct drm_device *dev = intel_crtc->base.dev;
6466 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6467 	int lane, link_bw, fdi_dotclock, ret;
6468 	bool needs_recompute = false;
6469 
6470 retry:
6471 	/* FDI is a binary signal running at ~2.7GHz, encoding
6472 	 * each output octet as 10 bits. The actual frequency
6473 	 * is stored as a divider into a 100MHz clock, and the
6474 	 * mode pixel clock is stored in units of 1KHz.
6475 	 * Hence the bw of each lane in terms of the mode signal
6476 	 * is:
6477 	 */
6478 	link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6479 
6480 	fdi_dotclock = adjusted_mode->crtc_clock;
6481 
6482 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6483 					   pipe_config->pipe_bpp);
6484 
6485 	pipe_config->fdi_lanes = lane;
6486 
6487 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6488 			       link_bw, &pipe_config->fdi_m_n);
6489 
6490 	ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6491 				       intel_crtc->pipe, pipe_config);
6492 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6493 		pipe_config->pipe_bpp -= 2*3;
6494 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6495 			      pipe_config->pipe_bpp);
6496 		needs_recompute = true;
6497 		pipe_config->bw_constrained = true;
6498 
6499 		goto retry;
6500 	}
6501 
6502 	if (needs_recompute)
6503 		return RETRY;
6504 
6505 	return ret;
6506 }
6507 
6508 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6509 				     struct intel_crtc_state *pipe_config)
6510 {
6511 	if (pipe_config->pipe_bpp > 24)
6512 		return false;
6513 
6514 	/* HSW can handle pixel rate up to cdclk? */
6515 	if (IS_HASWELL(dev_priv->dev))
6516 		return true;
6517 
6518 	/*
6519 	 * We compare against max which means we must take
6520 	 * the increased cdclk requirement into account when
6521 	 * calculating the new cdclk.
6522 	 *
6523 	 * Should measure whether using a lower cdclk w/o IPS
6524 	 */
6525 	return ilk_pipe_pixel_rate(pipe_config) <=
6526 		dev_priv->max_cdclk_freq * 95 / 100;
6527 }
6528 
6529 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6530 				   struct intel_crtc_state *pipe_config)
6531 {
6532 	struct drm_device *dev = crtc->base.dev;
6533 	struct drm_i915_private *dev_priv = dev->dev_private;
6534 
6535 	pipe_config->ips_enabled = i915.enable_ips &&
6536 		hsw_crtc_supports_ips(crtc) &&
6537 		pipe_config_supports_ips(dev_priv, pipe_config);
6538 }
6539 
6540 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6541 				     struct intel_crtc_state *pipe_config)
6542 {
6543 	struct drm_device *dev = crtc->base.dev;
6544 	struct drm_i915_private *dev_priv = dev->dev_private;
6545 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6546 
6547 	/* FIXME should check pixel clock limits on all platforms */
6548 	if (INTEL_INFO(dev)->gen < 4) {
6549 		int clock_limit = dev_priv->max_cdclk_freq;
6550 
6551 		/*
6552 		 * Enable pixel doubling when the dot clock
6553 		 * is > 90% of the (display) core speed.
6554 		 *
6555 		 * GDG double wide on either pipe,
6556 		 * otherwise pipe A only.
6557 		 */
6558 		if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6559 		    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6560 			clock_limit *= 2;
6561 			pipe_config->double_wide = true;
6562 		}
6563 
6564 		if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6565 			return -EINVAL;
6566 	}
6567 
6568 	/*
6569 	 * Pipe horizontal size must be even in:
6570 	 * - DVO ganged mode
6571 	 * - LVDS dual channel mode
6572 	 * - Double wide pipe
6573 	 */
6574 	if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6575 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6576 		pipe_config->pipe_src_w &= ~1;
6577 
6578 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6579 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6580 	 */
6581 	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6582 		adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6583 		return -EINVAL;
6584 
6585 	if (HAS_IPS(dev))
6586 		hsw_compute_ips_config(crtc, pipe_config);
6587 
6588 	if (pipe_config->has_pch_encoder)
6589 		return ironlake_fdi_compute_config(crtc, pipe_config);
6590 
6591 	return 0;
6592 }
6593 
6594 static int skylake_get_display_clock_speed(struct drm_device *dev)
6595 {
6596 	struct drm_i915_private *dev_priv = to_i915(dev);
6597 	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6598 	uint32_t cdctl = I915_READ(CDCLK_CTL);
6599 	uint32_t linkrate;
6600 
6601 	if (!(lcpll1 & LCPLL_PLL_ENABLE))
6602 		return 24000; /* 24MHz is the cd freq with NSSC ref */
6603 
6604 	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6605 		return 540000;
6606 
6607 	linkrate = (I915_READ(DPLL_CTRL1) &
6608 		    DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6609 
6610 	if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6611 	    linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6612 		/* vco 8640 */
6613 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6614 		case CDCLK_FREQ_450_432:
6615 			return 432000;
6616 		case CDCLK_FREQ_337_308:
6617 			return 308570;
6618 		case CDCLK_FREQ_675_617:
6619 			return 617140;
6620 		default:
6621 			WARN(1, "Unknown cd freq selection\n");
6622 		}
6623 	} else {
6624 		/* vco 8100 */
6625 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6626 		case CDCLK_FREQ_450_432:
6627 			return 450000;
6628 		case CDCLK_FREQ_337_308:
6629 			return 337500;
6630 		case CDCLK_FREQ_675_617:
6631 			return 675000;
6632 		default:
6633 			WARN(1, "Unknown cd freq selection\n");
6634 		}
6635 	}
6636 
6637 	/* error case, do as if DPLL0 isn't enabled */
6638 	return 24000;
6639 }
6640 
6641 static int broxton_get_display_clock_speed(struct drm_device *dev)
6642 {
6643 	struct drm_i915_private *dev_priv = to_i915(dev);
6644 	uint32_t cdctl = I915_READ(CDCLK_CTL);
6645 	uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6646 	uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6647 	int cdclk;
6648 
6649 	if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6650 		return 19200;
6651 
6652 	cdclk = 19200 * pll_ratio / 2;
6653 
6654 	switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6655 	case BXT_CDCLK_CD2X_DIV_SEL_1:
6656 		return cdclk;  /* 576MHz or 624MHz */
6657 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6658 		return cdclk * 2 / 3; /* 384MHz */
6659 	case BXT_CDCLK_CD2X_DIV_SEL_2:
6660 		return cdclk / 2; /* 288MHz */
6661 	case BXT_CDCLK_CD2X_DIV_SEL_4:
6662 		return cdclk / 4; /* 144MHz */
6663 	}
6664 
6665 	/* error case, do as if DE PLL isn't enabled */
6666 	return 19200;
6667 }
6668 
6669 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6670 {
6671 	struct drm_i915_private *dev_priv = dev->dev_private;
6672 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6673 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6674 
6675 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6676 		return 800000;
6677 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6678 		return 450000;
6679 	else if (freq == LCPLL_CLK_FREQ_450)
6680 		return 450000;
6681 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6682 		return 540000;
6683 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6684 		return 337500;
6685 	else
6686 		return 675000;
6687 }
6688 
6689 static int haswell_get_display_clock_speed(struct drm_device *dev)
6690 {
6691 	struct drm_i915_private *dev_priv = dev->dev_private;
6692 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6693 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6694 
6695 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6696 		return 800000;
6697 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6698 		return 450000;
6699 	else if (freq == LCPLL_CLK_FREQ_450)
6700 		return 450000;
6701 	else if (IS_HSW_ULT(dev))
6702 		return 337500;
6703 	else
6704 		return 540000;
6705 }
6706 
6707 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6708 {
6709 	struct drm_i915_private *dev_priv = dev->dev_private;
6710 	u32 val;
6711 	int divider;
6712 
6713 	if (dev_priv->hpll_freq == 0)
6714 		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6715 
6716 	mutex_lock(&dev_priv->sb_lock);
6717 	val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6718 	mutex_unlock(&dev_priv->sb_lock);
6719 
6720 	divider = val & DISPLAY_FREQUENCY_VALUES;
6721 
6722 	WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6723 	     (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6724 	     "cdclk change in progress\n");
6725 
6726 	return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6727 }
6728 
6729 static int ilk_get_display_clock_speed(struct drm_device *dev)
6730 {
6731 	return 450000;
6732 }
6733 
6734 static int i945_get_display_clock_speed(struct drm_device *dev)
6735 {
6736 	return 400000;
6737 }
6738 
6739 static int i915_get_display_clock_speed(struct drm_device *dev)
6740 {
6741 	return 333333;
6742 }
6743 
6744 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6745 {
6746 	return 200000;
6747 }
6748 
6749 static int pnv_get_display_clock_speed(struct drm_device *dev)
6750 {
6751 	u16 gcfgc = 0;
6752 
6753 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6754 
6755 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6756 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6757 		return 266667;
6758 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6759 		return 333333;
6760 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6761 		return 444444;
6762 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6763 		return 200000;
6764 	default:
6765 		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6766 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6767 		return 133333;
6768 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6769 		return 166667;
6770 	}
6771 }
6772 
6773 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6774 {
6775 	u16 gcfgc = 0;
6776 
6777 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6778 
6779 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6780 		return 133333;
6781 	else {
6782 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6783 		case GC_DISPLAY_CLOCK_333_MHZ:
6784 			return 333333;
6785 		default:
6786 		case GC_DISPLAY_CLOCK_190_200_MHZ:
6787 			return 190000;
6788 		}
6789 	}
6790 }
6791 
6792 static int i865_get_display_clock_speed(struct drm_device *dev)
6793 {
6794 	return 266667;
6795 }
6796 
6797 static int i85x_get_display_clock_speed(struct drm_device *dev)
6798 {
6799 	u16 hpllcc = 0;
6800 
6801 	/*
6802 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6803 	 * encoding is different :(
6804 	 * FIXME is this the right way to detect 852GM/852GMV?
6805 	 */
6806 	if (dev->pdev->revision == 0x1)
6807 		return 133333;
6808 
6809 #if 0
6810 	pci_bus_read_config_word(dev->pdev->bus,
6811 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6812 #endif
6813 
6814 	/* Assume that the hardware is in the high speed state.  This
6815 	 * should be the default.
6816 	 */
6817 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6818 	case GC_CLOCK_133_200:
6819 	case GC_CLOCK_133_200_2:
6820 	case GC_CLOCK_100_200:
6821 		return 200000;
6822 	case GC_CLOCK_166_250:
6823 		return 250000;
6824 	case GC_CLOCK_100_133:
6825 		return 133333;
6826 	case GC_CLOCK_133_266:
6827 	case GC_CLOCK_133_266_2:
6828 	case GC_CLOCK_166_266:
6829 		return 266667;
6830 	}
6831 
6832 	/* Shouldn't happen */
6833 	return 0;
6834 }
6835 
6836 static int i830_get_display_clock_speed(struct drm_device *dev)
6837 {
6838 	return 133333;
6839 }
6840 
6841 static unsigned int intel_hpll_vco(struct drm_device *dev)
6842 {
6843 	struct drm_i915_private *dev_priv = dev->dev_private;
6844 	static const unsigned int blb_vco[8] = {
6845 		[0] = 3200000,
6846 		[1] = 4000000,
6847 		[2] = 5333333,
6848 		[3] = 4800000,
6849 		[4] = 6400000,
6850 	};
6851 	static const unsigned int pnv_vco[8] = {
6852 		[0] = 3200000,
6853 		[1] = 4000000,
6854 		[2] = 5333333,
6855 		[3] = 4800000,
6856 		[4] = 2666667,
6857 	};
6858 	static const unsigned int cl_vco[8] = {
6859 		[0] = 3200000,
6860 		[1] = 4000000,
6861 		[2] = 5333333,
6862 		[3] = 6400000,
6863 		[4] = 3333333,
6864 		[5] = 3566667,
6865 		[6] = 4266667,
6866 	};
6867 	static const unsigned int elk_vco[8] = {
6868 		[0] = 3200000,
6869 		[1] = 4000000,
6870 		[2] = 5333333,
6871 		[3] = 4800000,
6872 	};
6873 	static const unsigned int ctg_vco[8] = {
6874 		[0] = 3200000,
6875 		[1] = 4000000,
6876 		[2] = 5333333,
6877 		[3] = 6400000,
6878 		[4] = 2666667,
6879 		[5] = 4266667,
6880 	};
6881 	const unsigned int *vco_table;
6882 	unsigned int vco;
6883 	uint8_t tmp = 0;
6884 
6885 	/* FIXME other chipsets? */
6886 	if (IS_GM45(dev))
6887 		vco_table = ctg_vco;
6888 	else if (IS_G4X(dev))
6889 		vco_table = elk_vco;
6890 	else if (IS_CRESTLINE(dev))
6891 		vco_table = cl_vco;
6892 	else if (IS_PINEVIEW(dev))
6893 		vco_table = pnv_vco;
6894 	else if (IS_G33(dev))
6895 		vco_table = blb_vco;
6896 	else
6897 		return 0;
6898 
6899 	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6900 
6901 	vco = vco_table[tmp & 0x7];
6902 	if (vco == 0)
6903 		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6904 	else
6905 		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6906 
6907 	return vco;
6908 }
6909 
6910 static int gm45_get_display_clock_speed(struct drm_device *dev)
6911 {
6912 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6913 	uint16_t tmp = 0;
6914 
6915 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
6916 
6917 	cdclk_sel = (tmp >> 12) & 0x1;
6918 
6919 	switch (vco) {
6920 	case 2666667:
6921 	case 4000000:
6922 	case 5333333:
6923 		return cdclk_sel ? 333333 : 222222;
6924 	case 3200000:
6925 		return cdclk_sel ? 320000 : 228571;
6926 	default:
6927 		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6928 		return 222222;
6929 	}
6930 }
6931 
6932 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6933 {
6934 	static const uint8_t div_3200[] = { 16, 10,  8 };
6935 	static const uint8_t div_4000[] = { 20, 12, 10 };
6936 	static const uint8_t div_5333[] = { 24, 16, 14 };
6937 	const uint8_t *div_table;
6938 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6939 	uint16_t tmp = 0;
6940 
6941 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
6942 
6943 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6944 
6945 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
6946 		goto fail;
6947 
6948 	switch (vco) {
6949 	case 3200000:
6950 		div_table = div_3200;
6951 		break;
6952 	case 4000000:
6953 		div_table = div_4000;
6954 		break;
6955 	case 5333333:
6956 		div_table = div_5333;
6957 		break;
6958 	default:
6959 		goto fail;
6960 	}
6961 
6962 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6963 
6964 fail:
6965 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6966 	return 200000;
6967 }
6968 
6969 static int g33_get_display_clock_speed(struct drm_device *dev)
6970 {
6971 	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6972 	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6973 	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6974 	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6975 	const uint8_t *div_table;
6976 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6977 	uint16_t tmp = 0;
6978 
6979 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
6980 
6981 	cdclk_sel = (tmp >> 4) & 0x7;
6982 
6983 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
6984 		goto fail;
6985 
6986 	switch (vco) {
6987 	case 3200000:
6988 		div_table = div_3200;
6989 		break;
6990 	case 4000000:
6991 		div_table = div_4000;
6992 		break;
6993 	case 4800000:
6994 		div_table = div_4800;
6995 		break;
6996 	case 5333333:
6997 		div_table = div_5333;
6998 		break;
6999 	default:
7000 		goto fail;
7001 	}
7002 
7003 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7004 
7005 fail:
7006 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7007 	return 190476;
7008 }
7009 
7010 static void
7011 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7012 {
7013 	while (*num > DATA_LINK_M_N_MASK ||
7014 	       *den > DATA_LINK_M_N_MASK) {
7015 		*num >>= 1;
7016 		*den >>= 1;
7017 	}
7018 }
7019 
7020 static void compute_m_n(unsigned int m, unsigned int n,
7021 			uint32_t *ret_m, uint32_t *ret_n)
7022 {
7023 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7024 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7025 	intel_reduce_m_n_ratio(ret_m, ret_n);
7026 }
7027 
7028 void
7029 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7030 		       int pixel_clock, int link_clock,
7031 		       struct intel_link_m_n *m_n)
7032 {
7033 	m_n->tu = 64;
7034 
7035 	compute_m_n(bits_per_pixel * pixel_clock,
7036 		    link_clock * nlanes * 8,
7037 		    &m_n->gmch_m, &m_n->gmch_n);
7038 
7039 	compute_m_n(pixel_clock, link_clock,
7040 		    &m_n->link_m, &m_n->link_n);
7041 }
7042 
7043 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7044 {
7045 	if (i915.panel_use_ssc >= 0)
7046 		return i915.panel_use_ssc != 0;
7047 	return dev_priv->vbt.lvds_use_ssc
7048 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7049 }
7050 
7051 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7052 			   int num_connectors)
7053 {
7054 	struct drm_device *dev = crtc_state->base.crtc->dev;
7055 	struct drm_i915_private *dev_priv = dev->dev_private;
7056 	int refclk;
7057 
7058 	WARN_ON(!crtc_state->base.state);
7059 
7060 	if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7061 		refclk = 100000;
7062 	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7063 	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7064 		refclk = dev_priv->vbt.lvds_ssc_freq;
7065 		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7066 	} else if (!IS_GEN2(dev)) {
7067 		refclk = 96000;
7068 	} else {
7069 		refclk = 48000;
7070 	}
7071 
7072 	return refclk;
7073 }
7074 
7075 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7076 {
7077 	return (1 << dpll->n) << 16 | dpll->m2;
7078 }
7079 
7080 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7081 {
7082 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7083 }
7084 
7085 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7086 				     struct intel_crtc_state *crtc_state,
7087 				     intel_clock_t *reduced_clock)
7088 {
7089 	struct drm_device *dev = crtc->base.dev;
7090 	u32 fp, fp2 = 0;
7091 
7092 	if (IS_PINEVIEW(dev)) {
7093 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7094 		if (reduced_clock)
7095 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7096 	} else {
7097 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7098 		if (reduced_clock)
7099 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7100 	}
7101 
7102 	crtc_state->dpll_hw_state.fp0 = fp;
7103 
7104 	crtc->lowfreq_avail = false;
7105 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7106 	    reduced_clock) {
7107 		crtc_state->dpll_hw_state.fp1 = fp2;
7108 		crtc->lowfreq_avail = true;
7109 	} else {
7110 		crtc_state->dpll_hw_state.fp1 = fp;
7111 	}
7112 }
7113 
7114 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum i915_pipe
7115 		pipe)
7116 {
7117 	u32 reg_val;
7118 
7119 	/*
7120 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7121 	 * and set it to a reasonable value instead.
7122 	 */
7123 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7124 	reg_val &= 0xffffff00;
7125 	reg_val |= 0x00000030;
7126 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7127 
7128 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7129 	reg_val &= 0x8cffffff;
7130 	reg_val = 0x8c000000;
7131 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7132 
7133 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7134 	reg_val &= 0xffffff00;
7135 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7136 
7137 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7138 	reg_val &= 0x00ffffff;
7139 	reg_val |= 0xb0000000;
7140 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7141 }
7142 
7143 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7144 					 struct intel_link_m_n *m_n)
7145 {
7146 	struct drm_device *dev = crtc->base.dev;
7147 	struct drm_i915_private *dev_priv = dev->dev_private;
7148 	int pipe = crtc->pipe;
7149 
7150 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7151 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7152 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7153 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7154 }
7155 
7156 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7157 					 struct intel_link_m_n *m_n,
7158 					 struct intel_link_m_n *m2_n2)
7159 {
7160 	struct drm_device *dev = crtc->base.dev;
7161 	struct drm_i915_private *dev_priv = dev->dev_private;
7162 	int pipe = crtc->pipe;
7163 	enum transcoder transcoder = crtc->config->cpu_transcoder;
7164 
7165 	if (INTEL_INFO(dev)->gen >= 5) {
7166 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7167 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7168 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7169 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7170 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7171 		 * for gen < 8) and if DRRS is supported (to make sure the
7172 		 * registers are not unnecessarily accessed).
7173 		 */
7174 		if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7175 			crtc->config->has_drrs) {
7176 			I915_WRITE(PIPE_DATA_M2(transcoder),
7177 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7178 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7179 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7180 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7181 		}
7182 	} else {
7183 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7184 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7185 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7186 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7187 	}
7188 }
7189 
7190 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7191 {
7192 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7193 
7194 	if (m_n == M1_N1) {
7195 		dp_m_n = &crtc->config->dp_m_n;
7196 		dp_m2_n2 = &crtc->config->dp_m2_n2;
7197 	} else if (m_n == M2_N2) {
7198 
7199 		/*
7200 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7201 		 * needs to be programmed into M1_N1.
7202 		 */
7203 		dp_m_n = &crtc->config->dp_m2_n2;
7204 	} else {
7205 		DRM_ERROR("Unsupported divider value\n");
7206 		return;
7207 	}
7208 
7209 	if (crtc->config->has_pch_encoder)
7210 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7211 	else
7212 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7213 }
7214 
7215 static void vlv_compute_dpll(struct intel_crtc *crtc,
7216 			     struct intel_crtc_state *pipe_config)
7217 {
7218 	u32 dpll, dpll_md;
7219 
7220 	/*
7221 	 * Enable DPIO clock input. We should never disable the reference
7222 	 * clock for pipe B, since VGA hotplug / manual detection depends
7223 	 * on it.
7224 	 */
7225 	dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7226 		DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7227 	/* We should never disable this, set it here for state tracking */
7228 	if (crtc->pipe == PIPE_B)
7229 		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7230 	dpll |= DPLL_VCO_ENABLE;
7231 	pipe_config->dpll_hw_state.dpll = dpll;
7232 
7233 	dpll_md = (pipe_config->pixel_multiplier - 1)
7234 		<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7235 	pipe_config->dpll_hw_state.dpll_md = dpll_md;
7236 }
7237 
7238 static void vlv_prepare_pll(struct intel_crtc *crtc,
7239 			    const struct intel_crtc_state *pipe_config)
7240 {
7241 	struct drm_device *dev = crtc->base.dev;
7242 	struct drm_i915_private *dev_priv = dev->dev_private;
7243 	int pipe = crtc->pipe;
7244 	u32 mdiv;
7245 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7246 	u32 coreclk, reg_val;
7247 
7248 	mutex_lock(&dev_priv->sb_lock);
7249 
7250 	bestn = pipe_config->dpll.n;
7251 	bestm1 = pipe_config->dpll.m1;
7252 	bestm2 = pipe_config->dpll.m2;
7253 	bestp1 = pipe_config->dpll.p1;
7254 	bestp2 = pipe_config->dpll.p2;
7255 
7256 	/* See eDP HDMI DPIO driver vbios notes doc */
7257 
7258 	/* PLL B needs special handling */
7259 	if (pipe == PIPE_B)
7260 		vlv_pllb_recal_opamp(dev_priv, pipe);
7261 
7262 	/* Set up Tx target for periodic Rcomp update */
7263 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7264 
7265 	/* Disable target IRef on PLL */
7266 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7267 	reg_val &= 0x00ffffff;
7268 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7269 
7270 	/* Disable fast lock */
7271 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7272 
7273 	/* Set idtafcrecal before PLL is enabled */
7274 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7275 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7276 	mdiv |= ((bestn << DPIO_N_SHIFT));
7277 	mdiv |= (1 << DPIO_K_SHIFT);
7278 
7279 	/*
7280 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7281 	 * but we don't support that).
7282 	 * Note: don't use the DAC post divider as it seems unstable.
7283 	 */
7284 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7285 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7286 
7287 	mdiv |= DPIO_ENABLE_CALIBRATION;
7288 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7289 
7290 	/* Set HBR and RBR LPF coefficients */
7291 	if (pipe_config->port_clock == 162000 ||
7292 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7293 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7294 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7295 				 0x009f0003);
7296 	else
7297 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7298 				 0x00d0000f);
7299 
7300 	if (pipe_config->has_dp_encoder) {
7301 		/* Use SSC source */
7302 		if (pipe == PIPE_A)
7303 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7304 					 0x0df40000);
7305 		else
7306 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7307 					 0x0df70000);
7308 	} else { /* HDMI or VGA */
7309 		/* Use bend source */
7310 		if (pipe == PIPE_A)
7311 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7312 					 0x0df70000);
7313 		else
7314 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7315 					 0x0df40000);
7316 	}
7317 
7318 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7319 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7320 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7321 	    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7322 		coreclk |= 0x01000000;
7323 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7324 
7325 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7326 	mutex_unlock(&dev_priv->sb_lock);
7327 }
7328 
7329 static void chv_compute_dpll(struct intel_crtc *crtc,
7330 			     struct intel_crtc_state *pipe_config)
7331 {
7332 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7333 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7334 		DPLL_VCO_ENABLE;
7335 	if (crtc->pipe != PIPE_A)
7336 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7337 
7338 	pipe_config->dpll_hw_state.dpll_md =
7339 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7340 }
7341 
7342 static void chv_prepare_pll(struct intel_crtc *crtc,
7343 			    const struct intel_crtc_state *pipe_config)
7344 {
7345 	struct drm_device *dev = crtc->base.dev;
7346 	struct drm_i915_private *dev_priv = dev->dev_private;
7347 	int pipe = crtc->pipe;
7348 	int dpll_reg = DPLL(crtc->pipe);
7349 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7350 	u32 loopfilter, tribuf_calcntr;
7351 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7352 	u32 dpio_val;
7353 	int vco;
7354 
7355 	bestn = pipe_config->dpll.n;
7356 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7357 	bestm1 = pipe_config->dpll.m1;
7358 	bestm2 = pipe_config->dpll.m2 >> 22;
7359 	bestp1 = pipe_config->dpll.p1;
7360 	bestp2 = pipe_config->dpll.p2;
7361 	vco = pipe_config->dpll.vco;
7362 	dpio_val = 0;
7363 	loopfilter = 0;
7364 
7365 	/*
7366 	 * Enable Refclk and SSC
7367 	 */
7368 	I915_WRITE(dpll_reg,
7369 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7370 
7371 	mutex_lock(&dev_priv->sb_lock);
7372 
7373 	/* p1 and p2 divider */
7374 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7375 			5 << DPIO_CHV_S1_DIV_SHIFT |
7376 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7377 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7378 			1 << DPIO_CHV_K_DIV_SHIFT);
7379 
7380 	/* Feedback post-divider - m2 */
7381 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7382 
7383 	/* Feedback refclk divider - n and m1 */
7384 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7385 			DPIO_CHV_M1_DIV_BY_2 |
7386 			1 << DPIO_CHV_N_DIV_SHIFT);
7387 
7388 	/* M2 fraction division */
7389 	if (bestm2_frac)
7390 		vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7391 
7392 	/* M2 fraction division enable */
7393 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7394 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7395 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7396 	if (bestm2_frac)
7397 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7398 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7399 
7400 	/* Program digital lock detect threshold */
7401 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7402 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7403 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7404 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7405 	if (!bestm2_frac)
7406 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7407 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7408 
7409 	/* Loop filter */
7410 	if (vco == 5400000) {
7411 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7412 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7413 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7414 		tribuf_calcntr = 0x9;
7415 	} else if (vco <= 6200000) {
7416 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7417 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7418 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7419 		tribuf_calcntr = 0x9;
7420 	} else if (vco <= 6480000) {
7421 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7422 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7423 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7424 		tribuf_calcntr = 0x8;
7425 	} else {
7426 		/* Not supported. Apply the same limits as in the max case */
7427 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7428 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7429 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7430 		tribuf_calcntr = 0;
7431 	}
7432 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7433 
7434 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7435 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7436 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7437 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7438 
7439 	/* AFC Recal */
7440 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7441 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7442 			DPIO_AFC_RECAL);
7443 
7444 	mutex_unlock(&dev_priv->sb_lock);
7445 }
7446 
7447 /**
7448  * vlv_force_pll_on - forcibly enable just the PLL
7449  * @dev_priv: i915 private structure
7450  * @pipe: pipe PLL to enable
7451  * @dpll: PLL configuration
7452  *
7453  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7454  * in cases where we need the PLL enabled even when @pipe is not going to
7455  * be enabled.
7456  */
7457 void vlv_force_pll_on(struct drm_device *dev, enum i915_pipe pipe,
7458 		      const struct dpll *dpll)
7459 {
7460 	struct intel_crtc *crtc =
7461 		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7462 	struct intel_crtc_state pipe_config = {
7463 		.base.crtc = &crtc->base,
7464 		.pixel_multiplier = 1,
7465 		.dpll = *dpll,
7466 	};
7467 
7468 	if (IS_CHERRYVIEW(dev)) {
7469 		chv_compute_dpll(crtc, &pipe_config);
7470 		chv_prepare_pll(crtc, &pipe_config);
7471 		chv_enable_pll(crtc, &pipe_config);
7472 	} else {
7473 		vlv_compute_dpll(crtc, &pipe_config);
7474 		vlv_prepare_pll(crtc, &pipe_config);
7475 		vlv_enable_pll(crtc, &pipe_config);
7476 	}
7477 }
7478 
7479 /**
7480  * vlv_force_pll_off - forcibly disable just the PLL
7481  * @dev_priv: i915 private structure
7482  * @pipe: pipe PLL to disable
7483  *
7484  * Disable the PLL for @pipe. To be used in cases where we need
7485  * the PLL enabled even when @pipe is not going to be enabled.
7486  */
7487 void vlv_force_pll_off(struct drm_device *dev, enum i915_pipe pipe)
7488 {
7489 	if (IS_CHERRYVIEW(dev))
7490 		chv_disable_pll(to_i915(dev), pipe);
7491 	else
7492 		vlv_disable_pll(to_i915(dev), pipe);
7493 }
7494 
7495 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7496 			      struct intel_crtc_state *crtc_state,
7497 			      intel_clock_t *reduced_clock,
7498 			      int num_connectors)
7499 {
7500 	struct drm_device *dev = crtc->base.dev;
7501 	struct drm_i915_private *dev_priv = dev->dev_private;
7502 	u32 dpll;
7503 	bool is_sdvo;
7504 	struct dpll *clock = &crtc_state->dpll;
7505 
7506 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7507 
7508 	is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7509 		intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7510 
7511 	dpll = DPLL_VGA_MODE_DIS;
7512 
7513 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7514 		dpll |= DPLLB_MODE_LVDS;
7515 	else
7516 		dpll |= DPLLB_MODE_DAC_SERIAL;
7517 
7518 	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7519 		dpll |= (crtc_state->pixel_multiplier - 1)
7520 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
7521 	}
7522 
7523 	if (is_sdvo)
7524 		dpll |= DPLL_SDVO_HIGH_SPEED;
7525 
7526 	if (crtc_state->has_dp_encoder)
7527 		dpll |= DPLL_SDVO_HIGH_SPEED;
7528 
7529 	/* compute bitmask from p1 value */
7530 	if (IS_PINEVIEW(dev))
7531 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7532 	else {
7533 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7534 		if (IS_G4X(dev) && reduced_clock)
7535 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7536 	}
7537 	switch (clock->p2) {
7538 	case 5:
7539 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7540 		break;
7541 	case 7:
7542 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7543 		break;
7544 	case 10:
7545 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7546 		break;
7547 	case 14:
7548 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7549 		break;
7550 	}
7551 	if (INTEL_INFO(dev)->gen >= 4)
7552 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7553 
7554 	if (crtc_state->sdvo_tv_clock)
7555 		dpll |= PLL_REF_INPUT_TVCLKINBC;
7556 	else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7557 		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7558 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7559 	else
7560 		dpll |= PLL_REF_INPUT_DREFCLK;
7561 
7562 	dpll |= DPLL_VCO_ENABLE;
7563 	crtc_state->dpll_hw_state.dpll = dpll;
7564 
7565 	if (INTEL_INFO(dev)->gen >= 4) {
7566 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7567 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7568 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
7569 	}
7570 }
7571 
7572 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7573 			      struct intel_crtc_state *crtc_state,
7574 			      intel_clock_t *reduced_clock,
7575 			      int num_connectors)
7576 {
7577 	struct drm_device *dev = crtc->base.dev;
7578 	struct drm_i915_private *dev_priv = dev->dev_private;
7579 	u32 dpll;
7580 	struct dpll *clock = &crtc_state->dpll;
7581 
7582 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7583 
7584 	dpll = DPLL_VGA_MODE_DIS;
7585 
7586 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7587 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7588 	} else {
7589 		if (clock->p1 == 2)
7590 			dpll |= PLL_P1_DIVIDE_BY_TWO;
7591 		else
7592 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7593 		if (clock->p2 == 4)
7594 			dpll |= PLL_P2_DIVIDE_BY_4;
7595 	}
7596 
7597 	if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7598 		dpll |= DPLL_DVO_2X_MODE;
7599 
7600 	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7601 		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7602 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7603 	else
7604 		dpll |= PLL_REF_INPUT_DREFCLK;
7605 
7606 	dpll |= DPLL_VCO_ENABLE;
7607 	crtc_state->dpll_hw_state.dpll = dpll;
7608 }
7609 
7610 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7611 {
7612 	struct drm_device *dev = intel_crtc->base.dev;
7613 	struct drm_i915_private *dev_priv = dev->dev_private;
7614 	enum i915_pipe pipe = intel_crtc->pipe;
7615 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7616 	struct drm_display_mode *adjusted_mode =
7617 		&intel_crtc->config->base.adjusted_mode;
7618 	uint32_t crtc_vtotal, crtc_vblank_end;
7619 	int vsyncshift = 0;
7620 
7621 	/* We need to be careful not to changed the adjusted mode, for otherwise
7622 	 * the hw state checker will get angry at the mismatch. */
7623 	crtc_vtotal = adjusted_mode->crtc_vtotal;
7624 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7625 
7626 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7627 		/* the chip adds 2 halflines automatically */
7628 		crtc_vtotal -= 1;
7629 		crtc_vblank_end -= 1;
7630 
7631 		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7632 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7633 		else
7634 			vsyncshift = adjusted_mode->crtc_hsync_start -
7635 				adjusted_mode->crtc_htotal / 2;
7636 		if (vsyncshift < 0)
7637 			vsyncshift += adjusted_mode->crtc_htotal;
7638 	}
7639 
7640 	if (INTEL_INFO(dev)->gen > 3)
7641 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7642 
7643 	I915_WRITE(HTOTAL(cpu_transcoder),
7644 		   (adjusted_mode->crtc_hdisplay - 1) |
7645 		   ((adjusted_mode->crtc_htotal - 1) << 16));
7646 	I915_WRITE(HBLANK(cpu_transcoder),
7647 		   (adjusted_mode->crtc_hblank_start - 1) |
7648 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7649 	I915_WRITE(HSYNC(cpu_transcoder),
7650 		   (adjusted_mode->crtc_hsync_start - 1) |
7651 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7652 
7653 	I915_WRITE(VTOTAL(cpu_transcoder),
7654 		   (adjusted_mode->crtc_vdisplay - 1) |
7655 		   ((crtc_vtotal - 1) << 16));
7656 	I915_WRITE(VBLANK(cpu_transcoder),
7657 		   (adjusted_mode->crtc_vblank_start - 1) |
7658 		   ((crtc_vblank_end - 1) << 16));
7659 	I915_WRITE(VSYNC(cpu_transcoder),
7660 		   (adjusted_mode->crtc_vsync_start - 1) |
7661 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7662 
7663 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7664 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7665 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7666 	 * bits. */
7667 	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7668 	    (pipe == PIPE_B || pipe == PIPE_C))
7669 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7670 
7671 	/* pipesrc controls the size that is scaled from, which should
7672 	 * always be the user's requested size.
