xref: /dragonfly/sys/dev/drm/i915/intel_dp.c (revision 31524921)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/export.h>
30 #include <drm/drmP.h>
31 #include <linux/slab.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38 
39 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40 
41 struct dp_link_dpll {
42 	int link_bw;
43 	struct dpll dpll;
44 };
45 
46 static const struct dp_link_dpll gen4_dpll[] = {
47 	{ DP_LINK_BW_1_62,
48 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 	{ DP_LINK_BW_2_7,
50 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52 
53 static const struct dp_link_dpll pch_dpll[] = {
54 	{ DP_LINK_BW_1_62,
55 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 	{ DP_LINK_BW_2_7,
57 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59 
60 static const struct dp_link_dpll vlv_dpll[] = {
61 	{ DP_LINK_BW_1_62,
62 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 	{ DP_LINK_BW_2_7,
64 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66 
67 /*
68  * CHV supports eDP 1.4 that have  more link rates.
69  * Below only provides the fixed rate but exclude variable rate.
70  */
71 static const struct dp_link_dpll chv_dpll[] = {
72 	/*
73 	 * CHV requires to program fractional division for m2.
74 	 * m2 is stored in fixed point format using formula below
75 	 * (m2_int << 22) | m2_fraction
76 	 */
77 	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
78 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79 	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
80 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81 	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
82 		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83 };
84 
85 /**
86  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87  * @intel_dp: DP struct
88  *
89  * If a CPU or PCH DP output is attached to an eDP panel, this function
90  * will return true, and false otherwise.
91  */
92 static bool is_edp(struct intel_dp *intel_dp)
93 {
94 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95 
96 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 }
98 
99 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100 {
101 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102 
103 	return intel_dig_port->base.base.dev;
104 }
105 
106 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107 {
108 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 }
110 
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
113 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114 
115 int
116 intel_dp_max_link_bw(struct intel_dp *intel_dp)
117 {
118 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119 	struct drm_device *dev = intel_dp->attached_connector->base.dev;
120 
121 	switch (max_link_bw) {
122 	case DP_LINK_BW_1_62:
123 	case DP_LINK_BW_2_7:
124 		break;
125 	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126 		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
127 		     INTEL_INFO(dev)->gen >= 8) &&
128 		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
129 			max_link_bw = DP_LINK_BW_5_4;
130 		else
131 			max_link_bw = DP_LINK_BW_2_7;
132 		break;
133 	default:
134 		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
135 		     max_link_bw);
136 		max_link_bw = DP_LINK_BW_1_62;
137 		break;
138 	}
139 	return max_link_bw;
140 }
141 
142 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
143 {
144 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145 	struct drm_device *dev = intel_dig_port->base.base.dev;
146 	u8 source_max, sink_max;
147 
148 	source_max = 4;
149 	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
150 	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
151 		source_max = 2;
152 
153 	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
154 
155 	return min(source_max, sink_max);
156 }
157 
158 /*
159  * The units on the numbers in the next two are... bizarre.  Examples will
160  * make it clearer; this one parallels an example in the eDP spec.
161  *
162  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
163  *
164  *     270000 * 1 * 8 / 10 == 216000
165  *
166  * The actual data capacity of that configuration is 2.16Gbit/s, so the
167  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
168  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
169  * 119000.  At 18bpp that's 2142000 kilobits per second.
170  *
171  * Thus the strange-looking division by 10 in intel_dp_link_required, to
172  * get the result in decakilobits instead of kilobits.
173  */
174 
175 static int
176 intel_dp_link_required(int pixel_clock, int bpp)
177 {
178 	return (pixel_clock * bpp + 9) / 10;
179 }
180 
181 static int
182 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
183 {
184 	return (max_link_clock * max_lanes * 8) / 10;
185 }
186 
187 static enum drm_mode_status
188 intel_dp_mode_valid(struct drm_connector *connector,
189 		    struct drm_display_mode *mode)
190 {
191 	struct intel_dp *intel_dp = intel_attached_dp(connector);
192 	struct intel_connector *intel_connector = to_intel_connector(connector);
193 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
194 	int target_clock = mode->clock;
195 	int max_rate, mode_rate, max_lanes, max_link_clock;
196 
197 	if (is_edp(intel_dp) && fixed_mode) {
198 		if (mode->hdisplay > fixed_mode->hdisplay)
199 			return MODE_PANEL;
200 
201 		if (mode->vdisplay > fixed_mode->vdisplay)
202 			return MODE_PANEL;
203 
204 		target_clock = fixed_mode->clock;
205 	}
206 
207 	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
208 	max_lanes = intel_dp_max_lane_count(intel_dp);
209 
210 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
211 	mode_rate = intel_dp_link_required(target_clock, 18);
212 
213 	if (mode_rate > max_rate)
214 		return MODE_CLOCK_HIGH;
215 
216 	if (mode->clock < 10000)
217 		return MODE_CLOCK_LOW;
218 
219 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
220 		return MODE_H_ILLEGAL;
221 
222 	return MODE_OK;
223 }
224 
225 static uint32_t
226 pack_aux(uint8_t *src, int src_bytes)
227 {
228 	int	i;
229 	uint32_t v = 0;
230 
231 	if (src_bytes > 4)
232 		src_bytes = 4;
233 	for (i = 0; i < src_bytes; i++)
234 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
235 	return v;
236 }
237 
238 static void
239 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
240 {
241 	int i;
242 	if (dst_bytes > 4)
243 		dst_bytes = 4;
244 	for (i = 0; i < dst_bytes; i++)
245 		dst[i] = src >> ((3-i) * 8);
246 }
247 
248 /* hrawclock is 1/4 the FSB frequency */
249 static int
250 intel_hrawclk(struct drm_device *dev)
251 {
252 	struct drm_i915_private *dev_priv = dev->dev_private;
253 	uint32_t clkcfg;
254 
255 	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
256 	if (IS_VALLEYVIEW(dev))
257 		return 200;
258 
259 	clkcfg = I915_READ(CLKCFG);
260 	switch (clkcfg & CLKCFG_FSB_MASK) {
261 	case CLKCFG_FSB_400:
262 		return 100;
263 	case CLKCFG_FSB_533:
264 		return 133;
265 	case CLKCFG_FSB_667:
266 		return 166;
267 	case CLKCFG_FSB_800:
268 		return 200;
269 	case CLKCFG_FSB_1067:
270 		return 266;
271 	case CLKCFG_FSB_1333:
272 		return 333;
273 	/* these two are just a guess; one of them might be right */
274 	case CLKCFG_FSB_1600:
275 	case CLKCFG_FSB_1600_ALT:
276 		return 400;
277 	default:
278 		return 133;
279 	}
280 }
281 
282 static void
283 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
284 				    struct intel_dp *intel_dp,
285 				    struct edp_power_seq *out);
286 static void
287 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
288 					      struct intel_dp *intel_dp,
289 					      struct edp_power_seq *out);
290 
291 static void pps_lock(struct intel_dp *intel_dp)
292 {
293 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
294 	struct intel_encoder *encoder = &intel_dig_port->base;
295 	struct drm_device *dev = encoder->base.dev;
296 	struct drm_i915_private *dev_priv = dev->dev_private;
297 	enum intel_display_power_domain power_domain;
298 
299 	/*
300 	 * See vlv_power_sequencer_reset() why we need
301 	 * a power domain reference here.
302 	 */
303 	power_domain = intel_display_port_power_domain(encoder);
304 	intel_display_power_get(dev_priv, power_domain);
305 
306 	mutex_lock(&dev_priv->pps_mutex);
307 }
308 
309 static void pps_unlock(struct intel_dp *intel_dp)
310 {
311 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
312 	struct intel_encoder *encoder = &intel_dig_port->base;
313 	struct drm_device *dev = encoder->base.dev;
314 	struct drm_i915_private *dev_priv = dev->dev_private;
315 	enum intel_display_power_domain power_domain;
316 
317 	mutex_unlock(&dev_priv->pps_mutex);
318 
319 	power_domain = intel_display_port_power_domain(encoder);
320 	intel_display_power_put(dev_priv, power_domain);
321 }
322 
323 static enum i915_pipe
324 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
325 {
326 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
327 	struct drm_device *dev = intel_dig_port->base.base.dev;
328 	struct drm_i915_private *dev_priv = dev->dev_private;
329 	struct intel_encoder *encoder;
330 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
331 	struct edp_power_seq power_seq;
332 
333 	lockdep_assert_held(&dev_priv->pps_mutex);
334 
335 	if (intel_dp->pps_pipe != INVALID_PIPE)
336 		return intel_dp->pps_pipe;
337 
338 	/*
339 	 * We don't have power sequencer currently.
340 	 * Pick one that's not used by other ports.
341 	 */
342 	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
343 			    base.head) {
344 		struct intel_dp *tmp;
345 
346 		if (encoder->type != INTEL_OUTPUT_EDP)
347 			continue;
348 
349 		tmp = enc_to_intel_dp(&encoder->base);
350 
351 		if (tmp->pps_pipe != INVALID_PIPE)
352 			pipes &= ~(1 << tmp->pps_pipe);
353 	}
354 
355 	/*
356 	 * Didn't find one. This should not happen since there
357 	 * are two power sequencers and up to two eDP ports.
358 	 */
359 	if (WARN_ON(pipes == 0))
360 		return PIPE_A;
361 
362 	intel_dp->pps_pipe = ffs(pipes) - 1;
363 
364 	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
365 		      pipe_name(intel_dp->pps_pipe),
366 		      port_name(intel_dig_port->port));
367 
368 	/* init power sequencer on this pipe and port */
369 	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
370 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
371 						      &power_seq);
372 
373 	return intel_dp->pps_pipe;
374 }
375 
376 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
377 			       enum i915_pipe pipe);
378 
379 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
380 			       enum i915_pipe pipe)
381 {
382 	return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
383 }
384 
385 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
386 				enum i915_pipe pipe)
387 {
388 	return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
389 }
390 
391 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
392 			 enum i915_pipe pipe)
393 {
394 	return true;
395 }
396 
397 static enum i915_pipe
398 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
399 		     enum port port,
400 		     vlv_pipe_check pipe_check)
401 {
402 	enum i915_pipe pipe;
403 
404 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
405 		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
406 			PANEL_PORT_SELECT_MASK;
407 
408 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
409 			continue;
410 
411 		if (!pipe_check(dev_priv, pipe))
412 			continue;
413 
414 		return pipe;
415 	}
416 
417 	return INVALID_PIPE;
418 }
419 
420 static void
421 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
422 {
423 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
424 	struct drm_device *dev = intel_dig_port->base.base.dev;
425 	struct drm_i915_private *dev_priv = dev->dev_private;
426 	struct edp_power_seq power_seq;
427 	enum port port = intel_dig_port->port;
428 
429 	lockdep_assert_held(&dev_priv->pps_mutex);
430 
431 	/* try to find a pipe with this port selected */
432 	/* first pick one where the panel is on */
433 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
434 						  vlv_pipe_has_pp_on);
435 	/* didn't find one? pick one where vdd is on */
436 	if (intel_dp->pps_pipe == INVALID_PIPE)
437 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
438 							  vlv_pipe_has_vdd_on);
439 	/* didn't find one? pick one with just the correct port */
440 	if (intel_dp->pps_pipe == INVALID_PIPE)
441 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
442 							  vlv_pipe_any);
443 
444 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
445 	if (intel_dp->pps_pipe == INVALID_PIPE) {
446 		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
447 			      port_name(port));
448 		return;
449 	}
450 
451 	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
452 		      port_name(port), pipe_name(intel_dp->pps_pipe));
453 
454 	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
455 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
456 						      &power_seq);
457 }
458 
459 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
460 {
461 	struct drm_device *dev = dev_priv->dev;
462 	struct intel_encoder *encoder;
463 
464 	if (WARN_ON(!IS_VALLEYVIEW(dev)))
465 		return;
466 
467 	/*
468 	 * We can't grab pps_mutex here due to deadlock with power_domain
469 	 * mutex when power_domain functions are called while holding pps_mutex.
470 	 * That also means that in order to use pps_pipe the code needs to
471 	 * hold both a power domain reference and pps_mutex, and the power domain
472 	 * reference get/put must be done while _not_ holding pps_mutex.
473 	 * pps_{lock,unlock}() do these steps in the correct order, so one
474 	 * should use them always.
475 	 */
476 
477 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
478 		struct intel_dp *intel_dp;
479 
480 		if (encoder->type != INTEL_OUTPUT_EDP)
481 			continue;
482 
483 		intel_dp = enc_to_intel_dp(&encoder->base);
484 		intel_dp->pps_pipe = INVALID_PIPE;
485 	}
486 }
487 
488 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
489 {
490 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
491 
492 	if (HAS_PCH_SPLIT(dev))
493 		return PCH_PP_CONTROL;
494 	else
495 		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
496 }
497 
498 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
499 {
500 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
501 
502 	if (HAS_PCH_SPLIT(dev))
503 		return PCH_PP_STATUS;
504 	else
505 		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
506 }
507 
508 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
509    This function only applicable when panel PM state is not to be tracked */
510 #if 0
511 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
512 			      void *unused)
513 {
514 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
515 						 edp_notifier);
516 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
517 	struct drm_i915_private *dev_priv = dev->dev_private;
518 	u32 pp_div;
519 	u32 pp_ctrl_reg, pp_div_reg;
520 
521 	if (!is_edp(intel_dp) || code != SYS_RESTART)
522 		return 0;
523 
524 	pps_lock(intel_dp);
525 
526 	if (IS_VALLEYVIEW(dev)) {
527 		enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
528 
529 		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
530 		pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
531 		pp_div = I915_READ(pp_div_reg);
532 		pp_div &= PP_REFERENCE_DIVIDER_MASK;
533 
534 		/* 0x1F write to PP_DIV_REG sets max cycle delay */
535 		I915_WRITE(pp_div_reg, pp_div | 0x1F);
536 		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
537 		msleep(intel_dp->panel_power_cycle_delay);
538 	}
539 
540 	pps_unlock(intel_dp);
541 
542 	return 0;
543 }
544 #endif
545 
546 static bool edp_have_panel_power(struct intel_dp *intel_dp)
547 {
548 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
549 	struct drm_i915_private *dev_priv = dev->dev_private;
550 
551 	lockdep_assert_held(&dev_priv->pps_mutex);
552 
553 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
554 }
555 
556 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
557 {
558 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
559 	struct drm_i915_private *dev_priv = dev->dev_private;
560 
561 	lockdep_assert_held(&dev_priv->pps_mutex);
562 
563 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
564 }
565 
566 static void
567 intel_dp_check_edp(struct intel_dp *intel_dp)
568 {
569 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
570 	struct drm_i915_private *dev_priv = dev->dev_private;
571 
572 	if (!is_edp(intel_dp))
573 		return;
574 
575 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
576 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
577 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
578 			      I915_READ(_pp_stat_reg(intel_dp)),
579 			      I915_READ(_pp_ctrl_reg(intel_dp)));
580 	}
581 }
582 
583 static uint32_t
584 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
585 {
586 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
587 	struct drm_device *dev = intel_dig_port->base.base.dev;
588 	struct drm_i915_private *dev_priv = dev->dev_private;
589 	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
590 	uint32_t status;
591 	bool done;
592 
593 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
594 	if (has_aux_irq)
595 		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
596 					  msecs_to_jiffies_timeout(10));
597 	else
598 		done = wait_for_atomic(C, 10) == 0;
599 	if (!done)
600 		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
601 			  has_aux_irq);
602 #undef C
603 
604 	return status;
605 }
606 
607 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
608 {
609 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
610 	struct drm_device *dev = intel_dig_port->base.base.dev;
611 
612 	/*
613 	 * The clock divider is based off the hrawclk, and would like to run at
614 	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
615 	 */
616 	return index ? 0 : intel_hrawclk(dev) / 2;
617 }
618 
619 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
620 {
621 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
622 	struct drm_device *dev = intel_dig_port->base.base.dev;
623 
624 	if (index)
625 		return 0;
626 
627 	if (intel_dig_port->port == PORT_A) {
628 		if (IS_GEN6(dev) || IS_GEN7(dev))
629 			return 200; /* SNB & IVB eDP input clock at 400Mhz */
630 		else
631 			return 225; /* eDP input clock at 450Mhz */
632 	} else {
633 		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
634 	}
635 }
636 
637 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
638 {
639 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
640 	struct drm_device *dev = intel_dig_port->base.base.dev;
641 	struct drm_i915_private *dev_priv = dev->dev_private;
642 
643 	if (intel_dig_port->port == PORT_A) {
644 		if (index)
645 			return 0;
646 		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
647 	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
648 		/* Workaround for non-ULT HSW */
649 		switch (index) {
650 		case 0: return 63;
651 		case 1: return 72;
652 		default: return 0;
653 		}
654 	} else  {
655 		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
656 	}
657 }
658 
659 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 	return index ? 0 : 100;
662 }
663 
664 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
665 				      bool has_aux_irq,
666 				      int send_bytes,
667 				      uint32_t aux_clock_divider)
668 {
669 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670 	struct drm_device *dev = intel_dig_port->base.base.dev;
671 	uint32_t precharge, timeout;
672 
673 	if (IS_GEN6(dev))
674 		precharge = 3;
675 	else
676 		precharge = 5;
677 
678 	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
679 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
680 	else
681 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
682 
683 	return DP_AUX_CH_CTL_SEND_BUSY |
684 	       DP_AUX_CH_CTL_DONE |
685 	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
686 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
687 	       timeout |
688 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
689 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
690 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
691 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
692 }
693 
694 static int
695 intel_dp_aux_ch(struct intel_dp *intel_dp,
696 		uint8_t *send, int send_bytes,
697 		uint8_t *recv, int recv_size)
698 {
699 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
700 	struct drm_device *dev = intel_dig_port->base.base.dev;
701 	struct drm_i915_private *dev_priv = dev->dev_private;
702 	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
703 	uint32_t ch_data = ch_ctl + 4;
704 	uint32_t aux_clock_divider;
705 	int i, ret, recv_bytes;
706 	uint32_t status;
707 	int try, clock = 0;
708 	bool has_aux_irq = HAS_AUX_IRQ(dev);
709 	bool vdd;
710 
711 	pps_lock(intel_dp);
712 
713 	/*
714 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
715 	 * In such cases we want to leave VDD enabled and it's up to upper layers
716 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
717 	 * ourselves.
718 	 */
719 	vdd = edp_panel_vdd_on(intel_dp);
720 
721 	/* dp aux is extremely sensitive to irq latency, hence request the
722 	 * lowest possible wakeup latency and so prevent the cpu from going into
723 	 * deep sleep states.
