xref: /dragonfly/sys/dev/drm/i915/intel_dp.c (revision 19b217af)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  * $FreeBSD: src/sys/dev/drm2/i915/intel_dp.c,v 1.1 2012/05/22 11:07:44 kib Exp $
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/drm_crtc.h>
31 #include <drm/drm_crtc_helper.h>
32 #include <drm/drm_edid.h>
33 #include "intel_drv.h"
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 
37 #define DP_RECEIVER_CAP_SIZE	0xf
38 #define DP_LINK_STATUS_SIZE	6
39 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40 
41 #define DP_LINK_CONFIGURATION_SIZE	9
42 
43 struct intel_dp {
44 	struct intel_encoder base;
45 	uint32_t output_reg;
46 	uint32_t DP;
47 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
48 	bool has_audio;
49 	enum hdmi_force_audio force_audio;
50 	uint32_t color_range;
51 	int dpms_mode;
52 	uint8_t link_bw;
53 	uint8_t lane_count;
54 	uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
55 	device_t dp_iic_bus;
56 	device_t adapter;
57 	bool is_pch_edp;
58 	uint8_t	train_set[4];
59 	int panel_power_up_delay;
60 	int panel_power_down_delay;
61 	int panel_power_cycle_delay;
62 	int backlight_on_delay;
63 	int backlight_off_delay;
64 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
65 	struct timeout_task panel_vdd_task;
66 	bool want_panel_vdd;
67 };
68 
69 /**
70  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
71  * @intel_dp: DP struct
72  *
73  * If a CPU or PCH DP output is attached to an eDP panel, this function
74  * will return true, and false otherwise.
75  */
76 static bool is_edp(struct intel_dp *intel_dp)
77 {
78 	return intel_dp->base.type == INTEL_OUTPUT_EDP;
79 }
80 
81 /**
82  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
83  * @intel_dp: DP struct
84  *
85  * Returns true if the given DP struct corresponds to a PCH DP port attached
86  * to an eDP panel, false otherwise.  Helpful for determining whether we
87  * may need FDI resources for a given DP output or not.
88  */
89 static bool is_pch_edp(struct intel_dp *intel_dp)
90 {
91 	return intel_dp->is_pch_edp;
92 }
93 
94 /**
95  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
96  * @intel_dp: DP struct
97  *
98  * Returns true if the given DP struct corresponds to a CPU eDP port.
99  */
100 static bool is_cpu_edp(struct intel_dp *intel_dp)
101 {
102 	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
103 }
104 
105 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
106 {
107 	return container_of(encoder, struct intel_dp, base.base);
108 }
109 
110 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
111 {
112 	return container_of(intel_attached_encoder(connector),
113 			    struct intel_dp, base);
114 }
115 
116 /**
117  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
118  * @encoder: DRM encoder
119  *
120  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
121  * by intel_display.c.
122  */
123 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
124 {
125 	struct intel_dp *intel_dp;
126 
127 	if (!encoder)
128 		return false;
129 
130 	intel_dp = enc_to_intel_dp(encoder);
131 
132 	return is_pch_edp(intel_dp);
133 }
134 
135 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
136 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
137 static void intel_dp_link_down(struct intel_dp *intel_dp);
138 
139 void
140 intel_edp_link_config(struct intel_encoder *intel_encoder,
141 		       int *lane_num, int *link_bw)
142 {
143 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
144 
145 	*lane_num = intel_dp->lane_count;
146 	if (intel_dp->link_bw == DP_LINK_BW_1_62)
147 		*link_bw = 162000;
148 	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
149 		*link_bw = 270000;
150 }
151 
152 static int
153 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
156 	switch (max_lane_count) {
157 	case 1: case 2: case 4:
158 		break;
159 	default:
160 		max_lane_count = 4;
161 	}
162 	return max_lane_count;
163 }
164 
165 static int
166 intel_dp_max_link_bw(struct intel_dp *intel_dp)
167 {
168 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
169 
170 	switch (max_link_bw) {
171 	case DP_LINK_BW_1_62:
172 	case DP_LINK_BW_2_7:
173 		break;
174 	default:
175 		max_link_bw = DP_LINK_BW_1_62;
176 		break;
177 	}
178 	return max_link_bw;
179 }
180 
181 static int
182 intel_dp_link_clock(uint8_t link_bw)
183 {
184 	if (link_bw == DP_LINK_BW_2_7)
185 		return 270000;
186 	else
187 		return 162000;
188 }
189 
190 /*
191  * The units on the numbers in the next two are... bizarre.  Examples will
192  * make it clearer; this one parallels an example in the eDP spec.
193  *
194  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
195  *
196  *     270000 * 1 * 8 / 10 == 216000
197  *
198  * The actual data capacity of that configuration is 2.16Gbit/s, so the
199  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
200  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
201  * 119000.  At 18bpp that's 2142000 kilobits per second.
202  *
203  * Thus the strange-looking division by 10 in intel_dp_link_required, to
204  * get the result in decakilobits instead of kilobits.
205  */
206 
207 static int
208 intel_dp_link_required(int pixel_clock, int bpp)
209 {
210 	return (pixel_clock * bpp + 9) / 10;
211 }
212 
213 static int
214 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
215 {
216 	return (max_link_clock * max_lanes * 8) / 10;
217 }
218 
219 static bool
220 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
221 			  const struct drm_display_mode *mode,
222 			  struct drm_display_mode *adjusted_mode)
223 {
224 	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
225 	int max_lanes = intel_dp_max_lane_count(intel_dp);
226 	int max_rate, mode_rate;
227 
228 	mode_rate = intel_dp_link_required(mode->clock, 24);
229 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
230 
231 	if (mode_rate > max_rate) {
232 		mode_rate = intel_dp_link_required(mode->clock, 18);
233 		if (mode_rate > max_rate)
234 			return false;
235 
236 		if (adjusted_mode)
237 			adjusted_mode->private_flags
238 				|= INTEL_MODE_DP_FORCE_6BPC;
239 
240 		return true;
241 	}
242 
243 	return true;
244 }
245 
246 static int
247 intel_dp_mode_valid(struct drm_connector *connector,
248 		    struct drm_display_mode *mode)
249 {
250 	struct intel_dp *intel_dp = intel_attached_dp(connector);
251 
252 	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
253 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
254 			return MODE_PANEL;
255 
256 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
257 			return MODE_PANEL;
258 	}
259 
260 	if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
261 		return MODE_CLOCK_HIGH;
262 
263 	if (mode->clock < 10000)
264 		return MODE_CLOCK_LOW;
265 
266 	return MODE_OK;
267 }
268 
269 static uint32_t
270 pack_aux(uint8_t *src, int src_bytes)
271 {
272 	int	i;
273 	uint32_t v = 0;
274 
275 	if (src_bytes > 4)
276 		src_bytes = 4;
277 	for (i = 0; i < src_bytes; i++)
278 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
279 	return v;
280 }
281 
282 static void
283 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
284 {
285 	int i;
286 	if (dst_bytes > 4)
287 		dst_bytes = 4;
288 	for (i = 0; i < dst_bytes; i++)
289 		dst[i] = src >> ((3-i) * 8);
290 }
291 
292 /* hrawclock is 1/4 the FSB frequency */
293 static int
294 intel_hrawclk(struct drm_device *dev)
295 {
296 	struct drm_i915_private *dev_priv = dev->dev_private;
297 	uint32_t clkcfg;
298 
299 	clkcfg = I915_READ(CLKCFG);
300 	switch (clkcfg & CLKCFG_FSB_MASK) {
301 	case CLKCFG_FSB_400:
302 		return 100;
303 	case CLKCFG_FSB_533:
304 		return 133;
305 	case CLKCFG_FSB_667:
306 		return 166;
307 	case CLKCFG_FSB_800:
308 		return 200;
309 	case CLKCFG_FSB_1067:
310 		return 266;
311 	case CLKCFG_FSB_1333:
312 		return 333;
313 	/* these two are just a guess; one of them might be right */
314 	case CLKCFG_FSB_1600:
315 	case CLKCFG_FSB_1600_ALT:
316 		return 400;
317 	default:
318 		return 133;
319 	}
320 }
321 
322 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
323 {
324 	struct drm_device *dev = intel_dp->base.base.dev;
325 	struct drm_i915_private *dev_priv = dev->dev_private;
326 
327 	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
328 }
329 
330 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
331 {
332 	struct drm_device *dev = intel_dp->base.base.dev;
333 	struct drm_i915_private *dev_priv = dev->dev_private;
334 
335 	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
336 }
337 
338 static void
339 intel_dp_check_edp(struct intel_dp *intel_dp)
340 {
341 	struct drm_device *dev = intel_dp->base.base.dev;
342 	struct drm_i915_private *dev_priv = dev->dev_private;
343 
344 	if (!is_edp(intel_dp))
345 		return;
346 	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
347 		kprintf("eDP powered off while attempting aux channel communication.\n");
348 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
349 			      I915_READ(PCH_PP_STATUS),
350 			      I915_READ(PCH_PP_CONTROL));
351 	}
352 }
353 
354 static int
355 intel_dp_aux_ch(struct intel_dp *intel_dp,
356 		uint8_t *send, int send_bytes,
357 		uint8_t *recv, int recv_size)
358 {
359 	uint32_t output_reg = intel_dp->output_reg;
360 	struct drm_device *dev = intel_dp->base.base.dev;
361 	struct drm_i915_private *dev_priv = dev->dev_private;
362 	uint32_t ch_ctl = output_reg + 0x10;
363 	uint32_t ch_data = ch_ctl + 4;
364 	int i;
365 	int recv_bytes;
366 	uint32_t status;
367 	uint32_t aux_clock_divider;
368 	int try, precharge = 5;
369 
370 	intel_dp_check_edp(intel_dp);
371 	/* The clock divider is based off the hrawclk,
372 	 * and would like to run at 2MHz. So, take the
373 	 * hrawclk value and divide by 2 and use that
374 	 *
375 	 * Note that PCH attached eDP panels should use a 125MHz input
376 	 * clock divider.
