xref: /dragonfly/sys/dev/drm/i915/intel_display.c (revision c7a1b66b)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  *
26  * $FreeBSD: src/sys/dev/drm2/i915/intel_display.c,v 1.2 2012/05/24 19:13:54 dim Exp $
27  */
28 
29 #include <ddb/ddb.h>
30 #include <sys/limits.h>
31 
32 #include <drm/drmP.h>
33 #include <drm/drm_edid.h>
34 #include "intel_drv.h"
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include <drm/drm_dp_helper.h>
38 #include <drm/drm_crtc_helper.h>
39 
40 #include <linux/err.h>
41 
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43 
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47 
48 typedef struct {
49 	/* given values */
50 	int n;
51 	int m1, m2;
52 	int p1, p2;
53 	/* derived values */
54 	int	dot;
55 	int	vco;
56 	int	m;
57 	int	p;
58 } intel_clock_t;
59 
60 typedef struct {
61 	int	min, max;
62 } intel_range_t;
63 
64 typedef struct {
65 	int	dot_limit;
66 	int	p2_slow, p2_fast;
67 } intel_p2_t;
68 
69 #define INTEL_P2_NUM		      2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73 	intel_p2_t	    p2;
74 	bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75 			int, int, intel_clock_t *, intel_clock_t *);
76 };
77 
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ		2700000 /* in kHz for mode->clock */
80 
81 static bool
82 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
83 		    int target, int refclk, intel_clock_t *match_clock,
84 		    intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87 			int target, int refclk, intel_clock_t *match_clock,
88 			intel_clock_t *best_clock);
89 
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92 		      int target, int refclk, intel_clock_t *match_clock,
93 		      intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 			   int target, int refclk, intel_clock_t *match_clock,
97 			   intel_clock_t *best_clock);
98 
99 static inline u32 /* units of 100MHz */
100 intel_fdi_link_freq(struct drm_device *dev)
101 {
102 	if (IS_GEN5(dev)) {
103 		struct drm_i915_private *dev_priv = dev->dev_private;
104 		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
105 	} else
106 		return 27;
107 }
108 
109 static const intel_limit_t intel_limits_i8xx_dvo = {
110 	.dot = { .min = 25000, .max = 350000 },
111 	.vco = { .min = 930000, .max = 1400000 },
112 	.n = { .min = 3, .max = 16 },
113 	.m = { .min = 96, .max = 140 },
114 	.m1 = { .min = 18, .max = 26 },
115 	.m2 = { .min = 6, .max = 16 },
116 	.p = { .min = 4, .max = 128 },
117 	.p1 = { .min = 2, .max = 33 },
118 	.p2 = { .dot_limit = 165000,
119 		.p2_slow = 4, .p2_fast = 2 },
120 	.find_pll = intel_find_best_PLL,
121 };
122 
123 static const intel_limit_t intel_limits_i8xx_lvds = {
124 	.dot = { .min = 25000, .max = 350000 },
125 	.vco = { .min = 930000, .max = 1400000 },
126 	.n = { .min = 3, .max = 16 },
127 	.m = { .min = 96, .max = 140 },
128 	.m1 = { .min = 18, .max = 26 },
129 	.m2 = { .min = 6, .max = 16 },
130 	.p = { .min = 4, .max = 128 },
131 	.p1 = { .min = 1, .max = 6 },
132 	.p2 = { .dot_limit = 165000,
133 		.p2_slow = 14, .p2_fast = 7 },
134 	.find_pll = intel_find_best_PLL,
135 };
136 
137 static const intel_limit_t intel_limits_i9xx_sdvo = {
138 	.dot = { .min = 20000, .max = 400000 },
139 	.vco = { .min = 1400000, .max = 2800000 },
140 	.n = { .min = 1, .max = 6 },
141 	.m = { .min = 70, .max = 120 },
142 	.m1 = { .min = 10, .max = 22 },
143 	.m2 = { .min = 5, .max = 9 },
144 	.p = { .min = 5, .max = 80 },
145 	.p1 = { .min = 1, .max = 8 },
146 	.p2 = { .dot_limit = 200000,
147 		.p2_slow = 10, .p2_fast = 5 },
148 	.find_pll = intel_find_best_PLL,
149 };
150 
151 static const intel_limit_t intel_limits_i9xx_lvds = {
152 	.dot = { .min = 20000, .max = 400000 },
153 	.vco = { .min = 1400000, .max = 2800000 },
154 	.n = { .min = 1, .max = 6 },
155 	.m = { .min = 70, .max = 120 },
156 	.m1 = { .min = 10, .max = 22 },
157 	.m2 = { .min = 5, .max = 9 },
158 	.p = { .min = 7, .max = 98 },
159 	.p1 = { .min = 1, .max = 8 },
160 	.p2 = { .dot_limit = 112000,
161 		.p2_slow = 14, .p2_fast = 7 },
162 	.find_pll = intel_find_best_PLL,
163 };
164 
165 
166 static const intel_limit_t intel_limits_g4x_sdvo = {
167 	.dot = { .min = 25000, .max = 270000 },
168 	.vco = { .min = 1750000, .max = 3500000},
169 	.n = { .min = 1, .max = 4 },
170 	.m = { .min = 104, .max = 138 },
171 	.m1 = { .min = 17, .max = 23 },
172 	.m2 = { .min = 5, .max = 11 },
173 	.p = { .min = 10, .max = 30 },
174 	.p1 = { .min = 1, .max = 3},
175 	.p2 = { .dot_limit = 270000,
176 		.p2_slow = 10,
177 		.p2_fast = 10
178 	},
179 	.find_pll = intel_g4x_find_best_PLL,
180 };
181 
182 static const intel_limit_t intel_limits_g4x_hdmi = {
183 	.dot = { .min = 22000, .max = 400000 },
184 	.vco = { .min = 1750000, .max = 3500000},
185 	.n = { .min = 1, .max = 4 },
186 	.m = { .min = 104, .max = 138 },
187 	.m1 = { .min = 16, .max = 23 },
188 	.m2 = { .min = 5, .max = 11 },
189 	.p = { .min = 5, .max = 80 },
190 	.p1 = { .min = 1, .max = 8},
191 	.p2 = { .dot_limit = 165000,
192 		.p2_slow = 10, .p2_fast = 5 },
193 	.find_pll = intel_g4x_find_best_PLL,
194 };
195 
196 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
197 	.dot = { .min = 20000, .max = 115000 },
198 	.vco = { .min = 1750000, .max = 3500000 },
199 	.n = { .min = 1, .max = 3 },
200 	.m = { .min = 104, .max = 138 },
201 	.m1 = { .min = 17, .max = 23 },
202 	.m2 = { .min = 5, .max = 11 },
203 	.p = { .min = 28, .max = 112 },
204 	.p1 = { .min = 2, .max = 8 },
205 	.p2 = { .dot_limit = 0,
206 		.p2_slow = 14, .p2_fast = 14
207 	},
208 	.find_pll = intel_g4x_find_best_PLL,
209 };
210 
211 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
212 	.dot = { .min = 80000, .max = 224000 },
213 	.vco = { .min = 1750000, .max = 3500000 },
214 	.n = { .min = 1, .max = 3 },
215 	.m = { .min = 104, .max = 138 },
216 	.m1 = { .min = 17, .max = 23 },
217 	.m2 = { .min = 5, .max = 11 },
218 	.p = { .min = 14, .max = 42 },
219 	.p1 = { .min = 2, .max = 6 },
220 	.p2 = { .dot_limit = 0,
221 		.p2_slow = 7, .p2_fast = 7
222 	},
223 	.find_pll = intel_g4x_find_best_PLL,
224 };
225 
226 static const intel_limit_t intel_limits_g4x_display_port = {
227 	.dot = { .min = 161670, .max = 227000 },
228 	.vco = { .min = 1750000, .max = 3500000},
229 	.n = { .min = 1, .max = 2 },
230 	.m = { .min = 97, .max = 108 },
231 	.m1 = { .min = 0x10, .max = 0x12 },
232 	.m2 = { .min = 0x05, .max = 0x06 },
233 	.p = { .min = 10, .max = 20 },
234 	.p1 = { .min = 1, .max = 2},
235 	.p2 = { .dot_limit = 0,
236 		.p2_slow = 10, .p2_fast = 10 },
237 	.find_pll = intel_find_pll_g4x_dp,
238 };
239 
240 static const intel_limit_t intel_limits_pineview_sdvo = {
241 	.dot = { .min = 20000, .max = 400000},
242 	.vco = { .min = 1700000, .max = 3500000 },
243 	/* Pineview's Ncounter is a ring counter */
244 	.n = { .min = 3, .max = 6 },
245 	.m = { .min = 2, .max = 256 },
246 	/* Pineview only has one combined m divider, which we treat as m2. */
247 	.m1 = { .min = 0, .max = 0 },
248 	.m2 = { .min = 0, .max = 254 },
249 	.p = { .min = 5, .max = 80 },
250 	.p1 = { .min = 1, .max = 8 },
251 	.p2 = { .dot_limit = 200000,
252 		.p2_slow = 10, .p2_fast = 5 },
253 	.find_pll = intel_find_best_PLL,
254 };
255 
256 static const intel_limit_t intel_limits_pineview_lvds = {
257 	.dot = { .min = 20000, .max = 400000 },
258 	.vco = { .min = 1700000, .max = 3500000 },
259 	.n = { .min = 3, .max = 6 },
260 	.m = { .min = 2, .max = 256 },
261 	.m1 = { .min = 0, .max = 0 },
262 	.m2 = { .min = 0, .max = 254 },
263 	.p = { .min = 7, .max = 112 },
264 	.p1 = { .min = 1, .max = 8 },
265 	.p2 = { .dot_limit = 112000,
266 		.p2_slow = 14, .p2_fast = 14 },
267 	.find_pll = intel_find_best_PLL,
268 };
269 
270 /* Ironlake / Sandybridge
271  *
272  * We calculate clock using (register_value + 2) for N/M1/M2, so here
273  * the range value for them is (actual_value - 2).
274  */
275 static const intel_limit_t intel_limits_ironlake_dac = {
276 	.dot = { .min = 25000, .max = 350000 },
277 	.vco = { .min = 1760000, .max = 3510000 },
278 	.n = { .min = 1, .max = 5 },
279 	.m = { .min = 79, .max = 127 },
280 	.m1 = { .min = 12, .max = 22 },
281 	.m2 = { .min = 5, .max = 9 },
282 	.p = { .min = 5, .max = 80 },
283 	.p1 = { .min = 1, .max = 8 },
284 	.p2 = { .dot_limit = 225000,
285 		.p2_slow = 10, .p2_fast = 5 },
286 	.find_pll = intel_g4x_find_best_PLL,
287 };
288 
289 static const intel_limit_t intel_limits_ironlake_single_lvds = {
290 	.dot = { .min = 25000, .max = 350000 },
291 	.vco = { .min = 1760000, .max = 3510000 },
292 	.n = { .min = 1, .max = 3 },
293 	.m = { .min = 79, .max = 118 },
294 	.m1 = { .min = 12, .max = 22 },
295 	.m2 = { .min = 5, .max = 9 },
296 	.p = { .min = 28, .max = 112 },
297 	.p1 = { .min = 2, .max = 8 },
298 	.p2 = { .dot_limit = 225000,
299 		.p2_slow = 14, .p2_fast = 14 },
300 	.find_pll = intel_g4x_find_best_PLL,
301 };
302 
303 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
304 	.dot = { .min = 25000, .max = 350000 },
305 	.vco = { .min = 1760000, .max = 3510000 },
306 	.n = { .min = 1, .max = 3 },
307 	.m = { .min = 79, .max = 127 },
308 	.m1 = { .min = 12, .max = 22 },
309 	.m2 = { .min = 5, .max = 9 },
310 	.p = { .min = 14, .max = 56 },
311 	.p1 = { .min = 2, .max = 8 },
312 	.p2 = { .dot_limit = 225000,
313 		.p2_slow = 7, .p2_fast = 7 },
314 	.find_pll = intel_g4x_find_best_PLL,
315 };
316 
317 /* LVDS 100mhz refclk limits. */
318 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
319 	.dot = { .min = 25000, .max = 350000 },
320 	.vco = { .min = 1760000, .max = 3510000 },
321 	.n = { .min = 1, .max = 2 },
322 	.m = { .min = 79, .max = 126 },
323 	.m1 = { .min = 12, .max = 22 },
324 	.m2 = { .min = 5, .max = 9 },
325 	.p = { .min = 28, .max = 112 },
326 	.p1 = { .min = 2, .max = 8 },
327 	.p2 = { .dot_limit = 225000,
328 		.p2_slow = 14, .p2_fast = 14 },
329 	.find_pll = intel_g4x_find_best_PLL,
330 };
331 
332 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
333 	.dot = { .min = 25000, .max = 350000 },
334 	.vco = { .min = 1760000, .max = 3510000 },
335 	.n = { .min = 1, .max = 3 },
336 	.m = { .min = 79, .max = 126 },
337 	.m1 = { .min = 12, .max = 22 },
338 	.m2 = { .min = 5, .max = 9 },
339 	.p = { .min = 14, .max = 42 },
340 	.p1 = { .min = 2, .max = 6 },
341 	.p2 = { .dot_limit = 225000,
342 		.p2_slow = 7, .p2_fast = 7 },
343 	.find_pll = intel_g4x_find_best_PLL,
344 };
345 
346 static const intel_limit_t intel_limits_ironlake_display_port = {
347 	.dot = { .min = 25000, .max = 350000 },
348 	.vco = { .min = 1760000, .max = 3510000},
349 	.n = { .min = 1, .max = 2 },
350 	.m = { .min = 81, .max = 90 },
351 	.m1 = { .min = 12, .max = 22 },
352 	.m2 = { .min = 5, .max = 9 },
353 	.p = { .min = 10, .max = 20 },
354 	.p1 = { .min = 1, .max = 2},
355 	.p2 = { .dot_limit = 0,
356 		.p2_slow = 10, .p2_fast = 10 },
357 	.find_pll = intel_find_pll_ironlake_dp,
358 };
359 
360 static void vlv_init_dpio(struct drm_device *dev)
361 {
362 	struct drm_i915_private *dev_priv = dev->dev_private;
363 
364 	/* Reset the DPIO config */
365 	I915_WRITE(DPIO_CTL, 0);
366 	POSTING_READ(DPIO_CTL);
367 	I915_WRITE(DPIO_CTL, 1);
368 	POSTING_READ(DPIO_CTL);
369 }
370 
371 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
372 						int refclk)
373 {
374 	struct drm_device *dev = crtc->dev;
375 	struct drm_i915_private *dev_priv = dev->dev_private;
376 	const intel_limit_t *limit;
377 
378 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
379 		if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
380 		    LVDS_CLKB_POWER_UP) {
381 			/* LVDS dual channel */
382 			if (refclk == 100000)
383 				limit = &intel_limits_ironlake_dual_lvds_100m;
384 			else
385 				limit = &intel_limits_ironlake_dual_lvds;
386 		} else {
387 			if (refclk == 100000)
388 				limit = &intel_limits_ironlake_single_lvds_100m;
389 			else
390 				limit = &intel_limits_ironlake_single_lvds;
391 		}
392 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
393 			HAS_eDP)
394 		limit = &intel_limits_ironlake_display_port;
395 	else
396 		limit = &intel_limits_ironlake_dac;
397 
398 	return limit;
399 }
400 
401 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
402 {
403 	struct drm_device *dev = crtc->dev;
404 	struct drm_i915_private *dev_priv = dev->dev_private;
405 	const intel_limit_t *limit;
406 
407 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
408 		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
409 		    LVDS_CLKB_POWER_UP)
410 			/* LVDS with dual channel */
411 			limit = &intel_limits_g4x_dual_channel_lvds;
412 		else
413 			/* LVDS with dual channel */
414 			limit = &intel_limits_g4x_single_channel_lvds;
415 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
416 		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
417 		limit = &intel_limits_g4x_hdmi;
418 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
419 		limit = &intel_limits_g4x_sdvo;
420 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
421 		limit = &intel_limits_g4x_display_port;
422 	} else /* The option is for other outputs */
423 		limit = &intel_limits_i9xx_sdvo;
424 
425 	return limit;
426 }
427 
428 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
429 {
430 	struct drm_device *dev = crtc->dev;
431 	const intel_limit_t *limit;
432 
433 	if (HAS_PCH_SPLIT(dev))
434 		limit = intel_ironlake_limit(crtc, refclk);
435 	else if (IS_G4X(dev)) {
436 		limit = intel_g4x_limit(crtc);
437 	} else if (IS_PINEVIEW(dev)) {
438 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
439 			limit = &intel_limits_pineview_lvds;
440 		else
441 			limit = &intel_limits_pineview_sdvo;
442 	} else if (!IS_GEN2(dev)) {
443 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
444 			limit = &intel_limits_i9xx_lvds;
445 		else
446 			limit = &intel_limits_i9xx_sdvo;
447 	} else {
448 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
449 			limit = &intel_limits_i8xx_lvds;
450 		else
451 			limit = &intel_limits_i8xx_dvo;
452 	}
453 	return limit;
454 }
455 
456 /* m1 is reserved as 0 in Pineview, n is a ring counter */
457 static void pineview_clock(int refclk, intel_clock_t *clock)
458 {
459 	clock->m = clock->m2 + 2;
460 	clock->p = clock->p1 * clock->p2;
461 	clock->vco = refclk * clock->m / clock->n;
462 	clock->dot = clock->vco / clock->p;
463 }
464 
465 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
466 {
467 	if (IS_PINEVIEW(dev)) {
468 		pineview_clock(refclk, clock);
469 		return;
470 	}
471 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
472 	clock->p = clock->p1 * clock->p2;
473 	clock->vco = refclk * clock->m / (clock->n + 2);
474 	clock->dot = clock->vco / clock->p;
475 }
476 
477 /**
478  * Returns whether any output on the specified pipe is of the specified type
479  */
480 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
481 {
482 	struct drm_device *dev = crtc->dev;
483 	struct drm_mode_config *mode_config = &dev->mode_config;
484 	struct intel_encoder *encoder;
485 
486 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
487 		if (encoder->base.crtc == crtc && encoder->type == type)
488 			return true;
489 
490 	return false;
491 }
492 
493 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
494 /**
495  * Returns whether the given set of divisors are valid for a given refclk with
496  * the given connectors.
497  */
498 
499 static bool intel_PLL_is_valid(struct drm_device *dev,
500 			       const intel_limit_t *limit,
501 			       const intel_clock_t *clock)
502 {
503 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
504 		INTELPllInvalid("p1 out of range\n");
505 	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
506 		INTELPllInvalid("p out of range\n");
507 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
508 		INTELPllInvalid("m2 out of range\n");
509 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
510 		INTELPllInvalid("m1 out of range\n");
511 	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
512 		INTELPllInvalid("m1 <= m2\n");
513 	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
514 		INTELPllInvalid("m out of range\n");
515 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
516 		INTELPllInvalid("n out of range\n");
517 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
518 		INTELPllInvalid("vco out of range\n");
519 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
520 	 * connector, etc., rather than just a single range.
521 	 */
522 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
523 		INTELPllInvalid("dot out of range\n");
524 
525 	return true;
526 }
527 
528 static bool
529 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
530 		    int target, int refclk, intel_clock_t *match_clock,
531 		    intel_clock_t *best_clock)
532 
533 {
534 	struct drm_device *dev = crtc->dev;
535 	struct drm_i915_private *dev_priv = dev->dev_private;
536 	intel_clock_t clock;
537 	int err = target;
538 
539 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
540 	    (I915_READ(LVDS)) != 0) {
541 		/*
542 		 * For LVDS, if the panel is on, just rely on its current
543 		 * settings for dual-channel.  We haven't figured out how to
544 		 * reliably set up different single/dual channel state, if we
545 		 * even can.
546 		 */
547 		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
548 		    LVDS_CLKB_POWER_UP)
549 			clock.p2 = limit->p2.p2_fast;
550 		else
551 			clock.p2 = limit->p2.p2_slow;
552 	} else {
553 		if (target < limit->p2.dot_limit)
554 			clock.p2 = limit->p2.p2_slow;
555 		else
556 			clock.p2 = limit->p2.p2_fast;
557 	}
558 
559 	memset(best_clock, 0, sizeof(*best_clock));
560 
561 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
562 	     clock.m1++) {
563 		for (clock.m2 = limit->m2.min;
564 		     clock.m2 <= limit->m2.max; clock.m2++) {
565 			/* m1 is always 0 in Pineview */
566 			if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
567 				break;
568 			for (clock.n = limit->n.min;
569 			     clock.n <= limit->n.max; clock.n++) {
570 				for (clock.p1 = limit->p1.min;
571 					clock.p1 <= limit->p1.max; clock.p1++) {
572 					int this_err;
573 
574 					intel_clock(dev, refclk, &clock);
575 					if (!intel_PLL_is_valid(dev, limit,
576 								&clock))
577 						continue;
578 					if (match_clock &&
579 					    clock.p != match_clock->p)
580 						continue;
581 
582 					this_err = abs(clock.dot - target);
583 					if (this_err < err) {
584 						*best_clock = clock;
585 						err = this_err;
586 					}
587 				}
588 			}
589 		}
590 	}
591 
592 	return (err != target);
593 }
594 
595 static bool
596 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
597 			int target, int refclk, intel_clock_t *match_clock,
598 			intel_clock_t *best_clock)
599 {
600 	struct drm_device *dev = crtc->dev;
601 	struct drm_i915_private *dev_priv = dev->dev_private;
602 	intel_clock_t clock;
603 	int max_n;
604 	bool found;
605 	/* approximately equals target * 0.00585 */
606 	int err_most = (target >> 8) + (target >> 9);
607 	found = false;
608 
609 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
610 		int lvds_reg;
611 
612 		if (HAS_PCH_SPLIT(dev))
613 			lvds_reg = PCH_LVDS;
614 		else
615 			lvds_reg = LVDS;
616 		if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
617 		    LVDS_CLKB_POWER_UP)
618 			clock.p2 = limit->p2.p2_fast;
619 		else
620 			clock.p2 = limit->p2.p2_slow;
621 	} else {
622 		if (target < limit->p2.dot_limit)
623 			clock.p2 = limit->p2.p2_slow;
624 		else
625 			clock.p2 = limit->p2.p2_fast;
626 	}
627 
628 	memset(best_clock, 0, sizeof(*best_clock));
629 	max_n = limit->n.max;
630 	/* based on hardware requirement, prefer smaller n to precision */
631 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
632 		/* based on hardware requirement, prefere larger m1,m2 */
633 		for (clock.m1 = limit->m1.max;
634 		     clock.m1 >= limit->m1.min; clock.m1--) {
635 			for (clock.m2 = limit->m2.max;
636 			     clock.m2 >= limit->m2.min; clock.m2--) {
637 				for (clock.p1 = limit->p1.max;
638 				     clock.p1 >= limit->p1.min; clock.p1--) {
639 					int this_err;
640 
641 					intel_clock(dev, refclk, &clock);
642 					if (!intel_PLL_is_valid(dev, limit,
643 								&clock))
644 						continue;
645 					if (match_clock &&
646 					    clock.p != match_clock->p)
647 						continue;
648 
649 					this_err = abs(clock.dot - target);
650 					if (this_err < err_most) {
651 						*best_clock = clock;
652 						err_most = this_err;
653 						max_n = clock.n;
654 						found = true;
655 					}
656 				}
657 			}
658 		}
659 	}
660 	return found;
661 }
662 
663 static bool
664 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
665 			   int target, int refclk, intel_clock_t *match_clock,
666 			   intel_clock_t *best_clock)
667 {
668 	struct drm_device *dev = crtc->dev;
669 	intel_clock_t clock;
670 
671 	if (target < 200000) {
672 		clock.n = 1;
673 		clock.p1 = 2;
674 		clock.p2 = 10;
675 		clock.m1 = 12;
676 		clock.m2 = 9;
677 	} else {
678 		clock.n = 2;
679 		clock.p1 = 1;
680 		clock.p2 = 10;
681 		clock.m1 = 14;
682 		clock.m2 = 8;
683 	}
684 	intel_clock(dev, refclk, &clock);
685 	memcpy(best_clock, &clock, sizeof(intel_clock_t));
686 	return true;
687 }
688 
689 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
690 static bool
691 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
692 		      int target, int refclk, intel_clock_t *match_clock,
693 		      intel_clock_t *best_clock)
694 {
695 	intel_clock_t clock;
696 	if (target < 200000) {
697 		clock.p1 = 2;
698 		clock.p2 = 10;
699 		clock.n = 2;
700 		clock.m1 = 23;
701 		clock.m2 = 8;
702 	} else {
703 		clock.p1 = 1;
704 		clock.p2 = 10;
705 		clock.n = 1;
706 		clock.m1 = 14;
707 		clock.m2 = 2;
708 	}
709 	clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
710 	clock.p = (clock.p1 * clock.p2);
711 	clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
712 	clock.vco = 0;
713 	memcpy(best_clock, &clock, sizeof(intel_clock_t));
714 	return true;
715 }
716 
717 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
718 					     enum i915_pipe pipe)
719 {
720 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
721 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
722 
723 	return intel_crtc->cpu_transcoder;
724 }
725 
726 /**
727  * intel_wait_for_vblank - wait for vblank on a given pipe
728  * @dev: drm device
729  * @pipe: pipe to wait for
730  *
731  * Wait for vblank to occur on a given pipe.  Needed for various bits of
732  * mode setting code.
733  */
734 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
735 {
736 	struct drm_i915_private *dev_priv = dev->dev_private;
737 	int pipestat_reg = PIPESTAT(pipe);
738 
739 	/* Clear existing vblank status. Note this will clear any other
740 	 * sticky status fields as well.
741 	 *
742 	 * This races with i915_driver_irq_handler() with the result
743 	 * that either function could miss a vblank event.  Here it is not
744 	 * fatal, as we will either wait upon the next vblank interrupt or
745 	 * timeout.  Generally speaking intel_wait_for_vblank() is only
746 	 * called during modeset at which time the GPU should be idle and
747 	 * should *not* be performing page flips and thus not waiting on
748 	 * vblanks...
749 	 * Currently, the result of us stealing a vblank from the irq
750 	 * handler is that a single frame will be skipped during swapbuffers.
751 	 */
752 	I915_WRITE(pipestat_reg,
753 		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
754 
755 	/* Wait for vblank interrupt bit to set */
756 	if (_intel_wait_for(dev,
757 	    I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS,
758 	    50, 1, "915vbl"))
759 		DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761 
762 /*
763  * intel_wait_for_pipe_off - wait for pipe to turn off
764  * @dev: drm device
765  * @pipe: pipe to wait for
766  *
767  * After disabling a pipe, we can't wait for vblank in the usual way,
768  * spinning on the vblank interrupt status bit, since we won't actually
769  * see an interrupt when the pipe is disabled.
770  *
771  * On Gen4 and above:
772  *   wait for the pipe register state bit to turn off
773  *
774  * Otherwise:
775  *   wait for the display line value to settle (it usually
776  *   ends up stopping at the start of the next frame).