7673 	 */
7674 	I915_WRITE(PIPESRC(pipe),
7675 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7676 		   (intel_crtc->config->pipe_src_h - 1));
7677 }
7678 
7679 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7680 				   struct intel_crtc_state *pipe_config)
7681 {
7682 	struct drm_device *dev = crtc->base.dev;
7683 	struct drm_i915_private *dev_priv = dev->dev_private;
7684 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7685 	uint32_t tmp;
7686 
7687 	tmp = I915_READ(HTOTAL(cpu_transcoder));
7688 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7689 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7690 	tmp = I915_READ(HBLANK(cpu_transcoder));
7691 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7692 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7693 	tmp = I915_READ(HSYNC(cpu_transcoder));
7694 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7695 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7696 
7697 	tmp = I915_READ(VTOTAL(cpu_transcoder));
7698 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7699 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7700 	tmp = I915_READ(VBLANK(cpu_transcoder));
7701 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7702 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7703 	tmp = I915_READ(VSYNC(cpu_transcoder));
7704 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7705 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7706 
7707 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7708 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7709 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7710 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7711 	}
7712 
7713 	tmp = I915_READ(PIPESRC(crtc->pipe));
7714 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7715 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7716 
7717 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7718 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7719 }
7720 
7721 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7722 				 struct intel_crtc_state *pipe_config)
7723 {
7724 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7725 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7726 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7727 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7728 
7729 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7730 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7731 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7732 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7733 
7734 	mode->flags = pipe_config->base.adjusted_mode.flags;
7735 	mode->type = DRM_MODE_TYPE_DRIVER;
7736 
7737 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7738 	mode->flags |= pipe_config->base.adjusted_mode.flags;
7739 
7740 	mode->hsync = drm_mode_hsync(mode);
7741 	mode->vrefresh = drm_mode_vrefresh(mode);
7742 	drm_mode_set_name(mode);
7743 }
7744 
7745 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7746 {
7747 	struct drm_device *dev = intel_crtc->base.dev;
7748 	struct drm_i915_private *dev_priv = dev->dev_private;
7749 	uint32_t pipeconf;
7750 
7751 	pipeconf = 0;
7752 
7753 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7754 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7755 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7756 
7757 	if (intel_crtc->config->double_wide)
7758 		pipeconf |= PIPECONF_DOUBLE_WIDE;
7759 
7760 	/* only g4x and later have fancy bpc/dither controls */
7761 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7762 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
7763 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7764 			pipeconf |= PIPECONF_DITHER_EN |
7765 				    PIPECONF_DITHER_TYPE_SP;
7766 
7767 		switch (intel_crtc->config->pipe_bpp) {
7768 		case 18:
7769 			pipeconf |= PIPECONF_6BPC;
7770 			break;
7771 		case 24:
7772 			pipeconf |= PIPECONF_8BPC;
7773 			break;
7774 		case 30:
7775 			pipeconf |= PIPECONF_10BPC;
7776 			break;
7777 		default:
7778 			/* Case prevented by intel_choose_pipe_bpp_dither. */
7779 			BUG();
7780 		}
7781 	}
7782 
7783 	if (HAS_PIPE_CXSR(dev)) {
7784 		if (intel_crtc->lowfreq_avail) {
7785 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7786 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7787 		} else {
7788 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7789 		}
7790 	}
7791 
7792 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7793 		if (INTEL_INFO(dev)->gen < 4 ||
7794 		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7795 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7796 		else
7797 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7798 	} else
7799 		pipeconf |= PIPECONF_PROGRESSIVE;
7800 
7801 	if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7802 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7803 
7804 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7805 	POSTING_READ(PIPECONF(intel_crtc->pipe));
7806 }
7807 
7808 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7809 				   struct intel_crtc_state *crtc_state)
7810 {
7811 	struct drm_device *dev = crtc->base.dev;
7812 	struct drm_i915_private *dev_priv = dev->dev_private;
7813 	int refclk, num_connectors = 0;
7814 	intel_clock_t clock;
7815 	bool ok;
7816 	bool is_dsi = false;
7817 	struct intel_encoder *encoder;
7818 	const intel_limit_t *limit;
7819 	struct drm_atomic_state *state = crtc_state->base.state;
7820 	struct drm_connector *connector;
7821 	struct drm_connector_state *connector_state;
7822 	int i;
7823 
7824 	memset(&crtc_state->dpll_hw_state, 0,
7825 	       sizeof(crtc_state->dpll_hw_state));
7826 
7827 	for_each_connector_in_state(state, connector, connector_state, i) {
7828 		if (connector_state->crtc != &crtc->base)
7829 			continue;
7830 
7831 		encoder = to_intel_encoder(connector_state->best_encoder);
7832 
7833 		switch (encoder->type) {
7834 		case INTEL_OUTPUT_DSI:
7835 			is_dsi = true;
7836 			break;
7837 		default:
7838 			break;
7839 		}
7840 
7841 		num_connectors++;
7842 	}
7843 
7844 	if (is_dsi)
7845 		return 0;
7846 
7847 	if (!crtc_state->clock_set) {
7848 		refclk = i9xx_get_refclk(crtc_state, num_connectors);
7849 
7850 		/*
7851 		 * Returns a set of divisors for the desired target clock with
7852 		 * the given refclk, or FALSE.  The returned values represent
7853 		 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7854 		 * 2) / p1 / p2.
7855 		 */
7856 		limit = intel_limit(crtc_state, refclk);
7857 		ok = dev_priv->display.find_dpll(limit, crtc_state,
7858 						 crtc_state->port_clock,
7859 						 refclk, NULL, &clock);
7860 		if (!ok) {
7861 			DRM_ERROR("Couldn't find PLL settings for mode!\n");
7862 			return -EINVAL;
7863 		}
7864 
7865 		/* Compat-code for transition, will disappear. */
7866 		crtc_state->dpll.n = clock.n;
7867 		crtc_state->dpll.m1 = clock.m1;
7868 		crtc_state->dpll.m2 = clock.m2;
7869 		crtc_state->dpll.p1 = clock.p1;
7870 		crtc_state->dpll.p2 = clock.p2;
7871 	}
7872 
7873 	if (IS_GEN2(dev)) {
7874 		i8xx_compute_dpll(crtc, crtc_state, NULL,
7875 				  num_connectors);
7876 	} else if (IS_CHERRYVIEW(dev)) {
7877 		chv_compute_dpll(crtc, crtc_state);
7878 	} else if (IS_VALLEYVIEW(dev)) {
7879 		vlv_compute_dpll(crtc, crtc_state);
7880 	} else {
7881 		i9xx_compute_dpll(crtc, crtc_state, NULL,
7882 				  num_connectors);
7883 	}
7884 
7885 	return 0;
7886 }
7887 
7888 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7889 				 struct intel_crtc_state *pipe_config)
7890 {
7891 	struct drm_device *dev = crtc->base.dev;
7892 	struct drm_i915_private *dev_priv = dev->dev_private;
7893 	uint32_t tmp;
7894 
7895 	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7896 		return;
7897 
7898 	tmp = I915_READ(PFIT_CONTROL);
7899 	if (!(tmp & PFIT_ENABLE))
7900 		return;
7901 
7902 	/* Check whether the pfit is attached to our pipe. */
7903 	if (INTEL_INFO(dev)->gen < 4) {
7904 		if (crtc->pipe != PIPE_B)
7905 			return;
7906 	} else {
7907 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7908 			return;
7909 	}
7910 
7911 	pipe_config->gmch_pfit.control = tmp;
7912 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7913 	if (INTEL_INFO(dev)->gen < 5)
7914 		pipe_config->gmch_pfit.lvds_border_bits =
7915 			I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7916 }
7917 
7918 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7919 			       struct intel_crtc_state *pipe_config)
7920 {
7921 	struct drm_device *dev = crtc->base.dev;
7922 	struct drm_i915_private *dev_priv = dev->dev_private;
7923 	int pipe = pipe_config->cpu_transcoder;
7924 	intel_clock_t clock;
7925 	u32 mdiv;
7926 	int refclk = 100000;
7927 
7928 	/* In case of MIPI DPLL will not even be used */
7929 	if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7930 		return;
7931 
7932 	mutex_lock(&dev_priv->sb_lock);
7933 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7934 	mutex_unlock(&dev_priv->sb_lock);
7935 
7936 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7937 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
7938 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7939 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7940 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7941 
7942 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7943 }
7944 
7945 static void
7946 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7947 			      struct intel_initial_plane_config *plane_config)
7948 {
7949 	struct drm_device *dev = crtc->base.dev;
7950 	struct drm_i915_private *dev_priv = dev->dev_private;
7951 	u32 val, base, offset;
7952 	int pipe = crtc->pipe, plane = crtc->plane;
7953 	int fourcc, pixel_format;
7954 	unsigned int aligned_height;
7955 	struct drm_framebuffer *fb;
7956 	struct intel_framebuffer *intel_fb;
7957 
7958 	val = I915_READ(DSPCNTR(plane));
7959 	if (!(val & DISPLAY_PLANE_ENABLE))
7960 		return;
7961 
7962 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7963 	if (!intel_fb) {
7964 		DRM_DEBUG_KMS("failed to alloc fb\n");
7965 		return;
7966 	}
7967 
7968 	fb = &intel_fb->base;
7969 
7970 	if (INTEL_INFO(dev)->gen >= 4) {
7971 		if (val & DISPPLANE_TILED) {
7972 			plane_config->tiling = I915_TILING_X;
7973 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7974 		}
7975 	}
7976 
7977 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7978 	fourcc = i9xx_format_to_fourcc(pixel_format);
7979 	fb->pixel_format = fourcc;
7980 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7981 
7982 	if (INTEL_INFO(dev)->gen >= 4) {
7983 		if (plane_config->tiling)
7984 			offset = I915_READ(DSPTILEOFF(plane));
7985 		else
7986 			offset = I915_READ(DSPLINOFF(plane));
7987 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7988 	} else {
7989 		base = I915_READ(DSPADDR(plane));
7990 	}
7991 	plane_config->base = base;
7992 
7993 	val = I915_READ(PIPESRC(pipe));
7994 	fb->width = ((val >> 16) & 0xfff) + 1;
7995 	fb->height = ((val >> 0) & 0xfff) + 1;
7996 
7997 	val = I915_READ(DSPSTRIDE(pipe));
7998 	fb->pitches[0] = val & 0xffffffc0;
7999 
8000 	aligned_height = intel_fb_align_height(dev, fb->height,
8001 					       fb->pixel_format,
8002 					       fb->modifier[0]);
8003 
8004 	plane_config->size = fb->pitches[0] * aligned_height;
8005 
8006 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8007 		      pipe_name(pipe), plane, fb->width, fb->height,
8008 		      fb->bits_per_pixel, base, fb->pitches[0],
8009 		      plane_config->size);
8010 
8011 	plane_config->fb = intel_fb;
8012 }
8013 
8014 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8015 			       struct intel_crtc_state *pipe_config)
8016 {
8017 	struct drm_device *dev = crtc->base.dev;
8018 	struct drm_i915_private *dev_priv = dev->dev_private;
8019 	int pipe = pipe_config->cpu_transcoder;
8020 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8021 	intel_clock_t clock;
8022 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8023 	int refclk = 100000;
8024 
8025 	mutex_lock(&dev_priv->sb_lock);
8026 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8027 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8028 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8029 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8030 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8031 	mutex_unlock(&dev_priv->sb_lock);
8032 
8033 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8034 	clock.m2 = (pll_dw0 & 0xff) << 22;
8035 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8036 		clock.m2 |= pll_dw2 & 0x3fffff;
8037 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8038 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8039 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8040 
8041 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8042 }
8043 
8044 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8045 				 struct intel_crtc_state *pipe_config)
8046 {
8047 	struct drm_device *dev = crtc->base.dev;
8048 	struct drm_i915_private *dev_priv = dev->dev_private;
8049 	uint32_t tmp;
8050 
8051 	if (!intel_display_power_is_enabled(dev_priv,
8052 					    POWER_DOMAIN_PIPE(crtc->pipe)))
8053 		return false;
8054 
8055 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8056 	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8057 
8058 	tmp = I915_READ(PIPECONF(crtc->pipe));
8059 	if (!(tmp & PIPECONF_ENABLE))
8060 		return false;
8061 
8062 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8063 		switch (tmp & PIPECONF_BPC_MASK) {
8064 		case PIPECONF_6BPC:
8065 			pipe_config->pipe_bpp = 18;
8066 			break;
8067 		case PIPECONF_8BPC:
8068 			pipe_config->pipe_bpp = 24;
8069 			break;
8070 		case PIPECONF_10BPC:
8071 			pipe_config->pipe_bpp = 30;
8072 			break;
8073 		default:
8074 			break;
8075 		}
8076 	}
8077 
8078 	if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8079 		pipe_config->limited_color_range = true;
8080 
8081 	if (INTEL_INFO(dev)->gen < 4)
8082 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8083 
8084 	intel_get_pipe_timings(crtc, pipe_config);
8085 
8086 	i9xx_get_pfit_config(crtc, pipe_config);
8087 
8088 	if (INTEL_INFO(dev)->gen >= 4) {
8089 		tmp = I915_READ(DPLL_MD(crtc->pipe));
8090 		pipe_config->pixel_multiplier =
8091 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8092 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8093 		pipe_config->dpll_hw_state.dpll_md = tmp;
8094 	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8095 		tmp = I915_READ(DPLL(crtc->pipe));
8096 		pipe_config->pixel_multiplier =
8097 			((tmp & SDVO_MULTIPLIER_MASK)
8098 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8099 	} else {
8100 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8101 		 * port and will be fixed up in the encoder->get_config
8102 		 * function. */
8103 		pipe_config->pixel_multiplier = 1;
8104 	}
8105 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8106 	if (!IS_VALLEYVIEW(dev)) {
8107 		/*
8108 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8109 		 * on 830. Filter it out here so that we don't
8110 		 * report errors due to that.
8111 		 */
8112 		if (IS_I830(dev))
8113 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8114 
8115 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8116 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8117 	} else {
8118 		/* Mask out read-only status bits. */
8119 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8120 						     DPLL_PORTC_READY_MASK |
8121 						     DPLL_PORTB_READY_MASK);
8122 	}
8123 
8124 	if (IS_CHERRYVIEW(dev))
8125 		chv_crtc_clock_get(crtc, pipe_config);
8126 	else if (IS_VALLEYVIEW(dev))
8127 		vlv_crtc_clock_get(crtc, pipe_config);
8128 	else
8129 		i9xx_crtc_clock_get(crtc, pipe_config);
8130 
8131 	return true;
8132 }
8133 
8134 static void ironlake_init_pch_refclk(struct drm_device *dev)
8135 {
8136 	struct drm_i915_private *dev_priv = dev->dev_private;
8137 	struct intel_encoder *encoder;
8138 	u32 val, final;
8139 	bool has_lvds = false;
8140 	bool has_cpu_edp = false;
8141 	bool has_panel = false;
8142 	bool has_ck505 = false;
8143 	bool can_ssc = false;
8144 
8145 	/* We need to take the global config into account */
8146 	for_each_intel_encoder(dev, encoder) {
8147 		switch (encoder->type) {
8148 		case INTEL_OUTPUT_LVDS:
8149 			has_panel = true;
8150 			has_lvds = true;
8151 			break;
8152 		case INTEL_OUTPUT_EDP:
8153 			has_panel = true;
8154 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8155 				has_cpu_edp = true;
8156 			break;
8157 		default:
8158 			break;
8159 		}
8160 	}
8161 
8162 	if (HAS_PCH_IBX(dev)) {
8163 		has_ck505 = dev_priv->vbt.display_clock_mode;
8164 		can_ssc = has_ck505;
8165 	} else {
8166 		has_ck505 = false;
8167 		can_ssc = true;
8168 	}
8169 
8170 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8171 		      has_panel, has_lvds, has_ck505);
8172 
8173 	/* Ironlake: try to setup display ref clock before DPLL
8174 	 * enabling. This is only under driver's control after
8175 	 * PCH B stepping, previous chipset stepping should be
8176 	 * ignoring this setting.
8177 	 */
8178 	val = I915_READ(PCH_DREF_CONTROL);
8179 
8180 	/* As we must carefully and slowly disable/enable each source in turn,
8181 	 * compute the final state we want first and check if we need to
8182 	 * make any changes at all.
8183 	 */
8184 	final = val;
8185 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8186 	if (has_ck505)
8187 		final |= DREF_NONSPREAD_CK505_ENABLE;
8188 	else
8189 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8190 
8191 	final &= ~DREF_SSC_SOURCE_MASK;
8192 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8193 	final &= ~DREF_SSC1_ENABLE;
8194 
8195 	if (has_panel) {
8196 		final |= DREF_SSC_SOURCE_ENABLE;
8197 
8198 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8199 			final |= DREF_SSC1_ENABLE;
8200 
8201 		if (has_cpu_edp) {
8202 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8203 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8204 			else
8205 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8206 		} else
8207 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8208 	} else {
8209 		final |= DREF_SSC_SOURCE_DISABLE;
8210 		final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8211 	}
8212 
8213 	if (final == val)
8214 		return;
8215 
8216 	/* Always enable nonspread source */
8217 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
8218 
8219 	if (has_ck505)
8220 		val |= DREF_NONSPREAD_CK505_ENABLE;
8221 	else
8222 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
8223 
8224 	if (has_panel) {
8225 		val &= ~DREF_SSC_SOURCE_MASK;
8226 		val |= DREF_SSC_SOURCE_ENABLE;
8227 
8228 		/* SSC must be turned on before enabling the CPU output  */
8229 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8230 			DRM_DEBUG_KMS("Using SSC on panel\n");
8231 			val |= DREF_SSC1_ENABLE;
8232 		} else
8233 			val &= ~DREF_SSC1_ENABLE;
8234 
8235 		/* Get SSC going before enabling the outputs */
8236 		I915_WRITE(PCH_DREF_CONTROL, val);
8237 		POSTING_READ(PCH_DREF_CONTROL);
8238 		udelay(200);
8239 
8240 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8241 
8242 		/* Enable CPU source on CPU attached eDP */
8243 		if (has_cpu_edp) {
8244 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8245 				DRM_DEBUG_KMS("Using SSC on eDP\n");
8246 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8247 			} else
8248 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8249 		} else
8250 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8251 
8252 		I915_WRITE(PCH_DREF_CONTROL, val);
8253 		POSTING_READ(PCH_DREF_CONTROL);
8254 		udelay(200);
8255 	} else {
8256 		DRM_DEBUG_KMS("Disabling SSC entirely\n");
8257 
8258 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8259 
8260 		/* Turn off CPU output */
8261 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8262 
8263 		I915_WRITE(PCH_DREF_CONTROL, val);
8264 		POSTING_READ(PCH_DREF_CONTROL);
8265 		udelay(200);
8266 
8267 		/* Turn off the SSC source */
8268 		val &= ~DREF_SSC_SOURCE_MASK;
8269 		val |= DREF_SSC_SOURCE_DISABLE;
8270 
8271 		/* Turn off SSC1 */
8272 		val &= ~DREF_SSC1_ENABLE;
8273 
8274 		I915_WRITE(PCH_DREF_CONTROL, val);
8275 		POSTING_READ(PCH_DREF_CONTROL);
8276 		udelay(200);
8277 	}
8278 
8279 	BUG_ON(val != final);
8280 }
8281 
8282 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8283 {
8284 	uint32_t tmp;
8285 
8286 	tmp = I915_READ(SOUTH_CHICKEN2);
8287 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8288 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8289 
8290 	if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8291 			       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8292 		DRM_ERROR("FDI mPHY reset assert timeout\n");
8293 
8294 	tmp = I915_READ(SOUTH_CHICKEN2);
8295 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8296 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8297 
8298 	if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8299 				FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8300 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8301 }
8302 
8303 /* WaMPhyProgramming:hsw */
8304 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8305 {
8306 	uint32_t tmp;
8307 
8308 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8309 	tmp &= ~(0xFF << 24);
8310 	tmp |= (0x12 << 24);
8311 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8312 
8313 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8314 	tmp |= (1 << 11);
8315 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8316 
8317 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8318 	tmp |= (1 << 11);
8319 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8320 
8321 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8322 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8323 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8324 
8325 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8326 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8327 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8328 
8329 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8330 	tmp &= ~(7 << 13);
8331 	tmp |= (5 << 13);
8332 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8333 
8334 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8335 	tmp &= ~(7 << 13);
8336 	tmp |= (5 << 13);
8337 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8338 
8339 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8340 	tmp &= ~0xFF;
8341 	tmp |= 0x1C;
8342 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8343 
8344 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8345 	tmp &= ~0xFF;
8346 	tmp |= 0x1C;
8347 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8348 
8349 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8350 	tmp &= ~(0xFF << 16);
8351 	tmp |= (0x1C << 16);
8352 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8353 
8354 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8355 	tmp &= ~(0xFF << 16);
8356 	tmp |= (0x1C << 16);
8357 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8358 
8359 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8360 	tmp |= (1 << 27);
8361 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8362 
8363 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8364 	tmp |= (1 << 27);
8365 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8366 
8367 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8368 	tmp &= ~(0xF << 28);
8369 	tmp |= (4 << 28);
8370 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8371 
8372 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8373 	tmp &= ~(0xF << 28);
8374 	tmp |= (4 << 28);
8375 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8376 }
8377 
8378 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8379  * Programming" based on the parameters passed:
8380  * - Sequence to enable CLKOUT_DP
8381  * - Sequence to enable CLKOUT_DP without spread
8382  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8383  */
8384 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8385 				 bool with_fdi)
8386 {
8387 	struct drm_i915_private *dev_priv = dev->dev_private;
8388 	uint32_t reg, tmp;
8389 
8390 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8391 		with_spread = true;
8392 	if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8393 		 with_fdi, "LP PCH doesn't have FDI\n"))
8394 		with_fdi = false;
8395 
8396 	mutex_lock(&dev_priv->sb_lock);
8397 
8398 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8399 	tmp &= ~SBI_SSCCTL_DISABLE;
8400 	tmp |= SBI_SSCCTL_PATHALT;
8401 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8402 
8403 	udelay(24);
8404 
8405 	if (with_spread) {
8406 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8407 		tmp &= ~SBI_SSCCTL_PATHALT;
8408 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8409 
8410 		if (with_fdi) {
8411 			lpt_reset_fdi_mphy(dev_priv);
8412 			lpt_program_fdi_mphy(dev_priv);
8413 		}
8414 	}
8415 
8416 	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8417 	       SBI_GEN0 : SBI_DBUFF0;
8418 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8419 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8420 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8421 
8422 	mutex_unlock(&dev_priv->sb_lock);
8423 }
8424 
8425 /* Sequence to disable CLKOUT_DP */
8426 static void lpt_disable_clkout_dp(struct drm_device *dev)
8427 {
8428 	struct drm_i915_private *dev_priv = dev->dev_private;
8429 	uint32_t reg, tmp;
8430 
8431 	mutex_lock(&dev_priv->sb_lock);
8432 
8433 	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8434 	       SBI_GEN0 : SBI_DBUFF0;
8435 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8436 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8437 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8438 
8439 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8440 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
8441 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
8442 			tmp |= SBI_SSCCTL_PATHALT;
8443 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8444 			udelay(32);
8445 		}
8446 		tmp |= SBI_SSCCTL_DISABLE;
8447 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8448 	}
8449 
8450 	mutex_unlock(&dev_priv->sb_lock);
8451 }
8452 
8453 static void lpt_init_pch_refclk(struct drm_device *dev)
8454 {
8455 	struct intel_encoder *encoder;
8456 	bool has_vga = false;
8457 
8458 	for_each_intel_encoder(dev, encoder) {
8459 		switch (encoder->type) {
8460 		case INTEL_OUTPUT_ANALOG:
8461 			has_vga = true;
8462 			break;
8463 		default:
8464 			break;
8465 		}
8466 	}
8467 
8468 	if (has_vga)
8469 		lpt_enable_clkout_dp(dev, true, true);
8470 	else
8471 		lpt_disable_clkout_dp(dev);
8472 }
8473 
8474 /*
8475  * Initialize reference clocks when the driver loads
8476  */
8477 void intel_init_pch_refclk(struct drm_device *dev)
8478 {
8479 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8480 		ironlake_init_pch_refclk(dev);
8481 	else if (HAS_PCH_LPT(dev))
8482 		lpt_init_pch_refclk(dev);
8483 }
8484 
8485 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8486 {
8487 	struct drm_device *dev = crtc_state->base.crtc->dev;
8488 	struct drm_i915_private *dev_priv = dev->dev_private;
8489 	struct drm_atomic_state *state = crtc_state->base.state;
8490 	struct drm_connector *connector;
8491 	struct drm_connector_state *connector_state;
8492 	struct intel_encoder *encoder;
8493 	int num_connectors = 0, i;
8494 	bool is_lvds = false;
8495 
8496 	for_each_connector_in_state(state, connector, connector_state, i) {
8497 		if (connector_state->crtc != crtc_state->base.crtc)
8498 			continue;
8499 
8500 		encoder = to_intel_encoder(connector_state->best_encoder);
8501 
8502 		switch (encoder->type) {
8503 		case INTEL_OUTPUT_LVDS:
8504 			is_lvds = true;
8505 			break;
8506 		default:
8507 			break;
8508 		}
8509 		num_connectors++;
8510 	}
8511 
8512 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8513 		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8514 			      dev_priv->vbt.lvds_ssc_freq);
8515 		return dev_priv->vbt.lvds_ssc_freq;
8516 	}
8517 
8518 	return 120000;
8519 }
8520 
8521 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8522 {
8523 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8524 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8525 	int pipe = intel_crtc->pipe;
8526 	uint32_t val;
8527 
8528 	val = 0;
8529 
8530 	switch (intel_crtc->config->pipe_bpp) {
8531 	case 18:
8532 		val |= PIPECONF_6BPC;
8533 		break;
8534 	case 24:
8535 		val |= PIPECONF_8BPC;
8536 		break;
8537 	case 30:
8538 		val |= PIPECONF_10BPC;
8539 		break;
8540 	case 36:
8541 		val |= PIPECONF_12BPC;
8542 		break;
8543 	default:
8544 		/* Case prevented by intel_choose_pipe_bpp_dither. */
8545 		BUG();
8546 	}
8547 
8548 	if (intel_crtc->config->dither)
8549 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8550 
8551 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8552 		val |= PIPECONF_INTERLACED_ILK;
8553 	else
8554 		val |= PIPECONF_PROGRESSIVE;
8555 
8556 	if (intel_crtc->config->limited_color_range)
8557 		val |= PIPECONF_COLOR_RANGE_SELECT;
8558 
8559 	I915_WRITE(PIPECONF(pipe), val);
8560 	POSTING_READ(PIPECONF(pipe));
8561 }
8562 
8563 /*
8564  * Set up the pipe CSC unit.
8565  *
8566  * Currently only full range RGB to limited range RGB conversion
8567  * is supported, but eventually this should handle various
8568  * RGB<->YCbCr scenarios as well.
8569  */
8570 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8571 {
8572 	struct drm_device *dev = crtc->dev;
8573 	struct drm_i915_private *dev_priv = dev->dev_private;
8574 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8575 	int pipe = intel_crtc->pipe;
8576 	uint16_t coeff = 0x7800; /* 1.0 */
8577 
8578 	/*
8579 	 * TODO: Check what kind of values actually come out of the pipe
8580 	 * with these coeff/postoff values and adjust to get the best
8581 	 * accuracy. Perhaps we even need to take the bpc value into
8582 	 * consideration.
8583 	 */
8584 
8585 	if (intel_crtc->config->limited_color_range)
8586 		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8587 
8588 	/*
8589 	 * GY/GU and RY/RU should be the other way around according
8590 	 * to BSpec, but reality doesn't agree. Just set them up in
8591 	 * a way that results in the correct picture.
8592 	 */
8593 	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8594 	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8595 
8596 	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8597 	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8598 
8599 	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8600 	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8601 
8602 	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8603 	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8604 	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8605 
8606 	if (INTEL_INFO(dev)->gen > 6) {
8607 		uint16_t postoff = 0;
8608 
8609 		if (intel_crtc->config->limited_color_range)
8610 			postoff = (16 * (1 << 12) / 255) & 0x1fff;
8611 
8612 		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8613 		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8614 		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8615 
8616 		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8617 	} else {
8618 		uint32_t mode = CSC_MODE_YUV_TO_RGB;
8619 
8620 		if (intel_crtc->config->limited_color_range)
8621 			mode |= CSC_BLACK_SCREEN_OFFSET;
8622 
8623 		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8624 	}
8625 }
8626 
8627 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8628 {
8629 	struct drm_device *dev = crtc->dev;
8630 	struct drm_i915_private *dev_priv = dev->dev_private;
8631 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8632 	enum i915_pipe pipe = intel_crtc->pipe;
8633 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8634 	uint32_t val;
8635 
8636 	val = 0;
8637 
8638 	if (IS_HASWELL(dev) && intel_crtc->config->dither)
8639 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8640 
8641 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8642 		val |= PIPECONF_INTERLACED_ILK;
8643 	else
8644 		val |= PIPECONF_PROGRESSIVE;
8645 
8646 	I915_WRITE(PIPECONF(cpu_transcoder), val);
8647 	POSTING_READ(PIPECONF(cpu_transcoder));
8648 
8649 	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8650 	POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8651 
8652 	if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8653 		val = 0;
8654 
8655 		switch (intel_crtc->config->pipe_bpp) {
8656 		case 18:
8657 			val |= PIPEMISC_DITHER_6_BPC;
8658 			break;
8659 		case 24:
8660 			val |= PIPEMISC_DITHER_8_BPC;
8661 			break;
8662 		case 30:
8663 			val |= PIPEMISC_DITHER_10_BPC;
8664 			break;
8665 		case 36:
8666 			val |= PIPEMISC_DITHER_12_BPC;
8667 			break;
8668 		default:
8669 			/* Case prevented by pipe_config_set_bpp. */
8670 			BUG();
8671 		}
8672 
8673 		if (intel_crtc->config->dither)
8674 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8675 
8676 		I915_WRITE(PIPEMISC(pipe), val);
8677 	}
8678 }
8679 
8680 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8681 				    struct intel_crtc_state *crtc_state,
8682 				    intel_clock_t *clock,
8683 				    bool *has_reduced_clock,
8684 				    intel_clock_t *reduced_clock)
8685 {
8686 	struct drm_device *dev = crtc->dev;
8687 	struct drm_i915_private *dev_priv = dev->dev_private;
8688 	int refclk;
8689 	const intel_limit_t *limit;
8690 	bool ret;
8691 
8692 	refclk = ironlake_get_refclk(crtc_state);
8693 
8694 	/*
8695 	 * Returns a set of divisors for the desired target clock with the given
8696 	 * refclk, or FALSE.  The returned values represent the clock equation:
8697 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8698 	 */
8699 	limit = intel_limit(crtc_state, refclk);
8700 	ret = dev_priv->display.find_dpll(limit, crtc_state,
8701 					  crtc_state->port_clock,
8702 					  refclk, NULL, clock);
8703 	if (!ret)
8704 		return false;
8705 
8706 	return true;
8707 }
8708 
8709 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8710 {
8711 	/*
8712 	 * Account for spread spectrum to avoid
8713 	 * oversubscribing the link. Max center spread
8714 	 * is 2.5%; use 5% for safety's sake.
8715 	 */
8716 	u32 bps = target_clock * bpp * 21 / 20;
8717 	return DIV_ROUND_UP(bps, link_bw * 8);
8718 }
8719 
8720 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8721 {
8722 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8723 }
8724 
8725 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8726 				      struct intel_crtc_state *crtc_state,
8727 				      u32 *fp,
8728 				      intel_clock_t *reduced_clock, u32 *fp2)
8729 {
8730 	struct drm_crtc *crtc = &intel_crtc->base;
8731 	struct drm_device *dev = crtc->dev;
8732 	struct drm_i915_private *dev_priv = dev->dev_private;
8733 	struct drm_atomic_state *state = crtc_state->base.state;
8734 	struct drm_connector *connector;
8735 	struct drm_connector_state *connector_state;
8736 	struct intel_encoder *encoder;
8737 	uint32_t dpll;
8738 	int factor, num_connectors = 0, i;
8739 	bool is_lvds = false, is_sdvo = false;
8740 
8741 	for_each_connector_in_state(state, connector, connector_state, i) {
8742 		if (connector_state->crtc != crtc_state->base.crtc)
8743 			continue;
8744 
8745 		encoder = to_intel_encoder(connector_state->best_encoder);
8746 
8747 		switch (encoder->type) {
8748 		case INTEL_OUTPUT_LVDS:
8749 			is_lvds = true;
8750 			break;
8751 		case INTEL_OUTPUT_SDVO:
8752 		case INTEL_OUTPUT_HDMI:
8753 			is_sdvo = true;
8754 			break;
8755 		default:
8756 			break;
8757 		}
8758 
8759 		num_connectors++;
8760 	}
8761 
8762 	/* Enable autotuning of the PLL clock (if permissible) */
8763 	factor = 21;
8764 	if (is_lvds) {
8765 		if ((intel_panel_use_ssc(dev_priv) &&
8766 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8767 		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8768 			factor = 25;
8769 	} else if (crtc_state->sdvo_tv_clock)
8770 		factor = 20;
8771 
8772 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8773 		*fp |= FP_CB_TUNE;
8774 
8775 	if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8776 		*fp2 |= FP_CB_TUNE;
8777 
8778 	dpll = 0;
8779 
8780 	if (is_lvds)
8781 		dpll |= DPLLB_MODE_LVDS;
8782 	else
8783 		dpll |= DPLLB_MODE_DAC_SERIAL;
8784 
8785 	dpll |= (crtc_state->pixel_multiplier - 1)
8786 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8787 
8788 	if (is_sdvo)
8789 		dpll |= DPLL_SDVO_HIGH_SPEED;
8790 	if (crtc_state->has_dp_encoder)
8791 		dpll |= DPLL_SDVO_HIGH_SPEED;
8792 
8793 	/* compute bitmask from p1 value */
8794 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8795 	/* also FPA1 */
8796 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8797 
8798 	switch (crtc_state->dpll.p2) {
8799 	case 5:
8800 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8801 		break;
8802 	case 7:
8803 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8804 		break;
8805 	case 10:
8806 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8807 		break;
8808 	case 14:
8809 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8810 		break;
8811 	}
8812 
8813 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8814 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8815 	else
8816 		dpll |= PLL_REF_INPUT_DREFCLK;
8817 
8818 	return dpll | DPLL_VCO_ENABLE;
8819 }
8820 
8821 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8822 				       struct intel_crtc_state *crtc_state)
8823 {
8824 	struct drm_device *dev = crtc->base.dev;
8825 	intel_clock_t clock, reduced_clock;
8826 	u32 dpll = 0, fp = 0, fp2 = 0;
8827 	bool ok, has_reduced_clock = false;
8828 	bool is_lvds = false;
8829 	struct intel_shared_dpll *pll;
8830 
8831 	memset(&crtc_state->dpll_hw_state, 0,
8832 	       sizeof(crtc_state->dpll_hw_state));
8833 
8834 	is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8835 
8836 	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8837 	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8838 
8839 	ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8840 				     &has_reduced_clock, &reduced_clock);
8841 	if (!ok && !crtc_state->clock_set) {
8842 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8843 		return -EINVAL;
8844 	}
8845 	/* Compat-code for transition, will disappear. */
8846 	if (!crtc_state->clock_set) {
8847 		crtc_state->dpll.n = clock.n;
8848 		crtc_state->dpll.m1 = clock.m1;
8849 		crtc_state->dpll.m2 = clock.m2;
8850 		crtc_state->dpll.p1 = clock.p1;
8851 		crtc_state->dpll.p2 = clock.p2;
8852 	}
8853 
8854 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8855 	if (crtc_state->has_pch_encoder) {
8856 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8857 		if (has_reduced_clock)
8858 			fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8859 
8860 		dpll = ironlake_compute_dpll(crtc, crtc_state,
8861 					     &fp, &reduced_clock,
8862 					     has_reduced_clock ? &fp2 : NULL);
8863 
8864 		crtc_state->dpll_hw_state.dpll = dpll;
8865 		crtc_state->dpll_hw_state.fp0 = fp;
8866 		if (has_reduced_clock)
8867 			crtc_state->dpll_hw_state.fp1 = fp2;
8868 		else
8869 			crtc_state->dpll_hw_state.fp1 = fp;
8870 
8871 		pll = intel_get_shared_dpll(crtc, crtc_state);
8872 		if (pll == NULL) {
8873 			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8874 					 pipe_name(crtc->pipe));
8875 			return -EINVAL;
8876 		}
8877 	}
8878 
8879 	if (is_lvds && has_reduced_clock)
8880 		crtc->lowfreq_avail = true;
8881 	else
8882 		crtc->lowfreq_avail = false;
8883 
8884 	return 0;
8885 }
8886 
8887 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8888 					 struct intel_link_m_n *m_n)
8889 {
8890 	struct drm_device *dev = crtc->base.dev;
8891 	struct drm_i915_private *dev_priv = dev->dev_private;
8892 	enum i915_pipe pipe = crtc->pipe;
8893 
8894 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8895 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8896 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8897 		& ~TU_SIZE_MASK;
8898 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8899 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8900 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8901 }
8902 
8903 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8904 					 enum transcoder transcoder,
8905 					 struct intel_link_m_n *m_n,
8906 					 struct intel_link_m_n *m2_n2)
8907 {
8908 	struct drm_device *dev = crtc->base.dev;
8909 	struct drm_i915_private *dev_priv = dev->dev_private;
8910 	enum i915_pipe pipe = crtc->pipe;
8911 
8912 	if (INTEL_INFO(dev)->gen >= 5) {
8913 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8914 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8915 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8916 			& ~TU_SIZE_MASK;
8917 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8918 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8919 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8920 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8921 		 * gen < 8) and if DRRS is supported (to make sure the
8922 		 * registers are not unnecessarily read).