724 	 */
725 	pm_qos_update_request(&dev_priv->pm_qos, 0);
726 
727 	intel_dp_check_edp(intel_dp);
728 
729 	intel_aux_display_runtime_get(dev_priv);
730 
731 	/* Try to wait for any previous AUX channel activity */
732 	for (try = 0; try < 3; try++) {
733 		status = I915_READ_NOTRACE(ch_ctl);
734 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
735 			break;
736 		msleep(1);
737 	}
738 
739 	if (try == 3) {
740 		WARN(1, "dp_aux_ch not started status 0x%08x\n",
741 		     I915_READ(ch_ctl));
742 		ret = -EBUSY;
743 		goto out;
744 	}
745 
746 	/* Only 5 data registers! */
747 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
748 		ret = -E2BIG;
749 		goto out;
750 	}
751 
752 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
753 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
754 							  has_aux_irq,
755 							  send_bytes,
756 							  aux_clock_divider);
757 
758 		/* Must try at least 3 times according to DP spec */
759 		for (try = 0; try < 5; try++) {
760 			/* Load the send data into the aux channel data registers */
761 			for (i = 0; i < send_bytes; i += 4)
762 				I915_WRITE(ch_data + i,
763 					   pack_aux(send + i, send_bytes - i));
764 
765 			/* Send the command and wait for it to complete */
766 			I915_WRITE(ch_ctl, send_ctl);
767 
768 			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
769 
770 			/* Clear done status and any errors */
771 			I915_WRITE(ch_ctl,
772 				   status |
773 				   DP_AUX_CH_CTL_DONE |
774 				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 				   DP_AUX_CH_CTL_RECEIVE_ERROR);
776 
777 			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 				      DP_AUX_CH_CTL_RECEIVE_ERROR))
779 				continue;
780 			if (status & DP_AUX_CH_CTL_DONE)
781 				break;
782 		}
783 		if (status & DP_AUX_CH_CTL_DONE)
784 			break;
785 	}
786 
787 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
788 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
789 		ret = -EBUSY;
790 		goto out;
791 	}
792 
793 	/* Check for timeout or receive error.
794 	 * Timeouts occur when the sink is not connected
795 	 */
796 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
797 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
798 		ret = -EIO;
799 		goto out;
800 	}
801 
802 	/* Timeouts occur when the device isn't connected, so they're
803 	 * "normal" -- don't fill the kernel log with these */
804 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
805 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
806 		ret = -ETIMEDOUT;
807 		goto out;
808 	}
809 
810 	/* Unload any bytes sent back from the other side */
811 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
812 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
813 	if (recv_bytes > recv_size)
814 		recv_bytes = recv_size;
815 
816 	for (i = 0; i < recv_bytes; i += 4)
817 		unpack_aux(I915_READ(ch_data + i),
818 			   recv + i, recv_bytes - i);
819 
820 	ret = recv_bytes;
821 out:
822 	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
823 	intel_aux_display_runtime_put(dev_priv);
824 
825 	if (vdd)
826 		edp_panel_vdd_off(intel_dp, false);
827 
828 	pps_unlock(intel_dp);
829 
830 	return ret;
831 }
832 
833 #define BARE_ADDRESS_SIZE	3
834 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
835 static ssize_t
836 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
837 {
838 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
839 	uint8_t txbuf[20], rxbuf[20];
840 	size_t txsize, rxsize;
841 	int ret;
842 
843 	txbuf[0] = msg->request << 4;
844 	txbuf[1] = msg->address >> 8;
845 	txbuf[2] = msg->address & 0xff;
846 	txbuf[3] = msg->size - 1;
847 
848 	switch (msg->request & ~DP_AUX_I2C_MOT) {
849 	case DP_AUX_NATIVE_WRITE:
850 	case DP_AUX_I2C_WRITE:
851 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
852 		rxsize = 1;
853 
854 		if (WARN_ON(txsize > 20))
855 			return -E2BIG;
856 
857 		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
858 
859 		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
860 		if (ret > 0) {
861 			msg->reply = rxbuf[0] >> 4;
862 
863 			/* Return payload size. */
864 			ret = msg->size;
865 		}
866 		break;
867 
868 	case DP_AUX_NATIVE_READ:
869 	case DP_AUX_I2C_READ:
870 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
871 		rxsize = msg->size + 1;
872 
873 		if (WARN_ON(rxsize > 20))
874 			return -E2BIG;
875 
876 		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
877 		if (ret > 0) {
878 			msg->reply = rxbuf[0] >> 4;
879 			/*
880 			 * Assume happy day, and copy the data. The caller is
881 			 * expected to check msg->reply before touching it.
882 			 *
883 			 * Return payload size.
884 			 */
885 			ret--;
886 			memcpy(msg->buffer, rxbuf + 1, ret);
887 		}
888 		break;
889 
890 	default:
891 		ret = -EINVAL;
892 		break;
893 	}
894 
895 	return ret;
896 }
897 
898 static int
899 intel_dp_i2c_aux_ch(struct device *adapter, int mode,
900 		    uint8_t write_byte, uint8_t *read_byte)
901 {
902 	struct i2c_algo_dp_aux_data *data = device_get_softc(adapter);
903 	struct intel_dp *intel_dp = data->priv;
904 	uint16_t address = data->address;
905 	uint8_t msg[5];
906 	uint8_t reply[2];
907 	unsigned retry;
908 	int msg_bytes;
909 	int reply_bytes;
910 	int ret;
911 
912 	intel_edp_panel_vdd_on(intel_dp);
913 	intel_dp_check_edp(intel_dp);
914 	/* Set up the command byte */
915 	if (mode & MODE_I2C_READ)
916 		msg[0] = DP_AUX_I2C_READ << 4;
917 	else
918 		msg[0] = DP_AUX_I2C_WRITE << 4;
919 
920 	if (!(mode & MODE_I2C_STOP))
921 		msg[0] |= DP_AUX_I2C_MOT << 4;
922 
923 	msg[1] = address >> 8;
924 	msg[2] = address;
925 
926 	switch (mode) {
927 	case MODE_I2C_WRITE:
928 		msg[3] = 0;
929 		msg[4] = write_byte;
930 		msg_bytes = 5;
931 		reply_bytes = 1;
932 		break;
933 	case MODE_I2C_READ:
934 		msg[3] = 0;
935 		msg_bytes = 4;
936 		reply_bytes = 2;
937 		break;
938 	default:
939 		msg_bytes = 3;
940 		reply_bytes = 1;
941 		break;
942 	}
943 
944 	/*
945 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
946 	 * required to retry at least seven times upon receiving AUX_DEFER
947 	 * before giving up the AUX transaction.
948 	 */
949 	for (retry = 0; retry < 7; retry++) {
950 		ret = intel_dp_aux_ch(intel_dp,
951 				      msg, msg_bytes,
952 				      reply, reply_bytes);
953 		if (ret < 0) {
954 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
955 			goto out;
956 		}
957 
958 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
959 		case DP_AUX_NATIVE_REPLY_ACK:
960 			/* I2C-over-AUX Reply field is only valid
961 			 * when paired with AUX ACK.
962 			 */
963 			break;
964 		case DP_AUX_NATIVE_REPLY_NACK:
965 			DRM_DEBUG_KMS("aux_ch native nack\n");
966 			ret = -EREMOTEIO;
967 			goto out;
968 		case DP_AUX_NATIVE_REPLY_DEFER:
969 			/*
970 			 * For now, just give more slack to branch devices. We
971 			 * could check the DPCD for I2C bit rate capabilities,
972 			 * and if available, adjust the interval. We could also
973 			 * be more careful with DP-to-Legacy adapters where a
974 			 * long legacy cable may force very low I2C bit rates.
975 			 */
976 			if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
977 			    DP_DWN_STRM_PORT_PRESENT)
978 				usleep_range(500, 600);
979 			else
980 				usleep_range(300, 400);
981 			continue;
982 		default:
983 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
984 				  reply[0]);
985 			ret = -EREMOTEIO;
986 			goto out;
987 		}
988 
989 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
990 		case DP_AUX_I2C_REPLY_ACK:
991 			if (mode == MODE_I2C_READ) {
992 				*read_byte = reply[1];
993 			}
994 			ret = 0;	/* reply_bytes - 1 */
995 			goto out;
996 		case DP_AUX_I2C_REPLY_NACK:
997 			DRM_DEBUG_KMS("aux_i2c nack\n");
998 			ret = -EREMOTEIO;
999 			goto out;
1000 		case DP_AUX_I2C_REPLY_DEFER:
1001 			DRM_DEBUG_KMS("aux_i2c defer\n");
1002 			udelay(100);
1003 			break;
1004 		default:
1005 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
1006 			ret = -EREMOTEIO;
1007 			goto out;
1008 		}
1009 	}
1010 
1011 	DRM_ERROR("too many retries, giving up\n");
1012 	ret = -EREMOTEIO;
1013 
1014 out:
1015 	return ret;
1016 }
1017 
1018 static void
1019 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1020 {
1021 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1022 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1023 	enum port port = intel_dig_port->port;
1024 	const char *name = NULL;
1025 	int ret;
1026 
1027 	switch (port) {
1028 	case PORT_A:
1029 		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1030 		name = "DPDDC-A";
1031 		break;
1032 	case PORT_B:
1033 		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1034 		name = "DPDDC-B";
1035 		break;
1036 	case PORT_C:
1037 		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1038 		name = "DPDDC-C";
1039 		break;
1040 	case PORT_D:
1041 		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1042 		name = "DPDDC-D";
1043 		break;
1044 	default:
1045 		BUG();
1046 	}
1047 
1048 	if (!HAS_DDI(dev))
1049 		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1050 
1051 	intel_dp->aux.name = name;
1052 	intel_dp->aux.dev = dev->dev;
1053 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1054 
1055 	DRM_DEBUG_KMS("i2c_init %s\n", name);
1056 	ret = iic_dp_aux_add_bus(connector->base.dev->dev, name,
1057 	    intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
1058 	    &intel_dp->aux.ddc);
1059 	WARN(ret, "intel_dp_i2c_init failed with error %d for port %c\n",
1060 	     ret, port_name(port));
1061 
1062 }
1063 
1064 static void
1065 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1066 {
1067 	intel_connector_unregister(intel_connector);
1068 }
1069 
1070 #if 0
1071 static int
1072 intel_dp_i2c_init(struct intel_dp *intel_dp,
1073 		  struct intel_connector *intel_connector, const char *name)
1074 {
1075 	int	ret;
1076 
1077 	DRM_DEBUG_KMS("i2c_init %s\n", name);
1078 #if 0
1079 	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
1080 	intel_dp->adapter.owner = THIS_MODULE;
1081 	intel_dp->adapter.class = I2C_CLASS_DDC;
1082 	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
1083 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
1084 	intel_dp->adapter.algo_data = &intel_dp->algo;
1085 	intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
1086 
1087 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
1088 	if (ret < 0)
1089 		return ret;
1090 
1091 	ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
1092 				&intel_dp->adapter.dev.kobj,
1093 				intel_dp->adapter.dev.kobj.name);
1094 #endif
1095 	ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
1096 	    intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
1097 	    &intel_dp->adapter);
1098 
1099 	return ret;
1100 }
1101 #endif
1102 
1103 static void
1104 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
1105 {
1106 	switch (link_bw) {
1107 	case DP_LINK_BW_1_62:
1108 		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1109 		break;
1110 	case DP_LINK_BW_2_7:
1111 		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1112 		break;
1113 	case DP_LINK_BW_5_4:
1114 		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1115 		break;
1116 	}
1117 }
1118 
1119 static void
1120 intel_dp_set_clock(struct intel_encoder *encoder,
1121 		   struct intel_crtc_config *pipe_config, int link_bw)
1122 {
1123 	struct drm_device *dev = encoder->base.dev;
1124 	const struct dp_link_dpll *divisor = NULL;
1125 	int i, count = 0;
1126 
1127 	if (IS_G4X(dev)) {
1128 		divisor = gen4_dpll;
1129 		count = ARRAY_SIZE(gen4_dpll);
1130 	} else if (HAS_PCH_SPLIT(dev)) {
1131 		divisor = pch_dpll;
1132 		count = ARRAY_SIZE(pch_dpll);
1133 	} else if (IS_CHERRYVIEW(dev)) {
1134 		divisor = chv_dpll;
1135 		count = ARRAY_SIZE(chv_dpll);
1136 	} else if (IS_VALLEYVIEW(dev)) {
1137 		divisor = vlv_dpll;
1138 		count = ARRAY_SIZE(vlv_dpll);
1139 	}
1140 
1141 	if (divisor && count) {
1142 		for (i = 0; i < count; i++) {
1143 			if (link_bw == divisor[i].link_bw) {
1144 				pipe_config->dpll = divisor[i].dpll;
1145 				pipe_config->clock_set = true;
1146 				break;
1147 			}
1148 		}
1149 	}
1150 }
1151 
1152 bool
1153 intel_dp_compute_config(struct intel_encoder *encoder,
1154 			struct intel_crtc_config *pipe_config)
1155 {
1156 	struct drm_device *dev = encoder->base.dev;
1157 	struct drm_i915_private *dev_priv = dev->dev_private;
1158 	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1159 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1160 	enum port port = dp_to_dig_port(intel_dp)->port;
1161 	struct intel_crtc *intel_crtc = encoder->new_crtc;
1162 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1163 	int lane_count, clock;
1164 	int min_lane_count = 1;
1165 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
1166 	/* Conveniently, the link BW constants become indices with a shift...*/
1167 	int min_clock = 0;
1168 	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1169 	int bpp, mode_rate;
1170 	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1171 	int link_avail, link_clock;
1172 
1173 	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1174 		pipe_config->has_pch_encoder = true;
1175 
1176 	pipe_config->has_dp_encoder = true;
1177 	pipe_config->has_drrs = false;
1178 	pipe_config->has_audio = intel_dp->has_audio;
1179 
1180 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1181 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1182 				       adjusted_mode);
1183 		if (!HAS_PCH_SPLIT(dev))
1184 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
1185 						 intel_connector->panel.fitting_mode);
1186 		else
1187 			intel_pch_panel_fitting(intel_crtc, pipe_config,
1188 						intel_connector->panel.fitting_mode);
1189 	}
1190 
1191 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1192 		return false;
1193 
1194 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
1195 		      "max bw %02x pixel clock %iKHz\n",
1196 		      max_lane_count, bws[max_clock],
1197 		      adjusted_mode->crtc_clock);
1198 
1199 	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
1200 	 * bpc in between. */
1201 	bpp = pipe_config->pipe_bpp;
1202 	if (is_edp(intel_dp)) {
1203 		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1204 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1205 				      dev_priv->vbt.edp_bpp);
1206 			bpp = dev_priv->vbt.edp_bpp;
1207 		}
1208 
1209 		/*
1210 		 * Use the maximum clock and number of lanes the eDP panel
1211 		 * advertizes being capable of. The panels are generally
1212 		 * designed to support only a single clock and lane
1213 		 * configuration, and typically these values correspond to the
1214 		 * native resolution of the panel.
1215 		 */
1216 		min_lane_count = max_lane_count;
1217 		min_clock = max_clock;
1218 	}
1219 
1220 	for (; bpp >= 6*3; bpp -= 2*3) {
1221 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1222 						   bpp);
1223 
1224 		for (clock = min_clock; clock <= max_clock; clock++) {
1225 			for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1226 				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1227 				link_avail = intel_dp_max_data_rate(link_clock,
1228 								    lane_count);
1229 
1230 				if (mode_rate <= link_avail) {
1231 					goto found;
1232 				}
1233 			}
1234 		}
1235 	}
1236 
1237 	return false;
1238 
1239 found:
1240 	if (intel_dp->color_range_auto) {
1241 		/*
1242 		 * See:
1243 		 * CEA-861-E - 5.1 Default Encoding Parameters
1244 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1245 		 */
1246 		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1247 			intel_dp->color_range = DP_COLOR_RANGE_16_235;
1248 		else
1249 			intel_dp->color_range = 0;
1250 	}
1251 
1252 	if (intel_dp->color_range)
1253 		pipe_config->limited_color_range = true;
1254 
1255 	intel_dp->link_bw = bws[clock];
1256 	intel_dp->lane_count = lane_count;
1257 	pipe_config->pipe_bpp = bpp;
1258 	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1259 
1260 	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1261 		      intel_dp->link_bw, intel_dp->lane_count,
1262 		      pipe_config->port_clock, bpp);
1263 	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1264 		      mode_rate, link_avail);
1265 
1266 	intel_link_compute_m_n(bpp, lane_count,
1267 			       adjusted_mode->crtc_clock,
1268 			       pipe_config->port_clock,
1269 			       &pipe_config->dp_m_n);
1270 
1271 	if (intel_connector->panel.downclock_mode != NULL &&
1272 		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1273 			pipe_config->has_drrs = true;
1274 			intel_link_compute_m_n(bpp, lane_count,
1275 				intel_connector->panel.downclock_mode->clock,
1276 				pipe_config->port_clock,
1277 				&pipe_config->dp_m2_n2);
1278 	}
1279 
1280 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1281 		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1282 	else
1283 		intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1284 
1285 	return true;
1286 }
1287 
1288 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1289 {
1290 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1291 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1292 	struct drm_device *dev = crtc->base.dev;
1293 	struct drm_i915_private *dev_priv = dev->dev_private;
1294 	u32 dpa_ctl;
1295 
1296 	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1297 	dpa_ctl = I915_READ(DP_A);
1298 	dpa_ctl &= ~DP_PLL_FREQ_MASK;
1299 
1300 	if (crtc->config.port_clock == 162000) {
1301 		/* For a long time we've carried around a ILK-DevA w/a for the
1302 		 * 160MHz clock. If we're really unlucky, it's still required.
1303 		 */
1304 		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1305 		dpa_ctl |= DP_PLL_FREQ_160MHZ;
1306 		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1307 	} else {
1308 		dpa_ctl |= DP_PLL_FREQ_270MHZ;
1309 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1310 	}
1311 
1312 	I915_WRITE(DP_A, dpa_ctl);
1313 
1314 	POSTING_READ(DP_A);
1315 	udelay(500);
1316 }
1317 
1318 static void intel_dp_prepare(struct intel_encoder *encoder)
1319 {
1320 	struct drm_device *dev = encoder->base.dev;
1321 	struct drm_i915_private *dev_priv = dev->dev_private;
1322 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1323 	enum port port = dp_to_dig_port(intel_dp)->port;
1324 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1325 	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1326 
1327 	/*
1328 	 * There are four kinds of DP registers:
1329 	 *
1330 	 * 	IBX PCH
1331 	 * 	SNB CPU
1332 	 *	IVB CPU
1333 	 * 	CPT PCH
1334 	 *
1335 	 * IBX PCH and CPU are the same for almost everything,
1336 	 * except that the CPU DP PLL is configured in this
1337 	 * register
1338 	 *
1339 	 * CPT PCH is quite different, having many bits moved
1340 	 * to the TRANS_DP_CTL register instead. That
1341 	 * configuration happens (oddly) in ironlake_pch_enable
1342 	 */
1343 
1344 	/* Preserve the BIOS-computed detected bit. This is
1345 	 * supposed to be read-only.