777  *
778  */
779 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
780 {
781 	struct drm_i915_private *dev_priv = dev->dev_private;
782 
783 	if (INTEL_INFO(dev)->gen >= 4) {
784 		int reg = PIPECONF(pipe);
785 
786 		/* Wait for the Pipe State to go off */
787 		if (_intel_wait_for(dev,
788 		    (I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100,
789 		    1, "915pip"))
790 			DRM_DEBUG_KMS("pipe_off wait timed out\n");
791 	} else {
792 		u32 last_line, line_mask;
793 		int reg = PIPEDSL(pipe);
794 		unsigned long timeout = jiffies + msecs_to_jiffies(100);
795 
796 		if (IS_GEN2(dev))
797 			line_mask = DSL_LINEMASK_GEN2;
798 		else
799 			line_mask = DSL_LINEMASK_GEN3;
800 
801 		/* Wait for the display line to settle */
802 		do {
803 			last_line = I915_READ(reg) & line_mask;
804 			DELAY(5000);
805 		} while (((I915_READ(reg) & line_mask) != last_line) &&
806 			 time_after(timeout, jiffies));
807 		if (time_after(jiffies, timeout))
808 			DRM_DEBUG_KMS("pipe_off wait timed out\n");
809 	}
810 }
811 
812 static const char *state_string(bool enabled)
813 {
814 	return enabled ? "on" : "off";
815 }
816 
817 /* Only for pre-ILK configs */
818 static void assert_pll(struct drm_i915_private *dev_priv,
819 		       enum i915_pipe pipe, bool state)
820 {
821 	int reg;
822 	u32 val;
823 	bool cur_state;
824 
825 	reg = DPLL(pipe);
826 	val = I915_READ(reg);
827 	cur_state = !!(val & DPLL_VCO_ENABLE);
828 	if (cur_state != state)
829 		kprintf("PLL state assertion failure (expected %s, current %s)\n",
830 		    state_string(state), state_string(cur_state));
831 }
832 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
833 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
834 
835 /* For ILK+ */
836 static void assert_pch_pll(struct drm_i915_private *dev_priv,
837 			   enum i915_pipe pipe, bool state)
838 {
839 	int reg;
840 	u32 val;
841 	bool cur_state;
842 
843 	if (HAS_PCH_CPT(dev_priv->dev)) {
844 		u32 pch_dpll;
845 
846 		pch_dpll = I915_READ(PCH_DPLL_SEL);
847 
848 		/* Make sure the selected PLL is enabled to the transcoder */
849 		KASSERT(((pch_dpll >> (4 * pipe)) & 8) != 0,
850 		    ("transcoder %d PLL not enabled\n", pipe));
851 
852 		/* Convert the transcoder pipe number to a pll pipe number */
853 		pipe = (pch_dpll >> (4 * pipe)) & 1;
854 	}
855 
856 	reg = _PCH_DPLL(pipe);
857 	val = I915_READ(reg);
858 	cur_state = !!(val & DPLL_VCO_ENABLE);
859 	if (cur_state != state)
860 		kprintf("PCH PLL state assertion failure (expected %s, current %s)\n",
861 		    state_string(state), state_string(cur_state));
862 }
863 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
864 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
865 
866 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
867 			  enum i915_pipe pipe, bool state)
868 {
869 	int reg;
870 	u32 val;
871 	bool cur_state;
872 
873 	reg = FDI_TX_CTL(pipe);
874 	val = I915_READ(reg);
875 	cur_state = !!(val & FDI_TX_ENABLE);
876 	if (cur_state != state)
877 		kprintf("FDI TX state assertion failure (expected %s, current %s)\n",
878 		    state_string(state), state_string(cur_state));
879 }
880 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
881 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
882 
883 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
884 			  enum i915_pipe pipe, bool state)
885 {
886 	int reg;
887 	u32 val;
888 	bool cur_state;
889 
890 	reg = FDI_RX_CTL(pipe);
891 	val = I915_READ(reg);
892 	cur_state = !!(val & FDI_RX_ENABLE);
893 	if (cur_state != state)
894 		kprintf("FDI RX state assertion failure (expected %s, current %s)\n",
895 		    state_string(state), state_string(cur_state));
896 }
897 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
898 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
899 
900 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
901 				      enum i915_pipe pipe)
902 {
903 	int reg;
904 	u32 val;
905 
906 	/* ILK FDI PLL is always enabled */
907 	if (dev_priv->info->gen == 5)
908 		return;
909 
910 	reg = FDI_TX_CTL(pipe);
911 	val = I915_READ(reg);
912 	if (!(val & FDI_TX_PLL_ENABLE))
913 		kprintf("FDI TX PLL assertion failure, should be active but is disabled\n");
914 }
915 
916 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
917 				      enum i915_pipe pipe)
918 {
919 	int reg;
920 	u32 val;
921 
922 	reg = FDI_RX_CTL(pipe);
923 	val = I915_READ(reg);
924 	if (!(val & FDI_RX_PLL_ENABLE))
925 		kprintf("FDI RX PLL assertion failure, should be active but is disabled\n");
926 }
927 
928 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
929 				  enum i915_pipe pipe)
930 {
931 	int pp_reg, lvds_reg;
932 	u32 val;
933 	enum i915_pipe panel_pipe = PIPE_A;
934 	bool locked = true;
935 
936 	if (HAS_PCH_SPLIT(dev_priv->dev)) {
937 		pp_reg = PCH_PP_CONTROL;
938 		lvds_reg = PCH_LVDS;
939 	} else {
940 		pp_reg = PP_CONTROL;
941 		lvds_reg = LVDS;
942 	}
943 
944 	val = I915_READ(pp_reg);
945 	if (!(val & PANEL_POWER_ON) ||
946 	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
947 		locked = false;
948 
949 	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
950 		panel_pipe = PIPE_B;
951 
952 	if (panel_pipe == pipe && locked)
953 		kprintf("panel assertion failure, pipe %c regs locked\n",
954 	     pipe_name(pipe));
955 }
956 
957 void assert_pipe(struct drm_i915_private *dev_priv,
958 		 enum i915_pipe pipe, bool state)
959 {
960 	int reg;
961 	u32 val;
962 	bool cur_state;
963 
964 	/* if we need the pipe A quirk it must be always on */
965 	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
966 		state = true;
967 
968 	reg = PIPECONF(pipe);
969 	val = I915_READ(reg);
970 	cur_state = !!(val & PIPECONF_ENABLE);
971 	if (cur_state != state)
972 		kprintf("pipe %c assertion failure (expected %s, current %s)\n",
973 		    pipe_name(pipe), state_string(state), state_string(cur_state));
974 }
975 
976 static void assert_plane(struct drm_i915_private *dev_priv,
977 			 enum plane plane, bool state)
978 {
979 	int reg;
980 	u32 val;
981 	bool cur_state;
982 
983 	reg = DSPCNTR(plane);
984 	val = I915_READ(reg);
985 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
986 	if (cur_state != state)
987 		kprintf("plane %c assertion failure, (expected %s, current %s)\n",
988 		       plane_name(plane), state_string(state), state_string(cur_state));
989 }
990 
991 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
992 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
993 
994 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
995 				   enum i915_pipe pipe)
996 {
997 	int reg, i;
998 	u32 val;
999 	int cur_pipe;
1000 
1001 	/* Planes are fixed to pipes on ILK+ */
1002 	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1003 		reg = DSPCNTR(pipe);
1004 		val = I915_READ(reg);
1005 		if ((val & DISPLAY_PLANE_ENABLE) != 0)
1006 			kprintf("plane %c assertion failure, should be disabled but not\n",
1007 			       plane_name(pipe));
1008 		return;
1009 	}
1010 
1011 	/* Need to check both planes against the pipe */
1012 	for (i = 0; i < 2; i++) {
1013 		reg = DSPCNTR(i);
1014 		val = I915_READ(reg);
1015 		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1016 			DISPPLANE_SEL_PIPE_SHIFT;
1017 		if ((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe)
1018 			kprintf("plane %c assertion failure, should be off on pipe %c but is still active\n",
1019 		     plane_name(i), pipe_name(pipe));
1020 	}
1021 }
1022 
1023 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1024 {
1025 	u32 val;
1026 	bool enabled;
1027 
1028 	val = I915_READ(PCH_DREF_CONTROL);
1029 	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1030 			    DREF_SUPERSPREAD_SOURCE_MASK));
1031 	if (!enabled)
1032 		kprintf("PCH refclk assertion failure, should be active but is disabled\n");
1033 }
1034 
1035 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1036 				       enum i915_pipe pipe)
1037 {
1038 	int reg;
1039 	u32 val;
1040 	bool enabled;
1041 
1042 	reg = TRANSCONF(pipe);
1043 	val = I915_READ(reg);
1044 	enabled = !!(val & TRANS_ENABLE);
1045 	if (enabled)
1046 		kprintf("transcoder assertion failed, should be off on pipe %c but is still active\n",
1047 	     pipe_name(pipe));
1048 }
1049 
1050 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1051 			      enum i915_pipe pipe, u32 val)
1052 {
1053 	if ((val & PORT_ENABLE) == 0)
1054 		return false;
1055 
1056 	if (HAS_PCH_CPT(dev_priv->dev)) {
1057 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1058 			return false;
1059 	} else {
1060 		if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1061 			return false;
1062 	}
1063 	return true;
1064 }
1065 
1066 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1067 			      enum i915_pipe pipe, u32 val)
1068 {
1069 	if ((val & LVDS_PORT_EN) == 0)
1070 		return false;
1071 
1072 	if (HAS_PCH_CPT(dev_priv->dev)) {
1073 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1074 			return false;
1075 	} else {
1076 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1077 			return false;
1078 	}
1079 	return true;
1080 }
1081 
1082 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1083 			      enum i915_pipe pipe, u32 val)
1084 {
1085 	if ((val & ADPA_DAC_ENABLE) == 0)
1086 		return false;
1087 	if (HAS_PCH_CPT(dev_priv->dev)) {
1088 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1089 			return false;
1090 	} else {
1091 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1092 			return false;
1093 	}
1094 	return true;
1095 }
1096 
1097 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1098 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1099 {
1100 	if ((val & DP_PORT_EN) == 0)
1101 		return false;
1102 
1103 	if (HAS_PCH_CPT(dev_priv->dev)) {
1104 		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1105 		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1106 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1107 			return false;
1108 	} else {
1109 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1110 			return false;
1111 	}
1112 	return true;
1113 }
1114 
1115 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1116 				   enum i915_pipe pipe, int reg, u32 port_sel)
1117 {
1118 	u32 val = I915_READ(reg);
1119 	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val))
1120 		kprintf("PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1121 	     reg, pipe_name(pipe));
1122 }
1123 
1124 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1125 				     enum i915_pipe pipe, int reg)
1126 {
1127 	u32 val = I915_READ(reg);
1128 	if (hdmi_pipe_enabled(dev_priv, val, pipe))
1129 		kprintf("PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1130 	     reg, pipe_name(pipe));
1131 }
1132 
1133 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1134 				      enum i915_pipe pipe)
1135 {
1136 	int reg;
1137 	u32 val;
1138 
1139 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1140 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1141 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1142 
1143 	reg = PCH_ADPA;
1144 	val = I915_READ(reg);
1145 	if (adpa_pipe_enabled(dev_priv, val, pipe))
1146 		kprintf("PCH VGA enabled on transcoder %c, should be disabled\n",
1147 	     pipe_name(pipe));
1148 
1149 	reg = PCH_LVDS;
1150 	val = I915_READ(reg);
1151 	if (lvds_pipe_enabled(dev_priv, val, pipe))
1152 		kprintf("PCH LVDS enabled on transcoder %c, should be disabled\n",
1153 	     pipe_name(pipe));
1154 
1155 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1156 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1157 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1158 }
1159 
1160 /**
1161  * intel_enable_pll - enable a PLL
1162  * @dev_priv: i915 private structure
1163  * @pipe: pipe PLL to enable
1164  *
1165  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1166  * make sure the PLL reg is writable first though, since the panel write
1167  * protect mechanism may be enabled.
1168  *
1169  * Note!  This is for pre-ILK only.
1170  */
1171 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1172 {
1173 	int reg;
1174 	u32 val;
1175 
1176 	/* No really, not for ILK+ */
1177 	KASSERT(dev_priv->info->gen < 5, ("Wrong device gen"));
1178 
1179 	/* PLL is protected by panel, make sure we can write it */
1180 	if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1181 		assert_panel_unlocked(dev_priv, pipe);
1182 
1183 	reg = DPLL(pipe);
1184 	val = I915_READ(reg);
1185 	val |= DPLL_VCO_ENABLE;
1186 
1187 	/* We do this three times for luck */
1188 	I915_WRITE(reg, val);
1189 	POSTING_READ(reg);
1190 	DELAY(150); /* wait for warmup */
1191 	I915_WRITE(reg, val);
1192 	POSTING_READ(reg);
1193 	DELAY(150); /* wait for warmup */
1194 	I915_WRITE(reg, val);
1195 	POSTING_READ(reg);
1196 	DELAY(150); /* wait for warmup */
1197 }
1198 
1199 /**
1200  * intel_disable_pll - disable a PLL
1201  * @dev_priv: i915 private structure
1202  * @pipe: pipe PLL to disable
1203  *
1204  * Disable the PLL for @pipe, making sure the pipe is off first.
1205  *
1206  * Note!  This is for pre-ILK only.
1207  */
1208 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1209 {
1210 	int reg;
1211 	u32 val;
1212 
1213 	/* Don't disable pipe A or pipe A PLLs if needed */
1214 	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1215 		return;
1216 
1217 	/* Make sure the pipe isn't still relying on us */
1218 	assert_pipe_disabled(dev_priv, pipe);
1219 
1220 	reg = DPLL(pipe);
1221 	val = I915_READ(reg);
1222 	val &= ~DPLL_VCO_ENABLE;
1223 	I915_WRITE(reg, val);
1224 	POSTING_READ(reg);
1225 }
1226 
1227 /**
1228  * intel_enable_pch_pll - enable PCH PLL
1229  * @dev_priv: i915 private structure
1230  * @pipe: pipe PLL to enable
1231  *
1232  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1233  * drives the transcoder clock.
1234  */
1235 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1236 				 enum i915_pipe pipe)
1237 {
1238 	int reg;
1239 	u32 val;
1240 
1241 	if (pipe > 1)
1242 		return;
1243 
1244 	/* PCH only available on ILK+ */
1245 	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1246 
1247 	/* PCH refclock must be enabled first */
1248 	assert_pch_refclk_enabled(dev_priv);
1249 
1250 	reg = _PCH_DPLL(pipe);
1251 	val = I915_READ(reg);
1252 	val |= DPLL_VCO_ENABLE;
1253 	I915_WRITE(reg, val);
1254 	POSTING_READ(reg);
1255 	DELAY(200);
1256 }
1257 
1258 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1259 				  enum i915_pipe pipe)
1260 {
1261 	int reg;
1262 	u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1263 		pll_sel = TRANSC_DPLL_ENABLE;
1264 
1265 	if (pipe > 1)
1266 		return;
1267 
1268 	/* PCH only available on ILK+ */
1269 	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1270 
1271 	/* Make sure transcoder isn't still depending on us */
1272 	assert_transcoder_disabled(dev_priv, pipe);
1273 
1274 	if (pipe == 0)
1275 		pll_sel |= TRANSC_DPLLA_SEL;
1276 	else if (pipe == 1)
1277 		pll_sel |= TRANSC_DPLLB_SEL;
1278 
1279 
1280 	if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1281 		return;
1282 
1283 	reg = _PCH_DPLL(pipe);
1284 	val = I915_READ(reg);
1285 	val &= ~DPLL_VCO_ENABLE;
1286 	I915_WRITE(reg, val);
1287 	POSTING_READ(reg);
1288 	DELAY(200);
1289 }
1290 
1291 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1292 				    enum i915_pipe pipe)
1293 {
1294 	int reg;
1295 	u32 val, pipeconf_val;
1296 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1297 
1298 	/* PCH only available on ILK+ */
1299 	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1300 
1301 	/* Make sure PCH DPLL is enabled */
1302 	assert_pch_pll_enabled(dev_priv, pipe);
1303 
1304 	/* FDI must be feeding us bits for PCH ports */
1305 	assert_fdi_tx_enabled(dev_priv, pipe);
1306 	assert_fdi_rx_enabled(dev_priv, pipe);
1307 
1308 
1309 	reg = TRANSCONF(pipe);
1310 	val = I915_READ(reg);
1311 	pipeconf_val = I915_READ(PIPECONF(pipe));
1312 
1313 	if (HAS_PCH_IBX(dev_priv->dev)) {
1314 		/*
1315 		 * make the BPC in transcoder be consistent with
1316 		 * that in pipeconf reg.
1317 		 */
1318 		val &= ~PIPE_BPC_MASK;
1319 		val |= pipeconf_val & PIPE_BPC_MASK;
1320 	}
1321 
1322 	val &= ~TRANS_INTERLACE_MASK;
1323 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1324 		if (HAS_PCH_IBX(dev_priv->dev) &&
1325 		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1326 			val |= TRANS_LEGACY_INTERLACED_ILK;
1327 		else
1328 			val |= TRANS_INTERLACED;
1329 	else
1330 		val |= TRANS_PROGRESSIVE;
1331 
1332 	I915_WRITE(reg, val | TRANS_ENABLE);
1333 	if (_intel_wait_for(dev_priv->dev, I915_READ(reg) & TRANS_STATE_ENABLE,
1334 	    100, 1, "915trc"))
1335 		DRM_ERROR("failed to enable transcoder %d\n", pipe);
1336 }
1337 
1338 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1339 				     enum i915_pipe pipe)
1340 {
1341 	int reg;
1342 	u32 val;
1343 
1344 	/* FDI relies on the transcoder */
1345 	assert_fdi_tx_disabled(dev_priv, pipe);
1346 	assert_fdi_rx_disabled(dev_priv, pipe);
1347 
1348 	/* Ports must be off as well */
1349 	assert_pch_ports_disabled(dev_priv, pipe);
1350 
1351 	reg = TRANSCONF(pipe);
1352 	val = I915_READ(reg);
1353 	val &= ~TRANS_ENABLE;
1354 	I915_WRITE(reg, val);
1355 	/* wait for PCH transcoder off, transcoder state */
1356 	if (_intel_wait_for(dev_priv->dev,
1357 	    (I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50,
1358 	    1, "915trd"))
1359 		DRM_ERROR("failed to disable transcoder %d\n", pipe);
1360 }
1361 
1362 /**
1363  * intel_enable_pipe - enable a pipe, asserting requirements
1364  * @dev_priv: i915 private structure
1365  * @pipe: pipe to enable
1366  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1367  *
1368  * Enable @pipe, making sure that various hardware specific requirements
1369  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1370  *
1371  * @pipe should be %PIPE_A or %PIPE_B.
1372  *
1373  * Will wait until the pipe is actually running (i.e. first vblank) before
1374  * returning.
1375  */
1376 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
1377 			      bool pch_port)
1378 {
1379 	int reg;
1380 	u32 val;
1381 
1382 	/*
1383 	 * A pipe without a PLL won't actually be able to drive bits from
1384 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1385 	 * need the check.
1386 	 */
1387 	if (!HAS_PCH_SPLIT(dev_priv->dev))
1388 		assert_pll_enabled(dev_priv, pipe);
1389 	else {
1390 		if (pch_port) {
1391 			/* if driving the PCH, we need FDI enabled */
1392 			assert_fdi_rx_pll_enabled(dev_priv, pipe);
1393 			assert_fdi_tx_pll_enabled(dev_priv, pipe);
1394 		}
1395 		/* FIXME: assert CPU port conditions for SNB+ */
1396 	}
1397 
1398 	reg = PIPECONF(pipe);
1399 	val = I915_READ(reg);
1400 	if (val & PIPECONF_ENABLE)
1401 		return;
1402 
1403 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1404 	intel_wait_for_vblank(dev_priv->dev, pipe);
1405 }
1406 
1407 /**
1408  * intel_disable_pipe - disable a pipe, asserting requirements
1409  * @dev_priv: i915 private structure
1410  * @pipe: pipe to disable
1411  *
1412  * Disable @pipe, making sure that various hardware specific requirements
1413  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1414  *
1415  * @pipe should be %PIPE_A or %PIPE_B.
1416  *
1417  * Will wait until the pipe has shut down before returning.
1418  */
1419 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1420 			       enum i915_pipe pipe)
1421 {
1422 	int reg;
1423 	u32 val;
1424 
1425 	/*
1426 	 * Make sure planes won't keep trying to pump pixels to us,
1427 	 * or we might hang the display.
1428 	 */
1429 	assert_planes_disabled(dev_priv, pipe);
1430 
1431 	/* Don't disable pipe A or pipe A PLLs if needed */
1432 	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1433 		return;
1434 
1435 	reg = PIPECONF(pipe);
1436 	val = I915_READ(reg);
1437 	if ((val & PIPECONF_ENABLE) == 0)
1438 		return;
1439 
1440 	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1441 	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1442 }
1443 
1444 /*
1445  * Plane regs are double buffered, going from enabled->disabled needs a
1446  * trigger in order to latch.  The display address reg provides this.
1447  */
1448 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1449 				      enum plane plane)
1450 {
1451 	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1452 	I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1453 }
1454 
1455 /**
1456  * intel_enable_plane - enable a display plane on a given pipe
1457  * @dev_priv: i915 private structure
1458  * @plane: plane to enable
1459  * @pipe: pipe being fed
1460  *
1461  * Enable @plane on @pipe, making sure that @pipe is running first.
1462  */
1463 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1464 			       enum plane plane, enum i915_pipe pipe)
1465 {
1466 	int reg;
1467 	u32 val;
1468 
1469 	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1470 	assert_pipe_enabled(dev_priv, pipe);
1471 
1472 	reg = DSPCNTR(plane);
1473 	val = I915_READ(reg);
1474 	if (val & DISPLAY_PLANE_ENABLE)
1475 		return;
1476 
1477 	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1478 	intel_flush_display_plane(dev_priv, plane);
1479 	intel_wait_for_vblank(dev_priv->dev, pipe);
1480 }
1481 
1482 /**
1483  * intel_disable_plane - disable a display plane
1484  * @dev_priv: i915 private structure
1485  * @plane: plane to disable
1486  * @pipe: pipe consuming the data
1487  *
1488  * Disable @plane; should be an independent operation.
1489  */
1490 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1491 				enum plane plane, enum i915_pipe pipe)
1492 {
1493 	int reg;
1494 	u32 val;
1495 
1496 	reg = DSPCNTR(plane);
1497 	val = I915_READ(reg);
1498 	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1499 		return;
1500 
1501 	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1502 	intel_flush_display_plane(dev_priv, plane);
1503 	intel_wait_for_vblank(dev_priv->dev, pipe);
1504 }
1505 
1506 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1507 			   enum i915_pipe pipe, int reg, u32 port_sel)
1508 {
1509 	u32 val = I915_READ(reg);
1510 	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1511 		DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1512 		I915_WRITE(reg, val & ~DP_PORT_EN);
1513 	}
1514 }
1515 
1516 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1517 			     enum i915_pipe pipe, int reg)
1518 {
1519 	u32 val = I915_READ(reg);
1520 	if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1521 		DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1522 			      reg, pipe);
1523 		I915_WRITE(reg, val & ~PORT_ENABLE);
1524 	}
1525 }
1526 
1527 /* Disable any ports connected to this transcoder */
1528 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1529 				    enum i915_pipe pipe)
1530 {
1531 	u32 reg, val;
1532 
1533 	val = I915_READ(PCH_PP_CONTROL);
1534 	I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1535 
1536 	disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1537 	disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1538 	disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1539 
1540 	reg = PCH_ADPA;
1541 	val = I915_READ(reg);
1542 	if (adpa_pipe_enabled(dev_priv, val, pipe))
1543 		I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1544 
1545 	reg = PCH_LVDS;
1546 	val = I915_READ(reg);
1547 	if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1548 		DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1549 		I915_WRITE(reg, val & ~LVDS_PORT_EN);
1550 		POSTING_READ(reg);
1551 		DELAY(100);
1552 	}
1553 
1554 	disable_pch_hdmi(dev_priv, pipe, HDMIB);
1555 	disable_pch_hdmi(dev_priv, pipe, HDMIC);
1556 	disable_pch_hdmi(dev_priv, pipe, HDMID);
1557 }
1558 
1559 int
1560 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1561 			   struct drm_i915_gem_object *obj,
1562 			   struct intel_ring_buffer *pipelined)
1563 {
1564 	struct drm_i915_private *dev_priv = dev->dev_private;
1565 	u32 alignment;
1566 	int ret;
1567 
1568 	alignment = 0; /* shut gcc */
1569 	switch (obj->tiling_mode) {
1570 	case I915_TILING_NONE:
1571 		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1572 			alignment = 128 * 1024;
1573 		else if (INTEL_INFO(dev)->gen >= 4)
1574 			alignment = 4 * 1024;
1575 		else
1576 			alignment = 64 * 1024;
1577 		break;
1578 	case I915_TILING_X:
1579 		/* pin() will align the object as required by fence */
1580 		alignment = 0;
1581 		break;
1582 	case I915_TILING_Y:
1583 		/* FIXME: Is this true? */
1584 		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1585 		return -EINVAL;
1586 	default:
1587 		KASSERT(0, ("Wrong tiling for fb obj"));
1588 	}
1589 
1590 	dev_priv->mm.interruptible = false;
1591 	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1592 	if (ret)
1593 		goto err_interruptible;
1594 
1595 	/* Install a fence for tiled scan-out. Pre-i965 always needs a
1596 	 * fence, whereas 965+ only requires a fence if using
1597 	 * framebuffer compression.  For simplicity, we always install
1598 	 * a fence as the cost is not that onerous.