377 	 */
378 	if (is_cpu_edp(intel_dp)) {
379 		if (IS_GEN6(dev) || IS_GEN7(dev))
380 			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
381 		else
382 			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
383 	} else if (HAS_PCH_SPLIT(dev))
384 		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
385 	else
386 		aux_clock_divider = intel_hrawclk(dev) / 2;
387 
388 	/* Try to wait for any previous AUX channel activity */
389 	for (try = 0; try < 3; try++) {
390 		status = I915_READ(ch_ctl);
391 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
392 			break;
393 		DELAY(1000);
394 	}
395 
396 	if (try == 3) {
397 		kprintf("dp_aux_ch not started status 0x%08x\n",
398 		     I915_READ(ch_ctl));
399 		return -EBUSY;
400 	}
401 
402 	/* Must try at least 3 times according to DP spec */
403 	for (try = 0; try < 5; try++) {
404 		/* Load the send data into the aux channel data registers */
405 		for (i = 0; i < send_bytes; i += 4)
406 			I915_WRITE(ch_data + i,
407 				   pack_aux(send + i, send_bytes - i));
408 
409 		/* Send the command and wait for it to complete */
410 		I915_WRITE(ch_ctl,
411 			   DP_AUX_CH_CTL_SEND_BUSY |
412 			   DP_AUX_CH_CTL_TIME_OUT_400us |
413 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
414 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
415 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
416 			   DP_AUX_CH_CTL_DONE |
417 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
418 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
419 		for (;;) {
420 			status = I915_READ(ch_ctl);
421 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
422 				break;
423 			DELAY(100);
424 		}
425 
426 		/* Clear done status and any errors */
427 		I915_WRITE(ch_ctl,
428 			   status |
429 			   DP_AUX_CH_CTL_DONE |
430 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
431 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
432 
433 		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
434 			      DP_AUX_CH_CTL_RECEIVE_ERROR))
435 			continue;
436 		if (status & DP_AUX_CH_CTL_DONE)
437 			break;
438 	}
439 
440 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
441 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
442 		return -EBUSY;
443 	}
444 
445 	/* Check for timeout or receive error.
446 	 * Timeouts occur when the sink is not connected
447 	 */
448 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
449 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
450 		return -EIO;
451 	}
452 
453 	/* Timeouts occur when the device isn't connected, so they're
454 	 * "normal" -- don't fill the kernel log with these */
455 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
456 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
457 		return -ETIMEDOUT;
458 	}
459 
460 	/* Unload any bytes sent back from the other side */
461 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
462 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
463 	if (recv_bytes > recv_size)
464 		recv_bytes = recv_size;
465 
466 	for (i = 0; i < recv_bytes; i += 4)
467 		unpack_aux(I915_READ(ch_data + i),
468 			   recv + i, recv_bytes - i);
469 
470 	return recv_bytes;
471 }
472 
473 /* Write data to the aux channel in native mode */
474 static int
475 intel_dp_aux_native_write(struct intel_dp *intel_dp,
476 			  uint16_t address, uint8_t *send, int send_bytes)
477 {
478 	int ret;
479 	uint8_t	msg[20];
480 	int msg_bytes;
481 	uint8_t	ack;
482 
483 	intel_dp_check_edp(intel_dp);
484 	if (send_bytes > 16)
485 		return -1;
486 	msg[0] = AUX_NATIVE_WRITE << 4;
487 	msg[1] = address >> 8;
488 	msg[2] = address & 0xff;
489 	msg[3] = send_bytes - 1;
490 	memcpy(&msg[4], send, send_bytes);
491 	msg_bytes = send_bytes + 4;
492 	for (;;) {
493 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
494 		if (ret < 0)
495 			return ret;
496 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
497 			break;
498 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
499 			DELAY(100);
500 		else
501 			return -EIO;
502 	}
503 	return send_bytes;
504 }
505 
506 /* Write a single byte to the aux channel in native mode */
507 static int
508 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
509 			    uint16_t address, uint8_t byte)
510 {
511 	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
512 }
513 
514 /* read bytes from a native aux channel */
515 static int
516 intel_dp_aux_native_read(struct intel_dp *intel_dp,
517 			 uint16_t address, uint8_t *recv, int recv_bytes)
518 {
519 	uint8_t msg[4];
520 	int msg_bytes;
521 	uint8_t reply[20];
522 	int reply_bytes;
523 	uint8_t ack;
524 	int ret;
525 
526 	intel_dp_check_edp(intel_dp);
527 	msg[0] = AUX_NATIVE_READ << 4;
528 	msg[1] = address >> 8;
529 	msg[2] = address & 0xff;
530 	msg[3] = recv_bytes - 1;
531 
532 	msg_bytes = 4;
533 	reply_bytes = recv_bytes + 1;
534 
535 	for (;;) {
536 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
537 				      reply, reply_bytes);
538 		if (ret == 0)
539 			return -EPROTO;
540 		if (ret < 0)
541 			return ret;
542 		ack = reply[0];
543 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
544 			memcpy(recv, reply + 1, ret - 1);
545 			return ret - 1;
546 		}
547 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
548 			DELAY(100);
549 		else
550 			return -EIO;
551 	}
552 }
553 
554 static int
555 intel_dp_i2c_aux_ch(device_t idev, int mode, uint8_t write_byte,
556     uint8_t *read_byte)
557 {
558 	struct iic_dp_aux_data *data;
559 	struct intel_dp *intel_dp;
560 	uint16_t address;
561 	uint8_t msg[5];
562 	uint8_t reply[2];
563 	unsigned retry;
564 	int msg_bytes;
565 	int reply_bytes;
566 	int ret;
567 
568 	data = device_get_softc(idev);
569 	intel_dp = data->priv;
570 	address = data->address;
571 
572 	intel_dp_check_edp(intel_dp);
573 	/* Set up the command byte */
574 	if (mode & MODE_I2C_READ)
575 		msg[0] = AUX_I2C_READ << 4;
576 	else
577 		msg[0] = AUX_I2C_WRITE << 4;
578 
579 	if (!(mode & MODE_I2C_STOP))
580 		msg[0] |= AUX_I2C_MOT << 4;
581 
582 	msg[1] = address >> 8;
583 	msg[2] = address;
584 
585 	switch (mode) {
586 	case MODE_I2C_WRITE:
587 		msg[3] = 0;
588 		msg[4] = write_byte;
589 		msg_bytes = 5;
590 		reply_bytes = 1;
591 		break;
592 	case MODE_I2C_READ:
593 		msg[3] = 0;
594 		msg_bytes = 4;
595 		reply_bytes = 2;
596 		break;
597 	default:
598 		msg_bytes = 3;
599 		reply_bytes = 1;
600 		break;
601 	}
602 
603 	for (retry = 0; retry < 5; retry++) {
604 		ret = intel_dp_aux_ch(intel_dp,
605 				      msg, msg_bytes,
606 				      reply, reply_bytes);
607 		if (ret < 0) {
608 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
609 			return (-ret);
610 		}
611 
612 		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
613 		case AUX_NATIVE_REPLY_ACK:
614 			/* I2C-over-AUX Reply field is only valid
615 			 * when paired with AUX ACK.