1346 	 */
1347 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1348 
1349 	/* Handle DP bits in common between all three register formats */
1350 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1351 	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1352 
1353 	if (crtc->config.has_audio) {
1354 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1355 				 pipe_name(crtc->pipe));
1356 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1357 		intel_write_eld(&encoder->base, adjusted_mode);
1358 	}
1359 
1360 	/* Split out the IBX/CPU vs CPT settings */
1361 
1362 	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1363 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1364 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1365 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1366 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1367 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1368 
1369 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1370 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1371 
1372 		intel_dp->DP |= crtc->pipe << 29;
1373 	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1374 		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1375 			intel_dp->DP |= intel_dp->color_range;
1376 
1377 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1378 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1379 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1380 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1381 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1382 
1383 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1384 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1385 
1386 		if (!IS_CHERRYVIEW(dev)) {
1387 			if (crtc->pipe == 1)
1388 				intel_dp->DP |= DP_PIPEB_SELECT;
1389 		} else {
1390 			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1391 		}
1392 	} else {
1393 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1394 	}
1395 }
1396 
1397 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1398 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1399 
1400 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1401 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1402 
1403 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1404 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1405 
1406 static void wait_panel_status(struct intel_dp *intel_dp,
1407 				       u32 mask,
1408 				       u32 value)
1409 {
1410 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1411 	struct drm_i915_private *dev_priv = dev->dev_private;
1412 	u32 pp_stat_reg, pp_ctrl_reg;
1413 
1414 	lockdep_assert_held(&dev_priv->pps_mutex);
1415 
1416 	pp_stat_reg = _pp_stat_reg(intel_dp);
1417 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1418 
1419 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1420 			mask, value,
1421 			I915_READ(pp_stat_reg),
1422 			I915_READ(pp_ctrl_reg));
1423 
1424 	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1425 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1426 				I915_READ(pp_stat_reg),
1427 				I915_READ(pp_ctrl_reg));
1428 	}
1429 
1430 	DRM_DEBUG_KMS("Wait complete\n");
1431 }
1432 
1433 static void wait_panel_on(struct intel_dp *intel_dp)
1434 {
1435 	DRM_DEBUG_KMS("Wait for panel power on\n");
1436 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1437 }
1438 
1439 static void wait_panel_off(struct intel_dp *intel_dp)
1440 {
1441 	DRM_DEBUG_KMS("Wait for panel power off time\n");
1442 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1443 }
1444 
1445 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1446 {
1447 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1448 
1449 	/* When we disable the VDD override bit last we have to do the manual
1450 	 * wait. */
1451 	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1452 				       intel_dp->panel_power_cycle_delay);
1453 
1454 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1455 }
1456 
1457 static void wait_backlight_on(struct intel_dp *intel_dp)
1458 {
1459 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1460 				       intel_dp->backlight_on_delay);
1461 }
1462 
1463 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1464 {
1465 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1466 				       intel_dp->backlight_off_delay);
1467 }
1468 
1469 /* Read the current pp_control value, unlocking the register if it
1470  * is locked
1471  */
1472 
1473 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1474 {
1475 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1476 	struct drm_i915_private *dev_priv = dev->dev_private;
1477 	u32 control;
1478 
1479 	lockdep_assert_held(&dev_priv->pps_mutex);
1480 
1481 	control = I915_READ(_pp_ctrl_reg(intel_dp));
1482 	control &= ~PANEL_UNLOCK_MASK;
1483 	control |= PANEL_UNLOCK_REGS;
1484 	return control;
1485 }
1486 
1487 /*
1488  * Must be paired with edp_panel_vdd_off().
1489  * Must hold pps_mutex around the whole on/off sequence.
1490  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1491  */
1492 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1493 {
1494 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1495 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1496 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1497 	struct drm_i915_private *dev_priv = dev->dev_private;
1498 	enum intel_display_power_domain power_domain;
1499 	u32 pp;
1500 	u32 pp_stat_reg, pp_ctrl_reg;
1501 	bool need_to_disable = !intel_dp->want_panel_vdd;
1502 
1503 	lockdep_assert_held(&dev_priv->pps_mutex);
1504 
1505 	if (!is_edp(intel_dp))
1506 		return false;
1507 
1508 	intel_dp->want_panel_vdd = true;
1509 
1510 	if (edp_have_panel_vdd(intel_dp))
1511 		return need_to_disable;
1512 
1513 	power_domain = intel_display_port_power_domain(intel_encoder);
1514 	intel_display_power_get(dev_priv, power_domain);
1515 
1516 	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1517 
1518 	if (!edp_have_panel_power(intel_dp))
1519 		wait_panel_power_cycle(intel_dp);
1520 
1521 	pp = ironlake_get_pp_control(intel_dp);
1522 	pp |= EDP_FORCE_VDD;
1523 
1524 	pp_stat_reg = _pp_stat_reg(intel_dp);
1525 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1526 
1527 	I915_WRITE(pp_ctrl_reg, pp);
1528 	POSTING_READ(pp_ctrl_reg);
1529 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1530 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1531 	/*
1532 	 * If the panel wasn't on, delay before accessing aux channel
1533 	 */
1534 	if (!edp_have_panel_power(intel_dp)) {
1535 		DRM_DEBUG_KMS("eDP was not running\n");
1536 		msleep(intel_dp->panel_power_up_delay);
1537 	}
1538 
1539 	return need_to_disable;
1540 }
1541 
1542 /*
1543  * Must be paired with intel_edp_panel_vdd_off() or
1544  * intel_edp_panel_off().
1545  * Nested calls to these functions are not allowed since
1546  * we drop the lock. Caller must use some higher level
1547  * locking to prevent nested calls from other threads.
1548  */
1549 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1550 {
1551 	bool vdd;
1552 
1553 	if (!is_edp(intel_dp))
1554 		return;
1555 
1556 	pps_lock(intel_dp);
1557 	vdd = edp_panel_vdd_on(intel_dp);
1558 	pps_unlock(intel_dp);
1559 
1560 	WARN(!vdd, "eDP VDD already requested on\n");
1561 }
1562 
1563 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1564 {
1565 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1566 	struct drm_i915_private *dev_priv = dev->dev_private;
1567 	struct intel_digital_port *intel_dig_port =
1568 		dp_to_dig_port(intel_dp);
1569 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1570 	enum intel_display_power_domain power_domain;
1571 	u32 pp;
1572 	u32 pp_stat_reg, pp_ctrl_reg;
1573 
1574 	lockdep_assert_held(&dev_priv->pps_mutex);
1575 
1576 	WARN_ON(intel_dp->want_panel_vdd);
1577 
1578 	if (!edp_have_panel_vdd(intel_dp))
1579 		return;
1580 
1581 	DRM_DEBUG_KMS("Turning eDP VDD off\n");
1582 
1583 	pp = ironlake_get_pp_control(intel_dp);
1584 	pp &= ~EDP_FORCE_VDD;
1585 
1586 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1587 	pp_stat_reg = _pp_stat_reg(intel_dp);
1588 
1589 	I915_WRITE(pp_ctrl_reg, pp);
1590 	POSTING_READ(pp_ctrl_reg);
1591 
1592 	/* Make sure sequencer is idle before allowing subsequent activity */
1593 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1594 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1595 
1596 	if ((pp & POWER_TARGET_ON) == 0)
1597 		intel_dp->last_power_cycle = jiffies;
1598 
1599 	power_domain = intel_display_port_power_domain(intel_encoder);
1600 	intel_display_power_put(dev_priv, power_domain);
1601 }
1602 
1603 static void edp_panel_vdd_work(struct work_struct *__work)
1604 {
1605 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1606 						 struct intel_dp, panel_vdd_work);
1607 
1608 	pps_lock(intel_dp);
1609 	if (!intel_dp->want_panel_vdd)
1610 		edp_panel_vdd_off_sync(intel_dp);
1611 	pps_unlock(intel_dp);
1612 }
1613 
1614 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1615 {
1616 	unsigned long delay;
1617 
1618 	/*
1619 	 * Queue the timer to fire a long time from now (relative to the power
1620 	 * down delay) to keep the panel power up across a sequence of
1621 	 * operations.
1622 	 */
1623 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1624 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1625 }
1626 
1627 /*
1628  * Must be paired with edp_panel_vdd_on().
1629  * Must hold pps_mutex around the whole on/off sequence.
1630  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1631  */
1632 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1633 {
1634 	struct drm_i915_private *dev_priv =
1635 		intel_dp_to_dev(intel_dp)->dev_private;
1636 
1637 	lockdep_assert_held(&dev_priv->pps_mutex);
1638 
1639 	if (!is_edp(intel_dp))
1640 		return;
1641 
1642 	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1643 
1644 	intel_dp->want_panel_vdd = false;
1645 
1646 	if (sync)
1647 		edp_panel_vdd_off_sync(intel_dp);
1648 	else
1649 		edp_panel_vdd_schedule_off(intel_dp);
1650 }
1651 
1652 /*
1653  * Must be paired with intel_edp_panel_vdd_on().
1654  * Nested calls to these functions are not allowed since
1655  * we drop the lock. Caller must use some higher level
1656  * locking to prevent nested calls from other threads.
1657  */
1658 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1659 {
1660 	if (!is_edp(intel_dp))
1661 		return;
1662 
1663 	pps_lock(intel_dp);
1664 	edp_panel_vdd_off(intel_dp, sync);
1665 	pps_unlock(intel_dp);
1666 }
1667 
1668 void intel_edp_panel_on(struct intel_dp *intel_dp)
1669 {
1670 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1671 	struct drm_i915_private *dev_priv = dev->dev_private;
1672 	u32 pp;
1673 	u32 pp_ctrl_reg;
1674 
1675 	if (!is_edp(intel_dp))
1676 		return;
1677 
1678 	DRM_DEBUG_KMS("Turn eDP power on\n");
1679 
1680 	pps_lock(intel_dp);
1681 
1682 	if (edp_have_panel_power(intel_dp)) {
1683 		DRM_DEBUG_KMS("eDP power already on\n");
1684 		goto out;
1685 	}
1686 
1687 	wait_panel_power_cycle(intel_dp);
1688 
1689 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1690 	pp = ironlake_get_pp_control(intel_dp);
1691 	if (IS_GEN5(dev)) {
1692 		/* ILK workaround: disable reset around power sequence */
1693 		pp &= ~PANEL_POWER_RESET;
1694 		I915_WRITE(pp_ctrl_reg, pp);
1695 		POSTING_READ(pp_ctrl_reg);
1696 	}
1697 
1698 	pp |= POWER_TARGET_ON;
1699 	if (!IS_GEN5(dev))
1700 		pp |= PANEL_POWER_RESET;
1701 
1702 	I915_WRITE(pp_ctrl_reg, pp);
1703 	POSTING_READ(pp_ctrl_reg);
1704 
1705 	wait_panel_on(intel_dp);
1706 	intel_dp->last_power_on = jiffies;
1707 
1708 	if (IS_GEN5(dev)) {
1709 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1710 		I915_WRITE(pp_ctrl_reg, pp);
1711 		POSTING_READ(pp_ctrl_reg);
1712 	}
1713 
1714  out:
1715 	pps_unlock(intel_dp);
1716 }
1717 
1718 void intel_edp_panel_off(struct intel_dp *intel_dp)
1719 {
1720 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1721 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1722 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1723 	struct drm_i915_private *dev_priv = dev->dev_private;
1724 	enum intel_display_power_domain power_domain;
1725 	u32 pp;
1726 	u32 pp_ctrl_reg;
1727 
1728 	if (!is_edp(intel_dp))
1729 		return;
1730 
1731 	DRM_DEBUG_KMS("Turn eDP power off\n");
1732 
1733 	pps_lock(intel_dp);
1734 
1735 	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1736 
1737 	pp = ironlake_get_pp_control(intel_dp);
1738 	/* We need to switch off panel power _and_ force vdd, for otherwise some
1739 	 * panels get very unhappy and cease to work. */
1740 	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1741 		EDP_BLC_ENABLE);
1742 
1743 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1744 
1745 	intel_dp->want_panel_vdd = false;
1746 
1747 	I915_WRITE(pp_ctrl_reg, pp);
1748 	POSTING_READ(pp_ctrl_reg);
1749 
1750 	intel_dp->last_power_cycle = jiffies;
1751 	wait_panel_off(intel_dp);
1752 
1753 	/* We got a reference when we enabled the VDD. */
1754 	power_domain = intel_display_port_power_domain(intel_encoder);
1755 	intel_display_power_put(dev_priv, power_domain);
1756 
1757 	pps_unlock(intel_dp);
1758 }
1759 
1760 /* Enable backlight in the panel power control. */
1761 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1762 {
1763 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1764 	struct drm_device *dev = intel_dig_port->base.base.dev;
1765 	struct drm_i915_private *dev_priv = dev->dev_private;
1766 	u32 pp;
1767 	u32 pp_ctrl_reg;
1768 
1769 	/*
1770 	 * If we enable the backlight right away following a panel power
1771 	 * on, we may see slight flicker as the panel syncs with the eDP
1772 	 * link.  So delay a bit to make sure the image is solid before
1773 	 * allowing it to appear.
1774 	 */
1775 	wait_backlight_on(intel_dp);
1776 
1777 	pps_lock(intel_dp);
1778 
1779 	pp = ironlake_get_pp_control(intel_dp);
1780 	pp |= EDP_BLC_ENABLE;
1781 
1782 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1783 
1784 	I915_WRITE(pp_ctrl_reg, pp);
1785 	POSTING_READ(pp_ctrl_reg);
1786 
1787 	pps_unlock(intel_dp);
1788 }
1789 
1790 /* Enable backlight PWM and backlight PP control. */
1791 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1792 {
1793 	if (!is_edp(intel_dp))
1794 		return;
1795 
1796 	DRM_DEBUG_KMS("\n");
1797 
1798 	intel_panel_enable_backlight(intel_dp->attached_connector);
1799 	_intel_edp_backlight_on(intel_dp);
1800 }
1801 
1802 /* Disable backlight in the panel power control. */
1803 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1804 {
1805 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1806 	struct drm_i915_private *dev_priv = dev->dev_private;
1807 	u32 pp;
1808 	u32 pp_ctrl_reg;
1809 
1810 	if (!is_edp(intel_dp))
1811 		return;
1812 
1813 	pps_lock(intel_dp);
1814 
1815 	pp = ironlake_get_pp_control(intel_dp);
1816 	pp &= ~EDP_BLC_ENABLE;
1817 
1818 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1819 
1820 	I915_WRITE(pp_ctrl_reg, pp);
1821 	POSTING_READ(pp_ctrl_reg);
1822 
1823 	pps_unlock(intel_dp);
1824 
1825 	intel_dp->last_backlight_off = jiffies;
1826 	edp_wait_backlight_off(intel_dp);
1827 }
1828 
1829 /* Disable backlight PP control and backlight PWM. */
1830 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1831 {
1832 	if (!is_edp(intel_dp))
1833 		return;
1834 
1835 	DRM_DEBUG_KMS("\n");
1836 
1837 	_intel_edp_backlight_off(intel_dp);
1838 	intel_panel_disable_backlight(intel_dp->attached_connector);
1839 }
1840 
1841 /*
1842  * Hook for controlling the panel power control backlight through the bl_power
1843  * sysfs attribute. Take care to handle multiple calls.
1844  */
1845 static void intel_edp_backlight_power(struct intel_connector *connector,
1846 				      bool enable)
1847 {
1848 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1849 	bool is_enabled;
1850 
1851 	pps_lock(intel_dp);
1852 	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1853 	pps_unlock(intel_dp);
1854 
1855 	if (is_enabled == enable)
1856 		return;
1857 
1858 	DRM_DEBUG_KMS("panel power control backlight %s\n",
1859 		      enable ? "enable" : "disable");
1860 
1861 	if (enable)
1862 		_intel_edp_backlight_on(intel_dp);
1863 	else
1864 		_intel_edp_backlight_off(intel_dp);
1865 }
1866 
1867 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1868 {
1869 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1870 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1871 	struct drm_device *dev = crtc->dev;
1872 	struct drm_i915_private *dev_priv = dev->dev_private;
1873 	u32 dpa_ctl;
1874 
1875 	assert_pipe_disabled(dev_priv,
1876 			     to_intel_crtc(crtc)->pipe);
1877 
1878 	DRM_DEBUG_KMS("\n");
1879 	dpa_ctl = I915_READ(DP_A);
1880 	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1881 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1882 
1883 	/* We don't adjust intel_dp->DP while tearing down the link, to
1884 	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1885 	 * enable bits here to ensure that we don't enable too much. */
1886 	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1887 	intel_dp->DP |= DP_PLL_ENABLE;
1888 	I915_WRITE(DP_A, intel_dp->DP);
1889 	POSTING_READ(DP_A);
1890 	udelay(200);
1891 }
1892 
1893 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1894 {
1895 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1896 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1897 	struct drm_device *dev = crtc->dev;
1898 	struct drm_i915_private *dev_priv = dev->dev_private;
1899 	u32 dpa_ctl;
1900 
1901 	assert_pipe_disabled(dev_priv,
1902 			     to_intel_crtc(crtc)->pipe);
1903 
1904 	dpa_ctl = I915_READ(DP_A);
1905 	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1906 	     "dp pll off, should be on\n");
1907 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1908 
1909 	/* We can't rely on the value tracked for the DP register in
1910 	 * intel_dp->DP because link_down must not change that (otherwise link
1911 	 * re-training will fail. */
1912 	dpa_ctl &= ~DP_PLL_ENABLE;
1913 	I915_WRITE(DP_A, dpa_ctl);
1914 	POSTING_READ(DP_A);
1915 	udelay(200);
1916 }
1917 
1918 /* If the sink supports it, try to set the power state appropriately */
1919 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1920 {
1921 	int ret, i;
1922 
1923 	/* Should have a valid DPCD by this point */
1924 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1925 		return;
1926 
1927 	if (mode != DRM_MODE_DPMS_ON) {
1928 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1929 					 DP_SET_POWER_D3);
1930 	} else {
1931 		/*
1932 		 * When turning on, we need to retry for 1ms to give the sink
1933 		 * time to wake up.
1934 		 */
1935 		for (i = 0; i < 3; i++) {
1936 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1937 						 DP_SET_POWER_D0);
1938 			if (ret == 1)
1939 				break;
1940 			msleep(1);
1941 		}
1942 	}
1943 
1944 	if (ret != 1)
1945 		DRM_DEBUG_KMS("failed to %s sink power state\n",
1946 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1947 }
1948 
1949 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1950 				  enum i915_pipe *pipe)
1951 {
1952 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1953 	enum port port = dp_to_dig_port(intel_dp)->port;
1954 	struct drm_device *dev = encoder->base.dev;
1955 	struct drm_i915_private *dev_priv = dev->dev_private;
1956 	enum intel_display_power_domain power_domain;
1957 	u32 tmp;
1958 
1959 	power_domain = intel_display_port_power_domain(encoder);
1960 	if (!intel_display_power_enabled(dev_priv, power_domain))
1961 		return false;
1962 
1963 	tmp = I915_READ(intel_dp->output_reg);
1964 
1965 	if (!(tmp & DP_PORT_EN))
1966 		return false;
1967 
1968 	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1969 		*pipe = PORT_TO_PIPE_CPT(tmp);
1970 	} else if (IS_CHERRYVIEW(dev)) {
1971 		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1972 	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1973 		*pipe = PORT_TO_PIPE(tmp);
1974 	} else {
1975 		u32 trans_sel;
1976 		u32 trans_dp;
1977 		int i;
1978 
1979 		switch (intel_dp->output_reg) {
1980 		case PCH_DP_B:
1981 			trans_sel = TRANS_DP_PORT_SEL_B;
1982 			break;
1983 		case PCH_DP_C:
1984 			trans_sel = TRANS_DP_PORT_SEL_C;
1985 			break;
1986 		case PCH_DP_D:
1987 			trans_sel = TRANS_DP_PORT_SEL_D;
1988 			break;
1989 		default:
1990 			return true;
1991 		}
1992 
1993 		for_each_pipe(dev_priv, i) {
1994 			trans_dp = I915_READ(TRANS_DP_CTL(i));
1995 			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1996 				*pipe = i;
1997 				return true;
1998 			}
1999 		}
2000 
2001 		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2002 			      intel_dp->output_reg);
2003 	}
2004 
2005 	return true;
2006 }
2007 
2008 static void intel_dp_get_config(struct intel_encoder *encoder,
2009 				struct intel_crtc_config *pipe_config)
2010 {
2011 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2012 	u32 tmp, flags = 0;
2013 	struct drm_device *dev = encoder->base.dev;
2014 	struct drm_i915_private *dev_priv = dev->dev_private;
2015 	enum port port = dp_to_dig_port(intel_dp)->port;
2016 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2017 	int dotclock;
2018 
2019 	tmp = I915_READ(intel_dp->output_reg);
2020 	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
2021 		pipe_config->has_audio = true;
2022 
2023 	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2024 		if (tmp & DP_SYNC_HS_HIGH)
2025 			flags |= DRM_MODE_FLAG_PHSYNC;
2026 		else
2027 			flags |= DRM_MODE_FLAG_NHSYNC;
2028 
2029 		if (tmp & DP_SYNC_VS_HIGH)
2030 			flags |= DRM_MODE_FLAG_PVSYNC;
2031 		else
2032 			flags |= DRM_MODE_FLAG_NVSYNC;
2033 	} else {
2034 		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2035 		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2036 			flags |= DRM_MODE_FLAG_PHSYNC;
2037 		else
2038 			flags |= DRM_MODE_FLAG_NHSYNC;
2039 
2040 		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2041 			flags |= DRM_MODE_FLAG_PVSYNC;
2042 		else
2043 			flags |= DRM_MODE_FLAG_NVSYNC;
2044 	}
2045 
2046 	pipe_config->adjusted_mode.flags |= flags;
2047 
2048 	if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2049 	    tmp & DP_COLOR_RANGE_16_235)
2050 		pipe_config->limited_color_range = true;
2051 
2052 	pipe_config->has_dp_encoder = true;
2053 
2054 	intel_dp_get_m_n(crtc, pipe_config);
2055 
2056 	if (port == PORT_A) {
2057 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2058 			pipe_config->port_clock = 162000;
2059 		else
2060 			pipe_config->port_clock = 270000;
2061 	}
2062 
2063 	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2064 					    &pipe_config->dp_m_n);
2065 
2066 	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2067 		ironlake_check_encoder_dotclock(pipe_config, dotclock);
2068 
2069 	pipe_config->adjusted_mode.crtc_clock = dotclock;
2070 
2071 	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2072 	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2073 		/*
2074 		 * This is a big fat ugly hack.