8923 		 */
8924 		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8925 			crtc->config->has_drrs) {
8926 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8927 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
8928 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
8929 					& ~TU_SIZE_MASK;
8930 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
8931 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8932 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8933 		}
8934 	} else {
8935 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8936 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8937 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8938 			& ~TU_SIZE_MASK;
8939 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8940 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8941 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8942 	}
8943 }
8944 
8945 void intel_dp_get_m_n(struct intel_crtc *crtc,
8946 		      struct intel_crtc_state *pipe_config)
8947 {
8948 	if (pipe_config->has_pch_encoder)
8949 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8950 	else
8951 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8952 					     &pipe_config->dp_m_n,
8953 					     &pipe_config->dp_m2_n2);
8954 }
8955 
8956 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8957 					struct intel_crtc_state *pipe_config)
8958 {
8959 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8960 				     &pipe_config->fdi_m_n, NULL);
8961 }
8962 
8963 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8964 				    struct intel_crtc_state *pipe_config)
8965 {
8966 	struct drm_device *dev = crtc->base.dev;
8967 	struct drm_i915_private *dev_priv = dev->dev_private;
8968 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8969 	uint32_t ps_ctrl = 0;
8970 	int id = -1;
8971 	int i;
8972 
8973 	/* find scaler attached to this pipe */
8974 	for (i = 0; i < crtc->num_scalers; i++) {
8975 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8976 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8977 			id = i;
8978 			pipe_config->pch_pfit.enabled = true;
8979 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8980 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8981 			break;
8982 		}
8983 	}
8984 
8985 	scaler_state->scaler_id = id;
8986 	if (id >= 0) {
8987 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8988 	} else {
8989 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8990 	}
8991 }
8992 
8993 static void
8994 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8995 				 struct intel_initial_plane_config *plane_config)
8996 {
8997 	struct drm_device *dev = crtc->base.dev;
8998 	struct drm_i915_private *dev_priv = dev->dev_private;
8999 	u32 val, base, offset, stride_mult, tiling;
9000 	int pipe = crtc->pipe;
9001 	int fourcc, pixel_format;
9002 	unsigned int aligned_height;
9003 	struct drm_framebuffer *fb;
9004 	struct intel_framebuffer *intel_fb;
9005 
9006 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9007 	if (!intel_fb) {
9008 		DRM_DEBUG_KMS("failed to alloc fb\n");
9009 		return;
9010 	}
9011 
9012 	fb = &intel_fb->base;
9013 
9014 	val = I915_READ(PLANE_CTL(pipe, 0));
9015 	if (!(val & PLANE_CTL_ENABLE))
9016 		goto error;
9017 
9018 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9019 	fourcc = skl_format_to_fourcc(pixel_format,
9020 				      val & PLANE_CTL_ORDER_RGBX,
9021 				      val & PLANE_CTL_ALPHA_MASK);
9022 	fb->pixel_format = fourcc;
9023 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9024 
9025 	tiling = val & PLANE_CTL_TILED_MASK;
9026 	switch (tiling) {
9027 	case PLANE_CTL_TILED_LINEAR:
9028 		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9029 		break;
9030 	case PLANE_CTL_TILED_X:
9031 		plane_config->tiling = I915_TILING_X;
9032 		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9033 		break;
9034 	case PLANE_CTL_TILED_Y:
9035 		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9036 		break;
9037 	case PLANE_CTL_TILED_YF:
9038 		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9039 		break;
9040 	default:
9041 		MISSING_CASE(tiling);
9042 		goto error;
9043 	}
9044 
9045 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9046 	plane_config->base = base;
9047 
9048 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9049 
9050 	val = I915_READ(PLANE_SIZE(pipe, 0));
9051 	fb->height = ((val >> 16) & 0xfff) + 1;
9052 	fb->width = ((val >> 0) & 0x1fff) + 1;
9053 
9054 	val = I915_READ(PLANE_STRIDE(pipe, 0));
9055 	stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9056 						fb->pixel_format);
9057 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9058 
9059 	aligned_height = intel_fb_align_height(dev, fb->height,
9060 					       fb->pixel_format,
9061 					       fb->modifier[0]);
9062 
9063 	plane_config->size = fb->pitches[0] * aligned_height;
9064 
9065 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9066 		      pipe_name(pipe), fb->width, fb->height,
9067 		      fb->bits_per_pixel, base, fb->pitches[0],
9068 		      plane_config->size);
9069 
9070 	plane_config->fb = intel_fb;
9071 	return;
9072 
9073 error:
9074 	kfree(fb);
9075 }
9076 
9077 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9078 				     struct intel_crtc_state *pipe_config)
9079 {
9080 	struct drm_device *dev = crtc->base.dev;
9081 	struct drm_i915_private *dev_priv = dev->dev_private;
9082 	uint32_t tmp;
9083 
9084 	tmp = I915_READ(PF_CTL(crtc->pipe));
9085 
9086 	if (tmp & PF_ENABLE) {
9087 		pipe_config->pch_pfit.enabled = true;
9088 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9089 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9090 
9091 		/* We currently do not free assignements of panel fitters on
9092 		 * ivb/hsw (since we don't use the higher upscaling modes which
9093 		 * differentiates them) so just WARN about this case for now. */
9094 		if (IS_GEN7(dev)) {
9095 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9096 				PF_PIPE_SEL_IVB(crtc->pipe));
9097 		}
9098 	}
9099 }
9100 
9101 static void
9102 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9103 				  struct intel_initial_plane_config *plane_config)
9104 {
9105 	struct drm_device *dev = crtc->base.dev;
9106 	struct drm_i915_private *dev_priv = dev->dev_private;
9107 	u32 val, base, offset;
9108 	int pipe = crtc->pipe;
9109 	int fourcc, pixel_format;
9110 	unsigned int aligned_height;
9111 	struct drm_framebuffer *fb;
9112 	struct intel_framebuffer *intel_fb;
9113 
9114 	val = I915_READ(DSPCNTR(pipe));
9115 	if (!(val & DISPLAY_PLANE_ENABLE))
9116 		return;
9117 
9118 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9119 	if (!intel_fb) {
9120 		DRM_DEBUG_KMS("failed to alloc fb\n");
9121 		return;
9122 	}
9123 
9124 	fb = &intel_fb->base;
9125 
9126 	if (INTEL_INFO(dev)->gen >= 4) {
9127 		if (val & DISPPLANE_TILED) {
9128 			plane_config->tiling = I915_TILING_X;
9129 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9130 		}
9131 	}
9132 
9133 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9134 	fourcc = i9xx_format_to_fourcc(pixel_format);
9135 	fb->pixel_format = fourcc;
9136 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9137 
9138 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9139 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9140 		offset = I915_READ(DSPOFFSET(pipe));
9141 	} else {
9142 		if (plane_config->tiling)
9143 			offset = I915_READ(DSPTILEOFF(pipe));
9144 		else
9145 			offset = I915_READ(DSPLINOFF(pipe));
9146 	}
9147 	plane_config->base = base;
9148 
9149 	val = I915_READ(PIPESRC(pipe));
9150 	fb->width = ((val >> 16) & 0xfff) + 1;
9151 	fb->height = ((val >> 0) & 0xfff) + 1;
9152 
9153 	val = I915_READ(DSPSTRIDE(pipe));
9154 	fb->pitches[0] = val & 0xffffffc0;
9155 
9156 	aligned_height = intel_fb_align_height(dev, fb->height,
9157 					       fb->pixel_format,
9158 					       fb->modifier[0]);
9159 
9160 	plane_config->size = fb->pitches[0] * aligned_height;
9161 
9162 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9163 		      pipe_name(pipe), fb->width, fb->height,
9164 		      fb->bits_per_pixel, base, fb->pitches[0],
9165 		      plane_config->size);
9166 
9167 	plane_config->fb = intel_fb;
9168 }
9169 
9170 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9171 				     struct intel_crtc_state *pipe_config)
9172 {
9173 	struct drm_device *dev = crtc->base.dev;
9174 	struct drm_i915_private *dev_priv = dev->dev_private;
9175 	uint32_t tmp;
9176 
9177 	if (!intel_display_power_is_enabled(dev_priv,
9178 					    POWER_DOMAIN_PIPE(crtc->pipe)))
9179 		return false;
9180 
9181 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9182 	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9183 
9184 	tmp = I915_READ(PIPECONF(crtc->pipe));
9185 	if (!(tmp & PIPECONF_ENABLE))
9186 		return false;
9187 
9188 	switch (tmp & PIPECONF_BPC_MASK) {
9189 	case PIPECONF_6BPC:
9190 		pipe_config->pipe_bpp = 18;
9191 		break;
9192 	case PIPECONF_8BPC:
9193 		pipe_config->pipe_bpp = 24;
9194 		break;
9195 	case PIPECONF_10BPC:
9196 		pipe_config->pipe_bpp = 30;
9197 		break;
9198 	case PIPECONF_12BPC:
9199 		pipe_config->pipe_bpp = 36;
9200 		break;
9201 	default:
9202 		break;
9203 	}
9204 
9205 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9206 		pipe_config->limited_color_range = true;
9207 
9208 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9209 		struct intel_shared_dpll *pll;
9210 
9211 		pipe_config->has_pch_encoder = true;
9212 
9213 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9214 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9215 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9216 
9217 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9218 
9219 		if (HAS_PCH_IBX(dev_priv->dev)) {
9220 			pipe_config->shared_dpll =
9221 				(enum intel_dpll_id) crtc->pipe;
9222 		} else {
9223 			tmp = I915_READ(PCH_DPLL_SEL);
9224 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9225 				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9226 			else
9227 				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9228 		}
9229 
9230 		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9231 
9232 		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9233 					   &pipe_config->dpll_hw_state));
9234 
9235 		tmp = pipe_config->dpll_hw_state.dpll;
9236 		pipe_config->pixel_multiplier =
9237 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9238 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9239 
9240 		ironlake_pch_clock_get(crtc, pipe_config);
9241 	} else {
9242 		pipe_config->pixel_multiplier = 1;
9243 	}
9244 
9245 	intel_get_pipe_timings(crtc, pipe_config);
9246 
9247 	ironlake_get_pfit_config(crtc, pipe_config);
9248 
9249 	return true;
9250 }
9251 
9252 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9253 {
9254 	struct drm_device *dev = dev_priv->dev;
9255 	struct intel_crtc *crtc;
9256 
9257 	for_each_intel_crtc(dev, crtc)
9258 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9259 		     pipe_name(crtc->pipe));
9260 
9261 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9262 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9263 	I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9264 	I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9265 	I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9266 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9267 	     "CPU PWM1 enabled\n");
9268 	if (IS_HASWELL(dev))
9269 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9270 		     "CPU PWM2 enabled\n");
9271 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9272 	     "PCH PWM1 enabled\n");
9273 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9274 	     "Utility pin enabled\n");
9275 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9276 
9277 	/*
9278 	 * In theory we can still leave IRQs enabled, as long as only the HPD
9279 	 * interrupts remain enabled. We used to check for that, but since it's
9280 	 * gen-specific and since we only disable LCPLL after we fully disable
9281 	 * the interrupts, the check below should be enough.
9282 	 */
9283 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9284 }
9285 
9286 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9287 {
9288 	struct drm_device *dev = dev_priv->dev;
9289 
9290 	if (IS_HASWELL(dev))
9291 		return I915_READ(D_COMP_HSW);
9292 	else
9293 		return I915_READ(D_COMP_BDW);
9294 }
9295 
9296 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9297 {
9298 	struct drm_device *dev = dev_priv->dev;
9299 
9300 	if (IS_HASWELL(dev)) {
9301 		mutex_lock(&dev_priv->rps.hw_lock);
9302 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9303 					    val))
9304 			DRM_ERROR("Failed to write to D_COMP\n");
9305 		mutex_unlock(&dev_priv->rps.hw_lock);
9306 	} else {
9307 		I915_WRITE(D_COMP_BDW, val);
9308 		POSTING_READ(D_COMP_BDW);
9309 	}
9310 }
9311 
9312 /*
9313  * This function implements pieces of two sequences from BSpec:
9314  * - Sequence for display software to disable LCPLL
9315  * - Sequence for display software to allow package C8+
9316  * The steps implemented here are just the steps that actually touch the LCPLL
9317  * register. Callers should take care of disabling all the display engine
9318  * functions, doing the mode unset, fixing interrupts, etc.
9319  */
9320 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9321 			      bool switch_to_fclk, bool allow_power_down)
9322 {
9323 	uint32_t val;
9324 
9325 	assert_can_disable_lcpll(dev_priv);
9326 
9327 	val = I915_READ(LCPLL_CTL);
9328 
9329 	if (switch_to_fclk) {
9330 		val |= LCPLL_CD_SOURCE_FCLK;
9331 		I915_WRITE(LCPLL_CTL, val);
9332 
9333 		if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9334 				       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9335 			DRM_ERROR("Switching to FCLK failed\n");
9336 
9337 		val = I915_READ(LCPLL_CTL);
9338 	}
9339 
9340 	val |= LCPLL_PLL_DISABLE;
9341 	I915_WRITE(LCPLL_CTL, val);
9342 	POSTING_READ(LCPLL_CTL);
9343 
9344 	if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9345 		DRM_ERROR("LCPLL still locked\n");
9346 
9347 	val = hsw_read_dcomp(dev_priv);
9348 	val |= D_COMP_COMP_DISABLE;
9349 	hsw_write_dcomp(dev_priv, val);
9350 	ndelay(100);
9351 
9352 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9353 		     1))
9354 		DRM_ERROR("D_COMP RCOMP still in progress\n");
9355 
9356 	if (allow_power_down) {
9357 		val = I915_READ(LCPLL_CTL);
9358 		val |= LCPLL_POWER_DOWN_ALLOW;
9359 		I915_WRITE(LCPLL_CTL, val);
9360 		POSTING_READ(LCPLL_CTL);
9361 	}
9362 }
9363 
9364 /*
9365  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9366  * source.
9367  */
9368 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9369 {
9370 	uint32_t val;
9371 
9372 	val = I915_READ(LCPLL_CTL);
9373 
9374 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9375 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9376 		return;
9377 
9378 	/*
9379 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
9380 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9381 	 */
9382 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9383 
9384 	if (val & LCPLL_POWER_DOWN_ALLOW) {
9385 		val &= ~LCPLL_POWER_DOWN_ALLOW;
9386 		I915_WRITE(LCPLL_CTL, val);
9387 		POSTING_READ(LCPLL_CTL);
9388 	}
9389 
9390 	val = hsw_read_dcomp(dev_priv);
9391 	val |= D_COMP_COMP_FORCE;
9392 	val &= ~D_COMP_COMP_DISABLE;
9393 	hsw_write_dcomp(dev_priv, val);
9394 
9395 	val = I915_READ(LCPLL_CTL);
9396 	val &= ~LCPLL_PLL_DISABLE;
9397 	I915_WRITE(LCPLL_CTL, val);
9398 
9399 	if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9400 		DRM_ERROR("LCPLL not locked yet\n");
9401 
9402 	if (val & LCPLL_CD_SOURCE_FCLK) {
9403 		val = I915_READ(LCPLL_CTL);
9404 		val &= ~LCPLL_CD_SOURCE_FCLK;
9405 		I915_WRITE(LCPLL_CTL, val);
9406 
9407 		if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9408 					LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9409 			DRM_ERROR("Switching back to LCPLL failed\n");
9410 	}
9411 
9412 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9413 	intel_update_cdclk(dev_priv->dev);
9414 }
9415 
9416 /*
9417  * Package states C8 and deeper are really deep PC states that can only be
9418  * reached when all the devices on the system allow it, so even if the graphics
9419  * device allows PC8+, it doesn't mean the system will actually get to these
9420  * states. Our driver only allows PC8+ when going into runtime PM.
9421  *
9422  * The requirements for PC8+ are that all the outputs are disabled, the power
9423  * well is disabled and most interrupts are disabled, and these are also
9424  * requirements for runtime PM. When these conditions are met, we manually do
9425  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9426  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9427  * hang the machine.
9428  *
9429  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9430  * the state of some registers, so when we come back from PC8+ we need to
9431  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9432  * need to take care of the registers kept by RC6. Notice that this happens even
9433  * if we don't put the device in PCI D3 state (which is what currently happens
9434  * because of the runtime PM support).
9435  *
9436  * For more, read "Display Sequences for Package C8" on the hardware
9437  * documentation.
9438  */
9439 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9440 {
9441 	struct drm_device *dev = dev_priv->dev;
9442 	uint32_t val;
9443 
9444 	DRM_DEBUG_KMS("Enabling package C8+\n");
9445 
9446 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9447 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9448 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9449 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9450 	}
9451 
9452 	lpt_disable_clkout_dp(dev);
9453 	hsw_disable_lcpll(dev_priv, true, true);
9454 }
9455 
9456 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9457 {
9458 	struct drm_device *dev = dev_priv->dev;
9459 	uint32_t val;
9460 
9461 	DRM_DEBUG_KMS("Disabling package C8+\n");
9462 
9463 	hsw_restore_lcpll(dev_priv);
9464 	lpt_init_pch_refclk(dev);
9465 
9466 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9467 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9468 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9469 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9470 	}
9471 
9472 	intel_prepare_ddi(dev);
9473 }
9474 
9475 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9476 {
9477 	struct drm_device *dev = old_state->dev;
9478 	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9479 
9480 	broxton_set_cdclk(dev, req_cdclk);
9481 }
9482 
9483 /* compute the max rate for new configuration */
9484 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9485 {
9486 	struct intel_crtc *intel_crtc;
9487 	struct intel_crtc_state *crtc_state;
9488 	int max_pixel_rate = 0;
9489 
9490 	for_each_intel_crtc(state->dev, intel_crtc) {
9491 		int pixel_rate;
9492 
9493 		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9494 		if (IS_ERR(crtc_state))
9495 			return PTR_ERR(crtc_state);
9496 
9497 		if (!crtc_state->base.enable)
9498 			continue;
9499 
9500 		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9501 
9502 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9503 		if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9504 			pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9505 
9506 		max_pixel_rate = max(max_pixel_rate, pixel_rate);
9507 	}
9508 
9509 	return max_pixel_rate;
9510 }
9511 
9512 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9513 {
9514 	struct drm_i915_private *dev_priv = dev->dev_private;
9515 	uint32_t val, data;
9516 	int ret;
9517 
9518 	if (WARN((I915_READ(LCPLL_CTL) &
9519 		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9520 		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9521 		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9522 		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9523 		 "trying to change cdclk frequency with cdclk not enabled\n"))
9524 		return;
9525 
9526 	mutex_lock(&dev_priv->rps.hw_lock);
9527 	ret = sandybridge_pcode_write(dev_priv,
9528 				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9529 	mutex_unlock(&dev_priv->rps.hw_lock);
9530 	if (ret) {
9531 		DRM_ERROR("failed to inform pcode about cdclk change\n");
9532 		return;
9533 	}
9534 
9535 	val = I915_READ(LCPLL_CTL);
9536 	val |= LCPLL_CD_SOURCE_FCLK;
9537 	I915_WRITE(LCPLL_CTL, val);
9538 
9539 	if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9540 			       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9541 		DRM_ERROR("Switching to FCLK failed\n");
9542 
9543 	val = I915_READ(LCPLL_CTL);
9544 	val &= ~LCPLL_CLK_FREQ_MASK;
9545 
9546 	switch (cdclk) {
9547 	case 450000:
9548 		val |= LCPLL_CLK_FREQ_450;
9549 		data = 0;
9550 		break;
9551 	case 540000:
9552 		val |= LCPLL_CLK_FREQ_54O_BDW;
9553 		data = 1;
9554 		break;
9555 	case 337500:
9556 		val |= LCPLL_CLK_FREQ_337_5_BDW;
9557 		data = 2;
9558 		break;
9559 	case 675000:
9560 		val |= LCPLL_CLK_FREQ_675_BDW;
9561 		data = 3;
9562 		break;
9563 	default:
9564 		WARN(1, "invalid cdclk frequency\n");
9565 		return;
9566 	}
9567 
9568 	I915_WRITE(LCPLL_CTL, val);
9569 
9570 	val = I915_READ(LCPLL_CTL);
9571 	val &= ~LCPLL_CD_SOURCE_FCLK;
9572 	I915_WRITE(LCPLL_CTL, val);
9573 
9574 	if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9575 				LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9576 		DRM_ERROR("Switching back to LCPLL failed\n");
9577 
9578 	mutex_lock(&dev_priv->rps.hw_lock);
9579 	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9580 	mutex_unlock(&dev_priv->rps.hw_lock);
9581 
9582 	intel_update_cdclk(dev);
9583 
9584 	WARN(cdclk != dev_priv->cdclk_freq,
9585 	     "cdclk requested %d kHz but got %d kHz\n",
9586 	     cdclk, dev_priv->cdclk_freq);
9587 }
9588 
9589 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9590 {
9591 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9592 	int max_pixclk = ilk_max_pixel_rate(state);
9593 	int cdclk;
9594 
9595 	/*
9596 	 * FIXME should also account for plane ratio
9597 	 * once 64bpp pixel formats are supported.
9598 	 */
9599 	if (max_pixclk > 540000)
9600 		cdclk = 675000;
9601 	else if (max_pixclk > 450000)
9602 		cdclk = 540000;
9603 	else if (max_pixclk > 337500)
9604 		cdclk = 450000;
9605 	else
9606 		cdclk = 337500;
9607 
9608 	/*
9609 	 * FIXME move the cdclk caclulation to
9610 	 * compute_config() so we can fail gracegully.
9611 	 */
9612 	if (cdclk > dev_priv->max_cdclk_freq) {
9613 		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9614 			  cdclk, dev_priv->max_cdclk_freq);
9615 		cdclk = dev_priv->max_cdclk_freq;
9616 	}
9617 
9618 	to_intel_atomic_state(state)->cdclk = cdclk;
9619 
9620 	return 0;
9621 }
9622 
9623 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9624 {
9625 	struct drm_device *dev = old_state->dev;
9626 	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9627 
9628 	broadwell_set_cdclk(dev, req_cdclk);
9629 }
9630 
9631 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9632 				      struct intel_crtc_state *crtc_state)
9633 {
9634 	if (!intel_ddi_pll_select(crtc, crtc_state))
9635 		return -EINVAL;
9636 
9637 	crtc->lowfreq_avail = false;
9638 
9639 	return 0;
9640 }
9641 
9642 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9643 				enum port port,
9644 				struct intel_crtc_state *pipe_config)
9645 {
9646 	switch (port) {
9647 	case PORT_A:
9648 		pipe_config->ddi_pll_sel = SKL_DPLL0;
9649 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9650 		break;
9651 	case PORT_B:
9652 		pipe_config->ddi_pll_sel = SKL_DPLL1;
9653 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9654 		break;
9655 	case PORT_C:
9656 		pipe_config->ddi_pll_sel = SKL_DPLL2;
9657 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9658 		break;
9659 	default:
9660 		DRM_ERROR("Incorrect port type\n");
9661 	}
9662 }
9663 
9664 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9665 				enum port port,
9666 				struct intel_crtc_state *pipe_config)
9667 {
9668 	u32 temp, dpll_ctl1;
9669 
9670 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9671 	pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9672 
9673 	switch (pipe_config->ddi_pll_sel) {
9674 	case SKL_DPLL0:
9675 		/*
9676 		 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9677 		 * of the shared DPLL framework and thus needs to be read out
9678 		 * separately
9679 		 */
9680 		dpll_ctl1 = I915_READ(DPLL_CTRL1);
9681 		pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9682 		break;
9683 	case SKL_DPLL1:
9684 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9685 		break;
9686 	case SKL_DPLL2:
9687 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9688 		break;
9689 	case SKL_DPLL3:
9690 		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9691 		break;
9692 	}
9693 }
9694 
9695 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9696 				enum port port,
9697 				struct intel_crtc_state *pipe_config)
9698 {
9699 	pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9700 
9701 	switch (pipe_config->ddi_pll_sel) {
9702 	case PORT_CLK_SEL_WRPLL1:
9703 		pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9704 		break;
9705 	case PORT_CLK_SEL_WRPLL2:
9706 		pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9707 		break;
9708 	}
9709 }
9710 
9711 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9712 				       struct intel_crtc_state *pipe_config)
9713 {
9714 	struct drm_device *dev = crtc->base.dev;
9715 	struct drm_i915_private *dev_priv = dev->dev_private;
9716 	struct intel_shared_dpll *pll;
9717 	enum port port;
9718 	uint32_t tmp;
9719 
9720 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9721 
9722 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9723 
9724 	if (IS_SKYLAKE(dev))
9725 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
9726 	else if (IS_BROXTON(dev))
9727 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
9728 	else
9729 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
9730 
9731 	if (pipe_config->shared_dpll >= 0) {
9732 		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9733 
9734 		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9735 					   &pipe_config->dpll_hw_state));
9736 	}
9737 
9738 	/*
9739 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9740 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
9741 	 * the PCH transcoder is on.
9742 	 */
9743 	if (INTEL_INFO(dev)->gen < 9 &&
9744 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9745 		pipe_config->has_pch_encoder = true;
9746 
9747 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9748 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9749 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9750 
9751 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9752 	}
9753 }
9754 
9755 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9756 				    struct intel_crtc_state *pipe_config)
9757 {
9758 	struct drm_device *dev = crtc->base.dev;
9759 	struct drm_i915_private *dev_priv = dev->dev_private;
9760 	enum intel_display_power_domain pfit_domain;
9761 	uint32_t tmp;
9762 
9763 	if (!intel_display_power_is_enabled(dev_priv,
9764 					 POWER_DOMAIN_PIPE(crtc->pipe)))
9765 		return false;
9766 
9767 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9768 	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9769 
9770 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9771 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
9772 		enum i915_pipe trans_edp_pipe;
9773 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9774 		default:
9775 			WARN(1, "unknown pipe linked to edp transcoder\n");
9776 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
9777 		case TRANS_DDI_EDP_INPUT_A_ON:
9778 			trans_edp_pipe = PIPE_A;
9779 			break;
9780 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
9781 			trans_edp_pipe = PIPE_B;
9782 			break;
9783 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
9784 			trans_edp_pipe = PIPE_C;
9785 			break;
9786 		}
9787 
9788 		if (trans_edp_pipe == crtc->pipe)
9789 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
9790 	}
9791 
9792 	if (!intel_display_power_is_enabled(dev_priv,
9793 			POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9794 		return false;
9795 
9796 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9797 	if (!(tmp & PIPECONF_ENABLE))
9798 		return false;
9799 
9800 	haswell_get_ddi_port_state(crtc, pipe_config);
9801 
9802 	intel_get_pipe_timings(crtc, pipe_config);
9803 
9804 	if (INTEL_INFO(dev)->gen >= 9) {
9805 		skl_init_scalers(dev, crtc, pipe_config);
9806 	}
9807 
9808 	pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9809 
9810 	if (INTEL_INFO(dev)->gen >= 9) {
9811 		pipe_config->scaler_state.scaler_id = -1;
9812 		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9813 	}
9814 
9815 	if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9816 		if (INTEL_INFO(dev)->gen == 9)
9817 			skylake_get_pfit_config(crtc, pipe_config);
9818 		else if (INTEL_INFO(dev)->gen < 9)
9819 			ironlake_get_pfit_config(crtc, pipe_config);
9820 		else
9821 			MISSING_CASE(INTEL_INFO(dev)->gen);
9822 	}
9823 
9824 	if (IS_HASWELL(dev))
9825 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9826 			(I915_READ(IPS_CTL) & IPS_ENABLE);
9827 
9828 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9829 		pipe_config->pixel_multiplier =
9830 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9831 	} else {
9832 		pipe_config->pixel_multiplier = 1;
9833 	}
9834 
9835 	return true;
9836 }
9837 
9838 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9839 {
9840 	struct drm_device *dev = crtc->dev;
9841 	struct drm_i915_private *dev_priv = dev->dev_private;
9842 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9843 	uint32_t cntl = 0, size = 0;
9844 
9845 	if (base) {
9846 		unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9847 		unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9848 		unsigned int stride = roundup_pow_of_two(width) * 4;
9849 
9850 		switch (stride) {
9851 		default:
9852 			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9853 				  width, stride);
9854 			stride = 256;
9855 			/* fallthrough */
9856 		case 256:
9857 		case 512:
9858 		case 1024:
9859 		case 2048:
9860 			break;
9861 		}
9862 
9863 		cntl |= CURSOR_ENABLE |
9864 			CURSOR_GAMMA_ENABLE |
9865 			CURSOR_FORMAT_ARGB |
9866 			CURSOR_STRIDE(stride);
9867 
9868 		size = (height << 12) | width;
9869 	}
9870 
9871 	if (intel_crtc->cursor_cntl != 0 &&
9872 	    (intel_crtc->cursor_base != base ||
9873 	     intel_crtc->cursor_size != size ||
9874 	     intel_crtc->cursor_cntl != cntl)) {
9875 		/* On these chipsets we can only modify the base/size/stride
9876 		 * whilst the cursor is disabled.
9877 		 */
9878 		I915_WRITE(_CURACNTR, 0);
9879 		POSTING_READ(_CURACNTR);
9880 		intel_crtc->cursor_cntl = 0;
9881 	}
9882 
9883 	if (intel_crtc->cursor_base != base) {
9884 		I915_WRITE(_CURABASE, base);
9885 		intel_crtc->cursor_base = base;
9886 	}
9887 
9888 	if (intel_crtc->cursor_size != size) {
9889 		I915_WRITE(CURSIZE, size);
9890 		intel_crtc->cursor_size = size;
9891 	}
9892 
9893 	if (intel_crtc->cursor_cntl != cntl) {
9894 		I915_WRITE(_CURACNTR, cntl);
9895 		POSTING_READ(_CURACNTR);
9896 		intel_crtc->cursor_cntl = cntl;
9897 	}
9898 }
9899 
9900 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9901 {
9902 	struct drm_device *dev = crtc->dev;
9903 	struct drm_i915_private *dev_priv = dev->dev_private;
9904 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9905 	int pipe = intel_crtc->pipe;
9906 	uint32_t cntl;
9907 
9908 	cntl = 0;
9909 	if (base) {
9910 		cntl = MCURSOR_GAMMA_ENABLE;
9911 		switch (intel_crtc->base.cursor->state->crtc_w) {
9912 			case 64:
9913 				cntl |= CURSOR_MODE_64_ARGB_AX;
9914 				break;
9915 			case 128:
9916 				cntl |= CURSOR_MODE_128_ARGB_AX;
9917 				break;
9918 			case 256:
9919 				cntl |= CURSOR_MODE_256_ARGB_AX;
9920 				break;
9921 			default:
9922 				MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9923 				return;
9924 		}
9925 		cntl |= pipe << 28; /* Connect to correct pipe */
9926 
9927 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9928 			cntl |= CURSOR_PIPE_CSC_ENABLE;
9929 	}
9930 
9931 	if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9932 		cntl |= CURSOR_ROTATE_180;
9933 
9934 	if (intel_crtc->cursor_cntl != cntl) {
9935 		I915_WRITE(CURCNTR(pipe), cntl);
9936 		POSTING_READ(CURCNTR(pipe));
9937 		intel_crtc->cursor_cntl = cntl;
9938 	}
9939 
9940 	/* and commit changes on next vblank */
9941 	I915_WRITE(CURBASE(pipe), base);
9942 	POSTING_READ(CURBASE(pipe));
9943 
9944 	intel_crtc->cursor_base = base;
9945 }
9946 
9947 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9948 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9949 				     bool on)
9950 {
9951 	struct drm_device *dev = crtc->dev;
9952 	struct drm_i915_private *dev_priv = dev->dev_private;
9953 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9954 	int pipe = intel_crtc->pipe;
9955 	int x = crtc->cursor_x;
9956 	int y = crtc->cursor_y;
9957 	u32 base = 0, pos = 0;
9958 
9959 	if (on)
9960 		base = intel_crtc->cursor_addr;
9961 
9962 	if (x >= intel_crtc->config->pipe_src_w)
9963 		base = 0;
9964 
9965 	if (y >= intel_crtc->config->pipe_src_h)
9966 		base = 0;
9967 
9968 	if (x < 0) {
9969 		if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9970 			base = 0;
9971 
9972 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9973 		x = -x;
9974 	}
9975 	pos |= x << CURSOR_X_SHIFT;
9976 
9977 	if (y < 0) {
9978 		if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9979 			base = 0;
9980 
9981 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9982 		y = -y;
9983 	}
9984 	pos |= y << CURSOR_Y_SHIFT;
9985 
9986 	if (base == 0 && intel_crtc->cursor_base == 0)
9987 		return;
9988 
9989 	I915_WRITE(CURPOS(pipe), pos);
9990 
9991 	/* ILK+ do this automagically */
9992 	if (HAS_GMCH_DISPLAY(dev) &&
9993 	    crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9994 		base += (intel_crtc->base.cursor->state->crtc_h *
9995 			intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9996 	}
9997 
9998 	if (IS_845G(dev) || IS_I865G(dev))
9999 		i845_update_cursor(crtc, base);
10000 	else
10001 		i9xx_update_cursor(crtc, base);
10002 }
10003 
10004 static bool cursor_size_ok(struct drm_device *dev,
10005 			   uint32_t width, uint32_t height)
10006 {
10007 	if (width == 0 || height == 0)
10008 		return false;
10009 
10010 	/*
10011 	 * 845g/865g are special in that they are only limited by
10012 	 * the width of their cursors, the height is arbitrary up to
10013 	 * the precision of the register. Everything else requires
10014 	 * square cursors, limited to a few power-of-two sizes.