1599 	 */
1600 	if (obj->tiling_mode != I915_TILING_NONE) {
1601 		ret = i915_gem_object_get_fence(obj, pipelined);
1602 		if (ret)
1603 			goto err_unpin;
1604 
1605 		i915_gem_object_pin_fence(obj);
1606 	}
1607 
1608 	dev_priv->mm.interruptible = true;
1609 	return 0;
1610 
1611 err_unpin:
1612 	i915_gem_object_unpin(obj);
1613 err_interruptible:
1614 	dev_priv->mm.interruptible = true;
1615 	return ret;
1616 }
1617 
1618 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1619 {
1620 	i915_gem_object_unpin_fence(obj);
1621 	i915_gem_object_unpin(obj);
1622 }
1623 
1624 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1625  * is assumed to be a power-of-two. */
1626 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1627 					       unsigned int bpp,
1628 					       unsigned int pitch)
1629 {
1630 	int tile_rows, tiles;
1631 
1632 	tile_rows = *y / 8;
1633 	*y %= 8;
1634 	tiles = *x / (512/bpp);
1635 	*x %= 512/bpp;
1636 
1637 	return tile_rows * pitch * 8 + tiles * 4096;
1638 }
1639 
1640 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1641 			     int x, int y)
1642 {
1643 	struct drm_device *dev = crtc->dev;
1644 	struct drm_i915_private *dev_priv = dev->dev_private;
1645 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1646 	struct intel_framebuffer *intel_fb;
1647 	struct drm_i915_gem_object *obj;
1648 	int plane = intel_crtc->plane;
1649 	unsigned long Start, Offset;
1650 	u32 dspcntr;
1651 	u32 reg;
1652 
1653 	switch (plane) {
1654 	case 0:
1655 	case 1:
1656 		break;
1657 	default:
1658 		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1659 		return -EINVAL;
1660 	}
1661 
1662 	intel_fb = to_intel_framebuffer(fb);
1663 	obj = intel_fb->obj;
1664 
1665 	reg = DSPCNTR(plane);
1666 	dspcntr = I915_READ(reg);
1667 	/* Mask out pixel format bits in case we change it */
1668 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1669 	switch (fb->bits_per_pixel) {
1670 	case 8:
1671 		dspcntr |= DISPPLANE_8BPP;
1672 		break;
1673 	case 16:
1674 		if (fb->depth == 15)
1675 			dspcntr |= DISPPLANE_BGRX555;
1676 		else
1677 			dspcntr |= DISPPLANE_BGRX565;
1678 		break;
1679 	case 24:
1680 	case 32:
1681 		dspcntr |= DISPPLANE_BGRX888;
1682 		break;
1683 	default:
1684 		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1685 		return -EINVAL;
1686 	}
1687 	if (INTEL_INFO(dev)->gen >= 4) {
1688 		if (obj->tiling_mode != I915_TILING_NONE)
1689 			dspcntr |= DISPPLANE_TILED;
1690 		else
1691 			dspcntr &= ~DISPPLANE_TILED;
1692 	}
1693 
1694 	I915_WRITE(reg, dspcntr);
1695 
1696 	Start = obj->gtt_offset;
1697 	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1698 
1699 	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1700 		      Start, Offset, x, y, fb->pitches[0]);
1701 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1702 	if (INTEL_INFO(dev)->gen >= 4) {
1703 		I915_WRITE(DSPSURF(plane), Start);
1704 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1705 		I915_WRITE(DSPADDR(plane), Offset);
1706 	} else
1707 		I915_WRITE(DSPADDR(plane), Start + Offset);
1708 	POSTING_READ(reg);
1709 
1710 	return (0);
1711 }
1712 
1713 static int ironlake_update_plane(struct drm_crtc *crtc,
1714 				 struct drm_framebuffer *fb, int x, int y)
1715 {
1716 	struct drm_device *dev = crtc->dev;
1717 	struct drm_i915_private *dev_priv = dev->dev_private;
1718 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1719 	struct intel_framebuffer *intel_fb;
1720 	struct drm_i915_gem_object *obj;
1721 	int plane = intel_crtc->plane;
1722 	unsigned long Start, Offset;
1723 	u32 dspcntr;
1724 	u32 reg;
1725 
1726 	switch (plane) {
1727 	case 0:
1728 	case 1:
1729 	case 2:
1730 		break;
1731 	default:
1732 		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1733 		return -EINVAL;
1734 	}
1735 
1736 	intel_fb = to_intel_framebuffer(fb);
1737 	obj = intel_fb->obj;
1738 
1739 	reg = DSPCNTR(plane);
1740 	dspcntr = I915_READ(reg);
1741 	/* Mask out pixel format bits in case we change it */
1742 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1743 	switch (fb->bits_per_pixel) {
1744 	case 8:
1745 		dspcntr |= DISPPLANE_8BPP;
1746 		break;
1747 	case 16:
1748 		if (fb->depth != 16) {
1749 			DRM_ERROR("bpp 16, depth %d\n", fb->depth);
1750 			return -EINVAL;
1751 		}
1752 
1753 		dspcntr |= DISPPLANE_BGRX565;
1754 		break;
1755 	case 24:
1756 	case 32:
1757 		if (fb->depth == 24)
1758 			dspcntr |= DISPPLANE_BGRX888;
1759 		else if (fb->depth == 30)
1760 			dspcntr |= DISPPLANE_BGRX101010;
1761 		else {
1762 			DRM_ERROR("bpp %d depth %d\n", fb->bits_per_pixel,
1763 			    fb->depth);
1764 			return -EINVAL;
1765 		}
1766 		break;
1767 	default:
1768 		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1769 		return -EINVAL;
1770 	}
1771 
1772 	if (obj->tiling_mode != I915_TILING_NONE)
1773 		dspcntr |= DISPPLANE_TILED;
1774 	else
1775 		dspcntr &= ~DISPPLANE_TILED;
1776 
1777 	/* must disable */
1778 	dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1779 
1780 	I915_WRITE(reg, dspcntr);
1781 
1782 	Start = obj->gtt_offset;
1783 	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1784 
1785 	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1786 		      Start, Offset, x, y, fb->pitches[0]);
1787 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1788 	I915_WRITE(DSPSURF(plane), Start);
1789 	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1790 	I915_WRITE(DSPADDR(plane), Offset);
1791 	POSTING_READ(reg);
1792 
1793 	return 0;
1794 }
1795 
1796 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1797 static int
1798 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1799 			   int x, int y, enum mode_set_atomic state)
1800 {
1801 	struct drm_device *dev = crtc->dev;
1802 	struct drm_i915_private *dev_priv = dev->dev_private;
1803 
1804 	if (dev_priv->display.disable_fbc)
1805 		dev_priv->display.disable_fbc(dev);
1806 	intel_increase_pllclock(crtc);
1807 
1808 	return dev_priv->display.update_plane(crtc, fb, x, y);
1809 }
1810 
1811 static int
1812 intel_finish_fb(struct drm_framebuffer *old_fb)
1813 {
1814 	struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1815 	struct drm_device *dev = obj->base.dev;
1816 	struct drm_i915_private *dev_priv = dev->dev_private;
1817 	bool was_interruptible = dev_priv->mm.interruptible;
1818 	int ret;
1819 
1820 /* XXX */	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
1821 	while (!atomic_read(&dev_priv->mm.wedged) &&
1822 	       atomic_read(&obj->pending_flip) != 0) {
1823 		lksleep(&obj->pending_flip, &dev->event_lock,
1824 		    0, "915flp", 0);
1825 	}
1826 /* XXX */	lockmgr(&dev->event_lock, LK_RELEASE);
1827 
1828 	/* Big Hammer, we also need to ensure that any pending
1829 	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1830 	 * current scanout is retired before unpinning the old
1831 	 * framebuffer.
1832 	 *
1833 	 * This should only fail upon a hung GPU, in which case we
1834 	 * can safely continue.
1835 	 */
1836 	dev_priv->mm.interruptible = false;
1837 	ret = i915_gem_object_finish_gpu(obj);
1838 	dev_priv->mm.interruptible = was_interruptible;
1839 	return ret;
1840 }
1841 
1842 static int
1843 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1844 		    struct drm_framebuffer *old_fb)
1845 {
1846 	struct drm_device *dev = crtc->dev;
1847 #if 0
1848 	struct drm_i915_master_private *master_priv;
1849 #else
1850 	drm_i915_private_t *dev_priv = dev->dev_private;
1851 #endif
1852 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1853 	int ret;
1854 
1855 	/* no fb bound */
1856 	if (!crtc->fb) {
1857 		DRM_ERROR("No FB bound\n");
1858 		return 0;
1859 	}
1860 
1861 	switch (intel_crtc->plane) {
1862 	case 0:
1863 	case 1:
1864 		break;
1865 	case 2:
1866 		if (IS_IVYBRIDGE(dev))
1867 			break;
1868 		/* fall through otherwise */
1869 	default:
1870 		DRM_ERROR("no plane for crtc\n");
1871 		return -EINVAL;
1872 	}
1873 
1874 	DRM_LOCK(dev);
1875 	ret = intel_pin_and_fence_fb_obj(dev,
1876 					 to_intel_framebuffer(crtc->fb)->obj,
1877 					 NULL);
1878 	if (ret != 0) {
1879 		DRM_UNLOCK(dev);
1880 		DRM_ERROR("pin & fence failed\n");
1881 		return ret;
1882 	}
1883 
1884 	if (old_fb)
1885 		intel_finish_fb(old_fb);
1886 
1887 	ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1888 					 LEAVE_ATOMIC_MODE_SET);
1889 	if (ret) {
1890 		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
1891 		DRM_UNLOCK(dev);
1892 		DRM_ERROR("failed to update base address\n");
1893 		return ret;
1894 	}
1895 
1896 	if (old_fb) {
1897 		intel_wait_for_vblank(dev, intel_crtc->pipe);
1898 		intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
1899 	}
1900 
1901 	DRM_UNLOCK(dev);
1902 
1903 #if 0
1904 	if (!dev->primary->master)
1905 		return 0;
1906 
1907 	master_priv = dev->primary->master->driver_priv;
1908 	if (!master_priv->sarea_priv)
1909 		return 0;
1910 
1911 	if (intel_crtc->pipe) {
1912 		master_priv->sarea_priv->pipeB_x = x;
1913 		master_priv->sarea_priv->pipeB_y = y;
1914 	} else {
1915 		master_priv->sarea_priv->pipeA_x = x;
1916 		master_priv->sarea_priv->pipeA_y = y;
1917 	}
1918 #else
1919 
1920 	if (!dev_priv->sarea_priv)
1921 		return 0;
1922 
1923 	if (intel_crtc->pipe) {
1924 		dev_priv->sarea_priv->planeB_x = x;
1925 		dev_priv->sarea_priv->planeB_y = y;
1926 	} else {
1927 		dev_priv->sarea_priv->planeA_x = x;
1928 		dev_priv->sarea_priv->planeA_y = y;
1929 	}
1930 #endif
1931 
1932 	return 0;
1933 }
1934 
1935 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1936 {
1937 	struct drm_device *dev = crtc->dev;
1938 	struct drm_i915_private *dev_priv = dev->dev_private;
1939 	u32 dpa_ctl;
1940 
1941 	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1942 	dpa_ctl = I915_READ(DP_A);
1943 	dpa_ctl &= ~DP_PLL_FREQ_MASK;
1944 
1945 	if (clock < 200000) {
1946 		u32 temp;
1947 		dpa_ctl |= DP_PLL_FREQ_160MHZ;
1948 		/* workaround for 160Mhz:
1949 		   1) program 0x4600c bits 15:0 = 0x8124
1950 		   2) program 0x46010 bit 0 = 1
1951 		   3) program 0x46034 bit 24 = 1
1952 		   4) program 0x64000 bit 14 = 1
1953 		   */
1954 		temp = I915_READ(0x4600c);
1955 		temp &= 0xffff0000;
1956 		I915_WRITE(0x4600c, temp | 0x8124);
1957 
1958 		temp = I915_READ(0x46010);
1959 		I915_WRITE(0x46010, temp | 1);
1960 
1961 		temp = I915_READ(0x46034);
1962 		I915_WRITE(0x46034, temp | (1 << 24));
1963 	} else {
1964 		dpa_ctl |= DP_PLL_FREQ_270MHZ;
1965 	}
1966 	I915_WRITE(DP_A, dpa_ctl);
1967 
1968 	POSTING_READ(DP_A);
1969 	DELAY(500);
1970 }
1971 
1972 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1973 {
1974 	struct drm_device *dev = crtc->dev;
1975 	struct drm_i915_private *dev_priv = dev->dev_private;
1976 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1977 	int pipe = intel_crtc->pipe;
1978 	u32 reg, temp;
1979 
1980 	/* enable normal train */
1981 	reg = FDI_TX_CTL(pipe);
1982 	temp = I915_READ(reg);
1983 	if (IS_IVYBRIDGE(dev)) {
1984 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
1985 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
1986 	} else {
1987 		temp &= ~FDI_LINK_TRAIN_NONE;
1988 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1989 	}
1990 	I915_WRITE(reg, temp);
1991 
1992 	reg = FDI_RX_CTL(pipe);
1993 	temp = I915_READ(reg);
1994 	if (HAS_PCH_CPT(dev)) {
1995 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1996 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1997 	} else {
1998 		temp &= ~FDI_LINK_TRAIN_NONE;
1999 		temp |= FDI_LINK_TRAIN_NONE;
2000 	}
2001 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2002 
2003 	/* wait one idle pattern time */
2004 	POSTING_READ(reg);
2005 	DELAY(1000);
2006 
2007 	/* IVB wants error correction enabled */
2008 	if (IS_IVYBRIDGE(dev))
2009 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2010 			   FDI_FE_ERRC_ENABLE);
2011 }
2012 
2013 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2014 {
2015 	struct drm_i915_private *dev_priv = dev->dev_private;
2016 	u32 flags = I915_READ(SOUTH_CHICKEN1);
2017 
2018 	flags |= FDI_PHASE_SYNC_OVR(pipe);
2019 	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2020 	flags |= FDI_PHASE_SYNC_EN(pipe);
2021 	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2022 	POSTING_READ(SOUTH_CHICKEN1);
2023 }
2024 
2025 /* The FDI link training functions for ILK/Ibexpeak. */
2026 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2027 {
2028 	struct drm_device *dev = crtc->dev;
2029 	struct drm_i915_private *dev_priv = dev->dev_private;
2030 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2031 	int pipe = intel_crtc->pipe;
2032 	int plane = intel_crtc->plane;
2033 	u32 reg, temp, tries;
2034 
2035 	/* FDI needs bits from pipe & plane first */
2036 	assert_pipe_enabled(dev_priv, pipe);
2037 	assert_plane_enabled(dev_priv, plane);
2038 
2039 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2040 	   for train result */
2041 	reg = FDI_RX_IMR(pipe);
2042 	temp = I915_READ(reg);
2043 	temp &= ~FDI_RX_SYMBOL_LOCK;
2044 	temp &= ~FDI_RX_BIT_LOCK;
2045 	I915_WRITE(reg, temp);
2046 	I915_READ(reg);
2047 	DELAY(150);
2048 
2049 	/* enable CPU FDI TX and PCH FDI RX */
2050 	reg = FDI_TX_CTL(pipe);
2051 	temp = I915_READ(reg);
2052 	temp &= ~(7 << 19);
2053 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2054 	temp &= ~FDI_LINK_TRAIN_NONE;
2055 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2056 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2057 
2058 	reg = FDI_RX_CTL(pipe);
2059 	temp = I915_READ(reg);
2060 	temp &= ~FDI_LINK_TRAIN_NONE;
2061 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2062 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2063 
2064 	POSTING_READ(reg);
2065 	DELAY(150);
2066 
2067 	/* Ironlake workaround, enable clock pointer after FDI enable*/
2068 	if (HAS_PCH_IBX(dev)) {
2069 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2070 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2071 			   FDI_RX_PHASE_SYNC_POINTER_EN);
2072 	}
2073 
2074 	reg = FDI_RX_IIR(pipe);
2075 	for (tries = 0; tries < 5; tries++) {
2076 		temp = I915_READ(reg);
2077 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2078 
2079 		if ((temp & FDI_RX_BIT_LOCK)) {
2080 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2081 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2082 			break;
2083 		}
2084 	}
2085 	if (tries == 5)
2086 		DRM_ERROR("FDI train 1 fail!\n");
2087 
2088 	/* Train 2 */
2089 	reg = FDI_TX_CTL(pipe);
2090 	temp = I915_READ(reg);
2091 	temp &= ~FDI_LINK_TRAIN_NONE;
2092 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2093 	I915_WRITE(reg, temp);
2094 
2095 	reg = FDI_RX_CTL(pipe);
2096 	temp = I915_READ(reg);
2097 	temp &= ~FDI_LINK_TRAIN_NONE;
2098 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2099 	I915_WRITE(reg, temp);
2100 
2101 	POSTING_READ(reg);
2102 	DELAY(150);
2103 
2104 	reg = FDI_RX_IIR(pipe);
2105 	for (tries = 0; tries < 5; tries++) {
2106 		temp = I915_READ(reg);
2107 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2108 
2109 		if (temp & FDI_RX_SYMBOL_LOCK) {
2110 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2111 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2112 			break;
2113 		}
2114 	}
2115 	if (tries == 5)
2116 		DRM_ERROR("FDI train 2 fail!\n");
2117 
2118 	DRM_DEBUG_KMS("FDI train done\n");
2119 
2120 }
2121 
2122 static const int snb_b_fdi_train_param[] = {
2123 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2124 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2125 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2126 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2127 };
2128 
2129 /* The FDI link training functions for SNB/Cougarpoint. */
2130 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2131 {
2132 	struct drm_device *dev = crtc->dev;
2133 	struct drm_i915_private *dev_priv = dev->dev_private;
2134 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2135 	int pipe = intel_crtc->pipe;
2136 	u32 reg, temp, i;
2137 
2138 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2139 	   for train result */
2140 	reg = FDI_RX_IMR(pipe);
2141 	temp = I915_READ(reg);
2142 	temp &= ~FDI_RX_SYMBOL_LOCK;
2143 	temp &= ~FDI_RX_BIT_LOCK;
2144 	I915_WRITE(reg, temp);
2145 
2146 	POSTING_READ(reg);
2147 	DELAY(150);
2148 
2149 	/* enable CPU FDI TX and PCH FDI RX */
2150 	reg = FDI_TX_CTL(pipe);
2151 	temp = I915_READ(reg);
2152 	temp &= ~(7 << 19);
2153 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2154 	temp &= ~FDI_LINK_TRAIN_NONE;
2155 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2156 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2157 	/* SNB-B */
2158 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2159 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2160 
2161 	reg = FDI_RX_CTL(pipe);
2162 	temp = I915_READ(reg);
2163 	if (HAS_PCH_CPT(dev)) {
2164 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2165 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2166 	} else {
2167 		temp &= ~FDI_LINK_TRAIN_NONE;
2168 		temp |= FDI_LINK_TRAIN_PATTERN_1;
2169 	}
2170 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2171 
2172 	POSTING_READ(reg);
2173 	DELAY(150);
2174 
2175 	if (HAS_PCH_CPT(dev))
2176 		cpt_phase_pointer_enable(dev, pipe);
2177 
2178 	for (i = 0; i < 4; i++) {
2179 		reg = FDI_TX_CTL(pipe);
2180 		temp = I915_READ(reg);
2181 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2182 		temp |= snb_b_fdi_train_param[i];
2183 		I915_WRITE(reg, temp);
2184 
2185 		POSTING_READ(reg);
2186 		DELAY(500);
2187 
2188 		reg = FDI_RX_IIR(pipe);
2189 		temp = I915_READ(reg);
2190 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2191 
2192 		if (temp & FDI_RX_BIT_LOCK) {
2193 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2194 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2195 			break;
2196 		}
2197 	}
2198 	if (i == 4)
2199 		DRM_ERROR("FDI train 1 fail!\n");
2200 
2201 	/* Train 2 */
2202 	reg = FDI_TX_CTL(pipe);
2203 	temp = I915_READ(reg);
2204 	temp &= ~FDI_LINK_TRAIN_NONE;
2205 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2206 	if (IS_GEN6(dev)) {
2207 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2208 		/* SNB-B */
2209 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2210 	}
2211 	I915_WRITE(reg, temp);
2212 
2213 	reg = FDI_RX_CTL(pipe);
2214 	temp = I915_READ(reg);
2215 	if (HAS_PCH_CPT(dev)) {
2216 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2217 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2218 	} else {
2219 		temp &= ~FDI_LINK_TRAIN_NONE;
2220 		temp |= FDI_LINK_TRAIN_PATTERN_2;
2221 	}
2222 	I915_WRITE(reg, temp);
2223 
2224 	POSTING_READ(reg);
2225 	DELAY(150);
2226 
2227 	for (i = 0; i < 4; i++) {
2228 		reg = FDI_TX_CTL(pipe);
2229 		temp = I915_READ(reg);
2230 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2231 		temp |= snb_b_fdi_train_param[i];
2232 		I915_WRITE(reg, temp);
2233 
2234 		POSTING_READ(reg);
2235 		DELAY(500);
2236 
2237 		reg = FDI_RX_IIR(pipe);
2238 		temp = I915_READ(reg);
2239 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2240 
2241 		if (temp & FDI_RX_SYMBOL_LOCK) {
2242 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2243 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2244 			break;
2245 		}
2246 	}
2247 	if (i == 4)
2248 		DRM_ERROR("FDI train 2 fail!\n");
2249 
2250 	DRM_DEBUG_KMS("FDI train done.\n");
2251 }
2252 
2253 /* Manual link training for Ivy Bridge A0 parts */
2254 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2255 {
2256 	struct drm_device *dev = crtc->dev;
2257 	struct drm_i915_private *dev_priv = dev->dev_private;
2258 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2259 	int pipe = intel_crtc->pipe;
2260 	u32 reg, temp, i;
2261 
2262 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2263 	   for train result */
2264 	reg = FDI_RX_IMR(pipe);
2265 	temp = I915_READ(reg);
2266 	temp &= ~FDI_RX_SYMBOL_LOCK;
2267 	temp &= ~FDI_RX_BIT_LOCK;
2268 	I915_WRITE(reg, temp);
2269 
2270 	POSTING_READ(reg);
2271 	DELAY(150);
2272 
2273 	/* enable CPU FDI TX and PCH FDI RX */
2274 	reg = FDI_TX_CTL(pipe);
2275 	temp = I915_READ(reg);
2276 	temp &= ~(7 << 19);
2277 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2278 	temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2279 	temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2280 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2281 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2282 	temp |= FDI_COMPOSITE_SYNC;
2283 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2284 
2285 	reg = FDI_RX_CTL(pipe);
2286 	temp = I915_READ(reg);
2287 	temp &= ~FDI_LINK_TRAIN_AUTO;
2288 	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2289 	temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2290 	temp |= FDI_COMPOSITE_SYNC;
2291 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2292 
2293 	POSTING_READ(reg);
2294 	DELAY(150);
2295 
2296 	for (i = 0; i < 4; i++) {
2297 		reg = FDI_TX_CTL(pipe);
2298 		temp = I915_READ(reg);
2299 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2300 		temp |= snb_b_fdi_train_param[i];
2301 		I915_WRITE(reg, temp);
2302 
2303 		POSTING_READ(reg);
2304 		DELAY(500);
2305 
2306 		reg = FDI_RX_IIR(pipe);
2307 		temp = I915_READ(reg);
2308 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2309 
2310 		if (temp & FDI_RX_BIT_LOCK ||
2311 		    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2312 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2313 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2314 			break;
2315 		}
2316 	}
2317 	if (i == 4)
2318 		DRM_ERROR("FDI train 1 fail!\n");
2319 
2320 	/* Train 2 */
2321 	reg = FDI_TX_CTL(pipe);
2322 	temp = I915_READ(reg);
2323 	temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2324 	temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2325 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2326 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2327 	I915_WRITE(reg, temp);
2328 
2329 	reg = FDI_RX_CTL(pipe);
2330 	temp = I915_READ(reg);
2331 	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2332 	temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2333 	I915_WRITE(reg, temp);
2334 
2335 	POSTING_READ(reg);
2336 	DELAY(150);
2337 
2338 	for (i = 0; i < 4; i++ ) {
2339 		reg = FDI_TX_CTL(pipe);
2340 		temp = I915_READ(reg);
2341 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2342 		temp |= snb_b_fdi_train_param[i];
2343 		I915_WRITE(reg, temp);
2344 
2345 		POSTING_READ(reg);
2346 		DELAY(500);
2347 
2348 		reg = FDI_RX_IIR(pipe);
2349 		temp = I915_READ(reg);
2350 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2351 
2352 		if (temp & FDI_RX_SYMBOL_LOCK) {
2353 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2354 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2355 			break;
2356 		}
2357 	}
2358 	if (i == 4)
2359 		DRM_ERROR("FDI train 2 fail!\n");
2360 
2361 	DRM_DEBUG_KMS("FDI train done.\n");
2362 }
2363 
2364 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2365 {
2366 	struct drm_device *dev = crtc->dev;
2367 	struct drm_i915_private *dev_priv = dev->dev_private;
2368 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2369 	int pipe = intel_crtc->pipe;
2370 	u32 reg, temp;
2371 
2372 	/* Write the TU size bits so error detection works */
2373 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
2374 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2375 
2376 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2377 	reg = FDI_RX_CTL(pipe);
2378 	temp = I915_READ(reg);
2379 	temp &= ~((0x7 << 19) | (0x7 << 16));
2380 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2381 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2382 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2383 
2384 	POSTING_READ(reg);
2385 	DELAY(200);
2386 
2387 	/* Switch from Rawclk to PCDclk */
2388 	temp = I915_READ(reg);
2389 	I915_WRITE(reg, temp | FDI_PCDCLK);
2390 
2391 	POSTING_READ(reg);
2392 	DELAY(200);
2393 
2394 	/* Enable CPU FDI TX PLL, always on for Ironlake */
2395 	reg = FDI_TX_CTL(pipe);
2396 	temp = I915_READ(reg);
2397 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2398 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2399 
2400 		POSTING_READ(reg);
2401 		DELAY(100);
2402 	}
2403 }
2404 
2405 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2406 {
2407 	struct drm_i915_private *dev_priv = dev->dev_private;
2408 	u32 flags = I915_READ(SOUTH_CHICKEN1);
2409 
2410 	flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2411 	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2412 	flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2413 	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2414 	POSTING_READ(SOUTH_CHICKEN1);
2415 }
2416 
2417 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2418 {
2419 	struct drm_device *dev = crtc->dev;
2420 	struct drm_i915_private *dev_priv = dev->dev_private;
2421 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422 	int pipe = intel_crtc->pipe;
2423 	u32 reg, temp;
2424 
2425 	/* disable CPU FDI tx and PCH FDI rx */
2426 	reg = FDI_TX_CTL(pipe);
2427 	temp = I915_READ(reg);
2428 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2429 	POSTING_READ(reg);
2430 
2431 	reg = FDI_RX_CTL(pipe);
2432 	temp = I915_READ(reg);
2433 	temp &= ~(0x7 << 16);
2434 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2435 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2436 
2437 	POSTING_READ(reg);
2438 	DELAY(100);
2439 
2440 	/* Ironlake workaround, disable clock pointer after downing FDI */
2441 	if (HAS_PCH_IBX(dev)) {
2442 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2443 		I915_WRITE(FDI_RX_CHICKEN(pipe),
2444 			   I915_READ(FDI_RX_CHICKEN(pipe) &
2445 				     ~FDI_RX_PHASE_SYNC_POINTER_EN));
2446 	} else if (HAS_PCH_CPT(dev)) {
2447 		cpt_phase_pointer_disable(dev, pipe);
2448 	}
2449 
2450 	/* still set train pattern 1 */
2451 	reg = FDI_TX_CTL(pipe);
2452 	temp = I915_READ(reg);
2453 	temp &= ~FDI_LINK_TRAIN_NONE;
2454 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2455 	I915_WRITE(reg, temp);
2456 
2457 	reg = FDI_RX_CTL(pipe);
2458 	temp = I915_READ(reg);
2459 	if (HAS_PCH_CPT(dev)) {
2460 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2461 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2462 	} else {
2463 		temp &= ~FDI_LINK_TRAIN_NONE;
2464 		temp |= FDI_LINK_TRAIN_PATTERN_1;
2465 	}
2466 	/* BPC in FDI rx is consistent with that in PIPECONF */
2467 	temp &= ~(0x07 << 16);
2468 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2469 	I915_WRITE(reg, temp);
2470 
2471 	POSTING_READ(reg);
2472 	DELAY(100);
2473 }
2474 
2475 /*
2476  * When we disable a pipe, we need to clear any pending scanline wait events
2477  * to avoid hanging the ring, which we assume we are waiting on.
2478  */
2479 static void intel_clear_scanline_wait(struct drm_device *dev)
2480 {
2481 	struct drm_i915_private *dev_priv = dev->dev_private;
2482 	struct intel_ring_buffer *ring;
2483 	u32 tmp;
2484 
2485 	if (IS_GEN2(dev))
2486 		/* Can't break the hang on i8xx */
2487 		return;
2488 
2489 	ring = LP_RING(dev_priv);
2490 	tmp = I915_READ_CTL(ring);
2491 	if (tmp & RING_WAIT)
2492 		I915_WRITE_CTL(ring, tmp);
2493 }
2494 
2495 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2496 {
2497 	struct drm_i915_gem_object *obj;
2498 	struct drm_i915_private *dev_priv;
2499 	struct drm_device *dev;
2500 
2501 	if (crtc->fb == NULL)
2502 		return;
2503 
2504 	obj = to_intel_framebuffer(crtc->fb)->obj;
2505 	dev = crtc->dev;
2506 	dev_priv = dev->dev_private;
2507 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2508 	while (atomic_read(&obj->pending_flip) != 0)
2509 		lksleep(&obj->pending_flip, &dev->event_lock, 0, "915wfl", 0);
2510 	lockmgr(&dev->event_lock, LK_RELEASE);
2511 }
2512 
2513 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2514 {
2515 	struct drm_device *dev = crtc->dev;
2516 	struct drm_mode_config *mode_config = &dev->mode_config;
2517 	struct intel_encoder *encoder;
2518 
2519 	/*
2520 	 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2521 	 * must be driven by its own crtc; no sharing is possible.