616 			 */
617 			break;
618 		case AUX_NATIVE_REPLY_NACK:
619 			DRM_DEBUG_KMS("aux_ch native nack\n");
620 			return (EREMOTEIO);
621 		case AUX_NATIVE_REPLY_DEFER:
622 			DELAY(100);
623 			continue;
624 		default:
625 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
626 				  reply[0]);
627 			return (EREMOTEIO);
628 		}
629 
630 		switch (reply[0] & AUX_I2C_REPLY_MASK) {
631 		case AUX_I2C_REPLY_ACK:
632 			if (mode == MODE_I2C_READ) {
633 				*read_byte = reply[1];
634 			}
635 			return (0/*reply_bytes - 1*/);
636 		case AUX_I2C_REPLY_NACK:
637 			DRM_DEBUG_KMS("aux_i2c nack\n");
638 			return (EREMOTEIO);
639 		case AUX_I2C_REPLY_DEFER:
640 			DRM_DEBUG_KMS("aux_i2c defer\n");
641 			DELAY(100);
642 			break;
643 		default:
644 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
645 			return (EREMOTEIO);
646 		}
647 	}
648 
649 	DRM_ERROR("too many retries, giving up\n");
650 	return (EREMOTEIO);
651 }
652 
653 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
654 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
655 
656 static int
657 intel_dp_i2c_init(struct intel_dp *intel_dp,
658 		  struct intel_connector *intel_connector, const char *name)
659 {
660 	int ret;
661 
662 	DRM_DEBUG_KMS("i2c_init %s\n", name);
663 
664 	ironlake_edp_panel_vdd_on(intel_dp);
665 	ret = iic_dp_aux_add_bus(intel_connector->base.dev->device, name,
666 	    intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
667 	    &intel_dp->adapter);
668 	ironlake_edp_panel_vdd_off(intel_dp, false);
669 	return (ret);
670 }
671 
672 static bool
673 intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
674 		    struct drm_display_mode *adjusted_mode)
675 {
676 	struct drm_device *dev = encoder->dev;
677 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
678 	int lane_count, clock;
679 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
680 	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
681 	int bpp;
682 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
683 
684 	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
685 		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
686 		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
687 					mode, adjusted_mode);
688 	}
689 
690 	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, adjusted_mode))
691 		return false;
692 
693 	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
694 
695 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
696 		for (clock = 0; clock <= max_clock; clock++) {
697 			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
698 
699 			if (intel_dp_link_required(adjusted_mode->clock, bpp)
700 					<= link_avail) {
701 				intel_dp->link_bw = bws[clock];
702 				intel_dp->lane_count = lane_count;
703 				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
704 				DRM_DEBUG_KMS("Display port link bw %02x lane "
705 						"count %d clock %d\n",
706 				       intel_dp->link_bw, intel_dp->lane_count,
707 				       adjusted_mode->clock);
708 				return true;
709 			}
710 		}
711 	}
712 
713 	return false;
714 }
715 
716 struct intel_dp_m_n {
717 	uint32_t	tu;
718 	uint32_t	gmch_m;
719 	uint32_t	gmch_n;
720 	uint32_t	link_m;
721 	uint32_t	link_n;
722 };
723 
724 static void
725 intel_reduce_ratio(uint32_t *num, uint32_t *den)
726 {
727 	while (*num > 0xffffff || *den > 0xffffff) {
728 		*num >>= 1;
729 		*den >>= 1;
730 	}
731 }
732 
733 static void
734 intel_dp_compute_m_n(int bpp,
735 		     int nlanes,
736 		     int pixel_clock,
737 		     int link_clock,
738 		     struct intel_dp_m_n *m_n)
739 {
740 	m_n->tu = 64;
741 	m_n->gmch_m = (pixel_clock * bpp) >> 3;
742 	m_n->gmch_n = link_clock * nlanes;
743 	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
744 	m_n->link_m = pixel_clock;
745 	m_n->link_n = link_clock;
746 	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
747 }
748 
749 void
750 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
751 		 struct drm_display_mode *adjusted_mode)
752 {
753 	struct drm_device *dev = crtc->dev;
754 	struct drm_mode_config *mode_config = &dev->mode_config;
755 	struct drm_encoder *encoder;
756 	struct drm_i915_private *dev_priv = dev->dev_private;
757 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
758 	int lane_count = 4;
759 	struct intel_dp_m_n m_n;
760 	int pipe = intel_crtc->pipe;
761 
762 	/*
763 	 * Find the lane count in the intel_encoder private
764 	 */
765 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
766 		struct intel_dp *intel_dp;
767 
768 		if (encoder->crtc != crtc)
769 			continue;
770 
771 		intel_dp = enc_to_intel_dp(encoder);
772 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
773 		    intel_dp->base.type == INTEL_OUTPUT_EDP)
774 		{
775 			lane_count = intel_dp->lane_count;
776 			break;
777 		}
778 	}
779 
780 	/*
781 	 * Compute the GMCH and Link ratios. The '3' here is
782 	 * the number of bytes_per_pixel post-LUT, which we always
783 	 * set up for 8-bits of R/G/B, or 3 bytes total.
784 	 */
785 	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
786 			     mode->clock, adjusted_mode->clock, &m_n);
787 
788 	if (HAS_PCH_SPLIT(dev)) {
789 		I915_WRITE(TRANSDATA_M1(pipe),
790 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
791 			   m_n.gmch_m);
792 		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
793 		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
794 		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
795 	} else {
796 		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
797 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
798 			   m_n.gmch_m);
799 		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
800 		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
801 		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
802 	}
803 }
804 
805 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
806 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
807 
808 static void
809 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
810 		  struct drm_display_mode *adjusted_mode)
811 {
812 	struct drm_device *dev = encoder->dev;
813 	struct drm_i915_private *dev_priv = dev->dev_private;
814 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
815 	struct drm_crtc *crtc = intel_dp->base.base.crtc;
816 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
817 
818 	/* Turn on the eDP PLL if needed */
819 	if (is_edp(intel_dp)) {
820 		if (!is_pch_edp(intel_dp))
821 			ironlake_edp_pll_on(encoder);
822 		else
823 			ironlake_edp_pll_off(encoder);
824 	}
825 
826 	/*
827 	 * There are four kinds of DP registers:
828 	 *
829 	 * 	IBX PCH
830 	 * 	SNB CPU
831 	 *	IVB CPU
832 	 * 	CPT PCH
833 	 *
834 	 * IBX PCH and CPU are the same for almost everything,
835 	 * except that the CPU DP PLL is configured in this
836 	 * register
837 	 *
838 	 * CPT PCH is quite different, having many bits moved
839 	 * to the TRANS_DP_CTL register instead. That
840 	 * configuration happens (oddly) in ironlake_pch_enable
841 	 */
842 
843 	/* Preserve the BIOS-computed detected bit. This is
844 	 * supposed to be read-only.
845 	 */
846 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
847 	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
848 
849 	/* Handle DP bits in common between all three register formats */
850 
851 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
852 
853 	switch (intel_dp->lane_count) {
854 	case 1:
855 		intel_dp->DP |= DP_PORT_WIDTH_1;
856 		break;
857 	case 2:
858 		intel_dp->DP |= DP_PORT_WIDTH_2;
859 		break;
860 	case 4:
861 		intel_dp->DP |= DP_PORT_WIDTH_4;
862 		break;
863 	}
864 	if (intel_dp->has_audio) {
865 		DRM_DEBUG_KMS("Enabling DP audio on pipe %c\n",
866 				 pipe_name(intel_crtc->pipe));
867 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
868 		intel_write_eld(encoder, adjusted_mode);
869 	}
870 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
871 	intel_dp->link_configuration[0] = intel_dp->link_bw;
872 	intel_dp->link_configuration[1] = intel_dp->lane_count;
873 	/*
874 	 * Check for DPCD version > 1.1 and enhanced framing support
875 	 */
876 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
877 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
878 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
879 	}
880 
881 	/* Split out the IBX/CPU vs CPT settings */
882 
883 	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
884 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
885 			intel_dp->DP |= DP_SYNC_HS_HIGH;
886 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
887 			intel_dp->DP |= DP_SYNC_VS_HIGH;
888 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
889 
890 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
891 			intel_dp->DP |= DP_ENHANCED_FRAMING;
892 
893 		intel_dp->DP |= intel_crtc->pipe << 29;
894 
895 		/* don't miss out required setting for eDP */
896 		intel_dp->DP |= DP_PLL_ENABLE;
897 		if (adjusted_mode->clock < 200000)
898 			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
899 		else
900 			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
901 	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
902 		intel_dp->DP |= intel_dp->color_range;
903 
904 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
905 			intel_dp->DP |= DP_SYNC_HS_HIGH;
906 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
907 			intel_dp->DP |= DP_SYNC_VS_HIGH;
908 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
909 
910 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
911 			intel_dp->DP |= DP_ENHANCED_FRAMING;
912 
913 		if (intel_crtc->pipe == 1)
914 			intel_dp->DP |= DP_PIPEB_SELECT;
915 
916 		if (is_cpu_edp(intel_dp)) {
917 			/* don't miss out required setting for eDP */
918 			intel_dp->DP |= DP_PLL_ENABLE;
919 			if (adjusted_mode->clock < 200000)
920 				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
921 			else
922 				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
923 		}
924 	} else {
925 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
926 	}
927 }
928 
929 #define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
930 #define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
931 
932 #define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
933 #define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
934 
935 #define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
936 #define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
937 
938 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
939 				       u32 mask,
940 				       u32 value)
941 {
942 	struct drm_device *dev = intel_dp->base.base.dev;
943 	struct drm_i915_private *dev_priv = dev->dev_private;
944 
945 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
946 		      mask, value,
947 		      I915_READ(PCH_PP_STATUS),
948 		      I915_READ(PCH_PP_CONTROL));
949 
950 	if (_intel_wait_for(dev,
951 	    (I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10, "915iwp")) {
952 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
953 			  I915_READ(PCH_PP_STATUS),
954 			  I915_READ(PCH_PP_CONTROL));
955 	}
956 }
957 
958 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
959 {
960 	DRM_DEBUG_KMS("Wait for panel power on\n");
