xref: /dragonfly/sys/dev/drm/i915/intel_dp.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_edid.h>
40 #include "intel_drv.h"
41 #include <drm/i915_drm.h>
42 #include "i915_drv.h"
43 
44 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
45 #define DP_DPRX_ESI_LEN 14
46 
47 /* Compliance test status bits  */
48 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
49 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
50 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
52 
53 struct dp_link_dpll {
54 	int clock;
55 	struct dpll dpll;
56 };
57 
58 static const struct dp_link_dpll gen4_dpll[] = {
59 	{ 162000,
60 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
61 	{ 270000,
62 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
63 };
64 
65 static const struct dp_link_dpll pch_dpll[] = {
66 	{ 162000,
67 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
68 	{ 270000,
69 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
70 };
71 
72 static const struct dp_link_dpll vlv_dpll[] = {
73 	{ 162000,
74 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
75 	{ 270000,
76 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
77 };
78 
79 /*
80  * CHV supports eDP 1.4 that have  more link rates.
81  * Below only provides the fixed rate but exclude variable rate.
82  */
83 static const struct dp_link_dpll chv_dpll[] = {
84 	/*
85 	 * CHV requires to program fractional division for m2.
86 	 * m2 is stored in fixed point format using formula below
87 	 * (m2_int << 22) | m2_fraction
88 	 */
89 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
90 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
91 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
92 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
93 	{ 540000,	/* m2_int = 27, m2_fraction = 0 */
94 		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
95 };
96 
97 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
98 				  324000, 432000, 540000 };
99 static const int skl_rates[] = { 162000, 216000, 270000,
100 				  324000, 432000, 540000 };
101 static const int cnl_rates[] = { 162000, 216000, 270000,
102 				 324000, 432000, 540000,
103 				 648000, 810000 };
104 static const int default_rates[] = { 162000, 270000, 540000 };
105 
106 /**
107  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
108  * @intel_dp: DP struct
109  *
110  * If a CPU or PCH DP output is attached to an eDP panel, this function
111  * will return true, and false otherwise.
112  */
113 bool intel_dp_is_edp(struct intel_dp *intel_dp)
114 {
115 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
116 
117 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
118 }
119 
120 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
121 {
122 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
123 
124 	return intel_dig_port->base.base.dev;
125 }
126 
127 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
128 {
129 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
130 }
131 
132 static void intel_dp_link_down(struct intel_dp *intel_dp);
133 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
134 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
135 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
136 static void vlv_steal_power_sequencer(struct drm_device *dev,
137 				      enum i915_pipe pipe);
138 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
139 
140 /* update sink rates from dpcd */
141 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
142 {
143 	int i, max_rate;
144 
145 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
146 
147 	for (i = 0; i < ARRAY_SIZE(default_rates); i++) {
148 		if (default_rates[i] > max_rate)
149 			break;
150 		intel_dp->sink_rates[i] = default_rates[i];
151 	}
152 
153 	intel_dp->num_sink_rates = i;
154 }
155 
156 /* Theoretical max between source and sink */
157 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
158 {
159 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
160 }
161 
162 /* Theoretical max between source and sink */
163 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
164 {
165 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
166 	int source_max = intel_dig_port->max_lanes;
167 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
168 
169 	return min(source_max, sink_max);
170 }
171 
172 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
173 {
174 	return intel_dp->max_link_lane_count;
175 }
176 
177 int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
181 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
182 }
183 
184 int
185 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
186 {
187 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
188 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
189 	 * is transmitted every LS_Clk per lane, there is no need to account for
190 	 * the channel encoding that is done in the PHY layer here.
191 	 */
192 
193 	return max_link_clock * max_lanes;
194 }
195 
196 static int
197 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
198 {
199 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
200 	struct intel_encoder *encoder = &intel_dig_port->base;
201 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
202 	int max_dotclk = dev_priv->max_dotclk_freq;
203 	int ds_max_dotclk;
204 
205 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
206 
207 	if (type != DP_DS_PORT_TYPE_VGA)
208 		return max_dotclk;
209 
210 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
211 						    intel_dp->downstream_ports);
212 
213 	if (ds_max_dotclk != 0)
214 		max_dotclk = min(max_dotclk, ds_max_dotclk);
215 
216 	return max_dotclk;
217 }
218 
219 static void
220 intel_dp_set_source_rates(struct intel_dp *intel_dp)
221 {
222 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
223 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
224 	enum port port = dig_port->port;
225 	const int *source_rates;
226 	int size;
227 	u32 voltage;
228 
229 	/* This should only be done once */
230 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
231 
232 	if (IS_GEN9_LP(dev_priv)) {
233 		source_rates = bxt_rates;
234 		size = ARRAY_SIZE(bxt_rates);
235 	} else if (IS_CANNONLAKE(dev_priv)) {
236 		source_rates = cnl_rates;
237 		size = ARRAY_SIZE(cnl_rates);
238 		voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
239 		if (port == PORT_A || port == PORT_D ||
240 		    voltage == VOLTAGE_INFO_0_85V)
241 			size -= 2;
242 	} else if (IS_GEN9_BC(dev_priv)) {
243 		source_rates = skl_rates;
244 		size = ARRAY_SIZE(skl_rates);
245 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
246 		   IS_BROADWELL(dev_priv)) {
247 		source_rates = default_rates;
248 		size = ARRAY_SIZE(default_rates);
249 	} else {
250 		source_rates = default_rates;
251 		size = ARRAY_SIZE(default_rates) - 1;
252 	}
253 
254 	intel_dp->source_rates = source_rates;
255 	intel_dp->num_source_rates = size;
256 }
257 
258 static int intersect_rates(const int *source_rates, int source_len,
259 			   const int *sink_rates, int sink_len,
260 			   int *common_rates)
261 {
262 	int i = 0, j = 0, k = 0;
263 
264 	while (i < source_len && j < sink_len) {
265 		if (source_rates[i] == sink_rates[j]) {
266 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
267 				return k;
268 			common_rates[k] = source_rates[i];
269 			++k;
270 			++i;
271 			++j;
272 		} else if (source_rates[i] < sink_rates[j]) {
273 			++i;
274 		} else {
275 			++j;
276 		}
277 	}
278 	return k;
279 }
280 
281 /* return index of rate in rates array, or -1 if not found */
282 static int intel_dp_rate_index(const int *rates, int len, int rate)
283 {
284 	int i;
285 
286 	for (i = 0; i < len; i++)
287 		if (rate == rates[i])
288 			return i;
289 
290 	return -1;
291 }
292 
293 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
294 {
295 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
296 
297 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
298 						     intel_dp->num_source_rates,
299 						     intel_dp->sink_rates,
300 						     intel_dp->num_sink_rates,
301 						     intel_dp->common_rates);
302 
303 	/* Paranoia, there should always be something in common. */
304 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
305 		intel_dp->common_rates[0] = default_rates[0];
306 		intel_dp->num_common_rates = 1;
307 	}
308 }
309 
310 /* get length of common rates potentially limited by max_rate */
311 static int intel_dp_common_len_rate_limit(struct intel_dp *intel_dp,
312 					  int max_rate)
313 {
314 	const int *common_rates = intel_dp->common_rates;
315 	int i, common_len = intel_dp->num_common_rates;
316 
317 	/* Limit results by potentially reduced max rate */
318 	for (i = 0; i < common_len; i++) {
319 		if (common_rates[common_len - i - 1] <= max_rate)
320 			return common_len - i;
321 	}
322 
323 	return 0;
324 }
325 
326 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
327 				       uint8_t lane_count)
328 {
329 	/*
330 	 * FIXME: we need to synchronize the current link parameters with
331 	 * hardware readout. Currently fast link training doesn't work on
332 	 * boot-up.
333 	 */
334 	if (link_rate == 0 ||
335 	    link_rate > intel_dp->max_link_rate)
336 		return false;
337 
338 	if (lane_count == 0 ||
339 	    lane_count > intel_dp_max_lane_count(intel_dp))
340 		return false;
341 
342 	return true;
343 }
344 
345 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
346 					    int link_rate, uint8_t lane_count)
347 {
348 	int index;
349 
350 	index = intel_dp_rate_index(intel_dp->common_rates,
351 				    intel_dp->num_common_rates,
352 				    link_rate);
353 	if (index > 0) {
354 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
355 		intel_dp->max_link_lane_count = lane_count;
356 	} else if (lane_count > 1) {
357 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
358 		intel_dp->max_link_lane_count = lane_count >> 1;
359 	} else {
360 		DRM_ERROR("Link Training Unsuccessful\n");
361 		return -1;
362 	}
363 
364 	return 0;
365 }
366 
367 static enum drm_mode_status
368 intel_dp_mode_valid(struct drm_connector *connector,
369 		    struct drm_display_mode *mode)
370 {
371 	struct intel_dp *intel_dp = intel_attached_dp(connector);
372 	struct intel_connector *intel_connector = to_intel_connector(connector);
373 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
374 	int target_clock = mode->clock;
375 	int max_rate, mode_rate, max_lanes, max_link_clock;
376 	int max_dotclk;
377 
378 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
379 
380 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
381 		if (mode->hdisplay > fixed_mode->hdisplay)
382 			return MODE_PANEL;
383 
384 		if (mode->vdisplay > fixed_mode->vdisplay)
385 			return MODE_PANEL;
386 
387 		target_clock = fixed_mode->clock;
388 	}
389 
390 	max_link_clock = intel_dp_max_link_rate(intel_dp);
391 	max_lanes = intel_dp_max_lane_count(intel_dp);
392 
393 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
394 	mode_rate = intel_dp_link_required(target_clock, 18);
395 
396 	if (mode_rate > max_rate || target_clock > max_dotclk)
397 		return MODE_CLOCK_HIGH;
398 
399 	if (mode->clock < 10000)
400 		return MODE_CLOCK_LOW;
401 
402 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
403 		return MODE_H_ILLEGAL;
404 
405 	return MODE_OK;
406 }
407 
408 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
409 {
410 	int	i;
411 	uint32_t v = 0;
412 
413 	if (src_bytes > 4)
414 		src_bytes = 4;
415 	for (i = 0; i < src_bytes; i++)
416 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
417 	return v;
418 }
419 
420 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
421 {
422 	int i;
423 	if (dst_bytes > 4)
424 		dst_bytes = 4;
425 	for (i = 0; i < dst_bytes; i++)
426 		dst[i] = src >> ((3-i) * 8);
427 }
428 
429 static void
430 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
431 				    struct intel_dp *intel_dp);
432 static void
433 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
434 					      struct intel_dp *intel_dp,
435 					      bool force_disable_vdd);
436 static void
437 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
438 
439 static void pps_lock(struct intel_dp *intel_dp)
440 {
441 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
442 	struct intel_encoder *encoder = &intel_dig_port->base;
443 	struct drm_device *dev = encoder->base.dev;
444 	struct drm_i915_private *dev_priv = to_i915(dev);
445 
446 	/*
447 	 * See vlv_power_sequencer_reset() why we need
448 	 * a power domain reference here.
449 	 */
450 	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
451 
452 	mutex_lock(&dev_priv->pps_mutex);
453 }
454 
455 static void pps_unlock(struct intel_dp *intel_dp)
456 {
457 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
458 	struct intel_encoder *encoder = &intel_dig_port->base;
459 	struct drm_device *dev = encoder->base.dev;
460 	struct drm_i915_private *dev_priv = to_i915(dev);
461 
462 	mutex_unlock(&dev_priv->pps_mutex);
463 
464 	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
465 }
466 
467 static void
468 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
469 {
470 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
471 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
472 	enum i915_pipe pipe = intel_dp->pps_pipe;
473 	bool pll_enabled, release_cl_override = false;
474 	enum dpio_phy phy = DPIO_PHY(pipe);
475 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
476 	uint32_t DP;
477 
478 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
479 		 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
480 		 pipe_name(pipe), port_name(intel_dig_port->port)))
481 		return;
482 
483 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
484 		      pipe_name(pipe), port_name(intel_dig_port->port));
485 
486 	/* Preserve the BIOS-computed detected bit. This is
487 	 * supposed to be read-only.
488 	 */
489 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
490 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
491 	DP |= DP_PORT_WIDTH(1);
492 	DP |= DP_LINK_TRAIN_PAT_1;
493 
494 	if (IS_CHERRYVIEW(dev_priv))
495 		DP |= DP_PIPE_SELECT_CHV(pipe);
496 	else if (pipe == PIPE_B)
497 		DP |= DP_PIPEB_SELECT;
498 
499 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
500 
501 	/*
502 	 * The DPLL for the pipe must be enabled for this to work.
503 	 * So enable temporarily it if it's not already enabled.
504 	 */
505 	if (!pll_enabled) {
506 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
507 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
508 
509 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
510 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
511 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
512 				  pipe_name(pipe));
513 			return;
514 		}
515 	}
516 
517 	/*
518 	 * Similar magic as in intel_dp_enable_port().
519 	 * We _must_ do this port enable + disable trick
520 	 * to make this power seqeuencer lock onto the port.
521 	 * Otherwise even VDD force bit won't work.
522 	 */
523 	I915_WRITE(intel_dp->output_reg, DP);
524 	POSTING_READ(intel_dp->output_reg);
525 
526 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
527 	POSTING_READ(intel_dp->output_reg);
528 
529 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
530 	POSTING_READ(intel_dp->output_reg);
531 
532 	if (!pll_enabled) {
533 		vlv_force_pll_off(dev_priv, pipe);
534 
535 		if (release_cl_override)
536 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
537 	}
538 }
539 
540 static enum i915_pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
541 {
542 	struct intel_encoder *encoder;
543 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
544 
545 	/*
546 	 * We don't have power sequencer currently.
547 	 * Pick one that's not used by other ports.
548 	 */
549 	for_each_intel_encoder(&dev_priv->drm, encoder) {
550 		struct intel_dp *intel_dp;
551 
552 		if (encoder->type != INTEL_OUTPUT_DP &&
553 		    encoder->type != INTEL_OUTPUT_EDP)
554 			continue;
555 
556 		intel_dp = enc_to_intel_dp(&encoder->base);
557 
558 		if (encoder->type == INTEL_OUTPUT_EDP) {
559 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
560 				intel_dp->active_pipe != intel_dp->pps_pipe);
561 
562 			if (intel_dp->pps_pipe != INVALID_PIPE)
563 				pipes &= ~(1 << intel_dp->pps_pipe);
564 		} else {
565 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
566 
567 			if (intel_dp->active_pipe != INVALID_PIPE)
568 				pipes &= ~(1 << intel_dp->active_pipe);
569 		}
570 	}
571 
572 	if (pipes == 0)
573 		return INVALID_PIPE;
574 
575 	return ffs(pipes) - 1;
576 }
577 
578 static enum i915_pipe
579 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
580 {
581 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
582 	struct drm_device *dev = intel_dig_port->base.base.dev;
583 	struct drm_i915_private *dev_priv = to_i915(dev);
584 	enum i915_pipe pipe;
585 
586 	lockdep_assert_held(&dev_priv->pps_mutex);
587 
588 	/* We should never land here with regular DP ports */
589 	WARN_ON(!intel_dp_is_edp(intel_dp));
590 
591 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
592 		intel_dp->active_pipe != intel_dp->pps_pipe);
593 
594 	if (intel_dp->pps_pipe != INVALID_PIPE)
595 		return intel_dp->pps_pipe;
596 
597 	pipe = vlv_find_free_pps(dev_priv);
598 
599 	/*
600 	 * Didn't find one. This should not happen since there
601 	 * are two power sequencers and up to two eDP ports.
602 	 */
603 	if (WARN_ON(pipe == INVALID_PIPE))
604 		pipe = PIPE_A;
605 
606 	vlv_steal_power_sequencer(dev, pipe);
607 	intel_dp->pps_pipe = pipe;
608 
609 	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
610 		      pipe_name(intel_dp->pps_pipe),
611 		      port_name(intel_dig_port->port));
612 
613 	/* init power sequencer on this pipe and port */
614 	intel_dp_init_panel_power_sequencer(dev, intel_dp);
615 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
616 
617 	/*
618 	 * Even vdd force doesn't work until we've made
619 	 * the power sequencer lock in on the port.
620 	 */
621 	vlv_power_sequencer_kick(intel_dp);
622 
623 	return intel_dp->pps_pipe;
624 }
625 
626 static int
627 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
628 {
629 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
630 	struct drm_device *dev = intel_dig_port->base.base.dev;
631 	struct drm_i915_private *dev_priv = to_i915(dev);
632 
633 	lockdep_assert_held(&dev_priv->pps_mutex);
634 
635 	/* We should never land here with regular DP ports */
636 	WARN_ON(!intel_dp_is_edp(intel_dp));
637 
638 	/*
639 	 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
640 	 * mapping needs to be retrieved from VBT, for now just hard-code to
641 	 * use instance #0 always.
642 	 */
643 	if (!intel_dp->pps_reset)
644 		return 0;
645 
646 	intel_dp->pps_reset = false;
647 
648 	/*
649 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
650 	 * has been setup during connector init.