10015 	 */
10016 	if (IS_845G(dev) || IS_I865G(dev)) {
10017 		if ((width & 63) != 0)
10018 			return false;
10019 
10020 		if (width > (IS_845G(dev) ? 64 : 512))
10021 			return false;
10022 
10023 		if (height > 1023)
10024 			return false;
10025 	} else {
10026 		switch (width | height) {
10027 		case 256:
10028 		case 128:
10029 			if (IS_GEN2(dev))
10030 				return false;
10031 		case 64:
10032 			break;
10033 		default:
10034 			return false;
10035 		}
10036 	}
10037 
10038 	return true;
10039 }
10040 
10041 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10042 				 u16 *blue, uint32_t start, uint32_t size)
10043 {
10044 	int end = (start + size > 256) ? 256 : start + size, i;
10045 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10046 
10047 	for (i = start; i < end; i++) {
10048 		intel_crtc->lut_r[i] = red[i] >> 8;
10049 		intel_crtc->lut_g[i] = green[i] >> 8;
10050 		intel_crtc->lut_b[i] = blue[i] >> 8;
10051 	}
10052 
10053 	intel_crtc_load_lut(crtc);
10054 }
10055 
10056 /* VESA 640x480x72Hz mode to set on the pipe */
10057 static struct drm_display_mode load_detect_mode = {
10058 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10059 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10060 };
10061 
10062 struct drm_framebuffer *
10063 __intel_framebuffer_create(struct drm_device *dev,
10064 			   struct drm_mode_fb_cmd2 *mode_cmd,
10065 			   struct drm_i915_gem_object *obj)
10066 {
10067 	struct intel_framebuffer *intel_fb;
10068 	int ret;
10069 
10070 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10071 	if (!intel_fb) {
10072 		drm_gem_object_unreference(&obj->base);
10073 		return ERR_PTR(-ENOMEM);
10074 	}
10075 
10076 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10077 	if (ret)
10078 		goto err;
10079 
10080 	return &intel_fb->base;
10081 err:
10082 	drm_gem_object_unreference(&obj->base);
10083 	kfree(intel_fb);
10084 
10085 	return ERR_PTR(ret);
10086 }
10087 
10088 static struct drm_framebuffer *
10089 intel_framebuffer_create(struct drm_device *dev,
10090 			 struct drm_mode_fb_cmd2 *mode_cmd,
10091 			 struct drm_i915_gem_object *obj)
10092 {
10093 	struct drm_framebuffer *fb;
10094 	int ret;
10095 
10096 	ret = i915_mutex_lock_interruptible(dev);
10097 	if (ret)
10098 		return ERR_PTR(ret);
10099 	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10100 	mutex_unlock(&dev->struct_mutex);
10101 
10102 	return fb;
10103 }
10104 
10105 static u32
10106 intel_framebuffer_pitch_for_width(int width, int bpp)
10107 {
10108 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10109 	return ALIGN(pitch, 64);
10110 }
10111 
10112 static u32
10113 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10114 {
10115 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10116 	return PAGE_ALIGN(pitch * mode->vdisplay);
10117 }
10118 
10119 static struct drm_framebuffer *
10120 intel_framebuffer_create_for_mode(struct drm_device *dev,
10121 				  struct drm_display_mode *mode,
10122 				  int depth, int bpp)
10123 {
10124 	struct drm_i915_gem_object *obj;
10125 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10126 
10127 	obj = i915_gem_alloc_object(dev,
10128 				    intel_framebuffer_size_for_mode(mode, bpp));
10129 	if (obj == NULL)
10130 		return ERR_PTR(-ENOMEM);
10131 
10132 	mode_cmd.width = mode->hdisplay;
10133 	mode_cmd.height = mode->vdisplay;
10134 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10135 								bpp);
10136 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10137 
10138 	return intel_framebuffer_create(dev, &mode_cmd, obj);
10139 }
10140 
10141 static struct drm_framebuffer *
10142 mode_fits_in_fbdev(struct drm_device *dev,
10143 		   struct drm_display_mode *mode)
10144 {
10145 #ifdef CONFIG_DRM_FBDEV_EMULATION
10146 	struct drm_i915_private *dev_priv = dev->dev_private;
10147 	struct drm_i915_gem_object *obj;
10148 	struct drm_framebuffer *fb;
10149 
10150 	if (!dev_priv->fbdev)
10151 		return NULL;
10152 
10153 	if (!dev_priv->fbdev->fb)
10154 		return NULL;
10155 
10156 	obj = dev_priv->fbdev->fb->obj;
10157 	BUG_ON(!obj);
10158 
10159 	fb = &dev_priv->fbdev->fb->base;
10160 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10161 							       fb->bits_per_pixel))
10162 		return NULL;
10163 
10164 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
10165 		return NULL;
10166 
10167 	return fb;
10168 #else
10169 	return NULL;
10170 #endif
10171 }
10172 
10173 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10174 					   struct drm_crtc *crtc,
10175 					   struct drm_display_mode *mode,
10176 					   struct drm_framebuffer *fb,
10177 					   int x, int y)
10178 {
10179 	struct drm_plane_state *plane_state;
10180 	int hdisplay, vdisplay;
10181 	int ret;
10182 
10183 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10184 	if (IS_ERR(plane_state))
10185 		return PTR_ERR(plane_state);
10186 
10187 	if (mode)
10188 		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10189 	else
10190 		hdisplay = vdisplay = 0;
10191 
10192 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10193 	if (ret)
10194 		return ret;
10195 	drm_atomic_set_fb_for_plane(plane_state, fb);
10196 	plane_state->crtc_x = 0;
10197 	plane_state->crtc_y = 0;
10198 	plane_state->crtc_w = hdisplay;
10199 	plane_state->crtc_h = vdisplay;
10200 	plane_state->src_x = x << 16;
10201 	plane_state->src_y = y << 16;
10202 	plane_state->src_w = hdisplay << 16;
10203 	plane_state->src_h = vdisplay << 16;
10204 
10205 	return 0;
10206 }
10207 
10208 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10209 				struct drm_display_mode *mode,
10210 				struct intel_load_detect_pipe *old,
10211 				struct drm_modeset_acquire_ctx *ctx)
10212 {
10213 	struct intel_crtc *intel_crtc;
10214 	struct intel_encoder *intel_encoder =
10215 		intel_attached_encoder(connector);
10216 	struct drm_crtc *possible_crtc;
10217 	struct drm_encoder *encoder = &intel_encoder->base;
10218 	struct drm_crtc *crtc = NULL;
10219 	struct drm_device *dev = encoder->dev;
10220 	struct drm_framebuffer *fb;
10221 	struct drm_mode_config *config = &dev->mode_config;
10222 	struct drm_atomic_state *state = NULL;
10223 	struct drm_connector_state *connector_state;
10224 	struct intel_crtc_state *crtc_state;
10225 	int ret, i = -1;
10226 
10227 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10228 		      connector->base.id, connector->name,
10229 		      encoder->base.id, encoder->name);
10230 
10231 retry:
10232 	ret = drm_modeset_lock(&config->connection_mutex, ctx);
10233 	if (ret)
10234 		goto fail;
10235 
10236 	/*
10237 	 * Algorithm gets a little messy:
10238 	 *
10239 	 *   - if the connector already has an assigned crtc, use it (but make
10240 	 *     sure it's on first)
10241 	 *
10242 	 *   - try to find the first unused crtc that can drive this connector,
10243 	 *     and use that if we find one
10244 	 */
10245 
10246 	/* See if we already have a CRTC for this connector */
10247 	if (encoder->crtc) {
10248 		crtc = encoder->crtc;
10249 
10250 		ret = drm_modeset_lock(&crtc->mutex, ctx);
10251 		if (ret)
10252 			goto fail;
10253 		ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10254 		if (ret)
10255 			goto fail;
10256 
10257 		old->dpms_mode = connector->dpms;
10258 		old->load_detect_temp = false;
10259 
10260 		/* Make sure the crtc and connector are running */
10261 		if (connector->dpms != DRM_MODE_DPMS_ON)
10262 			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10263 
10264 		return true;
10265 	}
10266 
10267 	/* Find an unused one (if possible) */
10268 	for_each_crtc(dev, possible_crtc) {
10269 		i++;
10270 		if (!(encoder->possible_crtcs & (1 << i)))
10271 			continue;
10272 		if (possible_crtc->state->enable)
10273 			continue;
10274 
10275 		crtc = possible_crtc;
10276 		break;
10277 	}
10278 
10279 	/*
10280 	 * If we didn't find an unused CRTC, don't use any.
10281 	 */
10282 	if (!crtc) {
10283 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
10284 		goto fail;
10285 	}
10286 
10287 	ret = drm_modeset_lock(&crtc->mutex, ctx);
10288 	if (ret)
10289 		goto fail;
10290 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10291 	if (ret)
10292 		goto fail;
10293 
10294 	intel_crtc = to_intel_crtc(crtc);
10295 	old->dpms_mode = connector->dpms;
10296 	old->load_detect_temp = true;
10297 	old->release_fb = NULL;
10298 
10299 	state = drm_atomic_state_alloc(dev);
10300 	if (!state)
10301 		return false;
10302 
10303 	state->acquire_ctx = ctx;
10304 
10305 	connector_state = drm_atomic_get_connector_state(state, connector);
10306 	if (IS_ERR(connector_state)) {
10307 		ret = PTR_ERR(connector_state);
10308 		goto fail;
10309 	}
10310 
10311 	connector_state->crtc = crtc;
10312 	connector_state->best_encoder = &intel_encoder->base;
10313 
10314 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10315 	if (IS_ERR(crtc_state)) {
10316 		ret = PTR_ERR(crtc_state);
10317 		goto fail;
10318 	}
10319 
10320 	crtc_state->base.active = crtc_state->base.enable = true;
10321 
10322 	if (!mode)
10323 		mode = &load_detect_mode;
10324 
10325 	/* We need a framebuffer large enough to accommodate all accesses
10326 	 * that the plane may generate whilst we perform load detection.
10327 	 * We can not rely on the fbcon either being present (we get called
10328 	 * during its initialisation to detect all boot displays, or it may
10329 	 * not even exist) or that it is large enough to satisfy the
10330 	 * requested mode.
10331 	 */
10332 	fb = mode_fits_in_fbdev(dev, mode);
10333 	if (fb == NULL) {
10334 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10335 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10336 		old->release_fb = fb;
10337 	} else
10338 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10339 	if (IS_ERR(fb)) {
10340 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10341 		goto fail;
10342 	}
10343 
10344 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10345 	if (ret)
10346 		goto fail;
10347 
10348 	drm_mode_copy(&crtc_state->base.mode, mode);
10349 
10350 	if (drm_atomic_commit(state)) {
10351 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10352 		if (old->release_fb)
10353 			old->release_fb->funcs->destroy(old->release_fb);
10354 		goto fail;
10355 	}
10356 	crtc->primary->crtc = crtc;
10357 
10358 	/* let the connector get through one full cycle before testing */
10359 	intel_wait_for_vblank(dev, intel_crtc->pipe);
10360 	return true;
10361 
10362 fail:
10363 	drm_atomic_state_free(state);
10364 	state = NULL;
10365 
10366 	if (ret == -EDEADLK) {
10367 		drm_modeset_backoff(ctx);
10368 		goto retry;
10369 	}
10370 
10371 	return false;
10372 }
10373 
10374 void intel_release_load_detect_pipe(struct drm_connector *connector,
10375 				    struct intel_load_detect_pipe *old,
10376 				    struct drm_modeset_acquire_ctx *ctx)
10377 {
10378 	struct drm_device *dev = connector->dev;
10379 	struct intel_encoder *intel_encoder =
10380 		intel_attached_encoder(connector);
10381 	struct drm_encoder *encoder = &intel_encoder->base;
10382 	struct drm_crtc *crtc = encoder->crtc;
10383 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10384 	struct drm_atomic_state *state;
10385 	struct drm_connector_state *connector_state;
10386 	struct intel_crtc_state *crtc_state;
10387 	int ret;
10388 
10389 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10390 		      connector->base.id, connector->name,
10391 		      encoder->base.id, encoder->name);
10392 
10393 	if (old->load_detect_temp) {
10394 		state = drm_atomic_state_alloc(dev);
10395 		if (!state)
10396 			goto fail;
10397 
10398 		state->acquire_ctx = ctx;
10399 
10400 		connector_state = drm_atomic_get_connector_state(state, connector);
10401 		if (IS_ERR(connector_state))
10402 			goto fail;
10403 
10404 		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10405 		if (IS_ERR(crtc_state))
10406 			goto fail;
10407 
10408 		connector_state->best_encoder = NULL;
10409 		connector_state->crtc = NULL;
10410 
10411 		crtc_state->base.enable = crtc_state->base.active = false;
10412 
10413 		ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10414 						      0, 0);
10415 		if (ret)
10416 			goto fail;
10417 
10418 		ret = drm_atomic_commit(state);
10419 		if (ret)
10420 			goto fail;
10421 
10422 		if (old->release_fb) {
10423 			drm_framebuffer_unregister_private(old->release_fb);
10424 			drm_framebuffer_unreference(old->release_fb);
10425 		}
10426 
10427 		return;
10428 	}
10429 
10430 	/* Switch crtc and encoder back off if necessary */
10431 	if (old->dpms_mode != DRM_MODE_DPMS_ON)
10432 		connector->funcs->dpms(connector, old->dpms_mode);
10433 
10434 	return;
10435 fail:
10436 	DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10437 	drm_atomic_state_free(state);
10438 }
10439 
10440 static int i9xx_pll_refclk(struct drm_device *dev,
10441 			   const struct intel_crtc_state *pipe_config)
10442 {
10443 	struct drm_i915_private *dev_priv = dev->dev_private;
10444 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10445 
10446 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10447 		return dev_priv->vbt.lvds_ssc_freq;
10448 	else if (HAS_PCH_SPLIT(dev))
10449 		return 120000;
10450 	else if (!IS_GEN2(dev))
10451 		return 96000;
10452 	else
10453 		return 48000;
10454 }
10455 
10456 /* Returns the clock of the currently programmed mode of the given pipe. */
10457 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10458 				struct intel_crtc_state *pipe_config)
10459 {
10460 	struct drm_device *dev = crtc->base.dev;
10461 	struct drm_i915_private *dev_priv = dev->dev_private;
10462 	int pipe = pipe_config->cpu_transcoder;
10463 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10464 	u32 fp;
10465 	intel_clock_t clock;
10466 	int port_clock;
10467 	int refclk = i9xx_pll_refclk(dev, pipe_config);
10468 
10469 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10470 		fp = pipe_config->dpll_hw_state.fp0;
10471 	else
10472 		fp = pipe_config->dpll_hw_state.fp1;
10473 
10474 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10475 	if (IS_PINEVIEW(dev)) {
10476 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10477 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10478 	} else {
10479 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10480 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10481 	}
10482 
10483 	if (!IS_GEN2(dev)) {
10484 		if (IS_PINEVIEW(dev))
10485 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10486 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10487 		else
10488 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10489 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
10490 
10491 		switch (dpll & DPLL_MODE_MASK) {
10492 		case DPLLB_MODE_DAC_SERIAL:
10493 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10494 				5 : 10;
10495 			break;
10496 		case DPLLB_MODE_LVDS:
10497 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10498 				7 : 14;
10499 			break;
10500 		default:
10501 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10502 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10503 			return;
10504 		}
10505 
10506 		if (IS_PINEVIEW(dev))
10507 			port_clock = pnv_calc_dpll_params(refclk, &clock);
10508 		else
10509 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
10510 	} else {
10511 		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10512 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10513 
10514 		if (is_lvds) {
10515 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10516 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
10517 
10518 			if (lvds & LVDS_CLKB_POWER_UP)
10519 				clock.p2 = 7;
10520 			else
10521 				clock.p2 = 14;
10522 		} else {
10523 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10524 				clock.p1 = 2;
10525 			else {
10526 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10527 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10528 			}
10529 			if (dpll & PLL_P2_DIVIDE_BY_4)
10530 				clock.p2 = 4;
10531 			else
10532 				clock.p2 = 2;
10533 		}
10534 
10535 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
10536 	}
10537 
10538 	/*
10539 	 * This value includes pixel_multiplier. We will use
10540 	 * port_clock to compute adjusted_mode.crtc_clock in the
10541 	 * encoder's get_config() function.
10542 	 */
10543 	pipe_config->port_clock = port_clock;
10544 }
10545 
10546 int intel_dotclock_calculate(int link_freq,
10547 			     const struct intel_link_m_n *m_n)
10548 {
10549 	/*
10550 	 * The calculation for the data clock is:
10551 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10552 	 * But we want to avoid losing precison if possible, so:
10553 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10554 	 *
10555 	 * and the link clock is simpler:
10556 	 * link_clock = (m * link_clock) / n
10557 	 */
10558 
10559 	if (!m_n->link_n)
10560 		return 0;
10561 
10562 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10563 }
10564 
10565 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10566 				   struct intel_crtc_state *pipe_config)
10567 {
10568 	struct drm_device *dev = crtc->base.dev;
10569 
10570 	/* read out port_clock from the DPLL */
10571 	i9xx_crtc_clock_get(crtc, pipe_config);
10572 
10573 	/*
10574 	 * This value does not include pixel_multiplier.
10575 	 * We will check that port_clock and adjusted_mode.crtc_clock
10576 	 * agree once we know their relationship in the encoder's
10577 	 * get_config() function.
10578 	 */
10579 	pipe_config->base.adjusted_mode.crtc_clock =
10580 		intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10581 					 &pipe_config->fdi_m_n);
10582 }
10583 
10584 /** Returns the currently programmed mode of the given pipe. */
10585 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10586 					     struct drm_crtc *crtc)
10587 {
10588 	struct drm_i915_private *dev_priv = dev->dev_private;
10589 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10590 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10591 	struct drm_display_mode *mode;
10592 	struct intel_crtc_state pipe_config;
10593 	int htot = I915_READ(HTOTAL(cpu_transcoder));
10594 	int hsync = I915_READ(HSYNC(cpu_transcoder));
10595 	int vtot = I915_READ(VTOTAL(cpu_transcoder));
10596 	int vsync = I915_READ(VSYNC(cpu_transcoder));
10597 	enum i915_pipe pipe = intel_crtc->pipe;
10598 
10599 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10600 	if (!mode)
10601 		return NULL;
10602 
10603 	/*
10604 	 * Construct a pipe_config sufficient for getting the clock info
10605 	 * back out of crtc_clock_get.
10606 	 *
10607 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10608 	 * to use a real value here instead.
10609 	 */
10610 	pipe_config.cpu_transcoder = (enum transcoder) pipe;
10611 	pipe_config.pixel_multiplier = 1;
10612 	pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10613 	pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10614 	pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10615 	i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10616 
10617 	mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10618 	mode->hdisplay = (htot & 0xffff) + 1;
10619 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10620 	mode->hsync_start = (hsync & 0xffff) + 1;
10621 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10622 	mode->vdisplay = (vtot & 0xffff) + 1;
10623 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10624 	mode->vsync_start = (vsync & 0xffff) + 1;
10625 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10626 
10627 	drm_mode_set_name(mode);
10628 
10629 	return mode;
10630 }
10631 
10632 void intel_mark_busy(struct drm_device *dev)
10633 {
10634 	struct drm_i915_private *dev_priv = dev->dev_private;
10635 
10636 	if (dev_priv->mm.busy)
10637 		return;
10638 
10639 	intel_runtime_pm_get(dev_priv);
10640 	i915_update_gfx_val(dev_priv);
10641 	if (INTEL_INFO(dev)->gen >= 6)
10642 		gen6_rps_busy(dev_priv);
10643 	dev_priv->mm.busy = true;
10644 }
10645 
10646 void intel_mark_idle(struct drm_device *dev)
10647 {
10648 	struct drm_i915_private *dev_priv = dev->dev_private;
10649 
10650 	if (!dev_priv->mm.busy)
10651 		return;
10652 
10653 	dev_priv->mm.busy = false;
10654 
10655 	if (INTEL_INFO(dev)->gen >= 6)
10656 		gen6_rps_idle(dev->dev_private);
10657 
10658 	intel_runtime_pm_put(dev_priv);
10659 }
10660 
10661 static void intel_crtc_destroy(struct drm_crtc *crtc)
10662 {
10663 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10664 	struct drm_device *dev = crtc->dev;
10665 	struct intel_unpin_work *work;
10666 
10667 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
10668 	work = intel_crtc->unpin_work;
10669 	intel_crtc->unpin_work = NULL;
10670 	lockmgr(&dev->event_lock, LK_RELEASE);
10671 
10672 	if (work) {
10673 		cancel_work_sync(&work->work);
10674 		kfree(work);
10675 	}
10676 
10677 	drm_crtc_cleanup(crtc);
10678 
10679 	kfree(intel_crtc);
10680 }
10681 
10682 static void intel_unpin_work_fn(struct work_struct *__work)
10683 {
10684 	struct intel_unpin_work *work =
10685 		container_of(__work, struct intel_unpin_work, work);
10686 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10687 	struct drm_device *dev = crtc->base.dev;
10688 	struct drm_plane *primary = crtc->base.primary;
10689 
10690 	mutex_lock(&dev->struct_mutex);
10691 	intel_unpin_fb_obj(work->old_fb, primary->state);
10692 	drm_gem_object_unreference(&work->pending_flip_obj->base);
10693 
10694 	if (work->flip_queued_req)
10695 		i915_gem_request_assign(&work->flip_queued_req, NULL);
10696 	mutex_unlock(&dev->struct_mutex);
10697 
10698 	intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10699 	drm_framebuffer_unreference(work->old_fb);
10700 
10701 	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10702 	atomic_dec(&crtc->unpin_work_count);
10703 
10704 	kfree(work);
10705 }
10706 
10707 static void do_intel_finish_page_flip(struct drm_device *dev,
10708 				      struct drm_crtc *crtc)
10709 {
10710 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10711 	struct intel_unpin_work *work;
10712 
10713 	/* Ignore early vblank irqs */
10714 	if (intel_crtc == NULL)
10715 		return;
10716 
10717 	/*
10718 	 * This is called both by irq handlers and the reset code (to complete
10719 	 * lost pageflips) so needs the full irqsave spinlocks.
10720 	 */
10721 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
10722 	work = intel_crtc->unpin_work;
10723 
10724 	/* Ensure we don't miss a work->pending update ... */
10725 	smp_rmb();
10726 
10727 	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10728 		lockmgr(&dev->event_lock, LK_RELEASE);
10729 		return;
10730 	}
10731 
10732 	page_flip_completed(intel_crtc);
10733 
10734 	lockmgr(&dev->event_lock, LK_RELEASE);
10735 }
10736 
10737 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10738 {
10739 	struct drm_i915_private *dev_priv = dev->dev_private;
10740 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10741 
10742 	do_intel_finish_page_flip(dev, crtc);
10743 }
10744 
10745 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10746 {
10747 	struct drm_i915_private *dev_priv = dev->dev_private;
10748 	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10749 
10750 	do_intel_finish_page_flip(dev, crtc);
10751 }
10752 
10753 /* Is 'a' after or equal to 'b'? */
10754 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10755 {
10756 	return !((a - b) & 0x80000000);
10757 }
10758 
10759 static bool page_flip_finished(struct intel_crtc *crtc)
10760 {
10761 	struct drm_device *dev = crtc->base.dev;
10762 	struct drm_i915_private *dev_priv = dev->dev_private;
10763 
10764 	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10765 	    crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10766 		return true;
10767 
10768 	/*
10769 	 * The relevant registers doen't exist on pre-ctg.
10770 	 * As the flip done interrupt doesn't trigger for mmio
10771 	 * flips on gmch platforms, a flip count check isn't
10772 	 * really needed there. But since ctg has the registers,
10773 	 * include it in the check anyway.
10774 	 */
10775 	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10776 		return true;
10777 
10778 	/*
10779 	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10780 	 * used the same base address. In that case the mmio flip might
10781 	 * have completed, but the CS hasn't even executed the flip yet.
10782 	 *
10783 	 * A flip count check isn't enough as the CS might have updated
10784 	 * the base address just after start of vblank, but before we
10785 	 * managed to process the interrupt. This means we'd complete the
10786 	 * CS flip too soon.
10787 	 *
10788 	 * Combining both checks should get us a good enough result. It may
10789 	 * still happen that the CS flip has been executed, but has not
10790 	 * yet actually completed. But in case the base address is the same
10791 	 * anyway, we don't really care.
10792 	 */
10793 	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10794 		crtc->unpin_work->gtt_offset &&
10795 		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10796 				    crtc->unpin_work->flip_count);
10797 }
10798 
10799 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10800 {
10801 	struct drm_i915_private *dev_priv = dev->dev_private;
10802 	struct intel_crtc *intel_crtc =
10803 		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10804 
10805 
10806 	/*
10807 	 * This is called both by irq handlers and the reset code (to complete
10808 	 * lost pageflips) so needs the full irqsave spinlocks.
10809 	 *
10810 	 * NB: An MMIO update of the plane base pointer will also
10811 	 * generate a page-flip completion irq, i.e. every modeset
10812 	 * is also accompanied by a spurious intel_prepare_page_flip().
10813 	 */
10814 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
10815 	if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10816 		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10817 	lockmgr(&dev->event_lock, LK_RELEASE);
10818 }
10819 
10820 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10821 {
10822 	/* Ensure that the work item is consistent when activating it ... */
10823 	smp_wmb();
10824 	atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10825 	/* and that it is marked active as soon as the irq could fire. */
10826 	smp_wmb();
10827 }
10828 
10829 static int intel_gen2_queue_flip(struct drm_device *dev,
10830 				 struct drm_crtc *crtc,
10831 				 struct drm_framebuffer *fb,
10832 				 struct drm_i915_gem_object *obj,
10833 				 struct drm_i915_gem_request *req,
10834 				 uint32_t flags)
10835 {
10836 	struct intel_engine_cs *ring = req->ring;
10837 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10838 	u32 flip_mask;
10839 	int ret;
10840 
10841 	ret = intel_ring_begin(req, 6);
10842 	if (ret)
10843 		return ret;
10844 
10845 	/* Can't queue multiple flips, so wait for the previous
10846 	 * one to finish before executing the next.
10847 	 */
10848 	if (intel_crtc->plane)
10849 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10850 	else
10851 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10852 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10853 	intel_ring_emit(ring, MI_NOOP);
10854 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
10855 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10856 	intel_ring_emit(ring, fb->pitches[0]);
10857 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10858 	intel_ring_emit(ring, 0); /* aux display base address, unused */
10859 
10860 	intel_mark_page_flip_active(intel_crtc);
10861 	return 0;
10862 }
10863 
10864 static int intel_gen3_queue_flip(struct drm_device *dev,
10865 				 struct drm_crtc *crtc,
10866 				 struct drm_framebuffer *fb,
10867 				 struct drm_i915_gem_object *obj,
10868 				 struct drm_i915_gem_request *req,
10869 				 uint32_t flags)
10870 {
10871 	struct intel_engine_cs *ring = req->ring;
10872 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10873 	u32 flip_mask;
10874 	int ret;
10875 
10876 	ret = intel_ring_begin(req, 6);
10877 	if (ret)
10878 		return ret;
10879 
10880 	if (intel_crtc->plane)
10881 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10882 	else
10883 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10884 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10885 	intel_ring_emit(ring, MI_NOOP);
10886 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10887 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10888 	intel_ring_emit(ring, fb->pitches[0]);
10889 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10890 	intel_ring_emit(ring, MI_NOOP);
10891 
10892 	intel_mark_page_flip_active(intel_crtc);
10893 	return 0;
10894 }
10895 
10896 static int intel_gen4_queue_flip(struct drm_device *dev,
10897 				 struct drm_crtc *crtc,
10898 				 struct drm_framebuffer *fb,
10899 				 struct drm_i915_gem_object *obj,
10900 				 struct drm_i915_gem_request *req,
10901 				 uint32_t flags)
10902 {
10903 	struct intel_engine_cs *ring = req->ring;
10904 	struct drm_i915_private *dev_priv = dev->dev_private;
10905 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10906 	uint32_t pf, pipesrc;
10907 	int ret;
10908 
10909 	ret = intel_ring_begin(req, 4);
10910 	if (ret)
10911 		return ret;
10912 
10913 	/* i965+ uses the linear or tiled offsets from the
10914 	 * Display Registers (which do not change across a page-flip)
10915 	 * so we need only reprogram the base address.
10916 	 */
10917 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
10918 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10919 	intel_ring_emit(ring, fb->pitches[0]);
10920 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10921 			obj->tiling_mode);
10922 
10923 	/* XXX Enabling the panel-fitter across page-flip is so far
10924 	 * untested on non-native modes, so ignore it for now.
10925 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10926 	 */
10927 	pf = 0;
10928 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10929 	intel_ring_emit(ring, pf | pipesrc);
10930 
10931 	intel_mark_page_flip_active(intel_crtc);
10932 	return 0;
10933 }
10934 
10935 static int intel_gen6_queue_flip(struct drm_device *dev,
10936 				 struct drm_crtc *crtc,
10937 				 struct drm_framebuffer *fb,
10938 				 struct drm_i915_gem_object *obj,
10939 				 struct drm_i915_gem_request *req,
10940 				 uint32_t flags)
10941 {
10942 	struct intel_engine_cs *ring = req->ring;
10943 	struct drm_i915_private *dev_priv = dev->dev_private;
10944 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10945 	uint32_t pf, pipesrc;
10946 	int ret;
10947 
10948 	ret = intel_ring_begin(req, 4);
10949 	if (ret)
10950 		return ret;
10951 
10952 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
10953 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10954 	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10955 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10956 
10957 	/* Contrary to the suggestions in the documentation,
10958 	 * "Enable Panel Fitter" does not seem to be required when page
10959 	 * flipping with a non-native mode, and worse causes a normal
10960 	 * modeset to fail.
10961 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10962 	 */
10963 	pf = 0;
10964 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10965 	intel_ring_emit(ring, pf | pipesrc);
10966 
10967 	intel_mark_page_flip_active(intel_crtc);
10968 	return 0;
10969 }
10970 
10971 static int intel_gen7_queue_flip(struct drm_device *dev,
10972 				 struct drm_crtc *crtc,
10973 				 struct drm_framebuffer *fb,
10974 				 struct drm_i915_gem_object *obj,
10975 				 struct drm_i915_gem_request *req,
10976 				 uint32_t flags)
10977 {
10978 	struct intel_engine_cs *ring = req->ring;
10979 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10980 	uint32_t plane_bit = 0;
10981 	int len, ret;
10982 
10983 	switch (intel_crtc->plane) {
10984 	case PLANE_A:
10985 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10986 		break;
10987 	case PLANE_B:
10988 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10989 		break;
10990 	case PLANE_C:
10991 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10992 		break;
10993 	default:
10994 		WARN_ONCE(1, "unknown plane in flip command\n");
10995 		return -ENODEV;
10996 	}
10997 
10998 	len = 4;
10999 	if (ring->id == RCS) {
11000 		len += 6;
11001 		/*
11002 		 * On Gen 8, SRM is now taking an extra dword to accommodate
11003 		 * 48bits addresses, and we need a NOOP for the batch size to
11004 		 * stay even.
11005 		 */
11006 		if (IS_GEN8(dev))
11007 			len += 2;
11008 	}
11009 
11010 	/*
11011 	 * BSpec MI_DISPLAY_FLIP for IVB:
11012 	 * "The full packet must be contained within the same cache line."
11013 	 *
11014 	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11015 	 * cacheline, if we ever start emitting more commands before
11016 	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11017 	 * then do the cacheline alignment, and finally emit the
11018 	 * MI_DISPLAY_FLIP.
11019 	 */
11020 	ret = intel_ring_cacheline_align(req);
11021 	if (ret)
11022 		return ret;
11023 
11024 	ret = intel_ring_begin(req, len);
11025 	if (ret)
11026 		return ret;
11027 
11028 	/* Unmask the flip-done completion message. Note that the bspec says that
11029 	 * we should do this for both the BCS and RCS, and that we must not unmask
11030 	 * more than one flip event at any time (or ensure that one flip message
11031 	 * can be sent by waiting for flip-done prior to queueing new flips).
11032 	 * Experimentation says that BCS works despite DERRMR masking all
11033 	 * flip-done completion events and that unmasking all planes at once
11034 	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11035 	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11036 	 */
11037 	if (ring->id == RCS) {
11038 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11039 		intel_ring_emit(ring, DERRMR);
11040 		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11041 					DERRMR_PIPEB_PRI_FLIP_DONE |
11042 					DERRMR_PIPEC_PRI_FLIP_DONE));
11043 		if (IS_GEN8(dev))
11044 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11045 					      MI_SRM_LRM_GLOBAL_GTT);
11046 		else
11047 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11048 					      MI_SRM_LRM_GLOBAL_GTT);
11049 		intel_ring_emit(ring, DERRMR);
11050 		intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11051 		if (IS_GEN8(dev)) {
11052 			intel_ring_emit(ring, 0);
11053 			intel_ring_emit(ring, MI_NOOP);
11054 		}
11055 	}
11056 
11057 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11058 	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11059 	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11060 	intel_ring_emit(ring, (MI_NOOP));
11061 
11062 	intel_mark_page_flip_active(intel_crtc);
11063 	return 0;
11064 }
11065 
11066 static bool use_mmio_flip(struct intel_engine_cs *ring,
11067 			  struct drm_i915_gem_object *obj)
11068 {
11069 	/*
11070 	 * This is not being used for older platforms, because
11071 	 * non-availability of flip done interrupt forces us to use
11072 	 * CS flips. Older platforms derive flip done using some clever
11073 	 * tricks involving the flip_pending status bits and vblank irqs.
11074 	 * So using MMIO flips there would disrupt this mechanism.
11075 	 */
11076 
11077 	if (ring == NULL)
11078 		return true;
11079 
11080 	if (INTEL_INFO(ring->dev)->gen < 5)
11081 		return false;
11082 
11083 	if (i915.use_mmio_flip < 0)
11084 		return false;
11085 	else if (i915.use_mmio_flip > 0)
11086 		return true;
11087 	else if (i915.enable_execlists)
11088 		return true;
11089 	else
11090 		return ring != i915_gem_request_get_ring(obj->last_write_req);
11091 }
11092 
11093 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11094 {
11095 	struct drm_device *dev = intel_crtc->base.dev;
11096 	struct drm_i915_private *dev_priv = dev->dev_private;
11097 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11098 	const enum i915_pipe pipe = intel_crtc->pipe;
11099 	u32 ctl, stride;
11100 
11101 	ctl = I915_READ(PLANE_CTL(pipe, 0));
11102 	ctl &= ~PLANE_CTL_TILED_MASK;
11103 	switch (fb->modifier[0]) {
11104 	case DRM_FORMAT_MOD_NONE:
11105 		break;
11106 	case I915_FORMAT_MOD_X_TILED:
11107 		ctl |= PLANE_CTL_TILED_X;
11108 		break;
11109 	case I915_FORMAT_MOD_Y_TILED:
11110 		ctl |= PLANE_CTL_TILED_Y;
11111 		break;
11112 	case I915_FORMAT_MOD_Yf_TILED:
11113 		ctl |= PLANE_CTL_TILED_YF;
11114 		break;
11115 	default:
11116 		MISSING_CASE(fb->modifier[0]);
11117 	}
11118 
11119 	/*
11120 	 * The stride is either expressed as a multiple of 64 bytes chunks for
11121 	 * linear buffers or in number of tiles for tiled buffers.
11122 	 */
11123 	stride = fb->pitches[0] /
11124 		 intel_fb_stride_alignment(dev, fb->modifier[0],
11125 					   fb->pixel_format);
11126 
11127 	/*
11128 	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11129 	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11130 	 */
11131 	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11132 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11133 
11134 	I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11135 	POSTING_READ(PLANE_SURF(pipe, 0));
11136 }
11137 
11138 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11139 {
11140 	struct drm_device *dev = intel_crtc->base.dev;
11141 	struct drm_i915_private *dev_priv = dev->dev_private;
11142 	struct intel_framebuffer *intel_fb =
11143 		to_intel_framebuffer(intel_crtc->base.primary->fb);
11144 	struct drm_i915_gem_object *obj = intel_fb->obj;
11145 	u32 dspcntr;
11146 	u32 reg;
11147 
11148 	reg = DSPCNTR(intel_crtc->plane);
11149 	dspcntr = I915_READ(reg);
11150 
11151 	if (obj->tiling_mode != I915_TILING_NONE)
11152 		dspcntr |= DISPPLANE_TILED;
11153 	else
11154 		dspcntr &= ~DISPPLANE_TILED;
11155 
11156 	I915_WRITE(reg, dspcntr);
11157 
11158 	I915_WRITE(DSPSURF(intel_crtc->plane),
11159 		   intel_crtc->unpin_work->gtt_offset);
11160 	POSTING_READ(DSPSURF(intel_crtc->plane));
11161 
11162 }
11163 
11164 /*
11165  * XXX: This is the temporary way to update the plane registers until we get
11166  * around to using the usual plane update functions for MMIO flips
11167  */
11168 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11169 {
11170 	struct drm_device *dev = intel_crtc->base.dev;
11171 	u32 start_vbl_count;
11172 
11173 	intel_mark_page_flip_active(intel_crtc);
11174 
11175 	intel_pipe_update_start(intel_crtc, &start_vbl_count);
11176 
11177 	if (INTEL_INFO(dev)->gen >= 9)
11178 		skl_do_mmio_flip(intel_crtc);
11179 	else
11180 		/* use_mmio_flip() retricts MMIO flips to ilk+ */
11181 		ilk_do_mmio_flip(intel_crtc);
11182 
11183 	intel_pipe_update_end(intel_crtc, start_vbl_count);
11184 }
11185 
11186 static void intel_mmio_flip_work_func(struct work_struct *work)
11187 {
11188 	struct intel_mmio_flip *mmio_flip =
11189 		container_of(work, struct intel_mmio_flip, work);
11190 
11191 	if (mmio_flip->req)
11192 		WARN_ON(__i915_wait_request(mmio_flip->req,
11193 					    mmio_flip->crtc->reset_counter,
11194 					    false, NULL,
11195 					    &mmio_flip->i915->rps.mmioflips));
11196 
11197 	intel_do_mmio_flip(mmio_flip->crtc);
11198 
11199 	i915_gem_request_unreference__unlocked(mmio_flip->req);
11200 	kfree(mmio_flip);
11201 }
11202 
11203 static int intel_queue_mmio_flip(struct drm_device *dev,
11204 				 struct drm_crtc *crtc,
11205 				 struct drm_framebuffer *fb,
11206 				 struct drm_i915_gem_object *obj,
11207 				 struct intel_engine_cs *ring,
11208 				 uint32_t flags)
11209 {
11210 	struct intel_mmio_flip *mmio_flip;
11211 
11212 	mmio_flip = kmalloc(sizeof(*mmio_flip), M_DRM, M_WAITOK);
11213 	if (mmio_flip == NULL)
11214 		return -ENOMEM;
11215 
11216 	mmio_flip->i915 = to_i915(dev);
11217 	mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11218 	mmio_flip->crtc = to_intel_crtc(crtc);
11219 
11220 	INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11221 	schedule_work(&mmio_flip->work);
11222 
11223 	return 0;
11224 }
11225 
11226 static int intel_default_queue_flip(struct drm_device *dev,
11227 				    struct drm_crtc *crtc,
11228 				    struct drm_framebuffer *fb,
11229 				    struct drm_i915_gem_object *obj,
11230 				    struct drm_i915_gem_request *req,
11231 				    uint32_t flags)
11232 {
11233 	return -ENODEV;
11234 }
11235 
11236 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11237 					 struct drm_crtc *crtc)
11238 {
11239 	struct drm_i915_private *dev_priv = dev->dev_private;
11240 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11241 	struct intel_unpin_work *work = intel_crtc->unpin_work;
11242 	u32 addr;
11243 
11244 	if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11245 		return true;
11246 
11247 	if (!work->enable_stall_check)
11248 		return false;
11249 
11250 	if (work->flip_ready_vblank == 0) {
11251 		if (work->flip_queued_req &&
11252 		    !i915_gem_request_completed(work->flip_queued_req, true))
11253 			return false;
11254 
11255 		work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11256 	}
11257 
11258 	if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11259 		return false;
11260 
11261 	/* Potential stall - if we see that the flip has happened,
11262 	 * assume a missed interrupt. */
11263 	if (INTEL_INFO(dev)->gen >= 4)
11264 		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11265 	else
11266 		addr = I915_READ(DSPADDR(intel_crtc->plane));
11267 
11268 	/* There is a potential issue here with a false positive after a flip
11269 	 * to the same address. We could address this by checking for a
11270 	 * non-incrementing frame counter.