2522 	 */
2523 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2524 		if (encoder->base.crtc != crtc)
2525 			continue;
2526 
2527 		switch (encoder->type) {
2528 		case INTEL_OUTPUT_EDP:
2529 			if (!intel_encoder_is_pch_edp(&encoder->base))
2530 				return false;
2531 			continue;
2532 		}
2533 	}
2534 
2535 	return true;
2536 }
2537 
2538 /*
2539  * Enable PCH resources required for PCH ports:
2540  *   - PCH PLLs
2541  *   - FDI training & RX/TX
2542  *   - update transcoder timings
2543  *   - DP transcoding bits
2544  *   - transcoder
2545  */
2546 static void ironlake_pch_enable(struct drm_crtc *crtc)
2547 {
2548 	struct drm_device *dev = crtc->dev;
2549 	struct drm_i915_private *dev_priv = dev->dev_private;
2550 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2551 	int pipe = intel_crtc->pipe;
2552 	u32 reg, temp, transc_sel;
2553 
2554 	/* For PCH output, training FDI link */
2555 	dev_priv->display.fdi_link_train(crtc);
2556 
2557 	intel_enable_pch_pll(dev_priv, pipe);
2558 
2559 	if (HAS_PCH_CPT(dev)) {
2560 		transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2561 			TRANSC_DPLLB_SEL;
2562 
2563 		/* Be sure PCH DPLL SEL is set */
2564 		temp = I915_READ(PCH_DPLL_SEL);
2565 		if (pipe == 0) {
2566 			temp &= ~(TRANSA_DPLLB_SEL);
2567 			temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2568 		} else if (pipe == 1) {
2569 			temp &= ~(TRANSB_DPLLB_SEL);
2570 			temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2571 		} else if (pipe == 2) {
2572 			temp &= ~(TRANSC_DPLLB_SEL);
2573 			temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2574 		}
2575 		I915_WRITE(PCH_DPLL_SEL, temp);
2576 	}
2577 
2578 	/* set transcoder timing, panel must allow it */
2579 	assert_panel_unlocked(dev_priv, pipe);
2580 	I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2581 	I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2582 	I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2583 
2584 	I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2585 	I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2586 	I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2587 	I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
2588 
2589 	intel_fdi_normal_train(crtc);
2590 
2591 	/* For PCH DP, enable TRANS_DP_CTL */
2592 	if (HAS_PCH_CPT(dev) &&
2593 	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2594 	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2595 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2596 		reg = TRANS_DP_CTL(pipe);
2597 		temp = I915_READ(reg);
2598 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
2599 			  TRANS_DP_SYNC_MASK |
2600 			  TRANS_DP_BPC_MASK);
2601 		temp |= (TRANS_DP_OUTPUT_ENABLE |
2602 			 TRANS_DP_ENH_FRAMING);
2603 		temp |= bpc << 9; /* same format but at 11:9 */
2604 
2605 		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2606 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2607 		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2608 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2609 
2610 		switch (intel_trans_dp_port_sel(crtc)) {
2611 		case PCH_DP_B:
2612 			temp |= TRANS_DP_PORT_SEL_B;
2613 			break;
2614 		case PCH_DP_C:
2615 			temp |= TRANS_DP_PORT_SEL_C;
2616 			break;
2617 		case PCH_DP_D:
2618 			temp |= TRANS_DP_PORT_SEL_D;
2619 			break;
2620 		default:
2621 			DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2622 			temp |= TRANS_DP_PORT_SEL_B;
2623 			break;
2624 		}
2625 
2626 		I915_WRITE(reg, temp);
2627 	}
2628 
2629 	intel_enable_transcoder(dev_priv, pipe);
2630 }
2631 
2632 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2633 {
2634 	struct drm_i915_private *dev_priv = dev->dev_private;
2635 	int dslreg = PIPEDSL(pipe);
2636 	u32 temp;
2637 
2638 	temp = I915_READ(dslreg);
2639 	udelay(500);
2640 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
2641 		if (wait_for(I915_READ(dslreg) != temp, 5))
2642 			DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2643 	}
2644 }
2645 
2646 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2647 {
2648 	struct drm_device *dev = crtc->dev;
2649 	struct drm_i915_private *dev_priv = dev->dev_private;
2650 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651 	int pipe = intel_crtc->pipe;
2652 	int plane = intel_crtc->plane;
2653 	u32 temp;
2654 	bool is_pch_port;
2655 
2656 	if (intel_crtc->active)
2657 		return;
2658 
2659 	intel_crtc->active = true;
2660 	intel_update_watermarks(dev);
2661 
2662 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2663 		temp = I915_READ(PCH_LVDS);
2664 		if ((temp & LVDS_PORT_EN) == 0)
2665 			I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2666 	}
2667 
2668 	is_pch_port = intel_crtc_driving_pch(crtc);
2669 
2670 	if (is_pch_port)
2671 		ironlake_fdi_pll_enable(crtc);
2672 	else
2673 		ironlake_fdi_disable(crtc);
2674 
2675 	/* Enable panel fitting for LVDS */
2676 	if (dev_priv->pch_pf_size &&
2677 	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2678 		/* Force use of hard-coded filter coefficients
2679 		 * as some pre-programmed values are broken,
2680 		 * e.g. x201.
2681 		 */
2682 		I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2683 		I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2684 		I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2685 	}
2686 
2687 	intel_enable_pipe(dev_priv, pipe, is_pch_port);
2688 	intel_enable_plane(dev_priv, plane, pipe);
2689 
2690 	if (is_pch_port)
2691 		ironlake_pch_enable(crtc);
2692 
2693 	intel_crtc_load_lut(crtc);
2694 
2695 	DRM_LOCK(dev);
2696 	intel_update_fbc(dev);
2697 	DRM_UNLOCK(dev);
2698 
2699 	intel_crtc_update_cursor(crtc, true);
2700 }
2701 
2702 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2703 {
2704 	struct drm_device *dev = crtc->dev;
2705 	struct drm_i915_private *dev_priv = dev->dev_private;
2706 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707 	int pipe = intel_crtc->pipe;
2708 	int plane = intel_crtc->plane;
2709 	u32 reg, temp;
2710 
2711 	if (!intel_crtc->active)
2712 		return;
2713 
2714 	intel_crtc_wait_for_pending_flips(crtc);
2715 	drm_vblank_off(dev, pipe);
2716 	intel_crtc_update_cursor(crtc, false);
2717 
2718 	intel_disable_plane(dev_priv, plane, pipe);
2719 
2720 	if (dev_priv->cfb_plane == plane)
2721 		intel_disable_fbc(dev);
2722 
2723 	intel_disable_pipe(dev_priv, pipe);
2724 
2725 	/* Disable PF */
2726 	I915_WRITE(PF_CTL(pipe), 0);
2727 	I915_WRITE(PF_WIN_SZ(pipe), 0);
2728 
2729 	ironlake_fdi_disable(crtc);
2730 
2731 	/* This is a horrible layering violation; we should be doing this in
2732 	 * the connector/encoder ->prepare instead, but we don't always have
2733 	 * enough information there about the config to know whether it will
2734 	 * actually be necessary or just cause undesired flicker.
2735 	 */
2736 	intel_disable_pch_ports(dev_priv, pipe);
2737 
2738 	intel_disable_transcoder(dev_priv, pipe);
2739 
2740 	if (HAS_PCH_CPT(dev)) {
2741 		/* disable TRANS_DP_CTL */
2742 		reg = TRANS_DP_CTL(pipe);
2743 		temp = I915_READ(reg);
2744 		temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2745 		temp |= TRANS_DP_PORT_SEL_NONE;
2746 		I915_WRITE(reg, temp);
2747 
2748 		/* disable DPLL_SEL */
2749 		temp = I915_READ(PCH_DPLL_SEL);
2750 		switch (pipe) {
2751 		case 0:
2752 			temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2753 			break;
2754 		case 1:
2755 			temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2756 			break;
2757 		case 2:
2758 			/* C shares PLL A or B */
2759 			temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2760 			break;
2761 		default:
2762 			KASSERT(1, ("Wrong pipe %d", pipe)); /* wtf */
2763 		}
2764 		I915_WRITE(PCH_DPLL_SEL, temp);
2765 	}
2766 
2767 	/* disable PCH DPLL */
2768 	if (!intel_crtc->no_pll)
2769 		intel_disable_pch_pll(dev_priv, pipe);
2770 
2771 	/* Switch from PCDclk to Rawclk */
2772 	reg = FDI_RX_CTL(pipe);
2773 	temp = I915_READ(reg);
2774 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
2775 
2776 	/* Disable CPU FDI TX PLL */
2777 	reg = FDI_TX_CTL(pipe);
2778 	temp = I915_READ(reg);
2779 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2780 
2781 	POSTING_READ(reg);
2782 	DELAY(100);
2783 
2784 	reg = FDI_RX_CTL(pipe);
2785 	temp = I915_READ(reg);
2786 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2787 
2788 	/* Wait for the clocks to turn off. */
2789 	POSTING_READ(reg);
2790 	DELAY(100);
2791 
2792 	intel_crtc->active = false;
2793 	intel_update_watermarks(dev);
2794 
2795 	DRM_LOCK(dev);
2796 	intel_update_fbc(dev);
2797 	intel_clear_scanline_wait(dev);
2798 	DRM_UNLOCK(dev);
2799 }
2800 
2801 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2802 {
2803 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2804 	int pipe = intel_crtc->pipe;
2805 	int plane = intel_crtc->plane;
2806 
2807 	/* XXX: When our outputs are all unaware of DPMS modes other than off
2808 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2809 	 */
2810 	switch (mode) {
2811 	case DRM_MODE_DPMS_ON:
2812 	case DRM_MODE_DPMS_STANDBY:
2813 	case DRM_MODE_DPMS_SUSPEND:
2814 		DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2815 		ironlake_crtc_enable(crtc);
2816 		break;
2817 
2818 	case DRM_MODE_DPMS_OFF:
2819 		DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2820 		ironlake_crtc_disable(crtc);
2821 		break;
2822 	}
2823 }
2824 
2825 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2826 {
2827 	if (!enable && intel_crtc->overlay) {
2828 		struct drm_device *dev = intel_crtc->base.dev;
2829 		struct drm_i915_private *dev_priv = dev->dev_private;
2830 
2831 		DRM_LOCK(dev);
2832 		dev_priv->mm.interruptible = false;
2833 		(void) intel_overlay_switch_off(intel_crtc->overlay);
2834 		dev_priv->mm.interruptible = true;
2835 		DRM_UNLOCK(dev);
2836 	}
2837 
2838 	/* Let userspace switch the overlay on again. In most cases userspace
2839 	 * has to recompute where to put it anyway.
2840 	 */
2841 }
2842 
2843 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2844 {
2845 	struct drm_device *dev = crtc->dev;
2846 	struct drm_i915_private *dev_priv = dev->dev_private;
2847 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2848 	int pipe = intel_crtc->pipe;
2849 	int plane = intel_crtc->plane;
2850 
2851 	if (intel_crtc->active)
2852 		return;
2853 
2854 	intel_crtc->active = true;
2855 	intel_update_watermarks(dev);
2856 
2857 	intel_enable_pll(dev_priv, pipe);
2858 	intel_enable_pipe(dev_priv, pipe, false);
2859 	intel_enable_plane(dev_priv, plane, pipe);
2860 
2861 	intel_crtc_load_lut(crtc);
2862 	intel_update_fbc(dev);
2863 
2864 	/* Give the overlay scaler a chance to enable if it's on this pipe */
2865 	intel_crtc_dpms_overlay(intel_crtc, true);
2866 	intel_crtc_update_cursor(crtc, true);
2867 }
2868 
2869 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2870 {
2871 	struct drm_device *dev = crtc->dev;
2872 	struct drm_i915_private *dev_priv = dev->dev_private;
2873 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2874 	int pipe = intel_crtc->pipe;
2875 	int plane = intel_crtc->plane;
2876 
2877 	if (!intel_crtc->active)
2878 		return;
2879 
2880 	/* Give the overlay scaler a chance to disable if it's on this pipe */
2881 	intel_crtc_wait_for_pending_flips(crtc);
2882 	drm_vblank_off(dev, pipe);
2883 	intel_crtc_dpms_overlay(intel_crtc, false);
2884 	intel_crtc_update_cursor(crtc, false);
2885 
2886 	if (dev_priv->cfb_plane == plane)
2887 		intel_disable_fbc(dev);
2888 
2889 	intel_disable_plane(dev_priv, plane, pipe);
2890 	intel_disable_pipe(dev_priv, pipe);
2891 	intel_disable_pll(dev_priv, pipe);
2892 
2893 	intel_crtc->active = false;
2894 	intel_update_fbc(dev);
2895 	intel_update_watermarks(dev);
2896 	intel_clear_scanline_wait(dev);
2897 }
2898 
2899 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2900 {
2901 	/* XXX: When our outputs are all unaware of DPMS modes other than off
2902 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2903 	 */
2904 	switch (mode) {
2905 	case DRM_MODE_DPMS_ON:
2906 	case DRM_MODE_DPMS_STANDBY:
2907 	case DRM_MODE_DPMS_SUSPEND:
2908 		i9xx_crtc_enable(crtc);
2909 		break;
2910 	case DRM_MODE_DPMS_OFF:
2911 		i9xx_crtc_disable(crtc);
2912 		break;
2913 	}
2914 }
2915 
2916 /**
2917  * Sets the power management mode of the pipe and plane.
2918  */
2919 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2920 {
2921 	struct drm_device *dev = crtc->dev;
2922 	struct drm_i915_private *dev_priv = dev->dev_private;
2923 #if 0
2924 	struct drm_i915_master_private *master_priv;
2925 #endif
2926 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2927 	int pipe = intel_crtc->pipe;
2928 	bool enabled;
2929 
2930 	if (intel_crtc->dpms_mode == mode)
2931 		return;
2932 
2933 	intel_crtc->dpms_mode = mode;
2934 
2935 	dev_priv->display.dpms(crtc, mode);
2936 
2937 #if 0
2938 	if (!dev->primary->master)
2939 		return;
2940 
2941 	master_priv = dev->primary->master->driver_priv;
2942 	if (!master_priv->sarea_priv)
2943 		return;
2944 #else
2945 	if (!dev_priv->sarea_priv)
2946 		return;
2947 #endif
2948 
2949 	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2950 
2951 	switch (pipe) {
2952 	case 0:
2953 #if 0
2954 		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2955 		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2956 #else
2957 		dev_priv->sarea_priv->planeA_w = enabled ? crtc->mode.hdisplay : 0;
2958 		dev_priv->sarea_priv->planeA_h = enabled ? crtc->mode.vdisplay : 0;
2959 #endif
2960 		break;
2961 	case 1:
2962 #if 0
2963 		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2964 		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2965 #else
2966 		dev_priv->sarea_priv->planeB_w = enabled ? crtc->mode.hdisplay : 0;
2967 		dev_priv->sarea_priv->planeB_h = enabled ? crtc->mode.vdisplay : 0;
2968 #endif
2969 		break;
2970 	default:
2971 		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2972 		break;
2973 	}
2974 }
2975 
2976 static void intel_crtc_disable(struct drm_crtc *crtc)
2977 {
2978 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2979 	struct drm_device *dev = crtc->dev;
2980 
2981 	/* Flush any pending WAITs before we disable the pipe. Note that
2982 	 * we need to drop the struct_mutex in order to acquire it again
2983 	 * during the lowlevel dpms routines around a couple of the
2984 	 * operations. It does not look trivial nor desirable to move
2985 	 * that locking higher. So instead we leave a window for the
2986 	 * submission of further commands on the fb before we can actually
2987 	 * disable it. This race with userspace exists anyway, and we can
2988 	 * only rely on the pipe being disabled by userspace after it
2989 	 * receives the hotplug notification and has flushed any pending
2990 	 * batches.
2991 	 */
2992 	if (crtc->fb) {
2993 		DRM_LOCK(dev);
2994 		intel_finish_fb(crtc->fb);
2995 		DRM_UNLOCK(dev);
2996 	}
2997 
2998 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2999  	assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3000 	assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3001 
3002 	if (crtc->fb) {
3003 		DRM_LOCK(dev);
3004 		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3005 		DRM_UNLOCK(dev);
3006 	}
3007 }
3008 
3009 /* Prepare for a mode set.
3010  *
3011  * Note we could be a lot smarter here.  We need to figure out which outputs
3012  * will be enabled, which disabled (in short, how the config will changes)
3013  * and perform the minimum necessary steps to accomplish that, e.g. updating
3014  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3015  * panel fitting is in the proper state, etc.
3016  */
3017 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3018 {
3019 	i9xx_crtc_disable(crtc);
3020 }
3021 
3022 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3023 {
3024 	i9xx_crtc_enable(crtc);
3025 }
3026 
3027 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3028 {
3029 	ironlake_crtc_disable(crtc);
3030 }
3031 
3032 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3033 {
3034 	ironlake_crtc_enable(crtc);
3035 }
3036 
3037 void intel_encoder_prepare(struct drm_encoder *encoder)
3038 {
3039 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3040 	/* lvds has its own version of prepare see intel_lvds_prepare */
3041 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3042 }
3043 
3044 void intel_encoder_commit(struct drm_encoder *encoder)
3045 {
3046 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3047 	struct drm_device *dev = encoder->dev;
3048 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3049 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3050 
3051 	/* lvds has its own version of commit see intel_lvds_commit */
3052 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3053 
3054 	if (HAS_PCH_CPT(dev))
3055 		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3056 }
3057 
3058 void intel_encoder_destroy(struct drm_encoder *encoder)
3059 {
3060 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3061 
3062 	drm_encoder_cleanup(encoder);
3063 	drm_free(intel_encoder, DRM_MEM_KMS);
3064 }
3065 
3066 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3067 				  const struct drm_display_mode *mode,
3068 				  struct drm_display_mode *adjusted_mode)
3069 {
3070 	struct drm_device *dev = crtc->dev;
3071 
3072 	if (HAS_PCH_SPLIT(dev)) {
3073 		/* FDI link clock is fixed at 2.7G */
3074 		if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3075 			return false;
3076 	}
3077 
3078 	/* All interlaced capable intel hw wants timings in frames. Note though
3079 	 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3080 	 * timings, so we need to be careful not to clobber these.*/
3081 	if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3082 		drm_mode_set_crtcinfo(adjusted_mode, 0);
3083 
3084 	return true;
3085 }
3086 
3087 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3088 {
3089 	return 400000; /* FIXME */
3090 }
3091 
3092 static int i945_get_display_clock_speed(struct drm_device *dev)
3093 {
3094 	return 400000;
3095 }
3096 
3097 static int i915_get_display_clock_speed(struct drm_device *dev)
3098 {
3099 	return 333000;
3100 }
3101 
3102 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3103 {
3104 	return 200000;
3105 }
3106 
3107 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3108 {
3109 	u16 gcfgc = 0;
3110 
3111 	gcfgc = pci_read_config(dev->dev, GCFGC, 2);
3112 
3113 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3114 		return 133000;
3115 	else {
3116 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3117 		case GC_DISPLAY_CLOCK_333_MHZ:
3118 			return 333000;
3119 		default:
3120 		case GC_DISPLAY_CLOCK_190_200_MHZ:
3121 			return 190000;
3122 		}
3123 	}
3124 }
3125 
3126 static int i865_get_display_clock_speed(struct drm_device *dev)
3127 {
3128 	return 266000;
3129 }
3130 
3131 static int i855_get_display_clock_speed(struct drm_device *dev)
3132 {
3133 	u16 hpllcc = 0;
3134 	/* Assume that the hardware is in the high speed state.  This
3135 	 * should be the default.
3136 	 */
3137 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3138 	case GC_CLOCK_133_200:
3139 	case GC_CLOCK_100_200:
3140 		return 200000;
3141 	case GC_CLOCK_166_250:
3142 		return 250000;
3143 	case GC_CLOCK_100_133:
3144 		return 133000;
3145 	}
3146 
3147 	/* Shouldn't happen */
3148 	return 0;
3149 }
3150 
3151 static int i830_get_display_clock_speed(struct drm_device *dev)
3152 {
3153 	return 133000;
3154 }
3155 
3156 struct fdi_m_n {
3157 	u32        tu;
3158 	u32        gmch_m;
3159 	u32        gmch_n;
3160 	u32        link_m;
3161 	u32        link_n;
3162 };
3163 
3164 static void
3165 fdi_reduce_ratio(u32 *num, u32 *den)
3166 {
3167 	while (*num > 0xffffff || *den > 0xffffff) {
3168 		*num >>= 1;
3169 		*den >>= 1;
3170 	}
3171 }
3172 
3173 static void
3174 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3175 		     int link_clock, struct fdi_m_n *m_n)
3176 {
3177 	m_n->tu = 64; /* default size */
3178 
3179 	/* BUG_ON(pixel_clock > INT_MAX / 36); */
3180 	m_n->gmch_m = bits_per_pixel * pixel_clock;
3181 	m_n->gmch_n = link_clock * nlanes * 8;
3182 	fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3183 
3184 	m_n->link_m = pixel_clock;
3185 	m_n->link_n = link_clock;
3186 	fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3187 }
3188 
3189 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3190 {
3191 	if (i915_panel_use_ssc >= 0)
3192 		return i915_panel_use_ssc != 0;
3193 	return dev_priv->lvds_use_ssc
3194 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3195 }
3196 
3197 /**
3198  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3199  * @crtc: CRTC structure
3200  * @mode: requested mode
3201  *
3202  * A pipe may be connected to one or more outputs.  Based on the depth of the
3203  * attached framebuffer, choose a good color depth to use on the pipe.
3204  *
3205  * If possible, match the pipe depth to the fb depth.  In some cases, this
3206  * isn't ideal, because the connected output supports a lesser or restricted
3207  * set of depths.  Resolve that here:
3208  *    LVDS typically supports only 6bpc, so clamp down in that case
3209  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3210  *    Displays may support a restricted set as well, check EDID and clamp as
3211  *      appropriate.
3212  *    DP may want to dither down to 6bpc to fit larger modes
3213  *
3214  * RETURNS:
3215  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3216  * true if they don't match).
3217  */
3218 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3219 					 unsigned int *pipe_bpp,
3220 					 struct drm_display_mode *mode)
3221 {
3222 	struct drm_device *dev = crtc->dev;
3223 	struct drm_i915_private *dev_priv = dev->dev_private;
3224 	struct drm_encoder *encoder;
3225 	struct drm_connector *connector;
3226 	unsigned int display_bpc = UINT_MAX, bpc;
3227 
3228 	/* Walk the encoders & connectors on this crtc, get min bpc */
3229 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3230 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3231 
3232 		if (encoder->crtc != crtc)
3233 			continue;
3234 
3235 		if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3236 			unsigned int lvds_bpc;
3237 
3238 			if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3239 			    LVDS_A3_POWER_UP)
3240 				lvds_bpc = 8;
3241 			else
3242 				lvds_bpc = 6;
3243 
3244 			if (lvds_bpc < display_bpc) {
3245 				DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3246 				display_bpc = lvds_bpc;
3247 			}
3248 			continue;
3249 		}
3250 
3251 		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3252 			/* Use VBT settings if we have an eDP panel */
3253 			unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3254 
3255 			if (edp_bpc < display_bpc) {
3256 				DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3257 				display_bpc = edp_bpc;
3258 			}
3259 			continue;
3260 		}
3261 
3262 		/* Not one of the known troublemakers, check the EDID */
3263 		list_for_each_entry(connector, &dev->mode_config.connector_list,
3264 				    head) {
3265 			if (connector->encoder != encoder)
3266 				continue;
3267 
3268 			/* Don't use an invalid EDID bpc value */
3269 			if (connector->display_info.bpc &&
3270 			    connector->display_info.bpc < display_bpc) {
3271 				DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3272 				display_bpc = connector->display_info.bpc;
3273 			}
3274 		}
3275 
3276 		/*
3277 		 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3278 		 * through, clamp it down.  (Note: >12bpc will be caught below.)
3279 		 */
3280 		if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3281 			if (display_bpc > 8 && display_bpc < 12) {
3282 				DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3283 				display_bpc = 12;
3284 			} else {
3285 				DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3286 				display_bpc = 8;
3287 			}
3288 		}
3289 	}
3290 
3291 	if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3292 		DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3293 		display_bpc = 6;
3294 	}
3295 
3296 	/*
3297 	 * We could just drive the pipe at the highest bpc all the time and
3298 	 * enable dithering as needed, but that costs bandwidth.  So choose
3299 	 * the minimum value that expresses the full color range of the fb but
3300 	 * also stays within the max display bpc discovered above.