651 	 */
652 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
653 
654 	return 0;
655 }
656 
657 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
658 			       enum i915_pipe pipe);
659 
660 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
661 			       enum i915_pipe pipe)
662 {
663 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
664 }
665 
666 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
667 				enum i915_pipe pipe)
668 {
669 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
670 }
671 
672 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
673 			 enum i915_pipe pipe)
674 {
675 	return true;
676 }
677 
678 static enum i915_pipe
679 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
680 		     enum port port,
681 		     vlv_pipe_check pipe_check)
682 {
683 	enum i915_pipe pipe;
684 
685 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
686 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
687 			PANEL_PORT_SELECT_MASK;
688 
689 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
690 			continue;
691 
692 		if (!pipe_check(dev_priv, pipe))
693 			continue;
694 
695 		return pipe;
696 	}
697 
698 	return INVALID_PIPE;
699 }
700 
701 static void
702 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
703 {
704 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705 	struct drm_device *dev = intel_dig_port->base.base.dev;
706 	struct drm_i915_private *dev_priv = to_i915(dev);
707 	enum port port = intel_dig_port->port;
708 
709 	lockdep_assert_held(&dev_priv->pps_mutex);
710 
711 	/* try to find a pipe with this port selected */
712 	/* first pick one where the panel is on */
713 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
714 						  vlv_pipe_has_pp_on);
715 	/* didn't find one? pick one where vdd is on */
716 	if (intel_dp->pps_pipe == INVALID_PIPE)
717 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
718 							  vlv_pipe_has_vdd_on);
719 	/* didn't find one? pick one with just the correct port */
720 	if (intel_dp->pps_pipe == INVALID_PIPE)
721 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
722 							  vlv_pipe_any);
723 
724 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
725 	if (intel_dp->pps_pipe == INVALID_PIPE) {
726 		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
727 			      port_name(port));
728 		return;
729 	}
730 
731 	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
732 		      port_name(port), pipe_name(intel_dp->pps_pipe));
733 
734 	intel_dp_init_panel_power_sequencer(dev, intel_dp);
735 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
736 }
737 
738 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
739 {
740 	struct drm_device *dev = &dev_priv->drm;
741 	struct intel_encoder *encoder;
742 
743 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
744 		    !IS_GEN9_LP(dev_priv)))
745 		return;
746 
747 	/*
748 	 * We can't grab pps_mutex here due to deadlock with power_domain
749 	 * mutex when power_domain functions are called while holding pps_mutex.
750 	 * That also means that in order to use pps_pipe the code needs to
751 	 * hold both a power domain reference and pps_mutex, and the power domain
752 	 * reference get/put must be done while _not_ holding pps_mutex.
753 	 * pps_{lock,unlock}() do these steps in the correct order, so one
754 	 * should use them always.
755 	 */
756 
757 	for_each_intel_encoder(dev, encoder) {
758 		struct intel_dp *intel_dp;
759 
760 		if (encoder->type != INTEL_OUTPUT_DP &&
761 		    encoder->type != INTEL_OUTPUT_EDP)
762 			continue;
763 
764 		intel_dp = enc_to_intel_dp(&encoder->base);
765 
766 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
767 
768 		if (encoder->type != INTEL_OUTPUT_EDP)
769 			continue;
770 
771 		if (IS_GEN9_LP(dev_priv))
772 			intel_dp->pps_reset = true;
773 		else
774 			intel_dp->pps_pipe = INVALID_PIPE;
775 	}
776 }
777 
778 struct pps_registers {
779 	i915_reg_t pp_ctrl;
780 	i915_reg_t pp_stat;
781 	i915_reg_t pp_on;
782 	i915_reg_t pp_off;
783 	i915_reg_t pp_div;
784 };
785 
786 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
787 				    struct intel_dp *intel_dp,
788 				    struct pps_registers *regs)
789 {
790 	int pps_idx = 0;
791 
792 	memset(regs, 0, sizeof(*regs));
793 
794 	if (IS_GEN9_LP(dev_priv))
795 		pps_idx = bxt_power_sequencer_idx(intel_dp);
796 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
797 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
798 
799 	regs->pp_ctrl = PP_CONTROL(pps_idx);
800 	regs->pp_stat = PP_STATUS(pps_idx);
801 	regs->pp_on = PP_ON_DELAYS(pps_idx);
802 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
803 	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv))
804 		regs->pp_div = PP_DIVISOR(pps_idx);
805 }
806 
807 static i915_reg_t
808 _pp_ctrl_reg(struct intel_dp *intel_dp)
809 {
810 	struct pps_registers regs;
811 
812 	intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
813 				&regs);
814 
815 	return regs.pp_ctrl;
816 }
817 
818 static i915_reg_t
819 _pp_stat_reg(struct intel_dp *intel_dp)
820 {
821 	struct pps_registers regs;
822 
823 	intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
824 				&regs);
825 
826 	return regs.pp_stat;
827 }
828 
829 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
830    This function only applicable when panel PM state is not to be tracked */
831 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
832 			      void *unused)
833 {
834 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
835 						 edp_notifier);
836 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
837 	struct drm_i915_private *dev_priv = to_i915(dev);
838 
839 #if 0
840 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
841 #endif
842 	if (!intel_dp_is_edp(intel_dp))
843 		return 0;
844 
845 	pps_lock(intel_dp);
846 
847 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
848 		enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
849 		i915_reg_t pp_ctrl_reg, pp_div_reg;
850 		u32 pp_div;
851 
852 		pp_ctrl_reg = PP_CONTROL(pipe);
853 		pp_div_reg  = PP_DIVISOR(pipe);
854 		pp_div = I915_READ(pp_div_reg);
855 		pp_div &= PP_REFERENCE_DIVIDER_MASK;
856 
857 		/* 0x1F write to PP_DIV_REG sets max cycle delay */
858 		I915_WRITE(pp_div_reg, pp_div | 0x1F);
859 		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
860 		msleep(intel_dp->panel_power_cycle_delay);
861 	}
862 
863 	pps_unlock(intel_dp);
864 
865 	return 0;
866 }
867 
868 static bool edp_have_panel_power(struct intel_dp *intel_dp)
869 {
870 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
871 	struct drm_i915_private *dev_priv = to_i915(dev);
872 
873 	lockdep_assert_held(&dev_priv->pps_mutex);
874 
875 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
876 	    intel_dp->pps_pipe == INVALID_PIPE)
877 		return false;
878 
879 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
880 }
881 
882 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
883 {
884 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
885 	struct drm_i915_private *dev_priv = to_i915(dev);
886 
887 	lockdep_assert_held(&dev_priv->pps_mutex);
888 
889 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
890 	    intel_dp->pps_pipe == INVALID_PIPE)
891 		return false;
892 
893 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
894 }
895 
896 static void
897 intel_dp_check_edp(struct intel_dp *intel_dp)
898 {
899 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
900 	struct drm_i915_private *dev_priv = to_i915(dev);
901 
902 	if (!intel_dp_is_edp(intel_dp))
903 		return;
904 
905 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
906 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
907 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
908 			      I915_READ(_pp_stat_reg(intel_dp)),
909 			      I915_READ(_pp_ctrl_reg(intel_dp)));
910 	}
911 }
912 
913 static uint32_t
914 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
915 {
916 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
917 	struct drm_device *dev = intel_dig_port->base.base.dev;
918 	struct drm_i915_private *dev_priv = to_i915(dev);
919 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
920 	uint32_t status;
921 	bool done;
922 
923 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
924 	if (has_aux_irq)
925 		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
926 					  msecs_to_jiffies_timeout(10));
927 	else
928 		done = wait_for(C, 10) == 0;
929 	if (!done)
930 		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
931 			  has_aux_irq);
932 #undef C
933 
934 	return status;
935 }
936 
937 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
938 {
939 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
940 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
941 
942 	if (index)
943 		return 0;
944 
945 	/*
946 	 * The clock divider is based off the hrawclk, and would like to run at
947 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
948 	 */
949 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
950 }
951 
952 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
953 {
954 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
955 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
956 
957 	if (index)
958 		return 0;
959 
960 	/*
961 	 * The clock divider is based off the cdclk or PCH rawclk, and would
962 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
963 	 * divide by 2000 and use that
964 	 */
965 	if (intel_dig_port->port == PORT_A)
966 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
967 	else
968 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
969 }
970 
971 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
972 {
973 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
974 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
975 
976 	if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
977 		/* Workaround for non-ULT HSW */
978 		switch (index) {
979 		case 0: return 63;
980 		case 1: return 72;
981 		default: return 0;
982 		}
983 	}
984 
985 	return ilk_get_aux_clock_divider(intel_dp, index);
986 }
987 
988 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
989 {
990 	/*
991 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
992 	 * derive the clock from CDCLK automatically). We still implement the
993 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
994 	 */
995 	return index ? 0 : 1;
996 }
997 
998 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
999 				     bool has_aux_irq,
1000 				     int send_bytes,
1001 				     uint32_t aux_clock_divider)
1002 {
1003 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1004 	struct drm_i915_private *dev_priv =
1005 			to_i915(intel_dig_port->base.base.dev);
1006 	uint32_t precharge, timeout;
1007 
1008 	if (IS_GEN6(dev_priv))
1009 		precharge = 3;
1010 	else
1011 		precharge = 5;
1012 
1013 	if (IS_BROADWELL(dev_priv))
1014 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1015 	else
1016 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1017 
1018 	return DP_AUX_CH_CTL_SEND_BUSY |
1019 	       DP_AUX_CH_CTL_DONE |
1020 	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1021 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1022 	       timeout |
1023 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1024 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1025 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1026 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1027 }
1028 
1029 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1030 				      bool has_aux_irq,
1031 				      int send_bytes,
1032 				      uint32_t unused)
1033 {
1034 	return DP_AUX_CH_CTL_SEND_BUSY |
1035 	       DP_AUX_CH_CTL_DONE |
1036 	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1037 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1038 	       DP_AUX_CH_CTL_TIME_OUT_MAX |
1039 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1040 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1041 	       DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1042 	       DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1043 }
1044 
1045 static int
1046 intel_dp_aux_ch(struct intel_dp *intel_dp,
1047 		const uint8_t *send, int send_bytes,
1048 		uint8_t *recv, int recv_size)
1049 {
1050 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1051 	struct drm_i915_private *dev_priv =
1052 			to_i915(intel_dig_port->base.base.dev);
1053 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
1054 	uint32_t aux_clock_divider;
1055 	int i, ret, recv_bytes;
1056 	uint32_t status;
1057 	int try, clock = 0;
1058 	bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
1059 	bool vdd;
1060 
1061 	pps_lock(intel_dp);
1062 
1063 	/*
1064 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1065 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1066 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1067 	 * ourselves.
1068 	 */
1069 	vdd = edp_panel_vdd_on(intel_dp);
1070 
1071 	/* dp aux is extremely sensitive to irq latency, hence request the
1072 	 * lowest possible wakeup latency and so prevent the cpu from going into
1073 	 * deep sleep states.
1074 	 */
1075 	pm_qos_update_request(&dev_priv->pm_qos, 0);
1076 
1077 	intel_dp_check_edp(intel_dp);
1078 
1079 	/* Try to wait for any previous AUX channel activity */
1080 	for (try = 0; try < 3; try++) {
1081 		status = I915_READ_NOTRACE(ch_ctl);
1082 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1083 			break;
1084 		msleep(1);
1085 	}
1086 
1087 	if (try == 3) {
1088 		static u32 last_status = -1;
1089 		const u32 status = I915_READ(ch_ctl);
1090 
1091 		if (status != last_status) {
1092 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
1093 			     status);
1094 			last_status = status;
1095 		}
1096 
1097 		ret = -EBUSY;
1098 		goto out;
1099 	}
1100 
1101 	/* Only 5 data registers! */
1102 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1103 		ret = -E2BIG;
1104 		goto out;
1105 	}
1106 
1107 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1108 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1109 							  has_aux_irq,
1110 							  send_bytes,
1111 							  aux_clock_divider);
1112 
1113 		/* Must try at least 3 times according to DP spec */
1114 		for (try = 0; try < 5; try++) {
1115 			/* Load the send data into the aux channel data registers */
1116 			for (i = 0; i < send_bytes; i += 4)
1117 				I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
1118 					   intel_dp_pack_aux(send + i,
1119 							     send_bytes - i));
1120 
1121 			/* Send the command and wait for it to complete */
1122 			I915_WRITE(ch_ctl, send_ctl);
1123 
1124 			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1125 
1126 			/* Clear done status and any errors */
1127 			I915_WRITE(ch_ctl,
1128 				   status |
1129 				   DP_AUX_CH_CTL_DONE |
1130 				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1131 				   DP_AUX_CH_CTL_RECEIVE_ERROR);
1132 
1133 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1134 				continue;
1135 
1136 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1137 			 *   400us delay required for errors and timeouts
1138 			 *   Timeout errors from the HW already meet this
1139 			 *   requirement so skip to next iteration
1140 			 */
1141 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1142 				usleep_range(400, 500);
1143 				continue;
1144 			}
1145 			if (status & DP_AUX_CH_CTL_DONE)
1146 				goto done;
1147 		}
1148 	}
1149 
1150 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1151 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1152 		ret = -EBUSY;
1153 		goto out;
1154 	}
1155 
1156 done:
1157 	/* Check for timeout or receive error.
1158 	 * Timeouts occur when the sink is not connected
1159 	 */
1160 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1161 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1162 		ret = -EIO;
1163 		goto out;
1164 	}
1165 
1166 	/* Timeouts occur when the device isn't connected, so they're
1167 	 * "normal" -- don't fill the kernel log with these */
1168 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1169 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1170 		ret = -ETIMEDOUT;
1171 		goto out;
1172 	}
1173 
1174 	/* Unload any bytes sent back from the other side */
1175 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1176 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1177 
1178 	/*
1179 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1180 	 * We have no idea of what happened so we return -EBUSY so
1181 	 * drm layer takes care for the necessary retries.
1182 	 */
1183 	if (recv_bytes == 0 || recv_bytes > 20) {
1184 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1185 			      recv_bytes);
1186 		/*
1187 		 * FIXME: This patch was created on top of a series that
1188 		 * organize the retries at drm level. There EBUSY should
1189 		 * also take care for 1ms wait before retrying.
1190 		 * That aux retries re-org is still needed and after that is
1191 		 * merged we remove this sleep from here.
1192 		 */
1193 		usleep_range(1000, 1500);
1194 		ret = -EBUSY;
1195 		goto out;
1196 	}
1197 
1198 	if (recv_bytes > recv_size)
1199 		recv_bytes = recv_size;
1200 
1201 	for (i = 0; i < recv_bytes; i += 4)
1202 		intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1203 				    recv + i, recv_bytes - i);
1204 
1205 	ret = recv_bytes;
1206 out:
1207 	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1208 
1209 	if (vdd)
1210 		edp_panel_vdd_off(intel_dp, false);
1211 
1212 	pps_unlock(intel_dp);
1213 
1214 	return ret;
1215 }
1216 
1217 #define BARE_ADDRESS_SIZE	3
1218 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1219 static ssize_t
1220 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1221 {
1222 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1223 	uint8_t txbuf[20], rxbuf[20];
1224 	size_t txsize, rxsize;
1225 	int ret;
1226 
1227 	txbuf[0] = (msg->request << 4) |
1228 		((msg->address >> 16) & 0xf);
1229 	txbuf[1] = (msg->address >> 8) & 0xff;
1230 	txbuf[2] = msg->address & 0xff;
1231 	txbuf[3] = msg->size - 1;
1232 
1233 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1234 	case DP_AUX_NATIVE_WRITE:
1235 	case DP_AUX_I2C_WRITE:
1236 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1237 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1238 		rxsize = 2; /* 0 or 1 data bytes */
1239 
1240 		if (WARN_ON(txsize > 20))
1241 			return -E2BIG;
1242 
1243 		WARN_ON(!msg->buffer != !msg->size);
1244 
1245 		if (msg->buffer)
1246 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1247 
1248 		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1249 		if (ret > 0) {
1250 			msg->reply = rxbuf[0] >> 4;
1251 
1252 			if (ret > 1) {
1253 				/* Number of bytes written in a short write. */
1254 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1255 			} else {
1256 				/* Return payload size. */
1257 				ret = msg->size;
1258 			}
1259 		}
1260 		break;
1261 
1262 	case DP_AUX_NATIVE_READ:
1263 	case DP_AUX_I2C_READ:
1264 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1265 		rxsize = msg->size + 1;
1266 
1267 		if (WARN_ON(rxsize > 20))
1268 			return -E2BIG;
1269 
1270 		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1271 		if (ret > 0) {
1272 			msg->reply = rxbuf[0] >> 4;
1273 			/*
1274 			 * Assume happy day, and copy the data. The caller is
1275 			 * expected to check msg->reply before touching it.
1276 			 *
1277 			 * Return payload size.