11271 	 */
11272 	return addr == work->gtt_offset;
11273 }
11274 
11275 void intel_check_page_flip(struct drm_device *dev, int pipe)
11276 {
11277 	struct drm_i915_private *dev_priv = dev->dev_private;
11278 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11279 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11280 	struct intel_unpin_work *work;
11281 
11282 //	WARN_ON(!in_interrupt());
11283 
11284 	if (crtc == NULL)
11285 		return;
11286 
11287 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
11288 	work = intel_crtc->unpin_work;
11289 	if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11290 		WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11291 			 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11292 		page_flip_completed(intel_crtc);
11293 		work = NULL;
11294 	}
11295 	if (work != NULL &&
11296 	    drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11297 		intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11298 	lockmgr(&dev->event_lock, LK_RELEASE);
11299 }
11300 
11301 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11302 				struct drm_framebuffer *fb,
11303 				struct drm_pending_vblank_event *event,
11304 				uint32_t page_flip_flags)
11305 {
11306 	struct drm_device *dev = crtc->dev;
11307 	struct drm_i915_private *dev_priv = dev->dev_private;
11308 	struct drm_framebuffer *old_fb = crtc->primary->fb;
11309 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11310 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11311 	struct drm_plane *primary = crtc->primary;
11312 	enum i915_pipe pipe = intel_crtc->pipe;
11313 	struct intel_unpin_work *work;
11314 	struct intel_engine_cs *ring;
11315 	bool mmio_flip;
11316 	struct drm_i915_gem_request *request = NULL;
11317 	int ret;
11318 
11319 	/*
11320 	 * drm_mode_page_flip_ioctl() should already catch this, but double
11321 	 * check to be safe.  In the future we may enable pageflipping from
11322 	 * a disabled primary plane.
11323 	 */
11324 	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11325 		return -EBUSY;
11326 
11327 	/* Can't change pixel format via MI display flips. */
11328 	if (fb->pixel_format != crtc->primary->fb->pixel_format)
11329 		return -EINVAL;
11330 
11331 	/*
11332 	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11333 	 * Note that pitch changes could also affect these register.
11334 	 */
11335 	if (INTEL_INFO(dev)->gen > 3 &&
11336 	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11337 	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
11338 		return -EINVAL;
11339 
11340 	if (i915_terminally_wedged(&dev_priv->gpu_error))
11341 		goto out_hang;
11342 
11343 	work = kzalloc(sizeof(*work), GFP_KERNEL);
11344 	if (work == NULL)
11345 		return -ENOMEM;
11346 
11347 	work->event = event;
11348 	work->crtc = crtc;
11349 	work->old_fb = old_fb;
11350 	INIT_WORK(&work->work, intel_unpin_work_fn);
11351 
11352 	ret = drm_crtc_vblank_get(crtc);
11353 	if (ret)
11354 		goto free_work;
11355 
11356 	/* We borrow the event spin lock for protecting unpin_work */
11357 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
11358 	if (intel_crtc->unpin_work) {
11359 		/* Before declaring the flip queue wedged, check if
11360 		 * the hardware completed the operation behind our backs.
11361 		 */
11362 		if (__intel_pageflip_stall_check(dev, crtc)) {
11363 			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11364 			page_flip_completed(intel_crtc);
11365 		} else {
11366 			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11367 			lockmgr(&dev->event_lock, LK_RELEASE);
11368 
11369 			drm_crtc_vblank_put(crtc);
11370 			kfree(work);
11371 			return -EBUSY;
11372 		}
11373 	}
11374 	intel_crtc->unpin_work = work;
11375 	lockmgr(&dev->event_lock, LK_RELEASE);
11376 
11377 	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11378 		flush_workqueue(dev_priv->wq);
11379 
11380 	/* Reference the objects for the scheduled work. */
11381 	drm_framebuffer_reference(work->old_fb);
11382 	drm_gem_object_reference(&obj->base);
11383 
11384 	crtc->primary->fb = fb;
11385 	update_state_fb(crtc->primary);
11386 
11387 	work->pending_flip_obj = obj;
11388 
11389 	ret = i915_mutex_lock_interruptible(dev);
11390 	if (ret)
11391 		goto cleanup;
11392 
11393 	atomic_inc(&intel_crtc->unpin_work_count);
11394 	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11395 
11396 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11397 		work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11398 
11399 	if (IS_VALLEYVIEW(dev)) {
11400 		ring = &dev_priv->ring[BCS];
11401 		if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11402 			/* vlv: DISPLAY_FLIP fails to change tiling */
11403 			ring = NULL;
11404 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11405 		ring = &dev_priv->ring[BCS];
11406 	} else if (INTEL_INFO(dev)->gen >= 7) {
11407 		ring = i915_gem_request_get_ring(obj->last_write_req);
11408 		if (ring == NULL || ring->id != RCS)
11409 			ring = &dev_priv->ring[BCS];
11410 	} else {
11411 		ring = &dev_priv->ring[RCS];
11412 	}
11413 
11414 	mmio_flip = use_mmio_flip(ring, obj);
11415 
11416 	/* When using CS flips, we want to emit semaphores between rings.
11417 	 * However, when using mmio flips we will create a task to do the
11418 	 * synchronisation, so all we want here is to pin the framebuffer
11419 	 * into the display plane and skip any waits.
11420 	 */
11421 	ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11422 					 crtc->primary->state,
11423 					 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11424 	if (ret)
11425 		goto cleanup_pending;
11426 
11427 	work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11428 						  + intel_crtc->dspaddr_offset;
11429 
11430 	if (mmio_flip) {
11431 		ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11432 					    page_flip_flags);
11433 		if (ret)
11434 			goto cleanup_unpin;
11435 
11436 		i915_gem_request_assign(&work->flip_queued_req,
11437 					obj->last_write_req);
11438 	} else {
11439 		if (!request) {
11440 			ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11441 			if (ret)
11442 				goto cleanup_unpin;
11443 		}
11444 
11445 		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11446 						   page_flip_flags);
11447 		if (ret)
11448 			goto cleanup_unpin;
11449 
11450 		i915_gem_request_assign(&work->flip_queued_req, request);
11451 	}
11452 
11453 	if (request)
11454 		i915_add_request_no_flush(request);
11455 
11456 	work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11457 	work->enable_stall_check = true;
11458 
11459 	i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11460 			  to_intel_plane(primary)->frontbuffer_bit);
11461 	mutex_unlock(&dev->struct_mutex);
11462 
11463 	intel_fbc_disable_crtc(intel_crtc);
11464 	intel_frontbuffer_flip_prepare(dev,
11465 				       to_intel_plane(primary)->frontbuffer_bit);
11466 
11467 	trace_i915_flip_request(intel_crtc->plane, obj);
11468 
11469 	return 0;
11470 
11471 cleanup_unpin:
11472 	intel_unpin_fb_obj(fb, crtc->primary->state);
11473 cleanup_pending:
11474 	if (request)
11475 		i915_gem_request_cancel(request);
11476 	atomic_dec(&intel_crtc->unpin_work_count);
11477 	mutex_unlock(&dev->struct_mutex);
11478 cleanup:
11479 	crtc->primary->fb = old_fb;
11480 	update_state_fb(crtc->primary);
11481 
11482 	drm_gem_object_unreference_unlocked(&obj->base);
11483 	drm_framebuffer_unreference(work->old_fb);
11484 
11485 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
11486 	intel_crtc->unpin_work = NULL;
11487 	lockmgr(&dev->event_lock, LK_RELEASE);
11488 
11489 	drm_crtc_vblank_put(crtc);
11490 free_work:
11491 	kfree(work);
11492 
11493 	if (ret == -EIO) {
11494 		struct drm_atomic_state *state;
11495 		struct drm_plane_state *plane_state;
11496 
11497 out_hang:
11498 		state = drm_atomic_state_alloc(dev);
11499 		if (!state)
11500 			return -ENOMEM;
11501 		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11502 
11503 retry:
11504 		plane_state = drm_atomic_get_plane_state(state, primary);
11505 		ret = PTR_ERR_OR_ZERO(plane_state);
11506 		if (!ret) {
11507 			drm_atomic_set_fb_for_plane(plane_state, fb);
11508 
11509 			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11510 			if (!ret)
11511 				ret = drm_atomic_commit(state);
11512 		}
11513 
11514 		if (ret == -EDEADLK) {
11515 			drm_modeset_backoff(state->acquire_ctx);
11516 			drm_atomic_state_clear(state);
11517 			goto retry;
11518 		}
11519 
11520 		if (ret)
11521 			drm_atomic_state_free(state);
11522 
11523 		if (ret == 0 && event) {
11524 			lockmgr(&dev->event_lock, LK_EXCLUSIVE);
11525 			drm_send_vblank_event(dev, pipe, event);
11526 			lockmgr(&dev->event_lock, LK_RELEASE);
11527 		}
11528 	}
11529 	return ret;
11530 }
11531 
11532 
11533 /**
11534  * intel_wm_need_update - Check whether watermarks need updating
11535  * @plane: drm plane
11536  * @state: new plane state
11537  *
11538  * Check current plane state versus the new one to determine whether
11539  * watermarks need to be recalculated.
11540  *
11541  * Returns true or false.
11542  */
11543 static bool intel_wm_need_update(struct drm_plane *plane,
11544 				 struct drm_plane_state *state)
11545 {
11546 	/* Update watermarks on tiling changes. */
11547 	if (!plane->state->fb || !state->fb ||
11548 	    plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11549 	    plane->state->rotation != state->rotation)
11550 		return true;
11551 
11552 	if (plane->state->crtc_w != state->crtc_w)
11553 		return true;
11554 
11555 	return false;
11556 }
11557 
11558 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11559 				    struct drm_plane_state *plane_state)
11560 {
11561 	struct drm_crtc *crtc = crtc_state->crtc;
11562 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11563 	struct drm_plane *plane = plane_state->plane;
11564 	struct drm_device *dev = crtc->dev;
11565 	struct drm_i915_private *dev_priv = dev->dev_private;
11566 	struct intel_plane_state *old_plane_state =
11567 		to_intel_plane_state(plane->state);
11568 	int idx = intel_crtc->base.base.id, ret;
11569 	int i = drm_plane_index(plane);
11570 	bool mode_changed = needs_modeset(crtc_state);
11571 	bool was_crtc_enabled = crtc->state->active;
11572 	bool is_crtc_enabled = crtc_state->active;
11573 
11574 	bool turn_off, turn_on, visible, was_visible;
11575 	struct drm_framebuffer *fb = plane_state->fb;
11576 
11577 	if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11578 	    plane->type != DRM_PLANE_TYPE_CURSOR) {
11579 		ret = skl_update_scaler_plane(
11580 			to_intel_crtc_state(crtc_state),
11581 			to_intel_plane_state(plane_state));
11582 		if (ret)
11583 			return ret;
11584 	}
11585 
11586 	/*
11587 	 * Disabling a plane is always okay; we just need to update
11588 	 * fb tracking in a special way since cleanup_fb() won't
11589 	 * get called by the plane helpers.
11590 	 */
11591 	if (old_plane_state->base.fb && !fb)
11592 		intel_crtc->atomic.disabled_planes |= 1 << i;
11593 
11594 	was_visible = old_plane_state->visible;
11595 	visible = to_intel_plane_state(plane_state)->visible;
11596 
11597 	if (!was_crtc_enabled && WARN_ON(was_visible))
11598 		was_visible = false;
11599 
11600 	if (!is_crtc_enabled && WARN_ON(visible))
11601 		visible = false;
11602 
11603 	if (!was_visible && !visible)
11604 		return 0;
11605 
11606 	turn_off = was_visible && (!visible || mode_changed);
11607 	turn_on = visible && (!was_visible || mode_changed);
11608 
11609 	DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11610 			 plane->base.id, fb ? fb->base.id : -1);
11611 
11612 	DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11613 			 plane->base.id, was_visible, visible,
11614 			 turn_off, turn_on, mode_changed);
11615 
11616 	if (turn_on) {
11617 		intel_crtc->atomic.update_wm_pre = true;
11618 		/* must disable cxsr around plane enable/disable */
11619 		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11620 			intel_crtc->atomic.disable_cxsr = true;
11621 			/* to potentially re-enable cxsr */
11622 			intel_crtc->atomic.wait_vblank = true;
11623 			intel_crtc->atomic.update_wm_post = true;
11624 		}
11625 	} else if (turn_off) {
11626 		intel_crtc->atomic.update_wm_post = true;
11627 		/* must disable cxsr around plane enable/disable */
11628 		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11629 			if (is_crtc_enabled)
11630 				intel_crtc->atomic.wait_vblank = true;
11631 			intel_crtc->atomic.disable_cxsr = true;
11632 		}
11633 	} else if (intel_wm_need_update(plane, plane_state)) {
11634 		intel_crtc->atomic.update_wm_pre = true;
11635 	}
11636 
11637 	if (visible)
11638 		intel_crtc->atomic.fb_bits |=
11639 			to_intel_plane(plane)->frontbuffer_bit;
11640 
11641 	switch (plane->type) {
11642 	case DRM_PLANE_TYPE_PRIMARY:
11643 		intel_crtc->atomic.wait_for_flips = true;
11644 		intel_crtc->atomic.pre_disable_primary = turn_off;
11645 		intel_crtc->atomic.post_enable_primary = turn_on;
11646 
11647 		if (turn_off) {
11648 			/*
11649 			 * FIXME: Actually if we will still have any other
11650 			 * plane enabled on the pipe we could let IPS enabled
11651 			 * still, but for now lets consider that when we make
11652 			 * primary invisible by setting DSPCNTR to 0 on
11653 			 * update_primary_plane function IPS needs to be
11654 			 * disable.
11655 			 */
11656 			intel_crtc->atomic.disable_ips = true;
11657 
11658 			intel_crtc->atomic.disable_fbc = true;
11659 		}
11660 
11661 		/*
11662 		 * FBC does not work on some platforms for rotated
11663 		 * planes, so disable it when rotation is not 0 and
11664 		 * update it when rotation is set back to 0.
11665 		 *
11666 		 * FIXME: This is redundant with the fbc update done in
11667 		 * the primary plane enable function except that that
11668 		 * one is done too late. We eventually need to unify
11669 		 * this.
11670 		 */
11671 
11672 		if (visible &&
11673 		    INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11674 		    dev_priv->fbc.crtc == intel_crtc &&
11675 		    plane_state->rotation != BIT(DRM_ROTATE_0))
11676 			intel_crtc->atomic.disable_fbc = true;
11677 
11678 		/*
11679 		 * BDW signals flip done immediately if the plane
11680 		 * is disabled, even if the plane enable is already
11681 		 * armed to occur at the next vblank :(
11682 		 */
11683 		if (turn_on && IS_BROADWELL(dev))
11684 			intel_crtc->atomic.wait_vblank = true;
11685 
11686 		intel_crtc->atomic.update_fbc |= visible || mode_changed;
11687 		break;
11688 	case DRM_PLANE_TYPE_CURSOR:
11689 		break;
11690 	case DRM_PLANE_TYPE_OVERLAY:
11691 		if (turn_off && !mode_changed) {
11692 			intel_crtc->atomic.wait_vblank = true;
11693 			intel_crtc->atomic.update_sprite_watermarks |=
11694 				1 << i;
11695 		}
11696 	}
11697 	return 0;
11698 }
11699 
11700 static bool encoders_cloneable(const struct intel_encoder *a,
11701 			       const struct intel_encoder *b)
11702 {
11703 	/* masks could be asymmetric, so check both ways */
11704 	return a == b || (a->cloneable & (1 << b->type) &&
11705 			  b->cloneable & (1 << a->type));
11706 }
11707 
11708 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11709 					 struct intel_crtc *crtc,
11710 					 struct intel_encoder *encoder)
11711 {
11712 	struct intel_encoder *source_encoder;
11713 	struct drm_connector *connector;
11714 	struct drm_connector_state *connector_state;
11715 	int i;
11716 
11717 	for_each_connector_in_state(state, connector, connector_state, i) {
11718 		if (connector_state->crtc != &crtc->base)
11719 			continue;
11720 
11721 		source_encoder =
11722 			to_intel_encoder(connector_state->best_encoder);
11723 		if (!encoders_cloneable(encoder, source_encoder))
11724 			return false;
11725 	}
11726 
11727 	return true;
11728 }
11729 
11730 static bool check_encoder_cloning(struct drm_atomic_state *state,
11731 				  struct intel_crtc *crtc)
11732 {
11733 	struct intel_encoder *encoder;
11734 	struct drm_connector *connector;
11735 	struct drm_connector_state *connector_state;
11736 	int i;
11737 
11738 	for_each_connector_in_state(state, connector, connector_state, i) {
11739 		if (connector_state->crtc != &crtc->base)
11740 			continue;
11741 
11742 		encoder = to_intel_encoder(connector_state->best_encoder);
11743 		if (!check_single_encoder_cloning(state, crtc, encoder))
11744 			return false;
11745 	}
11746 
11747 	return true;
11748 }
11749 
11750 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11751 				   struct drm_crtc_state *crtc_state)
11752 {
11753 	struct drm_device *dev = crtc->dev;
11754 	struct drm_i915_private *dev_priv = dev->dev_private;
11755 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11756 	struct intel_crtc_state *pipe_config =
11757 		to_intel_crtc_state(crtc_state);
11758 	struct drm_atomic_state *state = crtc_state->state;
11759 	int ret;
11760 	bool mode_changed = needs_modeset(crtc_state);
11761 
11762 	if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11763 		DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11764 		return -EINVAL;
11765 	}
11766 
11767 	if (mode_changed && !crtc_state->active)
11768 		intel_crtc->atomic.update_wm_post = true;
11769 
11770 	if (mode_changed && crtc_state->enable &&
11771 	    dev_priv->display.crtc_compute_clock &&
11772 	    !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11773 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11774 							   pipe_config);
11775 		if (ret)
11776 			return ret;
11777 	}
11778 
11779 	ret = 0;
11780 	if (INTEL_INFO(dev)->gen >= 9) {
11781 		if (mode_changed)
11782 			ret = skl_update_scaler_crtc(pipe_config);
11783 
11784 		if (!ret)
11785 			ret = intel_atomic_setup_scalers(dev, intel_crtc,
11786 							 pipe_config);
11787 	}
11788 
11789 	return ret;
11790 }
11791 
11792 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11793 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
11794 	.load_lut = intel_crtc_load_lut,
11795 	.atomic_begin = intel_begin_crtc_commit,
11796 	.atomic_flush = intel_finish_crtc_commit,
11797 	.atomic_check = intel_crtc_atomic_check,
11798 };
11799 
11800 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11801 {
11802 	struct intel_connector *connector;
11803 
11804 	for_each_intel_connector(dev, connector) {
11805 		if (connector->base.encoder) {
11806 			connector->base.state->best_encoder =
11807 				connector->base.encoder;
11808 			connector->base.state->crtc =
11809 				connector->base.encoder->crtc;
11810 		} else {
11811 			connector->base.state->best_encoder = NULL;
11812 			connector->base.state->crtc = NULL;
11813 		}
11814 	}
11815 }
11816 
11817 static void
11818 connected_sink_compute_bpp(struct intel_connector *connector,
11819 			   struct intel_crtc_state *pipe_config)
11820 {
11821 	int bpp = pipe_config->pipe_bpp;
11822 
11823 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11824 		connector->base.base.id,
11825 		connector->base.name);
11826 
11827 	/* Don't use an invalid EDID bpc value */
11828 	if (connector->base.display_info.bpc &&
11829 	    connector->base.display_info.bpc * 3 < bpp) {
11830 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11831 			      bpp, connector->base.display_info.bpc*3);
11832 		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11833 	}
11834 
11835 	/* Clamp bpp to 8 on screens without EDID 1.4 */
11836 	if (connector->base.display_info.bpc == 0 && bpp > 24) {
11837 		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11838 			      bpp);
11839 		pipe_config->pipe_bpp = 24;
11840 	}
11841 }
11842 
11843 static int
11844 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11845 			  struct intel_crtc_state *pipe_config)
11846 {
11847 	struct drm_device *dev = crtc->base.dev;
11848 	struct drm_atomic_state *state;
11849 	struct drm_connector *connector;
11850 	struct drm_connector_state *connector_state;
11851 	int bpp, i;
11852 
11853 	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11854 		bpp = 10*3;
11855 	else if (INTEL_INFO(dev)->gen >= 5)
11856 		bpp = 12*3;
11857 	else
11858 		bpp = 8*3;
11859 
11860 
11861 	pipe_config->pipe_bpp = bpp;
11862 
11863 	state = pipe_config->base.state;
11864 
11865 	/* Clamp display bpp to EDID value */
11866 	for_each_connector_in_state(state, connector, connector_state, i) {
11867 		if (connector_state->crtc != &crtc->base)
11868 			continue;
11869 
11870 		connected_sink_compute_bpp(to_intel_connector(connector),
11871 					   pipe_config);
11872 	}
11873 
11874 	return bpp;
11875 }
11876 
11877 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11878 {
11879 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11880 			"type: 0x%x flags: 0x%x\n",
11881 		mode->crtc_clock,
11882 		mode->crtc_hdisplay, mode->crtc_hsync_start,
11883 		mode->crtc_hsync_end, mode->crtc_htotal,
11884 		mode->crtc_vdisplay, mode->crtc_vsync_start,
11885 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11886 }
11887 
11888 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11889 				   struct intel_crtc_state *pipe_config,
11890 				   const char *context)
11891 {
11892 	struct drm_device *dev = crtc->base.dev;
11893 	struct drm_plane *plane;
11894 	struct intel_plane *intel_plane;
11895 	struct intel_plane_state *state;
11896 	struct drm_framebuffer *fb;
11897 
11898 	DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11899 		      context, pipe_config, pipe_name(crtc->pipe));
11900 
11901 	DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11902 	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11903 		      pipe_config->pipe_bpp, pipe_config->dither);
11904 	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11905 		      pipe_config->has_pch_encoder,
11906 		      pipe_config->fdi_lanes,
11907 		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11908 		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11909 		      pipe_config->fdi_m_n.tu);
11910 	DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11911 		      pipe_config->has_dp_encoder,
11912 		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11913 		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11914 		      pipe_config->dp_m_n.tu);
11915 
11916 	DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11917 		      pipe_config->has_dp_encoder,
11918 		      pipe_config->dp_m2_n2.gmch_m,
11919 		      pipe_config->dp_m2_n2.gmch_n,
11920 		      pipe_config->dp_m2_n2.link_m,
11921 		      pipe_config->dp_m2_n2.link_n,
11922 		      pipe_config->dp_m2_n2.tu);
11923 
11924 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11925 		      pipe_config->has_audio,
11926 		      pipe_config->has_infoframe);
11927 
11928 	DRM_DEBUG_KMS("requested mode:\n");
11929 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
11930 	DRM_DEBUG_KMS("adjusted mode:\n");
11931 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11932 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11933 	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11934 	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11935 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11936 	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11937 		      crtc->num_scalers,
11938 		      pipe_config->scaler_state.scaler_users,
11939 		      pipe_config->scaler_state.scaler_id);
11940 	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11941 		      pipe_config->gmch_pfit.control,
11942 		      pipe_config->gmch_pfit.pgm_ratios,
11943 		      pipe_config->gmch_pfit.lvds_border_bits);
11944 	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11945 		      pipe_config->pch_pfit.pos,
11946 		      pipe_config->pch_pfit.size,
11947 		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11948 	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11949 	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11950 
11951 	if (IS_BROXTON(dev)) {
11952 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11953 			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11954 			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11955 			      pipe_config->ddi_pll_sel,
11956 			      pipe_config->dpll_hw_state.ebb0,
11957 			      pipe_config->dpll_hw_state.ebb4,
11958 			      pipe_config->dpll_hw_state.pll0,
11959 			      pipe_config->dpll_hw_state.pll1,
11960 			      pipe_config->dpll_hw_state.pll2,
11961 			      pipe_config->dpll_hw_state.pll3,
11962 			      pipe_config->dpll_hw_state.pll6,
11963 			      pipe_config->dpll_hw_state.pll8,
11964 			      pipe_config->dpll_hw_state.pll9,
11965 			      pipe_config->dpll_hw_state.pll10,
11966 			      pipe_config->dpll_hw_state.pcsdw12);
11967 	} else if (IS_SKYLAKE(dev)) {
11968 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11969 			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11970 			      pipe_config->ddi_pll_sel,
11971 			      pipe_config->dpll_hw_state.ctrl1,
11972 			      pipe_config->dpll_hw_state.cfgcr1,
11973 			      pipe_config->dpll_hw_state.cfgcr2);
11974 	} else if (HAS_DDI(dev)) {
11975 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11976 			      pipe_config->ddi_pll_sel,
11977 			      pipe_config->dpll_hw_state.wrpll);
11978 	} else {
11979 		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11980 			      "fp0: 0x%x, fp1: 0x%x\n",
11981 			      pipe_config->dpll_hw_state.dpll,
11982 			      pipe_config->dpll_hw_state.dpll_md,
11983 			      pipe_config->dpll_hw_state.fp0,
11984 			      pipe_config->dpll_hw_state.fp1);
11985 	}
11986 
11987 	DRM_DEBUG_KMS("planes on this crtc\n");
11988 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11989 		intel_plane = to_intel_plane(plane);
11990 		if (intel_plane->pipe != crtc->pipe)
11991 			continue;
11992 
11993 		state = to_intel_plane_state(plane->state);
11994 		fb = state->base.fb;
11995 		if (!fb) {
11996 			DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11997 				"disabled, scaler_id = %d\n",
11998 				plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11999 				plane->base.id, intel_plane->pipe,
12000 				(crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12001 				drm_plane_index(plane), state->scaler_id);
12002 			continue;
12003 		}
12004 
12005 		DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12006 			plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12007 			plane->base.id, intel_plane->pipe,
12008 			crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12009 			drm_plane_index(plane));
12010 		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12011 			fb->base.id, fb->width, fb->height, fb->pixel_format);
12012 		DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12013 			state->scaler_id,
12014 			state->src.x1 >> 16, state->src.y1 >> 16,
12015 			drm_rect_width(&state->src) >> 16,
12016 			drm_rect_height(&state->src) >> 16,
12017 			state->dst.x1, state->dst.y1,
12018 			drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12019 	}
12020 }
12021 
12022 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12023 {
12024 	struct drm_device *dev = state->dev;
12025 	struct intel_encoder *encoder;
12026 	struct drm_connector *connector;
12027 	struct drm_connector_state *connector_state;
12028 	unsigned int used_ports = 0;
12029 	int i;
12030 
12031 	/*
12032 	 * Walk the connector list instead of the encoder
12033 	 * list to detect the problem on ddi platforms
12034 	 * where there's just one encoder per digital port.
12035 	 */
12036 	for_each_connector_in_state(state, connector, connector_state, i) {
12037 		if (!connector_state->best_encoder)
12038 			continue;
12039 
12040 		encoder = to_intel_encoder(connector_state->best_encoder);
12041 
12042 		WARN_ON(!connector_state->crtc);
12043 
12044 		switch (encoder->type) {
12045 			unsigned int port_mask;
12046 		case INTEL_OUTPUT_UNKNOWN:
12047 			if (WARN_ON(!HAS_DDI(dev)))
12048 				break;
12049 		case INTEL_OUTPUT_DISPLAYPORT:
12050 		case INTEL_OUTPUT_HDMI:
12051 		case INTEL_OUTPUT_EDP:
12052 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12053 
12054 			/* the same port mustn't appear more than once */
12055 			if (used_ports & port_mask)
12056 				return false;
12057 
12058 			used_ports |= port_mask;
12059 		default:
12060 			break;
12061 		}
12062 	}
12063 
12064 	return true;
12065 }
12066 
12067 static void
12068 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12069 {
12070 	struct drm_crtc_state tmp_state;
12071 	struct intel_crtc_scaler_state scaler_state;
12072 	struct intel_dpll_hw_state dpll_hw_state;
12073 	enum intel_dpll_id shared_dpll;
12074 	uint32_t ddi_pll_sel;
12075 	bool force_thru;
12076 
12077 	/* FIXME: before the switch to atomic started, a new pipe_config was
12078 	 * kzalloc'd. Code that depends on any field being zero should be
12079 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12080 	 * only fields that are know to not cause problems are preserved. */
12081 
12082 	tmp_state = crtc_state->base;
12083 	scaler_state = crtc_state->scaler_state;
12084 	shared_dpll = crtc_state->shared_dpll;
12085 	dpll_hw_state = crtc_state->dpll_hw_state;
12086 	ddi_pll_sel = crtc_state->ddi_pll_sel;
12087 	force_thru = crtc_state->pch_pfit.force_thru;
12088 
12089 	memset(crtc_state, 0, sizeof *crtc_state);
12090 
12091 	crtc_state->base = tmp_state;
12092 	crtc_state->scaler_state = scaler_state;
12093 	crtc_state->shared_dpll = shared_dpll;
12094 	crtc_state->dpll_hw_state = dpll_hw_state;
12095 	crtc_state->ddi_pll_sel = ddi_pll_sel;
12096 	crtc_state->pch_pfit.force_thru = force_thru;
12097 }
12098 
12099 static int
12100 intel_modeset_pipe_config(struct drm_crtc *crtc,
12101 			  struct intel_crtc_state *pipe_config)
12102 {
12103 	struct drm_atomic_state *state = pipe_config->base.state;
12104 	struct intel_encoder *encoder;
12105 	struct drm_connector *connector;
12106 	struct drm_connector_state *connector_state;
12107 	int base_bpp, ret = -EINVAL;
12108 	int i;
12109 	bool retry = true;
12110 
12111 	clear_intel_crtc_state(pipe_config);
12112 
12113 	pipe_config->cpu_transcoder =
12114 		(enum transcoder) to_intel_crtc(crtc)->pipe;
12115 
12116 	/*
12117 	 * Sanitize sync polarity flags based on requested ones. If neither
12118 	 * positive or negative polarity is requested, treat this as meaning
12119 	 * negative polarity.
12120 	 */
12121 	if (!(pipe_config->base.adjusted_mode.flags &
12122 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12123 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12124 
12125 	if (!(pipe_config->base.adjusted_mode.flags &
12126 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12127 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12128 
12129 	/* Compute a starting value for pipe_config->pipe_bpp taking the source
12130 	 * plane pixel format and any sink constraints into account. Returns the
12131 	 * source plane bpp so that dithering can be selected on mismatches
12132 	 * after encoders and crtc also have had their say. */
12133 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12134 					     pipe_config);
12135 	if (base_bpp < 0)
12136 		goto fail;
12137 
12138 	/*
12139 	 * Determine the real pipe dimensions. Note that stereo modes can
12140 	 * increase the actual pipe size due to the frame doubling and
12141 	 * insertion of additional space for blanks between the frame. This
12142 	 * is stored in the crtc timings. We use the requested mode to do this
12143 	 * computation to clearly distinguish it from the adjusted mode, which
12144 	 * can be changed by the connectors in the below retry loop.
12145 	 */
12146 	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12147 			       &pipe_config->pipe_src_w,
12148 			       &pipe_config->pipe_src_h);
12149 
12150 encoder_retry:
12151 	/* Ensure the port clock defaults are reset when retrying. */
12152 	pipe_config->port_clock = 0;
12153 	pipe_config->pixel_multiplier = 1;
12154 
12155 	/* Fill in default crtc timings, allow encoders to overwrite them. */
12156 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12157 			      CRTC_STEREO_DOUBLE);
12158 
12159 	/* Pass our mode to the connectors and the CRTC to give them a chance to
12160 	 * adjust it according to limitations or connector properties, and also
12161 	 * a chance to reject the mode entirely.
12162 	 */
12163 	for_each_connector_in_state(state, connector, connector_state, i) {
12164 		if (connector_state->crtc != crtc)
12165 			continue;
12166 
12167 		encoder = to_intel_encoder(connector_state->best_encoder);
12168 
12169 		if (!(encoder->compute_config(encoder, pipe_config))) {
12170 			DRM_DEBUG_KMS("Encoder config failure\n");
12171 			goto fail;
12172 		}
12173 	}
12174 
12175 	/* Set default port clock if not overwritten by the encoder. Needs to be
12176 	 * done afterwards in case the encoder adjusts the mode. */
12177 	if (!pipe_config->port_clock)
12178 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12179 			* pipe_config->pixel_multiplier;
12180 
12181 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12182 	if (ret < 0) {
12183 		DRM_DEBUG_KMS("CRTC fixup failed\n");
12184 		goto fail;
12185 	}
12186 
12187 	if (ret == RETRY) {
12188 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
12189 			ret = -EINVAL;
12190 			goto fail;
12191 		}
12192 
12193 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12194 		retry = false;
12195 		goto encoder_retry;
12196 	}
12197 
12198 	pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12199 	DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12200 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12201 
12202 fail:
12203 	return ret;
12204 }
12205 
12206 static void
12207 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12208 {
12209 	struct drm_crtc *crtc;
12210 	struct drm_crtc_state *crtc_state;
12211 	int i;
12212 
12213 	/* Double check state. */
12214 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12215 		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12216 
12217 		/* Update hwmode for vblank functions */
12218 		if (crtc->state->active)
12219 			crtc->hwmode = crtc->state->adjusted_mode;
12220 		else
12221 			crtc->hwmode.crtc_clock = 0;
12222 	}
12223 }
12224 
12225 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12226 {
12227 	int diff;
12228 
12229 	if (clock1 == clock2)
12230 		return true;
12231 
12232 	if (!clock1 || !clock2)
12233 		return false;
12234 
12235 	diff = abs(clock1 - clock2);
12236 
12237 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12238 		return true;
12239 
12240 	return false;
12241 }
12242 
12243 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12244 	list_for_each_entry((intel_crtc), \
12245 			    &(dev)->mode_config.crtc_list, \
12246 			    base.head) \
12247 		if (mask & (1 <<(intel_crtc)->pipe))
12248 
12249 
12250 static bool
12251 intel_compare_m_n(unsigned int m, unsigned int n,
12252 		  unsigned int m2, unsigned int n2,
12253 		  bool exact)
12254 {
12255 	if (m == m2 && n == n2)
12256 		return true;
12257 
12258 	if (exact || !m || !n || !m2 || !n2)
12259 		return false;
12260 
12261 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12262 
12263 	if (m > m2) {
12264 		while (m > m2) {
12265 			m2 <<= 1;
12266 			n2 <<= 1;
12267 		}
12268 	} else if (m < m2) {
12269 		while (m < m2) {
12270 			m <<= 1;
12271 			n <<= 1;
12272 		}
12273 	}
12274 
12275 	return m == m2 && n == n2;
12276 }
12277 
12278 static bool
12279 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12280 		       struct intel_link_m_n *m2_n2,
12281 		       bool adjust)
12282 {
12283 	if (m_n->tu == m2_n2->tu &&
12284 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12285 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12286 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
12287 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
12288 		if (adjust)
12289 			*m2_n2 = *m_n;
12290 
12291 		return true;
12292 	}
12293 
12294 	return false;
12295 }
12296 
12297 static bool
12298 intel_pipe_config_compare(struct drm_device *dev,
12299 			  struct intel_crtc_state *current_config,
12300 			  struct intel_crtc_state *pipe_config,
12301 			  bool adjust)
12302 {
12303 	bool ret = true;
12304 
12305 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12306 	do { \
12307 		if (!adjust) \
12308 			DRM_ERROR(fmt, ##__VA_ARGS__); \
12309 		else \
12310 			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12311 	} while (0)
12312 
12313 #define PIPE_CONF_CHECK_X(name)	\
12314 	if (current_config->name != pipe_config->name) { \
12315 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12316 			  "(expected 0x%08x, found 0x%08x)\n", \
12317 			  current_config->name, \
12318 			  pipe_config->name); \
12319 		ret = false; \
12320 	}
12321 
12322 #define PIPE_CONF_CHECK_I(name)	\
12323 	if (current_config->name != pipe_config->name) { \
12324 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12325 			  "(expected %i, found %i)\n", \
12326 			  current_config->name, \
12327 			  pipe_config->name); \
12328 		ret = false; \
12329 	}
12330 
12331 #define PIPE_CONF_CHECK_M_N(name) \
12332 	if (!intel_compare_link_m_n(&current_config->name, \
12333 				    &pipe_config->name,\
12334 				    adjust)) { \
12335 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12336 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12337 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12338 			  current_config->name.tu, \
12339 			  current_config->name.gmch_m, \
12340 			  current_config->name.gmch_n, \
12341 			  current_config->name.link_m, \
12342 			  current_config->name.link_n, \
12343 			  pipe_config->name.tu, \
12344 			  pipe_config->name.gmch_m, \
12345 			  pipe_config->name.gmch_n, \
12346 			  pipe_config->name.link_m, \
12347 			  pipe_config->name.link_n); \
12348 		ret = false; \
12349 	}
12350 
12351 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12352 	if (!intel_compare_link_m_n(&current_config->name, \
12353 				    &pipe_config->name, adjust) && \
12354 	    !intel_compare_link_m_n(&current_config->alt_name, \
12355 				    &pipe_config->name, adjust)) { \
12356 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12357 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12358 			  "or tu %i gmch %i/%i link %i/%i, " \
12359 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12360 			  current_config->name.tu, \
12361 			  current_config->name.gmch_m, \
12362 			  current_config->name.gmch_n, \
12363 			  current_config->name.link_m, \
12364 			  current_config->name.link_n, \
12365 			  current_config->alt_name.tu, \
12366 			  current_config->alt_name.gmch_m, \
12367 			  current_config->alt_name.gmch_n, \
12368 			  current_config->alt_name.link_m, \
12369 			  current_config->alt_name.link_n, \
12370 			  pipe_config->name.tu, \
12371 			  pipe_config->name.gmch_m, \
12372 			  pipe_config->name.gmch_n, \
12373 			  pipe_config->name.link_m, \
12374 			  pipe_config->name.link_n); \
12375 		ret = false; \
12376 	}
12377 
12378 /* This is required for BDW+ where there is only one set of registers for
12379  * switching between high and low RR.