961 	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
962 }
963 
964 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
965 {
966 	DRM_DEBUG_KMS("Wait for panel power off time\n");
967 	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
968 }
969 
970 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
971 {
972 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
973 	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
974 }
975 
976 
977 /* Read the current pp_control value, unlocking the register if it
978  * is locked
979  */
980 
981 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
982 {
983 	u32	control = I915_READ(PCH_PP_CONTROL);
984 
985 	control &= ~PANEL_UNLOCK_MASK;
986 	control |= PANEL_UNLOCK_REGS;
987 	return control;
988 }
989 
990 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
991 {
992 	struct drm_device *dev = intel_dp->base.base.dev;
993 	struct drm_i915_private *dev_priv = dev->dev_private;
994 	u32 pp;
995 
996 	if (!is_edp(intel_dp))
997 		return;
998 	DRM_DEBUG_KMS("Turn eDP VDD on\n");
999 
1000 	if (intel_dp->want_panel_vdd)
1001 		kprintf("eDP VDD already requested on\n");
1002 
1003 	intel_dp->want_panel_vdd = true;
1004 
1005 	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1006 		DRM_DEBUG_KMS("eDP VDD already on\n");
1007 		return;
1008 	}
1009 
1010 	if (!ironlake_edp_have_panel_power(intel_dp))
1011 		ironlake_wait_panel_power_cycle(intel_dp);
1012 
1013 	pp = ironlake_get_pp_control(dev_priv);
1014 	pp |= EDP_FORCE_VDD;
1015 	I915_WRITE(PCH_PP_CONTROL, pp);
1016 	POSTING_READ(PCH_PP_CONTROL);
1017 	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1018 		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1019 
1020 	/*
1021 	 * If the panel wasn't on, delay before accessing aux channel
1022 	 */
1023 	if (!ironlake_edp_have_panel_power(intel_dp)) {
1024 		DRM_DEBUG_KMS("eDP was not running\n");
1025 		DELAY(intel_dp->panel_power_up_delay * 1000);
1026 	}
1027 }
1028 
1029 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1030 {
1031 	struct drm_device *dev = intel_dp->base.base.dev;
1032 	struct drm_i915_private *dev_priv = dev->dev_private;
1033 	u32 pp;
1034 
1035 	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1036 		pp = ironlake_get_pp_control(dev_priv);
1037 		pp &= ~EDP_FORCE_VDD;
1038 		I915_WRITE(PCH_PP_CONTROL, pp);
1039 		POSTING_READ(PCH_PP_CONTROL);
1040 
1041 		/* Make sure sequencer is idle before allowing subsequent activity */
1042 		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1043 			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1044 
1045 		DELAY(intel_dp->panel_power_down_delay * 1000);
1046 	}
1047 }
1048 
1049 static void ironlake_panel_vdd_work(void *arg, int pending __unused)
1050 {
1051 	struct intel_dp *intel_dp = arg;
1052 	struct drm_device *dev = intel_dp->base.base.dev;
1053 
1054 	lockmgr(&dev->mode_config.lock, LK_EXCLUSIVE);
1055 	ironlake_panel_vdd_off_sync(intel_dp);
1056 	lockmgr(&dev->mode_config.lock, LK_RELEASE);
1057 }
1058 
1059 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1060 {
1061 	if (!is_edp(intel_dp))
1062 		return;
1063 
1064 	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1065 	if (!intel_dp->want_panel_vdd)
1066 		kprintf("eDP VDD not forced on\n");
1067 
1068 	intel_dp->want_panel_vdd = false;
1069 
1070 	if (sync) {
1071 		ironlake_panel_vdd_off_sync(intel_dp);
1072 	} else {
1073 		/*
1074 		 * Queue the timer to fire a long
1075 		 * time from now (relative to the power down delay)
1076 		 * to keep the panel power up across a sequence of operations
1077 		 */
1078 		struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
1079 		taskqueue_enqueue_timeout(dev_priv->tq,
1080 		    &intel_dp->panel_vdd_task,
1081 		    msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1082 	}
1083 }
1084 
1085 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1086 {
1087 	struct drm_device *dev = intel_dp->base.base.dev;
1088 	struct drm_i915_private *dev_priv = dev->dev_private;
1089 	u32 pp;
1090 
1091 	if (!is_edp(intel_dp))
1092 		return;
1093 
1094 	DRM_DEBUG_KMS("Turn eDP power on\n");
1095 
1096 	if (ironlake_edp_have_panel_power(intel_dp)) {
1097 		DRM_DEBUG_KMS("eDP power already on\n");
1098 		return;
1099 	}
1100 
1101 	ironlake_wait_panel_power_cycle(intel_dp);
1102 
1103 	pp = ironlake_get_pp_control(dev_priv);
1104 	if (IS_GEN5(dev)) {
1105 		/* ILK workaround: disable reset around power sequence */
1106 		pp &= ~PANEL_POWER_RESET;
1107 		I915_WRITE(PCH_PP_CONTROL, pp);
1108 		POSTING_READ(PCH_PP_CONTROL);
1109 	}
1110 
1111 	pp |= POWER_TARGET_ON;
1112 	if (!IS_GEN5(dev))
1113 		pp |= PANEL_POWER_RESET;
1114 
1115 	I915_WRITE(PCH_PP_CONTROL, pp);
1116 	POSTING_READ(PCH_PP_CONTROL);
1117 
1118 	ironlake_wait_panel_on(intel_dp);
1119 
1120 	if (IS_GEN5(dev)) {
1121 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1122 		I915_WRITE(PCH_PP_CONTROL, pp);
1123 		POSTING_READ(PCH_PP_CONTROL);
1124 	}
1125 }
1126 
1127 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1128 {
1129 	struct drm_device *dev = intel_dp->base.base.dev;
1130 	struct drm_i915_private *dev_priv = dev->dev_private;
1131 	u32 pp;
1132 
1133 	if (!is_edp(intel_dp))
1134 		return;
1135 
1136 	DRM_DEBUG_KMS("Turn eDP power off\n");
1137 
1138 	if (intel_dp->want_panel_vdd)
1139 		kprintf("Cannot turn power off while VDD is on\n");
1140 
1141 	pp = ironlake_get_pp_control(dev_priv);
1142 	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1143 	I915_WRITE(PCH_PP_CONTROL, pp);
1144 	POSTING_READ(PCH_PP_CONTROL);
1145 
1146 	ironlake_wait_panel_off(intel_dp);
1147 }
1148 
1149 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1150 {
1151 	struct drm_device *dev = intel_dp->base.base.dev;
1152 	struct drm_i915_private *dev_priv = dev->dev_private;
1153 	u32 pp;
1154 
1155 	if (!is_edp(intel_dp))
1156 		return;
1157 
1158 	DRM_DEBUG_KMS("\n");
1159 	/*
1160 	 * If we enable the backlight right away following a panel power
1161 	 * on, we may see slight flicker as the panel syncs with the eDP
1162 	 * link.  So delay a bit to make sure the image is solid before
1163 	 * allowing it to appear.
1164 	 */
1165 	DELAY(intel_dp->backlight_on_delay * 1000);
1166 	pp = ironlake_get_pp_control(dev_priv);
1167 	pp |= EDP_BLC_ENABLE;
1168 	I915_WRITE(PCH_PP_CONTROL, pp);
1169 	POSTING_READ(PCH_PP_CONTROL);
1170 }
1171 
1172 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1173 {
1174 	struct drm_device *dev = intel_dp->base.base.dev;
1175 	struct drm_i915_private *dev_priv = dev->dev_private;
1176 	u32 pp;
1177 
1178 	if (!is_edp(intel_dp))
1179 		return;
1180 
1181 	DRM_DEBUG_KMS("\n");
1182 	pp = ironlake_get_pp_control(dev_priv);
1183 	pp &= ~EDP_BLC_ENABLE;
1184 	I915_WRITE(PCH_PP_CONTROL, pp);
1185 	POSTING_READ(PCH_PP_CONTROL);
1186 	DELAY(intel_dp->backlight_off_delay * 1000);
1187 }
1188 
1189 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1190 {
1191 	struct drm_device *dev = encoder->dev;
1192 	struct drm_i915_private *dev_priv = dev->dev_private;
1193 	u32 dpa_ctl;
1194 
1195 	DRM_DEBUG_KMS("\n");
1196 	dpa_ctl = I915_READ(DP_A);
1197 	dpa_ctl |= DP_PLL_ENABLE;
1198 	I915_WRITE(DP_A, dpa_ctl);
1199 	POSTING_READ(DP_A);
1200 	DELAY(200);
1201 }
1202 
1203 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1204 {
1205 	struct drm_device *dev = encoder->dev;
1206 	struct drm_i915_private *dev_priv = dev->dev_private;
1207 	u32 dpa_ctl;
1208 
1209 	dpa_ctl = I915_READ(DP_A);
1210 	dpa_ctl &= ~DP_PLL_ENABLE;
1211 	I915_WRITE(DP_A, dpa_ctl);
1212 	POSTING_READ(DP_A);
1213 	DELAY(200);
1214 }
1215 
1216 /* If the sink supports it, try to set the power state appropriately */
1217 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1218 {
1219 	int ret, i;
1220 
1221 	/* Should have a valid DPCD by this point */
1222 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1223 		return;
1224 
1225 	if (mode != DRM_MODE_DPMS_ON) {
1226 		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1227 						  DP_SET_POWER_D3);
1228 		if (ret != 1)
1229 			DRM_DEBUG("failed to write sink power state\n");
1230 	} else {
1231 		/*
1232 		 * When turning on, we need to retry for 1ms to give the sink
1233 		 * time to wake up.
1234 		 */
1235 		for (i = 0; i < 3; i++) {
1236 			ret = intel_dp_aux_native_write_1(intel_dp,
1237 							  DP_SET_POWER,
1238 							  DP_SET_POWER_D0);
1239 			if (ret == 1)
1240 				break;
1241 			DELAY(1000);
1242 		}
1243 	}
1244 }
1245 
1246 static void intel_dp_prepare(struct drm_encoder *encoder)
1247 {
1248 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1249 
1250 	ironlake_edp_backlight_off(intel_dp);
1251 	ironlake_edp_panel_off(intel_dp);
1252 
1253 	/* Wake up the sink first */
1254 	ironlake_edp_panel_vdd_on(intel_dp);
1255 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1256 	intel_dp_link_down(intel_dp);
1257 	ironlake_edp_panel_vdd_off(intel_dp, false);
1258 
1259 	/* Make sure the panel is off before trying to
1260 	 * change the mode
1261 	 */
1262 }
1263 
1264 static void intel_dp_commit(struct drm_encoder *encoder)
1265 {
1266 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1267 	struct drm_device *dev = encoder->dev;
1268 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1269 
1270 	ironlake_edp_panel_vdd_on(intel_dp);
1271 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1272 	intel_dp_start_link_train(intel_dp);
1273 	ironlake_edp_panel_on(intel_dp);
1274 	ironlake_edp_panel_vdd_off(intel_dp, true);
1275 	intel_dp_complete_link_train(intel_dp);
1276 	ironlake_edp_backlight_on(intel_dp);
1277 
1278 	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1279 
1280 	if (HAS_PCH_CPT(dev))
1281 		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1282 }
1283 
1284 static void
1285 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1286 {
1287 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1288 	struct drm_device *dev = encoder->dev;
1289 	struct drm_i915_private *dev_priv = dev->dev_private;
1290 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1291 
1292 	if (mode != DRM_MODE_DPMS_ON) {
1293 		ironlake_edp_backlight_off(intel_dp);
1294 		ironlake_edp_panel_off(intel_dp);
1295 
1296 		ironlake_edp_panel_vdd_on(intel_dp);
1297 		intel_dp_sink_dpms(intel_dp, mode);
1298 		intel_dp_link_down(intel_dp);
1299 		ironlake_edp_panel_vdd_off(intel_dp, false);
1300 
1301 		if (is_cpu_edp(intel_dp))
1302 			ironlake_edp_pll_off(encoder);
1303 	} else {
1304 		if (is_cpu_edp(intel_dp))
1305 			ironlake_edp_pll_on(encoder);
1306 
1307 		ironlake_edp_panel_vdd_on(intel_dp);
1308 		intel_dp_sink_dpms(intel_dp, mode);
1309 		if (!(dp_reg & DP_PORT_EN)) {
1310 			intel_dp_start_link_train(intel_dp);
1311 			ironlake_edp_panel_on(intel_dp);
1312 			ironlake_edp_panel_vdd_off(intel_dp, true);
1313 			intel_dp_complete_link_train(intel_dp);
1314 		} else
1315 			ironlake_edp_panel_vdd_off(intel_dp, false);
1316 		ironlake_edp_backlight_on(intel_dp);
1317 	}
1318 	intel_dp->dpms_mode = mode;
1319 }
1320 /*
1321  * Native read with retry for link status and receiver capability reads for
1322  * cases where the sink may still be asleep.