3301 	 */
3302 
3303 	switch (crtc->fb->depth) {
3304 	case 8:
3305 		bpc = 8; /* since we go through a colormap */
3306 		break;
3307 	case 15:
3308 	case 16:
3309 		bpc = 6; /* min is 18bpp */
3310 		break;
3311 	case 24:
3312 		bpc = 8;
3313 		break;
3314 	case 30:
3315 		bpc = 10;
3316 		break;
3317 	case 48:
3318 		bpc = 12;
3319 		break;
3320 	default:
3321 		DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3322 		bpc = min((unsigned int)8, display_bpc);
3323 		break;
3324 	}
3325 
3326 	display_bpc = min(display_bpc, bpc);
3327 
3328 	DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3329 			 bpc, display_bpc);
3330 
3331 	*pipe_bpp = display_bpc * 3;
3332 
3333 	return display_bpc != bpc;
3334 }
3335 
3336 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3337 {
3338 	struct drm_device *dev = crtc->dev;
3339 	struct drm_i915_private *dev_priv = dev->dev_private;
3340 	int refclk;
3341 
3342 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3343 	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3344 		refclk = dev_priv->lvds_ssc_freq * 1000;
3345 		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3346 			      refclk / 1000);
3347 	} else if (!IS_GEN2(dev)) {
3348 		refclk = 96000;
3349 	} else {
3350 		refclk = 48000;
3351 	}
3352 
3353 	return refclk;
3354 }
3355 
3356 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3357 				      intel_clock_t *clock)
3358 {
3359 	/* SDVO TV has fixed PLL values depend on its clock range,
3360 	   this mirrors vbios setting. */
3361 	if (adjusted_mode->clock >= 100000
3362 	    && adjusted_mode->clock < 140500) {
3363 		clock->p1 = 2;
3364 		clock->p2 = 10;
3365 		clock->n = 3;
3366 		clock->m1 = 16;
3367 		clock->m2 = 8;
3368 	} else if (adjusted_mode->clock >= 140500
3369 		   && adjusted_mode->clock <= 200000) {
3370 		clock->p1 = 1;
3371 		clock->p2 = 10;
3372 		clock->n = 6;
3373 		clock->m1 = 12;
3374 		clock->m2 = 8;
3375 	}
3376 }
3377 
3378 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3379 				     intel_clock_t *clock,
3380 				     intel_clock_t *reduced_clock)
3381 {
3382 	struct drm_device *dev = crtc->dev;
3383 	struct drm_i915_private *dev_priv = dev->dev_private;
3384 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3385 	int pipe = intel_crtc->pipe;
3386 	u32 fp, fp2 = 0;
3387 
3388 	if (IS_PINEVIEW(dev)) {
3389 		fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3390 		if (reduced_clock)
3391 			fp2 = (1 << reduced_clock->n) << 16 |
3392 				reduced_clock->m1 << 8 | reduced_clock->m2;
3393 	} else {
3394 		fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3395 		if (reduced_clock)
3396 			fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3397 				reduced_clock->m2;
3398 	}
3399 
3400 	I915_WRITE(FP0(pipe), fp);
3401 
3402 	intel_crtc->lowfreq_avail = false;
3403 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3404 	    reduced_clock && i915_powersave) {
3405 		I915_WRITE(FP1(pipe), fp2);
3406 		intel_crtc->lowfreq_avail = true;
3407 	} else {
3408 		I915_WRITE(FP1(pipe), fp);
3409 	}
3410 }
3411 
3412 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3413 			      struct drm_display_mode *mode,
3414 			      struct drm_display_mode *adjusted_mode,
3415 			      int x, int y,
3416 			      struct drm_framebuffer *old_fb)
3417 {
3418 	struct drm_device *dev = crtc->dev;
3419 	struct drm_i915_private *dev_priv = dev->dev_private;
3420 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3421 	int pipe = intel_crtc->pipe;
3422 	int plane = intel_crtc->plane;
3423 	int refclk, num_connectors = 0;
3424 	intel_clock_t clock, reduced_clock;
3425 	u32 dpll, dspcntr, pipeconf, vsyncshift;
3426 	bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3427 	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3428 	struct drm_mode_config *mode_config = &dev->mode_config;
3429 	struct intel_encoder *encoder;
3430 	const intel_limit_t *limit;
3431 	int ret;
3432 	u32 temp;
3433 	u32 lvds_sync = 0;
3434 
3435 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3436 		if (encoder->base.crtc != crtc)
3437 			continue;
3438 
3439 		switch (encoder->type) {
3440 		case INTEL_OUTPUT_LVDS:
3441 			is_lvds = true;
3442 			break;
3443 		case INTEL_OUTPUT_SDVO:
3444 		case INTEL_OUTPUT_HDMI:
3445 			is_sdvo = true;
3446 			if (encoder->needs_tv_clock)
3447 				is_tv = true;
3448 			break;
3449 		case INTEL_OUTPUT_DVO:
3450 			is_dvo = true;
3451 			break;
3452 		case INTEL_OUTPUT_TVOUT:
3453 			is_tv = true;
3454 			break;
3455 		case INTEL_OUTPUT_ANALOG:
3456 			is_crt = true;
3457 			break;
3458 		case INTEL_OUTPUT_DISPLAYPORT:
3459 			is_dp = true;
3460 			break;
3461 		}
3462 
3463 		num_connectors++;
3464 	}
3465 
3466 	refclk = i9xx_get_refclk(crtc, num_connectors);
3467 
3468 	/*
3469 	 * Returns a set of divisors for the desired target clock with the given
3470 	 * refclk, or false.  The returned values represent the clock equation:
3471 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3472 	 */
3473 	limit = intel_limit(crtc, refclk);
3474 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3475 			     &clock);
3476 	if (!ok) {
3477 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
3478 		return -EINVAL;
3479 	}
3480 
3481 	/* Ensure that the cursor is valid for the new mode before changing... */
3482 	intel_crtc_update_cursor(crtc, true);
3483 
3484 	if (is_lvds && dev_priv->lvds_downclock_avail) {
3485 		/*
3486 		 * Ensure we match the reduced clock's P to the target clock.
3487 		 * If the clocks don't match, we can't switch the display clock
3488 		 * by using the FP0/FP1. In such case we will disable the LVDS
3489 		 * downclock feature.
3490 		*/
3491 		has_reduced_clock = limit->find_pll(limit, crtc,
3492 						    dev_priv->lvds_downclock,
3493 						    refclk,
3494 						    &clock,
3495 						    &reduced_clock);
3496 	}
3497 
3498 	if (is_sdvo && is_tv)
3499 		i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
3500 
3501 	i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
3502 				 &reduced_clock : NULL);
3503 
3504 	dpll = DPLL_VGA_MODE_DIS;
3505 
3506 	if (!IS_GEN2(dev)) {
3507 		if (is_lvds)
3508 			dpll |= DPLLB_MODE_LVDS;
3509 		else
3510 			dpll |= DPLLB_MODE_DAC_SERIAL;
3511 		if (is_sdvo) {
3512 			int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3513 			if (pixel_multiplier > 1) {
3514 				if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3515 					dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3516 			}
3517 			dpll |= DPLL_DVO_HIGH_SPEED;
3518 		}
3519 		if (is_dp)
3520 			dpll |= DPLL_DVO_HIGH_SPEED;
3521 
3522 		/* compute bitmask from p1 value */
3523 		if (IS_PINEVIEW(dev))
3524 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3525 		else {
3526 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3527 			if (IS_G4X(dev) && has_reduced_clock)
3528 				dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3529 		}
3530 		switch (clock.p2) {
3531 		case 5:
3532 			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3533 			break;
3534 		case 7:
3535 			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3536 			break;
3537 		case 10:
3538 			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3539 			break;
3540 		case 14:
3541 			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3542 			break;
3543 		}
3544 		if (INTEL_INFO(dev)->gen >= 4)
3545 			dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3546 	} else {
3547 		if (is_lvds) {
3548 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3549 		} else {
3550 			if (clock.p1 == 2)
3551 				dpll |= PLL_P1_DIVIDE_BY_TWO;
3552 			else
3553 				dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3554 			if (clock.p2 == 4)
3555 				dpll |= PLL_P2_DIVIDE_BY_4;
3556 		}
3557 	}
3558 
3559 	if (is_sdvo && is_tv)
3560 		dpll |= PLL_REF_INPUT_TVCLKINBC;
3561 	else if (is_tv)
3562 		/* XXX: just matching BIOS for now */
3563 		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
3564 		dpll |= 3;
3565 	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3566 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3567 	else
3568 		dpll |= PLL_REF_INPUT_DREFCLK;
3569 
3570 	/* setup pipeconf */
3571 	pipeconf = I915_READ(PIPECONF(pipe));
3572 
3573 	/* Set up the display plane register */
3574 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3575 
3576 	if (pipe == 0)
3577 		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3578 	else
3579 		dspcntr |= DISPPLANE_SEL_PIPE_B;
3580 
3581 	if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3582 		/* Enable pixel doubling when the dot clock is > 90% of the (display)
3583 		 * core speed.
3584 		 *
3585 		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3586 		 * pipe == 0 check?
3587 		 */
3588 		if (mode->clock >
3589 		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3590 			pipeconf |= PIPECONF_DOUBLE_WIDE;
3591 		else
3592 			pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3593 	}
3594 
3595 	/* default to 8bpc */
3596 	pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
3597 	if (is_dp) {
3598 		if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3599 			pipeconf |= PIPECONF_BPP_6 |
3600 				    PIPECONF_DITHER_EN |
3601 				    PIPECONF_DITHER_TYPE_SP;
3602 		}
3603 	}
3604 
3605 	dpll |= DPLL_VCO_ENABLE;
3606 
3607 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3608 	drm_mode_debug_printmodeline(mode);
3609 
3610 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3611 
3612 	POSTING_READ(DPLL(pipe));
3613 	DELAY(150);
3614 
3615 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
3616 	 * This is an exception to the general rule that mode_set doesn't turn
3617 	 * things on.
3618 	 */
3619 	if (is_lvds) {
3620 		temp = I915_READ(LVDS);
3621 		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3622 		if (pipe == 1) {
3623 			temp |= LVDS_PIPEB_SELECT;
3624 		} else {
3625 			temp &= ~LVDS_PIPEB_SELECT;
3626 		}
3627 		/* set the corresponsding LVDS_BORDER bit */
3628 		temp |= dev_priv->lvds_border_bits;
3629 		/* Set the B0-B3 data pairs corresponding to whether we're going to
3630 		 * set the DPLLs for dual-channel mode or not.
3631 		 */
3632 		if (clock.p2 == 7)
3633 			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3634 		else
3635 			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3636 
3637 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3638 		 * appropriately here, but we need to look more thoroughly into how
3639 		 * panels behave in the two modes.
3640 		 */
3641 		/* set the dithering flag on LVDS as needed */
3642 		if (INTEL_INFO(dev)->gen >= 4) {
3643 			if (dev_priv->lvds_dither)
3644 				temp |= LVDS_ENABLE_DITHER;
3645 			else
3646 				temp &= ~LVDS_ENABLE_DITHER;
3647 		}
3648 		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3649 			lvds_sync |= LVDS_HSYNC_POLARITY;
3650 		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3651 			lvds_sync |= LVDS_VSYNC_POLARITY;
3652 		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
3653 		    != lvds_sync) {
3654 			char flags[2] = "-+";
3655 			DRM_INFO("Changing LVDS panel from "
3656 				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
3657 				 flags[!(temp & LVDS_HSYNC_POLARITY)],
3658 				 flags[!(temp & LVDS_VSYNC_POLARITY)],
3659 				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
3660 				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
3661 			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3662 			temp |= lvds_sync;
3663 		}
3664 		I915_WRITE(LVDS, temp);
3665 	}
3666 
3667 	if (is_dp) {
3668 		intel_dp_set_m_n(crtc, mode, adjusted_mode);
3669 	}
3670 
3671 	I915_WRITE(DPLL(pipe), dpll);
3672 
3673 	/* Wait for the clocks to stabilize. */
3674 	POSTING_READ(DPLL(pipe));
3675 	DELAY(150);
3676 
3677 	if (INTEL_INFO(dev)->gen >= 4) {
3678 		temp = 0;
3679 		if (is_sdvo) {
3680 			temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3681 			if (temp > 1)
3682 				temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3683 			else
3684 				temp = 0;
3685 		}
3686 		I915_WRITE(DPLL_MD(pipe), temp);
3687 	} else {
3688 		/* The pixel multiplier can only be updated once the
3689 		 * DPLL is enabled and the clocks are stable.
3690 		 *
3691 		 * So write it again.
3692 		 */
3693 		I915_WRITE(DPLL(pipe), dpll);
3694 	}
3695 
3696 	if (HAS_PIPE_CXSR(dev)) {
3697 		if (intel_crtc->lowfreq_avail) {
3698 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3699 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3700 		} else {
3701 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3702 			pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3703 		}
3704 	}
3705 
3706 	pipeconf &= ~PIPECONF_INTERLACE_MASK;
3707 	if (!IS_GEN2(dev) &&
3708 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3709 		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3710 		/* the chip adds 2 halflines automatically */
3711 		adjusted_mode->crtc_vtotal -= 1;
3712 		adjusted_mode->crtc_vblank_end -= 1;
3713 		vsyncshift = adjusted_mode->crtc_hsync_start
3714 			     - adjusted_mode->crtc_htotal/2;
3715 	} else {
3716 		pipeconf |= PIPECONF_PROGRESSIVE;
3717 		vsyncshift = 0;
3718 	}
3719 
3720 	if (!IS_GEN3(dev))
3721 		I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
3722 
3723 	I915_WRITE(HTOTAL(pipe),
3724 		   (adjusted_mode->crtc_hdisplay - 1) |
3725 		   ((adjusted_mode->crtc_htotal - 1) << 16));
3726 	I915_WRITE(HBLANK(pipe),
3727 		   (adjusted_mode->crtc_hblank_start - 1) |
3728 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
3729 	I915_WRITE(HSYNC(pipe),
3730 		   (adjusted_mode->crtc_hsync_start - 1) |
3731 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
3732 
3733 	I915_WRITE(VTOTAL(pipe),
3734 		   (adjusted_mode->crtc_vdisplay - 1) |
3735 		   ((adjusted_mode->crtc_vtotal - 1) << 16));
3736 	I915_WRITE(VBLANK(pipe),
3737 		   (adjusted_mode->crtc_vblank_start - 1) |
3738 		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
3739 	I915_WRITE(VSYNC(pipe),
3740 		   (adjusted_mode->crtc_vsync_start - 1) |
3741 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
3742 
3743 	/* pipesrc and dspsize control the size that is scaled from,
3744 	 * which should always be the user's requested size.
3745 	 */
3746 	I915_WRITE(DSPSIZE(plane),
3747 		   ((mode->vdisplay - 1) << 16) |
3748 		   (mode->hdisplay - 1));
3749 	I915_WRITE(DSPPOS(plane), 0);
3750 	I915_WRITE(PIPESRC(pipe),
3751 		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3752 
3753 	I915_WRITE(PIPECONF(pipe), pipeconf);
3754 	POSTING_READ(PIPECONF(pipe));
3755 	intel_enable_pipe(dev_priv, pipe, false);
3756 
3757 	intel_wait_for_vblank(dev, pipe);
3758 
3759 	I915_WRITE(DSPCNTR(plane), dspcntr);
3760 	POSTING_READ(DSPCNTR(plane));
3761 	intel_enable_plane(dev_priv, plane, pipe);
3762 
3763 	ret = intel_pipe_set_base(crtc, x, y, old_fb);
3764 
3765 	intel_update_watermarks(dev);
3766 
3767 	return ret;
3768 }
3769 
3770 /*
3771  * Initialize reference clocks when the driver loads
3772  */
3773 void ironlake_init_pch_refclk(struct drm_device *dev)
3774 {
3775 	struct drm_i915_private *dev_priv = dev->dev_private;
3776 	struct drm_mode_config *mode_config = &dev->mode_config;
3777 	struct intel_encoder *encoder;
3778 	u32 temp;
3779 	bool has_lvds = false;
3780 	bool has_cpu_edp = false;
3781 	bool has_pch_edp = false;
3782 	bool has_panel = false;
3783 	bool has_ck505 = false;
3784 	bool can_ssc = false;
3785 
3786 	/* We need to take the global config into account */
3787 	list_for_each_entry(encoder, &mode_config->encoder_list,
3788 			    base.head) {
3789 		switch (encoder->type) {
3790 		case INTEL_OUTPUT_LVDS:
3791 			has_panel = true;
3792 			has_lvds = true;
3793 			break;
3794 		case INTEL_OUTPUT_EDP:
3795 			has_panel = true;
3796 			if (intel_encoder_is_pch_edp(&encoder->base))
3797 				has_pch_edp = true;
3798 			else
3799 				has_cpu_edp = true;
3800 			break;
3801 		}
3802 	}
3803 
3804 	if (HAS_PCH_IBX(dev)) {
3805 		has_ck505 = dev_priv->display_clock_mode;
3806 		can_ssc = has_ck505;
3807 	} else {
3808 		has_ck505 = false;
3809 		can_ssc = true;
3810 	}
3811 
3812 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
3813 		      has_panel, has_lvds, has_pch_edp, has_cpu_edp,
3814 		      has_ck505);
3815 
3816 	/* Ironlake: try to setup display ref clock before DPLL
3817 	 * enabling. This is only under driver's control after
3818 	 * PCH B stepping, previous chipset stepping should be
3819 	 * ignoring this setting.
3820 	 */
3821 	temp = I915_READ(PCH_DREF_CONTROL);
3822 	/* Always enable nonspread source */
3823 	temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3824 
3825 	if (has_ck505)
3826 		temp |= DREF_NONSPREAD_CK505_ENABLE;
3827 	else
3828 		temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3829 
3830 	if (has_panel) {
3831 		temp &= ~DREF_SSC_SOURCE_MASK;
3832 		temp |= DREF_SSC_SOURCE_ENABLE;
3833 
3834 		/* SSC must be turned on before enabling the CPU output  */
3835 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3836 			DRM_DEBUG_KMS("Using SSC on panel\n");
3837 			temp |= DREF_SSC1_ENABLE;
3838 		} else
3839 			temp &= ~DREF_SSC1_ENABLE;
3840 
3841 		/* Get SSC going before enabling the outputs */
3842 		I915_WRITE(PCH_DREF_CONTROL, temp);
3843 		POSTING_READ(PCH_DREF_CONTROL);
3844 		DELAY(200);
3845 
3846 		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3847 
3848 		/* Enable CPU source on CPU attached eDP */
3849 		if (has_cpu_edp) {
3850 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3851 				DRM_DEBUG_KMS("Using SSC on eDP\n");
3852 				temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3853 			}
3854 			else
3855 				temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3856 		} else
3857 			temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
3858 
3859 		I915_WRITE(PCH_DREF_CONTROL, temp);
3860 		POSTING_READ(PCH_DREF_CONTROL);
3861 		DELAY(200);
3862 	} else {
3863 		DRM_DEBUG_KMS("Disabling SSC entirely\n");
3864 
3865 		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3866 
3867 		/* Turn off CPU output */
3868 		temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
3869 
3870 		I915_WRITE(PCH_DREF_CONTROL, temp);
3871 		POSTING_READ(PCH_DREF_CONTROL);
3872 		DELAY(200);
3873 
3874 		/* Turn off the SSC source */
3875 		temp &= ~DREF_SSC_SOURCE_MASK;
3876 		temp |= DREF_SSC_SOURCE_DISABLE;
3877 
3878 		/* Turn off SSC1 */
3879 		temp &= ~ DREF_SSC1_ENABLE;
3880 
3881 		I915_WRITE(PCH_DREF_CONTROL, temp);
3882 		POSTING_READ(PCH_DREF_CONTROL);
3883 		DELAY(200);
3884 	}
3885 }
3886 
3887 static int ironlake_get_refclk(struct drm_crtc *crtc)
3888 {
3889 	struct drm_device *dev = crtc->dev;
3890 	struct drm_i915_private *dev_priv = dev->dev_private;
3891 	struct intel_encoder *encoder;
3892 	struct drm_mode_config *mode_config = &dev->mode_config;
3893 	struct intel_encoder *edp_encoder = NULL;
3894 	int num_connectors = 0;
3895 	bool is_lvds = false;
3896 
3897 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3898 		if (encoder->base.crtc != crtc)
3899 			continue;
3900 
3901 		switch (encoder->type) {
3902 		case INTEL_OUTPUT_LVDS:
3903 			is_lvds = true;
3904 			break;
3905 		case INTEL_OUTPUT_EDP:
3906 			edp_encoder = encoder;
3907 			break;
3908 		}
3909 		num_connectors++;
3910 	}
3911 
3912 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3913 		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3914 			      dev_priv->lvds_ssc_freq);
3915 		return dev_priv->lvds_ssc_freq * 1000;
3916 	}
3917 
3918 	return 120000;
3919 }
3920 
3921 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
3922 				  struct drm_display_mode *mode,
3923 				  struct drm_display_mode *adjusted_mode,
3924 				  int x, int y,
3925 				  struct drm_framebuffer *old_fb)
3926 {
3927 	struct drm_device *dev = crtc->dev;
3928 	struct drm_i915_private *dev_priv = dev->dev_private;
3929 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3930 	int pipe = intel_crtc->pipe;
3931 	int plane = intel_crtc->plane;
3932 	int refclk, num_connectors = 0;
3933 	intel_clock_t clock, reduced_clock;
3934 	u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3935 	bool ok, has_reduced_clock = false, is_sdvo = false;
3936 	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3937 	struct intel_encoder *has_edp_encoder = NULL;
3938 	struct drm_mode_config *mode_config = &dev->mode_config;
3939 	struct intel_encoder *encoder;
3940 	const intel_limit_t *limit;
3941 	int ret;
3942 	struct fdi_m_n m_n = {0};
3943 	u32 temp;
3944 	u32 lvds_sync = 0;
3945 	int target_clock, pixel_multiplier, lane, link_bw, factor;
3946 	unsigned int pipe_bpp;
3947 	bool dither;
3948 
3949 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3950 		if (encoder->base.crtc != crtc)
3951 			continue;
3952 
3953 		switch (encoder->type) {
3954 		case INTEL_OUTPUT_LVDS:
3955 			is_lvds = true;
3956 			break;
3957 		case INTEL_OUTPUT_SDVO:
3958 		case INTEL_OUTPUT_HDMI:
3959 			is_sdvo = true;
3960 			if (encoder->needs_tv_clock)
3961 				is_tv = true;
3962 			break;
3963 		case INTEL_OUTPUT_TVOUT:
3964 			is_tv = true;
3965 			break;
3966 		case INTEL_OUTPUT_ANALOG:
3967 			is_crt = true;
3968 			break;
3969 		case INTEL_OUTPUT_DISPLAYPORT:
3970 			is_dp = true;
3971 			break;
3972 		case INTEL_OUTPUT_EDP:
3973 			has_edp_encoder = encoder;
3974 			break;
3975 		}
3976 
3977 		num_connectors++;
3978 	}
3979 
3980 	refclk = ironlake_get_refclk(crtc);
3981 
3982 	/*
3983 	 * Returns a set of divisors for the desired target clock with the given
3984 	 * refclk, or false.  The returned values represent the clock equation:
3985 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3986 	 */
3987 	limit = intel_limit(crtc, refclk);
3988 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3989 			     &clock);
3990 	if (!ok) {
3991 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
3992 		return -EINVAL;
3993 	}
3994 
3995 	/* Ensure that the cursor is valid for the new mode before changing... */
3996 	intel_crtc_update_cursor(crtc, true);
3997 
3998 	if (is_lvds && dev_priv->lvds_downclock_avail) {
3999 		/*
4000 		 * Ensure we match the reduced clock's P to the target clock.
4001 		 * If the clocks don't match, we can't switch the display clock
4002 		 * by using the FP0/FP1. In such case we will disable the LVDS
4003 		 * downclock feature.
4004 		*/
4005 		has_reduced_clock = limit->find_pll(limit, crtc,
4006 						    dev_priv->lvds_downclock,
4007 						    refclk,
4008 						    &clock,
4009 						    &reduced_clock);
4010 	}
4011 	/* SDVO TV has fixed PLL values depend on its clock range,
4012 	   this mirrors vbios setting. */
4013 	if (is_sdvo && is_tv) {
4014 		if (adjusted_mode->clock >= 100000
4015 		    && adjusted_mode->clock < 140500) {
4016 			clock.p1 = 2;
4017 			clock.p2 = 10;
4018 			clock.n = 3;
4019 			clock.m1 = 16;
4020 			clock.m2 = 8;
4021 		} else if (adjusted_mode->clock >= 140500
4022 			   && adjusted_mode->clock <= 200000) {
4023 			clock.p1 = 1;
4024 			clock.p2 = 10;
4025 			clock.n = 6;
4026 			clock.m1 = 12;
4027 			clock.m2 = 8;
4028 		}
4029 	}
4030 
4031 	/* FDI link */
4032 	pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4033 	lane = 0;
4034 	/* CPU eDP doesn't require FDI link, so just set DP M/N
4035 	   according to current link config */
4036 	if (has_edp_encoder &&
4037 	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4038 		target_clock = mode->clock;
4039 		intel_edp_link_config(has_edp_encoder,
4040 				      &lane, &link_bw);
4041 	} else {
4042 		/* [e]DP over FDI requires target mode clock
4043 		   instead of link clock */
4044 		if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4045 			target_clock = mode->clock;
4046 		else
4047 			target_clock = adjusted_mode->clock;
4048 
4049 		/* FDI is a binary signal running at ~2.7GHz, encoding
4050 		 * each output octet as 10 bits. The actual frequency
4051 		 * is stored as a divider into a 100MHz clock, and the
4052 		 * mode pixel clock is stored in units of 1KHz.
4053 		 * Hence the bw of each lane in terms of the mode signal
4054 		 * is:
4055 		 */
4056 		link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4057 	}
4058 
4059 	/* determine panel color depth */
4060 	temp = I915_READ(PIPECONF(pipe));
4061 	temp &= ~PIPE_BPC_MASK;
4062 	dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4063 	switch (pipe_bpp) {
4064 	case 18:
4065 		temp |= PIPE_6BPC;
4066 		break;
4067 	case 24:
4068 		temp |= PIPE_8BPC;
4069 		break;
4070 	case 30:
4071 		temp |= PIPE_10BPC;
4072 		break;
4073 	case 36:
4074 		temp |= PIPE_12BPC;
4075 		break;
4076 	default:
4077 		kprintf("intel_choose_pipe_bpp returned invalid value %d\n",
4078 			pipe_bpp);
4079 		temp |= PIPE_8BPC;
4080 		pipe_bpp = 24;
4081 		break;
4082 	}
4083 
4084 	intel_crtc->bpp = pipe_bpp;
4085 	I915_WRITE(PIPECONF(pipe), temp);
4086 
4087 	if (!lane) {
4088 		/*
4089 		 * Account for spread spectrum to avoid
4090 		 * oversubscribing the link. Max center spread
4091 		 * is 2.5%; use 5% for safety's sake.
4092 		 */
4093 		u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4094 		lane = bps / (link_bw * 8) + 1;
4095 	}
4096 
4097 	intel_crtc->fdi_lanes = lane;
4098 
4099 	if (pixel_multiplier > 1)
4100 		link_bw *= pixel_multiplier;
4101 	ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4102 			     &m_n);
4103 
4104 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4105 	if (has_reduced_clock)
4106 		fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4107 			reduced_clock.m2;
4108 
4109 	/* Enable autotuning of the PLL clock (if permissible) */
4110 	factor = 21;
4111 	if (is_lvds) {
4112 		if ((intel_panel_use_ssc(dev_priv) &&
4113 		     dev_priv->lvds_ssc_freq == 100) ||
4114 		    (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4115 			factor = 25;
4116 	} else if (is_sdvo && is_tv)
4117 		factor = 20;
4118 
4119 	if (clock.m < factor * clock.n)
4120 		fp |= FP_CB_TUNE;
4121 
4122 	dpll = 0;
4123 
4124 	if (is_lvds)
4125 		dpll |= DPLLB_MODE_LVDS;
4126 	else
4127 		dpll |= DPLLB_MODE_DAC_SERIAL;
4128 	if (is_sdvo) {
4129 		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4130 		if (pixel_multiplier > 1) {
4131 			dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4132 		}
4133 		dpll |= DPLL_DVO_HIGH_SPEED;
4134 	}
4135 	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4136 		dpll |= DPLL_DVO_HIGH_SPEED;
4137 
4138 	/* compute bitmask from p1 value */
4139 	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4140 	/* also FPA1 */
4141 	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4142 
4143 	switch (clock.p2) {
4144 	case 5:
4145 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4146 		break;
4147 	case 7:
4148 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4149 		break;
4150 	case 10:
4151 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4152 		break;
4153 	case 14:
4154 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4155 		break;
4156 	}
4157 
4158 	if (is_sdvo && is_tv)
4159 		dpll |= PLL_REF_INPUT_TVCLKINBC;
4160 	else if (is_tv)
4161 		/* XXX: just matching BIOS for now */
4162 		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
4163 		dpll |= 3;
4164 	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4165 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4166 	else
4167 		dpll |= PLL_REF_INPUT_DREFCLK;
4168 
4169 	/* setup pipeconf */
4170 	pipeconf = I915_READ(PIPECONF(pipe));
4171 
4172 	/* Set up the display plane register */
4173 	dspcntr = DISPPLANE_GAMMA_ENABLE;
4174 
4175 	DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4176 	drm_mode_debug_printmodeline(mode);
4177 
4178 	/* PCH eDP needs FDI, but CPU eDP does not */
4179 	if (!intel_crtc->no_pll) {
4180 		if (!has_edp_encoder ||
4181 		    intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4182 			I915_WRITE(_PCH_FP0(pipe), fp);
4183 			I915_WRITE(_PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4184 
4185 			POSTING_READ(_PCH_DPLL(pipe));
4186 			DELAY(150);
4187 		}
4188 	} else {
4189 		if (dpll == (I915_READ(_PCH_DPLL(0)) & 0x7fffffff) &&
4190 		    fp == I915_READ(_PCH_FP0(0))) {
4191 			intel_crtc->use_pll_a = true;
4192 			DRM_DEBUG_KMS("using pipe a dpll\n");
4193 		} else if (dpll == (I915_READ(_PCH_DPLL(1)) & 0x7fffffff) &&
4194 			   fp == I915_READ(_PCH_FP0(1))) {
4195 			intel_crtc->use_pll_a = false;
4196 			DRM_DEBUG_KMS("using pipe b dpll\n");
4197 		} else {
4198 			DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
4199 			return -EINVAL;
4200 		}
4201 	}
4202 
4203 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
4204 	 * This is an exception to the general rule that mode_set doesn't turn
4205 	 * things on.