1278 			 */
1279 			ret--;
1280 			memcpy(msg->buffer, rxbuf + 1, ret);
1281 		}
1282 		break;
1283 
1284 	default:
1285 		ret = -EINVAL;
1286 		break;
1287 	}
1288 
1289 	return ret;
1290 }
1291 
1292 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1293 				enum port port)
1294 {
1295 	const struct ddi_vbt_port_info *info =
1296 		&dev_priv->vbt.ddi_port_info[port];
1297 	enum port aux_port;
1298 
1299 	if (!info->alternate_aux_channel) {
1300 		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1301 			      port_name(port), port_name(port));
1302 		return port;
1303 	}
1304 
1305 	switch (info->alternate_aux_channel) {
1306 	case DP_AUX_A:
1307 		aux_port = PORT_A;
1308 		break;
1309 	case DP_AUX_B:
1310 		aux_port = PORT_B;
1311 		break;
1312 	case DP_AUX_C:
1313 		aux_port = PORT_C;
1314 		break;
1315 	case DP_AUX_D:
1316 		aux_port = PORT_D;
1317 		break;
1318 	default:
1319 		MISSING_CASE(info->alternate_aux_channel);
1320 		aux_port = PORT_A;
1321 		break;
1322 	}
1323 
1324 	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1325 		      port_name(aux_port), port_name(port));
1326 
1327 	return aux_port;
1328 }
1329 
1330 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1331 				  enum port port)
1332 {
1333 	switch (port) {
1334 	case PORT_B:
1335 	case PORT_C:
1336 	case PORT_D:
1337 		return DP_AUX_CH_CTL(port);
1338 	default:
1339 		MISSING_CASE(port);
1340 		return DP_AUX_CH_CTL(PORT_B);
1341 	}
1342 }
1343 
1344 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1345 				   enum port port, int index)
1346 {
1347 	switch (port) {
1348 	case PORT_B:
1349 	case PORT_C:
1350 	case PORT_D:
1351 		return DP_AUX_CH_DATA(port, index);
1352 	default:
1353 		MISSING_CASE(port);
1354 		return DP_AUX_CH_DATA(PORT_B, index);
1355 	}
1356 }
1357 
1358 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1359 				  enum port port)
1360 {
1361 	switch (port) {
1362 	case PORT_A:
1363 		return DP_AUX_CH_CTL(port);
1364 	case PORT_B:
1365 	case PORT_C:
1366 	case PORT_D:
1367 		return PCH_DP_AUX_CH_CTL(port);
1368 	default:
1369 		MISSING_CASE(port);
1370 		return DP_AUX_CH_CTL(PORT_A);
1371 	}
1372 }
1373 
1374 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1375 				   enum port port, int index)
1376 {
1377 	switch (port) {
1378 	case PORT_A:
1379 		return DP_AUX_CH_DATA(port, index);
1380 	case PORT_B:
1381 	case PORT_C:
1382 	case PORT_D:
1383 		return PCH_DP_AUX_CH_DATA(port, index);
1384 	default:
1385 		MISSING_CASE(port);
1386 		return DP_AUX_CH_DATA(PORT_A, index);
1387 	}
1388 }
1389 
1390 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1391 				  enum port port)
1392 {
1393 	switch (port) {
1394 	case PORT_A:
1395 	case PORT_B:
1396 	case PORT_C:
1397 	case PORT_D:
1398 		return DP_AUX_CH_CTL(port);
1399 	default:
1400 		MISSING_CASE(port);
1401 		return DP_AUX_CH_CTL(PORT_A);
1402 	}
1403 }
1404 
1405 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1406 				   enum port port, int index)
1407 {
1408 	switch (port) {
1409 	case PORT_A:
1410 	case PORT_B:
1411 	case PORT_C:
1412 	case PORT_D:
1413 		return DP_AUX_CH_DATA(port, index);
1414 	default:
1415 		MISSING_CASE(port);
1416 		return DP_AUX_CH_DATA(PORT_A, index);
1417 	}
1418 }
1419 
1420 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1421 				    enum port port)
1422 {
1423 	if (INTEL_INFO(dev_priv)->gen >= 9)
1424 		return skl_aux_ctl_reg(dev_priv, port);
1425 	else if (HAS_PCH_SPLIT(dev_priv))
1426 		return ilk_aux_ctl_reg(dev_priv, port);
1427 	else
1428 		return g4x_aux_ctl_reg(dev_priv, port);
1429 }
1430 
1431 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1432 				     enum port port, int index)
1433 {
1434 	if (INTEL_INFO(dev_priv)->gen >= 9)
1435 		return skl_aux_data_reg(dev_priv, port, index);
1436 	else if (HAS_PCH_SPLIT(dev_priv))
1437 		return ilk_aux_data_reg(dev_priv, port, index);
1438 	else
1439 		return g4x_aux_data_reg(dev_priv, port, index);
1440 }
1441 
1442 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1443 {
1444 	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1445 	enum port port = intel_aux_port(dev_priv,
1446 					dp_to_dig_port(intel_dp)->port);
1447 	int i;
1448 
1449 	intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1450 	for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1451 		intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1452 }
1453 
1454 static void
1455 intel_dp_aux_fini(struct intel_dp *intel_dp)
1456 {
1457 	kfree(intel_dp->aux.name);
1458 }
1459 
1460 static void
1461 intel_dp_aux_init(struct intel_dp *intel_dp)
1462 {
1463 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1464 	enum port port = intel_dig_port->port;
1465 
1466 	intel_aux_reg_init(intel_dp);
1467 	drm_dp_aux_init(&intel_dp->aux);
1468 
1469 	/* Failure to allocate our preferred name is not critical */
1470 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1471 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1472 }
1473 
1474 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1475 {
1476 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1477 
1478 	return max_rate >= 540000;
1479 }
1480 
1481 static void
1482 intel_dp_set_clock(struct intel_encoder *encoder,
1483 		   struct intel_crtc_state *pipe_config)
1484 {
1485 	struct drm_device *dev = encoder->base.dev;
1486 	struct drm_i915_private *dev_priv = to_i915(dev);
1487 	const struct dp_link_dpll *divisor = NULL;
1488 	int i, count = 0;
1489 
1490 	if (IS_G4X(dev_priv)) {
1491 		divisor = gen4_dpll;
1492 		count = ARRAY_SIZE(gen4_dpll);
1493 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1494 		divisor = pch_dpll;
1495 		count = ARRAY_SIZE(pch_dpll);
1496 	} else if (IS_CHERRYVIEW(dev_priv)) {
1497 		divisor = chv_dpll;
1498 		count = ARRAY_SIZE(chv_dpll);
1499 	} else if (IS_VALLEYVIEW(dev_priv)) {
1500 		divisor = vlv_dpll;
1501 		count = ARRAY_SIZE(vlv_dpll);
1502 	}
1503 
1504 	if (divisor && count) {
1505 		for (i = 0; i < count; i++) {
1506 			if (pipe_config->port_clock == divisor[i].clock) {
1507 				pipe_config->dpll = divisor[i].dpll;
1508 				pipe_config->clock_set = true;
1509 				break;
1510 			}
1511 		}
1512 	}
1513 }
1514 
1515 static void snprintf_int_array(char *str, size_t len,
1516 			       const int *array, int nelem)
1517 {
1518 	int i;
1519 
1520 	str[0] = '\0';
1521 
1522 	for (i = 0; i < nelem; i++) {
1523 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1524 		if (r >= len)
1525 			return;
1526 		str += r;
1527 		len -= r;
1528 	}
1529 }
1530 
1531 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1532 {
1533 	char str[128]; /* FIXME: too big for stack? */
1534 
1535 	if ((drm_debug & DRM_UT_KMS) == 0)
1536 		return;
1537 
1538 	snprintf_int_array(str, sizeof(str),
1539 			   intel_dp->source_rates, intel_dp->num_source_rates);
1540 	DRM_DEBUG_KMS("source rates: %s\n", str);
1541 
1542 	snprintf_int_array(str, sizeof(str),
1543 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1544 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1545 
1546 	snprintf_int_array(str, sizeof(str),
1547 			   intel_dp->common_rates, intel_dp->num_common_rates);
1548 	DRM_DEBUG_KMS("common rates: %s\n", str);
1549 }
1550 
1551 int
1552 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1553 {
1554 	int len;
1555 
1556 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1557 	if (WARN_ON(len <= 0))
1558 		return 162000;
1559 
1560 	return intel_dp->common_rates[len - 1];
1561 }
1562 
1563 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1564 {
1565 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1566 				    intel_dp->num_sink_rates, rate);
1567 
1568 	if (WARN_ON(i < 0))
1569 		i = 0;
1570 
1571 	return i;
1572 }
1573 
1574 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1575 			   uint8_t *link_bw, uint8_t *rate_select)
1576 {
1577 	/* eDP 1.4 rate select method. */
1578 	if (intel_dp->use_rate_select) {
1579 		*link_bw = 0;
1580 		*rate_select =
1581 			intel_dp_rate_select(intel_dp, port_clock);
1582 	} else {
1583 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1584 		*rate_select = 0;
1585 	}
1586 }
1587 
1588 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1589 				struct intel_crtc_state *pipe_config)
1590 {
1591 	int bpp, bpc;
1592 
1593 	bpp = pipe_config->pipe_bpp;
1594 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1595 
1596 	if (bpc > 0)
1597 		bpp = min(bpp, 3*bpc);
1598 
1599 	/* For DP Compliance we override the computed bpp for the pipe */
1600 	if (intel_dp->compliance.test_data.bpc != 0) {
1601 		pipe_config->pipe_bpp =	3*intel_dp->compliance.test_data.bpc;
1602 		pipe_config->dither_force_disable = pipe_config->pipe_bpp == 6*3;
1603 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n",
1604 			      pipe_config->pipe_bpp);
1605 	}
1606 	return bpp;
1607 }
1608 
1609 static bool intel_edp_compare_alt_mode(struct drm_display_mode *m1,
1610 				       struct drm_display_mode *m2)
1611 {
1612 	bool bres = false;
1613 
1614 	if (m1 && m2)
1615 		bres = (m1->hdisplay == m2->hdisplay &&
1616 			m1->hsync_start == m2->hsync_start &&
1617 			m1->hsync_end == m2->hsync_end &&
1618 			m1->htotal == m2->htotal &&
1619 			m1->vdisplay == m2->vdisplay &&
1620 			m1->vsync_start == m2->vsync_start &&
1621 			m1->vsync_end == m2->vsync_end &&
1622 			m1->vtotal == m2->vtotal);
1623 	return bres;
1624 }
1625 
1626 bool
1627 intel_dp_compute_config(struct intel_encoder *encoder,
1628 			struct intel_crtc_state *pipe_config,
1629 			struct drm_connector_state *conn_state)
1630 {
1631 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1632 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1633 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1634 	enum port port = dp_to_dig_port(intel_dp)->port;
1635 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1636 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1637 	struct intel_digital_connector_state *intel_conn_state =
1638 		to_intel_digital_connector_state(conn_state);
1639 	int lane_count, clock;
1640 	int min_lane_count = 1;
1641 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
1642 	/* Conveniently, the link BW constants become indices with a shift...*/
1643 	int min_clock = 0;
1644 	int max_clock;
1645 	int bpp, mode_rate;
1646 	int link_avail, link_clock;
1647 	int common_len;
1648 	uint8_t link_bw, rate_select;
1649 	bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1650 					   DP_DPCD_QUIRK_LIMITED_M_N);
1651 
1652 	common_len = intel_dp_common_len_rate_limit(intel_dp,
1653 						    intel_dp->max_link_rate);
1654 
1655 	/* No common link rates between source and sink */
1656 	WARN_ON(common_len <= 0);
1657 
1658 	max_clock = common_len - 1;
1659 
1660 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1661 		pipe_config->has_pch_encoder = true;
1662 
1663 	pipe_config->has_drrs = false;
1664 	if (port == PORT_A)
1665 		pipe_config->has_audio = false;
1666 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1667 		pipe_config->has_audio = intel_dp->has_audio;
1668 	else
1669 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1670 
1671 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1672 		struct drm_display_mode *panel_mode =
1673 			intel_connector->panel.alt_fixed_mode;
1674 		struct drm_display_mode *req_mode = &pipe_config->base.mode;
1675 
1676 		if (!intel_edp_compare_alt_mode(req_mode, panel_mode))
1677 			panel_mode = intel_connector->panel.fixed_mode;
1678 
1679 		drm_mode_debug_printmodeline(panel_mode);
1680 
1681 		intel_fixed_panel_mode(panel_mode, adjusted_mode);
1682 
1683 		if (INTEL_GEN(dev_priv) >= 9) {
1684 			int ret;
1685 			ret = skl_update_scaler_crtc(pipe_config);
1686 			if (ret)
1687 				return ret;
1688 		}
1689 
1690 		if (HAS_GMCH_DISPLAY(dev_priv))
1691 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
1692 						 conn_state->scaling_mode);
1693 		else
1694 			intel_pch_panel_fitting(intel_crtc, pipe_config,
1695 						conn_state->scaling_mode);
1696 	}
1697 
1698 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1699 		return false;
1700 
1701 	/* Use values requested by Compliance Test Request */
1702 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1703 		int index;
1704 
1705 		/* Validate the compliance test data since max values
1706 		 * might have changed due to link train fallback.
1707 		 */
1708 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1709 					       intel_dp->compliance.test_lane_count)) {
1710 			index = intel_dp_rate_index(intel_dp->common_rates,
1711 						    intel_dp->num_common_rates,
1712 						    intel_dp->compliance.test_link_rate);
1713 			if (index >= 0)
1714 				min_clock = max_clock = index;
1715 			min_lane_count = max_lane_count = intel_dp->compliance.test_lane_count;
1716 		}
1717 	}
1718 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
1719 		      "max bw %d pixel clock %iKHz\n",
1720 		      max_lane_count, intel_dp->common_rates[max_clock],
1721 		      adjusted_mode->crtc_clock);
1722 
1723 	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
1724 	 * bpc in between. */
1725 	bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1726 	if (intel_dp_is_edp(intel_dp)) {
1727 
1728 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1729 		if (intel_connector->base.display_info.bpc == 0 &&
1730 			(dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1731 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1732 				      dev_priv->vbt.edp.bpp);
1733 			bpp = dev_priv->vbt.edp.bpp;
1734 		}
1735 
1736 		/*
1737 		 * Use the maximum clock and number of lanes the eDP panel
1738 		 * advertizes being capable of. The panels are generally
1739 		 * designed to support only a single clock and lane
1740 		 * configuration, and typically these values correspond to the
1741 		 * native resolution of the panel.
1742 		 */
1743 		min_lane_count = max_lane_count;
1744 		min_clock = max_clock;
1745 	}
1746 
1747 	for (; bpp >= 6*3; bpp -= 2*3) {
1748 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1749 						   bpp);
1750 
1751 		for (clock = min_clock; clock <= max_clock; clock++) {
1752 			for (lane_count = min_lane_count;
1753 				lane_count <= max_lane_count;
1754 				lane_count <<= 1) {
1755 
1756 				link_clock = intel_dp->common_rates[clock];
1757 				link_avail = intel_dp_max_data_rate(link_clock,
1758 								    lane_count);
1759 
1760 				if (mode_rate <= link_avail) {
1761 					goto found;
1762 				}
1763 			}
1764 		}
1765 	}
1766 
1767 	return false;
1768 
1769 found:
1770 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1771 		/*
1772 		 * See:
1773 		 * CEA-861-E - 5.1 Default Encoding Parameters
1774 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1775 		 */
1776 		pipe_config->limited_color_range =
1777 			bpp != 18 &&
1778 			drm_default_rgb_quant_range(adjusted_mode) ==
1779 			HDMI_QUANTIZATION_RANGE_LIMITED;
1780 	} else {
1781 		pipe_config->limited_color_range =
1782 			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1783 	}
1784 
1785 	pipe_config->lane_count = lane_count;
1786 
1787 	pipe_config->pipe_bpp = bpp;
1788 	pipe_config->port_clock = intel_dp->common_rates[clock];
1789 
1790 	intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1791 			      &link_bw, &rate_select);
1792 
1793 	DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1794 		      link_bw, rate_select, pipe_config->lane_count,
1795 		      pipe_config->port_clock, bpp);
1796 	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1797 		      mode_rate, link_avail);
1798 
1799 	intel_link_compute_m_n(bpp, lane_count,
1800 			       adjusted_mode->crtc_clock,
1801 			       pipe_config->port_clock,
1802 			       &pipe_config->dp_m_n,
1803 			       reduce_m_n);
1804 
1805 	if (intel_connector->panel.downclock_mode != NULL &&
1806 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1807 			pipe_config->has_drrs = true;
1808 			intel_link_compute_m_n(bpp, lane_count,
1809 				intel_connector->panel.downclock_mode->clock,
1810 				pipe_config->port_clock,
1811 				&pipe_config->dp_m2_n2,
1812 				reduce_m_n);
1813 	}
1814 
1815 	/*
1816 	 * DPLL0 VCO may need to be adjusted to get the correct
1817 	 * clock for eDP. This will affect cdclk as well.
1818 	 */
1819 	if (intel_dp_is_edp(intel_dp) && IS_GEN9_BC(dev_priv)) {
1820 		int vco;
1821 
1822 		switch (pipe_config->port_clock / 2) {
1823 		case 108000:
1824 		case 216000:
1825 			vco = 8640000;
1826 			break;
1827 		default:
1828 			vco = 8100000;
1829 			break;
1830 		}
1831 
1832 		to_intel_atomic_state(pipe_config->base.state)->cdclk.logical.vco = vco;
1833 	}
1834 
1835 	if (!HAS_DDI(dev_priv))
1836 		intel_dp_set_clock(encoder, pipe_config);
1837 
1838 	intel_psr_compute_config(intel_dp, pipe_config);
1839 
1840 	return true;
1841 }
1842 
1843 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1844 			      int link_rate, uint8_t lane_count,
1845 			      bool link_mst)
1846 {
1847 	intel_dp->link_rate = link_rate;
1848 	intel_dp->lane_count = lane_count;
1849 	intel_dp->link_mst = link_mst;
1850 }
1851 
1852 static void intel_dp_prepare(struct intel_encoder *encoder,
1853 			     const struct intel_crtc_state *pipe_config)
1854 {
1855 	struct drm_device *dev = encoder->base.dev;
1856 	struct drm_i915_private *dev_priv = to_i915(dev);
1857 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1858 	enum port port = dp_to_dig_port(intel_dp)->port;
1859 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1860 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1861 
1862 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1863 				 pipe_config->lane_count,
1864 				 intel_crtc_has_type(pipe_config,
1865 						     INTEL_OUTPUT_DP_MST));
1866 
1867 	/*
1868 	 * There are four kinds of DP registers:
1869 	 *
1870 	 * 	IBX PCH
1871 	 * 	SNB CPU
1872 	 *	IVB CPU
1873 	 * 	CPT PCH
1874 	 *
1875 	 * IBX PCH and CPU are the same for almost everything,
1876 	 * except that the CPU DP PLL is configured in this
1877 	 * register
1878 	 *
1879 	 * CPT PCH is quite different, having many bits moved
1880 	 * to the TRANS_DP_CTL register instead. That
1881 	 * configuration happens (oddly) in ironlake_pch_enable
1882 	 */
1883 
1884 	/* Preserve the BIOS-computed detected bit. This is
1885 	 * supposed to be read-only.