1323  */
1324 static bool
1325 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1326 			       uint8_t *recv, int recv_bytes)
1327 {
1328 	int ret, i;
1329 
1330 	/*
1331 	 * Sinks are *supposed* to come up within 1ms from an off state,
1332 	 * but we're also supposed to retry 3 times per the spec.
1333 	 */
1334 	for (i = 0; i < 3; i++) {
1335 		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1336 					       recv_bytes);
1337 		if (ret == recv_bytes)
1338 			return true;
1339 		DELAY(1000);
1340 	}
1341 
1342 	return false;
1343 }
1344 
1345 /*
1346  * Fetch AUX CH registers 0x202 - 0x207 which contain
1347  * link status information
1348  */
1349 static bool
1350 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1351 {
1352 	return intel_dp_aux_native_read_retry(intel_dp,
1353 					      DP_LANE0_1_STATUS,
1354 					      link_status,
1355 					      DP_LINK_STATUS_SIZE);
1356 }
1357 
1358 static uint8_t
1359 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1360 		     int r)
1361 {
1362 	return link_status[r - DP_LANE0_1_STATUS];
1363 }
1364 
1365 static uint8_t
1366 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1367 				 int lane)
1368 {
1369 	int	    s = ((lane & 1) ?
1370 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1371 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1372 	uint8_t l = adjust_request[lane>>1];
1373 
1374 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1375 }
1376 
1377 static uint8_t
1378 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1379 				      int lane)
1380 {
1381 	int	    s = ((lane & 1) ?
1382 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1383 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1384 	uint8_t l = adjust_request[lane>>1];
1385 
1386 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1387 }
1388 
1389 
1390 #if 0
1391 static char	*voltage_names[] = {
1392 	"0.4V", "0.6V", "0.8V", "1.2V"
1393 };
1394 static char	*pre_emph_names[] = {
1395 	"0dB", "3.5dB", "6dB", "9.5dB"
1396 };
1397 static char	*link_train_names[] = {
1398 	"pattern 1", "pattern 2", "idle", "off"
1399 };
1400 #endif
1401 
1402 /*
1403  * These are source-specific values; current Intel hardware supports
1404  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1405  */
1406 
1407 static uint8_t
1408 intel_dp_voltage_max(struct intel_dp *intel_dp)
1409 {
1410 	struct drm_device *dev = intel_dp->base.base.dev;
1411 
1412 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1413 		return DP_TRAIN_VOLTAGE_SWING_800;
1414 	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1415 		return DP_TRAIN_VOLTAGE_SWING_1200;
1416 	else
1417 		return DP_TRAIN_VOLTAGE_SWING_800;
1418 }
1419 
1420 static uint8_t
1421 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1422 {
1423 	struct drm_device *dev = intel_dp->base.base.dev;
1424 
1425 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1426 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1427 		case DP_TRAIN_VOLTAGE_SWING_400:
1428 			return DP_TRAIN_PRE_EMPHASIS_6;
1429 		case DP_TRAIN_VOLTAGE_SWING_600:
1430 		case DP_TRAIN_VOLTAGE_SWING_800:
1431 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1432 		default:
1433 			return DP_TRAIN_PRE_EMPHASIS_0;
1434 		}
1435 	} else {
1436 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1437 		case DP_TRAIN_VOLTAGE_SWING_400:
1438 			return DP_TRAIN_PRE_EMPHASIS_6;
1439 		case DP_TRAIN_VOLTAGE_SWING_600:
1440 			return DP_TRAIN_PRE_EMPHASIS_6;
1441 		case DP_TRAIN_VOLTAGE_SWING_800:
1442 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1443 		case DP_TRAIN_VOLTAGE_SWING_1200:
1444 		default:
1445 			return DP_TRAIN_PRE_EMPHASIS_0;
1446 		}
1447 	}
1448 }
1449 
1450 static void
1451 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1452 {
1453 	uint8_t v = 0;
1454 	uint8_t p = 0;
1455 	int lane;
1456 	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1457 	uint8_t voltage_max;
1458 	uint8_t preemph_max;
1459 
1460 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1461 		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1462 		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1463 
1464 		if (this_v > v)
1465 			v = this_v;
1466 		if (this_p > p)
1467 			p = this_p;
1468 	}
1469 
1470 	voltage_max = intel_dp_voltage_max(intel_dp);
1471 	if (v >= voltage_max)
1472 		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1473 
1474 	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1475 	if (p >= preemph_max)
1476 		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1477 
1478 	for (lane = 0; lane < 4; lane++)
1479 		intel_dp->train_set[lane] = v | p;
1480 }
1481 
1482 static uint32_t
1483 intel_dp_signal_levels(uint8_t train_set)
1484 {
1485 	uint32_t	signal_levels = 0;
1486 
1487 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1488 	case DP_TRAIN_VOLTAGE_SWING_400:
1489 	default:
1490 		signal_levels |= DP_VOLTAGE_0_4;
1491 		break;
1492 	case DP_TRAIN_VOLTAGE_SWING_600:
1493 		signal_levels |= DP_VOLTAGE_0_6;
1494 		break;
1495 	case DP_TRAIN_VOLTAGE_SWING_800:
1496 		signal_levels |= DP_VOLTAGE_0_8;
1497 		break;
1498 	case DP_TRAIN_VOLTAGE_SWING_1200:
1499 		signal_levels |= DP_VOLTAGE_1_2;
1500 		break;
1501 	}
1502 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1503 	case DP_TRAIN_PRE_EMPHASIS_0:
1504 	default:
1505 		signal_levels |= DP_PRE_EMPHASIS_0;
1506 		break;
1507 	case DP_TRAIN_PRE_EMPHASIS_3_5:
1508 		signal_levels |= DP_PRE_EMPHASIS_3_5;
1509 		break;
1510 	case DP_TRAIN_PRE_EMPHASIS_6:
1511 		signal_levels |= DP_PRE_EMPHASIS_6;
1512 		break;
1513 	case DP_TRAIN_PRE_EMPHASIS_9_5:
1514 		signal_levels |= DP_PRE_EMPHASIS_9_5;
1515 		break;
1516 	}
1517 	return signal_levels;
1518 }
1519 
1520 /* Gen6's DP voltage swing and pre-emphasis control */
1521 static uint32_t
1522 intel_gen6_edp_signal_levels(uint8_t train_set)
1523 {
1524 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1525 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1526 	switch (signal_levels) {
1527 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1528 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1529 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1530 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1531 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1532 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1533 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1534 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1535 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1536 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1537 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1538 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1539 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1540 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1541 	default:
1542 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1543 			      "0x%x\n", signal_levels);
1544 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1545 	}
1546 }
1547 
1548 /* Gen7's DP voltage swing and pre-emphasis control */
1549 static uint32_t
1550 intel_gen7_edp_signal_levels(uint8_t train_set)
1551 {
1552 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1553 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1554 	switch (signal_levels) {
1555 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1556 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1557 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1558 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1559 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1560 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1561 
1562 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1563 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1564 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1565 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1566 
1567 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1568 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1569 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1570 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1571 
1572 	default:
1573 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1574 			      "0x%x\n", signal_levels);
1575 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1576 	}
1577 }
1578 
1579 static uint8_t
1580 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1581 		      int lane)
1582 {
1583 	int s = (lane & 1) * 4;
1584 	uint8_t l = link_status[lane>>1];
1585 
1586 	return (l >> s) & 0xf;
1587 }
1588 
1589 /* Check for clock recovery is done on all channels */
1590 static bool
1591 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1592 {
1593 	int lane;
1594 	uint8_t lane_status;
1595 
1596 	for (lane = 0; lane < lane_count; lane++) {
1597 		lane_status = intel_get_lane_status(link_status, lane);
1598 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1599 			return false;
1600 	}
1601 	return true;
1602 }
1603 
1604 /* Check to see if channel eq is done on all channels */
1605 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1606 			 DP_LANE_CHANNEL_EQ_DONE|\
1607 			 DP_LANE_SYMBOL_LOCKED)
1608 static bool
1609 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1610 {
1611 	uint8_t lane_align;
1612 	uint8_t lane_status;
1613 	int lane;
1614 
1615 	lane_align = intel_dp_link_status(link_status,
1616 					  DP_LANE_ALIGN_STATUS_UPDATED);
1617 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1618 		return false;