4206 	 */
4207 	if (is_lvds) {
4208 		temp = I915_READ(PCH_LVDS);
4209 		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4210 		if (HAS_PCH_CPT(dev)) {
4211 			temp &= ~PORT_TRANS_SEL_MASK;
4212 			temp |= PORT_TRANS_SEL_CPT(pipe);
4213 		} else {
4214 			if (pipe == 1)
4215 				temp |= LVDS_PIPEB_SELECT;
4216 			else
4217 				temp &= ~LVDS_PIPEB_SELECT;
4218 		}
4219 
4220 		/* set the corresponsding LVDS_BORDER bit */
4221 		temp |= dev_priv->lvds_border_bits;
4222 		/* Set the B0-B3 data pairs corresponding to whether we're going to
4223 		 * set the DPLLs for dual-channel mode or not.
4224 		 */
4225 		if (clock.p2 == 7)
4226 			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4227 		else
4228 			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4229 
4230 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4231 		 * appropriately here, but we need to look more thoroughly into how
4232 		 * panels behave in the two modes.
4233 		 */
4234 		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4235 			lvds_sync |= LVDS_HSYNC_POLARITY;
4236 		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4237 			lvds_sync |= LVDS_VSYNC_POLARITY;
4238 		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4239 		    != lvds_sync) {
4240 			char flags[2] = "-+";
4241 			DRM_INFO("Changing LVDS panel from "
4242 				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4243 				 flags[!(temp & LVDS_HSYNC_POLARITY)],
4244 				 flags[!(temp & LVDS_VSYNC_POLARITY)],
4245 				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4246 				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4247 			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4248 			temp |= lvds_sync;
4249 		}
4250 		I915_WRITE(PCH_LVDS, temp);
4251 	}
4252 
4253 	pipeconf &= ~PIPECONF_DITHER_EN;
4254 	pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4255 	if ((is_lvds && dev_priv->lvds_dither) || dither) {
4256 		pipeconf |= PIPECONF_DITHER_EN;
4257 		pipeconf |= PIPECONF_DITHER_TYPE_SP;
4258 	}
4259 	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4260 		intel_dp_set_m_n(crtc, mode, adjusted_mode);
4261 	} else {
4262 		/* For non-DP output, clear any trans DP clock recovery setting.*/
4263 		I915_WRITE(TRANSDATA_M1(pipe), 0);
4264 		I915_WRITE(TRANSDATA_N1(pipe), 0);
4265 		I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4266 		I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4267 	}
4268 
4269 	if (!intel_crtc->no_pll &&
4270 	    (!has_edp_encoder ||
4271 	     intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
4272 		I915_WRITE(_PCH_DPLL(pipe), dpll);
4273 
4274 		/* Wait for the clocks to stabilize. */
4275 		POSTING_READ(_PCH_DPLL(pipe));
4276 		DELAY(150);
4277 
4278 		/* The pixel multiplier can only be updated once the
4279 		 * DPLL is enabled and the clocks are stable.
4280 		 *
4281 		 * So write it again.
4282 		 */
4283 		I915_WRITE(_PCH_DPLL(pipe), dpll);
4284 	}
4285 
4286 	intel_crtc->lowfreq_avail = false;
4287 	if (!intel_crtc->no_pll) {
4288 		if (is_lvds && has_reduced_clock && i915_powersave) {
4289 			I915_WRITE(_PCH_FP1(pipe), fp2);
4290 			intel_crtc->lowfreq_avail = true;
4291 			if (HAS_PIPE_CXSR(dev)) {
4292 				DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4293 				pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4294 			}
4295 		} else {
4296 			I915_WRITE(_PCH_FP1(pipe), fp);
4297 			if (HAS_PIPE_CXSR(dev)) {
4298 				DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4299 				pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4300 			}
4301 		}
4302 	}
4303 
4304 	pipeconf &= ~PIPECONF_INTERLACE_MASK;
4305 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4306 		pipeconf |= PIPECONF_INTERLACED_ILK;
4307 		/* the chip adds 2 halflines automatically */
4308 		adjusted_mode->crtc_vtotal -= 1;
4309 		adjusted_mode->crtc_vblank_end -= 1;
4310 		I915_WRITE(VSYNCSHIFT(pipe),
4311 			   adjusted_mode->crtc_hsync_start
4312 			   - adjusted_mode->crtc_htotal/2);
4313 	} else {
4314 		pipeconf |= PIPECONF_PROGRESSIVE;
4315 		I915_WRITE(VSYNCSHIFT(pipe), 0);
4316 	}
4317 
4318 	I915_WRITE(HTOTAL(pipe),
4319 		   (adjusted_mode->crtc_hdisplay - 1) |
4320 		   ((adjusted_mode->crtc_htotal - 1) << 16));
4321 	I915_WRITE(HBLANK(pipe),
4322 		   (adjusted_mode->crtc_hblank_start - 1) |
4323 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
4324 	I915_WRITE(HSYNC(pipe),
4325 		   (adjusted_mode->crtc_hsync_start - 1) |
4326 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
4327 
4328 	I915_WRITE(VTOTAL(pipe),
4329 		   (adjusted_mode->crtc_vdisplay - 1) |
4330 		   ((adjusted_mode->crtc_vtotal - 1) << 16));
4331 	I915_WRITE(VBLANK(pipe),
4332 		   (adjusted_mode->crtc_vblank_start - 1) |
4333 		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
4334 	I915_WRITE(VSYNC(pipe),
4335 		   (adjusted_mode->crtc_vsync_start - 1) |
4336 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
4337 
4338 	/* pipesrc controls the size that is scaled from, which should
4339 	 * always be the user's requested size.
4340 	 */
4341 	I915_WRITE(PIPESRC(pipe),
4342 		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4343 
4344 	I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4345 	I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4346 	I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4347 	I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4348 
4349 	if (has_edp_encoder &&
4350 	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4351 		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4352 	}
4353 
4354 	I915_WRITE(PIPECONF(pipe), pipeconf);
4355 	POSTING_READ(PIPECONF(pipe));
4356 
4357 	intel_wait_for_vblank(dev, pipe);
4358 
4359 	I915_WRITE(DSPCNTR(plane), dspcntr);
4360 	POSTING_READ(DSPCNTR(plane));
4361 
4362 	ret = intel_pipe_set_base(crtc, x, y, old_fb);
4363 
4364 	intel_update_watermarks(dev);
4365 
4366 	return ret;
4367 }
4368 
4369 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4370 			       struct drm_display_mode *mode,
4371 			       struct drm_display_mode *adjusted_mode,
4372 			       int x, int y,
4373 			       struct drm_framebuffer *old_fb)
4374 {
4375 	struct drm_device *dev = crtc->dev;
4376 	struct drm_i915_private *dev_priv = dev->dev_private;
4377 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4378 	int pipe = intel_crtc->pipe;
4379 	int ret;
4380 
4381 	drm_vblank_pre_modeset(dev, pipe);
4382 
4383 	ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4384 					      x, y, old_fb);
4385 	drm_vblank_post_modeset(dev, pipe);
4386 
4387 	if (ret)
4388 		intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4389 	else
4390 		intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4391 
4392 	return ret;
4393 }
4394 
4395 static bool intel_eld_uptodate(struct drm_connector *connector,
4396 			       int reg_eldv, uint32_t bits_eldv,
4397 			       int reg_elda, uint32_t bits_elda,
4398 			       int reg_edid)
4399 {
4400 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4401 	uint8_t *eld = connector->eld;
4402 	uint32_t i;
4403 
4404 	i = I915_READ(reg_eldv);
4405 	i &= bits_eldv;
4406 
4407 	if (!eld[0])
4408 		return !i;
4409 
4410 	if (!i)
4411 		return false;
4412 
4413 	i = I915_READ(reg_elda);
4414 	i &= ~bits_elda;
4415 	I915_WRITE(reg_elda, i);
4416 
4417 	for (i = 0; i < eld[2]; i++)
4418 		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4419 			return false;
4420 
4421 	return true;
4422 }
4423 
4424 static void g4x_write_eld(struct drm_connector *connector,
4425 			  struct drm_crtc *crtc)
4426 {
4427 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4428 	uint8_t *eld = connector->eld;
4429 	uint32_t eldv;
4430 	uint32_t len;
4431 	uint32_t i;
4432 
4433 	i = I915_READ(G4X_AUD_VID_DID);
4434 
4435 	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4436 		eldv = G4X_ELDV_DEVCL_DEVBLC;
4437 	else
4438 		eldv = G4X_ELDV_DEVCTG;
4439 
4440 	if (intel_eld_uptodate(connector,
4441 			       G4X_AUD_CNTL_ST, eldv,
4442 			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4443 			       G4X_HDMIW_HDMIEDID))
4444 		return;
4445 
4446 	i = I915_READ(G4X_AUD_CNTL_ST);
4447 	i &= ~(eldv | G4X_ELD_ADDR);
4448 	len = (i >> 9) & 0x1f;		/* ELD buffer size */
4449 	I915_WRITE(G4X_AUD_CNTL_ST, i);
4450 
4451 	if (!eld[0])
4452 		return;
4453 
4454 	if (eld[2] < (uint8_t)len)
4455 		len = eld[2];
4456 	DRM_DEBUG_KMS("ELD size %d\n", len);
4457 	for (i = 0; i < len; i++)
4458 		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4459 
4460 	i = I915_READ(G4X_AUD_CNTL_ST);
4461 	i |= eldv;
4462 	I915_WRITE(G4X_AUD_CNTL_ST, i);
4463 }
4464 
4465 static void ironlake_write_eld(struct drm_connector *connector,
4466 				     struct drm_crtc *crtc)
4467 {
4468 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4469 	uint8_t *eld = connector->eld;
4470 	uint32_t eldv;
4471 	uint32_t i;
4472 	int len;
4473 	int hdmiw_hdmiedid;
4474 	int aud_config;
4475 	int aud_cntl_st;
4476 	int aud_cntrl_st2;
4477 
4478 	if (HAS_PCH_IBX(connector->dev)) {
4479 		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4480 		aud_config = IBX_AUD_CONFIG_A;
4481 		aud_cntl_st = IBX_AUD_CNTL_ST_A;
4482 		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4483 	} else {
4484 		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4485 		aud_config = CPT_AUD_CONFIG_A;
4486 		aud_cntl_st = CPT_AUD_CNTL_ST_A;
4487 		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4488 	}
4489 
4490 	i = to_intel_crtc(crtc)->pipe;
4491 	hdmiw_hdmiedid += i * 0x100;
4492 	aud_cntl_st += i * 0x100;
4493 	aud_config += i * 0x100;
4494 
4495 	DRM_DEBUG_KMS("ELD on pipe %c\n", pipe_name(i));
4496 
4497 	i = I915_READ(aud_cntl_st);
4498 	i = (i >> 29) & 0x3;		/* DIP_Port_Select, 0x1 = PortB */
4499 	if (!i) {
4500 		DRM_DEBUG_KMS("Audio directed to unknown port\n");
4501 		/* operate blindly on all ports */
4502 		eldv = IBX_ELD_VALIDB;
4503 		eldv |= IBX_ELD_VALIDB << 4;
4504 		eldv |= IBX_ELD_VALIDB << 8;
4505 	} else {
4506 		DRM_DEBUG_KMS("ELD on port %c\n", 'A' + i);
4507 		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4508 	}
4509 
4510 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4511 		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4512 		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
4513 		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4514 	} else
4515 		I915_WRITE(aud_config, 0);
4516 
4517 	if (intel_eld_uptodate(connector,
4518 			       aud_cntrl_st2, eldv,
4519 			       aud_cntl_st, IBX_ELD_ADDRESS,
4520 			       hdmiw_hdmiedid))
4521 		return;
4522 
4523 	i = I915_READ(aud_cntrl_st2);
4524 	i &= ~eldv;
4525 	I915_WRITE(aud_cntrl_st2, i);
4526 
4527 	if (!eld[0])
4528 		return;
4529 
4530 	i = I915_READ(aud_cntl_st);
4531 	i &= ~IBX_ELD_ADDRESS;
4532 	I915_WRITE(aud_cntl_st, i);
4533 
4534 	/* 84 bytes of hw ELD buffer */
4535 	len = 21;
4536 	if (eld[2] < (uint8_t)len)
4537 		len = eld[2];
4538 	DRM_DEBUG_KMS("ELD size %d\n", len);
4539 	for (i = 0; i < len; i++)
4540 		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4541 
4542 	i = I915_READ(aud_cntrl_st2);
4543 	i |= eldv;
4544 	I915_WRITE(aud_cntrl_st2, i);
4545 }
4546 
4547 void intel_write_eld(struct drm_encoder *encoder,
4548 		     struct drm_display_mode *mode)
4549 {
4550 	struct drm_crtc *crtc = encoder->crtc;
4551 	struct drm_connector *connector;
4552 	struct drm_device *dev = encoder->dev;
4553 	struct drm_i915_private *dev_priv = dev->dev_private;
4554 
4555 	connector = drm_select_eld(encoder, mode);
4556 	if (!connector)
4557 		return;
4558 
4559 	DRM_DEBUG_KMS("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4560 			 connector->base.id,
4561 			 drm_get_connector_name(connector),
4562 			 connector->encoder->base.id,
4563 			 drm_get_encoder_name(connector->encoder));
4564 
4565 	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4566 
4567 	if (dev_priv->display.write_eld)
4568 		dev_priv->display.write_eld(connector, crtc);
4569 }
4570 
4571 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4572 void intel_crtc_load_lut(struct drm_crtc *crtc)
4573 {
4574 	struct drm_device *dev = crtc->dev;
4575 	struct drm_i915_private *dev_priv = dev->dev_private;
4576 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4577 	int palreg = PALETTE(intel_crtc->pipe);
4578 	int i;
4579 
4580 	/* The clocks have to be on to load the palette. */
4581 	if (!crtc->enabled || !intel_crtc->active)
4582 		return;
4583 
4584 	/* use legacy palette for Ironlake */
4585 	if (HAS_PCH_SPLIT(dev))
4586 		palreg = LGC_PALETTE(intel_crtc->pipe);
4587 
4588 	for (i = 0; i < 256; i++) {
4589 		I915_WRITE(palreg + 4 * i,
4590 			   (intel_crtc->lut_r[i] << 16) |
4591 			   (intel_crtc->lut_g[i] << 8) |
4592 			   intel_crtc->lut_b[i]);
4593 	}
4594 }
4595 
4596 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4597 {
4598 	struct drm_device *dev = crtc->dev;
4599 	struct drm_i915_private *dev_priv = dev->dev_private;
4600 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4601 	bool visible = base != 0;
4602 	u32 cntl;
4603 
4604 	if (intel_crtc->cursor_visible == visible)
4605 		return;
4606 
4607 	cntl = I915_READ(_CURACNTR);
4608 	if (visible) {
4609 		/* On these chipsets we can only modify the base whilst
4610 		 * the cursor is disabled.
4611 		 */
4612 		I915_WRITE(_CURABASE, base);
4613 
4614 		cntl &= ~(CURSOR_FORMAT_MASK);
4615 		/* XXX width must be 64, stride 256 => 0x00 << 28 */
4616 		cntl |= CURSOR_ENABLE |
4617 			CURSOR_GAMMA_ENABLE |
4618 			CURSOR_FORMAT_ARGB;
4619 	} else
4620 		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4621 	I915_WRITE(_CURACNTR, cntl);
4622 
4623 	intel_crtc->cursor_visible = visible;
4624 }
4625 
4626 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4627 {
4628 	struct drm_device *dev = crtc->dev;
4629 	struct drm_i915_private *dev_priv = dev->dev_private;
4630 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4631 	int pipe = intel_crtc->pipe;
4632 	bool visible = base != 0;
4633 
4634 	if (intel_crtc->cursor_visible != visible) {
4635 		uint32_t cntl = I915_READ(CURCNTR(pipe));
4636 		if (base) {
4637 			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4638 			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4639 			cntl |= pipe << 28; /* Connect to correct pipe */
4640 		} else {
4641 			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4642 			cntl |= CURSOR_MODE_DISABLE;
4643 		}
4644 		I915_WRITE(CURCNTR(pipe), cntl);
4645 
4646 		intel_crtc->cursor_visible = visible;
4647 	}
4648 	/* and commit changes on next vblank */
4649 	I915_WRITE(CURBASE(pipe), base);
4650 }
4651 
4652 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
4653 {
4654 	struct drm_device *dev = crtc->dev;
4655 	struct drm_i915_private *dev_priv = dev->dev_private;
4656 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4657 	int pipe = intel_crtc->pipe;
4658 	bool visible = base != 0;
4659 
4660 	if (intel_crtc->cursor_visible != visible) {
4661 		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
4662 		if (base) {
4663 			cntl &= ~CURSOR_MODE;
4664 			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4665 		} else {
4666 			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4667 			cntl |= CURSOR_MODE_DISABLE;
4668 		}
4669 		I915_WRITE(CURCNTR_IVB(pipe), cntl);
4670 
4671 		intel_crtc->cursor_visible = visible;
4672 	}
4673 	/* and commit changes on next vblank */
4674 	I915_WRITE(CURBASE_IVB(pipe), base);
4675 }
4676 
4677 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4678 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4679 				     bool on)
4680 {
4681 	struct drm_device *dev = crtc->dev;
4682 	struct drm_i915_private *dev_priv = dev->dev_private;
4683 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4684 	int pipe = intel_crtc->pipe;
4685 	int x = intel_crtc->cursor_x;
4686 	int y = intel_crtc->cursor_y;
4687 	u32 base, pos;
4688 	bool visible;
4689 
4690 	pos = 0;
4691 
4692 	if (on && crtc->enabled && crtc->fb) {
4693 		base = intel_crtc->cursor_addr;
4694 		if (x > (int) crtc->fb->width)
4695 			base = 0;
4696 
4697 		if (y > (int) crtc->fb->height)
4698 			base = 0;
4699 	} else
4700 		base = 0;
4701 
4702 	if (x < 0) {
4703 		if (x + intel_crtc->cursor_width < 0)
4704 			base = 0;
4705 
4706 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4707 		x = -x;
4708 	}
4709 	pos |= x << CURSOR_X_SHIFT;
4710 
4711 	if (y < 0) {
4712 		if (y + intel_crtc->cursor_height < 0)
4713 			base = 0;
4714 
4715 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4716 		y = -y;
4717 	}
4718 	pos |= y << CURSOR_Y_SHIFT;
4719 
4720 	visible = base != 0;
4721 	if (!visible && !intel_crtc->cursor_visible)
4722 		return;
4723 
4724 	if (IS_IVYBRIDGE(dev)) {
4725 		I915_WRITE(CURPOS_IVB(pipe), pos);
4726 		ivb_update_cursor(crtc, base);
4727 	} else {
4728 		I915_WRITE(CURPOS(pipe), pos);
4729 		if (IS_845G(dev) || IS_I865G(dev))
4730 			i845_update_cursor(crtc, base);
4731 		else
4732 			i9xx_update_cursor(crtc, base);
4733 	}
4734 }
4735 
4736 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4737 				 struct drm_file *file,
4738 				 uint32_t handle,
4739 				 uint32_t width, uint32_t height)
4740 {
4741 	struct drm_device *dev = crtc->dev;
4742 	struct drm_i915_private *dev_priv = dev->dev_private;
4743 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4744 	struct drm_i915_gem_object *obj;
4745 	uint32_t addr;
4746 	int ret;
4747 
4748 	DRM_DEBUG_KMS("\n");
4749 
4750 	/* if we want to turn off the cursor ignore width and height */
4751 	if (!handle) {
4752 		DRM_DEBUG_KMS("cursor off\n");
4753 		addr = 0;
4754 		obj = NULL;
4755 		DRM_LOCK(dev);
4756 		goto finish;
4757 	}
4758 
4759 	/* Currently we only support 64x64 cursors */
4760 	if (width != 64 || height != 64) {
4761 		DRM_ERROR("we currently only support 64x64 cursors\n");
4762 		return -EINVAL;
4763 	}
4764 
4765 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4766 	if (&obj->base == NULL)
4767 		return -ENOENT;
4768 
4769 	if (obj->base.size < width * height * 4) {
4770 		DRM_ERROR("buffer is to small\n");
4771 		ret = -ENOMEM;
4772 		goto fail;
4773 	}
4774 
4775 	/* we only need to pin inside GTT if cursor is non-phy */
4776 	DRM_LOCK(dev);
4777 	if (!dev_priv->info->cursor_needs_physical) {
4778 		if (obj->tiling_mode) {
4779 			DRM_ERROR("cursor cannot be tiled\n");
4780 			ret = -EINVAL;
4781 			goto fail_locked;
4782 		}
4783 
4784 		ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
4785 		if (ret) {
4786 			DRM_ERROR("failed to move cursor bo into the GTT\n");
4787 			goto fail_locked;
4788 		}
4789 
4790 		ret = i915_gem_object_put_fence(obj);
4791 		if (ret) {
4792 			DRM_ERROR("failed to release fence for cursor\n");
4793 			goto fail_unpin;
4794 		}
4795 
4796 		addr = obj->gtt_offset;
4797 	} else {
4798 		int align = IS_I830(dev) ? 16 * 1024 : 256;
4799 		ret = i915_gem_attach_phys_object(dev, obj,
4800 						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4801 						  align);
4802 		if (ret) {
4803 			DRM_ERROR("failed to attach phys object\n");
4804 			goto fail_locked;
4805 		}
4806 		addr = obj->phys_obj->handle->busaddr;
4807 	}
4808 
4809 	if (IS_GEN2(dev))
4810 		I915_WRITE(CURSIZE, (height << 12) | width);
4811 
4812  finish:
4813 	if (intel_crtc->cursor_bo) {
4814 		if (dev_priv->info->cursor_needs_physical) {
4815 			if (intel_crtc->cursor_bo != obj)
4816 				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4817 		} else
4818 			i915_gem_object_unpin(intel_crtc->cursor_bo);
4819 		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4820 	}
4821 
4822 	DRM_UNLOCK(dev);
4823 
4824 	intel_crtc->cursor_addr = addr;
4825 	intel_crtc->cursor_bo = obj;
4826 	intel_crtc->cursor_width = width;
4827 	intel_crtc->cursor_height = height;
4828 
4829 	intel_crtc_update_cursor(crtc, true);
4830 
4831 	return 0;
4832 fail_unpin:
4833 	i915_gem_object_unpin(obj);
4834 fail_locked:
4835 	DRM_UNLOCK(dev);
4836 fail:
4837 	drm_gem_object_unreference_unlocked(&obj->base);
4838 	return ret;
4839 }
4840 
4841 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4842 {
4843 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4844 
4845 	intel_crtc->cursor_x = x;
4846 	intel_crtc->cursor_y = y;
4847 
4848 	intel_crtc_update_cursor(crtc, true);
4849 
4850 	return 0;
4851 }
4852 
4853 /** Sets the color ramps on behalf of RandR */
4854 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4855 				 u16 blue, int regno)
4856 {
4857 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4858 
4859 	intel_crtc->lut_r[regno] = red >> 8;
4860 	intel_crtc->lut_g[regno] = green >> 8;
4861 	intel_crtc->lut_b[regno] = blue >> 8;
4862 }
4863 
4864 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4865 			     u16 *blue, int regno)
4866 {
4867 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4868 
4869 	*red = intel_crtc->lut_r[regno] << 8;
4870 	*green = intel_crtc->lut_g[regno] << 8;
4871 	*blue = intel_crtc->lut_b[regno] << 8;
4872 }
4873 
4874 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4875 				 u16 *blue, uint32_t start, uint32_t size)
4876 {
4877 	int end = (start + size > 256) ? 256 : start + size, i;
4878 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4879 
4880 	for (i = start; i < end; i++) {
4881 		intel_crtc->lut_r[i] = red[i] >> 8;
4882 		intel_crtc->lut_g[i] = green[i] >> 8;
4883 		intel_crtc->lut_b[i] = blue[i] >> 8;
4884 	}
4885 
4886 	intel_crtc_load_lut(crtc);
4887 }
4888 
4889 /**
4890  * Get a pipe with a simple mode set on it for doing load-based monitor
4891  * detection.
4892  *
4893  * It will be up to the load-detect code to adjust the pipe as appropriate for
4894  * its requirements.  The pipe will be connected to no other encoders.
4895  *
4896  * Currently this code will only succeed if there is a pipe with no encoders
4897  * configured for it.  In the future, it could choose to temporarily disable
4898  * some outputs to free up a pipe for its use.
4899  *
4900  * \return crtc, or NULL if no pipes are available.