1886 	 */
1887 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1888 
1889 	/* Handle DP bits in common between all three register formats */
1890 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1891 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1892 
1893 	/* Split out the IBX/CPU vs CPT settings */
1894 
1895 	if (IS_GEN7(dev_priv) && port == PORT_A) {
1896 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1897 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1898 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1899 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1900 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1901 
1902 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1903 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1904 
1905 		intel_dp->DP |= crtc->pipe << 29;
1906 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1907 		u32 trans_dp;
1908 
1909 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1910 
1911 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1912 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1913 			trans_dp |= TRANS_DP_ENH_FRAMING;
1914 		else
1915 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
1916 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1917 	} else {
1918 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
1919 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
1920 
1921 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1922 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1923 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1924 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1925 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1926 
1927 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1928 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1929 
1930 		if (IS_CHERRYVIEW(dev_priv))
1931 			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1932 		else if (crtc->pipe == PIPE_B)
1933 			intel_dp->DP |= DP_PIPEB_SELECT;
1934 	}
1935 }
1936 
1937 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1938 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1939 
1940 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1941 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1942 
1943 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1944 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1945 
1946 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1947 				   struct intel_dp *intel_dp);
1948 
1949 static void wait_panel_status(struct intel_dp *intel_dp,
1950 				       u32 mask,
1951 				       u32 value)
1952 {
1953 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1954 	struct drm_i915_private *dev_priv = to_i915(dev);
1955 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
1956 
1957 	lockdep_assert_held(&dev_priv->pps_mutex);
1958 
1959 	intel_pps_verify_state(dev_priv, intel_dp);
1960 
1961 	pp_stat_reg = _pp_stat_reg(intel_dp);
1962 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1963 
1964 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1965 			mask, value,
1966 			I915_READ(pp_stat_reg),
1967 			I915_READ(pp_ctrl_reg));
1968 
1969 	if (intel_wait_for_register(dev_priv,
1970 				    pp_stat_reg, mask, value,
1971 				    5000))
1972 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1973 				I915_READ(pp_stat_reg),
1974 				I915_READ(pp_ctrl_reg));
1975 
1976 	DRM_DEBUG_KMS("Wait complete\n");
1977 }
1978 
1979 static void wait_panel_on(struct intel_dp *intel_dp)
1980 {
1981 	DRM_DEBUG_KMS("Wait for panel power on\n");
1982 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1983 }
1984 
1985 static void wait_panel_off(struct intel_dp *intel_dp)
1986 {
1987 	DRM_DEBUG_KMS("Wait for panel power off time\n");
1988 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1989 }
1990 
1991 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1992 {
1993 	ktime_t panel_power_on_time;
1994 	s64 panel_power_off_duration;
1995 
1996 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1997 
1998 	/* take the difference of currrent time and panel power off time
1999 	 * and then make panel wait for t11_t12 if needed. */
2000 	panel_power_on_time = ktime_get_boottime();
2001 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2002 
2003 	/* When we disable the VDD override bit last we have to do the manual
2004 	 * wait. */
2005 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2006 		wait_remaining_ms_from_jiffies(jiffies,
2007 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2008 
2009 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2010 }
2011 
2012 static void wait_backlight_on(struct intel_dp *intel_dp)
2013 {
2014 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2015 				       intel_dp->backlight_on_delay);
2016 }
2017 
2018 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2019 {
2020 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2021 				       intel_dp->backlight_off_delay);
2022 }
2023 
2024 /* Read the current pp_control value, unlocking the register if it
2025  * is locked
2026  */
2027 
2028 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2029 {
2030 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2031 	struct drm_i915_private *dev_priv = to_i915(dev);
2032 	u32 control;
2033 
2034 	lockdep_assert_held(&dev_priv->pps_mutex);
2035 
2036 	control = I915_READ(_pp_ctrl_reg(intel_dp));
2037 	if (WARN_ON(!HAS_DDI(dev_priv) &&
2038 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2039 		control &= ~PANEL_UNLOCK_MASK;
2040 		control |= PANEL_UNLOCK_REGS;
2041 	}
2042 	return control;
2043 }
2044 
2045 /*
2046  * Must be paired with edp_panel_vdd_off().
2047  * Must hold pps_mutex around the whole on/off sequence.
2048  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2049  */
2050 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2051 {
2052 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2053 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2054 	struct drm_i915_private *dev_priv = to_i915(dev);
2055 	u32 pp;
2056 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2057 	bool need_to_disable = !intel_dp->want_panel_vdd;
2058 
2059 	lockdep_assert_held(&dev_priv->pps_mutex);
2060 
2061 	if (!intel_dp_is_edp(intel_dp))
2062 		return false;
2063 
2064 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2065 	intel_dp->want_panel_vdd = true;
2066 
2067 	if (edp_have_panel_vdd(intel_dp))
2068 		return need_to_disable;
2069 
2070 	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2071 
2072 	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2073 		      port_name(intel_dig_port->port));
2074 
2075 	if (!edp_have_panel_power(intel_dp))
2076 		wait_panel_power_cycle(intel_dp);
2077 
2078 	pp = ironlake_get_pp_control(intel_dp);
2079 	pp |= EDP_FORCE_VDD;
2080 
2081 	pp_stat_reg = _pp_stat_reg(intel_dp);
2082 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2083 
2084 	I915_WRITE(pp_ctrl_reg, pp);
2085 	POSTING_READ(pp_ctrl_reg);
2086 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2087 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2088 	/*
2089 	 * If the panel wasn't on, delay before accessing aux channel
2090 	 */
2091 	if (!edp_have_panel_power(intel_dp)) {
2092 		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2093 			      port_name(intel_dig_port->port));
2094 		msleep(intel_dp->panel_power_up_delay);
2095 	}
2096 
2097 	return need_to_disable;
2098 }
2099 
2100 /*
2101  * Must be paired with intel_edp_panel_vdd_off() or
2102  * intel_edp_panel_off().
2103  * Nested calls to these functions are not allowed since
2104  * we drop the lock. Caller must use some higher level
2105  * locking to prevent nested calls from other threads.
2106  */
2107 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2108 {
2109 	bool vdd;
2110 
2111 	if (!intel_dp_is_edp(intel_dp))
2112 		return;
2113 
2114 	pps_lock(intel_dp);
2115 	vdd = edp_panel_vdd_on(intel_dp);
2116 	pps_unlock(intel_dp);
2117 
2118 	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2119 	     port_name(dp_to_dig_port(intel_dp)->port));
2120 }
2121 
2122 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2123 {
2124 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2125 	struct drm_i915_private *dev_priv = to_i915(dev);
2126 	struct intel_digital_port *intel_dig_port =
2127 		dp_to_dig_port(intel_dp);
2128 	u32 pp;
2129 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2130 
2131 	lockdep_assert_held(&dev_priv->pps_mutex);
2132 
2133 	WARN_ON(intel_dp->want_panel_vdd);
2134 
2135 	if (!edp_have_panel_vdd(intel_dp))
2136 		return;
2137 
2138 	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2139 		      port_name(intel_dig_port->port));
2140 
2141 	pp = ironlake_get_pp_control(intel_dp);
2142 	pp &= ~EDP_FORCE_VDD;
2143 
2144 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2145 	pp_stat_reg = _pp_stat_reg(intel_dp);
2146 
2147 	I915_WRITE(pp_ctrl_reg, pp);
2148 	POSTING_READ(pp_ctrl_reg);
2149 
2150 	/* Make sure sequencer is idle before allowing subsequent activity */
2151 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2152 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2153 
2154 	if ((pp & PANEL_POWER_ON) == 0)
2155 		intel_dp->panel_power_off_time = ktime_get_boottime();
2156 
2157 	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2158 }
2159 
2160 static void edp_panel_vdd_work(struct work_struct *__work)
2161 {
2162 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2163 						 struct intel_dp, panel_vdd_work);
2164 
2165 	pps_lock(intel_dp);
2166 	if (!intel_dp->want_panel_vdd)
2167 		edp_panel_vdd_off_sync(intel_dp);
2168 	pps_unlock(intel_dp);
2169 }
2170 
2171 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2172 {
2173 	unsigned long delay;
2174 
2175 	/*
2176 	 * Queue the timer to fire a long time from now (relative to the power
2177 	 * down delay) to keep the panel power up across a sequence of
2178 	 * operations.
2179 	 */
2180 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2181 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2182 }
2183 
2184 /*
2185  * Must be paired with edp_panel_vdd_on().
2186  * Must hold pps_mutex around the whole on/off sequence.
2187  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2188  */
2189 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2190 {
2191 	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2192 
2193 	lockdep_assert_held(&dev_priv->pps_mutex);
2194 
2195 	if (!intel_dp_is_edp(intel_dp))
2196 		return;
2197 
2198 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2199 	     port_name(dp_to_dig_port(intel_dp)->port));
2200 
2201 	intel_dp->want_panel_vdd = false;
2202 
2203 	if (sync)
2204 		edp_panel_vdd_off_sync(intel_dp);
2205 	else
2206 		edp_panel_vdd_schedule_off(intel_dp);
2207 }
2208 
2209 static void edp_panel_on(struct intel_dp *intel_dp)
2210 {
2211 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2212 	struct drm_i915_private *dev_priv = to_i915(dev);
2213 	u32 pp;
2214 	i915_reg_t pp_ctrl_reg;
2215 
2216 	lockdep_assert_held(&dev_priv->pps_mutex);
2217 
2218 	if (!intel_dp_is_edp(intel_dp))
2219 		return;
2220 
2221 	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2222 		      port_name(dp_to_dig_port(intel_dp)->port));
2223 
2224 	if (WARN(edp_have_panel_power(intel_dp),
2225 		 "eDP port %c panel power already on\n",
2226 		 port_name(dp_to_dig_port(intel_dp)->port)))
2227 		return;
2228 
2229 	wait_panel_power_cycle(intel_dp);
2230 
2231 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2232 	pp = ironlake_get_pp_control(intel_dp);
2233 	if (IS_GEN5(dev_priv)) {
2234 		/* ILK workaround: disable reset around power sequence */
2235 		pp &= ~PANEL_POWER_RESET;
2236 		I915_WRITE(pp_ctrl_reg, pp);
2237 		POSTING_READ(pp_ctrl_reg);
2238 	}
2239 
2240 	pp |= PANEL_POWER_ON;
2241 	if (!IS_GEN5(dev_priv))
2242 		pp |= PANEL_POWER_RESET;
2243 
2244 	I915_WRITE(pp_ctrl_reg, pp);
2245 	POSTING_READ(pp_ctrl_reg);
2246 
2247 	wait_panel_on(intel_dp);
2248 	intel_dp->last_power_on = jiffies;
2249 
2250 	if (IS_GEN5(dev_priv)) {
2251 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2252 		I915_WRITE(pp_ctrl_reg, pp);
2253 		POSTING_READ(pp_ctrl_reg);
2254 	}
2255 }
2256 
2257 void intel_edp_panel_on(struct intel_dp *intel_dp)
2258 {
2259 	if (!intel_dp_is_edp(intel_dp))
2260 		return;
2261 
2262 	pps_lock(intel_dp);
2263 	edp_panel_on(intel_dp);
2264 	pps_unlock(intel_dp);
2265 }
2266 
2267 
2268 static void edp_panel_off(struct intel_dp *intel_dp)
2269 {
2270 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2271 	struct drm_i915_private *dev_priv = to_i915(dev);
2272 	u32 pp;
2273 	i915_reg_t pp_ctrl_reg;
2274 
2275 	lockdep_assert_held(&dev_priv->pps_mutex);
2276 
2277 	if (!intel_dp_is_edp(intel_dp))
2278 		return;
2279 
2280 	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2281 		      port_name(dp_to_dig_port(intel_dp)->port));
2282 
2283 	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2284 	     port_name(dp_to_dig_port(intel_dp)->port));
2285 
2286 	pp = ironlake_get_pp_control(intel_dp);
2287 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2288 	 * panels get very unhappy and cease to work. */
2289 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2290 		EDP_BLC_ENABLE);
2291 
2292 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2293 
2294 	intel_dp->want_panel_vdd = false;
2295 
2296 	I915_WRITE(pp_ctrl_reg, pp);
2297 	POSTING_READ(pp_ctrl_reg);
2298 
2299 	wait_panel_off(intel_dp);
2300 	intel_dp->panel_power_off_time = ktime_get_boottime();
2301 
2302 	/* We got a reference when we enabled the VDD. */
2303 	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2304 }
2305 
2306 void intel_edp_panel_off(struct intel_dp *intel_dp)
2307 {
2308 	if (!intel_dp_is_edp(intel_dp))
2309 		return;
2310 
2311 	pps_lock(intel_dp);
2312 	edp_panel_off(intel_dp);
2313 	pps_unlock(intel_dp);
2314 }
2315 
2316 /* Enable backlight in the panel power control. */
2317 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2318 {
2319 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2320 	struct drm_device *dev = intel_dig_port->base.base.dev;
2321 	struct drm_i915_private *dev_priv = to_i915(dev);
2322 	u32 pp;
2323 	i915_reg_t pp_ctrl_reg;
2324 
2325 	/*
2326 	 * If we enable the backlight right away following a panel power
2327 	 * on, we may see slight flicker as the panel syncs with the eDP
2328 	 * link.  So delay a bit to make sure the image is solid before
2329 	 * allowing it to appear.
2330 	 */
2331 	wait_backlight_on(intel_dp);
2332 
2333 	pps_lock(intel_dp);
2334 
2335 	pp = ironlake_get_pp_control(intel_dp);
2336 	pp |= EDP_BLC_ENABLE;
2337 
2338 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2339 
2340 	I915_WRITE(pp_ctrl_reg, pp);
2341 	POSTING_READ(pp_ctrl_reg);
2342 
2343 	pps_unlock(intel_dp);
2344 }
2345 
2346 /* Enable backlight PWM and backlight PP control. */
2347 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2348 			    const struct drm_connector_state *conn_state)
2349 {
2350 	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2351 
2352 	if (!intel_dp_is_edp(intel_dp))
2353 		return;
2354 
2355 	DRM_DEBUG_KMS("\n");
2356 
2357 	intel_panel_enable_backlight(crtc_state, conn_state);
2358 	_intel_edp_backlight_on(intel_dp);
2359 }
2360 
2361 /* Disable backlight in the panel power control. */
2362 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2363 {
2364 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2365 	struct drm_i915_private *dev_priv = to_i915(dev);
2366 	u32 pp;
2367 	i915_reg_t pp_ctrl_reg;
2368 
2369 	if (!intel_dp_is_edp(intel_dp))
2370 		return;
2371 
2372 	pps_lock(intel_dp);
2373 
2374 	pp = ironlake_get_pp_control(intel_dp);
2375 	pp &= ~EDP_BLC_ENABLE;
2376 
2377 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2378 
2379 	I915_WRITE(pp_ctrl_reg, pp);
2380 	POSTING_READ(pp_ctrl_reg);
2381 
2382 	pps_unlock(intel_dp);
2383 
2384 	intel_dp->last_backlight_off = jiffies;
2385 	edp_wait_backlight_off(intel_dp);
2386 }
2387 
2388 /* Disable backlight PP control and backlight PWM. */
2389 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2390 {
2391 	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2392 
2393 	if (!intel_dp_is_edp(intel_dp))
2394 		return;
2395 
2396 	DRM_DEBUG_KMS("\n");
2397 
2398 	_intel_edp_backlight_off(intel_dp);
2399 	intel_panel_disable_backlight(old_conn_state);
2400 }
2401 
2402 /*
2403  * Hook for controlling the panel power control backlight through the bl_power
2404  * sysfs attribute. Take care to handle multiple calls.