12380  * This macro can be used whenever a comparison has to be made between one
12381  * hw state and multiple sw state variables.
12382  */
12383 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12384 	if ((current_config->name != pipe_config->name) && \
12385 		(current_config->alt_name != pipe_config->name)) { \
12386 			INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12387 				  "(expected %i or %i, found %i)\n", \
12388 				  current_config->name, \
12389 				  current_config->alt_name, \
12390 				  pipe_config->name); \
12391 			ret = false; \
12392 	}
12393 
12394 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
12395 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
12396 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12397 			  "(expected %i, found %i)\n", \
12398 			  current_config->name & (mask), \
12399 			  pipe_config->name & (mask)); \
12400 		ret = false; \
12401 	}
12402 
12403 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12404 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12405 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12406 			  "(expected %i, found %i)\n", \
12407 			  current_config->name, \
12408 			  pipe_config->name); \
12409 		ret = false; \
12410 	}
12411 
12412 #define PIPE_CONF_QUIRK(quirk)	\
12413 	((current_config->quirks | pipe_config->quirks) & (quirk))
12414 
12415 	PIPE_CONF_CHECK_I(cpu_transcoder);
12416 
12417 	PIPE_CONF_CHECK_I(has_pch_encoder);
12418 	PIPE_CONF_CHECK_I(fdi_lanes);
12419 	PIPE_CONF_CHECK_M_N(fdi_m_n);
12420 
12421 	PIPE_CONF_CHECK_I(has_dp_encoder);
12422 
12423 	if (INTEL_INFO(dev)->gen < 8) {
12424 		PIPE_CONF_CHECK_M_N(dp_m_n);
12425 
12426 		PIPE_CONF_CHECK_I(has_drrs);
12427 		if (current_config->has_drrs)
12428 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
12429 	} else
12430 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12431 
12432 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12433 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12434 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12435 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12436 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12437 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12438 
12439 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12440 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12441 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12442 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12443 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12444 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12445 
12446 	PIPE_CONF_CHECK_I(pixel_multiplier);
12447 	PIPE_CONF_CHECK_I(has_hdmi_sink);
12448 	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12449 	    IS_VALLEYVIEW(dev))
12450 		PIPE_CONF_CHECK_I(limited_color_range);
12451 	PIPE_CONF_CHECK_I(has_infoframe);
12452 
12453 	PIPE_CONF_CHECK_I(has_audio);
12454 
12455 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12456 			      DRM_MODE_FLAG_INTERLACE);
12457 
12458 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12459 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12460 				      DRM_MODE_FLAG_PHSYNC);
12461 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12462 				      DRM_MODE_FLAG_NHSYNC);
12463 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12464 				      DRM_MODE_FLAG_PVSYNC);
12465 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12466 				      DRM_MODE_FLAG_NVSYNC);
12467 	}
12468 
12469 	PIPE_CONF_CHECK_I(pipe_src_w);
12470 	PIPE_CONF_CHECK_I(pipe_src_h);
12471 
12472 	PIPE_CONF_CHECK_I(gmch_pfit.control);
12473 	/* pfit ratios are autocomputed by the hw on gen4+ */
12474 	if (INTEL_INFO(dev)->gen < 4)
12475 		PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12476 	PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12477 
12478 	PIPE_CONF_CHECK_I(pch_pfit.enabled);
12479 	if (current_config->pch_pfit.enabled) {
12480 		PIPE_CONF_CHECK_I(pch_pfit.pos);
12481 		PIPE_CONF_CHECK_I(pch_pfit.size);
12482 	}
12483 
12484 	PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12485 
12486 	/* BDW+ don't expose a synchronous way to read the state */
12487 	if (IS_HASWELL(dev))
12488 		PIPE_CONF_CHECK_I(ips_enabled);
12489 
12490 	PIPE_CONF_CHECK_I(double_wide);
12491 
12492 	PIPE_CONF_CHECK_X(ddi_pll_sel);
12493 
12494 	PIPE_CONF_CHECK_I(shared_dpll);
12495 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12496 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12497 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12498 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12499 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12500 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12501 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12502 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12503 
12504 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12505 		PIPE_CONF_CHECK_I(pipe_bpp);
12506 
12507 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12508 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12509 
12510 #undef PIPE_CONF_CHECK_X
12511 #undef PIPE_CONF_CHECK_I
12512 #undef PIPE_CONF_CHECK_I_ALT
12513 #undef PIPE_CONF_CHECK_FLAGS
12514 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12515 #undef PIPE_CONF_QUIRK
12516 #undef INTEL_ERR_OR_DBG_KMS
12517 
12518 	return ret;
12519 }
12520 
12521 static void check_wm_state(struct drm_device *dev)
12522 {
12523 	struct drm_i915_private *dev_priv = dev->dev_private;
12524 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
12525 	struct intel_crtc *intel_crtc;
12526 	int plane;
12527 
12528 	if (INTEL_INFO(dev)->gen < 9)
12529 		return;
12530 
12531 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12532 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
12533 
12534 	for_each_intel_crtc(dev, intel_crtc) {
12535 		struct skl_ddb_entry *hw_entry, *sw_entry;
12536 		const enum i915_pipe pipe = intel_crtc->pipe;
12537 
12538 		if (!intel_crtc->active)
12539 			continue;
12540 
12541 		/* planes */
12542 		for_each_plane(dev_priv, pipe, plane) {
12543 			hw_entry = &hw_ddb.plane[pipe][plane];
12544 			sw_entry = &sw_ddb->plane[pipe][plane];
12545 
12546 			if (skl_ddb_entry_equal(hw_entry, sw_entry))
12547 				continue;
12548 
12549 			DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12550 				  "(expected (%u,%u), found (%u,%u))\n",
12551 				  pipe_name(pipe), plane + 1,
12552 				  sw_entry->start, sw_entry->end,
12553 				  hw_entry->start, hw_entry->end);
12554 		}
12555 
12556 		/* cursor */
12557 		hw_entry = &hw_ddb.cursor[pipe];
12558 		sw_entry = &sw_ddb->cursor[pipe];
12559 
12560 		if (skl_ddb_entry_equal(hw_entry, sw_entry))
12561 			continue;
12562 
12563 		DRM_ERROR("mismatch in DDB state pipe %c cursor "
12564 			  "(expected (%u,%u), found (%u,%u))\n",
12565 			  pipe_name(pipe),
12566 			  sw_entry->start, sw_entry->end,
12567 			  hw_entry->start, hw_entry->end);
12568 	}
12569 }
12570 
12571 static void
12572 check_connector_state(struct drm_device *dev,
12573 		      struct drm_atomic_state *old_state)
12574 {
12575 	struct drm_connector_state *old_conn_state;
12576 	struct drm_connector *connector;
12577 	int i;
12578 
12579 	for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12580 		struct drm_encoder *encoder = connector->encoder;
12581 		struct drm_connector_state *state = connector->state;
12582 
12583 		/* This also checks the encoder/connector hw state with the
12584 		 * ->get_hw_state callbacks. */
12585 		intel_connector_check_state(to_intel_connector(connector));
12586 
12587 		I915_STATE_WARN(state->best_encoder != encoder,
12588 		     "connector's atomic encoder doesn't match legacy encoder\n");
12589 	}
12590 }
12591 
12592 static void
12593 check_encoder_state(struct drm_device *dev)
12594 {
12595 	struct intel_encoder *encoder;
12596 	struct intel_connector *connector;
12597 
12598 	for_each_intel_encoder(dev, encoder) {
12599 		bool enabled = false;
12600 		enum i915_pipe pipe;
12601 
12602 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12603 			      encoder->base.base.id,
12604 			      encoder->base.name);
12605 
12606 		for_each_intel_connector(dev, connector) {
12607 			if (connector->base.state->best_encoder != &encoder->base)
12608 				continue;
12609 			enabled = true;
12610 
12611 			I915_STATE_WARN(connector->base.state->crtc !=
12612 					encoder->base.crtc,
12613 			     "connector's crtc doesn't match encoder crtc\n");
12614 		}
12615 
12616 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
12617 		     "encoder's enabled state mismatch "
12618 		     "(expected %i, found %i)\n",
12619 		     !!encoder->base.crtc, enabled);
12620 
12621 		if (!encoder->base.crtc) {
12622 			bool active;
12623 
12624 			active = encoder->get_hw_state(encoder, &pipe);
12625 			I915_STATE_WARN(active,
12626 			     "encoder detached but still enabled on pipe %c.\n",
12627 			     pipe_name(pipe));
12628 		}
12629 	}
12630 }
12631 
12632 static void
12633 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12634 {
12635 	struct drm_i915_private *dev_priv = dev->dev_private;
12636 	struct intel_encoder *encoder;
12637 	struct drm_crtc_state *old_crtc_state;
12638 	struct drm_crtc *crtc;
12639 	int i;
12640 
12641 	for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12642 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12643 		struct intel_crtc_state *pipe_config, *sw_config;
12644 		bool active;
12645 
12646 		if (!needs_modeset(crtc->state))
12647 			continue;
12648 
12649 		__drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12650 		pipe_config = to_intel_crtc_state(old_crtc_state);
12651 		memset(pipe_config, 0, sizeof(*pipe_config));
12652 		pipe_config->base.crtc = crtc;
12653 		pipe_config->base.state = old_state;
12654 
12655 		DRM_DEBUG_KMS("[CRTC:%d]\n",
12656 			      crtc->base.id);
12657 
12658 		active = dev_priv->display.get_pipe_config(intel_crtc,
12659 							   pipe_config);
12660 
12661 		/* hw state is inconsistent with the pipe quirk */
12662 		if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12663 		    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12664 			active = crtc->state->active;
12665 
12666 		I915_STATE_WARN(crtc->state->active != active,
12667 		     "crtc active state doesn't match with hw state "
12668 		     "(expected %i, found %i)\n", crtc->state->active, active);
12669 
12670 		I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12671 		     "transitional active state does not match atomic hw state "
12672 		     "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12673 
12674 		for_each_encoder_on_crtc(dev, crtc, encoder) {
12675 			enum i915_pipe pipe;
12676 
12677 			active = encoder->get_hw_state(encoder, &pipe);
12678 			I915_STATE_WARN(active != crtc->state->active,
12679 				"[ENCODER:%i] active %i with crtc active %i\n",
12680 				encoder->base.base.id, active, crtc->state->active);
12681 
12682 			I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12683 					"Encoder connected to wrong pipe %c\n",
12684 					pipe_name(pipe));
12685 
12686 			if (active)
12687 				encoder->get_config(encoder, pipe_config);
12688 		}
12689 
12690 		if (!crtc->state->active)
12691 			continue;
12692 
12693 		sw_config = to_intel_crtc_state(crtc->state);
12694 		if (!intel_pipe_config_compare(dev, sw_config,
12695 					       pipe_config, false)) {
12696 			I915_STATE_WARN(1, "pipe state doesn't match!\n");
12697 			intel_dump_pipe_config(intel_crtc, pipe_config,
12698 					       "[hw state]");
12699 			intel_dump_pipe_config(intel_crtc, sw_config,
12700 					       "[sw state]");
12701 		}
12702 	}
12703 }
12704 
12705 static void
12706 check_shared_dpll_state(struct drm_device *dev)
12707 {
12708 	struct drm_i915_private *dev_priv = dev->dev_private;
12709 	struct intel_crtc *crtc;
12710 	struct intel_dpll_hw_state dpll_hw_state;
12711 	int i;
12712 
12713 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12714 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12715 		int enabled_crtcs = 0, active_crtcs = 0;
12716 		bool active;
12717 
12718 		memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12719 
12720 		DRM_DEBUG_KMS("%s\n", pll->name);
12721 
12722 		active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12723 
12724 		I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12725 		     "more active pll users than references: %i vs %i\n",
12726 		     pll->active, hweight32(pll->config.crtc_mask));
12727 		I915_STATE_WARN(pll->active && !pll->on,
12728 		     "pll in active use but not on in sw tracking\n");
12729 		I915_STATE_WARN(pll->on && !pll->active,
12730 		     "pll in on but not on in use in sw tracking\n");
12731 		I915_STATE_WARN(pll->on != active,
12732 		     "pll on state mismatch (expected %i, found %i)\n",
12733 		     pll->on, active);
12734 
12735 		for_each_intel_crtc(dev, crtc) {
12736 			if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12737 				enabled_crtcs++;
12738 			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12739 				active_crtcs++;
12740 		}
12741 		I915_STATE_WARN(pll->active != active_crtcs,
12742 		     "pll active crtcs mismatch (expected %i, found %i)\n",
12743 		     pll->active, active_crtcs);
12744 		I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12745 		     "pll enabled crtcs mismatch (expected %i, found %i)\n",
12746 		     hweight32(pll->config.crtc_mask), enabled_crtcs);
12747 
12748 		I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12749 				       sizeof(dpll_hw_state)),
12750 		     "pll hw state mismatch\n");
12751 	}
12752 }
12753 
12754 static void
12755 intel_modeset_check_state(struct drm_device *dev,
12756 			  struct drm_atomic_state *old_state)
12757 {
12758 	check_wm_state(dev);
12759 	check_connector_state(dev, old_state);
12760 	check_encoder_state(dev);
12761 	check_crtc_state(dev, old_state);
12762 	check_shared_dpll_state(dev);
12763 }
12764 
12765 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12766 				     int dotclock)
12767 {
12768 	/*
12769 	 * FDI already provided one idea for the dotclock.
12770 	 * Yell if the encoder disagrees.
12771 	 */
12772 	WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12773 	     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12774 	     pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12775 }
12776 
12777 static void update_scanline_offset(struct intel_crtc *crtc)
12778 {
12779 	struct drm_device *dev = crtc->base.dev;
12780 
12781 	/*
12782 	 * The scanline counter increments at the leading edge of hsync.
12783 	 *
12784 	 * On most platforms it starts counting from vtotal-1 on the
12785 	 * first active line. That means the scanline counter value is
12786 	 * always one less than what we would expect. Ie. just after
12787 	 * start of vblank, which also occurs at start of hsync (on the
12788 	 * last active line), the scanline counter will read vblank_start-1.
12789 	 *
12790 	 * On gen2 the scanline counter starts counting from 1 instead
12791 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12792 	 * to keep the value positive), instead of adding one.
12793 	 *
12794 	 * On HSW+ the behaviour of the scanline counter depends on the output
12795 	 * type. For DP ports it behaves like most other platforms, but on HDMI
12796 	 * there's an extra 1 line difference. So we need to add two instead of
12797 	 * one to the value.
12798 	 */
12799 	if (IS_GEN2(dev)) {
12800 		const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12801 		int vtotal;
12802 
12803 		vtotal = mode->crtc_vtotal;
12804 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12805 			vtotal /= 2;
12806 
12807 		crtc->scanline_offset = vtotal - 1;
12808 	} else if (HAS_DDI(dev) &&
12809 		   intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12810 		crtc->scanline_offset = 2;
12811 	} else
12812 		crtc->scanline_offset = 1;
12813 }
12814 
12815 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12816 {
12817 	struct drm_device *dev = state->dev;
12818 	struct drm_i915_private *dev_priv = to_i915(dev);
12819 	struct intel_shared_dpll_config *shared_dpll = NULL;
12820 	struct intel_crtc *intel_crtc;
12821 	struct intel_crtc_state *intel_crtc_state;
12822 	struct drm_crtc *crtc;
12823 	struct drm_crtc_state *crtc_state;
12824 	int i;
12825 
12826 	if (!dev_priv->display.crtc_compute_clock)
12827 		return;
12828 
12829 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12830 		int dpll;
12831 
12832 		intel_crtc = to_intel_crtc(crtc);
12833 		intel_crtc_state = to_intel_crtc_state(crtc_state);
12834 		dpll = intel_crtc_state->shared_dpll;
12835 
12836 		if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12837 			continue;
12838 
12839 		intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12840 
12841 		if (!shared_dpll)
12842 			shared_dpll = intel_atomic_get_shared_dpll_state(state);
12843 
12844 		shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12845 	}
12846 }
12847 
12848 /*
12849  * This implements the workaround described in the "notes" section of the mode
12850  * set sequence documentation. When going from no pipes or single pipe to
12851  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12852  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12853  */
12854 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12855 {
12856 	struct drm_crtc_state *crtc_state;
12857 	struct intel_crtc *intel_crtc;
12858 	struct drm_crtc *crtc;
12859 	struct intel_crtc_state *first_crtc_state = NULL;
12860 	struct intel_crtc_state *other_crtc_state = NULL;
12861 	enum i915_pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12862 	int i;
12863 
12864 	/* look at all crtc's that are going to be enabled in during modeset */
12865 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12866 		intel_crtc = to_intel_crtc(crtc);
12867 
12868 		if (!crtc_state->active || !needs_modeset(crtc_state))
12869 			continue;
12870 
12871 		if (first_crtc_state) {
12872 			other_crtc_state = to_intel_crtc_state(crtc_state);
12873 			break;
12874 		} else {
12875 			first_crtc_state = to_intel_crtc_state(crtc_state);
12876 			first_pipe = intel_crtc->pipe;
12877 		}
12878 	}
12879 
12880 	/* No workaround needed? */
12881 	if (!first_crtc_state)
12882 		return 0;
12883 
12884 	/* w/a possibly needed, check how many crtc's are already enabled. */
12885 	for_each_intel_crtc(state->dev, intel_crtc) {
12886 		struct intel_crtc_state *pipe_config;
12887 
12888 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12889 		if (IS_ERR(pipe_config))
12890 			return PTR_ERR(pipe_config);
12891 
12892 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12893 
12894 		if (!pipe_config->base.active ||
12895 		    needs_modeset(&pipe_config->base))
12896 			continue;
12897 
12898 		/* 2 or more enabled crtcs means no need for w/a */
12899 		if (enabled_pipe != INVALID_PIPE)
12900 			return 0;
12901 
12902 		enabled_pipe = intel_crtc->pipe;
12903 	}
12904 
12905 	if (enabled_pipe != INVALID_PIPE)
12906 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12907 	else if (other_crtc_state)
12908 		other_crtc_state->hsw_workaround_pipe = first_pipe;
12909 
12910 	return 0;
12911 }
12912 
12913 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12914 {
12915 	struct drm_crtc *crtc;
12916 	struct drm_crtc_state *crtc_state;
12917 	int ret = 0;
12918 
12919 	/* add all active pipes to the state */
12920 	for_each_crtc(state->dev, crtc) {
12921 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
12922 		if (IS_ERR(crtc_state))
12923 			return PTR_ERR(crtc_state);
12924 
12925 		if (!crtc_state->active || needs_modeset(crtc_state))
12926 			continue;
12927 
12928 		crtc_state->mode_changed = true;
12929 
12930 		ret = drm_atomic_add_affected_connectors(state, crtc);
12931 		if (ret)
12932 			break;
12933 
12934 		ret = drm_atomic_add_affected_planes(state, crtc);
12935 		if (ret)
12936 			break;
12937 	}
12938 
12939 	return ret;
12940 }
12941 
12942 
12943 static int intel_modeset_checks(struct drm_atomic_state *state)
12944 {
12945 	struct drm_device *dev = state->dev;
12946 	struct drm_i915_private *dev_priv = dev->dev_private;
12947 	int ret;
12948 
12949 	if (!check_digital_port_conflicts(state)) {
12950 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12951 		return -EINVAL;
12952 	}
12953 
12954 	/*
12955 	 * See if the config requires any additional preparation, e.g.
12956 	 * to adjust global state with pipes off.  We need to do this
12957 	 * here so we can get the modeset_pipe updated config for the new
12958 	 * mode set on this crtc.  For other crtcs we need to use the
12959 	 * adjusted_mode bits in the crtc directly.
12960 	 */
12961 	if (dev_priv->display.modeset_calc_cdclk) {
12962 		unsigned int cdclk;
12963 
12964 		ret = dev_priv->display.modeset_calc_cdclk(state);
12965 
12966 		cdclk = to_intel_atomic_state(state)->cdclk;
12967 		if (!ret && cdclk != dev_priv->cdclk_freq)
12968 			ret = intel_modeset_all_pipes(state);
12969 
12970 		if (ret < 0)
12971 			return ret;
12972 	} else
12973 		to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
12974 
12975 	intel_modeset_clear_plls(state);
12976 
12977 	if (IS_HASWELL(dev))
12978 		return haswell_mode_set_planes_workaround(state);
12979 
12980 	return 0;
12981 }
12982 
12983 /**
12984  * intel_atomic_check - validate state object
12985  * @dev: drm device
12986  * @state: state to validate
12987  */
12988 static int intel_atomic_check(struct drm_device *dev,
12989 			      struct drm_atomic_state *state)
12990 {
12991 	struct drm_crtc *crtc;
12992 	struct drm_crtc_state *crtc_state;
12993 	int ret, i;
12994 	bool any_ms = false;
12995 
12996 	ret = drm_atomic_helper_check_modeset(dev, state);
12997 	if (ret)
12998 		return ret;
12999 
13000 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13001 		struct intel_crtc_state *pipe_config =
13002 			to_intel_crtc_state(crtc_state);
13003 
13004 		/* Catch I915_MODE_FLAG_INHERITED */
13005 		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13006 			crtc_state->mode_changed = true;
13007 
13008 		if (!crtc_state->enable) {
13009 			if (needs_modeset(crtc_state))
13010 				any_ms = true;
13011 			continue;
13012 		}
13013 
13014 		if (!needs_modeset(crtc_state))
13015 			continue;
13016 
13017 		/* FIXME: For only active_changed we shouldn't need to do any
13018 		 * state recomputation at all. */
13019 
13020 		ret = drm_atomic_add_affected_connectors(state, crtc);
13021 		if (ret)
13022 			return ret;
13023 
13024 		ret = intel_modeset_pipe_config(crtc, pipe_config);
13025 		if (ret)
13026 			return ret;
13027 
13028 		if (i915.fastboot &&
13029 		    intel_pipe_config_compare(state->dev,
13030 					to_intel_crtc_state(crtc->state),
13031 					pipe_config, true)) {
13032 			crtc_state->mode_changed = false;
13033 		}
13034 
13035 		if (needs_modeset(crtc_state)) {
13036 			any_ms = true;
13037 
13038 			ret = drm_atomic_add_affected_planes(state, crtc);
13039 			if (ret)
13040 				return ret;
13041 		}
13042 
13043 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13044 				       needs_modeset(crtc_state) ?
13045 				       "[modeset]" : "[fastset]");
13046 	}
13047 
13048 	if (any_ms) {
13049 		ret = intel_modeset_checks(state);
13050 
13051 		if (ret)
13052 			return ret;
13053 	} else
13054 		to_intel_atomic_state(state)->cdclk =
13055 			to_i915(state->dev)->cdclk_freq;
13056 
13057 	return drm_atomic_helper_check_planes(state->dev, state);
13058 }
13059 
13060 /**
13061  * intel_atomic_commit - commit validated state object
13062  * @dev: DRM device
13063  * @state: the top-level driver state object
13064  * @async: asynchronous commit
13065  *
13066  * This function commits a top-level state object that has been validated
13067  * with drm_atomic_helper_check().
13068  *
13069  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13070  * we can only handle plane-related operations and do not yet support
13071  * asynchronous commit.
13072  *
13073  * RETURNS
13074  * Zero for success or -errno.
13075  */
13076 static int intel_atomic_commit(struct drm_device *dev,
13077 			       struct drm_atomic_state *state,
13078 			       bool async)
13079 {
13080 	struct drm_i915_private *dev_priv = dev->dev_private;
13081 	struct drm_crtc *crtc;
13082 	struct drm_crtc_state *crtc_state;
13083 	int ret = 0;
13084 	int i;
13085 	bool any_ms = false;
13086 
13087 	if (async) {
13088 		DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13089 		return -EINVAL;
13090 	}
13091 
13092 	ret = drm_atomic_helper_prepare_planes(dev, state);
13093 	if (ret)
13094 		return ret;
13095 
13096 	drm_atomic_helper_swap_state(dev, state);
13097 
13098 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13099 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13100 
13101 		if (!needs_modeset(crtc->state))
13102 			continue;
13103 
13104 		any_ms = true;
13105 		intel_pre_plane_update(intel_crtc);
13106 
13107 		if (crtc_state->active) {
13108 			intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13109 			dev_priv->display.crtc_disable(crtc);
13110 			intel_crtc->active = false;
13111 			intel_disable_shared_dpll(intel_crtc);
13112 		}
13113 	}
13114 
13115 	/* Only after disabling all output pipelines that will be changed can we
13116 	 * update the the output configuration. */
13117 	intel_modeset_update_crtc_state(state);
13118 
13119 	if (any_ms) {
13120 		intel_shared_dpll_commit(state);
13121 
13122 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13123 		modeset_update_crtc_power_domains(state);
13124 	}
13125 
13126 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
13127 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13128 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13129 		bool modeset = needs_modeset(crtc->state);
13130 
13131 		if (modeset && crtc->state->active) {
13132 			update_scanline_offset(to_intel_crtc(crtc));
13133 			dev_priv->display.crtc_enable(crtc);
13134 		}
13135 
13136 		if (!modeset)
13137 			intel_pre_plane_update(intel_crtc);
13138 
13139 		drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13140 		intel_post_plane_update(intel_crtc);
13141 	}
13142 
13143 	/* FIXME: add subpixel order */
13144 
13145 	drm_atomic_helper_wait_for_vblanks(dev, state);
13146 	drm_atomic_helper_cleanup_planes(dev, state);
13147 
13148 	if (any_ms)
13149 		intel_modeset_check_state(dev, state);
13150 
13151 	drm_atomic_state_free(state);
13152 
13153 	return 0;
13154 }
13155 
13156 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13157 {
13158 	struct drm_device *dev = crtc->dev;
13159 	struct drm_atomic_state *state;
13160 	struct drm_crtc_state *crtc_state;
13161 	int ret;
13162 
13163 	state = drm_atomic_state_alloc(dev);
13164 	if (!state) {
13165 		DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13166 			      crtc->base.id);
13167 		return;
13168 	}
13169 
13170 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13171 
13172 retry:
13173 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
13174 	ret = PTR_ERR_OR_ZERO(crtc_state);
13175 	if (!ret) {
13176 		if (!crtc_state->active)
13177 			goto out;
13178 
13179 		crtc_state->mode_changed = true;
13180 		ret = drm_atomic_commit(state);
13181 	}
13182 
13183 	if (ret == -EDEADLK) {
13184 		drm_atomic_state_clear(state);
13185 		drm_modeset_backoff(state->acquire_ctx);
13186 		goto retry;
13187 	}
13188 
13189 	if (ret)
13190 out:
13191 		drm_atomic_state_free(state);
13192 }
13193 
13194 #undef for_each_intel_crtc_masked
13195 
13196 static const struct drm_crtc_funcs intel_crtc_funcs = {
13197 	.gamma_set = intel_crtc_gamma_set,
13198 	.set_config = drm_atomic_helper_set_config,
13199 	.destroy = intel_crtc_destroy,
13200 	.page_flip = intel_crtc_page_flip,
13201 	.atomic_duplicate_state = intel_crtc_duplicate_state,
13202 	.atomic_destroy_state = intel_crtc_destroy_state,
13203 };
13204 
13205 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13206 				      struct intel_shared_dpll *pll,
13207 				      struct intel_dpll_hw_state *hw_state)
13208 {
13209 	uint32_t val;
13210 
13211 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13212 		return false;
13213 
13214 	val = I915_READ(PCH_DPLL(pll->id));
13215 	hw_state->dpll = val;
13216 	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13217 	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13218 
13219 	return val & DPLL_VCO_ENABLE;
13220 }
13221 
13222 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13223 				  struct intel_shared_dpll *pll)
13224 {
13225 	I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13226 	I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13227 }
13228 
13229 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13230 				struct intel_shared_dpll *pll)
13231 {
13232 	/* PCH refclock must be enabled first */
13233 	ibx_assert_pch_refclk_enabled(dev_priv);
13234 
13235 	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13236 
13237 	/* Wait for the clocks to stabilize. */
13238 	POSTING_READ(PCH_DPLL(pll->id));
13239 	udelay(150);
13240 
13241 	/* The pixel multiplier can only be updated once the
13242 	 * DPLL is enabled and the clocks are stable.
13243 	 *
13244 	 * So write it again.
13245 	 */
13246 	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13247 	POSTING_READ(PCH_DPLL(pll->id));
13248 	udelay(200);
13249 }
13250 
13251 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13252 				 struct intel_shared_dpll *pll)
13253 {
13254 	struct drm_device *dev = dev_priv->dev;
13255 	struct intel_crtc *crtc;
13256 
13257 	/* Make sure no transcoder isn't still depending on us. */
13258 	for_each_intel_crtc(dev, crtc) {
13259 		if (intel_crtc_to_shared_dpll(crtc) == pll)
13260 			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13261 	}
13262 
13263 	I915_WRITE(PCH_DPLL(pll->id), 0);
13264 	POSTING_READ(PCH_DPLL(pll->id));
13265 	udelay(200);
13266 }
13267 
13268 static char *ibx_pch_dpll_names[] = {
13269 	"PCH DPLL A",
13270 	"PCH DPLL B",
13271 };
13272 
13273 static void ibx_pch_dpll_init(struct drm_device *dev)
13274 {
13275 	struct drm_i915_private *dev_priv = dev->dev_private;
13276 	int i;
13277 
13278 	dev_priv->num_shared_dpll = 2;
13279 
13280 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13281 		dev_priv->shared_dplls[i].id = i;
13282 		dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13283 		dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13284 		dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13285 		dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13286 		dev_priv->shared_dplls[i].get_hw_state =
13287 			ibx_pch_dpll_get_hw_state;
13288 	}
13289 }
13290 
13291 static void intel_shared_dpll_init(struct drm_device *dev)
13292 {
13293 	struct drm_i915_private *dev_priv = dev->dev_private;
13294 
13295 	intel_update_cdclk(dev);
13296 
13297 	if (HAS_DDI(dev))
13298 		intel_ddi_pll_init(dev);
13299 	else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13300 		ibx_pch_dpll_init(dev);
13301 	else
13302 		dev_priv->num_shared_dpll = 0;
13303 
13304 	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13305 }
13306 
13307 /**
13308  * intel_prepare_plane_fb - Prepare fb for usage on plane
13309  * @plane: drm plane to prepare for
13310  * @fb: framebuffer to prepare for presentation
13311  *
13312  * Prepares a framebuffer for usage on a display plane.  Generally this
13313  * involves pinning the underlying object and updating the frontbuffer tracking
13314  * bits.  Some older platforms need special physical address handling for
13315  * cursor planes.
13316  *
13317  * Returns 0 on success, negative error code on failure.
13318  */
13319 int
13320 intel_prepare_plane_fb(struct drm_plane *plane,
13321 		       struct drm_framebuffer *fb,
13322 		       const struct drm_plane_state *new_state)
13323 {
13324 	struct drm_device *dev = plane->dev;
13325 	struct intel_plane *intel_plane = to_intel_plane(plane);
13326 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13327 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13328 	int ret = 0;
13329 
13330 	if (!obj)
13331 		return 0;
13332 
13333 	mutex_lock(&dev->struct_mutex);
13334 
13335 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13336 	    INTEL_INFO(dev)->cursor_needs_physical) {
13337 		int align = IS_I830(dev) ? 16 * 1024 : 256;
13338 		ret = i915_gem_object_attach_phys(obj, align);
13339 		if (ret)
13340 			DRM_DEBUG_KMS("failed to attach phys object\n");
13341 	} else {
13342 		ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13343 	}
13344 
13345 	if (ret == 0)
13346 		i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13347 
13348 	mutex_unlock(&dev->struct_mutex);
13349 
13350 	return ret;
13351 }
13352 
13353 /**
13354  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13355  * @plane: drm plane to clean up for
13356  * @fb: old framebuffer that was on plane
13357  *
13358  * Cleans up a framebuffer that has just been removed from a plane.
13359  */
13360 void
13361 intel_cleanup_plane_fb(struct drm_plane *plane,
13362 		       struct drm_framebuffer *fb,
13363 		       const struct drm_plane_state *old_state)
13364 {
13365 	struct drm_device *dev = plane->dev;
13366 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13367 
13368 	if (WARN_ON(!obj))
13369 		return;
13370 
13371 	if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13372 	    !INTEL_INFO(dev)->cursor_needs_physical) {
13373 		mutex_lock(&dev->struct_mutex);
13374 		intel_unpin_fb_obj(fb, old_state);
13375 		mutex_unlock(&dev->struct_mutex);
13376 	}
13377 }
13378 
13379 int
13380 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13381 {
13382 	int max_scale;
13383 	struct drm_device *dev;
13384 	struct drm_i915_private *dev_priv;
13385 	int crtc_clock, cdclk;
13386 
13387 	if (!intel_crtc || !crtc_state)
13388 		return DRM_PLANE_HELPER_NO_SCALING;
13389 
13390 	dev = intel_crtc->base.dev;
13391 	dev_priv = dev->dev_private;
13392 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13393 	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13394 
13395 	if (!crtc_clock || !cdclk)
13396 		return DRM_PLANE_HELPER_NO_SCALING;
13397 
13398 	/*
13399 	 * skl max scale is lower of:
13400 	 *    close to 3 but not 3, -1 is for that purpose
13401 	 *            or
13402 	 *    cdclk/crtc_clock
13403 	 */
13404 	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13405 
13406 	return max_scale;
13407 }
13408 
13409 static int
13410 intel_check_primary_plane(struct drm_plane *plane,
13411 			  struct intel_crtc_state *crtc_state,
13412 			  struct intel_plane_state *state)
13413 {
13414 	struct drm_crtc *crtc = state->base.crtc;
13415 	struct drm_framebuffer *fb = state->base.fb;
13416 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13417 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13418 	bool can_position = false;
13419 
13420 	/* use scaler when colorkey is not required */
13421 	if (INTEL_INFO(plane->dev)->gen >= 9 &&
13422 	    state->ckey.flags == I915_SET_COLORKEY_NONE) {
13423 		min_scale = 1;
13424 		max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13425 		can_position = true;
13426 	}
13427 
13428 	return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13429 					     &state->dst, &state->clip,
13430 					     min_scale, max_scale,
13431 					     can_position, true,
13432 					     &state->visible);
13433 }
13434 
13435 static void
13436 intel_commit_primary_plane(struct drm_plane *plane,
13437 			   struct intel_plane_state *state)
13438 {
13439 	struct drm_crtc *crtc = state->base.crtc;
13440 	struct drm_framebuffer *fb = state->base.fb;
13441 	struct drm_device *dev = plane->dev;
13442 	struct drm_i915_private *dev_priv = dev->dev_private;
13443 	struct intel_crtc *intel_crtc;
13444 	struct drm_rect *src = &state->src;
13445 
13446 	crtc = crtc ? crtc : plane->crtc;
13447 	intel_crtc = to_intel_crtc(crtc);
13448 
13449 	plane->fb = fb;
13450 	crtc->x = src->x1 >> 16;
13451 	crtc->y = src->y1 >> 16;
13452 
13453 	if (!crtc->state->active)
13454 		return;
13455 
13456 	if (state->visible)
13457 		/* FIXME: kill this fastboot hack */
13458 		intel_update_pipe_size(intel_crtc);
13459 
13460 	dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13461 }
13462 
13463 static void
13464 intel_disable_primary_plane(struct drm_plane *plane,
13465 			    struct drm_crtc *crtc)
13466 {
13467 	struct drm_device *dev = plane->dev;
13468 	struct drm_i915_private *dev_priv = dev->dev_private;
13469 
13470 	dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13471 }
13472 
13473 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13474 				    struct drm_crtc_state *old_crtc_state)
13475 {
13476 	struct drm_device *dev = crtc->dev;
13477 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13478 
13479 	if (intel_crtc->atomic.update_wm_pre)
13480 		intel_update_watermarks(crtc);
13481 
13482 	/* Perform vblank evasion around commit operation */
13483 	if (crtc->state->active)
13484 		intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13485 
13486 	if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13487 		skl_detach_scalers(intel_crtc);
13488 }
13489 
13490 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13491 				     struct drm_crtc_state *old_crtc_state)
13492 {
13493 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13494 
13495 	if (crtc->state->active)
13496 		intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13497 }
13498 
13499 /**
13500  * intel_plane_destroy - destroy a plane
13501  * @plane: plane to destroy
13502  *
13503  * Common destruction function for all types of planes (primary, cursor,
13504  * sprite).