2075 		 *
2076 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2077 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2078 		 * unknown we fail to light up. Yet the same BIOS boots up with
2079 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2080 		 * max, not what it tells us to use.
2081 		 *
2082 		 * Note: This will still be broken if the eDP panel is not lit
2083 		 * up by the BIOS, and thus we can't get the mode at module
2084 		 * load.
2085 		 */
2086 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2087 			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2088 		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2089 	}
2090 }
2091 
2092 static bool is_edp_psr(struct intel_dp *intel_dp)
2093 {
2094 	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
2095 }
2096 
2097 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
2098 {
2099 	struct drm_i915_private *dev_priv = dev->dev_private;
2100 
2101 	if (!HAS_PSR(dev))
2102 		return false;
2103 
2104 	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2105 }
2106 
2107 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
2108 				    struct edp_vsc_psr *vsc_psr)
2109 {
2110 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2111 	struct drm_device *dev = dig_port->base.base.dev;
2112 	struct drm_i915_private *dev_priv = dev->dev_private;
2113 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
2114 	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
2115 	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
2116 	uint32_t *data = (uint32_t *) vsc_psr;
2117 	unsigned int i;
2118 
2119 	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
2120 	   the video DIP being updated before program video DIP data buffer
2121 	   registers for DIP being updated. */
2122 	I915_WRITE(ctl_reg, 0);
2123 	POSTING_READ(ctl_reg);
2124 
2125 	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
2126 		if (i < sizeof(struct edp_vsc_psr))
2127 			I915_WRITE(data_reg + i, *data++);
2128 		else
2129 			I915_WRITE(data_reg + i, 0);
2130 	}
2131 
2132 	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
2133 	POSTING_READ(ctl_reg);
2134 }
2135 
2136 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
2137 {
2138 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2139 	struct drm_i915_private *dev_priv = dev->dev_private;
2140 	struct edp_vsc_psr psr_vsc;
2141 
2142 	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2143 	memset(&psr_vsc, 0, sizeof(psr_vsc));
2144 	psr_vsc.sdp_header.HB0 = 0;
2145 	psr_vsc.sdp_header.HB1 = 0x7;
2146 	psr_vsc.sdp_header.HB2 = 0x2;
2147 	psr_vsc.sdp_header.HB3 = 0x8;
2148 	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2149 
2150 	/* Avoid continuous PSR exit by masking memup and hpd */
2151 	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2152 		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2153 }
2154 
2155 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2156 {
2157 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2158 	struct drm_device *dev = dig_port->base.base.dev;
2159 	struct drm_i915_private *dev_priv = dev->dev_private;
2160 	uint32_t aux_clock_divider;
2161 	int precharge = 0x3;
2162 	int msg_size = 5;       /* Header(4) + Message(1) */
2163 	bool only_standby = false;
2164 
2165 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2166 
2167 	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2168 		only_standby = true;
2169 
2170 	/* Enable PSR in sink */
2171 	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2172 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2173 				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2174 	else
2175 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2176 				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2177 
2178 	/* Setup AUX registers */
2179 	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
2180 	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
2181 	I915_WRITE(EDP_PSR_AUX_CTL(dev),
2182 		   DP_AUX_CH_CTL_TIME_OUT_400us |
2183 		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2184 		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2185 		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2186 }
2187 
2188 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2189 {
2190 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2191 	struct drm_device *dev = dig_port->base.base.dev;
2192 	struct drm_i915_private *dev_priv = dev->dev_private;
2193 	uint32_t max_sleep_time = 0x1f;
2194 	uint32_t idle_frames = 1;
2195 	uint32_t val = 0x0;
2196 	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2197 	bool only_standby = false;
2198 
2199 	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2200 		only_standby = true;
2201 
2202 	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2203 		val |= EDP_PSR_LINK_STANDBY;
2204 		val |= EDP_PSR_TP2_TP3_TIME_0us;
2205 		val |= EDP_PSR_TP1_TIME_0us;
2206 		val |= EDP_PSR_SKIP_AUX_EXIT;
2207 		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2208 	} else
2209 		val |= EDP_PSR_LINK_DISABLE;
2210 
2211 	I915_WRITE(EDP_PSR_CTL(dev), val |
2212 		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2213 		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2214 		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2215 		   EDP_PSR_ENABLE);
2216 }
2217 
2218 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2219 {
2220 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2221 	struct drm_device *dev = dig_port->base.base.dev;
2222 	struct drm_i915_private *dev_priv = dev->dev_private;
2223 	struct drm_crtc *crtc = dig_port->base.base.crtc;
2224 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2225 
2226 #if 0
2227 	lockdep_assert_held(&dev_priv->psr.lock);
2228 #endif
2229 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2230 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2231 
2232 	dev_priv->psr.source_ok = false;
2233 
2234 	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2235 		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2236 		return false;
2237 	}
2238 
2239 	if (!i915.enable_psr) {
2240 		DRM_DEBUG_KMS("PSR disable by flag\n");
2241 		return false;
2242 	}
2243 
2244 	/* Below limitations aren't valid for Broadwell */
2245 	if (IS_BROADWELL(dev))
2246 		goto out;
2247 
2248 	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2249 	    S3D_ENABLE) {
2250 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2251 		return false;
2252 	}
2253 
2254 	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2255 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2256 		return false;
2257 	}
2258 
2259  out:
2260 	dev_priv->psr.source_ok = true;
2261 	return true;
2262 }
2263 
2264 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2265 {
2266 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2267 	struct drm_device *dev = intel_dig_port->base.base.dev;
2268 	struct drm_i915_private *dev_priv = dev->dev_private;
2269 
2270 	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2271 	WARN_ON(dev_priv->psr.active);
2272 #if 0
2273 	lockdep_assert_held(&dev_priv->psr.lock);
2274 #endif
2275 
2276 	/* Enable PSR on the panel */
2277 	intel_edp_psr_enable_sink(intel_dp);
2278 
2279 	/* Enable PSR on the host */
2280 	intel_edp_psr_enable_source(intel_dp);
2281 
2282 	dev_priv->psr.active = true;
2283 }
2284 
2285 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2286 {
2287 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2288 	struct drm_i915_private *dev_priv = dev->dev_private;
2289 
2290 	if (!HAS_PSR(dev)) {
2291 		DRM_DEBUG_KMS("PSR not supported on this platform\n");
2292 		return;
2293 	}
2294 
2295 	if (!is_edp_psr(intel_dp)) {
2296 		DRM_DEBUG_KMS("PSR not supported by this panel\n");
2297 		return;
2298 	}
2299 
2300 	mutex_lock(&dev_priv->psr.lock);
2301 	if (dev_priv->psr.enabled) {
2302 		DRM_DEBUG_KMS("PSR already in use\n");
2303 		mutex_unlock(&dev_priv->psr.lock);
2304 		return;
2305 	}
2306 
2307 	dev_priv->psr.busy_frontbuffer_bits = 0;
2308 
2309 	/* Setup PSR once */
2310 	intel_edp_psr_setup(intel_dp);
2311 
2312 	if (intel_edp_psr_match_conditions(intel_dp))
2313 		dev_priv->psr.enabled = intel_dp;
2314 	mutex_unlock(&dev_priv->psr.lock);
2315 }
2316 
2317 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2318 {
2319 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2320 	struct drm_i915_private *dev_priv = dev->dev_private;
2321 
2322 	mutex_lock(&dev_priv->psr.lock);
2323 	if (!dev_priv->psr.enabled) {
2324 		mutex_unlock(&dev_priv->psr.lock);
2325 		return;
2326 	}
2327 
2328 	if (dev_priv->psr.active) {
2329 		I915_WRITE(EDP_PSR_CTL(dev),
2330 			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2331 
2332 		/* Wait till PSR is idle */
2333 		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2334 			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2335 			DRM_ERROR("Timed out waiting for PSR Idle State\n");
2336 
2337 		dev_priv->psr.active = false;
2338 	} else {
2339 		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2340 	}
2341 
2342 	dev_priv->psr.enabled = NULL;
2343 	mutex_unlock(&dev_priv->psr.lock);
2344 
2345 	cancel_delayed_work_sync(&dev_priv->psr.work);
2346 }
2347 
2348 static void intel_edp_psr_work(struct work_struct *work)
2349 {
2350 	struct drm_i915_private *dev_priv =
2351 		container_of(work, typeof(*dev_priv), psr.work.work);
2352 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
2353 
2354 	mutex_lock(&dev_priv->psr.lock);
2355 	intel_dp = dev_priv->psr.enabled;
2356 
2357 	if (!intel_dp)
2358 		goto unlock;
2359 
2360 	/*
2361 	 * The delayed work can race with an invalidate hence we need to
2362 	 * recheck. Since psr_flush first clears this and then reschedules we
2363 	 * won't ever miss a flush when bailing out here.
2364 	 */
2365 	if (dev_priv->psr.busy_frontbuffer_bits)
2366 		goto unlock;
2367 
2368 	intel_edp_psr_do_enable(intel_dp);
2369 unlock:
2370 	mutex_unlock(&dev_priv->psr.lock);
2371 }
2372 
2373 static void intel_edp_psr_do_exit(struct drm_device *dev)
2374 {
2375 	struct drm_i915_private *dev_priv = dev->dev_private;
2376 
2377 	if (dev_priv->psr.active) {
2378 		u32 val = I915_READ(EDP_PSR_CTL(dev));
2379 
2380 		WARN_ON(!(val & EDP_PSR_ENABLE));
2381 
2382 		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2383 
2384 		dev_priv->psr.active = false;
2385 	}
2386 
2387 }
2388 
2389 void intel_edp_psr_invalidate(struct drm_device *dev,
2390 			      unsigned frontbuffer_bits)
2391 {
2392 	struct drm_i915_private *dev_priv = dev->dev_private;
2393 	struct drm_crtc *crtc;
2394 	enum i915_pipe pipe;
2395 
2396 	mutex_lock(&dev_priv->psr.lock);
2397 	if (!dev_priv->psr.enabled) {
2398 		mutex_unlock(&dev_priv->psr.lock);
2399 		return;
2400 	}
2401 
2402 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2403 	pipe = to_intel_crtc(crtc)->pipe;
2404 
2405 	intel_edp_psr_do_exit(dev);
2406 
2407 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2408 
2409 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2410 	mutex_unlock(&dev_priv->psr.lock);
2411 }
2412 
2413 void intel_edp_psr_flush(struct drm_device *dev,
2414 			 unsigned frontbuffer_bits)
2415 {
2416 	struct drm_i915_private *dev_priv = dev->dev_private;
2417 	struct drm_crtc *crtc;
2418 	enum i915_pipe pipe;
2419 
2420 	mutex_lock(&dev_priv->psr.lock);
2421 	if (!dev_priv->psr.enabled) {
2422 		mutex_unlock(&dev_priv->psr.lock);
2423 		return;
2424 	}
2425 
2426 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2427 	pipe = to_intel_crtc(crtc)->pipe;
2428 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2429 
2430 	/*
2431 	 * On Haswell sprite plane updates don't result in a psr invalidating
2432 	 * signal in the hardware. Which means we need to manually fake this in
2433 	 * software for all flushes, not just when we've seen a preceding
2434 	 * invalidation through frontbuffer rendering.
2435 	 */
2436 	if (IS_HASWELL(dev) &&
2437 	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2438 		intel_edp_psr_do_exit(dev);
2439 
2440 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2441 		schedule_delayed_work(&dev_priv->psr.work,
2442 				      msecs_to_jiffies(100));
2443 	mutex_unlock(&dev_priv->psr.lock);
2444 }
2445 
2446 void intel_edp_psr_init(struct drm_device *dev)
2447 {
2448 	struct drm_i915_private *dev_priv = dev->dev_private;
2449 
2450 	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2451 	lockinit(&dev_priv->psr.lock, "i915dpl", 0, LK_CANRECURSE);
2452 }
2453 
2454 static void intel_disable_dp(struct intel_encoder *encoder)
2455 {
2456 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2457 	struct drm_device *dev = encoder->base.dev;
2458 
2459 	/* Make sure the panel is off before trying to change the mode. But also
2460 	 * ensure that we have vdd while we switch off the panel. */
2461 	intel_edp_panel_vdd_on(intel_dp);
2462 	intel_edp_backlight_off(intel_dp);
2463 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2464 	intel_edp_panel_off(intel_dp);
2465 
2466 	/* disable the port before the pipe on g4x */
2467 	if (INTEL_INFO(dev)->gen < 5)
2468 		intel_dp_link_down(intel_dp);
2469 }
2470 
2471 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2472 {
2473 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2474 	enum port port = dp_to_dig_port(intel_dp)->port;
2475 
2476 	intel_dp_link_down(intel_dp);
2477 	if (port == PORT_A)
2478 		ironlake_edp_pll_off(intel_dp);
2479 }
2480 
2481 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2482 {
2483 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2484 
2485 	intel_dp_link_down(intel_dp);
2486 }
2487 
2488 static void chv_post_disable_dp(struct intel_encoder *encoder)
2489 {
2490 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2491 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2492 	struct drm_device *dev = encoder->base.dev;
2493 	struct drm_i915_private *dev_priv = dev->dev_private;
2494 	struct intel_crtc *intel_crtc =
2495 		to_intel_crtc(encoder->base.crtc);
2496 	enum dpio_channel ch = vlv_dport_to_channel(dport);
2497 	enum i915_pipe pipe = intel_crtc->pipe;
2498 	u32 val;
2499 
2500 	intel_dp_link_down(intel_dp);
2501 
2502 	mutex_lock(&dev_priv->dpio_lock);
2503 
2504 	/* Propagate soft reset to data lane reset */
2505 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2506 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2507 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2508 
2509 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2510 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2511 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2512 
2513 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2514 	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2515 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2516 
2517 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2518 	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2519 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2520 
2521 	mutex_unlock(&dev_priv->dpio_lock);
2522 }
2523 
2524 static void
2525 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2526 			 uint32_t *DP,
2527 			 uint8_t dp_train_pat)
2528 {
2529 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2530 	struct drm_device *dev = intel_dig_port->base.base.dev;
2531 	struct drm_i915_private *dev_priv = dev->dev_private;
2532 	enum port port = intel_dig_port->port;
2533 
2534 	if (HAS_DDI(dev)) {
2535 		uint32_t temp = I915_READ(DP_TP_CTL(port));
2536 
2537 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2538 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2539 		else
2540 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2541 
2542 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2543 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2544 		case DP_TRAINING_PATTERN_DISABLE:
2545 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2546 
2547 			break;
2548 		case DP_TRAINING_PATTERN_1:
2549 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2550 			break;
2551 		case DP_TRAINING_PATTERN_2:
2552 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2553 			break;
2554 		case DP_TRAINING_PATTERN_3:
2555 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2556 			break;
2557 		}
2558 		I915_WRITE(DP_TP_CTL(port), temp);
2559 
2560 	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2561 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2562 
2563 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2564 		case DP_TRAINING_PATTERN_DISABLE:
2565 			*DP |= DP_LINK_TRAIN_OFF_CPT;
2566 			break;
2567 		case DP_TRAINING_PATTERN_1:
2568 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2569 			break;
2570 		case DP_TRAINING_PATTERN_2:
2571 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2572 			break;
2573 		case DP_TRAINING_PATTERN_3:
2574 			DRM_ERROR("DP training pattern 3 not supported\n");
2575 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2576 			break;
2577 		}
2578 
2579 	} else {
2580 		if (IS_CHERRYVIEW(dev))
2581 			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
2582 		else
2583 			*DP &= ~DP_LINK_TRAIN_MASK;
2584 
2585 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2586 		case DP_TRAINING_PATTERN_DISABLE:
2587 			*DP |= DP_LINK_TRAIN_OFF;
2588 			break;
2589 		case DP_TRAINING_PATTERN_1:
2590 			*DP |= DP_LINK_TRAIN_PAT_1;
2591 			break;
2592 		case DP_TRAINING_PATTERN_2:
2593 			*DP |= DP_LINK_TRAIN_PAT_2;
2594 			break;
2595 		case DP_TRAINING_PATTERN_3:
2596 			if (IS_CHERRYVIEW(dev)) {
2597 				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
2598 			} else {
2599 				DRM_ERROR("DP training pattern 3 not supported\n");
2600 				*DP |= DP_LINK_TRAIN_PAT_2;
2601 			}
2602 			break;
2603 		}
2604 	}
2605 }
2606 
2607 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2608 {
2609 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2610 	struct drm_i915_private *dev_priv = dev->dev_private;
2611 
2612 	intel_dp->DP |= DP_PORT_EN;
2613 
2614 	/* enable with pattern 1 (as per spec) */
2615 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2616 				 DP_TRAINING_PATTERN_1);
2617 
2618 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2619 	POSTING_READ(intel_dp->output_reg);
2620 }
2621 
2622 static void intel_enable_dp(struct intel_encoder *encoder)
2623 {
2624 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2625 	struct drm_device *dev = encoder->base.dev;
2626 	struct drm_i915_private *dev_priv = dev->dev_private;
2627 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2628 
2629 	if (WARN_ON(dp_reg & DP_PORT_EN))
2630 		return;
2631 
2632 	intel_dp_enable_port(intel_dp);
2633 	intel_edp_panel_vdd_on(intel_dp);
2634 	intel_edp_panel_on(intel_dp);
2635 	intel_edp_panel_vdd_off(intel_dp, true);
2636 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2637 	intel_dp_start_link_train(intel_dp);
2638 	intel_dp_complete_link_train(intel_dp);
2639 	intel_dp_stop_link_train(intel_dp);
2640 }
2641 
2642 static void g4x_enable_dp(struct intel_encoder *encoder)
2643 {
2644 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2645 
2646 	intel_enable_dp(encoder);
2647 	intel_edp_backlight_on(intel_dp);
2648 }
2649 
2650 static void vlv_enable_dp(struct intel_encoder *encoder)
2651 {
2652 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2653 
2654 	intel_edp_backlight_on(intel_dp);
2655 }
2656 
2657 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2658 {
2659 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2660 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2661 
2662 	intel_dp_prepare(encoder);
2663 
2664 	/* Only ilk+ has port A */
2665 	if (dport->port == PORT_A) {
2666 		ironlake_set_pll_cpu_edp(intel_dp);
2667 		ironlake_edp_pll_on(intel_dp);
2668 	}
2669 }
2670 
2671 static void vlv_steal_power_sequencer(struct drm_device *dev,
2672 				      enum i915_pipe pipe)
2673 {
2674 	struct drm_i915_private *dev_priv = dev->dev_private;
2675 	struct intel_encoder *encoder;
2676 
2677 	lockdep_assert_held(&dev_priv->pps_mutex);
2678 
2679 	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2680 			    base.head) {
2681 		struct intel_dp *intel_dp;
2682 		enum port port;
2683 
2684 		if (encoder->type != INTEL_OUTPUT_EDP)
2685 			continue;
2686 
2687 		intel_dp = enc_to_intel_dp(&encoder->base);
2688 		port = dp_to_dig_port(intel_dp)->port;
2689 
2690 		if (intel_dp->pps_pipe != pipe)
2691 			continue;
2692 
2693 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2694 			      pipe_name(pipe), port_name(port));
2695 
2696 		/* make sure vdd is off before we steal it */
2697 		edp_panel_vdd_off_sync(intel_dp);
2698 
2699 		intel_dp->pps_pipe = INVALID_PIPE;
2700 	}
2701 }
2702 
2703 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2704 {
2705 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2706 	struct intel_encoder *encoder = &intel_dig_port->base;
2707 	struct drm_device *dev = encoder->base.dev;
2708 	struct drm_i915_private *dev_priv = dev->dev_private;
2709 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2710 	struct edp_power_seq power_seq;
2711 
2712 	lockdep_assert_held(&dev_priv->pps_mutex);
2713 
2714 	if (intel_dp->pps_pipe == crtc->pipe)
2715 		return;
2716 
2717 	/*
2718 	 * If another power sequencer was being used on this
2719 	 * port previously make sure to turn off vdd there while
2720 	 * we still have control of it.