2405  */
2406 static void intel_edp_backlight_power(struct intel_connector *connector,
2407 				      bool enable)
2408 {
2409 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2410 	bool is_enabled;
2411 
2412 	pps_lock(intel_dp);
2413 	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2414 	pps_unlock(intel_dp);
2415 
2416 	if (is_enabled == enable)
2417 		return;
2418 
2419 	DRM_DEBUG_KMS("panel power control backlight %s\n",
2420 		      enable ? "enable" : "disable");
2421 
2422 	if (enable)
2423 		_intel_edp_backlight_on(intel_dp);
2424 	else
2425 		_intel_edp_backlight_off(intel_dp);
2426 }
2427 
2428 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2429 {
2430 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2431 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2432 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2433 
2434 	I915_STATE_WARN(cur_state != state,
2435 			"DP port %c state assertion failure (expected %s, current %s)\n",
2436 			port_name(dig_port->port),
2437 			onoff(state), onoff(cur_state));
2438 }
2439 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2440 
2441 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2442 {
2443 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2444 
2445 	I915_STATE_WARN(cur_state != state,
2446 			"eDP PLL state assertion failure (expected %s, current %s)\n",
2447 			onoff(state), onoff(cur_state));
2448 }
2449 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2450 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2451 
2452 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2453 				const struct intel_crtc_state *pipe_config)
2454 {
2455 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2456 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2457 
2458 	assert_pipe_disabled(dev_priv, crtc->pipe);
2459 	assert_dp_port_disabled(intel_dp);
2460 	assert_edp_pll_disabled(dev_priv);
2461 
2462 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2463 		      pipe_config->port_clock);
2464 
2465 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2466 
2467 	if (pipe_config->port_clock == 162000)
2468 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2469 	else
2470 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2471 
2472 	I915_WRITE(DP_A, intel_dp->DP);
2473 	POSTING_READ(DP_A);
2474 	udelay(500);
2475 
2476 	/*
2477 	 * [DevILK] Work around required when enabling DP PLL
2478 	 * while a pipe is enabled going to FDI:
2479 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2480 	 * 2. Program DP PLL enable
2481 	 */
2482 	if (IS_GEN5(dev_priv))
2483 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2484 
2485 	intel_dp->DP |= DP_PLL_ENABLE;
2486 
2487 	I915_WRITE(DP_A, intel_dp->DP);
2488 	POSTING_READ(DP_A);
2489 	udelay(200);
2490 }
2491 
2492 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2493 {
2494 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2495 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2496 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2497 
2498 	assert_pipe_disabled(dev_priv, crtc->pipe);
2499 	assert_dp_port_disabled(intel_dp);
2500 	assert_edp_pll_enabled(dev_priv);
2501 
2502 	DRM_DEBUG_KMS("disabling eDP PLL\n");
2503 
2504 	intel_dp->DP &= ~DP_PLL_ENABLE;
2505 
2506 	I915_WRITE(DP_A, intel_dp->DP);
2507 	POSTING_READ(DP_A);
2508 	udelay(200);
2509 }
2510 
2511 /* If the sink supports it, try to set the power state appropriately */
2512 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2513 {
2514 	int ret, i;
2515 
2516 	/* Should have a valid DPCD by this point */
2517 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2518 		return;
2519 
2520 	if (mode != DRM_MODE_DPMS_ON) {
2521 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2522 					 DP_SET_POWER_D3);
2523 	} else {
2524 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2525 
2526 		/*
2527 		 * When turning on, we need to retry for 1ms to give the sink
2528 		 * time to wake up.
2529 		 */
2530 		for (i = 0; i < 3; i++) {
2531 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2532 						 DP_SET_POWER_D0);
2533 			if (ret == 1)
2534 				break;
2535 			msleep(1);
2536 		}
2537 
2538 		if (ret == 1 && lspcon->active)
2539 			lspcon_wait_pcon_mode(lspcon);
2540 	}
2541 
2542 	if (ret != 1)
2543 		DRM_DEBUG_KMS("failed to %s sink power state\n",
2544 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2545 }
2546 
2547 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2548 				  enum i915_pipe *pipe)
2549 {
2550 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2551 	enum port port = dp_to_dig_port(intel_dp)->port;
2552 	struct drm_device *dev = encoder->base.dev;
2553 	struct drm_i915_private *dev_priv = to_i915(dev);
2554 	u32 tmp;
2555 	bool ret;
2556 
2557 	if (!intel_display_power_get_if_enabled(dev_priv,
2558 						encoder->power_domain))
2559 		return false;
2560 
2561 	ret = false;
2562 
2563 	tmp = I915_READ(intel_dp->output_reg);
2564 
2565 	if (!(tmp & DP_PORT_EN))
2566 		goto out;
2567 
2568 	if (IS_GEN7(dev_priv) && port == PORT_A) {
2569 		*pipe = PORT_TO_PIPE_CPT(tmp);
2570 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2571 		enum i915_pipe p;
2572 
2573 		for_each_pipe(dev_priv, p) {
2574 			u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2575 			if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2576 				*pipe = p;
2577 				ret = true;
2578 
2579 				goto out;
2580 			}
2581 		}
2582 
2583 		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2584 			      i915_mmio_reg_offset(intel_dp->output_reg));
2585 	} else if (IS_CHERRYVIEW(dev_priv)) {
2586 		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
2587 	} else {
2588 		*pipe = PORT_TO_PIPE(tmp);
2589 	}
2590 
2591 	ret = true;
2592 
2593 out:
2594 	intel_display_power_put(dev_priv, encoder->power_domain);
2595 
2596 	return ret;
2597 }
2598 
2599 static void intel_dp_get_config(struct intel_encoder *encoder,
2600 				struct intel_crtc_state *pipe_config)
2601 {
2602 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2603 	u32 tmp, flags = 0;
2604 	struct drm_device *dev = encoder->base.dev;
2605 	struct drm_i915_private *dev_priv = to_i915(dev);
2606 	enum port port = dp_to_dig_port(intel_dp)->port;
2607 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2608 
2609 	tmp = I915_READ(intel_dp->output_reg);
2610 
2611 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2612 
2613 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2614 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2615 
2616 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2617 			flags |= DRM_MODE_FLAG_PHSYNC;
2618 		else
2619 			flags |= DRM_MODE_FLAG_NHSYNC;
2620 
2621 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2622 			flags |= DRM_MODE_FLAG_PVSYNC;
2623 		else
2624 			flags |= DRM_MODE_FLAG_NVSYNC;
2625 	} else {
2626 		if (tmp & DP_SYNC_HS_HIGH)
2627 			flags |= DRM_MODE_FLAG_PHSYNC;
2628 		else
2629 			flags |= DRM_MODE_FLAG_NHSYNC;
2630 
2631 		if (tmp & DP_SYNC_VS_HIGH)
2632 			flags |= DRM_MODE_FLAG_PVSYNC;
2633 		else
2634 			flags |= DRM_MODE_FLAG_NVSYNC;
2635 	}
2636 
2637 	pipe_config->base.adjusted_mode.flags |= flags;
2638 
2639 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2640 		pipe_config->limited_color_range = true;
2641 
2642 	pipe_config->lane_count =
2643 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2644 
2645 	intel_dp_get_m_n(crtc, pipe_config);
2646 
2647 	if (port == PORT_A) {
2648 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2649 			pipe_config->port_clock = 162000;
2650 		else
2651 			pipe_config->port_clock = 270000;
2652 	}
2653 
2654 	pipe_config->base.adjusted_mode.crtc_clock =
2655 		intel_dotclock_calculate(pipe_config->port_clock,
2656 					 &pipe_config->dp_m_n);
2657 
2658 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2659 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2660 		/*
2661 		 * This is a big fat ugly hack.
2662 		 *
2663 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2664 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2665 		 * unknown we fail to light up. Yet the same BIOS boots up with
2666 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2667 		 * max, not what it tells us to use.
2668 		 *
2669 		 * Note: This will still be broken if the eDP panel is not lit
2670 		 * up by the BIOS, and thus we can't get the mode at module
2671 		 * load.
2672 		 */
2673 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2674 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2675 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2676 	}
2677 }
2678 
2679 static void intel_disable_dp(struct intel_encoder *encoder,
2680 			     const struct intel_crtc_state *old_crtc_state,
2681 			     const struct drm_connector_state *old_conn_state)
2682 {
2683 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2684 
2685 	if (old_crtc_state->has_audio)
2686 		intel_audio_codec_disable(encoder);
2687 
2688 	/* Make sure the panel is off before trying to change the mode. But also
2689 	 * ensure that we have vdd while we switch off the panel. */
2690 	intel_edp_panel_vdd_on(intel_dp);
2691 	intel_edp_backlight_off(old_conn_state);
2692 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2693 	intel_edp_panel_off(intel_dp);
2694 }
2695 
2696 static void g4x_disable_dp(struct intel_encoder *encoder,
2697 			   const struct intel_crtc_state *old_crtc_state,
2698 			   const struct drm_connector_state *old_conn_state)
2699 {
2700 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2701 
2702 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2703 
2704 	/* disable the port before the pipe on g4x */
2705 	intel_dp_link_down(intel_dp);
2706 }
2707 
2708 static void ilk_disable_dp(struct intel_encoder *encoder,
2709 			   const struct intel_crtc_state *old_crtc_state,
2710 			   const struct drm_connector_state *old_conn_state)
2711 {
2712 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2713 }
2714 
2715 static void vlv_disable_dp(struct intel_encoder *encoder,
2716 			   const struct intel_crtc_state *old_crtc_state,
2717 			   const struct drm_connector_state *old_conn_state)
2718 {
2719 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2720 
2721 	intel_psr_disable(intel_dp, old_crtc_state);
2722 
2723 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2724 }
2725 
2726 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2727 				const struct intel_crtc_state *old_crtc_state,
2728 				const struct drm_connector_state *old_conn_state)
2729 {
2730 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2731 	enum port port = dp_to_dig_port(intel_dp)->port;
2732 
2733 	intel_dp_link_down(intel_dp);
2734 
2735 	/* Only ilk+ has port A */
2736 	if (port == PORT_A)
2737 		ironlake_edp_pll_off(intel_dp);
2738 }
2739 
2740 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2741 				const struct intel_crtc_state *old_crtc_state,
2742 				const struct drm_connector_state *old_conn_state)
2743 {
2744 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2745 
2746 	intel_dp_link_down(intel_dp);
2747 }
2748 
2749 static void chv_post_disable_dp(struct intel_encoder *encoder,
2750 				const struct intel_crtc_state *old_crtc_state,
2751 				const struct drm_connector_state *old_conn_state)
2752 {
2753 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2754 	struct drm_device *dev = encoder->base.dev;
2755 	struct drm_i915_private *dev_priv = to_i915(dev);
2756 
2757 	intel_dp_link_down(intel_dp);
2758 
2759 	mutex_lock(&dev_priv->sb_lock);
2760 
2761 	/* Assert data lane reset */
2762 	chv_data_lane_soft_reset(encoder, true);
2763 
2764 	mutex_unlock(&dev_priv->sb_lock);
2765 }
2766 
2767 static void
2768 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2769 			 uint32_t *DP,
2770 			 uint8_t dp_train_pat)
2771 {
2772 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2773 	struct drm_device *dev = intel_dig_port->base.base.dev;
2774 	struct drm_i915_private *dev_priv = to_i915(dev);
2775 	enum port port = intel_dig_port->port;
2776 
2777 	if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2778 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2779 			      dp_train_pat & DP_TRAINING_PATTERN_MASK);
2780 
2781 	if (HAS_DDI(dev_priv)) {
2782 		uint32_t temp = I915_READ(DP_TP_CTL(port));
2783 
2784 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2785 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2786 		else
2787 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2788 
2789 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2790 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2791 		case DP_TRAINING_PATTERN_DISABLE:
2792 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2793 
2794 			break;
2795 		case DP_TRAINING_PATTERN_1:
2796 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2797 			break;
2798 		case DP_TRAINING_PATTERN_2:
2799 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2800 			break;
2801 		case DP_TRAINING_PATTERN_3:
2802 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2803 			break;
2804 		}
2805 		I915_WRITE(DP_TP_CTL(port), temp);
2806 
2807 	} else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2808 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2809 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2810 
2811 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2812 		case DP_TRAINING_PATTERN_DISABLE:
2813 			*DP |= DP_LINK_TRAIN_OFF_CPT;
2814 			break;
2815 		case DP_TRAINING_PATTERN_1:
2816 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2817 			break;
2818 		case DP_TRAINING_PATTERN_2:
2819 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2820 			break;
2821 		case DP_TRAINING_PATTERN_3:
2822 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2823 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2824 			break;
2825 		}
2826 
2827 	} else {
2828 		if (IS_CHERRYVIEW(dev_priv))
2829 			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
2830 		else
2831 			*DP &= ~DP_LINK_TRAIN_MASK;
2832 
2833 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2834 		case DP_TRAINING_PATTERN_DISABLE:
2835 			*DP |= DP_LINK_TRAIN_OFF;
2836 			break;
2837 		case DP_TRAINING_PATTERN_1:
2838 			*DP |= DP_LINK_TRAIN_PAT_1;
2839 			break;
2840 		case DP_TRAINING_PATTERN_2:
2841 			*DP |= DP_LINK_TRAIN_PAT_2;
2842 			break;
2843 		case DP_TRAINING_PATTERN_3:
2844 			if (IS_CHERRYVIEW(dev_priv)) {
2845 				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
2846 			} else {
2847 				DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2848 				*DP |= DP_LINK_TRAIN_PAT_2;
2849 			}
2850 			break;
2851 		}
2852 	}
2853 }
2854 
2855 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2856 				 const struct intel_crtc_state *old_crtc_state)
2857 {
2858 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2859 	struct drm_i915_private *dev_priv = to_i915(dev);
2860 
2861 	/* enable with pattern 1 (as per spec) */
2862 
2863 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2864 
2865 	/*
2866 	 * Magic for VLV/CHV. We _must_ first set up the register
2867 	 * without actually enabling the port, and then do another
2868 	 * write to enable the port. Otherwise link training will
2869 	 * fail when the power sequencer is freshly used for this port.
2870 	 */
2871 	intel_dp->DP |= DP_PORT_EN;
2872 	if (old_crtc_state->has_audio)
2873 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2874 
2875 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2876 	POSTING_READ(intel_dp->output_reg);
2877 }
2878 
2879 static void intel_enable_dp(struct intel_encoder *encoder,
2880 			    const struct intel_crtc_state *pipe_config,
2881 			    const struct drm_connector_state *conn_state)
2882 {
2883 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2884 	struct drm_device *dev = encoder->base.dev;
2885 	struct drm_i915_private *dev_priv = to_i915(dev);
2886 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2887 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2888 	enum i915_pipe pipe = crtc->pipe;
2889 
2890 	if (WARN_ON(dp_reg & DP_PORT_EN))
2891 		return;
2892 
2893 	pps_lock(intel_dp);
2894 
2895 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2896 		vlv_init_panel_power_sequencer(intel_dp);
2897 
2898 	intel_dp_enable_port(intel_dp, pipe_config);
2899 
2900 	edp_panel_vdd_on(intel_dp);
2901 	edp_panel_on(intel_dp);
2902 	edp_panel_vdd_off(intel_dp, true);
2903 
2904 	pps_unlock(intel_dp);
2905 
2906 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2907 		unsigned int lane_mask = 0x0;
2908 
2909 		if (IS_CHERRYVIEW(dev_priv))
2910 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2911 
2912 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2913 				    lane_mask);
2914 	}
2915 
2916 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2917 	intel_dp_start_link_train(intel_dp);
2918 	intel_dp_stop_link_train(intel_dp);
2919 
2920 	if (pipe_config->has_audio) {
2921 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2922 				 pipe_name(pipe));
2923 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
2924 	}
2925 }
2926 
2927 static void g4x_enable_dp(struct intel_encoder *encoder,
2928 			  const struct intel_crtc_state *pipe_config,
2929 			  const struct drm_connector_state *conn_state)
2930 {
2931 	intel_enable_dp(encoder, pipe_config, conn_state);
2932 	intel_edp_backlight_on(pipe_config, conn_state);
2933 }
2934 
2935 static void vlv_enable_dp(struct intel_encoder *encoder,
2936 			  const struct intel_crtc_state *pipe_config,
2937 			  const struct drm_connector_state *conn_state)
2938 {
2939 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2940 
2941 	intel_edp_backlight_on(pipe_config, conn_state);
2942 	intel_psr_enable(intel_dp, pipe_config);
2943 }
2944 
2945 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2946 			      const struct intel_crtc_state *pipe_config,
2947 			      const struct drm_connector_state *conn_state)
2948 {
2949 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2950 	enum port port = dp_to_dig_port(intel_dp)->port;
2951 
2952 	intel_dp_prepare(encoder, pipe_config);
2953 
2954 	/* Only ilk+ has port A */
2955 	if (port == PORT_A)
2956 		ironlake_edp_pll_on(intel_dp, pipe_config);
2957 }
2958 
2959 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2960 {
2961 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2962 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2963 	enum i915_pipe pipe = intel_dp->pps_pipe;
2964 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2965 
2966 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
2967 
2968 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2969 		return;
2970 
2971 	edp_panel_vdd_off_sync(intel_dp);
2972 
2973 	/*
2974 	 * VLV seems to get confused when multiple power seqeuencers
2975 	 * have the same port selected (even if only one has power/vdd
2976 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
2977 	 * CHV on the other hand doesn't seem to mind having the same port
2978 	 * selected in multiple power seqeuencers, but let's clear the
2979 	 * port select always when logically disconnecting a power sequencer
2980 	 * from a port.
2981 	 */
2982 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2983 		      pipe_name(pipe), port_name(intel_dig_port->port));
2984 	I915_WRITE(pp_on_reg, 0);
2985 	POSTING_READ(pp_on_reg);
2986 
2987 	intel_dp->pps_pipe = INVALID_PIPE;
2988 }
2989 
2990 static void vlv_steal_power_sequencer(struct drm_device *dev,
2991 				      enum i915_pipe pipe)
2992 {
2993 	struct drm_i915_private *dev_priv = to_i915(dev);
2994 	struct intel_encoder *encoder;
2995 
2996 	lockdep_assert_held(&dev_priv->pps_mutex);
2997 
2998 	for_each_intel_encoder(dev, encoder) {
2999 		struct intel_dp *intel_dp;
3000 		enum port port;
3001 
3002 		if (encoder->type != INTEL_OUTPUT_DP &&
3003 		    encoder->type != INTEL_OUTPUT_EDP)
3004 			continue;
3005 
3006 		intel_dp = enc_to_intel_dp(&encoder->base);
3007 		port = dp_to_dig_port(intel_dp)->port;
3008 
3009 		WARN(intel_dp->active_pipe == pipe,
3010 		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
3011 		     pipe_name(pipe), port_name(port));
3012 
3013 		if (intel_dp->pps_pipe != pipe)
3014 			continue;
3015 
3016 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3017 			      pipe_name(pipe), port_name(port));
3018 
3019 		/* make sure vdd is off before we steal it */
3020 		vlv_detach_power_sequencer(intel_dp);
3021 	}
3022 }
3023 
3024 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
3025 {
3026 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3027 	struct intel_encoder *encoder = &intel_dig_port->base;
3028 	struct drm_device *dev = encoder->base.dev;
3029 	struct drm_i915_private *dev_priv = to_i915(dev);
3030 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
3031 
3032 	lockdep_assert_held(&dev_priv->pps_mutex);
3033 
3034 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3035 
3036 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3037 	    intel_dp->pps_pipe != crtc->pipe) {
3038 		/*
3039 		 * If another power sequencer was being used on this
3040 		 * port previously make sure to turn off vdd there while
3041 		 * we still have control of it.