13505  */
13506 void intel_plane_destroy(struct drm_plane *plane)
13507 {
13508 	struct intel_plane *intel_plane = to_intel_plane(plane);
13509 	drm_plane_cleanup(plane);
13510 	kfree(intel_plane);
13511 }
13512 
13513 const struct drm_plane_funcs intel_plane_funcs = {
13514 	.update_plane = drm_atomic_helper_update_plane,
13515 	.disable_plane = drm_atomic_helper_disable_plane,
13516 	.destroy = intel_plane_destroy,
13517 	.set_property = drm_atomic_helper_plane_set_property,
13518 	.atomic_get_property = intel_plane_atomic_get_property,
13519 	.atomic_set_property = intel_plane_atomic_set_property,
13520 	.atomic_duplicate_state = intel_plane_duplicate_state,
13521 	.atomic_destroy_state = intel_plane_destroy_state,
13522 
13523 };
13524 
13525 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13526 						    int pipe)
13527 {
13528 	struct intel_plane *primary;
13529 	struct intel_plane_state *state;
13530 	const uint32_t *intel_primary_formats;
13531 	unsigned int num_formats;
13532 
13533 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13534 	if (primary == NULL)
13535 		return NULL;
13536 
13537 	state = intel_create_plane_state(&primary->base);
13538 	if (!state) {
13539 		kfree(primary);
13540 		return NULL;
13541 	}
13542 	primary->base.state = &state->base;
13543 
13544 	primary->can_scale = false;
13545 	primary->max_downscale = 1;
13546 	if (INTEL_INFO(dev)->gen >= 9) {
13547 		primary->can_scale = true;
13548 		state->scaler_id = -1;
13549 	}
13550 	primary->pipe = pipe;
13551 	primary->plane = pipe;
13552 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13553 	primary->check_plane = intel_check_primary_plane;
13554 	primary->commit_plane = intel_commit_primary_plane;
13555 	primary->disable_plane = intel_disable_primary_plane;
13556 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13557 		primary->plane = !pipe;
13558 
13559 	if (INTEL_INFO(dev)->gen >= 9) {
13560 		intel_primary_formats = skl_primary_formats;
13561 		num_formats = ARRAY_SIZE(skl_primary_formats);
13562 	} else if (INTEL_INFO(dev)->gen >= 4) {
13563 		intel_primary_formats = i965_primary_formats;
13564 		num_formats = ARRAY_SIZE(i965_primary_formats);
13565 	} else {
13566 		intel_primary_formats = i8xx_primary_formats;
13567 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
13568 	}
13569 
13570 	drm_universal_plane_init(dev, &primary->base, 0,
13571 				 &intel_plane_funcs,
13572 				 intel_primary_formats, num_formats,
13573 				 DRM_PLANE_TYPE_PRIMARY);
13574 
13575 	if (INTEL_INFO(dev)->gen >= 4)
13576 		intel_create_rotation_property(dev, primary);
13577 
13578 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13579 
13580 	return &primary->base;
13581 }
13582 
13583 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13584 {
13585 	if (!dev->mode_config.rotation_property) {
13586 		unsigned long flags = BIT(DRM_ROTATE_0) |
13587 			BIT(DRM_ROTATE_180);
13588 
13589 		if (INTEL_INFO(dev)->gen >= 9)
13590 			flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13591 
13592 		dev->mode_config.rotation_property =
13593 			drm_mode_create_rotation_property(dev, flags);
13594 	}
13595 	if (dev->mode_config.rotation_property)
13596 		drm_object_attach_property(&plane->base.base,
13597 				dev->mode_config.rotation_property,
13598 				plane->base.state->rotation);
13599 }
13600 
13601 static int
13602 intel_check_cursor_plane(struct drm_plane *plane,
13603 			 struct intel_crtc_state *crtc_state,
13604 			 struct intel_plane_state *state)
13605 {
13606 	struct drm_crtc *crtc = crtc_state->base.crtc;
13607 	struct drm_framebuffer *fb = state->base.fb;
13608 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13609 	unsigned stride;
13610 	int ret;
13611 
13612 	ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13613 					    &state->dst, &state->clip,
13614 					    DRM_PLANE_HELPER_NO_SCALING,
13615 					    DRM_PLANE_HELPER_NO_SCALING,
13616 					    true, true, &state->visible);
13617 	if (ret)
13618 		return ret;
13619 
13620 	/* if we want to turn off the cursor ignore width and height */
13621 	if (!obj)
13622 		return 0;
13623 
13624 	/* Check for which cursor types we support */
13625 	if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13626 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13627 			  state->base.crtc_w, state->base.crtc_h);
13628 		return -EINVAL;
13629 	}
13630 
13631 	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13632 	if (obj->base.size < stride * state->base.crtc_h) {
13633 		DRM_DEBUG_KMS("buffer is too small\n");
13634 		return -ENOMEM;
13635 	}
13636 
13637 	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13638 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
13639 		return -EINVAL;
13640 	}
13641 
13642 	return 0;
13643 }
13644 
13645 static void
13646 intel_disable_cursor_plane(struct drm_plane *plane,
13647 			   struct drm_crtc *crtc)
13648 {
13649 	intel_crtc_update_cursor(crtc, false);
13650 }
13651 
13652 static void
13653 intel_commit_cursor_plane(struct drm_plane *plane,
13654 			  struct intel_plane_state *state)
13655 {
13656 	struct drm_crtc *crtc = state->base.crtc;
13657 	struct drm_device *dev = plane->dev;
13658 	struct intel_crtc *intel_crtc;
13659 	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13660 	uint32_t addr;
13661 
13662 	crtc = crtc ? crtc : plane->crtc;
13663 	intel_crtc = to_intel_crtc(crtc);
13664 
13665 	plane->fb = state->base.fb;
13666 	crtc->cursor_x = state->base.crtc_x;
13667 	crtc->cursor_y = state->base.crtc_y;
13668 
13669 	if (intel_crtc->cursor_bo == obj)
13670 		goto update;
13671 
13672 	if (!obj)
13673 		addr = 0;
13674 	else if (!INTEL_INFO(dev)->cursor_needs_physical)
13675 		addr = i915_gem_obj_ggtt_offset(obj);
13676 	else
13677 		addr = obj->phys_handle->busaddr;
13678 
13679 	intel_crtc->cursor_addr = addr;
13680 	intel_crtc->cursor_bo = obj;
13681 
13682 update:
13683 	if (crtc->state->active)
13684 		intel_crtc_update_cursor(crtc, state->visible);
13685 }
13686 
13687 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13688 						   int pipe)
13689 {
13690 	struct intel_plane *cursor;
13691 	struct intel_plane_state *state;
13692 
13693 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13694 	if (cursor == NULL)
13695 		return NULL;
13696 
13697 	state = intel_create_plane_state(&cursor->base);
13698 	if (!state) {
13699 		kfree(cursor);
13700 		return NULL;
13701 	}
13702 	cursor->base.state = &state->base;
13703 
13704 	cursor->can_scale = false;
13705 	cursor->max_downscale = 1;
13706 	cursor->pipe = pipe;
13707 	cursor->plane = pipe;
13708 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13709 	cursor->check_plane = intel_check_cursor_plane;
13710 	cursor->commit_plane = intel_commit_cursor_plane;
13711 	cursor->disable_plane = intel_disable_cursor_plane;
13712 
13713 	drm_universal_plane_init(dev, &cursor->base, 0,
13714 				 &intel_plane_funcs,
13715 				 intel_cursor_formats,
13716 				 ARRAY_SIZE(intel_cursor_formats),
13717 				 DRM_PLANE_TYPE_CURSOR);
13718 
13719 	if (INTEL_INFO(dev)->gen >= 4) {
13720 		if (!dev->mode_config.rotation_property)
13721 			dev->mode_config.rotation_property =
13722 				drm_mode_create_rotation_property(dev,
13723 							BIT(DRM_ROTATE_0) |
13724 							BIT(DRM_ROTATE_180));
13725 		if (dev->mode_config.rotation_property)
13726 			drm_object_attach_property(&cursor->base.base,
13727 				dev->mode_config.rotation_property,
13728 				state->base.rotation);
13729 	}
13730 
13731 	if (INTEL_INFO(dev)->gen >=9)
13732 		state->scaler_id = -1;
13733 
13734 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13735 
13736 	return &cursor->base;
13737 }
13738 
13739 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13740 	struct intel_crtc_state *crtc_state)
13741 {
13742 	int i;
13743 	struct intel_scaler *intel_scaler;
13744 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13745 
13746 	for (i = 0; i < intel_crtc->num_scalers; i++) {
13747 		intel_scaler = &scaler_state->scalers[i];
13748 		intel_scaler->in_use = 0;
13749 		intel_scaler->mode = PS_SCALER_MODE_DYN;
13750 	}
13751 
13752 	scaler_state->scaler_id = -1;
13753 }
13754 
13755 static void intel_crtc_init(struct drm_device *dev, int pipe)
13756 {
13757 	struct drm_i915_private *dev_priv = dev->dev_private;
13758 	struct intel_crtc *intel_crtc;
13759 	struct intel_crtc_state *crtc_state = NULL;
13760 	struct drm_plane *primary = NULL;
13761 	struct drm_plane *cursor = NULL;
13762 	int i, ret;
13763 
13764 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13765 	if (intel_crtc == NULL)
13766 		return;
13767 
13768 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13769 	if (!crtc_state)
13770 		goto fail;
13771 	intel_crtc->config = crtc_state;
13772 	intel_crtc->base.state = &crtc_state->base;
13773 	crtc_state->base.crtc = &intel_crtc->base;
13774 
13775 	/* initialize shared scalers */
13776 	if (INTEL_INFO(dev)->gen >= 9) {
13777 		if (pipe == PIPE_C)
13778 			intel_crtc->num_scalers = 1;
13779 		else
13780 			intel_crtc->num_scalers = SKL_NUM_SCALERS;
13781 
13782 		skl_init_scalers(dev, intel_crtc, crtc_state);
13783 	}
13784 
13785 	primary = intel_primary_plane_create(dev, pipe);
13786 	if (!primary)
13787 		goto fail;
13788 
13789 	cursor = intel_cursor_plane_create(dev, pipe);
13790 	if (!cursor)
13791 		goto fail;
13792 
13793 	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13794 					cursor, &intel_crtc_funcs);
13795 	if (ret)
13796 		goto fail;
13797 
13798 	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13799 	for (i = 0; i < 256; i++) {
13800 		intel_crtc->lut_r[i] = i;
13801 		intel_crtc->lut_g[i] = i;
13802 		intel_crtc->lut_b[i] = i;
13803 	}
13804 
13805 	/*
13806 	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13807 	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13808 	 */
13809 	intel_crtc->pipe = pipe;
13810 	intel_crtc->plane = pipe;
13811 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13812 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13813 		intel_crtc->plane = !pipe;
13814 	}
13815 
13816 	intel_crtc->cursor_base = ~0;
13817 	intel_crtc->cursor_cntl = ~0;
13818 	intel_crtc->cursor_size = ~0;
13819 
13820 	intel_crtc->wm.cxsr_allowed = true;
13821 
13822 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13823 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13824 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13825 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13826 
13827 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13828 
13829 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13830 	return;
13831 
13832 fail:
13833 	if (primary)
13834 		drm_plane_cleanup(primary);
13835 	if (cursor)
13836 		drm_plane_cleanup(cursor);
13837 	kfree(crtc_state);
13838 	kfree(intel_crtc);
13839 }
13840 
13841 enum i915_pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13842 {
13843 	struct drm_encoder *encoder = connector->base.encoder;
13844 	struct drm_device *dev = connector->base.dev;
13845 
13846 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13847 
13848 	if (!encoder || WARN_ON(!encoder->crtc))
13849 		return INVALID_PIPE;
13850 
13851 	return to_intel_crtc(encoder->crtc)->pipe;
13852 }
13853 
13854 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13855 				struct drm_file *file)
13856 {
13857 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13858 	struct drm_crtc *drmmode_crtc;
13859 	struct intel_crtc *crtc;
13860 
13861 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13862 
13863 	if (!drmmode_crtc) {
13864 		DRM_ERROR("no such CRTC id\n");
13865 		return -ENOENT;
13866 	}
13867 
13868 	crtc = to_intel_crtc(drmmode_crtc);
13869 	pipe_from_crtc_id->pipe = crtc->pipe;
13870 
13871 	return 0;
13872 }
13873 
13874 static int intel_encoder_clones(struct intel_encoder *encoder)
13875 {
13876 	struct drm_device *dev = encoder->base.dev;
13877 	struct intel_encoder *source_encoder;
13878 	int index_mask = 0;
13879 	int entry = 0;
13880 
13881 	for_each_intel_encoder(dev, source_encoder) {
13882 		if (encoders_cloneable(encoder, source_encoder))
13883 			index_mask |= (1 << entry);
13884 
13885 		entry++;
13886 	}
13887 
13888 	return index_mask;
13889 }
13890 
13891 static bool has_edp_a(struct drm_device *dev)
13892 {
13893 	struct drm_i915_private *dev_priv = dev->dev_private;
13894 
13895 	if (!IS_MOBILE(dev))
13896 		return false;
13897 
13898 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13899 		return false;
13900 
13901 	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13902 		return false;
13903 
13904 	return true;
13905 }
13906 
13907 static bool intel_crt_present(struct drm_device *dev)
13908 {
13909 	struct drm_i915_private *dev_priv = dev->dev_private;
13910 
13911 	if (INTEL_INFO(dev)->gen >= 9)
13912 		return false;
13913 
13914 	if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13915 		return false;
13916 
13917 	if (IS_CHERRYVIEW(dev))
13918 		return false;
13919 
13920 	if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13921 		return false;
13922 
13923 	return true;
13924 }
13925 
13926 static void intel_setup_outputs(struct drm_device *dev)
13927 {
13928 	struct drm_i915_private *dev_priv = dev->dev_private;
13929 	struct intel_encoder *encoder;
13930 	bool dpd_is_edp = false;
13931 
13932 	intel_lvds_init(dev);
13933 
13934 	if (intel_crt_present(dev))
13935 		intel_crt_init(dev);
13936 
13937 	if (IS_BROXTON(dev)) {
13938 		/*
13939 		 * FIXME: Broxton doesn't support port detection via the
13940 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13941 		 * detect the ports.
13942 		 */
13943 		intel_ddi_init(dev, PORT_A);
13944 		intel_ddi_init(dev, PORT_B);
13945 		intel_ddi_init(dev, PORT_C);
13946 	} else if (HAS_DDI(dev)) {
13947 		int found;
13948 
13949 		/*
13950 		 * Haswell uses DDI functions to detect digital outputs.
13951 		 * On SKL pre-D0 the strap isn't connected, so we assume
13952 		 * it's there.
13953 		 */
13954 		found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13955 		/* WaIgnoreDDIAStrap: skl */
13956 		if (found || IS_SKYLAKE(dev))
13957 			intel_ddi_init(dev, PORT_A);
13958 
13959 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
13960 		 * register */
13961 		found = I915_READ(SFUSE_STRAP);
13962 
13963 		if (found & SFUSE_STRAP_DDIB_DETECTED)
13964 			intel_ddi_init(dev, PORT_B);
13965 		if (found & SFUSE_STRAP_DDIC_DETECTED)
13966 			intel_ddi_init(dev, PORT_C);
13967 		if (found & SFUSE_STRAP_DDID_DETECTED)
13968 			intel_ddi_init(dev, PORT_D);
13969 		/*
13970 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13971 		 */
13972 		if (IS_SKYLAKE(dev) &&
13973 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13974 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13975 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13976 			intel_ddi_init(dev, PORT_E);
13977 
13978 	} else if (HAS_PCH_SPLIT(dev)) {
13979 		int found;
13980 		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13981 
13982 		if (has_edp_a(dev))
13983 			intel_dp_init(dev, DP_A, PORT_A);
13984 
13985 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13986 			/* PCH SDVOB multiplex with HDMIB */
13987 			found = intel_sdvo_init(dev, PCH_SDVOB, true);
13988 			if (!found)
13989 				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13990 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13991 				intel_dp_init(dev, PCH_DP_B, PORT_B);
13992 		}
13993 
13994 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13995 			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13996 
13997 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13998 			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13999 
14000 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
14001 			intel_dp_init(dev, PCH_DP_C, PORT_C);
14002 
14003 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
14004 			intel_dp_init(dev, PCH_DP_D, PORT_D);
14005 	} else if (IS_VALLEYVIEW(dev)) {
14006 		/*
14007 		 * The DP_DETECTED bit is the latched state of the DDC
14008 		 * SDA pin at boot. However since eDP doesn't require DDC
14009 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14010 		 * eDP ports may have been muxed to an alternate function.
14011 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
14012 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
14013 		 * detect eDP ports.
14014 		 */
14015 		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14016 		    !intel_dp_is_edp(dev, PORT_B))
14017 			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14018 					PORT_B);
14019 		if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14020 		    intel_dp_is_edp(dev, PORT_B))
14021 			intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14022 
14023 		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14024 		    !intel_dp_is_edp(dev, PORT_C))
14025 			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14026 					PORT_C);
14027 		if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14028 		    intel_dp_is_edp(dev, PORT_C))
14029 			intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14030 
14031 		if (IS_CHERRYVIEW(dev)) {
14032 			if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14033 				intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14034 						PORT_D);
14035 			/* eDP not supported on port D, so don't check VBT */
14036 			if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14037 				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14038 		}
14039 
14040 		intel_dsi_init(dev);
14041 	} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14042 		bool found = false;
14043 
14044 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14045 			DRM_DEBUG_KMS("probing SDVOB\n");
14046 			found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14047 			if (!found && IS_G4X(dev)) {
14048 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14049 				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14050 			}
14051 
14052 			if (!found && IS_G4X(dev))
14053 				intel_dp_init(dev, DP_B, PORT_B);
14054 		}
14055 
14056 		/* Before G4X SDVOC doesn't have its own detect register */
14057 
14058 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14059 			DRM_DEBUG_KMS("probing SDVOC\n");
14060 			found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14061 		}
14062 
14063 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14064 
14065 			if (IS_G4X(dev)) {
14066 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14067 				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14068 			}
14069 			if (IS_G4X(dev))
14070 				intel_dp_init(dev, DP_C, PORT_C);
14071 		}
14072 
14073 		if (IS_G4X(dev) &&
14074 		    (I915_READ(DP_D) & DP_DETECTED))
14075 			intel_dp_init(dev, DP_D, PORT_D);
14076 	} else if (IS_GEN2(dev))
14077 		intel_dvo_init(dev);
14078 
14079 	if (SUPPORTS_TV(dev))
14080 		intel_tv_init(dev);
14081 
14082 	intel_psr_init(dev);
14083 
14084 	for_each_intel_encoder(dev, encoder) {
14085 		encoder->base.possible_crtcs = encoder->crtc_mask;
14086 		encoder->base.possible_clones =
14087 			intel_encoder_clones(encoder);
14088 	}
14089 
14090 	intel_init_pch_refclk(dev);
14091 
14092 	drm_helper_move_panel_connectors_to_head(dev);
14093 }
14094 
14095 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14096 {
14097 	struct drm_device *dev = fb->dev;
14098 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14099 
14100 	drm_framebuffer_cleanup(fb);
14101 	mutex_lock(&dev->struct_mutex);
14102 	WARN_ON(!intel_fb->obj->framebuffer_references--);
14103 	drm_gem_object_unreference(&intel_fb->obj->base);
14104 	mutex_unlock(&dev->struct_mutex);
14105 	kfree(intel_fb);
14106 }
14107 
14108 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14109 						struct drm_file *file,
14110 						unsigned int *handle)
14111 {
14112 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14113 	struct drm_i915_gem_object *obj = intel_fb->obj;
14114 
14115 	if (obj->userptr.mm) {
14116 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14117 		return -EINVAL;
14118 	}
14119 
14120 	return drm_gem_handle_create(file, &obj->base, handle);
14121 }
14122 
14123 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14124 					struct drm_file *file,
14125 					unsigned flags, unsigned color,
14126 					struct drm_clip_rect *clips,
14127 					unsigned num_clips)
14128 {
14129 	struct drm_device *dev = fb->dev;
14130 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14131 	struct drm_i915_gem_object *obj = intel_fb->obj;
14132 
14133 	mutex_lock(&dev->struct_mutex);
14134 	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14135 	mutex_unlock(&dev->struct_mutex);
14136 
14137 	return 0;
14138 }
14139 
14140 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14141 	.destroy = intel_user_framebuffer_destroy,
14142 	.create_handle = intel_user_framebuffer_create_handle,
14143 	.dirty = intel_user_framebuffer_dirty,
14144 };
14145 
14146 static
14147 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14148 			 uint32_t pixel_format)
14149 {
14150 	u32 gen = INTEL_INFO(dev)->gen;
14151 
14152 	if (gen >= 9) {
14153 		/* "The stride in bytes must not exceed the of the size of 8K
14154 		 *  pixels and 32K bytes."
14155 		 */
14156 		 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14157 	} else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14158 		return 32*1024;
14159 	} else if (gen >= 4) {
14160 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14161 			return 16*1024;
14162 		else
14163 			return 32*1024;
14164 	} else if (gen >= 3) {
14165 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14166 			return 8*1024;
14167 		else
14168 			return 16*1024;
14169 	} else {
14170 		/* XXX DSPC is limited to 4k tiled */
14171 		return 8*1024;
14172 	}
14173 }
14174 
14175 static int intel_framebuffer_init(struct drm_device *dev,
14176 				  struct intel_framebuffer *intel_fb,
14177 				  struct drm_mode_fb_cmd2 *mode_cmd,
14178 				  struct drm_i915_gem_object *obj)
14179 {
14180 	unsigned int aligned_height;
14181 	int ret;
14182 	u32 pitch_limit, stride_alignment;
14183 
14184 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14185 
14186 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14187 		/* Enforce that fb modifier and tiling mode match, but only for
14188 		 * X-tiled. This is needed for FBC. */
14189 		if (!!(obj->tiling_mode == I915_TILING_X) !=
14190 		    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14191 			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14192 			return -EINVAL;
14193 		}
14194 	} else {
14195 		if (obj->tiling_mode == I915_TILING_X)
14196 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14197 		else if (obj->tiling_mode == I915_TILING_Y) {
14198 			DRM_DEBUG("No Y tiling for legacy addfb\n");
14199 			return -EINVAL;
14200 		}
14201 	}
14202 
14203 	/* Passed in modifier sanity checking. */
14204 	switch (mode_cmd->modifier[0]) {
14205 	case I915_FORMAT_MOD_Y_TILED:
14206 	case I915_FORMAT_MOD_Yf_TILED:
14207 		if (INTEL_INFO(dev)->gen < 9) {
14208 			DRM_DEBUG("Unsupported tiling 0x%lx!\n",
14209 				  mode_cmd->modifier[0]);
14210 			return -EINVAL;
14211 		}
14212 	case DRM_FORMAT_MOD_NONE:
14213 	case I915_FORMAT_MOD_X_TILED:
14214 		break;
14215 	default:
14216 		DRM_DEBUG("Unsupported fb modifier 0x%lx!\n",
14217 			  mode_cmd->modifier[0]);
14218 		return -EINVAL;
14219 	}
14220 
14221 	stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14222 						     mode_cmd->pixel_format);
14223 	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14224 		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14225 			  mode_cmd->pitches[0], stride_alignment);
14226 		return -EINVAL;
14227 	}
14228 
14229 	pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14230 					   mode_cmd->pixel_format);
14231 	if (mode_cmd->pitches[0] > pitch_limit) {
14232 		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14233 			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14234 			  "tiled" : "linear",
14235 			  mode_cmd->pitches[0], pitch_limit);
14236 		return -EINVAL;
14237 	}
14238 
14239 	if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14240 	    mode_cmd->pitches[0] != obj->stride) {
14241 		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14242 			  mode_cmd->pitches[0], obj->stride);
14243 		return -EINVAL;
14244 	}
14245 
14246 	/* Reject formats not supported by any plane early. */
14247 	switch (mode_cmd->pixel_format) {
14248 	case DRM_FORMAT_C8:
14249 	case DRM_FORMAT_RGB565:
14250 	case DRM_FORMAT_XRGB8888:
14251 	case DRM_FORMAT_ARGB8888:
14252 		break;
14253 	case DRM_FORMAT_XRGB1555:
14254 		if (INTEL_INFO(dev)->gen > 3) {
14255 			DRM_DEBUG("unsupported pixel format: %s\n",
14256 				  drm_get_format_name(mode_cmd->pixel_format));
14257 			return -EINVAL;
14258 		}
14259 		break;
14260 	case DRM_FORMAT_ABGR8888:
14261 		if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14262 			DRM_DEBUG("unsupported pixel format: %s\n",
14263 				  drm_get_format_name(mode_cmd->pixel_format));
14264 			return -EINVAL;
14265 		}
14266 		break;
14267 	case DRM_FORMAT_XBGR8888:
14268 	case DRM_FORMAT_XRGB2101010:
14269 	case DRM_FORMAT_XBGR2101010:
14270 		if (INTEL_INFO(dev)->gen < 4) {
14271 			DRM_DEBUG("unsupported pixel format: %s\n",
14272 				  drm_get_format_name(mode_cmd->pixel_format));
14273 			return -EINVAL;
14274 		}
14275 		break;
14276 	case DRM_FORMAT_ABGR2101010:
14277 		if (!IS_VALLEYVIEW(dev)) {
14278 			DRM_DEBUG("unsupported pixel format: %s\n",
14279 				  drm_get_format_name(mode_cmd->pixel_format));
14280 			return -EINVAL;
14281 		}
14282 		break;
14283 	case DRM_FORMAT_YUYV:
14284 	case DRM_FORMAT_UYVY:
14285 	case DRM_FORMAT_YVYU:
14286 	case DRM_FORMAT_VYUY:
14287 		if (INTEL_INFO(dev)->gen < 5) {
14288 			DRM_DEBUG("unsupported pixel format: %s\n",
14289 				  drm_get_format_name(mode_cmd->pixel_format));
14290 			return -EINVAL;
14291 		}
14292 		break;
14293 	default:
14294 		DRM_DEBUG("unsupported pixel format: %s\n",
14295 			  drm_get_format_name(mode_cmd->pixel_format));
14296 		return -EINVAL;
14297 	}
14298 
14299 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14300 	if (mode_cmd->offsets[0] != 0)
14301 		return -EINVAL;
14302 
14303 	aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14304 					       mode_cmd->pixel_format,
14305 					       mode_cmd->modifier[0]);
14306 	/* FIXME drm helper for size checks (especially planar formats)? */
14307 	if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14308 		return -EINVAL;
14309 
14310 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14311 	intel_fb->obj = obj;
14312 	intel_fb->obj->framebuffer_references++;
14313 
14314 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14315 	if (ret) {
14316 		DRM_ERROR("framebuffer init failed %d\n", ret);
14317 		return ret;
14318 	}
14319 
14320 	return 0;
14321 }
14322 
14323 static struct drm_framebuffer *
14324 intel_user_framebuffer_create(struct drm_device *dev,
14325 			      struct drm_file *filp,
14326 			      struct drm_mode_fb_cmd2 *mode_cmd)
14327 {
14328 	struct drm_i915_gem_object *obj;
14329 
14330 	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14331 						mode_cmd->handles[0]));
14332 	if (&obj->base == NULL)
14333 		return ERR_PTR(-ENOENT);
14334 
14335 	return intel_framebuffer_create(dev, mode_cmd, obj);
14336 }
14337 
14338 #ifndef CONFIG_DRM_FBDEV_EMULATION
14339 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14340 {
14341 }
14342 #endif
14343 
14344 static const struct drm_mode_config_funcs intel_mode_funcs = {
14345 	.fb_create = intel_user_framebuffer_create,
14346 	.output_poll_changed = intel_fbdev_output_poll_changed,
14347 	.atomic_check = intel_atomic_check,
14348 	.atomic_commit = intel_atomic_commit,
14349 	.atomic_state_alloc = intel_atomic_state_alloc,
14350 	.atomic_state_clear = intel_atomic_state_clear,
14351 };
14352 
14353 /* Set up chip specific display functions */
14354 static void intel_init_display(struct drm_device *dev)
14355 {
14356 	struct drm_i915_private *dev_priv = dev->dev_private;
14357 
14358 	if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14359 		dev_priv->display.find_dpll = g4x_find_best_dpll;
14360 	else if (IS_CHERRYVIEW(dev))
14361 		dev_priv->display.find_dpll = chv_find_best_dpll;
14362 	else if (IS_VALLEYVIEW(dev))
14363 		dev_priv->display.find_dpll = vlv_find_best_dpll;
14364 	else if (IS_PINEVIEW(dev))
14365 		dev_priv->display.find_dpll = pnv_find_best_dpll;
14366 	else
14367 		dev_priv->display.find_dpll = i9xx_find_best_dpll;
14368 
14369 	if (INTEL_INFO(dev)->gen >= 9) {
14370 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14371 		dev_priv->display.get_initial_plane_config =
14372 			skylake_get_initial_plane_config;
14373 		dev_priv->display.crtc_compute_clock =
14374 			haswell_crtc_compute_clock;
14375 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14376 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14377 		dev_priv->display.update_primary_plane =
14378 			skylake_update_primary_plane;
14379 	} else if (HAS_DDI(dev)) {
14380 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14381 		dev_priv->display.get_initial_plane_config =
14382 			ironlake_get_initial_plane_config;
14383 		dev_priv->display.crtc_compute_clock =
14384 			haswell_crtc_compute_clock;
14385 		dev_priv->display.crtc_enable = haswell_crtc_enable;
14386 		dev_priv->display.crtc_disable = haswell_crtc_disable;
14387 		dev_priv->display.update_primary_plane =
14388 			ironlake_update_primary_plane;
14389 	} else if (HAS_PCH_SPLIT(dev)) {
14390 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14391 		dev_priv->display.get_initial_plane_config =
14392 			ironlake_get_initial_plane_config;
14393 		dev_priv->display.crtc_compute_clock =
14394 			ironlake_crtc_compute_clock;
14395 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
14396 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
14397 		dev_priv->display.update_primary_plane =
14398 			ironlake_update_primary_plane;
14399 	} else if (IS_VALLEYVIEW(dev)) {
14400 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14401 		dev_priv->display.get_initial_plane_config =
14402 			i9xx_get_initial_plane_config;
14403 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14404 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14405 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14406 		dev_priv->display.update_primary_plane =
14407 			i9xx_update_primary_plane;
14408 	} else {
14409 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14410 		dev_priv->display.get_initial_plane_config =
14411 			i9xx_get_initial_plane_config;
14412 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14413 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14414 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
14415 		dev_priv->display.update_primary_plane =
14416 			i9xx_update_primary_plane;
14417 	}
14418 
14419 	/* Returns the core display clock speed */
14420 	if (IS_SKYLAKE(dev))
14421 		dev_priv->display.get_display_clock_speed =
14422 			skylake_get_display_clock_speed;
14423 	else if (IS_BROXTON(dev))
14424 		dev_priv->display.get_display_clock_speed =
14425 			broxton_get_display_clock_speed;
14426 	else if (IS_BROADWELL(dev))
14427 		dev_priv->display.get_display_clock_speed =
14428 			broadwell_get_display_clock_speed;
14429 	else if (IS_HASWELL(dev))
14430 		dev_priv->display.get_display_clock_speed =
14431 			haswell_get_display_clock_speed;
14432 	else if (IS_VALLEYVIEW(dev))
14433 		dev_priv->display.get_display_clock_speed =
14434 			valleyview_get_display_clock_speed;
14435 	else if (IS_GEN5(dev))
14436 		dev_priv->display.get_display_clock_speed =
14437 			ilk_get_display_clock_speed;
14438 	else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14439 		 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14440 		dev_priv->display.get_display_clock_speed =
14441 			i945_get_display_clock_speed;
14442 	else if (IS_GM45(dev))
14443 		dev_priv->display.get_display_clock_speed =
14444 			gm45_get_display_clock_speed;
14445 	else if (IS_CRESTLINE(dev))
14446 		dev_priv->display.get_display_clock_speed =
14447 			i965gm_get_display_clock_speed;
14448 	else if (IS_PINEVIEW(dev))
14449 		dev_priv->display.get_display_clock_speed =
14450 			pnv_get_display_clock_speed;
14451 	else if (IS_G33(dev) || IS_G4X(dev))
14452 		dev_priv->display.get_display_clock_speed =
14453 			g33_get_display_clock_speed;
14454 	else if (IS_I915G(dev))
14455 		dev_priv->display.get_display_clock_speed =
14456 			i915_get_display_clock_speed;
14457 	else if (IS_I945GM(dev) || IS_845G(dev))
14458 		dev_priv->display.get_display_clock_speed =
14459 			i9xx_misc_get_display_clock_speed;
14460 	else if (IS_PINEVIEW(dev))
14461 		dev_priv->display.get_display_clock_speed =
14462 			pnv_get_display_clock_speed;
14463 	else if (IS_I915GM(dev))
14464 		dev_priv->display.get_display_clock_speed =
14465 			i915gm_get_display_clock_speed;
14466 	else if (IS_I865G(dev))
14467 		dev_priv->display.get_display_clock_speed =
14468 			i865_get_display_clock_speed;
14469 	else if (IS_I85X(dev))
14470 		dev_priv->display.get_display_clock_speed =
14471 			i85x_get_display_clock_speed;
14472 	else { /* 830 */
14473 		WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14474 		dev_priv->display.get_display_clock_speed =
14475 			i830_get_display_clock_speed;
14476 	}
14477 
14478 	if (IS_GEN5(dev)) {
14479 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14480 	} else if (IS_GEN6(dev)) {
14481 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14482 	} else if (IS_IVYBRIDGE(dev)) {
14483 		/* FIXME: detect B0+ stepping and use auto training */
14484 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14485 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14486 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14487 		if (IS_BROADWELL(dev)) {
14488 			dev_priv->display.modeset_commit_cdclk =
14489 				broadwell_modeset_commit_cdclk;
14490 			dev_priv->display.modeset_calc_cdclk =
14491 				broadwell_modeset_calc_cdclk;
14492 		}
14493 	} else if (IS_VALLEYVIEW(dev)) {
14494 		dev_priv->display.modeset_commit_cdclk =
14495 			valleyview_modeset_commit_cdclk;
14496 		dev_priv->display.modeset_calc_cdclk =
14497 			valleyview_modeset_calc_cdclk;
14498 	} else if (IS_BROXTON(dev)) {
14499 		dev_priv->display.modeset_commit_cdclk =
14500 			broxton_modeset_commit_cdclk;
14501 		dev_priv->display.modeset_calc_cdclk =
14502 			broxton_modeset_calc_cdclk;
14503 	}
14504 
14505 	switch (INTEL_INFO(dev)->gen) {
14506 	case 2:
14507 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
14508 		break;
14509 
14510 	case 3:
14511 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
14512 		break;
14513 
14514 	case 4:
14515 	case 5:
14516 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
14517 		break;
14518 
14519 	case 6:
14520 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
14521 		break;
14522 	case 7:
14523 	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14524 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
14525 		break;
14526 	case 9:
14527 		/* Drop through - unsupported since execlist only. */
14528 	default:
14529 		/* Default just returns -ENODEV to indicate unsupported */
14530 		dev_priv->display.queue_flip = intel_default_queue_flip;
14531 	}
14532 
14533 	intel_panel_init_backlight_funcs(dev);
14534 
14535 	lockinit(&dev_priv->pps_mutex, "i915pm", 0, LK_CANRECURSE);
14536 }
14537 
14538 /*
14539  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14540  * resume, or other times.  This quirk makes sure that's the case for
14541  * affected systems.