4901  */
4902 
4903 /* VESA 640x480x72Hz mode to set on the pipe */
4904 static struct drm_display_mode load_detect_mode = {
4905 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4906 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4907 };
4908 
4909 static struct drm_framebuffer *
4910 intel_framebuffer_create(struct drm_device *dev,
4911 			 struct drm_mode_fb_cmd2 *mode_cmd,
4912 			 struct drm_i915_gem_object *obj)
4913 {
4914 	struct intel_framebuffer *intel_fb;
4915 	int ret;
4916 
4917 	intel_fb = kmalloc(sizeof(*intel_fb), DRM_MEM_KMS, M_WAITOK | M_ZERO);
4918 	if (!intel_fb) {
4919 		drm_gem_object_unreference_unlocked(&obj->base);
4920 		return ERR_PTR(-ENOMEM);
4921 	}
4922 
4923 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
4924 	if (ret) {
4925 		drm_gem_object_unreference_unlocked(&obj->base);
4926 		kfree(intel_fb, DRM_MEM_KMS);
4927 		return ERR_PTR(ret);
4928 	}
4929 
4930 	return &intel_fb->base;
4931 }
4932 
4933 static u32
4934 intel_framebuffer_pitch_for_width(int width, int bpp)
4935 {
4936 	u32 pitch = howmany(width * bpp, 8);
4937 	return roundup2(pitch, 64);
4938 }
4939 
4940 static u32
4941 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
4942 {
4943 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
4944 	return roundup2(pitch * mode->vdisplay, PAGE_SIZE);
4945 }
4946 
4947 static struct drm_framebuffer *
4948 intel_framebuffer_create_for_mode(struct drm_device *dev,
4949 				  struct drm_display_mode *mode,
4950 				  int depth, int bpp)
4951 {
4952 	struct drm_i915_gem_object *obj;
4953 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
4954 
4955 	obj = i915_gem_alloc_object(dev,
4956 				    intel_framebuffer_size_for_mode(mode, bpp));
4957 	if (obj == NULL)
4958 		return ERR_PTR(-ENOMEM);
4959 
4960 	mode_cmd.width = mode->hdisplay;
4961 	mode_cmd.height = mode->vdisplay;
4962 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
4963 								bpp);
4964 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
4965 
4966 	return intel_framebuffer_create(dev, &mode_cmd, obj);
4967 }
4968 
4969 static int
4970 mode_fits_in_fbdev(struct drm_device *dev,
4971     struct drm_display_mode *mode, struct drm_framebuffer **res)
4972 {
4973 	struct drm_i915_private *dev_priv = dev->dev_private;
4974 	struct drm_i915_gem_object *obj;
4975 	struct drm_framebuffer *fb;
4976 
4977 	if (dev_priv->fbdev == NULL) {
4978 		*res = NULL;
4979 		return (0);
4980 	}
4981 
4982 	obj = dev_priv->fbdev->ifb.obj;
4983 	if (obj == NULL) {
4984 		*res = NULL;
4985 		return (0);
4986 	}
4987 
4988 	fb = &dev_priv->fbdev->ifb.base;
4989 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
4990 	    fb->bits_per_pixel)) {
4991 		*res = NULL;
4992 		return (0);
4993 	}
4994 
4995 	if (obj->base.size < mode->vdisplay * fb->pitches[0]) {
4996 		*res = NULL;
4997 		return (0);
4998 	}
4999 
5000 	*res = fb;
5001 	return (0);
5002 }
5003 
5004 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5005 				struct drm_connector *connector,
5006 				struct drm_display_mode *mode,
5007 				struct intel_load_detect_pipe *old)
5008 {
5009 	struct intel_crtc *intel_crtc;
5010 	struct drm_crtc *possible_crtc;
5011 	struct drm_encoder *encoder = &intel_encoder->base;
5012 	struct drm_crtc *crtc = NULL;
5013 	struct drm_device *dev = encoder->dev;
5014 	struct drm_framebuffer *old_fb;
5015 	int i = -1, r;
5016 
5017 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5018 		      connector->base.id, drm_get_connector_name(connector),
5019 		      encoder->base.id, drm_get_encoder_name(encoder));
5020 
5021 	/*
5022 	 * Algorithm gets a little messy:
5023 	 *
5024 	 *   - if the connector already has an assigned crtc, use it (but make
5025 	 *     sure it's on first)
5026 	 *
5027 	 *   - try to find the first unused crtc that can drive this connector,
5028 	 *     and use that if we find one
5029 	 */
5030 
5031 	/* See if we already have a CRTC for this connector */
5032 	if (encoder->crtc) {
5033 		crtc = encoder->crtc;
5034 
5035 		intel_crtc = to_intel_crtc(crtc);
5036 		old->dpms_mode = intel_crtc->dpms_mode;
5037 		old->load_detect_temp = false;
5038 
5039 		/* Make sure the crtc and connector are running */
5040 		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5041 			struct drm_encoder_helper_funcs *encoder_funcs;
5042 			struct drm_crtc_helper_funcs *crtc_funcs;
5043 
5044 			crtc_funcs = crtc->helper_private;
5045 			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5046 
5047 			encoder_funcs = encoder->helper_private;
5048 			encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5049 		}
5050 
5051 		return true;
5052 	}
5053 
5054 	/* Find an unused one (if possible) */
5055 	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5056 		i++;
5057 		if (!(encoder->possible_crtcs & (1 << i)))
5058 			continue;
5059 		if (!possible_crtc->enabled) {
5060 			crtc = possible_crtc;
5061 			break;
5062 		}
5063 	}
5064 
5065 	/*
5066 	 * If we didn't find an unused CRTC, don't use any.
5067 	 */
5068 	if (!crtc) {
5069 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
5070 		return false;
5071 	}
5072 
5073 	encoder->crtc = crtc;
5074 	connector->encoder = encoder;
5075 
5076 	intel_crtc = to_intel_crtc(crtc);
5077 	old->dpms_mode = intel_crtc->dpms_mode;
5078 	old->load_detect_temp = true;
5079 	old->release_fb = NULL;
5080 
5081 	if (!mode)
5082 		mode = &load_detect_mode;
5083 
5084 	old_fb = crtc->fb;
5085 
5086 	/* We need a framebuffer large enough to accommodate all accesses
5087 	 * that the plane may generate whilst we perform load detection.
5088 	 * We can not rely on the fbcon either being present (we get called
5089 	 * during its initialisation to detect all boot displays, or it may
5090 	 * not even exist) or that it is large enough to satisfy the
5091 	 * requested mode.
5092 	 */
5093 	r = mode_fits_in_fbdev(dev, mode, &crtc->fb);
5094 	if (crtc->fb == NULL) {
5095 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5096 		crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5097 		old->release_fb = crtc->fb;
5098 	} else
5099 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5100 	if (IS_ERR(crtc->fb)) {
5101 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5102 		return false;
5103 	}
5104 
5105 	if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5106 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5107 		if (old->release_fb)
5108 			old->release_fb->funcs->destroy(old->release_fb);
5109 		crtc->fb = old_fb;
5110 		return false;
5111 	}
5112 
5113 	/* let the connector get through one full cycle before testing */
5114 	intel_wait_for_vblank(dev, intel_crtc->pipe);
5115 
5116 	return true;
5117 }
5118 
5119 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5120 				    struct drm_connector *connector,
5121 				    struct intel_load_detect_pipe *old)
5122 {
5123 	struct drm_encoder *encoder = &intel_encoder->base;
5124 	struct drm_device *dev = encoder->dev;
5125 	struct drm_crtc *crtc = encoder->crtc;
5126 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5127 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5128 
5129 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5130 		      connector->base.id, drm_get_connector_name(connector),
5131 		      encoder->base.id, drm_get_encoder_name(encoder));
5132 
5133 	if (old->load_detect_temp) {
5134 		connector->encoder = NULL;
5135 		drm_helper_disable_unused_functions(dev);
5136 
5137 		if (old->release_fb)
5138 			old->release_fb->funcs->destroy(old->release_fb);
5139 
5140 		return;
5141 	}
5142 
5143 	/* Switch crtc and encoder back off if necessary */
5144 	if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5145 		encoder_funcs->dpms(encoder, old->dpms_mode);
5146 		crtc_funcs->dpms(crtc, old->dpms_mode);
5147 	}
5148 }
5149 
5150 /* Returns the clock of the currently programmed mode of the given pipe. */
5151 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5152 {
5153 	struct drm_i915_private *dev_priv = dev->dev_private;
5154 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5155 	int pipe = intel_crtc->pipe;
5156 	u32 dpll = I915_READ(DPLL(pipe));
5157 	u32 fp;
5158 	intel_clock_t clock;
5159 
5160 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5161 		fp = I915_READ(FP0(pipe));
5162 	else
5163 		fp = I915_READ(FP1(pipe));
5164 
5165 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5166 	if (IS_PINEVIEW(dev)) {
5167 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5168 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5169 	} else {
5170 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5171 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5172 	}
5173 
5174 	if (!IS_GEN2(dev)) {
5175 		if (IS_PINEVIEW(dev))
5176 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5177 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5178 		else
5179 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5180 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
5181 
5182 		switch (dpll & DPLL_MODE_MASK) {
5183 		case DPLLB_MODE_DAC_SERIAL:
5184 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5185 				5 : 10;
5186 			break;
5187 		case DPLLB_MODE_LVDS:
5188 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5189 				7 : 14;
5190 			break;
5191 		default:
5192 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5193 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
5194 			return 0;
5195 		}
5196 
5197 		/* XXX: Handle the 100Mhz refclk */
5198 		intel_clock(dev, 96000, &clock);
5199 	} else {
5200 		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5201 
5202 		if (is_lvds) {
5203 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5204 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
5205 			clock.p2 = 14;
5206 
5207 			if ((dpll & PLL_REF_INPUT_MASK) ==
5208 			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5209 				/* XXX: might not be 66MHz */
5210 				intel_clock(dev, 66000, &clock);
5211 			} else
5212 				intel_clock(dev, 48000, &clock);
5213 		} else {
5214 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
5215 				clock.p1 = 2;
5216 			else {
5217 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5218 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5219 			}
5220 			if (dpll & PLL_P2_DIVIDE_BY_4)
5221 				clock.p2 = 4;
5222 			else
5223 				clock.p2 = 2;
5224 
5225 			intel_clock(dev, 48000, &clock);
5226 		}
5227 	}
5228 
5229 	/* XXX: It would be nice to validate the clocks, but we can't reuse
5230 	 * i830PllIsValid() because it relies on the xf86_config connector
5231 	 * configuration being accurate, which it isn't necessarily.
5232 	 */
5233 
5234 	return clock.dot;
5235 }
5236 
5237 /** Returns the currently programmed mode of the given pipe. */
5238 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5239 					     struct drm_crtc *crtc)
5240 {
5241 	struct drm_i915_private *dev_priv = dev->dev_private;
5242 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5243 	int pipe = intel_crtc->pipe;
5244 	struct drm_display_mode *mode;
5245 	int htot = I915_READ(HTOTAL(pipe));
5246 	int hsync = I915_READ(HSYNC(pipe));
5247 	int vtot = I915_READ(VTOTAL(pipe));
5248 	int vsync = I915_READ(VSYNC(pipe));
5249 
5250 	mode = kmalloc(sizeof(*mode), DRM_MEM_KMS, M_WAITOK | M_ZERO);
5251 
5252 	mode->clock = intel_crtc_clock_get(dev, crtc);
5253 	mode->hdisplay = (htot & 0xffff) + 1;
5254 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5255 	mode->hsync_start = (hsync & 0xffff) + 1;
5256 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5257 	mode->vdisplay = (vtot & 0xffff) + 1;
5258 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5259 	mode->vsync_start = (vsync & 0xffff) + 1;
5260 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5261 
5262 	drm_mode_set_name(mode);
5263 	drm_mode_set_crtcinfo(mode, 0);
5264 
5265 	return mode;
5266 }
5267 
5268 static void intel_increase_pllclock(struct drm_crtc *crtc)
5269 {
5270 	struct drm_device *dev = crtc->dev;
5271 	drm_i915_private_t *dev_priv = dev->dev_private;
5272 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5273 	int pipe = intel_crtc->pipe;
5274 	int dpll_reg = DPLL(pipe);
5275 	int dpll;
5276 
5277 	if (HAS_PCH_SPLIT(dev))
5278 		return;
5279 
5280 	if (!dev_priv->lvds_downclock_avail)
5281 		return;
5282 
5283 	dpll = I915_READ(dpll_reg);
5284 	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5285 		DRM_DEBUG_DRIVER("upclocking LVDS\n");
5286 
5287 		assert_panel_unlocked(dev_priv, pipe);
5288 
5289 		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5290 		I915_WRITE(dpll_reg, dpll);
5291 		intel_wait_for_vblank(dev, pipe);
5292 
5293 		dpll = I915_READ(dpll_reg);
5294 		if (dpll & DISPLAY_RATE_SELECT_FPA1)
5295 			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5296 	}
5297 }
5298 
5299 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5300 {
5301 	struct drm_device *dev = crtc->dev;
5302 	drm_i915_private_t *dev_priv = dev->dev_private;
5303 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5304 
5305 	if (HAS_PCH_SPLIT(dev))
5306 		return;
5307 
5308 	if (!dev_priv->lvds_downclock_avail)
5309 		return;
5310 
5311 	/*
5312 	 * Since this is called by a timer, we should never get here in
5313 	 * the manual case.
5314 	 */
5315 	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5316 		int pipe = intel_crtc->pipe;
5317 		int dpll_reg = DPLL(pipe);
5318 		u32 dpll;
5319 
5320 		DRM_DEBUG_DRIVER("downclocking LVDS\n");
5321 
5322 		assert_panel_unlocked(dev_priv, pipe);
5323 
5324 		dpll = I915_READ(dpll_reg);
5325 		dpll |= DISPLAY_RATE_SELECT_FPA1;
5326 		I915_WRITE(dpll_reg, dpll);
5327 		intel_wait_for_vblank(dev, pipe);
5328 		dpll = I915_READ(dpll_reg);
5329 		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5330 			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5331 	}
5332 }
5333 
5334 void intel_mark_busy(struct drm_device *dev)
5335 {
5336 	i915_update_gfx_val(dev->dev_private);
5337 }
5338 
5339 void intel_mark_idle(struct drm_device *dev)
5340 {
5341 	struct drm_crtc *crtc;
5342 
5343 	if (!i915_powersave)
5344 		return;
5345 
5346 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5347 		if (!crtc->fb)
5348 			continue;
5349 
5350 		intel_decrease_pllclock(crtc);
5351 	}
5352 }
5353 
5354 static void intel_crtc_destroy(struct drm_crtc *crtc)
5355 {
5356 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5357 	struct drm_device *dev = crtc->dev;
5358 	struct intel_unpin_work *work;
5359 
5360 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5361 	work = intel_crtc->unpin_work;
5362 	intel_crtc->unpin_work = NULL;
5363 	lockmgr(&dev->event_lock, LK_RELEASE);
5364 
5365 	if (work) {
5366 		cancel_work_sync(&work->work);
5367 		kfree(work, DRM_MEM_KMS);
5368 	}
5369 
5370 	drm_crtc_cleanup(crtc);
5371 
5372 	drm_free(intel_crtc, DRM_MEM_KMS);
5373 }
5374 
5375 static void intel_unpin_work_fn(struct work_struct *__work)
5376 {
5377 	struct intel_unpin_work *work =
5378 				container_of(__work, struct intel_unpin_work, work);
5379 	struct drm_device *dev;
5380 
5381 	dev = work->dev;
5382 	DRM_LOCK(dev);
5383 	intel_unpin_fb_obj(work->old_fb_obj);
5384 	drm_gem_object_unreference(&work->pending_flip_obj->base);
5385 	drm_gem_object_unreference(&work->old_fb_obj->base);
5386 
5387 	intel_update_fbc(work->dev);
5388 	DRM_UNLOCK(dev);
5389 	drm_free(work, DRM_MEM_KMS);
5390 }
5391 
5392 static void do_intel_finish_page_flip(struct drm_device *dev,
5393 				      struct drm_crtc *crtc)
5394 {
5395 	drm_i915_private_t *dev_priv = dev->dev_private;
5396 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5397 	struct intel_unpin_work *work;
5398 	struct drm_i915_gem_object *obj;
5399 
5400 	/* Ignore early vblank irqs */
5401 	if (intel_crtc == NULL)
5402 		return;
5403 
5404 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5405 	work = intel_crtc->unpin_work;
5406 	if (work == NULL || !atomic_read(&work->pending)) {
5407 		lockmgr(&dev->event_lock, LK_RELEASE);
5408 		return;
5409 	}
5410 
5411 	intel_crtc->unpin_work = NULL;
5412 
5413 	if (work->event)
5414 		drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
5415 
5416 	drm_vblank_put(dev, intel_crtc->pipe);
5417 
5418 	lockmgr(&dev->event_lock, LK_RELEASE);
5419 
5420 	obj = work->old_fb_obj;
5421 
5422 	atomic_clear_mask(1 << intel_crtc->plane,
5423 			  &obj->pending_flip.counter);
5424 	wakeup(&obj->pending_flip);
5425 
5426 	queue_work(dev_priv->wq, &work->work);
5427 }
5428 
5429 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5430 {
5431 	drm_i915_private_t *dev_priv = dev->dev_private;
5432 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5433 
5434 	do_intel_finish_page_flip(dev, crtc);
5435 }
5436 
5437 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5438 {
5439 	drm_i915_private_t *dev_priv = dev->dev_private;
5440 	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5441 
5442 	do_intel_finish_page_flip(dev, crtc);
5443 }
5444 
5445 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5446 {
5447 	drm_i915_private_t *dev_priv = dev->dev_private;
5448 	struct intel_crtc *intel_crtc =
5449 		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5450 
5451 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5452 	if (intel_crtc->unpin_work)
5453 		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
5454 	lockmgr(&dev->event_lock, LK_RELEASE);
5455 }
5456 
5457 static int intel_gen2_queue_flip(struct drm_device *dev,
5458 				 struct drm_crtc *crtc,
5459 				 struct drm_framebuffer *fb,
5460 				 struct drm_i915_gem_object *obj)
5461 {
5462 	struct drm_i915_private *dev_priv = dev->dev_private;
5463 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5464 	unsigned long offset;
5465 	u32 flip_mask;
5466 	int ret;
5467 
5468 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5469 	if (ret)
5470 		goto out;
5471 
5472 	/* Offset into the new buffer for cases of shared fbs between CRTCs */
5473 	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5474 
5475 	ret = BEGIN_LP_RING(6);
5476 	if (ret)
5477 		goto out;
5478 
5479 	/* Can't queue multiple flips, so wait for the previous
5480 	 * one to finish before executing the next.
5481 	 */
5482 	if (intel_crtc->plane)
5483 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5484 	else
5485 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5486 	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5487 	OUT_RING(MI_NOOP);
5488 	OUT_RING(MI_DISPLAY_FLIP |
5489 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5490 	OUT_RING(fb->pitches[0]);
5491 	OUT_RING(obj->gtt_offset + offset);
5492 	OUT_RING(0); /* aux display base address, unused */
5493 	ADVANCE_LP_RING();
5494 out:
5495 	return ret;
5496 }
5497 
5498 static int intel_gen3_queue_flip(struct drm_device *dev,
5499 				 struct drm_crtc *crtc,
5500 				 struct drm_framebuffer *fb,
5501 				 struct drm_i915_gem_object *obj)
5502 {
5503 	struct drm_i915_private *dev_priv = dev->dev_private;
5504 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5505 	unsigned long offset;
5506 	u32 flip_mask;
5507 	int ret;
5508 
5509 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5510 	if (ret)
5511 		goto out;
5512 
5513 	/* Offset into the new buffer for cases of shared fbs between CRTCs */
5514 	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5515 
5516 	ret = BEGIN_LP_RING(6);
5517 	if (ret)
5518 		goto out;
5519 
5520 	if (intel_crtc->plane)
5521 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5522 	else
5523 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5524 	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5525 	OUT_RING(MI_NOOP);
5526 	OUT_RING(MI_DISPLAY_FLIP_I915 |
5527 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5528 	OUT_RING(fb->pitches[0]);
5529 	OUT_RING(obj->gtt_offset + offset);
5530 	OUT_RING(MI_NOOP);
5531 
5532 	ADVANCE_LP_RING();
5533 out:
5534 	return ret;
5535 }
5536 
5537 static int intel_gen4_queue_flip(struct drm_device *dev,
5538 				 struct drm_crtc *crtc,
5539 				 struct drm_framebuffer *fb,
5540 				 struct drm_i915_gem_object *obj)
5541 {
5542 	struct drm_i915_private *dev_priv = dev->dev_private;
5543 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5544 	uint32_t pf, pipesrc;
5545 	int ret;
5546 
5547 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5548 	if (ret)
5549 		goto out;
5550 
5551 	ret = BEGIN_LP_RING(4);
5552 	if (ret)
5553 		goto out;
5554 
5555 	/* i965+ uses the linear or tiled offsets from the
5556 	 * Display Registers (which do not change across a page-flip)
5557 	 * so we need only reprogram the base address.
5558 	 */
5559 	OUT_RING(MI_DISPLAY_FLIP |
5560 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5561 	OUT_RING(fb->pitches[0]);
5562 	OUT_RING(obj->gtt_offset | obj->tiling_mode);
5563 
5564 	/* XXX Enabling the panel-fitter across page-flip is so far
5565 	 * untested on non-native modes, so ignore it for now.
5566 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5567 	 */
5568 	pf = 0;
5569 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5570 	OUT_RING(pf | pipesrc);
5571 	ADVANCE_LP_RING();
5572 out:
5573 	return ret;
5574 }
5575 
5576 static int intel_gen6_queue_flip(struct drm_device *dev,
5577 				 struct drm_crtc *crtc,
5578 				 struct drm_framebuffer *fb,
5579 				 struct drm_i915_gem_object *obj)
5580 {
5581 	struct drm_i915_private *dev_priv = dev->dev_private;
5582 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5583 	uint32_t pf, pipesrc;
5584 	int ret;
5585 
5586 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5587 	if (ret)
5588 		goto out;
5589 
5590 	ret = BEGIN_LP_RING(4);
5591 	if (ret)
5592 		goto out;
5593 
5594 	OUT_RING(MI_DISPLAY_FLIP |
5595 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5596 	OUT_RING(fb->pitches[0] | obj->tiling_mode);
5597 	OUT_RING(obj->gtt_offset);
5598 
5599 	/* Contrary to the suggestions in the documentation,
5600 	 * "Enable Panel Fitter" does not seem to be required when page
5601 	 * flipping with a non-native mode, and worse causes a normal
5602 	 * modeset to fail.
5603 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
5604 	 */
5605 	pf = 0;
5606 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5607 	OUT_RING(pf | pipesrc);
5608 	ADVANCE_LP_RING();
5609 out:
5610 	return ret;
5611 }
5612 
5613 /*
5614  * On gen7 we currently use the blit ring because (in early silicon at least)
5615  * the render ring doesn't give us interrpts for page flip completion, which
5616  * means clients will hang after the first flip is queued.  Fortunately the
5617  * blit ring generates interrupts properly, so use it instead.
5618  */
5619 static int intel_gen7_queue_flip(struct drm_device *dev,
5620 				 struct drm_crtc *crtc,
5621 				 struct drm_framebuffer *fb,
5622 				 struct drm_i915_gem_object *obj)
5623 {
5624 	struct drm_i915_private *dev_priv = dev->dev_private;
5625 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5626 	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
5627 	int ret;
5628 
5629 	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5630 	if (ret)
5631 		goto out;
5632 
5633 	ret = intel_ring_begin(ring, 4);
5634 	if (ret)
5635 		goto out;
5636 
5637 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
5638 	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5639 	intel_ring_emit(ring, (obj->gtt_offset));
5640 	intel_ring_emit(ring, (MI_NOOP));
5641 	intel_ring_advance(ring);
5642 out:
5643 	return ret;
5644 }
5645 
5646 static int intel_default_queue_flip(struct drm_device *dev,
5647 				    struct drm_crtc *crtc,
5648 				    struct drm_framebuffer *fb,
5649 				    struct drm_i915_gem_object *obj)
5650 {
5651 	return -ENODEV;
5652 }
5653 
5654 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5655 				struct drm_framebuffer *fb,
5656 				struct drm_pending_vblank_event *event)
5657 {
5658 	struct drm_device *dev = crtc->dev;
5659 	struct drm_i915_private *dev_priv = dev->dev_private;
5660 	struct intel_framebuffer *intel_fb;
5661 	struct drm_i915_gem_object *obj;
5662 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5663 	struct intel_unpin_work *work;
5664 	int ret;
5665 
5666 	work = kmalloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
5667 
5668 	work->event = event;
5669 	work->dev = crtc->dev;
5670 	intel_fb = to_intel_framebuffer(crtc->fb);
5671 	work->old_fb_obj = intel_fb->obj;
5672 	INIT_WORK(&work->work, intel_unpin_work_fn);
5673 
5674 	ret = drm_vblank_get(dev, intel_crtc->pipe);
5675 	if (ret)
5676 		goto free_work;
5677 
5678 	/* We borrow the event spin lock for protecting unpin_work */
5679 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5680 	if (intel_crtc->unpin_work) {
5681 		lockmgr(&dev->event_lock, LK_RELEASE);
5682 		drm_free(work, DRM_MEM_KMS);
5683 		drm_vblank_put(dev, intel_crtc->pipe);
5684 
5685 		DRM_DEBUG("flip queue: crtc already busy\n");
5686 		return -EBUSY;
5687 	}
5688 	intel_crtc->unpin_work = work;
5689 	lockmgr(&dev->event_lock, LK_RELEASE);
5690 
5691 	intel_fb = to_intel_framebuffer(fb);
5692 	obj = intel_fb->obj;
5693 
5694 	DRM_LOCK(dev);
5695 
5696 	/* Reference the objects for the scheduled work. */
5697 	drm_gem_object_reference(&work->old_fb_obj->base);
5698 	drm_gem_object_reference(&obj->base);
5699 
5700 	crtc->fb = fb;
5701 
5702 	work->pending_flip_obj = obj;
5703 
5704 	work->enable_stall_check = true;
5705 
5706 	/* Block clients from rendering to the new back buffer until
5707 	 * the flip occurs and the object is no longer visible.
5708 	 */
5709 	atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5710 
5711 	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
5712 	if (ret)
5713 		goto cleanup_pending;
5714 	intel_disable_fbc(dev);
5715 	DRM_UNLOCK(dev);
5716 
5717 	return 0;
5718 
5719 cleanup_pending:
5720 	atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5721 	drm_gem_object_unreference(&work->old_fb_obj->base);
5722 	drm_gem_object_unreference(&obj->base);
5723 	DRM_UNLOCK(dev);
5724 
5725 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5726 	intel_crtc->unpin_work = NULL;
5727 	lockmgr(&dev->event_lock, LK_RELEASE);
5728 
5729 	drm_vblank_put(dev, intel_crtc->pipe);
5730 free_work:
5731 	drm_free(work, DRM_MEM_KMS);
5732 
5733 	return ret;
5734 }
5735 
5736 static void intel_sanitize_modesetting(struct drm_device *dev,
5737 				       int pipe, int plane)
5738 {
5739 	struct drm_i915_private *dev_priv = dev->dev_private;
5740 	u32 reg, val;
5741 
5742 	/* Clear any frame start delays used for debugging left by the BIOS */
5743 	for_each_pipe(pipe) {
5744 		reg = PIPECONF(pipe);
5745 		I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
5746 	}
5747 
5748 	if (HAS_PCH_SPLIT(dev))
5749 		return;
5750 
5751 	/* Who knows what state these registers were left in by the BIOS or
5752 	 * grub?
5753 	 *
5754 	 * If we leave the registers in a conflicting state (e.g. with the
5755 	 * display plane reading from the other pipe than the one we intend
5756 	 * to use) then when we attempt to teardown the active mode, we will
5757 	 * not disable the pipes and planes in the correct order -- leaving
5758 	 * a plane reading from a disabled pipe and possibly leading to
5759 	 * undefined behaviour.
5760 	 */
5761 
5762 	reg = DSPCNTR(plane);
5763 	val = I915_READ(reg);
5764 
5765 	if ((val & DISPLAY_PLANE_ENABLE) == 0)
5766 		return;
5767 	if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5768 		return;
5769 
5770 	/* This display plane is active and attached to the other CPU pipe. */
5771 	pipe = !pipe;
5772 
5773 	/* Disable the plane and wait for it to stop reading from the pipe. */
5774 	intel_disable_plane(dev_priv, plane, pipe);
5775 	intel_disable_pipe(dev_priv, pipe);
5776 }
5777 
5778 static void intel_crtc_reset(struct drm_crtc *crtc)
5779 {
5780 	struct drm_device *dev = crtc->dev;
5781 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5782 
5783 	/* Reset flags back to the 'unknown' status so that they
5784 	 * will be correctly set on the initial modeset.
5785 	 */
5786 	intel_crtc->dpms_mode = -1;
5787 
5788 	/* We need to fix up any BIOS configuration that conflicts with
5789 	 * our expectations.