3042 		 */
3043 		vlv_detach_power_sequencer(intel_dp);
3044 	}
3045 
3046 	/*
3047 	 * We may be stealing the power
3048 	 * sequencer from another port.
3049 	 */
3050 	vlv_steal_power_sequencer(dev, crtc->pipe);
3051 
3052 	intel_dp->active_pipe = crtc->pipe;
3053 
3054 	if (!intel_dp_is_edp(intel_dp))
3055 		return;
3056 
3057 	/* now it's all ours */
3058 	intel_dp->pps_pipe = crtc->pipe;
3059 
3060 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3061 		      pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
3062 
3063 	/* init power sequencer on this pipe and port */
3064 	intel_dp_init_panel_power_sequencer(dev, intel_dp);
3065 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
3066 }
3067 
3068 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3069 			      const struct intel_crtc_state *pipe_config,
3070 			      const struct drm_connector_state *conn_state)
3071 {
3072 	vlv_phy_pre_encoder_enable(encoder);
3073 
3074 	intel_enable_dp(encoder, pipe_config, conn_state);
3075 }
3076 
3077 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3078 				  const struct intel_crtc_state *pipe_config,
3079 				  const struct drm_connector_state *conn_state)
3080 {
3081 	intel_dp_prepare(encoder, pipe_config);
3082 
3083 	vlv_phy_pre_pll_enable(encoder);
3084 }
3085 
3086 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3087 			      const struct intel_crtc_state *pipe_config,
3088 			      const struct drm_connector_state *conn_state)
3089 {
3090 	chv_phy_pre_encoder_enable(encoder);
3091 
3092 	intel_enable_dp(encoder, pipe_config, conn_state);
3093 
3094 	/* Second common lane will stay alive on its own now */
3095 	chv_phy_release_cl2_override(encoder);
3096 }
3097 
3098 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3099 				  const struct intel_crtc_state *pipe_config,
3100 				  const struct drm_connector_state *conn_state)
3101 {
3102 	intel_dp_prepare(encoder, pipe_config);
3103 
3104 	chv_phy_pre_pll_enable(encoder);
3105 }
3106 
3107 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3108 				    const struct intel_crtc_state *pipe_config,
3109 				    const struct drm_connector_state *conn_state)
3110 {
3111 	chv_phy_post_pll_disable(encoder);
3112 }
3113 
3114 /*
3115  * Fetch AUX CH registers 0x202 - 0x207 which contain
3116  * link status information
3117  */
3118 bool
3119 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3120 {
3121 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3122 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3123 }
3124 
3125 static bool intel_dp_get_y_cord_status(struct intel_dp *intel_dp)
3126 {
3127 	uint8_t psr_caps = 0;
3128 
3129 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_CAPS, &psr_caps) != 1)
3130 		return false;
3131 	return psr_caps & DP_PSR2_SU_Y_COORDINATE_REQUIRED;
3132 }
3133 
3134 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
3135 {
3136 	uint8_t dprx = 0;
3137 
3138 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
3139 			      &dprx) != 1)
3140 		return false;
3141 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
3142 }
3143 
3144 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
3145 {
3146 	uint8_t alpm_caps = 0;
3147 
3148 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
3149 			      &alpm_caps) != 1)
3150 		return false;
3151 	return alpm_caps & DP_ALPM_CAP;
3152 }
3153 
3154 /* These are source-specific values. */
3155 uint8_t
3156 intel_dp_voltage_max(struct intel_dp *intel_dp)
3157 {
3158 	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3159 	enum port port = dp_to_dig_port(intel_dp)->port;
3160 
3161 	if (INTEL_GEN(dev_priv) >= 9) {
3162 		struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3163 		return intel_ddi_dp_voltage_max(encoder);
3164 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3165 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3166 	else if (IS_GEN7(dev_priv) && port == PORT_A)
3167 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3168 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3169 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3170 	else
3171 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3172 }
3173 
3174 uint8_t
3175 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3176 {
3177 	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3178 	enum port port = dp_to_dig_port(intel_dp)->port;
3179 
3180 	if (INTEL_GEN(dev_priv) >= 9) {
3181 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3182 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3183 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3184 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3185 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3186 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3187 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3188 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3189 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3190 		default:
3191 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3192 		}
3193 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3194 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3195 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3196 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3197 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3198 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3199 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3200 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3201 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3202 		default:
3203 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3204 		}
3205 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3206 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3207 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3208 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3209 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3210 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3211 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3212 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3213 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3214 		default:
3215 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3216 		}
3217 	} else if (IS_GEN7(dev_priv) && port == PORT_A) {
3218 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3219 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3220 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3221 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3222 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3223 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3224 		default:
3225 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3226 		}
3227 	} else {
3228 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3229 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3230 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3231 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3232 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3233 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3234 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3235 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3236 		default:
3237 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3238 		}
3239 	}
3240 }
3241 
3242 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3243 {
3244 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3245 	unsigned long demph_reg_value, preemph_reg_value,
3246 		uniqtranscale_reg_value;
3247 	uint8_t train_set = intel_dp->train_set[0];
3248 
3249 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3250 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3251 		preemph_reg_value = 0x0004000;
3252 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3253 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3254 			demph_reg_value = 0x2B405555;
3255 			uniqtranscale_reg_value = 0x552AB83A;
3256 			break;
3257 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3258 			demph_reg_value = 0x2B404040;
3259 			uniqtranscale_reg_value = 0x5548B83A;
3260 			break;
3261 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3262 			demph_reg_value = 0x2B245555;
3263 			uniqtranscale_reg_value = 0x5560B83A;
3264 			break;
3265 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3266 			demph_reg_value = 0x2B405555;
3267 			uniqtranscale_reg_value = 0x5598DA3A;
3268 			break;
3269 		default:
3270 			return 0;
3271 		}
3272 		break;
3273 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3274 		preemph_reg_value = 0x0002000;
3275 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3276 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3277 			demph_reg_value = 0x2B404040;
3278 			uniqtranscale_reg_value = 0x5552B83A;
3279 			break;
3280 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3281 			demph_reg_value = 0x2B404848;
3282 			uniqtranscale_reg_value = 0x5580B83A;
3283 			break;
3284 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3285 			demph_reg_value = 0x2B404040;
3286 			uniqtranscale_reg_value = 0x55ADDA3A;
3287 			break;
3288 		default:
3289 			return 0;
3290 		}
3291 		break;
3292 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3293 		preemph_reg_value = 0x0000000;
3294 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3295 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3296 			demph_reg_value = 0x2B305555;
3297 			uniqtranscale_reg_value = 0x5570B83A;
3298 			break;
3299 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3300 			demph_reg_value = 0x2B2B4040;
3301 			uniqtranscale_reg_value = 0x55ADDA3A;
3302 			break;
3303 		default:
3304 			return 0;
3305 		}
3306 		break;
3307 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3308 		preemph_reg_value = 0x0006000;
3309 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3310 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3311 			demph_reg_value = 0x1B405555;
3312 			uniqtranscale_reg_value = 0x55ADDA3A;
3313 			break;
3314 		default:
3315 			return 0;
3316 		}
3317 		break;
3318 	default:
3319 		return 0;
3320 	}
3321 
3322 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3323 				 uniqtranscale_reg_value, 0);
3324 
3325 	return 0;
3326 }
3327 
3328 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3329 {
3330 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3331 	u32 deemph_reg_value, margin_reg_value;
3332 	bool uniq_trans_scale = false;
3333 	uint8_t train_set = intel_dp->train_set[0];
3334 
3335 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3336 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3337 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3338 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3339 			deemph_reg_value = 128;
3340 			margin_reg_value = 52;
3341 			break;
3342 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3343 			deemph_reg_value = 128;
3344 			margin_reg_value = 77;
3345 			break;
3346 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3347 			deemph_reg_value = 128;
3348 			margin_reg_value = 102;
3349 			break;
3350 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3351 			deemph_reg_value = 128;
3352 			margin_reg_value = 154;
3353 			uniq_trans_scale = true;
3354 			break;
3355 		default:
3356 			return 0;
3357 		}
3358 		break;
3359 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3360 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3361 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3362 			deemph_reg_value = 85;
3363 			margin_reg_value = 78;
3364 			break;
3365 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3366 			deemph_reg_value = 85;
3367 			margin_reg_value = 116;
3368 			break;
3369 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3370 			deemph_reg_value = 85;
3371 			margin_reg_value = 154;
3372 			break;
3373 		default:
3374 			return 0;
3375 		}
3376 		break;
3377 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3378 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3379 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3380 			deemph_reg_value = 64;
3381 			margin_reg_value = 104;
3382 			break;
3383 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3384 			deemph_reg_value = 64;
3385 			margin_reg_value = 154;
3386 			break;
3387 		default:
3388 			return 0;
3389 		}
3390 		break;
3391 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3392 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3393 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3394 			deemph_reg_value = 43;
3395 			margin_reg_value = 154;
3396 			break;
3397 		default:
3398 			return 0;
3399 		}
3400 		break;
3401 	default:
3402 		return 0;
3403 	}
3404 
3405 	chv_set_phy_signal_level(encoder, deemph_reg_value,
3406 				 margin_reg_value, uniq_trans_scale);
3407 
3408 	return 0;
3409 }
3410 
3411 static uint32_t
3412 gen4_signal_levels(uint8_t train_set)
3413 {
3414 	uint32_t	signal_levels = 0;
3415 
3416 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3417 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3418 	default:
3419 		signal_levels |= DP_VOLTAGE_0_4;
3420 		break;
3421 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3422 		signal_levels |= DP_VOLTAGE_0_6;
3423 		break;
3424 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3425 		signal_levels |= DP_VOLTAGE_0_8;
3426 		break;
3427 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3428 		signal_levels |= DP_VOLTAGE_1_2;
3429 		break;
3430 	}
3431 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3432 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3433 	default:
3434 		signal_levels |= DP_PRE_EMPHASIS_0;
3435 		break;
3436 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3437 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3438 		break;
3439 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3440 		signal_levels |= DP_PRE_EMPHASIS_6;
3441 		break;
3442 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3443 		signal_levels |= DP_PRE_EMPHASIS_9_5;
3444 		break;
3445 	}
3446 	return signal_levels;
3447 }
3448 
3449 /* Gen6's DP voltage swing and pre-emphasis control */
3450 static uint32_t
3451 gen6_edp_signal_levels(uint8_t train_set)
3452 {
3453 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3454 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3455 	switch (signal_levels) {
3456 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3457 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3458 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3459 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3460 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3461 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3462 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3463 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3464 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3465 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3466 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3467 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3468 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3469 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3470 	default:
3471 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3472 			      "0x%x\n", signal_levels);
3473 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3474 	}
3475 }
3476 
3477 /* Gen7's DP voltage swing and pre-emphasis control */
3478 static uint32_t
3479 gen7_edp_signal_levels(uint8_t train_set)
3480 {
3481 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3482 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3483 	switch (signal_levels) {
3484 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3485 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3486 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3487 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3488 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3489 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
3490 
3491 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3492 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3493 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3494 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3495 
3496 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3497 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3498 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3499 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3500 
3501 	default:
3502 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3503 			      "0x%x\n", signal_levels);
3504 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
3505 	}
3506 }
3507 
3508 void
3509 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3510 {
3511 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3512 	enum port port = intel_dig_port->port;
3513 	struct drm_device *dev = intel_dig_port->base.base.dev;
3514 	struct drm_i915_private *dev_priv = to_i915(dev);
3515 	uint32_t signal_levels, mask = 0;
3516 	uint8_t train_set = intel_dp->train_set[0];
3517 
3518 	if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3519 		signal_levels = bxt_signal_levels(intel_dp);
3520 	} else if (HAS_DDI(dev_priv)) {
3521 		signal_levels = ddi_signal_levels(intel_dp);
3522 		mask = DDI_BUF_EMP_MASK;
3523 	} else if (IS_CHERRYVIEW(dev_priv)) {
3524 		signal_levels = chv_signal_levels(intel_dp);
3525 	} else if (IS_VALLEYVIEW(dev_priv)) {
3526 		signal_levels = vlv_signal_levels(intel_dp);
3527 	} else if (IS_GEN7(dev_priv) && port == PORT_A) {
3528 		signal_levels = gen7_edp_signal_levels(train_set);
3529 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3530 	} else if (IS_GEN6(dev_priv) && port == PORT_A) {
3531 		signal_levels = gen6_edp_signal_levels(train_set);
3532 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3533 	} else {
3534 		signal_levels = gen4_signal_levels(train_set);
3535 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3536 	}
3537 
3538 	if (mask)
3539 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3540 
3541 	DRM_DEBUG_KMS("Using vswing level %d\n",
3542 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3543 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3544 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3545 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3546 
3547 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3548 
3549 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3550 	POSTING_READ(intel_dp->output_reg);
3551 }
3552 
3553 void
3554 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3555 				       uint8_t dp_train_pat)
3556 {
3557 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3558 	struct drm_i915_private *dev_priv =
3559 		to_i915(intel_dig_port->base.base.dev);
3560 
3561 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3562 
3563 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3564 	POSTING_READ(intel_dp->output_reg);
3565 }
3566 
3567 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3568 {
3569 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3570 	struct drm_device *dev = intel_dig_port->base.base.dev;
3571 	struct drm_i915_private *dev_priv = to_i915(dev);
3572 	enum port port = intel_dig_port->port;
3573 	uint32_t val;
3574 
3575 	if (!HAS_DDI(dev_priv))
3576 		return;
3577 
3578 	val = I915_READ(DP_TP_CTL(port));
3579 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3580 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3581 	I915_WRITE(DP_TP_CTL(port), val);
3582 
3583 	/*
3584 	 * On PORT_A we can have only eDP in SST mode. There the only reason
3585 	 * we need to set idle transmission mode is to work around a HW issue
3586 	 * where we enable the pipe while not in idle link-training mode.
3587 	 * In this case there is requirement to wait for a minimum number of
3588 	 * idle patterns to be sent.
3589 	 */
3590 	if (port == PORT_A)
3591 		return;
3592 
3593 	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3594 				    DP_TP_STATUS_IDLE_DONE,
3595 				    DP_TP_STATUS_IDLE_DONE,
3596 				    1))
3597 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3598 }
3599 
3600 static void
3601 intel_dp_link_down(struct intel_dp *intel_dp)
3602 {
3603 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3604 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3605 	enum port port = intel_dig_port->port;
3606 	struct drm_device *dev = intel_dig_port->base.base.dev;
3607 	struct drm_i915_private *dev_priv = to_i915(dev);
3608 	uint32_t DP = intel_dp->DP;
3609 
3610 	if (WARN_ON(HAS_DDI(dev_priv)))
3611 		return;
3612 
3613 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3614 		return;
3615 
3616 	DRM_DEBUG_KMS("\n");
3617 
3618 	if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3619 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3620 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3621 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3622 	} else {
3623 		if (IS_CHERRYVIEW(dev_priv))
3624 			DP &= ~DP_LINK_TRAIN_MASK_CHV;
3625 		else
3626 			DP &= ~DP_LINK_TRAIN_MASK;
3627 		DP |= DP_LINK_TRAIN_PAT_IDLE;
3628 	}
3629 	I915_WRITE(intel_dp->output_reg, DP);
3630 	POSTING_READ(intel_dp->output_reg);
3631 
3632 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3633 	I915_WRITE(intel_dp->output_reg, DP);
3634 	POSTING_READ(intel_dp->output_reg);
3635 
3636 	/*
3637 	 * HW workaround for IBX, we need to move the port
3638 	 * to transcoder A after disabling it to allow the
3639 	 * matching HDMI port to be enabled on transcoder A.
3640 	 */
3641 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3642 		/*
3643 		 * We get CPU/PCH FIFO underruns on the other pipe when
3644 		 * doing the workaround. Sweep them under the rug.