2721 	 */
2722 	if (intel_dp->pps_pipe != INVALID_PIPE)
2723 		edp_panel_vdd_off_sync(intel_dp);
2724 
2725 	/*
2726 	 * We may be stealing the power
2727 	 * sequencer from another port.
2728 	 */
2729 	vlv_steal_power_sequencer(dev, crtc->pipe);
2730 
2731 	/* now it's all ours */
2732 	intel_dp->pps_pipe = crtc->pipe;
2733 
2734 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2735 		      pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2736 
2737 	/* init power sequencer on this pipe and port */
2738 	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2739 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2740 						      &power_seq);
2741 }
2742 
2743 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2744 {
2745 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2746 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2747 	struct drm_device *dev = encoder->base.dev;
2748 	struct drm_i915_private *dev_priv = dev->dev_private;
2749 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2750 	enum dpio_channel port = vlv_dport_to_channel(dport);
2751 	int pipe = intel_crtc->pipe;
2752 	u32 val;
2753 
2754 	mutex_lock(&dev_priv->dpio_lock);
2755 
2756 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2757 	val = 0;
2758 	if (pipe)
2759 		val |= (1<<21);
2760 	else
2761 		val &= ~(1<<21);
2762 	val |= 0x001000c4;
2763 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2764 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2765 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2766 
2767 	mutex_unlock(&dev_priv->dpio_lock);
2768 
2769 	if (is_edp(intel_dp)) {
2770 		pps_lock(intel_dp);
2771 		vlv_init_panel_power_sequencer(intel_dp);
2772 		pps_unlock(intel_dp);
2773 	}
2774 
2775 	intel_enable_dp(encoder);
2776 
2777 	vlv_wait_port_ready(dev_priv, dport);
2778 }
2779 
2780 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2781 {
2782 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2783 	struct drm_device *dev = encoder->base.dev;
2784 	struct drm_i915_private *dev_priv = dev->dev_private;
2785 	struct intel_crtc *intel_crtc =
2786 		to_intel_crtc(encoder->base.crtc);
2787 	enum dpio_channel port = vlv_dport_to_channel(dport);
2788 	int pipe = intel_crtc->pipe;
2789 
2790 	intel_dp_prepare(encoder);
2791 
2792 	/* Program Tx lane resets to default */
2793 	mutex_lock(&dev_priv->dpio_lock);
2794 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2795 			 DPIO_PCS_TX_LANE2_RESET |
2796 			 DPIO_PCS_TX_LANE1_RESET);
2797 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2798 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2799 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2800 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2801 				 DPIO_PCS_CLK_SOFT_RESET);
2802 
2803 	/* Fix up inter-pair skew failure */
2804 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2805 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2806 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2807 	mutex_unlock(&dev_priv->dpio_lock);
2808 }
2809 
2810 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2811 {
2812 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2813 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2814 	struct drm_device *dev = encoder->base.dev;
2815 	struct drm_i915_private *dev_priv = dev->dev_private;
2816 	struct intel_crtc *intel_crtc =
2817 		to_intel_crtc(encoder->base.crtc);
2818 	enum dpio_channel ch = vlv_dport_to_channel(dport);
2819 	int pipe = intel_crtc->pipe;
2820 	int data, i;
2821 	u32 val;
2822 
2823 	mutex_lock(&dev_priv->dpio_lock);
2824 
2825 	/* Deassert soft data lane reset*/
2826 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2827 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2828 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2829 
2830 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2831 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2832 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2833 
2834 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2835 	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2836 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2837 
2838 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2839 	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2840 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2841 
2842 	/* Program Tx lane latency optimal setting*/
2843 	for (i = 0; i < 4; i++) {
2844 		/* Set the latency optimal bit */
2845 		data = (i == 1) ? 0x0 : 0x6;
2846 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2847 				data << DPIO_FRC_LATENCY_SHFIT);
2848 
2849 		/* Set the upar bit */
2850 		data = (i == 1) ? 0x0 : 0x1;
2851 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2852 				data << DPIO_UPAR_SHIFT);
2853 	}
2854 
2855 	/* Data lane stagger programming */
2856 	/* FIXME: Fix up value only after power analysis */
2857 
2858 	mutex_unlock(&dev_priv->dpio_lock);
2859 
2860 	if (is_edp(intel_dp)) {
2861 		pps_lock(intel_dp);
2862 		vlv_init_panel_power_sequencer(intel_dp);
2863 		pps_unlock(intel_dp);
2864 	}
2865 
2866 	intel_enable_dp(encoder);
2867 
2868 	vlv_wait_port_ready(dev_priv, dport);
2869 }
2870 
2871 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2872 {
2873 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2874 	struct drm_device *dev = encoder->base.dev;
2875 	struct drm_i915_private *dev_priv = dev->dev_private;
2876 	struct intel_crtc *intel_crtc =
2877 		to_intel_crtc(encoder->base.crtc);
2878 	enum dpio_channel ch = vlv_dport_to_channel(dport);
2879 	enum i915_pipe pipe = intel_crtc->pipe;
2880 	u32 val;
2881 
2882 	mutex_lock(&dev_priv->dpio_lock);
2883 
2884 	/* program left/right clock distribution */
2885 	if (pipe != PIPE_B) {
2886 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2887 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2888 		if (ch == DPIO_CH0)
2889 			val |= CHV_BUFLEFTENA1_FORCE;
2890 		if (ch == DPIO_CH1)
2891 			val |= CHV_BUFRIGHTENA1_FORCE;
2892 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2893 	} else {
2894 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2895 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2896 		if (ch == DPIO_CH0)
2897 			val |= CHV_BUFLEFTENA2_FORCE;
2898 		if (ch == DPIO_CH1)
2899 			val |= CHV_BUFRIGHTENA2_FORCE;
2900 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2901 	}
2902 
2903 	/* program clock channel usage */
2904 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2905 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2906 	if (pipe != PIPE_B)
2907 		val &= ~CHV_PCS_USEDCLKCHANNEL;
2908 	else
2909 		val |= CHV_PCS_USEDCLKCHANNEL;
2910 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2911 
2912 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2913 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2914 	if (pipe != PIPE_B)
2915 		val &= ~CHV_PCS_USEDCLKCHANNEL;
2916 	else
2917 		val |= CHV_PCS_USEDCLKCHANNEL;
2918 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2919 
2920 	/*
2921 	 * This a a bit weird since generally CL
2922 	 * matches the pipe, but here we need to
2923 	 * pick the CL based on the port.
2924 	 */
2925 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2926 	if (pipe != PIPE_B)
2927 		val &= ~CHV_CMN_USEDCLKCHANNEL;
2928 	else
2929 		val |= CHV_CMN_USEDCLKCHANNEL;
2930 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2931 
2932 	mutex_unlock(&dev_priv->dpio_lock);
2933 }
2934 
2935 /*
2936  * Native read with retry for link status and receiver capability reads for
2937  * cases where the sink may still be asleep.
2938  *
2939  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2940  * supposed to retry 3 times per the spec.
2941  */
2942 static ssize_t
2943 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2944 			void *buffer, size_t size)
2945 {
2946 	ssize_t ret;
2947 	int i;
2948 
2949 	/*
2950 	 * Sometime we just get the same incorrect byte repeated
2951 	 * over the entire buffer. Doing just one throw away read
2952 	 * initially seems to "solve" it.
2953 	 */
2954 	drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2955 
2956 	for (i = 0; i < 3; i++) {
2957 		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2958 		if (ret == size)
2959 			return ret;
2960 		msleep(1);
2961 	}
2962 
2963 	return ret;
2964 }
2965 
2966 /*
2967  * Fetch AUX CH registers 0x202 - 0x207 which contain
2968  * link status information
2969  */
2970 static bool
2971 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2972 {
2973 	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2974 				       DP_LANE0_1_STATUS,
2975 				       link_status,
2976 				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2977 }
2978 
2979 /* These are source-specific values. */
2980 static uint8_t
2981 intel_dp_voltage_max(struct intel_dp *intel_dp)
2982 {
2983 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2984 	enum port port = dp_to_dig_port(intel_dp)->port;
2985 
2986 	if (IS_VALLEYVIEW(dev))
2987 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2988 	else if (IS_GEN7(dev) && port == PORT_A)
2989 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2990 	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2991 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2992 	else
2993 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2994 }
2995 
2996 static uint8_t
2997 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2998 {
2999 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3000 	enum port port = dp_to_dig_port(intel_dp)->port;
3001 
3002 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3003 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3004 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3005 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3006 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3007 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3008 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3009 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3010 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3011 		default:
3012 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3013 		}
3014 	} else if (IS_VALLEYVIEW(dev)) {
3015 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3016 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3017 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3018 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3019 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3020 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3021 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3022 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3023 		default:
3024 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3025 		}
3026 	} else if (IS_GEN7(dev) && port == PORT_A) {
3027 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3028 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3029 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3030 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3031 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3032 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3033 		default:
3034 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3035 		}
3036 	} else {
3037 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3038 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3039 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3040 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3041 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3042 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3043 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3044 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3045 		default:
3046 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3047 		}
3048 	}
3049 }
3050 
3051 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
3052 {
3053 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3054 	struct drm_i915_private *dev_priv = dev->dev_private;
3055 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3056 	struct intel_crtc *intel_crtc =
3057 		to_intel_crtc(dport->base.base.crtc);
3058 	unsigned long demph_reg_value, preemph_reg_value,
3059 		uniqtranscale_reg_value;
3060 	uint8_t train_set = intel_dp->train_set[0];
3061 	enum dpio_channel port = vlv_dport_to_channel(dport);
3062 	int pipe = intel_crtc->pipe;
3063 
3064 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3065 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3066 		preemph_reg_value = 0x0004000;
3067 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3068 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3069 			demph_reg_value = 0x2B405555;
3070 			uniqtranscale_reg_value = 0x552AB83A;
3071 			break;
3072 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3073 			demph_reg_value = 0x2B404040;
3074 			uniqtranscale_reg_value = 0x5548B83A;
3075 			break;
3076 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3077 			demph_reg_value = 0x2B245555;
3078 			uniqtranscale_reg_value = 0x5560B83A;
3079 			break;
3080 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3081 			demph_reg_value = 0x2B405555;
3082 			uniqtranscale_reg_value = 0x5598DA3A;
3083 			break;
3084 		default:
3085 			return 0;
3086 		}
3087 		break;
3088 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3089 		preemph_reg_value = 0x0002000;
3090 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092 			demph_reg_value = 0x2B404040;
3093 			uniqtranscale_reg_value = 0x5552B83A;
3094 			break;
3095 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3096 			demph_reg_value = 0x2B404848;
3097 			uniqtranscale_reg_value = 0x5580B83A;
3098 			break;
3099 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3100 			demph_reg_value = 0x2B404040;
3101 			uniqtranscale_reg_value = 0x55ADDA3A;
3102 			break;
3103 		default:
3104 			return 0;
3105 		}
3106 		break;
3107 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3108 		preemph_reg_value = 0x0000000;
3109 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3110 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3111 			demph_reg_value = 0x2B305555;
3112 			uniqtranscale_reg_value = 0x5570B83A;
3113 			break;
3114 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3115 			demph_reg_value = 0x2B2B4040;
3116 			uniqtranscale_reg_value = 0x55ADDA3A;
3117 			break;
3118 		default:
3119 			return 0;
3120 		}
3121 		break;
3122 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3123 		preemph_reg_value = 0x0006000;
3124 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3125 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3126 			demph_reg_value = 0x1B405555;
3127 			uniqtranscale_reg_value = 0x55ADDA3A;
3128 			break;
3129 		default:
3130 			return 0;
3131 		}
3132 		break;
3133 	default:
3134 		return 0;
3135 	}
3136 
3137 	mutex_lock(&dev_priv->dpio_lock);
3138 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3139 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3140 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3141 			 uniqtranscale_reg_value);
3142 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3143 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3144 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3145 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3146 	mutex_unlock(&dev_priv->dpio_lock);
3147 
3148 	return 0;
3149 }
3150 
3151 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3152 {
3153 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3154 	struct drm_i915_private *dev_priv = dev->dev_private;
3155 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3156 	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3157 	u32 deemph_reg_value, margin_reg_value, val;
3158 	uint8_t train_set = intel_dp->train_set[0];
3159 	enum dpio_channel ch = vlv_dport_to_channel(dport);
3160 	enum i915_pipe pipe = intel_crtc->pipe;
3161 	int i;
3162 
3163 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3164 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3165 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3166 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3167 			deemph_reg_value = 128;
3168 			margin_reg_value = 52;
3169 			break;
3170 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3171 			deemph_reg_value = 128;
3172 			margin_reg_value = 77;
3173 			break;
3174 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3175 			deemph_reg_value = 128;
3176 			margin_reg_value = 102;
3177 			break;
3178 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3179 			deemph_reg_value = 128;
3180 			margin_reg_value = 154;
3181 			/* FIXME extra to set for 1200 */
3182 			break;
3183 		default:
3184 			return 0;
3185 		}
3186 		break;
3187 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3188 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3189 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3190 			deemph_reg_value = 85;
3191 			margin_reg_value = 78;
3192 			break;
3193 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3194 			deemph_reg_value = 85;
3195 			margin_reg_value = 116;
3196 			break;
3197 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3198 			deemph_reg_value = 85;
3199 			margin_reg_value = 154;
3200 			break;
3201 		default:
3202 			return 0;
3203 		}
3204 		break;
3205 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3206 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3207 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3208 			deemph_reg_value = 64;
3209 			margin_reg_value = 104;
3210 			break;
3211 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3212 			deemph_reg_value = 64;
3213 			margin_reg_value = 154;
3214 			break;
3215 		default:
3216 			return 0;
3217 		}
3218 		break;
3219 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3220 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3221 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3222 			deemph_reg_value = 43;
3223 			margin_reg_value = 154;
3224 			break;
3225 		default:
3226 			return 0;
3227 		}
3228 		break;
3229 	default:
3230 		return 0;
3231 	}
3232 
3233 	mutex_lock(&dev_priv->dpio_lock);
3234 
3235 	/* Clear calc init */
3236 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3237 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3238 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3239 
3240 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3241 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3242 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3243 
3244 	/* Program swing deemph */
3245 	for (i = 0; i < 4; i++) {
3246 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3247 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3248 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3249 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3250 	}
3251 
3252 	/* Program swing margin */
3253 	for (i = 0; i < 4; i++) {
3254 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3255 		val &= ~DPIO_SWING_MARGIN000_MASK;
3256 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3257 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3258 	}
3259 
3260 	/* Disable unique transition scale */
3261 	for (i = 0; i < 4; i++) {
3262 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3263 		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3264 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3265 	}
3266 
3267 	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3268 			== DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3269 		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3270 			== DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3271 
3272 		/*
3273 		 * The document said it needs to set bit 27 for ch0 and bit 26
3274 		 * for ch1. Might be a typo in the doc.
3275 		 * For now, for this unique transition scale selection, set bit
3276 		 * 27 for ch0 and ch1.