1619 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1620 		lane_status = intel_get_lane_status(link_status, lane);
1621 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1622 			return false;
1623 	}
1624 	return true;
1625 }
1626 
1627 static bool
1628 intel_dp_set_link_train(struct intel_dp *intel_dp,
1629 			uint32_t dp_reg_value,
1630 			uint8_t dp_train_pat)
1631 {
1632 	struct drm_device *dev = intel_dp->base.base.dev;
1633 	struct drm_i915_private *dev_priv = dev->dev_private;
1634 	int ret;
1635 
1636 	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1637 	POSTING_READ(intel_dp->output_reg);
1638 
1639 	intel_dp_aux_native_write_1(intel_dp,
1640 				    DP_TRAINING_PATTERN_SET,
1641 				    dp_train_pat);
1642 
1643 	ret = intel_dp_aux_native_write(intel_dp,
1644 					DP_TRAINING_LANE0_SET,
1645 					intel_dp->train_set,
1646 					intel_dp->lane_count);
1647 	if (ret != intel_dp->lane_count)
1648 		return false;
1649 
1650 	return true;
1651 }
1652 
1653 /* Enable corresponding port and start training pattern 1 */
1654 static void
1655 intel_dp_start_link_train(struct intel_dp *intel_dp)
1656 {
1657 	struct drm_device *dev = intel_dp->base.base.dev;
1658 	struct drm_i915_private *dev_priv = dev->dev_private;
1659 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1660 	int i;
1661 	uint8_t voltage;
1662 	bool clock_recovery = false;
1663 	int voltage_tries, loop_tries;
1664 	u32 reg;
1665 	uint32_t DP = intel_dp->DP;
1666 
1667 	/* Enable output, wait for it to become active */
1668 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1669 	POSTING_READ(intel_dp->output_reg);
1670 	intel_wait_for_vblank(dev, intel_crtc->pipe);
1671 
1672 	/* Write the link configuration data */
1673 	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1674 				  intel_dp->link_configuration,
1675 				  DP_LINK_CONFIGURATION_SIZE);
1676 
1677 	DP |= DP_PORT_EN;
1678 
1679 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1680 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1681 	else
1682 		DP &= ~DP_LINK_TRAIN_MASK;
1683 	memset(intel_dp->train_set, 0, 4);
1684 	voltage = 0xff;
1685 	voltage_tries = 0;
1686 	loop_tries = 0;
1687 	clock_recovery = false;
1688 	for (;;) {
1689 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1690 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1691 		uint32_t    signal_levels;
1692 
1693 
1694 		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1695 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1696 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1697 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1698 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1699 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1700 		} else {
1701 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1702 			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1703 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1704 		}
1705 
1706 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1707 			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1708 		else
1709 			reg = DP | DP_LINK_TRAIN_PAT_1;
1710 
1711 		if (!intel_dp_set_link_train(intel_dp, reg,
1712 					     DP_TRAINING_PATTERN_1))
1713 			break;
1714 		/* Set training pattern 1 */
1715 
1716 		DELAY(100);
1717 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1718 			DRM_ERROR("failed to get link status\n");
1719 			break;
1720 		}
1721 
1722 		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1723 			DRM_DEBUG_KMS("clock recovery OK\n");
1724 			clock_recovery = true;
1725 			break;
1726 		}
1727 
1728 		/* Check to see if we've tried the max voltage */
1729 		for (i = 0; i < intel_dp->lane_count; i++)
1730 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1731 				break;
1732 		if (i == intel_dp->lane_count) {
1733 			++loop_tries;
1734 			if (loop_tries == 5) {
1735 				DRM_DEBUG_KMS("too many full retries, give up\n");
1736 				break;
1737 			}
1738 			memset(intel_dp->train_set, 0, 4);
1739 			voltage_tries = 0;
1740 			continue;
1741 		}
1742 
1743 		/* Check to see if we've tried the same voltage 5 times */
1744 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1745 			++voltage_tries;
1746 			if (voltage_tries == 5) {
1747 				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1748 				break;
1749 			}
1750 		} else
1751 			voltage_tries = 0;
1752 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1753 
1754 		/* Compute new intel_dp->train_set as requested by target */
1755 		intel_get_adjust_train(intel_dp, link_status);
1756 	}
1757 
1758 	intel_dp->DP = DP;
1759 }
1760 
1761 static void
1762 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1763 {
1764 	struct drm_device *dev = intel_dp->base.base.dev;
1765 	struct drm_i915_private *dev_priv = dev->dev_private;
1766 	bool channel_eq = false;
1767 	int tries, cr_tries;
1768 	u32 reg;
1769 	uint32_t DP = intel_dp->DP;
1770 
1771 	/* channel equalization */
1772 	tries = 0;
1773 	cr_tries = 0;
1774 	channel_eq = false;
1775 	for (;;) {
1776 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1777 		uint32_t    signal_levels;
1778 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1779 
1780 		if (cr_tries > 5) {
1781 			DRM_ERROR("failed to train DP, aborting\n");
1782 			intel_dp_link_down(intel_dp);
1783 			break;
1784 		}
1785 
1786 		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1787 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1788 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1789 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1790 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1791 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1792 		} else {
1793 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1794 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1795 		}
1796 
1797 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1798 			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1799 		else
1800 			reg = DP | DP_LINK_TRAIN_PAT_2;
1801 
1802 		/* channel eq pattern */
1803 		if (!intel_dp_set_link_train(intel_dp, reg,
1804 					     DP_TRAINING_PATTERN_2))
1805 			break;
1806 
1807 		DELAY(400);
1808 		if (!intel_dp_get_link_status(intel_dp, link_status))
1809 			break;
1810 
1811 		/* Make sure clock is still ok */
1812 		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1813 			intel_dp_start_link_train(intel_dp);
1814 			cr_tries++;
1815 			continue;
1816 		}
1817 
1818 		if (intel_channel_eq_ok(intel_dp, link_status)) {
1819 			channel_eq = true;
1820 			break;
1821 		}
1822 
1823 		/* Try 5 times, then try clock recovery if that fails */
1824 		if (tries > 5) {
1825 			intel_dp_link_down(intel_dp);
1826 			intel_dp_start_link_train(intel_dp);
1827 			tries = 0;
1828 			cr_tries++;
1829 			continue;
1830 		}
1831 
1832 		/* Compute new intel_dp->train_set as requested by target */
1833 		intel_get_adjust_train(intel_dp, link_status);
1834 		++tries;
1835 	}
1836 
1837 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1838 		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1839 	else
1840 		reg = DP | DP_LINK_TRAIN_OFF;
1841 
1842 	I915_WRITE(intel_dp->output_reg, reg);
1843 	POSTING_READ(intel_dp->output_reg);
1844 	intel_dp_aux_native_write_1(intel_dp,
1845 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1846 }
1847 
1848 static void
1849 intel_dp_link_down(struct intel_dp *intel_dp)
1850 {
1851 	struct drm_device *dev = intel_dp->base.base.dev;
1852 	struct drm_i915_private *dev_priv = dev->dev_private;
1853 	uint32_t DP = intel_dp->DP;
1854 
1855 	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1856 		return;
1857 
1858 	DRM_DEBUG_KMS("\n");
1859 
1860 	if (is_edp(intel_dp)) {
1861 		DP &= ~DP_PLL_ENABLE;
1862 		I915_WRITE(intel_dp->output_reg, DP);
1863 		POSTING_READ(intel_dp->output_reg);
1864 		DELAY(100);
1865 	}
1866 
1867 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1868 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1869 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1870 	} else {
1871 		DP &= ~DP_LINK_TRAIN_MASK;
1872 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1873 	}
1874 	POSTING_READ(intel_dp->output_reg);
1875 
1876 	DELAY(17*1000);
1877 
1878 	if (is_edp(intel_dp)) {
1879 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1880 			DP |= DP_LINK_TRAIN_OFF_CPT;
1881 		else
1882 			DP |= DP_LINK_TRAIN_OFF;
1883 	}
1884 
1885 
1886 	if (!HAS_PCH_CPT(dev) &&
1887 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1888 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1889 
1890 		/* Hardware workaround: leaving our transcoder select
1891 		 * set to transcoder B while it's off will prevent the
1892 		 * corresponding HDMI output on transcoder A.
1893 		 *
1894 		 * Combine this with another hardware workaround:
1895 		 * transcoder select bit can only be cleared while the
1896 		 * port is enabled.
1897 		 */
1898 		DP &= ~DP_PIPEB_SELECT;
1899 		I915_WRITE(intel_dp->output_reg, DP);
1900 
1901 		/* Changes to enable or select take place the vblank
1902 		 * after being written.
1903 		 */
1904 		if (crtc == NULL) {
1905 			/* We can arrive here never having been attached
1906 			 * to a CRTC, for instance, due to inheriting
1907 			 * random state from the BIOS.
1908 			 *
1909 			 * If the pipe is not running, play safe and
1910 			 * wait for the clocks to stabilise before
1911 			 * continuing.