3645 		 */
3646 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3647 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3648 
3649 		/* always enable with pattern 1 (as per spec) */
3650 		DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3651 		DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3652 		I915_WRITE(intel_dp->output_reg, DP);
3653 		POSTING_READ(intel_dp->output_reg);
3654 
3655 		DP &= ~DP_PORT_EN;
3656 		I915_WRITE(intel_dp->output_reg, DP);
3657 		POSTING_READ(intel_dp->output_reg);
3658 
3659 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3660 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3661 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3662 	}
3663 
3664 	msleep(intel_dp->panel_power_down_delay);
3665 
3666 	intel_dp->DP = DP;
3667 
3668 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3669 		pps_lock(intel_dp);
3670 		intel_dp->active_pipe = INVALID_PIPE;
3671 		pps_unlock(intel_dp);
3672 	}
3673 }
3674 
3675 bool
3676 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3677 {
3678 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3679 			     sizeof(intel_dp->dpcd)) < 0)
3680 		return false; /* aux transfer failed */
3681 
3682 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3683 
3684 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
3685 }
3686 
3687 static bool
3688 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3689 {
3690 	struct drm_i915_private *dev_priv =
3691 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3692 
3693 	/* this function is meant to be called only once */
3694 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3695 
3696 	if (!intel_dp_read_dpcd(intel_dp))
3697 		return false;
3698 
3699 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3700 			 drm_dp_is_branch(intel_dp->dpcd));
3701 
3702 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3703 		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3704 			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3705 
3706 	/* Check if the panel supports PSR */
3707 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3708 			 intel_dp->psr_dpcd,
3709 			 sizeof(intel_dp->psr_dpcd));
3710 	if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3711 		dev_priv->psr.sink_support = true;
3712 		DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3713 	}
3714 
3715 	if (INTEL_GEN(dev_priv) >= 9 &&
3716 	    (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3717 		uint8_t frame_sync_cap;
3718 
3719 		dev_priv->psr.sink_support = true;
3720 		if (drm_dp_dpcd_readb(&intel_dp->aux,
3721 				      DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3722 				      &frame_sync_cap) != 1)
3723 			frame_sync_cap = 0;
3724 		dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3725 		/* PSR2 needs frame sync as well */
3726 		dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3727 		DRM_DEBUG_KMS("PSR2 %s on sink",
3728 			      dev_priv->psr.psr2_support ? "supported" : "not supported");
3729 
3730 		if (dev_priv->psr.psr2_support) {
3731 			dev_priv->psr.y_cord_support =
3732 				intel_dp_get_y_cord_status(intel_dp);
3733 			dev_priv->psr.colorimetry_support =
3734 				intel_dp_get_colorimetry_status(intel_dp);
3735 			dev_priv->psr.alpm =
3736 				intel_dp_get_alpm_status(intel_dp);
3737 		}
3738 
3739 	}
3740 
3741 	/* Read the eDP Display control capabilities registers */
3742 	if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3743 	    drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3744 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3745 			     sizeof(intel_dp->edp_dpcd))
3746 		DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3747 			      intel_dp->edp_dpcd);
3748 
3749 	/* Intermediate frequency support */
3750 	if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3751 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3752 		int i;
3753 
3754 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3755 				sink_rates, sizeof(sink_rates));
3756 
3757 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3758 			int val = le16_to_cpu(sink_rates[i]);
3759 
3760 			if (val == 0)
3761 				break;
3762 
3763 			/* Value read multiplied by 200kHz gives the per-lane
3764 			 * link rate in kHz. The source rates are, however,
3765 			 * stored in terms of LS_Clk kHz. The full conversion
3766 			 * back to symbols is
3767 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3768 			 */
3769 			intel_dp->sink_rates[i] = (val * 200) / 10;
3770 		}
3771 		intel_dp->num_sink_rates = i;
3772 	}
3773 
3774 	if (intel_dp->num_sink_rates)
3775 		intel_dp->use_rate_select = true;
3776 	else
3777 		intel_dp_set_sink_rates(intel_dp);
3778 
3779 	intel_dp_set_common_rates(intel_dp);
3780 
3781 	return true;
3782 }
3783 
3784 
3785 static bool
3786 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3787 {
3788 	u8 sink_count;
3789 
3790 	if (!intel_dp_read_dpcd(intel_dp))
3791 		return false;
3792 
3793 	/* Don't clobber cached eDP rates. */
3794 	if (!intel_dp_is_edp(intel_dp)) {
3795 		intel_dp_set_sink_rates(intel_dp);
3796 		intel_dp_set_common_rates(intel_dp);
3797 	}
3798 
3799 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3800 		return false;
3801 
3802 	/*
3803 	 * Sink count can change between short pulse hpd hence
3804 	 * a member variable in intel_dp will track any changes
3805 	 * between short pulse interrupts.
3806 	 */
3807 	intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3808 
3809 	/*
3810 	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3811 	 * a dongle is present but no display. Unless we require to know
3812 	 * if a dongle is present or not, we don't need to update
3813 	 * downstream port information. So, an early return here saves
3814 	 * time from performing other operations which are not required.
3815 	 */
3816 	if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3817 		return false;
3818 
3819 	if (!drm_dp_is_branch(intel_dp->dpcd))
3820 		return true; /* native DP sink */
3821 
3822 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3823 		return true; /* no per-port downstream info */
3824 
3825 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3826 			     intel_dp->downstream_ports,
3827 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
3828 		return false; /* downstream port status fetch failed */
3829 
3830 	return true;
3831 }
3832 
3833 static bool
3834 intel_dp_can_mst(struct intel_dp *intel_dp)
3835 {
3836 	u8 mstm_cap;
3837 
3838 	if (!i915_modparams.enable_dp_mst)
3839 		return false;
3840 
3841 	if (!intel_dp->can_mst)
3842 		return false;
3843 
3844 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3845 		return false;
3846 
3847 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3848 		return false;
3849 
3850 	return mstm_cap & DP_MST_CAP;
3851 }
3852 
3853 static void
3854 intel_dp_configure_mst(struct intel_dp *intel_dp)
3855 {
3856 	if (!i915_modparams.enable_dp_mst)
3857 		return;
3858 
3859 	if (!intel_dp->can_mst)
3860 		return;
3861 
3862 	intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3863 
3864 	if (intel_dp->is_mst)
3865 		DRM_DEBUG_KMS("Sink is MST capable\n");
3866 	else
3867 		DRM_DEBUG_KMS("Sink is not MST capable\n");
3868 
3869 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3870 					intel_dp->is_mst);
3871 }
3872 
3873 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3874 {
3875 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3876 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3877 	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3878 	u8 buf;
3879 	int ret = 0;
3880 	int count = 0;
3881 	int attempts = 10;
3882 
3883 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3884 		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3885 		ret = -EIO;
3886 		goto out;
3887 	}
3888 
3889 	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3890 			       buf & ~DP_TEST_SINK_START) < 0) {
3891 		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3892 		ret = -EIO;
3893 		goto out;
3894 	}
3895 
3896 	do {
3897 		intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3898 
3899 		if (drm_dp_dpcd_readb(&intel_dp->aux,
3900 				      DP_TEST_SINK_MISC, &buf) < 0) {
3901 			ret = -EIO;
3902 			goto out;
3903 		}
3904 		count = buf & DP_TEST_COUNT_MASK;
3905 	} while (--attempts && count);
3906 
3907 	if (attempts == 0) {
3908 		DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3909 		ret = -ETIMEDOUT;
3910 	}
3911 
3912  out:
3913 	hsw_enable_ips(intel_crtc);
3914 	return ret;
3915 }
3916 
3917 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3918 {
3919 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3920 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3921 	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3922 	u8 buf;
3923 	int ret;
3924 
3925 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3926 		return -EIO;
3927 
3928 	if (!(buf & DP_TEST_CRC_SUPPORTED))
3929 		return -ENOTTY;
3930 
3931 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3932 		return -EIO;
3933 
3934 	if (buf & DP_TEST_SINK_START) {
3935 		ret = intel_dp_sink_crc_stop(intel_dp);
3936 		if (ret)
3937 			return ret;
3938 	}
3939 
3940 	hsw_disable_ips(intel_crtc);
3941 
3942 	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3943 			       buf | DP_TEST_SINK_START) < 0) {
3944 		hsw_enable_ips(intel_crtc);
3945 		return -EIO;
3946 	}
3947 
3948 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3949 	return 0;
3950 }
3951 
3952 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3953 {
3954 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3955 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3956 	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3957 	u8 buf;
3958 	int count, ret;
3959 	int attempts = 6;
3960 
3961 	ret = intel_dp_sink_crc_start(intel_dp);
3962 	if (ret)
3963 		return ret;
3964 
3965 	do {
3966 		intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3967 
3968 		if (drm_dp_dpcd_readb(&intel_dp->aux,
3969 				      DP_TEST_SINK_MISC, &buf) < 0) {
3970 			ret = -EIO;
3971 			goto stop;
3972 		}
3973 		count = buf & DP_TEST_COUNT_MASK;
3974 
3975 	} while (--attempts && count == 0);
3976 
3977 	if (attempts == 0) {
3978 		DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3979 		ret = -ETIMEDOUT;
3980 		goto stop;
3981 	}
3982 
3983 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3984 		ret = -EIO;
3985 		goto stop;
3986 	}
3987 
3988 stop:
3989 	intel_dp_sink_crc_stop(intel_dp);
3990 	return ret;
3991 }
3992 
3993 static bool
3994 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3995 {
3996 	return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
3997 				 sink_irq_vector) == 1;
3998 }
3999 
4000 static bool
4001 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4002 {
4003 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4004 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4005 		DP_DPRX_ESI_LEN;
4006 }
4007 
4008 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4009 {
4010 	int status = 0;
4011 	int test_link_rate;
4012 	uint8_t test_lane_count, test_link_bw;
4013 	/* (DP CTS 1.2)
4014 	 * 4.3.1.11
4015 	 */
4016 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4017 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4018 				   &test_lane_count);
4019 
4020 	if (status <= 0) {
4021 		DRM_DEBUG_KMS("Lane count read failed\n");
4022 		return DP_TEST_NAK;
4023 	}
4024 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4025 
4026 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4027 				   &test_link_bw);
4028 	if (status <= 0) {
4029 		DRM_DEBUG_KMS("Link Rate read failed\n");
4030 		return DP_TEST_NAK;
4031 	}
4032 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4033 
4034 	/* Validate the requested link rate and lane count */
4035 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4036 					test_lane_count))
4037 		return DP_TEST_NAK;
4038 
4039 	intel_dp->compliance.test_lane_count = test_lane_count;
4040 	intel_dp->compliance.test_link_rate = test_link_rate;
4041 
4042 	return DP_TEST_ACK;
4043 }
4044 
4045 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4046 {
4047 	uint8_t test_pattern;
4048 	uint8_t test_misc;
4049 	__be16 h_width, v_height;
4050 	int status = 0;
4051 
4052 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4053 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4054 				   &test_pattern);
4055 	if (status <= 0) {
4056 		DRM_DEBUG_KMS("Test pattern read failed\n");
4057 		return DP_TEST_NAK;
4058 	}
4059 	if (test_pattern != DP_COLOR_RAMP)
4060 		return DP_TEST_NAK;
4061 
4062 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4063 				  &h_width, 2);
4064 	if (status <= 0) {
4065 		DRM_DEBUG_KMS("H Width read failed\n");
4066 		return DP_TEST_NAK;
4067 	}
4068 
4069 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4070 				  &v_height, 2);
4071 	if (status <= 0) {
4072 		DRM_DEBUG_KMS("V Height read failed\n");
4073 		return DP_TEST_NAK;
4074 	}
4075 
4076 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4077 				   &test_misc);
4078 	if (status <= 0) {
4079 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4080 		return DP_TEST_NAK;
4081 	}
4082 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4083 		return DP_TEST_NAK;
4084 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4085 		return DP_TEST_NAK;
4086 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4087 	case DP_TEST_BIT_DEPTH_6:
4088 		intel_dp->compliance.test_data.bpc = 6;
4089 		break;
4090 	case DP_TEST_BIT_DEPTH_8:
4091 		intel_dp->compliance.test_data.bpc = 8;
4092 		break;
4093 	default:
4094 		return DP_TEST_NAK;
4095 	}
4096 
4097 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4098 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4099 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4100 	/* Set test active flag here so userspace doesn't interrupt things */
4101 	intel_dp->compliance.test_active = 1;
4102 
4103 	return DP_TEST_ACK;
4104 }
4105 
4106 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4107 {
4108 	uint8_t test_result = DP_TEST_ACK;
4109 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4110 	struct drm_connector *connector = &intel_connector->base;
4111 
4112 	if (intel_connector->detect_edid == NULL ||
4113 	    connector->edid_corrupt ||
4114 	    intel_dp->aux.i2c_defer_count > 6) {
4115 		/* Check EDID read for NACKs, DEFERs and corruption
4116 		 * (DP CTS 1.2 Core r1.1)
4117 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4118 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4119 		 *    4.2.2.6 : EDID corruption detected
4120 		 * Use failsafe mode for all cases
4121 		 */
4122 		if (intel_dp->aux.i2c_nack_count > 0 ||
4123 			intel_dp->aux.i2c_defer_count > 0)
4124 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4125 				      intel_dp->aux.i2c_nack_count,
4126 				      intel_dp->aux.i2c_defer_count);
4127 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4128 	} else {
4129 		struct edid *block = intel_connector->detect_edid;
4130 
4131 		/* We have to write the checksum
4132 		 * of the last block read
4133 		 */
4134 		block += intel_connector->detect_edid->extensions;
4135 
4136 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4137 				       block->checksum) <= 0)
4138 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4139 
4140 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4141 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4142 	}
4143 
4144 	/* Set test active flag here so userspace doesn't interrupt things */
4145 	intel_dp->compliance.test_active = 1;
4146 
4147 	return test_result;
4148 }
4149 
4150 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4151 {
4152 	uint8_t test_result = DP_TEST_NAK;
4153 	return test_result;
4154 }
4155 
4156 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4157 {
4158 	uint8_t response = DP_TEST_NAK;
4159 	uint8_t request = 0;
4160 	int status;
4161 
4162 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4163 	if (status <= 0) {
4164 		DRM_DEBUG_KMS("Could not read test request from sink\n");
4165 		goto update_status;
4166 	}
4167 
4168 	switch (request) {
4169 	case DP_TEST_LINK_TRAINING:
4170 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4171 		response = intel_dp_autotest_link_training(intel_dp);
4172 		break;
4173 	case DP_TEST_LINK_VIDEO_PATTERN:
4174 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4175 		response = intel_dp_autotest_video_pattern(intel_dp);
4176 		break;
4177 	case DP_TEST_LINK_EDID_READ:
4178 		DRM_DEBUG_KMS("EDID test requested\n");
4179 		response = intel_dp_autotest_edid(intel_dp);
4180 		break;
4181 	case DP_TEST_LINK_PHY_TEST_PATTERN:
4182 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4183 		response = intel_dp_autotest_phy_pattern(intel_dp);
4184 		break;
4185 	default:
4186 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4187 		break;
4188 	}
4189 
4190 	if (response & DP_TEST_ACK)
4191 		intel_dp->compliance.test_type = request;
4192 
4193 update_status:
4194 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4195 	if (status <= 0)
4196 		DRM_DEBUG_KMS("Could not write test response to sink\n");
4197 }
4198 
4199 static int
4200 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4201 {
4202 	bool bret;
4203 
4204 	if (intel_dp->is_mst) {
4205 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4206 		int ret = 0;
4207 		int retry;
4208 		bool handled;
4209 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4210 go_again:
4211 		if (bret == true) {
4212 
4213 			/* check link status - esi[10] = 0x200c */
4214 			if (intel_dp->active_mst_links &&
4215 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4216 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4217 				intel_dp_start_link_train(intel_dp);
4218 				intel_dp_stop_link_train(intel_dp);
4219 			}
4220 
4221 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4222 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4223 
4224 			if (handled) {
4225 				for (retry = 0; retry < 3; retry++) {
4226 					int wret;
4227 					wret = drm_dp_dpcd_write(&intel_dp->aux,
4228 								 DP_SINK_COUNT_ESI+1,
4229 								 &esi[1], 3);
4230 					if (wret == 3) {
4231 						break;
4232 					}
4233 				}
4234 
4235 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4236 				if (bret == true) {
4237 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4238 					goto go_again;
4239 				}
4240 			} else
4241 				ret = 0;
4242 
4243 			return ret;
4244 		} else {
4245 			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4246 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4247 			intel_dp->is_mst = false;
4248 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4249 			/* send a hotplug event */
4250 			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4251 		}
4252 	}
4253 	return -EINVAL;
4254 }
4255 
4256 static void
4257 intel_dp_retrain_link(struct intel_dp *intel_dp)
4258 {
4259 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4260 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4261 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4262 
4263 	/* Suppress underruns caused by re-training */
4264 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4265 	if (crtc->config->has_pch_encoder)
4266 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4267 						      intel_crtc_pch_transcoder(crtc), false);
4268 
4269 	intel_dp_start_link_train(intel_dp);
4270 	intel_dp_stop_link_train(intel_dp);
4271 
4272 	/* Keep underrun reporting disabled until things are stable */
4273 	intel_wait_for_vblank(dev_priv, crtc->pipe);
4274 
4275 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4276 	if (crtc->config->has_pch_encoder)
4277 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4278 						      intel_crtc_pch_transcoder(crtc), true);
4279 }
4280 
4281 static void
4282 intel_dp_check_link_status(struct intel_dp *intel_dp)
4283 {
4284 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4285 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4286 	u8 link_status[DP_LINK_STATUS_SIZE];
4287 
4288 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4289 
4290 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
4291 		DRM_ERROR("Failed to get link status\n");
4292 		return;
4293 	}
4294 
4295 	if (!intel_encoder->base.crtc)
4296 		return;
4297 
4298 	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4299 		return;
4300 
4301 	/*
4302 	 * Validate the cached values of intel_dp->link_rate and
4303 	 * intel_dp->lane_count before attempting to retrain.
4304 	 */
4305 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4306 					intel_dp->lane_count))
4307 		return;
4308 
4309 	/* Retrain if Channel EQ or CR not ok */
4310 	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4311 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4312 			      intel_encoder->base.name);
4313 
4314 		intel_dp_retrain_link(intel_dp);
4315 	}
4316 }
4317 
4318 /*
4319  * According to DP spec
4320  * 5.1.2:
4321  *  1. Read DPCD
4322  *  2. Configure link according to Receiver Capabilities
4323  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4324  *  4. Check link status on receipt of hot-plug interrupt
4325  *
4326  * intel_dp_short_pulse -  handles short pulse interrupts
4327  * when full detection is not required.
4328  * Returns %true if short pulse is handled and full detection
4329  * is NOT required and %false otherwise.