3277 		 */
3278 		for (i = 0; i < 4; i++) {
3279 			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3280 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3281 			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3282 		}
3283 
3284 		for (i = 0; i < 4; i++) {
3285 			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3286 			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3287 			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3288 			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3289 		}
3290 	}
3291 
3292 	/* Start swing calculation */
3293 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3294 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3295 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3296 
3297 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3298 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3299 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3300 
3301 	/* LRC Bypass */
3302 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3303 	val |= DPIO_LRC_BYPASS;
3304 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3305 
3306 	mutex_unlock(&dev_priv->dpio_lock);
3307 
3308 	return 0;
3309 }
3310 
3311 static void
3312 intel_get_adjust_train(struct intel_dp *intel_dp,
3313 		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
3314 {
3315 	uint8_t v = 0;
3316 	uint8_t p = 0;
3317 	int lane;
3318 	uint8_t voltage_max;
3319 	uint8_t preemph_max;
3320 
3321 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
3322 		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3323 		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3324 
3325 		if (this_v > v)
3326 			v = this_v;
3327 		if (this_p > p)
3328 			p = this_p;
3329 	}
3330 
3331 	voltage_max = intel_dp_voltage_max(intel_dp);
3332 	if (v >= voltage_max)
3333 		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3334 
3335 	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3336 	if (p >= preemph_max)
3337 		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3338 
3339 	for (lane = 0; lane < 4; lane++)
3340 		intel_dp->train_set[lane] = v | p;
3341 }
3342 
3343 static uint32_t
3344 intel_gen4_signal_levels(uint8_t train_set)
3345 {
3346 	uint32_t	signal_levels = 0;
3347 
3348 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3349 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3350 	default:
3351 		signal_levels |= DP_VOLTAGE_0_4;
3352 		break;
3353 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3354 		signal_levels |= DP_VOLTAGE_0_6;
3355 		break;
3356 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3357 		signal_levels |= DP_VOLTAGE_0_8;
3358 		break;
3359 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3360 		signal_levels |= DP_VOLTAGE_1_2;
3361 		break;
3362 	}
3363 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3364 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3365 	default:
3366 		signal_levels |= DP_PRE_EMPHASIS_0;
3367 		break;
3368 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3369 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3370 		break;
3371 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3372 		signal_levels |= DP_PRE_EMPHASIS_6;
3373 		break;
3374 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3375 		signal_levels |= DP_PRE_EMPHASIS_9_5;
3376 		break;
3377 	}
3378 	return signal_levels;
3379 }
3380 
3381 /* Gen6's DP voltage swing and pre-emphasis control */
3382 static uint32_t
3383 intel_gen6_edp_signal_levels(uint8_t train_set)
3384 {
3385 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3386 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3387 	switch (signal_levels) {
3388 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3389 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3390 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3391 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3392 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3393 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3394 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3395 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3396 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3397 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3398 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3399 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3400 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3401 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3402 	default:
3403 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3404 			      "0x%x\n", signal_levels);
3405 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3406 	}
3407 }
3408 
3409 /* Gen7's DP voltage swing and pre-emphasis control */
3410 static uint32_t
3411 intel_gen7_edp_signal_levels(uint8_t train_set)
3412 {
3413 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3414 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3415 	switch (signal_levels) {
3416 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3417 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3418 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3419 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3420 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3421 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
3422 
3423 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3424 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3425 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3426 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3427 
3428 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3429 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3430 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3431 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3432 
3433 	default:
3434 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3435 			      "0x%x\n", signal_levels);
3436 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
3437 	}
3438 }
3439 
3440 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3441 static uint32_t
3442 intel_hsw_signal_levels(uint8_t train_set)
3443 {
3444 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3445 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3446 	switch (signal_levels) {
3447 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3448 		return DDI_BUF_TRANS_SELECT(0);
3449 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3450 		return DDI_BUF_TRANS_SELECT(1);
3451 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3452 		return DDI_BUF_TRANS_SELECT(2);
3453 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3454 		return DDI_BUF_TRANS_SELECT(3);
3455 
3456 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3457 		return DDI_BUF_TRANS_SELECT(4);
3458 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3459 		return DDI_BUF_TRANS_SELECT(5);
3460 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3461 		return DDI_BUF_TRANS_SELECT(6);
3462 
3463 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3464 		return DDI_BUF_TRANS_SELECT(7);
3465 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3466 		return DDI_BUF_TRANS_SELECT(8);
3467 	default:
3468 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3469 			      "0x%x\n", signal_levels);
3470 		return DDI_BUF_TRANS_SELECT(0);
3471 	}
3472 }
3473 
3474 /* Properly updates "DP" with the correct signal levels. */
3475 static void
3476 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3477 {
3478 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3479 	enum port port = intel_dig_port->port;
3480 	struct drm_device *dev = intel_dig_port->base.base.dev;
3481 	uint32_t signal_levels, mask;
3482 	uint8_t train_set = intel_dp->train_set[0];
3483 
3484 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3485 		signal_levels = intel_hsw_signal_levels(train_set);
3486 		mask = DDI_BUF_EMP_MASK;
3487 	} else if (IS_CHERRYVIEW(dev)) {
3488 		signal_levels = intel_chv_signal_levels(intel_dp);
3489 		mask = 0;
3490 	} else if (IS_VALLEYVIEW(dev)) {
3491 		signal_levels = intel_vlv_signal_levels(intel_dp);
3492 		mask = 0;
3493 	} else if (IS_GEN7(dev) && port == PORT_A) {
3494 		signal_levels = intel_gen7_edp_signal_levels(train_set);
3495 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3496 	} else if (IS_GEN6(dev) && port == PORT_A) {
3497 		signal_levels = intel_gen6_edp_signal_levels(train_set);
3498 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3499 	} else {
3500 		signal_levels = intel_gen4_signal_levels(train_set);
3501 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3502 	}
3503 
3504 	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3505 
3506 	*DP = (*DP & ~mask) | signal_levels;
3507 }
3508 
3509 static bool
3510 intel_dp_set_link_train(struct intel_dp *intel_dp,
3511 			uint32_t *DP,
3512 			uint8_t dp_train_pat)
3513 {
3514 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3515 	struct drm_device *dev = intel_dig_port->base.base.dev;
3516 	struct drm_i915_private *dev_priv = dev->dev_private;
3517 	uint8_t buf[sizeof(intel_dp->train_set) + 1];
3518 	int ret, len;
3519 
3520 	_intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3521 
3522 	I915_WRITE(intel_dp->output_reg, *DP);
3523 	POSTING_READ(intel_dp->output_reg);
3524 
3525 	buf[0] = dp_train_pat;
3526 	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3527 	    DP_TRAINING_PATTERN_DISABLE) {
3528 		/* don't write DP_TRAINING_LANEx_SET on disable */
3529 		len = 1;
3530 	} else {
3531 		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3532 		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3533 		len = intel_dp->lane_count + 1;
3534 	}
3535 
3536 	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3537 				buf, len);
3538 
3539 	return ret == len;
3540 }
3541 
3542 static bool
3543 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3544 			uint8_t dp_train_pat)
3545 {
3546 	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3547 	intel_dp_set_signal_levels(intel_dp, DP);
3548 	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3549 }
3550 
3551 static bool
3552 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3553 			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
3554 {
3555 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3556 	struct drm_device *dev = intel_dig_port->base.base.dev;
3557 	struct drm_i915_private *dev_priv = dev->dev_private;
3558 	int ret;
3559 
3560 	intel_get_adjust_train(intel_dp, link_status);
3561 	intel_dp_set_signal_levels(intel_dp, DP);
3562 
3563 	I915_WRITE(intel_dp->output_reg, *DP);
3564 	POSTING_READ(intel_dp->output_reg);
3565 
3566 	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3567 				intel_dp->train_set, intel_dp->lane_count);
3568 
3569 	return ret == intel_dp->lane_count;
3570 }
3571 
3572 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3573 {
3574 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3575 	struct drm_device *dev = intel_dig_port->base.base.dev;
3576 	struct drm_i915_private *dev_priv = dev->dev_private;
3577 	enum port port = intel_dig_port->port;
3578 	uint32_t val;
3579 
3580 	if (!HAS_DDI(dev))
3581 		return;
3582 
3583 	val = I915_READ(DP_TP_CTL(port));
3584 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3585 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3586 	I915_WRITE(DP_TP_CTL(port), val);
3587 
3588 	/*
3589 	 * On PORT_A we can have only eDP in SST mode. There the only reason
3590 	 * we need to set idle transmission mode is to work around a HW issue
3591 	 * where we enable the pipe while not in idle link-training mode.
3592 	 * In this case there is requirement to wait for a minimum number of
3593 	 * idle patterns to be sent.
3594 	 */
3595 	if (port == PORT_A)
3596 		return;
3597 
3598 	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3599 		     1))
3600 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3601 }
3602 
3603 /* Enable corresponding port and start training pattern 1 */
3604 void
3605 intel_dp_start_link_train(struct intel_dp *intel_dp)
3606 {
3607 	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3608 	struct drm_device *dev = encoder->dev;
3609 	int i;
3610 	uint8_t voltage;
3611 	int voltage_tries, loop_tries;
3612 	uint32_t DP = intel_dp->DP;
3613 	uint8_t link_config[2];
3614 
3615 	if (HAS_DDI(dev))
3616 		intel_ddi_prepare_link_retrain(encoder);
3617 
3618 	/* Write the link configuration data */
3619 	link_config[0] = intel_dp->link_bw;
3620 	link_config[1] = intel_dp->lane_count;
3621 	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3622 		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3623 	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3624 
3625 	link_config[0] = 0;
3626 	link_config[1] = DP_SET_ANSI_8B10B;
3627 	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3628 
3629 	DP |= DP_PORT_EN;
3630 
3631 	/* clock recovery */
3632 	if (!intel_dp_reset_link_train(intel_dp, &DP,
3633 				       DP_TRAINING_PATTERN_1 |
3634 				       DP_LINK_SCRAMBLING_DISABLE)) {
3635 		DRM_ERROR("failed to enable link training\n");
3636 		return;
3637 	}
3638 
3639 	voltage = 0xff;
3640 	voltage_tries = 0;
3641 	loop_tries = 0;
3642 	for (;;) {
3643 		uint8_t link_status[DP_LINK_STATUS_SIZE];
3644 
3645 		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3646 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3647 			DRM_ERROR("failed to get link status\n");
3648 			break;
3649 		}
3650 
3651 		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3652 			DRM_DEBUG_KMS("clock recovery OK\n");
3653 			break;
3654 		}
3655 
3656 		/* Check to see if we've tried the max voltage */
3657 		for (i = 0; i < intel_dp->lane_count; i++)
3658 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3659 				break;
3660 		if (i == intel_dp->lane_count) {
3661 			++loop_tries;
3662 			if (loop_tries == 5) {
3663 				DRM_ERROR("too many full retries, give up\n");
3664 				break;
3665 			}
3666 			intel_dp_reset_link_train(intel_dp, &DP,
3667 						  DP_TRAINING_PATTERN_1 |
3668 						  DP_LINK_SCRAMBLING_DISABLE);
3669 			voltage_tries = 0;
3670 			continue;
3671 		}
3672 
3673 		/* Check to see if we've tried the same voltage 5 times */
3674 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3675 			++voltage_tries;
3676 			if (voltage_tries == 5) {
3677 				DRM_ERROR("too many voltage retries, give up\n");
3678 				break;
3679 			}
3680 		} else
3681 			voltage_tries = 0;
3682 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3683 
3684 		/* Update training set as requested by target */
3685 		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3686 			DRM_ERROR("failed to update link training\n");
3687 			break;
3688 		}
3689 	}
3690 
3691 	intel_dp->DP = DP;
3692 }
3693 
3694 void
3695 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3696 {
3697 	bool channel_eq = false;
3698 	int tries, cr_tries;
3699 	uint32_t DP = intel_dp->DP;
3700 	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3701 
3702 	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3703 	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3704 		training_pattern = DP_TRAINING_PATTERN_3;
3705 
3706 	/* channel equalization */
3707 	if (!intel_dp_set_link_train(intel_dp, &DP,
3708 				     training_pattern |
3709 				     DP_LINK_SCRAMBLING_DISABLE)) {
3710 		DRM_ERROR("failed to start channel equalization\n");
3711 		return;
3712 	}
3713 
3714 	tries = 0;
3715 	cr_tries = 0;
3716 	channel_eq = false;
3717 	for (;;) {
3718 		uint8_t link_status[DP_LINK_STATUS_SIZE];
3719 
3720 		if (cr_tries > 5) {
3721 			DRM_ERROR("failed to train DP, aborting\n");
3722 			break;
3723 		}
3724 
3725 		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3726 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3727 			DRM_ERROR("failed to get link status\n");
3728 			break;
3729 		}
3730 
3731 		/* Make sure clock is still ok */
3732 		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3733 			intel_dp_start_link_train(intel_dp);
3734 			intel_dp_set_link_train(intel_dp, &DP,
3735 						training_pattern |
3736 						DP_LINK_SCRAMBLING_DISABLE);
3737 			cr_tries++;
3738 			continue;
3739 		}
3740 
3741 		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3742 			channel_eq = true;
3743 			break;
3744 		}
3745 
3746 		/* Try 5 times, then try clock recovery if that fails */
3747 		if (tries > 5) {
3748 			intel_dp_link_down(intel_dp);
3749 			intel_dp_start_link_train(intel_dp);
3750 			intel_dp_set_link_train(intel_dp, &DP,
3751 						training_pattern |
3752 						DP_LINK_SCRAMBLING_DISABLE);
3753 			tries = 0;
3754 			cr_tries++;
3755 			continue;
3756 		}
3757 
3758 		/* Update training set as requested by target */
3759 		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3760 			DRM_ERROR("failed to update link training\n");
3761 			break;
3762 		}
3763 		++tries;
3764 	}
3765 
3766 	intel_dp_set_idle_link_train(intel_dp);
3767 
3768 	intel_dp->DP = DP;
3769 
3770 	if (channel_eq)
3771 		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3772 
3773 }
3774 
3775 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3776 {
3777 	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3778 				DP_TRAINING_PATTERN_DISABLE);
3779 }
3780 
3781 static void
3782 intel_dp_link_down(struct intel_dp *intel_dp)
3783 {
3784 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3785 	enum port port = intel_dig_port->port;
3786 	struct drm_device *dev = intel_dig_port->base.base.dev;
3787 	struct drm_i915_private *dev_priv = dev->dev_private;
3788 	struct intel_crtc *intel_crtc =
3789 		to_intel_crtc(intel_dig_port->base.base.crtc);
3790 	uint32_t DP = intel_dp->DP;
3791 
3792 	if (WARN_ON(HAS_DDI(dev)))
3793 		return;
3794 
3795 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3796 		return;
3797 
3798 	DRM_DEBUG_KMS("\n");
3799 
3800 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3801 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3802 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3803 	} else {
3804 		if (IS_CHERRYVIEW(dev))
3805 			DP &= ~DP_LINK_TRAIN_MASK_CHV;
3806 		else
3807 			DP &= ~DP_LINK_TRAIN_MASK;
3808 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3809 	}
3810 	POSTING_READ(intel_dp->output_reg);
3811 
3812 	if (HAS_PCH_IBX(dev) &&
3813 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3814 		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3815 
3816 		/* Hardware workaround: leaving our transcoder select
3817 		 * set to transcoder B while it's off will prevent the
3818 		 * corresponding HDMI output on transcoder A.
3819 		 *
3820 		 * Combine this with another hardware workaround:
3821 		 * transcoder select bit can only be cleared while the
3822 		 * port is enabled.
3823 		 */
3824 		DP &= ~DP_PIPEB_SELECT;
3825 		I915_WRITE(intel_dp->output_reg, DP);
3826 
3827 		/* Changes to enable or select take place the vblank
3828 		 * after being written.