1912 			 */
1913 			POSTING_READ(intel_dp->output_reg);
1914 			DELAY(50 * 1000);
1915 		} else
1916 			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1917 	}
1918 
1919 	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1920 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1921 	POSTING_READ(intel_dp->output_reg);
1922 	DELAY(intel_dp->panel_power_down_delay * 1000);
1923 }
1924 
1925 static bool
1926 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1927 {
1928 	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1929 					   sizeof(intel_dp->dpcd)) &&
1930 	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1931 		return true;
1932 	}
1933 
1934 	return false;
1935 }
1936 
1937 static bool
1938 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1939 {
1940 	int ret;
1941 
1942 	ret = intel_dp_aux_native_read_retry(intel_dp,
1943 					     DP_DEVICE_SERVICE_IRQ_VECTOR,
1944 					     sink_irq_vector, 1);
1945 	if (!ret)
1946 		return false;
1947 
1948 	return true;
1949 }
1950 
1951 static void
1952 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1953 {
1954 	/* NAK by default */
1955 	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1956 }
1957 
1958 /*
1959  * According to DP spec
1960  * 5.1.2:
1961  *  1. Read DPCD
1962  *  2. Configure link according to Receiver Capabilities
1963  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1964  *  4. Check link status on receipt of hot-plug interrupt
1965  */
1966 
1967 static void
1968 intel_dp_check_link_status(struct intel_dp *intel_dp)
1969 {
1970 	u8 sink_irq_vector;
1971 	u8 link_status[DP_LINK_STATUS_SIZE];
1972 
1973 	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1974 		return;
1975 
1976 	if (!intel_dp->base.base.crtc)
1977 		return;
1978 
1979 	/* Try to read receiver status if the link appears to be up */
1980 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
1981 		intel_dp_link_down(intel_dp);
1982 		return;
1983 	}
1984 
1985 	/* Now read the DPCD to see if it's actually running */
1986 	if (!intel_dp_get_dpcd(intel_dp)) {
1987 		intel_dp_link_down(intel_dp);
1988 		return;
1989 	}
1990 
1991 	/* Try to read the source of the interrupt */
1992 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1993 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1994 		/* Clear interrupt source */
1995 		intel_dp_aux_native_write_1(intel_dp,
1996 					    DP_DEVICE_SERVICE_IRQ_VECTOR,
1997 					    sink_irq_vector);
1998 
1999 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2000 			intel_dp_handle_test_request(intel_dp);
2001 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2002 			DRM_DEBUG_KMS("CP or sink specific irq unhandled\n");
2003 	}
2004 
2005 	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2006 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2007 			      drm_get_encoder_name(&intel_dp->base.base));
2008  		intel_dp_start_link_train(intel_dp);
2009 		intel_dp_complete_link_train(intel_dp);
2010 	}
2011 }
2012 
2013 static enum drm_connector_status
2014 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2015 {
2016 	if (intel_dp_get_dpcd(intel_dp))
2017 		return connector_status_connected;
2018 	return connector_status_disconnected;
2019 }
2020 
2021 static enum drm_connector_status
2022 ironlake_dp_detect(struct intel_dp *intel_dp)
2023 {
2024 	enum drm_connector_status status;
2025 
2026 	/* Can't disconnect eDP, but you can close the lid... */
2027 	if (is_edp(intel_dp)) {
2028 		status = intel_panel_detect(intel_dp->base.base.dev);
2029 		if (status == connector_status_unknown)
2030 			status = connector_status_connected;
2031 		return status;
2032 	}
2033 
2034 	return intel_dp_detect_dpcd(intel_dp);
2035 }
2036 
2037 static enum drm_connector_status
2038 g4x_dp_detect(struct intel_dp *intel_dp)
2039 {
2040 	struct drm_device *dev = intel_dp->base.base.dev;
2041 	struct drm_i915_private *dev_priv = dev->dev_private;
2042 	uint32_t temp, bit;
2043 
2044 	switch (intel_dp->output_reg) {
2045 	case DP_B:
2046 		bit = DPB_HOTPLUG_INT_STATUS;
2047 		break;
2048 	case DP_C:
2049 		bit = DPC_HOTPLUG_INT_STATUS;
2050 		break;
2051 	case DP_D:
2052 		bit = DPD_HOTPLUG_INT_STATUS;
2053 		break;
2054 	default:
2055 		return connector_status_unknown;
2056 	}
2057 
2058 	temp = I915_READ(PORT_HOTPLUG_STAT);
2059 
2060 	if ((temp & bit) == 0)
2061 		return connector_status_disconnected;
2062 
2063 	return intel_dp_detect_dpcd(intel_dp);
2064 }
2065 
2066 static struct edid *
2067 intel_dp_get_edid(struct drm_connector *connector, device_t adapter)
2068 {
2069 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2070 	struct edid	*edid;
2071 
2072 	ironlake_edp_panel_vdd_on(intel_dp);
2073 	edid = drm_get_edid(connector, adapter);
2074 	ironlake_edp_panel_vdd_off(intel_dp, false);
2075 	return edid;
2076 }
2077 
2078 static int
2079 intel_dp_get_edid_modes(struct drm_connector *connector, device_t adapter)
2080 {
2081 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2082 	int	ret;
2083 
2084 	ironlake_edp_panel_vdd_on(intel_dp);
2085 	ret = intel_ddc_get_modes(connector, adapter);
2086 	ironlake_edp_panel_vdd_off(intel_dp, false);
2087 	return ret;
2088 }
2089 
2090 
2091 /**
2092  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2093  *
2094  * \return true if DP port is connected.
2095  * \return false if DP port is disconnected.
2096  */
2097 static enum drm_connector_status
2098 intel_dp_detect(struct drm_connector *connector, bool force)
2099 {
2100 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2101 	struct drm_device *dev = intel_dp->base.base.dev;
2102 	enum drm_connector_status status;
2103 	struct edid *edid = NULL;
2104 
2105 	intel_dp->has_audio = false;
2106 
2107 	if (HAS_PCH_SPLIT(dev))
2108 		status = ironlake_dp_detect(intel_dp);
2109 	else
2110 		status = g4x_dp_detect(intel_dp);
2111 	if (status != connector_status_connected)
2112 		return status;
2113 
2114 	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2115 		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2116 	} else {
2117 		edid = intel_dp_get_edid(connector, intel_dp->adapter);
2118 		if (edid) {
2119 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2120 			connector->display_info.raw_edid = NULL;
2121 			drm_free(edid, DRM_MEM_KMS);
2122 		}
2123 	}
2124 
2125 	return connector_status_connected;
2126 }
2127 
2128 static int intel_dp_get_modes(struct drm_connector *connector)
2129 {
2130 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2131 	struct drm_device *dev = intel_dp->base.base.dev;
2132 	struct drm_i915_private *dev_priv = dev->dev_private;
2133 	int ret;
2134 
2135 	/* We should parse the EDID data and find out if it has an audio sink
2136 	 */
2137 
2138 	ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2139 	if (ret) {
2140 		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2141 			struct drm_display_mode *newmode;
2142 			list_for_each_entry(newmode, &connector->probed_modes,
2143 					    head) {
2144 				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2145 					intel_dp->panel_fixed_mode =
2146 						drm_mode_duplicate(dev, newmode);
2147 					break;
2148 				}
2149 			}
2150 		}
2151 		return ret;
2152 	}
2153 
2154 	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2155 	if (is_edp(intel_dp)) {
2156 		/* initialize panel mode from VBT if available for eDP */
2157 		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2158 			intel_dp->panel_fixed_mode =
2159 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2160 			if (intel_dp->panel_fixed_mode) {
2161 				intel_dp->panel_fixed_mode->type |=
2162 					DRM_MODE_TYPE_PREFERRED;
2163 			}
2164 		}
2165 		if (intel_dp->panel_fixed_mode) {
2166 			struct drm_display_mode *mode;
2167 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2168 			drm_mode_probed_add(connector, mode);
2169 			return 1;
2170 		}
2171 	}
2172 	return 0;
2173 }
2174 
2175 static bool
2176 intel_dp_detect_audio(struct drm_connector *connector)
2177 {
2178 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2179 	struct edid *edid;
2180 	bool has_audio = false;
2181 
2182 	edid = intel_dp_get_edid(connector, intel_dp->adapter);
2183 	if (edid) {
2184 		has_audio = drm_detect_monitor_audio(edid);
2185 
2186 		connector->display_info.raw_edid = NULL;
2187 		drm_free(edid, DRM_MEM_KMS);
2188 	}
2189 
2190 	return has_audio;
2191 }
2192 
2193 static int
2194 intel_dp_set_property(struct drm_connector *connector,
2195 		      struct drm_property *property,
2196 		      uint64_t val)
2197 {
2198 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2199 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2200 	int ret;
2201 
2202 	ret = drm_connector_property_set_value(connector, property, val);
2203 	if (ret)
2204 		return ret;
2205 
2206 	if (property == dev_priv->force_audio_property) {
2207 		int i = val;
2208 		bool has_audio;
2209 
2210 		if (i == intel_dp->force_audio)
2211 			return 0;
2212 
2213 		intel_dp->force_audio = i;
2214 
2215 		if (i == HDMI_AUDIO_AUTO)
2216 			has_audio = intel_dp_detect_audio(connector);
2217 		else
2218 			has_audio = (i == HDMI_AUDIO_ON);
2219 
2220 		if (has_audio == intel_dp->has_audio)
2221 			return 0;
2222 
2223 		intel_dp->has_audio = has_audio;
2224 		goto done;
2225 	}
2226 
2227 	if (property == dev_priv->broadcast_rgb_property) {
2228 		if (val == !!intel_dp->color_range)
2229 			return 0;
2230 
2231 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2232 		goto done;
2233 	}
2234 
2235 	return -EINVAL;
2236 
2237 done:
2238 	if (intel_dp->base.base.crtc) {
2239 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2240 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
2241 					 crtc->x, crtc->y,
2242 					 crtc->fb);
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static void
2249 intel_dp_destroy(struct drm_connector *connector)
2250 {