5790 	 */
5791 	intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5792 }
5793 
5794 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5795 	.dpms = intel_crtc_dpms,
5796 	.mode_fixup = intel_crtc_mode_fixup,
5797 	.mode_set = intel_crtc_mode_set,
5798 	.mode_set_base = intel_pipe_set_base,
5799 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
5800 	.load_lut = intel_crtc_load_lut,
5801 	.disable = intel_crtc_disable,
5802 };
5803 
5804 static const struct drm_crtc_funcs intel_crtc_funcs = {
5805 	.reset = intel_crtc_reset,
5806 	.cursor_set = intel_crtc_cursor_set,
5807 	.cursor_move = intel_crtc_cursor_move,
5808 	.gamma_set = intel_crtc_gamma_set,
5809 	.set_config = drm_crtc_helper_set_config,
5810 	.destroy = intel_crtc_destroy,
5811 	.page_flip = intel_crtc_page_flip,
5812 };
5813 
5814 static void intel_cpu_pll_init(struct drm_device *dev)
5815 {
5816 #if 0
5817 	if (IS_HASWELL(dev))
5818 		intel_ddi_pll_init(dev);
5819 #endif
5820 }
5821 
5822 static void intel_pch_pll_init(struct drm_device *dev)
5823 {
5824 	drm_i915_private_t *dev_priv = dev->dev_private;
5825 	int i;
5826 
5827 	if (dev_priv->num_pch_pll == 0) {
5828 		DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
5829 		return;
5830 	}
5831 
5832 	for (i = 0; i < dev_priv->num_pch_pll; i++) {
5833 		dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
5834 		dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
5835 		dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
5836 	}
5837 }
5838 
5839 static void intel_crtc_init(struct drm_device *dev, int pipe)
5840 {
5841 	drm_i915_private_t *dev_priv = dev->dev_private;
5842 	struct intel_crtc *intel_crtc;
5843 	int i;
5844 
5845 	intel_crtc = kmalloc(sizeof(struct intel_crtc) +
5846 	    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
5847 	    DRM_MEM_KMS, M_WAITOK | M_ZERO);
5848 
5849 	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5850 
5851 	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5852 	for (i = 0; i < 256; i++) {
5853 		intel_crtc->lut_r[i] = i;
5854 		intel_crtc->lut_g[i] = i;
5855 		intel_crtc->lut_b[i] = i;
5856 	}
5857 
5858 	/* Swap pipes & planes for FBC on pre-965 */
5859 	intel_crtc->pipe = pipe;
5860 	intel_crtc->plane = pipe;
5861 	intel_crtc->cpu_transcoder = pipe;
5862 	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5863 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5864 		intel_crtc->plane = !pipe;
5865 	}
5866 
5867 	KASSERT(pipe < DRM_ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) &&
5868 	    dev_priv->plane_to_crtc_mapping[intel_crtc->plane] == NULL,
5869 	    ("plane_to_crtc is already initialized"));
5870 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5871 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5872 
5873 	intel_crtc_reset(&intel_crtc->base);
5874 	intel_crtc->active = true; /* force the pipe off on setup_init_config */
5875 	intel_crtc->bpp = 24; /* default for pre-Ironlake */
5876 
5877 	if (HAS_PCH_SPLIT(dev)) {
5878 		if (pipe == 2 && IS_IVYBRIDGE(dev))
5879 			intel_crtc->no_pll = true;
5880 		intel_helper_funcs.prepare = ironlake_crtc_prepare;
5881 		intel_helper_funcs.commit = ironlake_crtc_commit;
5882 	} else {
5883 		intel_helper_funcs.prepare = i9xx_crtc_prepare;
5884 		intel_helper_funcs.commit = i9xx_crtc_commit;
5885 	}
5886 
5887 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5888 
5889 	intel_crtc->busy = false;
5890 
5891 	callout_init_mp(&intel_crtc->idle_callout);
5892 }
5893 
5894 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5895 				struct drm_file *file)
5896 {
5897 	drm_i915_private_t *dev_priv = dev->dev_private;
5898 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5899 	struct drm_mode_object *drmmode_obj;
5900 	struct intel_crtc *crtc;
5901 
5902 	if (!dev_priv) {
5903 		DRM_ERROR("called with no initialization\n");
5904 		return -EINVAL;
5905 	}
5906 
5907 	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5908 			DRM_MODE_OBJECT_CRTC);
5909 
5910 	if (!drmmode_obj) {
5911 		DRM_ERROR("no such CRTC id\n");
5912 		return -EINVAL;
5913 	}
5914 
5915 	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5916 	pipe_from_crtc_id->pipe = crtc->pipe;
5917 
5918 	return 0;
5919 }
5920 
5921 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5922 {
5923 	struct intel_encoder *encoder;
5924 	int index_mask = 0;
5925 	int entry = 0;
5926 
5927 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5928 		if (type_mask & encoder->clone_mask)
5929 			index_mask |= (1 << entry);
5930 		entry++;
5931 	}
5932 
5933 	return index_mask;
5934 }
5935 
5936 static bool has_edp_a(struct drm_device *dev)
5937 {
5938 	struct drm_i915_private *dev_priv = dev->dev_private;
5939 
5940 	if (!IS_MOBILE(dev))
5941 		return false;
5942 
5943 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
5944 		return false;
5945 
5946 	if (IS_GEN5(dev) &&
5947 	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
5948 		return false;
5949 
5950 	return true;
5951 }
5952 
5953 static void intel_setup_outputs(struct drm_device *dev)
5954 {
5955 	struct drm_i915_private *dev_priv = dev->dev_private;
5956 	struct intel_encoder *encoder;
5957 	bool dpd_is_edp = false;
5958 	bool has_lvds;
5959 
5960 	has_lvds = intel_lvds_init(dev);
5961 	if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
5962 		/* disable the panel fitter on everything but LVDS */
5963 		I915_WRITE(PFIT_CONTROL, 0);
5964 	}
5965 
5966 	if (HAS_PCH_SPLIT(dev)) {
5967 		dpd_is_edp = intel_dpd_is_edp(dev);
5968 
5969 		if (has_edp_a(dev))
5970 			intel_dp_init(dev, DP_A);
5971 
5972 		if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5973 			intel_dp_init(dev, PCH_DP_D);
5974 	}
5975 
5976 	intel_crt_init(dev);
5977 
5978 	if (HAS_PCH_SPLIT(dev)) {
5979 		int found;
5980 
5981 		DRM_DEBUG_KMS(
5982 "HDMIB %d PCH_DP_B %d HDMIC %d HDMID %d PCH_DP_C %d PCH_DP_D %d LVDS %d\n",
5983 		    (I915_READ(HDMIB) & PORT_DETECTED) != 0,
5984 		    (I915_READ(PCH_DP_B) & DP_DETECTED) != 0,
5985 		    (I915_READ(HDMIC) & PORT_DETECTED) != 0,
5986 		    (I915_READ(HDMID) & PORT_DETECTED) != 0,
5987 		    (I915_READ(PCH_DP_C) & DP_DETECTED) != 0,
5988 		    (I915_READ(PCH_DP_D) & DP_DETECTED) != 0,
5989 		    (I915_READ(PCH_LVDS) & LVDS_DETECTED) != 0);
5990 
5991 		if (I915_READ(HDMIB) & PORT_DETECTED) {
5992 			/* PCH SDVOB multiplex with HDMIB */
5993 			found = intel_sdvo_init(dev, PCH_SDVOB);
5994 			if (!found)
5995 				intel_hdmi_init(dev, HDMIB);
5996 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5997 				intel_dp_init(dev, PCH_DP_B);
5998 		}
5999 
6000 		if (I915_READ(HDMIC) & PORT_DETECTED)
6001 			intel_hdmi_init(dev, HDMIC);
6002 
6003 		if (I915_READ(HDMID) & PORT_DETECTED)
6004 			intel_hdmi_init(dev, HDMID);
6005 
6006 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
6007 			intel_dp_init(dev, PCH_DP_C);
6008 
6009 		if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6010 			intel_dp_init(dev, PCH_DP_D);
6011 
6012 	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6013 		bool found = false;
6014 
6015 		if (I915_READ(SDVOB) & SDVO_DETECTED) {
6016 			DRM_DEBUG_KMS("probing SDVOB\n");
6017 			found = intel_sdvo_init(dev, SDVOB);
6018 			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6019 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6020 				intel_hdmi_init(dev, SDVOB);
6021 			}
6022 
6023 			if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6024 				DRM_DEBUG_KMS("probing DP_B\n");
6025 				intel_dp_init(dev, DP_B);
6026 			}
6027 		}
6028 
6029 		/* Before G4X SDVOC doesn't have its own detect register */
6030 
6031 		if (I915_READ(SDVOB) & SDVO_DETECTED) {
6032 			DRM_DEBUG_KMS("probing SDVOC\n");
6033 			found = intel_sdvo_init(dev, SDVOC);
6034 		}
6035 
6036 		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6037 
6038 			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6039 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6040 				intel_hdmi_init(dev, SDVOC);
6041 			}
6042 			if (SUPPORTS_INTEGRATED_DP(dev)) {
6043 				DRM_DEBUG_KMS("probing DP_C\n");
6044 				intel_dp_init(dev, DP_C);
6045 			}
6046 		}
6047 
6048 		if (SUPPORTS_INTEGRATED_DP(dev) &&
6049 		    (I915_READ(DP_D) & DP_DETECTED)) {
6050 			DRM_DEBUG_KMS("probing DP_D\n");
6051 			intel_dp_init(dev, DP_D);
6052 		}
6053 	} else if (IS_GEN2(dev)) {
6054 #if 1
6055 		KIB_NOTYET();
6056 #else
6057 		intel_dvo_init(dev);
6058 #endif
6059 	}
6060 
6061 	if (SUPPORTS_TV(dev))
6062 		intel_tv_init(dev);
6063 
6064 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6065 		encoder->base.possible_crtcs = encoder->crtc_mask;
6066 		encoder->base.possible_clones =
6067 			intel_encoder_clones(dev, encoder->clone_mask);
6068 	}
6069 
6070 	/* disable all the possible outputs/crtcs before entering KMS mode */
6071 	drm_helper_disable_unused_functions(dev);
6072 
6073 	if (HAS_PCH_SPLIT(dev))
6074 		ironlake_init_pch_refclk(dev);
6075 }
6076 
6077 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6078 {
6079 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6080 
6081 	drm_framebuffer_cleanup(fb);
6082 	drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6083 
6084 	drm_free(intel_fb, DRM_MEM_KMS);
6085 }
6086 
6087 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6088 						struct drm_file *file,
6089 						unsigned int *handle)
6090 {
6091 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6092 	struct drm_i915_gem_object *obj = intel_fb->obj;
6093 
6094 	return drm_gem_handle_create(file, &obj->base, handle);
6095 }
6096 
6097 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6098 	.destroy = intel_user_framebuffer_destroy,
6099 	.create_handle = intel_user_framebuffer_create_handle,
6100 };
6101 
6102 int intel_framebuffer_init(struct drm_device *dev,
6103 			   struct intel_framebuffer *intel_fb,
6104 			   struct drm_mode_fb_cmd2 *mode_cmd,
6105 			   struct drm_i915_gem_object *obj)
6106 {
6107 	int ret;
6108 
6109 	if (obj->tiling_mode == I915_TILING_Y)
6110 		return -EINVAL;
6111 
6112 	if (mode_cmd->pitches[0] & 63)
6113 		return -EINVAL;
6114 
6115 	switch (mode_cmd->pixel_format) {
6116 	case DRM_FORMAT_RGB332:
6117 	case DRM_FORMAT_RGB565:
6118 	case DRM_FORMAT_XRGB8888:
6119 	case DRM_FORMAT_XBGR8888:
6120 	case DRM_FORMAT_ARGB8888:
6121 	case DRM_FORMAT_XRGB2101010:
6122 	case DRM_FORMAT_ARGB2101010:
6123 		/* RGB formats are common across chipsets */
6124 		break;
6125 	case DRM_FORMAT_YUYV:
6126 	case DRM_FORMAT_UYVY:
6127 	case DRM_FORMAT_YVYU:
6128 	case DRM_FORMAT_VYUY:
6129 		break;
6130 	default:
6131 		DRM_DEBUG_KMS("unsupported pixel format %u\n",
6132 				mode_cmd->pixel_format);
6133 		return -EINVAL;
6134 	}
6135 
6136 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6137 	if (ret) {
6138 		DRM_ERROR("framebuffer init failed %d\n", ret);
6139 		return ret;
6140 	}
6141 
6142 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6143 	intel_fb->obj = obj;
6144 	return 0;
6145 }
6146 
6147 static struct drm_framebuffer *
6148 intel_user_framebuffer_create(struct drm_device *dev,
6149 			      struct drm_file *filp,
6150 			      struct drm_mode_fb_cmd2 *mode_cmd)
6151 {
6152 	struct drm_i915_gem_object *obj;
6153 
6154 	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6155 						mode_cmd->handles[0]));
6156 	if (&obj->base == NULL)
6157 		return ERR_PTR(-ENOENT);
6158 
6159 	return intel_framebuffer_create(dev, mode_cmd, obj);
6160 }
6161 
6162 static const struct drm_mode_config_funcs intel_mode_funcs = {
6163 	.fb_create = intel_user_framebuffer_create,
6164 	.output_poll_changed = intel_fb_output_poll_changed,
6165 };
6166 
6167 /* Set up chip specific display functions */
6168 static void intel_init_display(struct drm_device *dev)
6169 {
6170 	struct drm_i915_private *dev_priv = dev->dev_private;
6171 
6172 	/* We always want a DPMS function */
6173 	if (HAS_PCH_SPLIT(dev)) {
6174 		dev_priv->display.dpms = ironlake_crtc_dpms;
6175 		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6176 		dev_priv->display.update_plane = ironlake_update_plane;
6177 	} else {
6178 		dev_priv->display.dpms = i9xx_crtc_dpms;
6179 		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6180 		dev_priv->display.update_plane = i9xx_update_plane;
6181 	}
6182 
6183 	/* Returns the core display clock speed */
6184 	if (IS_VALLEYVIEW(dev))
6185 		dev_priv->display.get_display_clock_speed =
6186 			valleyview_get_display_clock_speed;
6187 	else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6188 		dev_priv->display.get_display_clock_speed =
6189 			i945_get_display_clock_speed;
6190 	else if (IS_I915G(dev))
6191 		dev_priv->display.get_display_clock_speed =
6192 			i915_get_display_clock_speed;
6193 	else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6194 		dev_priv->display.get_display_clock_speed =
6195 			i9xx_misc_get_display_clock_speed;
6196 	else if (IS_I915GM(dev))
6197 		dev_priv->display.get_display_clock_speed =
6198 			i915gm_get_display_clock_speed;
6199 	else if (IS_I865G(dev))
6200 		dev_priv->display.get_display_clock_speed =
6201 			i865_get_display_clock_speed;
6202 	else if (IS_I85X(dev))
6203 		dev_priv->display.get_display_clock_speed =
6204 			i855_get_display_clock_speed;
6205 	else /* 852, 830 */
6206 		dev_priv->display.get_display_clock_speed =
6207 			i830_get_display_clock_speed;
6208 
6209 	if (HAS_PCH_SPLIT(dev)) {
6210 		if (IS_GEN5(dev)) {
6211 			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6212 			dev_priv->display.write_eld = ironlake_write_eld;
6213 		} else if (IS_GEN6(dev)) {
6214 			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6215 			dev_priv->display.write_eld = ironlake_write_eld;
6216 		} else if (IS_IVYBRIDGE(dev)) {
6217 			/* FIXME: detect B0+ stepping and use auto training */
6218 			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6219 			dev_priv->display.write_eld = ironlake_write_eld;
6220 		} else
6221 			dev_priv->display.update_wm = NULL;
6222 	} else if (IS_G4X(dev)) {
6223 		dev_priv->display.write_eld = g4x_write_eld;
6224 	}
6225 
6226 	/* Default just returns -ENODEV to indicate unsupported */
6227 	dev_priv->display.queue_flip = intel_default_queue_flip;
6228 
6229 	switch (INTEL_INFO(dev)->gen) {
6230 	case 2:
6231 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
6232 		break;
6233 
6234 	case 3:
6235 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
6236 		break;
6237 
6238 	case 4:
6239 	case 5:
6240 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
6241 		break;
6242 
6243 	case 6:
6244 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
6245 		break;
6246 	case 7:
6247 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
6248 		break;
6249 	}
6250 }
6251 
6252 /*
6253  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6254  * resume, or other times.  This quirk makes sure that's the case for
6255  * affected systems.
6256  */
6257 static void quirk_pipea_force(struct drm_device *dev)
6258 {
6259 	struct drm_i915_private *dev_priv = dev->dev_private;
6260 
6261 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6262 	DRM_DEBUG("applying pipe a force quirk\n");
6263 }
6264 
6265 /*
6266  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6267  */
6268 static void quirk_ssc_force_disable(struct drm_device *dev)
6269 {
6270 	struct drm_i915_private *dev_priv = dev->dev_private;
6271 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6272 }
6273 
6274 struct intel_quirk {
6275 	int device;
6276 	int subsystem_vendor;
6277 	int subsystem_device;
6278 	void (*hook)(struct drm_device *dev);
6279 };
6280 
6281 #define	PCI_ANY_ID	(~0u)
6282 
6283 struct intel_quirk intel_quirks[] = {
6284 	/* HP Mini needs pipe A force quirk (LP: #322104) */
6285 	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6286 
6287 	/* Thinkpad R31 needs pipe A force quirk */
6288 	{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6289 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6290 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6291 
6292 	/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6293 	{ 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6294 	/* ThinkPad X40 needs pipe A force quirk */
6295 
6296 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6297 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6298 
6299 	/* 855 & before need to leave pipe A & dpll A up */
6300 	{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6301 	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6302 
6303 	/* Lenovo U160 cannot use SSC on LVDS */
6304 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6305 
6306 	/* Sony Vaio Y cannot use SSC on LVDS */
6307 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6308 };
6309 
6310 static void intel_init_quirks(struct drm_device *dev)
6311 {
6312 	struct intel_quirk *q;
6313 	device_t d;
6314 	int i;
6315 
6316 	d = dev->dev;
6317 	for (i = 0; i < DRM_ARRAY_SIZE(intel_quirks); i++) {
6318 		q = &intel_quirks[i];
6319 		if (pci_get_device(d) == q->device &&
6320 		    (pci_get_subvendor(d) == q->subsystem_vendor ||
6321 		     q->subsystem_vendor == PCI_ANY_ID) &&
6322 		    (pci_get_subdevice(d) == q->subsystem_device ||
6323 		     q->subsystem_device == PCI_ANY_ID))
6324 			q->hook(dev);
6325 	}
6326 }
6327 
6328 /* Disable the VGA plane that we never use */
6329 static void i915_disable_vga(struct drm_device *dev)
6330 {
6331 	struct drm_i915_private *dev_priv = dev->dev_private;
6332 	u8 sr1;
6333 	u32 vga_reg;
6334 
6335 	if (HAS_PCH_SPLIT(dev))
6336 		vga_reg = CPU_VGACNTRL;
6337 	else
6338 		vga_reg = VGACNTRL;
6339 
6340 #if 0
6341 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6342 #endif
6343 	outb(VGA_SR_INDEX, 1);
6344 	sr1 = inb(VGA_SR_DATA);
6345 	outb(VGA_SR_DATA, sr1 | 1 << 5);
6346 #if 0
6347 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6348 #endif
6349 	DELAY(300);
6350 
6351 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6352 	POSTING_READ(vga_reg);
6353 }
6354 
6355 void intel_modeset_init_hw(struct drm_device *dev)
6356 {
6357 	/* We attempt to init the necessary power wells early in the initialization
6358 	 * time, so the subsystems that expect power to be enabled can work.
6359 	 */
6360 	intel_init_power_wells(dev);
6361 
6362 #if 0
6363 	intel_prepare_ddi(dev);
6364 #endif
6365 
6366 	intel_init_clock_gating(dev);
6367 
6368 	DRM_LOCK(dev);
6369 	intel_enable_gt_powersave(dev);
6370 	DRM_UNLOCK(dev);
6371 }
6372 
6373 void intel_modeset_init(struct drm_device *dev)
6374 {
6375 	struct drm_i915_private *dev_priv = dev->dev_private;
6376 	int i, ret;
6377 
6378 	drm_mode_config_init(dev);
6379 
6380 	dev->mode_config.min_width = 0;
6381 	dev->mode_config.min_height = 0;
6382 
6383 	dev->mode_config.preferred_depth = 24;
6384 	dev->mode_config.prefer_shadow = 1;
6385 
6386 	dev->mode_config.funcs = &intel_mode_funcs;
6387 
6388 	intel_init_quirks(dev);
6389 
6390 	intel_init_pm(dev);
6391 
6392 	intel_init_display(dev);
6393 
6394 	if (IS_GEN2(dev)) {
6395 		dev->mode_config.max_width = 2048;
6396 		dev->mode_config.max_height = 2048;
6397 	} else if (IS_GEN3(dev)) {
6398 		dev->mode_config.max_width = 4096;
6399 		dev->mode_config.max_height = 4096;
6400 	} else {
6401 		dev->mode_config.max_width = 8192;
6402 		dev->mode_config.max_height = 8192;
6403 	}
6404 	dev->mode_config.fb_base = dev->agp->base;
6405 
6406 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
6407 		      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6408 
6409 	for (i = 0; i < dev_priv->num_pipe; i++) {
6410 		intel_crtc_init(dev, i);
6411 		ret = intel_plane_init(dev, i);
6412 		if (ret)
6413 			DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6414 	}
6415 
6416 	intel_cpu_pll_init(dev);
6417 	intel_pch_pll_init(dev);
6418 
6419 	/* Just disable it once at startup */
6420 	i915_disable_vga(dev);
6421 	intel_setup_outputs(dev);
6422 }
6423 
6424 void intel_modeset_gem_init(struct drm_device *dev)
6425 {
6426 	if (IS_IRONLAKE_M(dev))
6427 		ironlake_enable_rc6(dev);
6428 
6429 	intel_setup_overlay(dev);
6430 }
6431 
6432 void intel_modeset_cleanup(struct drm_device *dev)
6433 {
6434 	struct drm_i915_private *dev_priv = dev->dev_private;
6435 	struct drm_crtc *crtc;
6436 	struct intel_crtc *intel_crtc;
6437 
6438 	drm_kms_helper_poll_fini(dev);
6439 	DRM_LOCK(dev);
6440 
6441 #if 0
6442 	intel_unregister_dsm_handler();
6443 #endif
6444 
6445 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6446 		/* Skip inactive CRTCs */
6447 		if (!crtc->fb)
6448 			continue;
6449 
6450 		intel_crtc = to_intel_crtc(crtc);
6451 		intel_increase_pllclock(crtc);
6452 	}
6453 
6454 	intel_disable_fbc(dev);
6455 
6456 	intel_disable_gt_powersave(dev);
6457 
6458 	ironlake_teardown_rc6(dev);
6459 
6460 	if (IS_VALLEYVIEW(dev))
6461 		vlv_init_dpio(dev);
6462 
6463 	DRM_UNLOCK(dev);
6464 
6465 	/* Disable the irq before mode object teardown, for the irq might
6466 	 * enqueue unpin/hotplug work. */
6467 	drm_irq_uninstall(dev);
6468 	cancel_work_sync(&dev_priv->hotplug_work);
6469 	cancel_work_sync(&dev_priv->rps.work);
6470 
6471 	/* flush any delayed tasks or pending work */
6472 	flush_scheduled_work();
6473 
6474 	/* destroy backlight, if any, before the connectors */
6475 	intel_panel_destroy_backlight(dev);
6476 
6477 	drm_mode_config_cleanup(dev);
6478 }
6479 
6480 /*
6481  * Return which encoder is currently attached for connector.
6482  */
6483 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6484 {
6485 	return &intel_attached_encoder(connector)->base;
6486 }
6487 
6488 void intel_connector_attach_encoder(struct intel_connector *connector,
6489 				    struct intel_encoder *encoder)
6490 {
6491 	connector->encoder = encoder;
6492 	drm_mode_connector_attach_encoder(&connector->base,
6493 					  &encoder->base);
6494 }
6495 
6496 /*
6497  * set vga decode state - true == enable VGA decode
6498  */
6499 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6500 {
6501 	struct drm_i915_private *dev_priv;
6502 	device_t bridge_dev;
6503 	u16 gmch_ctrl;
6504 
6505 	dev_priv = dev->dev_private;
6506 	bridge_dev = intel_gtt_get_bridge_device();
6507 	gmch_ctrl = pci_read_config(bridge_dev, INTEL_GMCH_CTRL, 2);
6508 	if (state)
6509 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6510 	else
6511 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6512 	pci_write_config(bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl, 2);
6513 	return (0);
6514 }
6515 
6516 struct intel_display_error_state {
6517 	struct intel_cursor_error_state {
6518 		u32 control;
6519 		u32 position;
6520 		u32 base;
6521 		u32 size;
6522 	} cursor[2];
6523 
6524 	struct intel_pipe_error_state {
6525 		u32 conf;
6526 		u32 source;
6527 
6528 		u32 htotal;
6529 		u32 hblank;
6530 		u32 hsync;
6531 		u32 vtotal;
6532 		u32 vblank;
6533 		u32 vsync;
6534 	} pipe[2];
6535 
6536 	struct intel_plane_error_state {
6537 		u32 control;
6538 		u32 stride;
6539 		u32 size;
6540 		u32 pos;
6541 		u32 addr;
6542 		u32 surface;
6543 		u32 tile_offset;
6544 	} plane[2];
6545 };
6546 
6547 struct intel_display_error_state *
6548 intel_display_capture_error_state(struct drm_device *dev)
6549 {
6550 	drm_i915_private_t *dev_priv = dev->dev_private;
6551 	struct intel_display_error_state *error;
6552 	int i;
6553 
6554 	error = kmalloc(sizeof(*error), DRM_MEM_KMS, M_NOWAIT);
6555 	if (error == NULL)
6556 		return NULL;
6557 
6558 	for (i = 0; i < 2; i++) {
6559 		error->cursor[i].control = I915_READ(CURCNTR(i));
6560 		error->cursor[i].position = I915_READ(CURPOS(i));
6561 		error->cursor[i].base = I915_READ(CURBASE(i));
6562 
6563 		error->plane[i].control = I915_READ(DSPCNTR(i));
6564 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6565 		error->plane[i].size = I915_READ(DSPSIZE(i));
6566 		error->plane[i].pos = I915_READ(DSPPOS(i));
6567 		error->plane[i].addr = I915_READ(DSPADDR(i));
6568 		if (INTEL_INFO(dev)->gen >= 4) {
6569 			error->plane[i].surface = I915_READ(DSPSURF(i));
6570 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6571 		}
6572 
6573 		error->pipe[i].conf = I915_READ(PIPECONF(i));
6574 		error->pipe[i].source = I915_READ(PIPESRC(i));
6575 		error->pipe[i].htotal = I915_READ(HTOTAL(i));
6576 		error->pipe[i].hblank = I915_READ(HBLANK(i));
6577 		error->pipe[i].hsync = I915_READ(HSYNC(i));
6578 		error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6579 		error->pipe[i].vblank = I915_READ(VBLANK(i));
6580 		error->pipe[i].vsync = I915_READ(VSYNC(i));
6581 	}
6582 
6583 	return error;
6584 }
6585 
6586 void
6587 intel_display_print_error_state(struct sbuf *m,
6588 				struct drm_device *dev,
6589 				struct intel_display_error_state *error)
6590 {
6591 	int i;
6592 
6593 	for (i = 0; i < 2; i++) {
6594 		sbuf_printf(m, "Pipe [%d]:\n", i);
6595 		sbuf_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6596 		sbuf_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6597 		sbuf_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6598 		sbuf_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6599 		sbuf_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6600 		sbuf_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6601 		sbuf_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6602 		sbuf_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6603 
6604 		sbuf_printf(m, "Plane [%d]:\n", i);
6605 		sbuf_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6606 		sbuf_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6607 		sbuf_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6608 		sbuf_printf(m, "  POS: %08x\n", error->plane[i].pos);
6609 		sbuf_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6610 		if (INTEL_INFO(dev)->gen >= 4) {
6611 			sbuf_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6612 			sbuf_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6613 		}
6614 
6615 		sbuf_printf(m, "Cursor [%d]:\n", i);
6616 		sbuf_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
6617 		sbuf_printf(m, "  POS: %08x\n", error->cursor[i].position);
6618 		sbuf_printf(m, "  BASE: %08x\n", error->cursor[i].base);
6619 	}
6620 }
6621