14542  */
14543 static void quirk_pipea_force(struct drm_device *dev)
14544 {
14545 	struct drm_i915_private *dev_priv = dev->dev_private;
14546 
14547 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14548 	DRM_INFO("applying pipe a force quirk\n");
14549 }
14550 
14551 static void quirk_pipeb_force(struct drm_device *dev)
14552 {
14553 	struct drm_i915_private *dev_priv = dev->dev_private;
14554 
14555 	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14556 	DRM_INFO("applying pipe b force quirk\n");
14557 }
14558 
14559 /*
14560  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14561  */
14562 static void quirk_ssc_force_disable(struct drm_device *dev)
14563 {
14564 	struct drm_i915_private *dev_priv = dev->dev_private;
14565 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14566 	DRM_INFO("applying lvds SSC disable quirk\n");
14567 }
14568 
14569 /*
14570  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14571  * brightness value
14572  */
14573 static void quirk_invert_brightness(struct drm_device *dev)
14574 {
14575 	struct drm_i915_private *dev_priv = dev->dev_private;
14576 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14577 	DRM_INFO("applying inverted panel brightness quirk\n");
14578 }
14579 
14580 /* Some VBT's incorrectly indicate no backlight is present */
14581 static void quirk_backlight_present(struct drm_device *dev)
14582 {
14583 	struct drm_i915_private *dev_priv = dev->dev_private;
14584 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14585 	DRM_INFO("applying backlight present quirk\n");
14586 }
14587 
14588 struct intel_quirk {
14589 	int device;
14590 	int subsystem_vendor;
14591 	int subsystem_device;
14592 	void (*hook)(struct drm_device *dev);
14593 };
14594 
14595 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14596 struct intel_dmi_quirk {
14597 	void (*hook)(struct drm_device *dev);
14598 	const struct dmi_system_id (*dmi_id_list)[];
14599 };
14600 
14601 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14602 {
14603 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14604 	return 1;
14605 }
14606 
14607 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14608 	{
14609 		.dmi_id_list = &(const struct dmi_system_id[]) {
14610 			{
14611 				.callback = intel_dmi_reverse_brightness,
14612 				.ident = "NCR Corporation",
14613 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14614 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
14615 				},
14616 			},
14617 			{ }  /* terminating entry */
14618 		},
14619 		.hook = quirk_invert_brightness,
14620 	},
14621 };
14622 
14623 static struct intel_quirk intel_quirks[] = {
14624 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14625 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14626 
14627 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14628 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14629 
14630 	/* 830 needs to leave pipe A & dpll A up */
14631 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14632 
14633 	/* 830 needs to leave pipe B & dpll B up */
14634 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14635 
14636 	/* Lenovo U160 cannot use SSC on LVDS */
14637 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14638 
14639 	/* Sony Vaio Y cannot use SSC on LVDS */
14640 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14641 
14642 	/* Acer Aspire 5734Z must invert backlight brightness */
14643 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14644 
14645 	/* Acer/eMachines G725 */
14646 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14647 
14648 	/* Acer/eMachines e725 */
14649 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14650 
14651 	/* Acer/Packard Bell NCL20 */
14652 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14653 
14654 	/* Acer Aspire 4736Z */
14655 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14656 
14657 	/* Acer Aspire 5336 */
14658 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14659 
14660 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14661 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14662 
14663 	/* Acer C720 Chromebook (Core i3 4005U) */
14664 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14665 
14666 	/* Apple Macbook 2,1 (Core 2 T7400) */
14667 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14668 
14669 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
14670 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14671 
14672 	/* HP Chromebook 14 (Celeron 2955U) */
14673 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14674 
14675 	/* Dell Chromebook 11 */
14676 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14677 };
14678 
14679 static void intel_init_quirks(struct drm_device *dev)
14680 {
14681 	struct pci_dev *d = dev->pdev;
14682 	int i;
14683 
14684 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14685 		struct intel_quirk *q = &intel_quirks[i];
14686 
14687 		if (d->device == q->device &&
14688 		    (d->subsystem_vendor == q->subsystem_vendor ||
14689 		     q->subsystem_vendor == PCI_ANY_ID) &&
14690 		    (d->subsystem_device == q->subsystem_device ||
14691 		     q->subsystem_device == PCI_ANY_ID))
14692 			q->hook(dev);
14693 	}
14694 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14695 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14696 			intel_dmi_quirks[i].hook(dev);
14697 	}
14698 }
14699 
14700 /* Disable the VGA plane that we never use */
14701 static void i915_disable_vga(struct drm_device *dev)
14702 {
14703 	struct drm_i915_private *dev_priv = dev->dev_private;
14704 	u8 sr1;
14705 	u32 vga_reg = i915_vgacntrl_reg(dev);
14706 
14707 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14708 #if 0
14709 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14710 #endif
14711 	outb(VGA_SR_INDEX, SR01);
14712 	sr1 = inb(VGA_SR_DATA);
14713 	outb(VGA_SR_DATA, sr1 | 1 << 5);
14714 #if 0
14715 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14716 #endif
14717 	udelay(300);
14718 
14719 	/*
14720 	 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
14721 	 * from S3 without preserving (some of?) the other bits.
14722 	 */
14723 	I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
14724 	POSTING_READ(vga_reg);
14725 }
14726 
14727 void intel_modeset_init_hw(struct drm_device *dev)
14728 {
14729 	intel_update_cdclk(dev);
14730 	intel_prepare_ddi(dev);
14731 	intel_init_clock_gating(dev);
14732 	intel_enable_gt_powersave(dev);
14733 }
14734 
14735 void intel_modeset_init(struct drm_device *dev)
14736 {
14737 	struct drm_i915_private *dev_priv = dev->dev_private;
14738 	int sprite, ret;
14739 	enum i915_pipe pipe;
14740 	struct intel_crtc *crtc;
14741 
14742 	drm_mode_config_init(dev);
14743 
14744 	dev->mode_config.min_width = 0;
14745 	dev->mode_config.min_height = 0;
14746 
14747 	dev->mode_config.preferred_depth = 24;
14748 	dev->mode_config.prefer_shadow = 1;
14749 
14750 	dev->mode_config.allow_fb_modifiers = true;
14751 
14752 	dev->mode_config.funcs = &intel_mode_funcs;
14753 
14754 	intel_init_quirks(dev);
14755 
14756 	intel_init_pm(dev);
14757 
14758 	if (INTEL_INFO(dev)->num_pipes == 0)
14759 		return;
14760 
14761 	/*
14762 	 * There may be no VBT; and if the BIOS enabled SSC we can
14763 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
14764 	 * BIOS isn't using it, don't assume it will work even if the VBT
14765 	 * indicates as much.
14766 	 */
14767 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14768 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14769 					    DREF_SSC1_ENABLE);
14770 
14771 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14772 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14773 				     bios_lvds_use_ssc ? "en" : "dis",
14774 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14775 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14776 		}
14777 	}
14778 
14779 	intel_init_display(dev);
14780 	intel_init_audio(dev);
14781 
14782 	if (IS_GEN2(dev)) {
14783 		dev->mode_config.max_width = 2048;
14784 		dev->mode_config.max_height = 2048;
14785 	} else if (IS_GEN3(dev)) {
14786 		dev->mode_config.max_width = 4096;
14787 		dev->mode_config.max_height = 4096;
14788 	} else {
14789 		dev->mode_config.max_width = 8192;
14790 		dev->mode_config.max_height = 8192;
14791 	}
14792 
14793 	if (IS_845G(dev) || IS_I865G(dev)) {
14794 		dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14795 		dev->mode_config.cursor_height = 1023;
14796 	} else if (IS_GEN2(dev)) {
14797 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14798 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14799 	} else {
14800 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14801 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14802 	}
14803 
14804 	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14805 
14806 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
14807 		      INTEL_INFO(dev)->num_pipes,
14808 		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14809 
14810 	for_each_pipe(dev_priv, pipe) {
14811 		intel_crtc_init(dev, pipe);
14812 		for_each_sprite(dev_priv, pipe, sprite) {
14813 			ret = intel_plane_init(dev, pipe, sprite);
14814 			if (ret)
14815 				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14816 					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
14817 		}
14818 	}
14819 
14820 	intel_init_dpio(dev);
14821 
14822 	intel_shared_dpll_init(dev);
14823 
14824 	/* save the BIOS value before clobbering it */
14825 	dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
14826 	/* Just disable it once at startup */
14827 	i915_disable_vga(dev);
14828 	intel_setup_outputs(dev);
14829 
14830 	/* Just in case the BIOS is doing something questionable. */
14831 	intel_fbc_disable(dev_priv);
14832 
14833 	drm_modeset_lock_all(dev);
14834 	intel_modeset_setup_hw_state(dev);
14835 	drm_modeset_unlock_all(dev);
14836 
14837 	for_each_intel_crtc(dev, crtc) {
14838 		struct intel_initial_plane_config plane_config = {};
14839 
14840 		if (!crtc->active)
14841 			continue;
14842 
14843 		/*
14844 		 * Note that reserving the BIOS fb up front prevents us
14845 		 * from stuffing other stolen allocations like the ring
14846 		 * on top.  This prevents some ugliness at boot time, and
14847 		 * can even allow for smooth boot transitions if the BIOS
14848 		 * fb is large enough for the active pipe configuration.
14849 		 */
14850 		dev_priv->display.get_initial_plane_config(crtc,
14851 							   &plane_config);
14852 
14853 		/*
14854 		 * If the fb is shared between multiple heads, we'll
14855 		 * just get the first one.
14856 		 */
14857 		intel_find_initial_plane_obj(crtc, &plane_config);
14858 	}
14859 }
14860 
14861 static void intel_enable_pipe_a(struct drm_device *dev)
14862 {
14863 	struct intel_connector *connector;
14864 	struct drm_connector *crt = NULL;
14865 	struct intel_load_detect_pipe load_detect_temp;
14866 	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14867 
14868 	/* We can't just switch on the pipe A, we need to set things up with a
14869 	 * proper mode and output configuration. As a gross hack, enable pipe A
14870 	 * by enabling the load detect pipe once. */
14871 	for_each_intel_connector(dev, connector) {
14872 		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14873 			crt = &connector->base;
14874 			break;
14875 		}
14876 	}
14877 
14878 	if (!crt)
14879 		return;
14880 
14881 	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14882 		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14883 }
14884 
14885 static bool
14886 intel_check_plane_mapping(struct intel_crtc *crtc)
14887 {
14888 	struct drm_device *dev = crtc->base.dev;
14889 	struct drm_i915_private *dev_priv = dev->dev_private;
14890 	u32 reg, val;
14891 
14892 	if (INTEL_INFO(dev)->num_pipes == 1)
14893 		return true;
14894 
14895 	reg = DSPCNTR(!crtc->plane);
14896 	val = I915_READ(reg);
14897 
14898 	if ((val & DISPLAY_PLANE_ENABLE) &&
14899 	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14900 		return false;
14901 
14902 	return true;
14903 }
14904 
14905 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14906 {
14907 	struct drm_device *dev = crtc->base.dev;
14908 	struct drm_i915_private *dev_priv = dev->dev_private;
14909 	struct intel_encoder *encoder;
14910 	u32 reg;
14911 	bool enable;
14912 
14913 	/* Clear any frame start delays used for debugging left by the BIOS */
14914 	reg = PIPECONF(crtc->config->cpu_transcoder);
14915 	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14916 
14917 	/* restore vblank interrupts to correct state */
14918 	drm_crtc_vblank_reset(&crtc->base);
14919 	if (crtc->active) {
14920 		struct intel_plane *plane;
14921 
14922 		drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
14923 		update_scanline_offset(crtc);
14924 		drm_crtc_vblank_on(&crtc->base);
14925 
14926 		/* Disable everything but the primary plane */
14927 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
14928 			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14929 				continue;
14930 
14931 			plane->disable_plane(&plane->base, &crtc->base);
14932 		}
14933 	}
14934 
14935 	/* We need to sanitize the plane -> pipe mapping first because this will
14936 	 * disable the crtc (and hence change the state) if it is wrong. Note
14937 	 * that gen4+ has a fixed plane -> pipe mapping.  */
14938 	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14939 		bool plane;
14940 
14941 		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14942 			      crtc->base.base.id);
14943 
14944 		/* Pipe has the wrong plane attached and the plane is active.
14945 		 * Temporarily change the plane mapping and disable everything
14946 		 * ...  */
14947 		plane = crtc->plane;
14948 		to_intel_plane_state(crtc->base.primary->state)->visible = true;
14949 		crtc->plane = !plane;
14950 		intel_crtc_disable_noatomic(&crtc->base);
14951 		crtc->plane = plane;
14952 	}
14953 
14954 	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14955 	    crtc->pipe == PIPE_A && !crtc->active) {
14956 		/* BIOS forgot to enable pipe A, this mostly happens after
14957 		 * resume. Force-enable the pipe to fix this, the update_dpms
14958 		 * call below we restore the pipe to the right state, but leave
14959 		 * the required bits on. */
14960 		intel_enable_pipe_a(dev);
14961 	}
14962 
14963 	/* Adjust the state of the output pipe according to whether we
14964 	 * have active connectors/encoders. */
14965 	enable = false;
14966 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14967 		enable = true;
14968 		break;
14969 	}
14970 
14971 	if (!enable)
14972 		intel_crtc_disable_noatomic(&crtc->base);
14973 
14974 	if (crtc->active != crtc->base.state->active) {
14975 
14976 		/* This can happen either due to bugs in the get_hw_state
14977 		 * functions or because of calls to intel_crtc_disable_noatomic,
14978 		 * or because the pipe is force-enabled due to the
14979 		 * pipe A quirk. */
14980 		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14981 			      crtc->base.base.id,
14982 			      crtc->base.state->enable ? "enabled" : "disabled",
14983 			      crtc->active ? "enabled" : "disabled");
14984 
14985 		WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
14986 		crtc->base.state->active = crtc->active;
14987 		crtc->base.enabled = crtc->active;
14988 
14989 		/* Because we only establish the connector -> encoder ->
14990 		 * crtc links if something is active, this means the
14991 		 * crtc is now deactivated. Break the links. connector
14992 		 * -> encoder links are only establish when things are
14993 		 *  actually up, hence no need to break them. */
14994 		WARN_ON(crtc->active);
14995 
14996 		for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14997 			encoder->base.crtc = NULL;
14998 	}
14999 
15000 	if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15001 		/*
15002 		 * We start out with underrun reporting disabled to avoid races.
15003 		 * For correct bookkeeping mark this on active crtcs.
15004 		 *
15005 		 * Also on gmch platforms we dont have any hardware bits to
15006 		 * disable the underrun reporting. Which means we need to start
15007 		 * out with underrun reporting disabled also on inactive pipes,
15008 		 * since otherwise we'll complain about the garbage we read when
15009 		 * e.g. coming up after runtime pm.
15010 		 *
15011 		 * No protection against concurrent access is required - at
15012 		 * worst a fifo underrun happens which also sets this to false.
15013 		 */
15014 		crtc->cpu_fifo_underrun_disabled = true;
15015 		crtc->pch_fifo_underrun_disabled = true;
15016 	}
15017 }
15018 
15019 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15020 {
15021 	struct intel_connector *connector;
15022 	struct drm_device *dev = encoder->base.dev;
15023 	bool active = false;
15024 
15025 	/* We need to check both for a crtc link (meaning that the
15026 	 * encoder is active and trying to read from a pipe) and the
15027 	 * pipe itself being active. */
15028 	bool has_active_crtc = encoder->base.crtc &&
15029 		to_intel_crtc(encoder->base.crtc)->active;
15030 
15031 	for_each_intel_connector(dev, connector) {
15032 		if (connector->base.encoder != &encoder->base)
15033 			continue;
15034 
15035 		active = true;
15036 		break;
15037 	}
15038 
15039 	if (active && !has_active_crtc) {
15040 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15041 			      encoder->base.base.id,
15042 			      encoder->base.name);
15043 
15044 		/* Connector is active, but has no active pipe. This is
15045 		 * fallout from our resume register restoring. Disable
15046 		 * the encoder manually again. */
15047 		if (encoder->base.crtc) {
15048 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15049 				      encoder->base.base.id,
15050 				      encoder->base.name);
15051 			encoder->disable(encoder);
15052 			if (encoder->post_disable)
15053 				encoder->post_disable(encoder);
15054 		}
15055 		encoder->base.crtc = NULL;
15056 
15057 		/* Inconsistent output/port/pipe state happens presumably due to
15058 		 * a bug in one of the get_hw_state functions. Or someplace else
15059 		 * in our code, like the register restore mess on resume. Clamp
15060 		 * things to off as a safer default. */
15061 		for_each_intel_connector(dev, connector) {
15062 			if (connector->encoder != encoder)
15063 				continue;
15064 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15065 			connector->base.encoder = NULL;
15066 		}
15067 	}
15068 	/* Enabled encoders without active connectors will be fixed in
15069 	 * the crtc fixup. */
15070 }
15071 
15072 void i915_redisable_vga_power_on(struct drm_device *dev)
15073 {
15074 	struct drm_i915_private *dev_priv = dev->dev_private;
15075 	u32 vga_reg = i915_vgacntrl_reg(dev);
15076 
15077 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15078 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15079 		i915_disable_vga(dev);
15080 	}
15081 }
15082 
15083 void i915_redisable_vga(struct drm_device *dev)
15084 {
15085 	struct drm_i915_private *dev_priv = dev->dev_private;
15086 
15087 	/* This function can be called both from intel_modeset_setup_hw_state or
15088 	 * at a very early point in our resume sequence, where the power well
15089 	 * structures are not yet restored. Since this function is at a very
15090 	 * paranoid "someone might have enabled VGA while we were not looking"
15091 	 * level, just check if the power well is enabled instead of trying to
15092 	 * follow the "don't touch the power well if we don't need it" policy
15093 	 * the rest of the driver uses. */
15094 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15095 		return;
15096 
15097 	i915_redisable_vga_power_on(dev);
15098 }
15099 
15100 static bool primary_get_hw_state(struct intel_plane *plane)
15101 {
15102 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15103 
15104 	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15105 }
15106 
15107 /* FIXME read out full plane state for all planes */
15108 static void readout_plane_state(struct intel_crtc *crtc)
15109 {
15110 	struct drm_plane *primary = crtc->base.primary;
15111 	struct intel_plane_state *plane_state =
15112 		to_intel_plane_state(primary->state);
15113 
15114 	plane_state->visible =
15115 		primary_get_hw_state(to_intel_plane(primary));
15116 
15117 	if (plane_state->visible)
15118 		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15119 }
15120 
15121 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15122 {
15123 	struct drm_i915_private *dev_priv = dev->dev_private;
15124 	enum i915_pipe pipe;
15125 	struct intel_crtc *crtc;
15126 	struct intel_encoder *encoder;
15127 	struct intel_connector *connector;
15128 	int i;
15129 
15130 	for_each_intel_crtc(dev, crtc) {
15131 		__drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15132 		memset(crtc->config, 0, sizeof(*crtc->config));
15133 		crtc->config->base.crtc = &crtc->base;
15134 
15135 		crtc->active = dev_priv->display.get_pipe_config(crtc,
15136 								 crtc->config);
15137 
15138 		crtc->base.state->active = crtc->active;
15139 		crtc->base.enabled = crtc->active;
15140 
15141 		readout_plane_state(crtc);
15142 
15143 		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15144 			      crtc->base.base.id,
15145 			      crtc->active ? "enabled" : "disabled");
15146 	}
15147 
15148 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15149 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15150 
15151 		pll->on = pll->get_hw_state(dev_priv, pll,
15152 					    &pll->config.hw_state);
15153 		pll->active = 0;
15154 		pll->config.crtc_mask = 0;
15155 		for_each_intel_crtc(dev, crtc) {
15156 			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15157 				pll->active++;
15158 				pll->config.crtc_mask |= 1 << crtc->pipe;
15159 			}
15160 		}
15161 
15162 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15163 			      pll->name, pll->config.crtc_mask, pll->on);
15164 
15165 		if (pll->config.crtc_mask)
15166 			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15167 	}
15168 
15169 	for_each_intel_encoder(dev, encoder) {
15170 		pipe = 0;
15171 
15172 		if (encoder->get_hw_state(encoder, &pipe)) {
15173 			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15174 			encoder->base.crtc = &crtc->base;
15175 			encoder->get_config(encoder, crtc->config);
15176 		} else {
15177 			encoder->base.crtc = NULL;
15178 		}
15179 
15180 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15181 			      encoder->base.base.id,
15182 			      encoder->base.name,
15183 			      encoder->base.crtc ? "enabled" : "disabled",
15184 			      pipe_name(pipe));
15185 	}
15186 
15187 	for_each_intel_connector(dev, connector) {
15188 		if (connector->get_hw_state(connector)) {
15189 			connector->base.dpms = DRM_MODE_DPMS_ON;
15190 			connector->base.encoder = &connector->encoder->base;
15191 		} else {
15192 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15193 			connector->base.encoder = NULL;
15194 		}
15195 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15196 			      connector->base.base.id,
15197 			      connector->base.name,
15198 			      connector->base.encoder ? "enabled" : "disabled");
15199 	}
15200 
15201 	for_each_intel_crtc(dev, crtc) {
15202 		crtc->base.hwmode = crtc->config->base.adjusted_mode;
15203 
15204 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15205 		if (crtc->base.state->active) {
15206 			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15207 			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15208 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15209 
15210 			/*
15211 			 * The initial mode needs to be set in order to keep
15212 			 * the atomic core happy. It wants a valid mode if the
15213 			 * crtc's enabled, so we do the above call.
15214 			 *
15215 			 * At this point some state updated by the connectors
15216 			 * in their ->detect() callback has not run yet, so
15217 			 * no recalculation can be done yet.
15218 			 *
15219 			 * Even if we could do a recalculation and modeset
15220 			 * right now it would cause a double modeset if
15221 			 * fbdev or userspace chooses a different initial mode.
15222 			 *
15223 			 * If that happens, someone indicated they wanted a
15224 			 * mode change, which means it's safe to do a full
15225 			 * recalculation.
15226 			 */
15227 			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15228 		}
15229 	}
15230 }
15231 
15232 /* Scan out the current hw modeset state,
15233  * and sanitizes it to the current state
15234  */
15235 static void
15236 intel_modeset_setup_hw_state(struct drm_device *dev)
15237 {
15238 	struct drm_i915_private *dev_priv = dev->dev_private;
15239 	enum i915_pipe pipe;
15240 	struct intel_crtc *crtc;
15241 	struct intel_encoder *encoder;
15242 	int i;
15243 
15244 	intel_modeset_readout_hw_state(dev);
15245 
15246 	/* HW state is read out, now we need to sanitize this mess. */
15247 	for_each_intel_encoder(dev, encoder) {
15248 		intel_sanitize_encoder(encoder);
15249 	}
15250 
15251 	for_each_pipe(dev_priv, pipe) {
15252 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15253 		intel_sanitize_crtc(crtc);
15254 		intel_dump_pipe_config(crtc, crtc->config,
15255 				       "[setup_hw_state]");
15256 	}
15257 
15258 	intel_modeset_update_connector_atomic_state(dev);
15259 
15260 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15261 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15262 
15263 		if (!pll->on || pll->active)
15264 			continue;
15265 
15266 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15267 
15268 		pll->disable(dev_priv, pll);
15269 		pll->on = false;
15270 	}
15271 
15272 	if (IS_VALLEYVIEW(dev))
15273 		vlv_wm_get_hw_state(dev);
15274 	else if (IS_GEN9(dev))
15275 		skl_wm_get_hw_state(dev);
15276 	else if (HAS_PCH_SPLIT(dev))
15277 		ilk_wm_get_hw_state(dev);
15278 
15279 	for_each_intel_crtc(dev, crtc) {
15280 		unsigned long put_domains;
15281 
15282 		put_domains = modeset_get_crtc_power_domains(&crtc->base);
15283 		if (WARN_ON(put_domains))
15284 			modeset_put_power_domains(dev_priv, put_domains);
15285 	}
15286 	intel_display_set_init_power(dev_priv, false);
15287 }
15288 
15289 void intel_display_resume(struct drm_device *dev)
15290 {
15291 	struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15292 	struct intel_connector *conn;
15293 	struct intel_plane *plane;
15294 	struct drm_crtc *crtc;
15295 	int ret;
15296 
15297 	if (!state)
15298 		return;
15299 
15300 	state->acquire_ctx = dev->mode_config.acquire_ctx;
15301 
15302 	/* preserve complete old state, including dpll */
15303 	intel_atomic_get_shared_dpll_state(state);
15304 
15305 	for_each_crtc(dev, crtc) {
15306 		struct drm_crtc_state *crtc_state =
15307 			drm_atomic_get_crtc_state(state, crtc);
15308 
15309 		ret = PTR_ERR_OR_ZERO(crtc_state);
15310 		if (ret)
15311 			goto err;
15312 
15313 		/* force a restore */
15314 		crtc_state->mode_changed = true;
15315 	}
15316 
15317 	for_each_intel_plane(dev, plane) {
15318 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15319 		if (ret)
15320 			goto err;
15321 	}
15322 
15323 	for_each_intel_connector(dev, conn) {
15324 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15325 		if (ret)
15326 			goto err;
15327 	}
15328 
15329 	intel_modeset_setup_hw_state(dev);
15330 
15331 	i915_redisable_vga(dev);
15332 	ret = drm_atomic_commit(state);
15333 	if (!ret)
15334 		return;
15335 
15336 err:
15337 	DRM_ERROR("Restoring old state failed with %i\n", ret);
15338 	drm_atomic_state_free(state);
15339 }
15340 
15341 void intel_modeset_gem_init(struct drm_device *dev)
15342 {
15343 	struct drm_crtc *c;
15344 	struct drm_i915_gem_object *obj;
15345 	int ret;
15346 
15347 	mutex_lock(&dev->struct_mutex);
15348 	intel_init_gt_powersave(dev);
15349 	mutex_unlock(&dev->struct_mutex);
15350 
15351 	intel_modeset_init_hw(dev);
15352 
15353 	intel_setup_overlay(dev);
15354 
15355 	/*
15356 	 * Make sure any fbs we allocated at startup are properly
15357 	 * pinned & fenced.  When we do the allocation it's too early
15358 	 * for this.
15359 	 */
15360 	for_each_crtc(dev, c) {
15361 		obj = intel_fb_obj(c->primary->fb);
15362 		if (obj == NULL)
15363 			continue;
15364 
15365 		mutex_lock(&dev->struct_mutex);
15366 		ret = intel_pin_and_fence_fb_obj(c->primary,
15367 						 c->primary->fb,
15368 						 c->primary->state,
15369 						 NULL, NULL);
15370 		mutex_unlock(&dev->struct_mutex);
15371 		if (ret) {
15372 			DRM_ERROR("failed to pin boot fb on pipe %d\n",
15373 				  to_intel_crtc(c)->pipe);
15374 			drm_framebuffer_unreference(c->primary->fb);
15375 			c->primary->fb = NULL;
15376 			c->primary->crtc = c->primary->state->crtc = NULL;
15377 			update_state_fb(c->primary);
15378 			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15379 		}
15380 	}
15381 
15382 	intel_backlight_register(dev);
15383 }
15384 
15385 void intel_connector_unregister(struct intel_connector *intel_connector)
15386 {
15387 	struct drm_connector *connector = &intel_connector->base;
15388 
15389 	intel_panel_destroy_backlight(connector);
15390 	drm_connector_unregister(connector);
15391 }
15392 
15393 void intel_modeset_cleanup(struct drm_device *dev)
15394 {
15395 	struct drm_i915_private *dev_priv = dev->dev_private;
15396 	struct drm_connector *connector;
15397 
15398 	intel_disable_gt_powersave(dev);
15399 
15400 	intel_backlight_unregister(dev);
15401 
15402 	/*
15403 	 * Interrupts and polling as the first thing to avoid creating havoc.
15404 	 * Too much stuff here (turning of connectors, ...) would
15405 	 * experience fancy races otherwise.
15406 	 */
15407 	intel_irq_uninstall(dev_priv);
15408 
15409 	/*
15410 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
15411 	 * poll handlers. Hence disable polling after hpd handling is shut down.
15412 	 */
15413 	drm_kms_helper_poll_fini(dev);
15414 
15415 	intel_unregister_dsm_handler();
15416 
15417 	intel_fbc_disable(dev_priv);
15418 
15419 	/* flush any delayed tasks or pending work */
15420 	flush_scheduled_work();
15421 
15422 	/* destroy the backlight and sysfs files before encoders/connectors */
15423 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15424 		struct intel_connector *intel_connector;
15425 
15426 		intel_connector = to_intel_connector(connector);
15427 		intel_connector->unregister(intel_connector);
15428 	}
15429 
15430 	drm_mode_config_cleanup(dev);
15431 
15432 	intel_cleanup_overlay(dev);
15433 
15434 	mutex_lock(&dev->struct_mutex);
15435 	intel_cleanup_gt_powersave(dev);
15436 	mutex_unlock(&dev->struct_mutex);
15437 }
15438 
15439 /*
15440  * Return which encoder is currently attached for connector.
15441  */
15442 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15443 {
15444 	return &intel_attached_encoder(connector)->base;
15445 }
15446 
15447 void intel_connector_attach_encoder(struct intel_connector *connector,
15448 				    struct intel_encoder *encoder)
15449 {
15450 	connector->encoder = encoder;
15451 	drm_mode_connector_attach_encoder(&connector->base,
15452 					  &encoder->base);
15453 }
15454 
15455 /*
15456  * set vga decode state - true == enable VGA decode
15457  */
15458 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15459 {
15460 	struct drm_i915_private *dev_priv = dev->dev_private;
15461 	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15462 	u16 gmch_ctrl;
15463 
15464 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15465 		DRM_ERROR("failed to read control word\n");
15466 		return -EIO;
15467 	}
15468 
15469 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15470 		return 0;
15471 
15472 	if (state)
15473 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15474 	else
15475 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15476 
15477 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15478 		DRM_ERROR("failed to write control word\n");
15479 		return -EIO;
15480 	}
15481 
15482 	return 0;
15483 }
15484 
15485 #if 0
15486 struct intel_display_error_state {
15487 
15488 	u32 power_well_driver;
15489 
15490 	int num_transcoders;
15491 
15492 	struct intel_cursor_error_state {
15493 		u32 control;
15494 		u32 position;
15495 		u32 base;
15496 		u32 size;
15497 	} cursor[I915_MAX_PIPES];
15498 
15499 	struct intel_pipe_error_state {
15500 		bool power_domain_on;
15501 		u32 source;
15502 		u32 stat;
15503 	} pipe[I915_MAX_PIPES];
15504 
15505 	struct intel_plane_error_state {
15506 		u32 control;
15507 		u32 stride;
15508 		u32 size;
15509 		u32 pos;
15510 		u32 addr;
15511 		u32 surface;
15512 		u32 tile_offset;
15513 	} plane[I915_MAX_PIPES];
15514 
15515 	struct intel_transcoder_error_state {
15516 		bool power_domain_on;
15517 		enum transcoder cpu_transcoder;
15518 
15519 		u32 conf;
15520 
15521 		u32 htotal;
15522 		u32 hblank;
15523 		u32 hsync;
15524 		u32 vtotal;
15525 		u32 vblank;
15526 		u32 vsync;
15527 	} transcoder[4];
15528 };
15529 
15530 struct intel_display_error_state *
15531 intel_display_capture_error_state(struct drm_device *dev)
15532 {
15533 	struct drm_i915_private *dev_priv = dev->dev_private;
15534 	struct intel_display_error_state *error;
15535 	int transcoders[] = {
15536 		TRANSCODER_A,
15537 		TRANSCODER_B,
15538 		TRANSCODER_C,
15539 		TRANSCODER_EDP,
15540 	};
15541 	int i;
15542 
15543 	if (INTEL_INFO(dev)->num_pipes == 0)
15544 		return NULL;
15545 
15546 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
15547 	if (error == NULL)
15548 		return NULL;
15549 
15550 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15551 		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15552 
15553 	for_each_pipe(dev_priv, i) {
15554 		error->pipe[i].power_domain_on =
15555 			__intel_display_power_is_enabled(dev_priv,
15556 							 POWER_DOMAIN_PIPE(i));
15557 		if (!error->pipe[i].power_domain_on)
15558 			continue;
15559 
15560 		error->cursor[i].control = I915_READ(CURCNTR(i));
15561 		error->cursor[i].position = I915_READ(CURPOS(i));
15562 		error->cursor[i].base = I915_READ(CURBASE(i));
15563 
15564 		error->plane[i].control = I915_READ(DSPCNTR(i));
15565 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15566 		if (INTEL_INFO(dev)->gen <= 3) {
15567 			error->plane[i].size = I915_READ(DSPSIZE(i));
15568 			error->plane[i].pos = I915_READ(DSPPOS(i));
15569 		}
15570 		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15571 			error->plane[i].addr = I915_READ(DSPADDR(i));
15572 		if (INTEL_INFO(dev)->gen >= 4) {
15573 			error->plane[i].surface = I915_READ(DSPSURF(i));
15574 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15575 		}
15576 
15577 		error->pipe[i].source = I915_READ(PIPESRC(i));
15578 
15579 		if (HAS_GMCH_DISPLAY(dev))
15580 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
15581 	}
15582 
15583 	error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15584 	if (HAS_DDI(dev_priv->dev))
15585 		error->num_transcoders++; /* Account for eDP. */
15586 
15587 	for (i = 0; i < error->num_transcoders; i++) {
15588 		enum transcoder cpu_transcoder = transcoders[i];
15589 
15590 		error->transcoder[i].power_domain_on =
15591 			__intel_display_power_is_enabled(dev_priv,
15592 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15593 		if (!error->transcoder[i].power_domain_on)
15594 			continue;
15595 
15596 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
15597 
15598 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15599 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15600 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15601 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15602 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15603 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15604 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15605 	}
15606 
15607 	return error;
15608 }
15609 
15610 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15611 
15612 void
15613 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15614 				struct drm_device *dev,
15615 				struct intel_display_error_state *error)
15616 {
15617 	struct drm_i915_private *dev_priv = dev->dev_private;
15618 	int i;
15619 
15620 	if (!error)
15621 		return;
15622 
15623 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15624 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15625 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
15626 			   error->power_well_driver);
15627 	for_each_pipe(dev_priv, i) {
15628 		err_printf(m, "Pipe [%d]:\n", i);
15629 		err_printf(m, "  Power: %s\n",
15630 			   error->pipe[i].power_domain_on ? "on" : "off");
15631 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15632 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15633 
15634 		err_printf(m, "Plane [%d]:\n", i);
15635 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15636 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15637 		if (INTEL_INFO(dev)->gen <= 3) {
15638 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15639 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15640 		}
15641 		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15642 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15643 		if (INTEL_INFO(dev)->gen >= 4) {
15644 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15645 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15646 		}
15647 
15648 		err_printf(m, "Cursor [%d]:\n", i);
15649 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15650 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15651 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15652 	}
15653 
15654 	for (i = 0; i < error->num_transcoders; i++) {
15655 		err_printf(m, "CPU transcoder: %c\n",
15656 			   transcoder_name(error->transcoder[i].cpu_transcoder));
15657 		err_printf(m, "  Power: %s\n",
15658 			   error->transcoder[i].power_domain_on ? "on" : "off");
15659 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15660 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15661 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15662 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15663 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15664 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15665 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15666 	}
15667 }
15668 #endif
15669 
15670 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15671 {
15672 	struct intel_crtc *crtc;
15673 
15674 	for_each_intel_crtc(dev, crtc) {
15675 		struct intel_unpin_work *work;
15676 
15677 		lockmgr(&dev->event_lock, LK_EXCLUSIVE);
15678 
15679 		work = crtc->unpin_work;
15680 
15681 		if (work && work->event &&
15682 		    work->event->base.file_priv == file) {
15683 			kfree(work->event);
15684 			work->event = NULL;
15685 		}
15686 
15687 		lockmgr(&dev->event_lock, LK_RELEASE);
15688 	}
15689 }
15690