2251 	struct drm_device *dev = connector->dev;
2252 
2253 	if (intel_dpd_is_edp(dev))
2254 		intel_panel_destroy_backlight(dev);
2255 
2256 #if 0
2257 	drm_sysfs_connector_remove(connector);
2258 #endif
2259 	drm_connector_cleanup(connector);
2260 	drm_free(connector, DRM_MEM_KMS);
2261 }
2262 
2263 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2264 {
2265 	struct drm_device *dev;
2266 	struct intel_dp *intel_dp;
2267 
2268 	intel_dp = enc_to_intel_dp(encoder);
2269 	dev = encoder->dev;
2270 
2271 	if (intel_dp->dp_iic_bus != NULL) {
2272 		if (intel_dp->adapter != NULL) {
2273 			device_delete_child(intel_dp->dp_iic_bus,
2274 			    intel_dp->adapter);
2275 		}
2276 		device_delete_child(dev->device, intel_dp->dp_iic_bus);
2277 	}
2278 	drm_encoder_cleanup(encoder);
2279 	if (is_edp(intel_dp)) {
2280 		struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
2281 
2282 		taskqueue_cancel_timeout(dev_priv->tq,
2283 		    &intel_dp->panel_vdd_task, NULL);
2284 		taskqueue_drain_timeout(dev_priv->tq,
2285 		    &intel_dp->panel_vdd_task);
2286 		ironlake_panel_vdd_off_sync(intel_dp);
2287 	}
2288 	drm_free(intel_dp, DRM_MEM_KMS);
2289 }
2290 
2291 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2292 	.dpms = intel_dp_dpms,
2293 	.mode_fixup = intel_dp_mode_fixup,
2294 	.prepare = intel_dp_prepare,
2295 	.mode_set = intel_dp_mode_set,
2296 	.commit = intel_dp_commit,
2297 };
2298 
2299 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2300 	.dpms = drm_helper_connector_dpms,
2301 	.detect = intel_dp_detect,
2302 	.fill_modes = drm_helper_probe_single_connector_modes,
2303 	.set_property = intel_dp_set_property,
2304 	.destroy = intel_dp_destroy,
2305 };
2306 
2307 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2308 	.get_modes = intel_dp_get_modes,
2309 	.mode_valid = intel_dp_mode_valid,
2310 	.best_encoder = intel_best_encoder,
2311 };
2312 
2313 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2314 	.destroy = intel_dp_encoder_destroy,
2315 };
2316 
2317 static void
2318 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2319 {
2320 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2321 
2322 	intel_dp_check_link_status(intel_dp);
2323 }
2324 
2325 /* Return which DP Port should be selected for Transcoder DP control */
2326 int
2327 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2328 {
2329 	struct drm_device *dev = crtc->dev;
2330 	struct drm_mode_config *mode_config = &dev->mode_config;
2331 	struct drm_encoder *encoder;
2332 
2333 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2334 		struct intel_dp *intel_dp;
2335 
2336 		if (encoder->crtc != crtc)
2337 			continue;
2338 
2339 		intel_dp = enc_to_intel_dp(encoder);
2340 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2341 		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2342 			return intel_dp->output_reg;
2343 	}
2344 
2345 	return -1;
2346 }
2347 
2348 /* check the VBT to see whether the eDP is on DP-D port */
2349 bool intel_dpd_is_edp(struct drm_device *dev)
2350 {
2351 	struct drm_i915_private *dev_priv = dev->dev_private;
2352 	struct child_device_config *p_child;
2353 	int i;
2354 
2355 	if (!dev_priv->child_dev_num)
2356 		return false;
2357 
2358 	for (i = 0; i < dev_priv->child_dev_num; i++) {
2359 		p_child = dev_priv->child_dev + i;
2360 
2361 		if (p_child->dvo_port == PORT_IDPD &&
2362 		    p_child->device_type == DEVICE_TYPE_eDP)
2363 			return true;
2364 	}
2365 	return false;
2366 }
2367 
2368 static void
2369 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2370 {
2371 	intel_attach_force_audio_property(connector);
2372 	intel_attach_broadcast_rgb_property(connector);
2373 }
2374 
2375 void
2376 intel_dp_init(struct drm_device *dev, int output_reg)
2377 {
2378 	struct drm_i915_private *dev_priv = dev->dev_private;
2379 	struct drm_connector *connector;
2380 	struct intel_dp *intel_dp;
2381 	struct intel_encoder *intel_encoder;
2382 	struct intel_connector *intel_connector;
2383 	const char *name = NULL;
2384 	int type;
2385 
2386 	intel_dp = kmalloc(sizeof(struct intel_dp), DRM_MEM_KMS,
2387 	    M_WAITOK | M_ZERO);
2388 
2389 	intel_dp->output_reg = output_reg;
2390 	intel_dp->dpms_mode = -1;
2391 
2392 	intel_connector = kmalloc(sizeof(struct intel_connector), DRM_MEM_KMS,
2393 	    M_WAITOK | M_ZERO);
2394 	intel_encoder = &intel_dp->base;
2395 
2396 	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2397 		if (intel_dpd_is_edp(dev))
2398 			intel_dp->is_pch_edp = true;
2399 
2400 	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2401 		type = DRM_MODE_CONNECTOR_eDP;
2402 		intel_encoder->type = INTEL_OUTPUT_EDP;
2403 	} else {
2404 		type = DRM_MODE_CONNECTOR_DisplayPort;
2405 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2406 	}
2407 
2408 	connector = &intel_connector->base;
2409 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2410 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2411 
2412 	connector->polled = DRM_CONNECTOR_POLL_HPD;
2413 
2414 	if (output_reg == DP_B || output_reg == PCH_DP_B)
2415 		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2416 	else if (output_reg == DP_C || output_reg == PCH_DP_C)
2417 		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2418 	else if (output_reg == DP_D || output_reg == PCH_DP_D)
2419 		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2420 
2421 	if (is_edp(intel_dp)) {
2422 		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2423 		TIMEOUT_TASK_INIT(dev_priv->tq, &intel_dp->panel_vdd_task, 0,
2424 		    ironlake_panel_vdd_work, intel_dp);
2425 	}
2426 
2427 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2428 	connector->interlace_allowed = true;
2429 	connector->doublescan_allowed = 0;
2430 
2431 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2432 			 DRM_MODE_ENCODER_TMDS);
2433 	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2434 
2435 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2436 #if 0
2437 	drm_sysfs_connector_add(connector);
2438 #endif
2439 
2440 	/* Set up the DDC bus. */
2441 	switch (output_reg) {
2442 		case DP_A:
2443 			name = "DPDDC-A";
2444 			break;
2445 		case DP_B:
2446 		case PCH_DP_B:
2447 			dev_priv->hotplug_supported_mask |=
2448 				HDMIB_HOTPLUG_INT_STATUS;
2449 			name = "DPDDC-B";
2450 			break;
2451 		case DP_C:
2452 		case PCH_DP_C:
2453 			dev_priv->hotplug_supported_mask |=
2454 				HDMIC_HOTPLUG_INT_STATUS;
2455 			name = "DPDDC-C";
2456 			break;
2457 		case DP_D:
2458 		case PCH_DP_D:
2459 			dev_priv->hotplug_supported_mask |=
2460 				HDMID_HOTPLUG_INT_STATUS;
2461 			name = "DPDDC-D";
2462 			break;
2463 	}
2464 
2465 	/* Cache some DPCD data in the eDP case */
2466 	if (is_edp(intel_dp)) {
2467 		bool ret;
2468 		struct edp_power_seq	cur, vbt;
2469 		u32 pp_on, pp_off, pp_div;
2470 
2471 		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2472 		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2473 		pp_div = I915_READ(PCH_PP_DIVISOR);
2474 
2475 		/* Pull timing values out of registers */
2476 		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2477 			PANEL_POWER_UP_DELAY_SHIFT;
2478 
2479 		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2480 			PANEL_LIGHT_ON_DELAY_SHIFT;
2481 
2482 		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2483 			PANEL_LIGHT_OFF_DELAY_SHIFT;
2484 
2485 		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2486 			PANEL_POWER_DOWN_DELAY_SHIFT;
2487 
2488 		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2489 			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2490 
2491 		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2492 			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2493 
2494 		vbt = dev_priv->edp.pps;
2495 
2496 		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2497 			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2498 
2499 #define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2500 
2501 		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2502 		intel_dp->backlight_on_delay = get_delay(t8);
2503 		intel_dp->backlight_off_delay = get_delay(t9);
2504 		intel_dp->panel_power_down_delay = get_delay(t10);
2505 		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2506 
2507 		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2508 			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2509 			      intel_dp->panel_power_cycle_delay);
2510 
2511 		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2512 			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2513 
2514 		ironlake_edp_panel_vdd_on(intel_dp);
2515 		ret = intel_dp_get_dpcd(intel_dp);
2516 		ironlake_edp_panel_vdd_off(intel_dp, false);
2517 
2518 		if (ret) {
2519 			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2520 				dev_priv->no_aux_handshake =
2521 					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2522 					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2523 		} else {
2524 			/* if this fails, presume the device is a ghost */
2525 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2526 			intel_dp_encoder_destroy(&intel_dp->base.base);
2527 			intel_dp_destroy(&intel_connector->base);
2528 			return;
2529 		}
2530 	}
2531 
2532 	intel_dp_i2c_init(intel_dp, intel_connector, name);
2533 
2534 	intel_encoder->hot_plug = intel_dp_hot_plug;
2535 
2536 	if (is_edp(intel_dp)) {
2537 		dev_priv->int_edp_connector = connector;
2538 		intel_panel_setup_backlight(dev);
2539 	}
2540 
2541 	intel_dp_add_properties(intel_dp, connector);
2542 
2543 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2544 	 * 0xd.  Failure to do so will result in spurious interrupts being
2545 	 * generated on the port when a cable is not attached.
2546 	 */
2547 	if (IS_G4X(dev) && !IS_GM45(dev)) {
2548 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2549 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2550 	}
2551 }
2552