3829 		 */
3830 		if (WARN_ON(crtc == NULL)) {
3831 			/* We should never try to disable a port without a crtc
3832 			 * attached. For paranoia keep the code around for a
3833 			 * bit. */
3834 			POSTING_READ(intel_dp->output_reg);
3835 			msleep(50);
3836 		} else
3837 			intel_wait_for_vblank(dev, intel_crtc->pipe);
3838 	}
3839 
3840 	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3841 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3842 	POSTING_READ(intel_dp->output_reg);
3843 	msleep(intel_dp->panel_power_down_delay);
3844 }
3845 
3846 static bool
3847 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3848 {
3849 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3850 	struct drm_device *dev = dig_port->base.base.dev;
3851 	struct drm_i915_private *dev_priv = dev->dev_private;
3852 
3853 	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3854 				    sizeof(intel_dp->dpcd)) < 0)
3855 		return false; /* aux transfer failed */
3856 
3857 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3858 
3859 	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3860 		return false; /* DPCD not present */
3861 
3862 	/* Check if the panel supports PSR */
3863 	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3864 	if (is_edp(intel_dp)) {
3865 		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3866 					intel_dp->psr_dpcd,
3867 					sizeof(intel_dp->psr_dpcd));
3868 		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3869 			dev_priv->psr.sink_support = true;
3870 			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3871 		}
3872 	}
3873 
3874 	/* Training Pattern 3 support, both source and sink */
3875 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3876 	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3877 	    (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3878 		intel_dp->use_tps3 = true;
3879 		DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3880 	} else
3881 		intel_dp->use_tps3 = false;
3882 
3883 	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3884 	      DP_DWN_STRM_PORT_PRESENT))
3885 		return true; /* native DP sink */
3886 
3887 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3888 		return true; /* no per-port downstream info */
3889 
3890 	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3891 				    intel_dp->downstream_ports,
3892 				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3893 		return false; /* downstream port status fetch failed */
3894 
3895 	return true;
3896 }
3897 
3898 static void
3899 intel_dp_probe_oui(struct intel_dp *intel_dp)
3900 {
3901 	u8 buf[3];
3902 
3903 	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3904 		return;
3905 
3906 	intel_edp_panel_vdd_on(intel_dp);
3907 
3908 	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3909 		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3910 			      buf[0], buf[1], buf[2]);
3911 
3912 	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3913 		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3914 			      buf[0], buf[1], buf[2]);
3915 
3916 	intel_edp_panel_vdd_off(intel_dp, false);
3917 }
3918 
3919 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3920 {
3921 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3922 	struct drm_device *dev = intel_dig_port->base.base.dev;
3923 	struct intel_crtc *intel_crtc =
3924 		to_intel_crtc(intel_dig_port->base.base.crtc);
3925 	u8 buf[1];
3926 
3927 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3928 		return -EIO;
3929 
3930 	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3931 		return -ENOTTY;
3932 
3933 	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3934 			       DP_TEST_SINK_START) < 0)
3935 		return -EIO;
3936 
3937 	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3938 	intel_wait_for_vblank(dev, intel_crtc->pipe);
3939 	intel_wait_for_vblank(dev, intel_crtc->pipe);
3940 
3941 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3942 		return -EIO;
3943 
3944 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3945 	return 0;
3946 }
3947 
3948 static bool
3949 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3950 {
3951 	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3952 				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3953 				       sink_irq_vector, 1) == 1;
3954 }
3955 
3956 static void
3957 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3958 {
3959 	/* NAK by default */
3960 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3961 }
3962 
3963 /*
3964  * According to DP spec
3965  * 5.1.2:
3966  *  1. Read DPCD
3967  *  2. Configure link according to Receiver Capabilities
3968  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3969  *  4. Check link status on receipt of hot-plug interrupt
3970  */
3971 void
3972 intel_dp_check_link_status(struct intel_dp *intel_dp)
3973 {
3974 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3975 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3976 	u8 sink_irq_vector;
3977 	u8 link_status[DP_LINK_STATUS_SIZE];
3978 
3979 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3980 
3981 	if (!intel_encoder->connectors_active)
3982 		return;
3983 
3984 	if (WARN_ON(!intel_encoder->base.crtc))
3985 		return;
3986 
3987 	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3988 		return;
3989 
3990 	/* Try to read receiver status if the link appears to be up */
3991 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3992 		return;
3993 	}
3994 
3995 	/* Now read the DPCD to see if it's actually running */
3996 	if (!intel_dp_get_dpcd(intel_dp)) {
3997 		return;
3998 	}
3999 
4000 	/* Try to read the source of the interrupt */
4001 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4002 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4003 		/* Clear interrupt source */
4004 		drm_dp_dpcd_writeb(&intel_dp->aux,
4005 				   DP_DEVICE_SERVICE_IRQ_VECTOR,
4006 				   sink_irq_vector);
4007 
4008 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4009 			intel_dp_handle_test_request(intel_dp);
4010 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4011 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4012 	}
4013 
4014 	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4015 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4016 			      intel_encoder->base.name);
4017 		intel_dp_start_link_train(intel_dp);
4018 		intel_dp_complete_link_train(intel_dp);
4019 		intel_dp_stop_link_train(intel_dp);
4020 	}
4021 }
4022 
4023 /* XXX this is probably wrong for multiple downstream ports */
4024 static enum drm_connector_status
4025 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4026 {
4027 	uint8_t *dpcd = intel_dp->dpcd;
4028 	uint8_t type;
4029 
4030 	if (!intel_dp_get_dpcd(intel_dp))
4031 		return connector_status_disconnected;
4032 
4033 	/* if there's no downstream port, we're done */
4034 	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4035 		return connector_status_connected;
4036 
4037 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4038 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4039 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4040 		uint8_t reg;
4041 
4042 		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4043 					    &reg, 1) < 0)
4044 			return connector_status_unknown;
4045 
4046 		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4047 					      : connector_status_disconnected;
4048 	}
4049 
4050 	/* If no HPD, poke DDC gently */
4051 	if (drm_probe_ddc(intel_dp->aux.ddc))
4052 		return connector_status_connected;
4053 
4054 	/* Well we tried, say unknown for unreliable port types */
4055 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4056 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4057 		if (type == DP_DS_PORT_TYPE_VGA ||
4058 		    type == DP_DS_PORT_TYPE_NON_EDID)
4059 			return connector_status_unknown;
4060 	} else {
4061 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4062 			DP_DWN_STRM_PORT_TYPE_MASK;
4063 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4064 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
4065 			return connector_status_unknown;
4066 	}
4067 
4068 	/* Anything else is out of spec, warn and ignore */
4069 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4070 	return connector_status_disconnected;
4071 }
4072 
4073 static enum drm_connector_status
4074 edp_detect(struct intel_dp *intel_dp)
4075 {
4076 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4077 	enum drm_connector_status status;
4078 
4079 	status = intel_panel_detect(dev);
4080 	if (status == connector_status_unknown)
4081 		status = connector_status_connected;
4082 
4083 	return status;
4084 }
4085 
4086 static enum drm_connector_status
4087 ironlake_dp_detect(struct intel_dp *intel_dp)
4088 {
4089 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4090 	struct drm_i915_private *dev_priv = dev->dev_private;
4091 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4092 
4093 	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4094 		return connector_status_disconnected;
4095 
4096 	return intel_dp_detect_dpcd(intel_dp);
4097 }
4098 
4099 static enum drm_connector_status
4100 g4x_dp_detect(struct intel_dp *intel_dp)
4101 {
4102 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4103 	struct drm_i915_private *dev_priv = dev->dev_private;
4104 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4105 	uint32_t bit;
4106 
4107 	if (IS_VALLEYVIEW(dev)) {
4108 		switch (intel_dig_port->port) {
4109 		case PORT_B:
4110 			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4111 			break;
4112 		case PORT_C:
4113 			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4114 			break;
4115 		case PORT_D:
4116 			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4117 			break;
4118 		default:
4119 			return connector_status_unknown;
4120 		}
4121 	} else {
4122 		switch (intel_dig_port->port) {
4123 		case PORT_B:
4124 			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4125 			break;
4126 		case PORT_C:
4127 			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4128 			break;
4129 		case PORT_D:
4130 			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4131 			break;
4132 		default:
4133 			return connector_status_unknown;
4134 		}
4135 	}
4136 
4137 	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4138 		return connector_status_disconnected;
4139 
4140 	return intel_dp_detect_dpcd(intel_dp);
4141 }
4142 
4143 static struct edid *
4144 intel_dp_get_edid(struct intel_dp *intel_dp)
4145 {
4146 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4147 
4148 	/* use cached edid if we have one */
4149 	if (intel_connector->edid) {
4150 		/* invalid edid */
4151 		if (IS_ERR(intel_connector->edid))
4152 			return NULL;
4153 
4154 		return drm_edid_duplicate(intel_connector->edid);
4155 	} else
4156 		return drm_get_edid(&intel_connector->base,
4157 				    intel_dp->aux.ddc);
4158 }
4159 
4160 static void
4161 intel_dp_set_edid(struct intel_dp *intel_dp)
4162 {
4163 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4164 	struct edid *edid;
4165 
4166 	edid = intel_dp_get_edid(intel_dp);
4167 	intel_connector->detect_edid = edid;
4168 
4169 	if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4170 		intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4171 	else
4172 		intel_dp->has_audio = drm_detect_monitor_audio(edid);
4173 }
4174 
4175 static void
4176 intel_dp_unset_edid(struct intel_dp *intel_dp)
4177 {
4178 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4179 
4180 	kfree(intel_connector->detect_edid);
4181 	intel_connector->detect_edid = NULL;
4182 
4183 	intel_dp->has_audio = false;
4184 }
4185 
4186 static enum intel_display_power_domain
4187 intel_dp_power_get(struct intel_dp *dp)
4188 {
4189 	struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4190 	enum intel_display_power_domain power_domain;
4191 
4192 	power_domain = intel_display_port_power_domain(encoder);
4193 	intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4194 
4195 	return power_domain;
4196 }
4197 
4198 static void
4199 intel_dp_power_put(struct intel_dp *dp,
4200 		   enum intel_display_power_domain power_domain)
4201 {
4202 	struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4203 	intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4204 }
4205 
4206 static enum drm_connector_status
4207 intel_dp_detect(struct drm_connector *connector, bool force)
4208 {
4209 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4210 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4211 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4212 	struct drm_device *dev = connector->dev;
4213 	enum drm_connector_status status;
4214 	enum intel_display_power_domain power_domain;
4215 
4216 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4217 		      connector->base.id, connector->name);
4218 	intel_dp_unset_edid(intel_dp);
4219 
4220 	if (intel_dp->is_mst) {
4221 		/* MST devices are disconnected from a monitor POV */
4222 		if (intel_encoder->type != INTEL_OUTPUT_EDP)
4223 			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4224 		return connector_status_disconnected;
4225 	}
4226 
4227 	power_domain = intel_dp_power_get(intel_dp);
4228 
4229 	/* Can't disconnect eDP, but you can close the lid... */
4230 	if (is_edp(intel_dp))
4231 		status = edp_detect(intel_dp);
4232 	else if (HAS_PCH_SPLIT(dev))
4233 		status = ironlake_dp_detect(intel_dp);
4234 	else
4235 		status = g4x_dp_detect(intel_dp);
4236 	if (status != connector_status_connected)
4237 		goto out;
4238 
4239 	intel_dp_probe_oui(intel_dp);
4240 
4241 #if 0
4242 	ret = intel_dp_probe_mst(intel_dp);
4243 	if (ret) {
4244 		/* if we are in MST mode then this connector
4245 		   won't appear connected or have anything with EDID on it */
4246 		if (intel_encoder->type != INTEL_OUTPUT_EDP)
4247 			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4248 		status = connector_status_disconnected;
4249 		goto out;
4250 	}
4251 #endif
4252 
4253 	intel_dp_set_edid(intel_dp);
4254 
4255 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4256 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4257 	status = connector_status_connected;
4258 
4259 out:
4260 	intel_dp_power_put(intel_dp, power_domain);
4261 	return status;
4262 }
4263 
4264 static void
4265 intel_dp_force(struct drm_connector *connector)
4266 {
4267 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4268 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4269 	enum intel_display_power_domain power_domain;
4270 
4271 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4272 		      connector->base.id, connector->name);
4273 	intel_dp_unset_edid(intel_dp);
4274 
4275 	if (connector->status != connector_status_connected)
4276 		return;
4277 
4278 	power_domain = intel_dp_power_get(intel_dp);
4279 
4280 	intel_dp_set_edid(intel_dp);
4281 
4282 	intel_dp_power_put(intel_dp, power_domain);
4283 
4284 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4285 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4286 }
4287 
4288 static int intel_dp_get_modes(struct drm_connector *connector)
4289 {
4290 	struct intel_connector *intel_connector = to_intel_connector(connector);
4291 	struct edid *edid;
4292 
4293 	edid = intel_connector->detect_edid;
4294 	if (edid) {
4295 		int ret = intel_connector_update_modes(connector, edid);
4296 		if (ret)
4297 			return ret;
4298 	}
4299 
4300 	/* if eDP has no EDID, fall back to fixed mode */
4301 	if (is_edp(intel_attached_dp(connector)) &&
4302 	    intel_connector->panel.fixed_mode) {
4303 		struct drm_display_mode *mode;
4304 
4305 		mode = drm_mode_duplicate(connector->dev,
4306 					  intel_connector->panel.fixed_mode);
4307 		if (mode) {
4308 			drm_mode_probed_add(connector, mode);
4309 			return 1;
4310 		}
4311 	}
4312 
4313 	return 0;
4314 }
4315 
4316 static bool
4317 intel_dp_detect_audio(struct drm_connector *connector)
4318 {
4319 	bool has_audio = false;
4320 	struct edid *edid;
4321 
4322 	edid = to_intel_connector(connector)->detect_edid;
4323 	if (edid)
4324 		has_audio = drm_detect_monitor_audio(edid);
4325 
4326 	return has_audio;
4327 }
4328 
4329 static int
4330 intel_dp_set_property(struct drm_connector *connector,
4331 		      struct drm_property *property,
4332 		      uint64_t val)
4333 {
4334 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4335 	struct intel_connector *intel_connector = to_intel_connector(connector);
4336 	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4337 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4338 	int ret;
4339 
4340 	ret = drm_object_property_set_value(&connector->base, property, val);
4341 	if (ret)
4342 		return ret;
4343 
4344 	if (property == dev_priv->force_audio_property) {
4345 		int i = val;
4346 		bool has_audio;
4347 
4348 		if (i == intel_dp->force_audio)
4349 			return 0;
4350 
4351 		intel_dp->force_audio = i;
4352 
4353 		if (i == HDMI_AUDIO_AUTO)
4354 			has_audio = intel_dp_detect_audio(connector);
4355 		else
4356 			has_audio = (i == HDMI_AUDIO_ON);
4357 
4358 		if (has_audio == intel_dp->has_audio)
4359 			return 0;
4360 
4361 		intel_dp->has_audio = has_audio;
4362 		goto done;
4363 	}
4364 
4365 	if (property == dev_priv->broadcast_rgb_property) {
4366 		bool old_auto = intel_dp->color_range_auto;
4367 		uint32_t old_range = intel_dp->color_range;
4368 
4369 		switch (val) {
4370 		case INTEL_BROADCAST_RGB_AUTO:
4371 			intel_dp->color_range_auto = true;
4372 			break;
4373 		case INTEL_BROADCAST_RGB_FULL:
4374 			intel_dp->color_range_auto = false;
4375 			intel_dp->color_range = 0;
4376 			break;
4377 		case INTEL_BROADCAST_RGB_LIMITED:
4378 			intel_dp->color_range_auto = false;
4379 			intel_dp->color_range = DP_COLOR_RANGE_16_235;
4380 			break;
4381 		default:
4382 			return -EINVAL;
4383 		}
4384 
4385 		if (old_auto == intel_dp->color_range_auto &&
4386 		    old_range == intel_dp->color_range)
4387 			return 0;
4388 
4389 		goto done;
4390 	}
4391 
4392 	if (is_edp(intel_dp) &&
4393 	    property == connector->dev->mode_config.scaling_mode_property) {
4394 		if (val == DRM_MODE_SCALE_NONE) {
4395 			DRM_DEBUG_KMS("no scaling not supported\n");
4396 			return -EINVAL;
4397 		}
4398 
4399 		if (intel_connector->panel.fitting_mode == val) {
4400 			/* the eDP scaling property is not changed */
4401 			return 0;
4402 		}
4403 		intel_connector->panel.fitting_mode = val;
4404 
4405 		goto done;
4406 	}
4407 
4408 	return -EINVAL;
4409 
4410 done:
4411 	if (intel_encoder->base.crtc)
4412 		intel_crtc_restore_mode(intel_encoder->base.crtc);
4413 
4414 	return 0;
4415 }
4416 
4417 static void
4418 intel_dp_connector_destroy(struct drm_connector *connector)
4419 {
4420 	struct intel_connector *intel_connector = to_intel_connector(connector);
4421 
4422 	kfree(intel_connector->detect_edid);
4423 
4424 	if (!IS_ERR_OR_NULL(intel_connector->edid))
4425 		kfree(intel_connector->edid);
4426 
4427 	/* Can't call is_edp() since the encoder may have been destroyed
4428 	 * already. */
4429 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4430 		intel_panel_fini(&intel_connector->panel);
4431 
4432 	drm_connector_cleanup(connector);
4433 	kfree(connector);
4434 }
4435 
4436 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4437 {
4438 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4439 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4440 
4441 	drm_dp_aux_unregister(&intel_dp->aux);
4442 	intel_dp_mst_encoder_cleanup(intel_dig_port);
4443 	drm_encoder_cleanup(encoder);
4444 	if (is_edp(intel_dp)) {
4445 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4446 		/*
4447 		 * vdd might still be enabled do to the delayed vdd off.
4448 		 * Make sure vdd is actually turned off here.
4449 		 */
4450 		pps_lock(intel_dp);
4451 		edp_panel_vdd_off_sync(intel_dp);
4452 		pps_unlock(intel_dp);
4453 
4454 #if 0
4455 		if (intel_dp->edp_notifier.notifier_call) {
4456 			unregister_reboot_notifier(&intel_dp->edp_notifier);
4457 			intel_dp->edp_notifier.notifier_call = NULL;
4458 		}
4459 #endif
4460 	}
4461 	kfree(intel_dig_port);
4462 }
4463 
4464 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4465 {
4466 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4467 
4468 	if (!is_edp(intel_dp))
4469 		return;
4470 
4471 	/*
4472 	 * vdd might still be enabled do to the delayed vdd off.
4473 	 * Make sure vdd is actually turned off here.
4474 	 */
4475 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4476 	pps_lock(intel_dp);
4477 	edp_panel_vdd_off_sync(intel_dp);
4478 	pps_unlock(intel_dp);
4479 }
4480 
4481 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4482 {
4483 	intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4484 }
4485 
4486 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4487 	.dpms = intel_connector_dpms,
4488 	.detect = intel_dp_detect,
4489 	.force = intel_dp_force,
4490 	.fill_modes = drm_helper_probe_single_connector_modes,
4491 	.set_property = intel_dp_set_property,
4492 	.destroy = intel_dp_connector_destroy,
4493 };
4494 
4495 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4496 	.get_modes = intel_dp_get_modes,
4497 	.mode_valid = intel_dp_mode_valid,
4498 	.best_encoder = intel_best_encoder,
4499 };
4500 
4501 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4502 	.reset = intel_dp_encoder_reset,
4503 	.destroy = intel_dp_encoder_destroy,
4504 };
4505 
4506 void
4507 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4508 {
4509 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4510 
4511 	intel_dp_check_link_status(intel_dp);
4512 }
4513 
4514 bool
4515 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4516 {
4517 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4518 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4519 	struct drm_device *dev = intel_dig_port->base.base.dev;
4520 	struct drm_i915_private *dev_priv = dev->dev_private;
4521 	enum intel_display_power_domain power_domain;
4522 	bool ret = true;
4523 
4524 	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4525 		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4526 
4527 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4528 		/*
4529 		 * vdd off can generate a long pulse on eDP which
4530 		 * would require vdd on to handle it, and thus we
4531 		 * would end up in an endless cycle of
4532 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4533 		 */
4534 		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4535 			      port_name(intel_dig_port->port));
4536 		return false;
4537 	}
4538 
4539 	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4540 		      port_name(intel_dig_port->port),
4541 		      long_hpd ? "long" : "short");
4542 
4543 	power_domain = intel_display_port_power_domain(intel_encoder);
4544 	intel_display_power_get(dev_priv, power_domain);
4545 
4546 	if (long_hpd) {
4547 		ret = true;
4548 		goto put_power;
4549 	}
4550 
4551 	/*
4552 	 * we'll check the link status via the normal hot plug path later -
4553 	 * but for short hpds we should check it now
4554 	 */
4555 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4556 	intel_dp_check_link_status(intel_dp);
4557 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
4558 	ret = false;
4559 
4560 put_power:
4561 	intel_display_power_put(dev_priv, power_domain);
4562 
4563 	return ret;
4564 }
4565 
4566 /* Return which DP Port should be selected for Transcoder DP control */
4567 int
4568 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4569 {
4570 	struct drm_device *dev = crtc->dev;
4571 	struct intel_encoder *intel_encoder;
4572 	struct intel_dp *intel_dp;
4573 
4574 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4575 		intel_dp = enc_to_intel_dp(&intel_encoder->base);
4576 
4577 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4578 		    intel_encoder->type == INTEL_OUTPUT_EDP)
4579 			return intel_dp->output_reg;
4580 	}
4581 
4582 	return -1;
4583 }
4584 
4585 /* check the VBT to see whether the eDP is on DP-D port */
4586 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4587 {
4588 	struct drm_i915_private *dev_priv = dev->dev_private;
4589 	union child_device_config *p_child;
4590 	int i;
4591 	static const short port_mapping[] = {
4592 		[PORT_B] = PORT_IDPB,
4593 		[PORT_C] = PORT_IDPC,
4594 		[PORT_D] = PORT_IDPD,
4595 	};
4596 
4597 	if (port == PORT_A)
4598 		return true;
4599 
4600 	if (!dev_priv->vbt.child_dev_num)
4601 		return false;
4602 
4603 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4604 		p_child = dev_priv->vbt.child_dev + i;
4605 
4606 		if (p_child->common.dvo_port == port_mapping[port] &&
4607 		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4608 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4609 			return true;
4610 	}
4611 	return false;
4612 }
4613 
4614 void
4615 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4616 {
4617 	struct intel_connector *intel_connector = to_intel_connector(connector);
4618 
4619 	intel_attach_force_audio_property(connector);
4620 	intel_attach_broadcast_rgb_property(connector);
4621 	intel_dp->color_range_auto = true;
4622 
4623 	if (is_edp(intel_dp)) {
4624 		drm_mode_create_scaling_mode_property(connector->dev);
4625 		drm_object_attach_property(
4626 			&connector->base,
4627 			connector->dev->mode_config.scaling_mode_property,
4628 			DRM_MODE_SCALE_ASPECT);
4629 		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4630 	}
4631 }
4632 
4633 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4634 {
4635 	intel_dp->last_power_cycle = jiffies;
4636 	intel_dp->last_power_on = jiffies;
4637 	intel_dp->last_backlight_off = jiffies;
4638 }
4639 
4640 static void
4641 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4642 				    struct intel_dp *intel_dp,
4643 				    struct edp_power_seq *out)
4644 {
4645 	struct drm_i915_private *dev_priv = dev->dev_private;
4646 	struct edp_power_seq cur, vbt, spec, final;
4647 	u32 pp_on, pp_off, pp_div, pp;
4648 	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4649 
4650 	lockdep_assert_held(&dev_priv->pps_mutex);
4651 
4652 	if (HAS_PCH_SPLIT(dev)) {
4653 		pp_ctrl_reg = PCH_PP_CONTROL;
4654 		pp_on_reg = PCH_PP_ON_DELAYS;
4655 		pp_off_reg = PCH_PP_OFF_DELAYS;
4656 		pp_div_reg = PCH_PP_DIVISOR;
4657 	} else {
4658 		enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4659 
4660 		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4661 		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4662 		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4663 		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4664 	}
4665 
4666 	/* Workaround: Need to write PP_CONTROL with the unlock key as
4667 	 * the very first thing. */
4668 	pp = ironlake_get_pp_control(intel_dp);
4669 	I915_WRITE(pp_ctrl_reg, pp);
4670 
4671 	pp_on = I915_READ(pp_on_reg);
4672 	pp_off = I915_READ(pp_off_reg);
4673 	pp_div = I915_READ(pp_div_reg);
4674 
4675 	/* Pull timing values out of registers */
4676 	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4677 		PANEL_POWER_UP_DELAY_SHIFT;
4678 
4679 	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4680 		PANEL_LIGHT_ON_DELAY_SHIFT;
4681 
4682 	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4683 		PANEL_LIGHT_OFF_DELAY_SHIFT;
4684 
4685 	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4686 		PANEL_POWER_DOWN_DELAY_SHIFT;
4687 
4688 	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4689 		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4690 
4691 	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4692 		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4693 
4694 	vbt = dev_priv->vbt.edp_pps;
4695 
4696 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4697 	 * our hw here, which are all in 100usec. */
4698 	spec.t1_t3 = 210 * 10;
4699 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4700 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4701 	spec.t10 = 500 * 10;
4702 	/* This one is special and actually in units of 100ms, but zero
4703 	 * based in the hw (so we need to add 100 ms). But the sw vbt
4704 	 * table multiplies it with 1000 to make it in units of 100usec,
4705 	 * too. */
4706 	spec.t11_t12 = (510 + 100) * 10;
4707 
4708 	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4709 		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4710 
4711 	/* Use the max of the register settings and vbt. If both are
4712 	 * unset, fall back to the spec limits. */
4713 #define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4714 				       spec.field : \
4715 				       max(cur.field, vbt.field))
4716 	assign_final(t1_t3);
4717 	assign_final(t8);
4718 	assign_final(t9);
4719 	assign_final(t10);
4720 	assign_final(t11_t12);
4721 #undef assign_final
4722 
4723 #define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4724 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4725 	intel_dp->backlight_on_delay = get_delay(t8);
4726 	intel_dp->backlight_off_delay = get_delay(t9);
4727 	intel_dp->panel_power_down_delay = get_delay(t10);
4728 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4729 #undef get_delay
4730 
4731 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4732 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4733 		      intel_dp->panel_power_cycle_delay);
4734 
4735 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4736 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4737 
4738 	if (out)
4739 		*out = final;
4740 }
4741 
4742 static void
4743 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4744 					      struct intel_dp *intel_dp,
4745 					      struct edp_power_seq *seq)
4746 {
4747 	struct drm_i915_private *dev_priv = dev->dev_private;
4748 	u32 pp_on, pp_off, pp_div, port_sel = 0;
4749 	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4750 	int pp_on_reg, pp_off_reg, pp_div_reg;
4751 	enum port port = dp_to_dig_port(intel_dp)->port;
4752 
4753 	lockdep_assert_held(&dev_priv->pps_mutex);
4754 
4755 	if (HAS_PCH_SPLIT(dev)) {
4756 		pp_on_reg = PCH_PP_ON_DELAYS;
4757 		pp_off_reg = PCH_PP_OFF_DELAYS;
4758 		pp_div_reg = PCH_PP_DIVISOR;
4759 	} else {
4760 		enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4761 
4762 		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4763 		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4764 		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4765 	}
4766 
4767 	/*
4768 	 * And finally store the new values in the power sequencer. The
4769 	 * backlight delays are set to 1 because we do manual waits on them. For
4770 	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4771 	 * we'll end up waiting for the backlight off delay twice: once when we
4772 	 * do the manual sleep, and once when we disable the panel and wait for
4773 	 * the PP_STATUS bit to become zero.
4774 	 */
4775 	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4776 		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4777 	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4778 		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4779 	/* Compute the divisor for the pp clock, simply match the Bspec
4780 	 * formula. */
4781 	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4782 	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4783 			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4784 
4785 	/* Haswell doesn't have any port selection bits for the panel
4786 	 * power sequencer any more. */
4787 	if (IS_VALLEYVIEW(dev)) {
4788 		port_sel = PANEL_PORT_SELECT_VLV(port);
4789 	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4790 		if (port == PORT_A)
4791 			port_sel = PANEL_PORT_SELECT_DPA;
4792 		else
4793 			port_sel = PANEL_PORT_SELECT_DPD;
4794 	}
4795 
4796 	pp_on |= port_sel;
4797 
4798 	I915_WRITE(pp_on_reg, pp_on);
4799 	I915_WRITE(pp_off_reg, pp_off);
4800 	I915_WRITE(pp_div_reg, pp_div);
4801 
4802 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4803 		      I915_READ(pp_on_reg),
4804 		      I915_READ(pp_off_reg),
4805 		      I915_READ(pp_div_reg));
4806 }
4807 
4808 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4809 {
4810 	struct drm_i915_private *dev_priv = dev->dev_private;
4811 	struct intel_encoder *encoder;
4812 	struct intel_dp *intel_dp = NULL;
4813 	struct intel_crtc_config *config = NULL;
4814 	struct intel_crtc *intel_crtc = NULL;
4815 	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4816 	u32 reg, val;
4817 	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4818 
4819 	if (refresh_rate <= 0) {
4820 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4821 		return;
4822 	}
4823 
4824 	if (intel_connector == NULL) {
4825 		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4826 		return;
4827 	}
4828 
4829 	/*
4830 	 * FIXME: This needs proper synchronization with psr state. But really
4831 	 * hard to tell without seeing the user of this function of this code.
4832 	 * Check locking and ordering once that lands.
4833 	 */
4834 	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4835 		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4836 		return;
4837 	}
4838 
4839 	encoder = intel_attached_encoder(&intel_connector->base);
4840 	intel_dp = enc_to_intel_dp(&encoder->base);
4841 	intel_crtc = encoder->new_crtc;
4842 
4843 	if (!intel_crtc) {
4844 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4845 		return;
4846 	}
4847 
4848 	config = &intel_crtc->config;
4849 
4850 	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4851 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4852 		return;
4853 	}
4854 
4855 	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4856 		index = DRRS_LOW_RR;
4857 
4858 	if (index == intel_dp->drrs_state.refresh_rate_type) {
4859 		DRM_DEBUG_KMS(
4860 			"DRRS requested for previously set RR...ignoring\n");
4861 		return;
4862 	}
4863 
4864 	if (!intel_crtc->active) {
4865 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4866 		return;
4867 	}
4868 
4869 	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4870 		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4871 		val = I915_READ(reg);
4872 		if (index > DRRS_HIGH_RR) {
4873 			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4874 			intel_dp_set_m_n(intel_crtc);
4875 		} else {
4876 			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4877 		}
4878 		I915_WRITE(reg, val);
4879 	}
4880 
4881 	/*
4882 	 * mutex taken to ensure that there is no race between differnt
4883 	 * drrs calls trying to update refresh rate. This scenario may occur
4884 	 * in future when idleness detection based DRRS in kernel and
4885 	 * possible calls from user space to set differnt RR are made.
4886 	 */
4887 
4888 	mutex_lock(&intel_dp->drrs_state.mutex);
4889 
4890 	intel_dp->drrs_state.refresh_rate_type = index;
4891 
4892 	mutex_unlock(&intel_dp->drrs_state.mutex);
4893 
4894 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4895 }
4896 
4897 static struct drm_display_mode *
4898 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4899 			struct intel_connector *intel_connector,
4900 			struct drm_display_mode *fixed_mode)
4901 {
4902 	struct drm_connector *connector = &intel_connector->base;
4903 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4904 	struct drm_device *dev = intel_dig_port->base.base.dev;
4905 	struct drm_i915_private *dev_priv = dev->dev_private;
4906 	struct drm_display_mode *downclock_mode = NULL;
4907 
4908 	if (INTEL_INFO(dev)->gen <= 6) {
4909 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4910 		return NULL;
4911 	}
4912 
4913 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4914 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4915 		return NULL;
4916 	}
4917 
4918 	downclock_mode = intel_find_panel_downclock
4919 					(dev, fixed_mode, connector);
4920 
4921 	if (!downclock_mode) {
4922 		DRM_DEBUG_KMS("DRRS not supported\n");
4923 		return NULL;
4924 	}
4925 
4926 	dev_priv->drrs.connector = intel_connector;
4927 
4928 	lockinit(&intel_dp->drrs_state.mutex, "i915dsm", 0, LK_CANRECURSE);
4929 
4930 	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4931 
4932 	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4933 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4934 	return downclock_mode;
4935 }
4936 
4937 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4938 {
4939 	struct drm_device *dev = intel_encoder->base.dev;
4940 	struct drm_i915_private *dev_priv = dev->dev_private;
4941 	struct intel_dp *intel_dp;
4942 	enum intel_display_power_domain power_domain;
4943 
4944 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4945 		return;
4946 
4947 	intel_dp = enc_to_intel_dp(&intel_encoder->base);
4948 
4949 	pps_lock(intel_dp);
4950 
4951 	if (!edp_have_panel_vdd(intel_dp))
4952 		goto out;
4953 	/*
4954 	 * The VDD bit needs a power domain reference, so if the bit is
4955 	 * already enabled when we boot or resume, grab this reference and
4956 	 * schedule a vdd off, so we don't hold on to the reference
4957 	 * indefinitely.
4958 	 */
4959 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4960 	power_domain = intel_display_port_power_domain(intel_encoder);
4961 	intel_display_power_get(dev_priv, power_domain);
4962 
4963 	edp_panel_vdd_schedule_off(intel_dp);
4964  out:
4965 	pps_unlock(intel_dp);
4966 }
4967 
4968 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4969 				     struct intel_connector *intel_connector,
4970 				     struct edp_power_seq *power_seq)
4971 {
4972 	struct drm_connector *connector = &intel_connector->base;
4973 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4974 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4975 	struct drm_device *dev = intel_encoder->base.dev;
4976 	struct drm_i915_private *dev_priv = dev->dev_private;
4977 	struct drm_display_mode *fixed_mode = NULL;
4978 	struct drm_display_mode *downclock_mode = NULL;
4979 	bool has_dpcd;
4980 	struct drm_display_mode *scan;
4981 	struct edid *edid;
4982 
4983 	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4984 
4985 	if (!is_edp(intel_dp))
4986 		return true;
4987 
4988 	intel_edp_panel_vdd_sanitize(intel_encoder);
4989 
4990 	/* Cache DPCD and EDID for edp. */
4991 	intel_edp_panel_vdd_on(intel_dp);
4992 	has_dpcd = intel_dp_get_dpcd(intel_dp);
4993 	intel_edp_panel_vdd_off(intel_dp, false);
4994 
4995 	if (has_dpcd) {
4996 		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4997 			dev_priv->no_aux_handshake =
4998 				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4999 				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5000 	} else {
5001 		/* if this fails, presume the device is a ghost */
5002 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
5003 		return false;
5004 	}
5005 
5006 	/* We now know it's not a ghost, init power sequence regs. */
5007 	pps_lock(intel_dp);
5008 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
5009 	pps_unlock(intel_dp);
5010 
5011 	mutex_lock(&dev->mode_config.mutex);
5012 	edid = drm_get_edid(connector, intel_dp->aux.ddc);
5013 	if (edid) {
5014 		if (drm_add_edid_modes(connector, edid)) {
5015 			drm_mode_connector_update_edid_property(connector,
5016 								edid);
5017 			drm_edid_to_eld(connector, edid);
5018 		} else {
5019 			kfree(edid);
5020 			edid = ERR_PTR(-EINVAL);
5021 		}
5022 	} else {
5023 		edid = ERR_PTR(-ENOENT);
5024 	}
5025 	intel_connector->edid = edid;
5026 
5027 	/* prefer fixed mode from EDID if available */
5028 	list_for_each_entry(scan, &connector->probed_modes, head) {
5029 		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5030 			fixed_mode = drm_mode_duplicate(dev, scan);
5031 			downclock_mode = intel_dp_drrs_init(
5032 						intel_dig_port,
5033 						intel_connector, fixed_mode);
5034 			break;
5035 		}
5036 	}
5037 
5038 	/* fallback to VBT if available for eDP */
5039 	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5040 		fixed_mode = drm_mode_duplicate(dev,
5041 					dev_priv->vbt.lfp_lvds_vbt_mode);
5042 		if (fixed_mode)
5043 			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5044 	}
5045 	mutex_unlock(&dev->mode_config.mutex);
5046 
5047 	if (IS_VALLEYVIEW(dev)) {
5048 #if 0
5049 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5050 		register_reboot_notifier(&intel_dp->edp_notifier);
5051 #endif
5052 	}
5053 
5054 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5055 	intel_connector->panel.backlight_power = intel_edp_backlight_power;
5056 	intel_panel_setup_backlight(connector);
5057 
5058 	return true;
5059 }
5060 
5061 bool
5062 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5063 			struct intel_connector *intel_connector)
5064 {
5065 	struct drm_connector *connector = &intel_connector->base;
5066 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5067 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
5068 	struct drm_device *dev = intel_encoder->base.dev;
5069 	struct drm_i915_private *dev_priv = dev->dev_private;
5070 	enum port port = intel_dig_port->port;
5071 	struct edp_power_seq power_seq = { 0 };
5072 	int type;
5073 
5074 	intel_dp->pps_pipe = INVALID_PIPE;
5075 
5076 	/* intel_dp vfuncs */
5077 	if (IS_VALLEYVIEW(dev))
5078 		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5079 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5080 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5081 	else if (HAS_PCH_SPLIT(dev))
5082 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5083 	else
5084 		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5085 
5086 	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5087 
5088 	/* Preserve the current hw state. */
5089 	intel_dp->DP = I915_READ(intel_dp->output_reg);
5090 	intel_dp->attached_connector = intel_connector;
5091 
5092 	if (intel_dp_is_edp(dev, port))
5093 		type = DRM_MODE_CONNECTOR_eDP;
5094 	else
5095 		type = DRM_MODE_CONNECTOR_DisplayPort;
5096 
5097 	/*
5098 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5099 	 * for DP the encoder type can be set by the caller to
5100 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5101 	 */
5102 	if (type == DRM_MODE_CONNECTOR_eDP)
5103 		intel_encoder->type = INTEL_OUTPUT_EDP;
5104 
5105 	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5106 			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5107 			port_name(port));
5108 
5109 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5110 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5111 
5112 	connector->interlace_allowed = true;
5113 	connector->doublescan_allowed = 0;
5114 
5115 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5116 			  edp_panel_vdd_work);
5117 
5118 	intel_connector_attach_encoder(intel_connector, intel_encoder);
5119 	drm_connector_register(connector);
5120 
5121 	if (HAS_DDI(dev))
5122 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5123 	else
5124 		intel_connector->get_hw_state = intel_connector_get_hw_state;
5125 	intel_connector->unregister = intel_dp_connector_unregister;
5126 
5127 	/* Set up the hotplug pin. */
5128 	switch (port) {
5129 	case PORT_A:
5130 		intel_encoder->hpd_pin = HPD_PORT_A;
5131 		break;
5132 	case PORT_B:
5133 		intel_encoder->hpd_pin = HPD_PORT_B;
5134 		break;
5135 	case PORT_C:
5136 		intel_encoder->hpd_pin = HPD_PORT_C;
5137 		break;
5138 	case PORT_D:
5139 		intel_encoder->hpd_pin = HPD_PORT_D;
5140 		break;
5141 	default:
5142 		BUG();
5143 	}
5144 
5145 	if (is_edp(intel_dp)) {
5146 		pps_lock(intel_dp);
5147 		if (IS_VALLEYVIEW(dev)) {
5148 			vlv_initial_power_sequencer_setup(intel_dp);
5149 		} else {
5150 			intel_dp_init_panel_power_timestamps(intel_dp);
5151 			intel_dp_init_panel_power_sequencer(dev, intel_dp,
5152 							    &power_seq);
5153 		}
5154 		pps_unlock(intel_dp);
5155 	}
5156 
5157 	intel_dp_aux_init(intel_dp, intel_connector);
5158 
5159 	/* init MST on ports that can support it */
5160 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5161 		if (port == PORT_B || port == PORT_C || port == PORT_D) {
5162 			intel_dp_mst_encoder_init(intel_dig_port,
5163 						  intel_connector->base.base.id);
5164 		}
5165 	}
5166 
5167 	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
5168 		drm_dp_aux_unregister(&intel_dp->aux);
5169 		if (is_edp(intel_dp)) {
5170 			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5171 			/*
5172 			 * vdd might still be enabled do to the delayed vdd off.
5173 			 * Make sure vdd is actually turned off here.
5174 			 */
5175 			pps_lock(intel_dp);
5176 			edp_panel_vdd_off_sync(intel_dp);
5177 			pps_unlock(intel_dp);
5178 		}
5179 		drm_connector_unregister(connector);
5180 		drm_connector_cleanup(connector);
5181 		return false;
5182 	}
5183 
5184 	intel_dp_add_properties(intel_dp, connector);
5185 
5186 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5187 	 * 0xd.  Failure to do so will result in spurious interrupts being
5188 	 * generated on the port when a cable is not attached.
5189 	 */
5190 	if (IS_G4X(dev) && !IS_GM45(dev)) {
5191 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5192 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5193 	}
5194 
5195 	return true;
5196 }
5197 
5198 void
5199 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5200 {
5201 	struct drm_i915_private *dev_priv = dev->dev_private;
5202 	struct intel_digital_port *intel_dig_port;
5203 	struct intel_encoder *intel_encoder;
5204 	struct drm_encoder *encoder;
5205 	struct intel_connector *intel_connector;
5206 
5207 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5208 	if (!intel_dig_port)
5209 		return;
5210 
5211 	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5212 	if (!intel_connector) {
5213 		kfree(intel_dig_port);
5214 		return;
5215 	}
5216 
5217 	intel_encoder = &intel_dig_port->base;
5218 	encoder = &intel_encoder->base;
5219 
5220 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5221 			 DRM_MODE_ENCODER_TMDS);
5222 
5223 	intel_encoder->compute_config = intel_dp_compute_config;
5224 	intel_encoder->disable = intel_disable_dp;
5225 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
5226 	intel_encoder->get_config = intel_dp_get_config;
5227 	intel_encoder->suspend = intel_dp_encoder_suspend;
5228 	if (IS_CHERRYVIEW(dev)) {
5229 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5230 		intel_encoder->pre_enable = chv_pre_enable_dp;
5231 		intel_encoder->enable = vlv_enable_dp;
5232 		intel_encoder->post_disable = chv_post_disable_dp;
5233 	} else if (IS_VALLEYVIEW(dev)) {
5234 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5235 		intel_encoder->pre_enable = vlv_pre_enable_dp;
5236 		intel_encoder->enable = vlv_enable_dp;
5237 		intel_encoder->post_disable = vlv_post_disable_dp;
5238 	} else {
5239 		intel_encoder->pre_enable = g4x_pre_enable_dp;
5240 		intel_encoder->enable = g4x_enable_dp;
5241 		if (INTEL_INFO(dev)->gen >= 5)
5242 			intel_encoder->post_disable = ilk_post_disable_dp;
5243 	}
5244 
5245 	intel_dig_port->port = port;
5246 	intel_dig_port->dp.output_reg = output_reg;
5247 
5248 	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5249 	if (IS_CHERRYVIEW(dev)) {
5250 		if (port == PORT_D)
5251 			intel_encoder->crtc_mask = 1 << 2;
5252 		else
5253 			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5254 	} else {
5255 		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5256 	}
5257 	intel_encoder->cloneable = 0;
5258 	intel_encoder->hot_plug = intel_dp_hot_plug;
5259 
5260 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5261 	dev_priv->hpd_irq_port[port] = intel_dig_port;
5262 
5263 	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5264 		drm_encoder_cleanup(encoder);
5265 		kfree(intel_dig_port);
5266 		kfree(intel_connector);
5267 	}
5268 }
5269