4330  */
4331 static bool
4332 intel_dp_short_pulse(struct intel_dp *intel_dp)
4333 {
4334 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4335 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4336 	u8 sink_irq_vector = 0;
4337 	u8 old_sink_count = intel_dp->sink_count;
4338 	bool ret;
4339 
4340 	/*
4341 	 * Clearing compliance test variables to allow capturing
4342 	 * of values for next automated test request.
4343 	 */
4344 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4345 
4346 	/*
4347 	 * Now read the DPCD to see if it's actually running
4348 	 * If the current value of sink count doesn't match with
4349 	 * the value that was stored earlier or dpcd read failed
4350 	 * we need to do full detection
4351 	 */
4352 	ret = intel_dp_get_dpcd(intel_dp);
4353 
4354 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
4355 		/* No need to proceed if we are going to do full detect */
4356 		return false;
4357 	}
4358 
4359 	/* Try to read the source of the interrupt */
4360 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4361 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4362 	    sink_irq_vector != 0) {
4363 		/* Clear interrupt source */
4364 		drm_dp_dpcd_writeb(&intel_dp->aux,
4365 				   DP_DEVICE_SERVICE_IRQ_VECTOR,
4366 				   sink_irq_vector);
4367 
4368 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4369 			intel_dp_handle_test_request(intel_dp);
4370 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4371 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4372 	}
4373 
4374 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4375 	intel_dp_check_link_status(intel_dp);
4376 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
4377 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4378 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4379 		/* Send a Hotplug Uevent to userspace to start modeset */
4380 		drm_kms_helper_hotplug_event(intel_encoder->base.dev);
4381 	}
4382 
4383 	return true;
4384 }
4385 
4386 /* XXX this is probably wrong for multiple downstream ports */
4387 static enum drm_connector_status
4388 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4389 {
4390 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4391 	uint8_t *dpcd = intel_dp->dpcd;
4392 	uint8_t type;
4393 
4394 	if (lspcon->active)
4395 		lspcon_resume(lspcon);
4396 
4397 	if (!intel_dp_get_dpcd(intel_dp))
4398 		return connector_status_disconnected;
4399 
4400 	if (intel_dp_is_edp(intel_dp))
4401 		return connector_status_connected;
4402 
4403 	/* if there's no downstream port, we're done */
4404 	if (!drm_dp_is_branch(dpcd))
4405 		return connector_status_connected;
4406 
4407 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4408 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4409 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4410 
4411 		return intel_dp->sink_count ?
4412 		connector_status_connected : connector_status_disconnected;
4413 	}
4414 
4415 	if (intel_dp_can_mst(intel_dp))
4416 		return connector_status_connected;
4417 
4418 	/* If no HPD, poke DDC gently */
4419 	if (drm_probe_ddc(&intel_dp->aux.ddc))
4420 		return connector_status_connected;
4421 
4422 	/* Well we tried, say unknown for unreliable port types */
4423 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4424 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4425 		if (type == DP_DS_PORT_TYPE_VGA ||
4426 		    type == DP_DS_PORT_TYPE_NON_EDID)
4427 			return connector_status_unknown;
4428 	} else {
4429 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4430 			DP_DWN_STRM_PORT_TYPE_MASK;
4431 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4432 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
4433 			return connector_status_unknown;
4434 	}
4435 
4436 	/* Anything else is out of spec, warn and ignore */
4437 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4438 	return connector_status_disconnected;
4439 }
4440 
4441 static enum drm_connector_status
4442 edp_detect(struct intel_dp *intel_dp)
4443 {
4444 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4445 	struct drm_i915_private *dev_priv = to_i915(dev);
4446 	enum drm_connector_status status;
4447 
4448 	status = intel_panel_detect(dev_priv);
4449 	if (status == connector_status_unknown)
4450 		status = connector_status_connected;
4451 
4452 	return status;
4453 }
4454 
4455 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4456 				       struct intel_digital_port *port)
4457 {
4458 	u32 bit;
4459 
4460 	switch (port->port) {
4461 	case PORT_B:
4462 		bit = SDE_PORTB_HOTPLUG;
4463 		break;
4464 	case PORT_C:
4465 		bit = SDE_PORTC_HOTPLUG;
4466 		break;
4467 	case PORT_D:
4468 		bit = SDE_PORTD_HOTPLUG;
4469 		break;
4470 	default:
4471 		MISSING_CASE(port->port);
4472 		return false;
4473 	}
4474 
4475 	return I915_READ(SDEISR) & bit;
4476 }
4477 
4478 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4479 				       struct intel_digital_port *port)
4480 {
4481 	u32 bit;
4482 
4483 	switch (port->port) {
4484 	case PORT_B:
4485 		bit = SDE_PORTB_HOTPLUG_CPT;
4486 		break;
4487 	case PORT_C:
4488 		bit = SDE_PORTC_HOTPLUG_CPT;
4489 		break;
4490 	case PORT_D:
4491 		bit = SDE_PORTD_HOTPLUG_CPT;
4492 		break;
4493 	default:
4494 		MISSING_CASE(port->port);
4495 		return false;
4496 	}
4497 
4498 	return I915_READ(SDEISR) & bit;
4499 }
4500 
4501 static bool spt_digital_port_connected(struct drm_i915_private *dev_priv,
4502 				       struct intel_digital_port *port)
4503 {
4504 	u32 bit;
4505 
4506 	switch (port->port) {
4507 	case PORT_A:
4508 		bit = SDE_PORTA_HOTPLUG_SPT;
4509 		break;
4510 	case PORT_E:
4511 		bit = SDE_PORTE_HOTPLUG_SPT;
4512 		break;
4513 	default:
4514 		return cpt_digital_port_connected(dev_priv, port);
4515 	}
4516 
4517 	return I915_READ(SDEISR) & bit;
4518 }
4519 
4520 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4521 				       struct intel_digital_port *port)
4522 {
4523 	u32 bit;
4524 
4525 	switch (port->port) {
4526 	case PORT_B:
4527 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4528 		break;
4529 	case PORT_C:
4530 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4531 		break;
4532 	case PORT_D:
4533 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4534 		break;
4535 	default:
4536 		MISSING_CASE(port->port);
4537 		return false;
4538 	}
4539 
4540 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4541 }
4542 
4543 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4544 					struct intel_digital_port *port)
4545 {
4546 	u32 bit;
4547 
4548 	switch (port->port) {
4549 	case PORT_B:
4550 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4551 		break;
4552 	case PORT_C:
4553 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4554 		break;
4555 	case PORT_D:
4556 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4557 		break;
4558 	default:
4559 		MISSING_CASE(port->port);
4560 		return false;
4561 	}
4562 
4563 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4564 }
4565 
4566 static bool ilk_digital_port_connected(struct drm_i915_private *dev_priv,
4567 				       struct intel_digital_port *port)
4568 {
4569 	if (port->port == PORT_A)
4570 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4571 	else
4572 		return ibx_digital_port_connected(dev_priv, port);
4573 }
4574 
4575 static bool snb_digital_port_connected(struct drm_i915_private *dev_priv,
4576 				       struct intel_digital_port *port)
4577 {
4578 	if (port->port == PORT_A)
4579 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4580 	else
4581 		return cpt_digital_port_connected(dev_priv, port);
4582 }
4583 
4584 static bool ivb_digital_port_connected(struct drm_i915_private *dev_priv,
4585 				       struct intel_digital_port *port)
4586 {
4587 	if (port->port == PORT_A)
4588 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4589 	else
4590 		return cpt_digital_port_connected(dev_priv, port);
4591 }
4592 
4593 static bool bdw_digital_port_connected(struct drm_i915_private *dev_priv,
4594 				       struct intel_digital_port *port)
4595 {
4596 	if (port->port == PORT_A)
4597 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
4598 	else
4599 		return cpt_digital_port_connected(dev_priv, port);
4600 }
4601 
4602 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4603 				       struct intel_digital_port *intel_dig_port)
4604 {
4605 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4606 	enum port port;
4607 	u32 bit;
4608 
4609 	port = intel_hpd_pin_to_port(intel_encoder->hpd_pin);
4610 	switch (port) {
4611 	case PORT_A:
4612 		bit = BXT_DE_PORT_HP_DDIA;
4613 		break;
4614 	case PORT_B:
4615 		bit = BXT_DE_PORT_HP_DDIB;
4616 		break;
4617 	case PORT_C:
4618 		bit = BXT_DE_PORT_HP_DDIC;
4619 		break;
4620 	default:
4621 		MISSING_CASE(port);
4622 		return false;
4623 	}
4624 
4625 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
4626 }
4627 
4628 /*
4629  * intel_digital_port_connected - is the specified port connected?
4630  * @dev_priv: i915 private structure
4631  * @port: the port to test
4632  *
4633  * Return %true if @port is connected, %false otherwise.
4634  */
4635 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4636 				  struct intel_digital_port *port)
4637 {
4638 	if (HAS_GMCH_DISPLAY(dev_priv)) {
4639 		if (IS_GM45(dev_priv))
4640 			return gm45_digital_port_connected(dev_priv, port);
4641 		else
4642 			return g4x_digital_port_connected(dev_priv, port);
4643 	}
4644 
4645 	if (IS_GEN5(dev_priv))
4646 		return ilk_digital_port_connected(dev_priv, port);
4647 	else if (IS_GEN6(dev_priv))
4648 		return snb_digital_port_connected(dev_priv, port);
4649 	else if (IS_GEN7(dev_priv))
4650 		return ivb_digital_port_connected(dev_priv, port);
4651 	else if (IS_GEN8(dev_priv))
4652 		return bdw_digital_port_connected(dev_priv, port);
4653 	else if (IS_GEN9_LP(dev_priv))
4654 		return bxt_digital_port_connected(dev_priv, port);
4655 	else
4656 		return spt_digital_port_connected(dev_priv, port);
4657 }
4658 
4659 static struct edid *
4660 intel_dp_get_edid(struct intel_dp *intel_dp)
4661 {
4662 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4663 
4664 	/* use cached edid if we have one */
4665 	if (intel_connector->edid) {
4666 		/* invalid edid */
4667 		if (IS_ERR(intel_connector->edid))
4668 			return NULL;
4669 
4670 		return drm_edid_duplicate(intel_connector->edid);
4671 	} else
4672 		return drm_get_edid(&intel_connector->base,
4673 				    &intel_dp->aux.ddc);
4674 }
4675 
4676 static void
4677 intel_dp_set_edid(struct intel_dp *intel_dp)
4678 {
4679 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4680 	struct edid *edid;
4681 
4682 	intel_dp_unset_edid(intel_dp);
4683 	edid = intel_dp_get_edid(intel_dp);
4684 	intel_connector->detect_edid = edid;
4685 
4686 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
4687 }
4688 
4689 static void
4690 intel_dp_unset_edid(struct intel_dp *intel_dp)
4691 {
4692 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4693 
4694 	kfree(intel_connector->detect_edid);
4695 	intel_connector->detect_edid = NULL;
4696 
4697 	intel_dp->has_audio = false;
4698 }
4699 
4700 static int
4701 intel_dp_long_pulse(struct intel_connector *intel_connector)
4702 {
4703 	struct drm_connector *connector = &intel_connector->base;
4704 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4705 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4706 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4707 	struct drm_device *dev = connector->dev;
4708 	enum drm_connector_status status;
4709 	u8 sink_irq_vector = 0;
4710 
4711 	WARN_ON(!drm_modeset_is_locked(&connector->dev->mode_config.connection_mutex));
4712 
4713 	intel_display_power_get(to_i915(dev), intel_dp->aux_power_domain);
4714 
4715 	/* Can't disconnect eDP, but you can close the lid... */
4716 	if (intel_dp_is_edp(intel_dp))
4717 		status = edp_detect(intel_dp);
4718 	else if (intel_digital_port_connected(to_i915(dev),
4719 					      dp_to_dig_port(intel_dp)))
4720 		status = intel_dp_detect_dpcd(intel_dp);
4721 	else
4722 		status = connector_status_disconnected;
4723 
4724 	if (status == connector_status_disconnected) {
4725 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4726 
4727 		if (intel_dp->is_mst) {
4728 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4729 				      intel_dp->is_mst,
4730 				      intel_dp->mst_mgr.mst_state);
4731 			intel_dp->is_mst = false;
4732 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4733 							intel_dp->is_mst);
4734 		}
4735 
4736 		goto out;
4737 	}
4738 
4739 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4740 		intel_encoder->type = INTEL_OUTPUT_DP;
4741 
4742 	if (intel_dp->reset_link_params) {
4743 		/* Initial max link lane count */
4744 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4745 
4746 		/* Initial max link rate */
4747 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4748 
4749 		intel_dp->reset_link_params = false;
4750 	}
4751 
4752 	intel_dp_print_rates(intel_dp);
4753 
4754 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4755 			 drm_dp_is_branch(intel_dp->dpcd));
4756 
4757 	intel_dp_configure_mst(intel_dp);
4758 
4759 	if (intel_dp->is_mst) {
4760 		/*
4761 		 * If we are in MST mode then this connector
4762 		 * won't appear connected or have anything
4763 		 * with EDID on it
4764 		 */
4765 		status = connector_status_disconnected;
4766 		goto out;
4767 	} else {
4768 		/*
4769 		 * If display is now connected check links status,
4770 		 * there has been known issues of link loss triggerring
4771 		 * long pulse.
4772 		 *
4773 		 * Some sinks (eg. ASUS PB287Q) seem to perform some
4774 		 * weird HPD ping pong during modesets. So we can apparently
4775 		 * end up with HPD going low during a modeset, and then
4776 		 * going back up soon after. And once that happens we must
4777 		 * retrain the link to get a picture. That's in case no
4778 		 * userspace component reacted to intermittent HPD dip.
4779 		 */
4780 		intel_dp_check_link_status(intel_dp);
4781 	}
4782 
4783 	/*
4784 	 * Clearing NACK and defer counts to get their exact values
4785 	 * while reading EDID which are required by Compliance tests
4786 	 * 4.2.2.4 and 4.2.2.5
4787 	 */
4788 	intel_dp->aux.i2c_nack_count = 0;
4789 	intel_dp->aux.i2c_defer_count = 0;
4790 
4791 	intel_dp_set_edid(intel_dp);
4792 	if (intel_dp_is_edp(intel_dp) || intel_connector->detect_edid)
4793 		status = connector_status_connected;
4794 	intel_dp->detect_done = true;
4795 
4796 	/* Try to read the source of the interrupt */
4797 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4798 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4799 	    sink_irq_vector != 0) {
4800 		/* Clear interrupt source */
4801 		drm_dp_dpcd_writeb(&intel_dp->aux,
4802 				   DP_DEVICE_SERVICE_IRQ_VECTOR,
4803 				   sink_irq_vector);
4804 
4805 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4806 			intel_dp_handle_test_request(intel_dp);
4807 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4808 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4809 	}
4810 
4811 out:
4812 	if (status != connector_status_connected && !intel_dp->is_mst)
4813 		intel_dp_unset_edid(intel_dp);
4814 
4815 	intel_display_power_put(to_i915(dev), intel_dp->aux_power_domain);
4816 	return status;
4817 }
4818 
4819 static int
4820 intel_dp_detect(struct drm_connector *connector,
4821 		struct drm_modeset_acquire_ctx *ctx,
4822 		bool force)
4823 {
4824 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4825 	int status = connector->status;
4826 
4827 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4828 		      connector->base.id, connector->name);
4829 
4830 	/* If full detect is not performed yet, do a full detect */
4831 	if (!intel_dp->detect_done)
4832 		status = intel_dp_long_pulse(intel_dp->attached_connector);
4833 
4834 	intel_dp->detect_done = false;
4835 
4836 	return status;
4837 }
4838 
4839 static void
4840 intel_dp_force(struct drm_connector *connector)
4841 {
4842 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4843 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4844 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4845 
4846 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4847 		      connector->base.id, connector->name);
4848 	intel_dp_unset_edid(intel_dp);
4849 
4850 	if (connector->status != connector_status_connected)
4851 		return;
4852 
4853 	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4854 
4855 	intel_dp_set_edid(intel_dp);
4856 
4857 	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4858 
4859 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4860 		intel_encoder->type = INTEL_OUTPUT_DP;
4861 }
4862 
4863 static int intel_dp_get_modes(struct drm_connector *connector)
4864 {
4865 	struct intel_connector *intel_connector = to_intel_connector(connector);
4866 	struct edid *edid;
4867 
4868 	edid = intel_connector->detect_edid;
4869 	if (edid) {
4870 		int ret = intel_connector_update_modes(connector, edid);
4871 		if (ret)
4872 			return ret;
4873 	}
4874 
4875 	/* if eDP has no EDID, fall back to fixed mode */
4876 	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4877 	    intel_connector->panel.fixed_mode) {
4878 		struct drm_display_mode *mode;
4879 
4880 		mode = drm_mode_duplicate(connector->dev,
4881 					  intel_connector->panel.fixed_mode);
4882 		if (mode) {
4883 			drm_mode_probed_add(connector, mode);
4884 			return 1;
4885 		}
4886 	}
4887 
4888 	return 0;
4889 }
4890 
4891 static int
4892 intel_dp_connector_register(struct drm_connector *connector)
4893 {
4894 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4895 	int ret;
4896 
4897 	ret = intel_connector_register(connector);
4898 	if (ret)
4899 		return ret;
4900 
4901 	i915_debugfs_connector_add(connector);
4902 
4903 	DRM_DEBUG_KMS("registering %s bus for %s\n",
4904 		      intel_dp->aux.name, connector->kdev->kobj.name);
4905 
4906 	intel_dp->aux.dev = connector->kdev;
4907 	return drm_dp_aux_register(&intel_dp->aux);
4908 }
4909 
4910 static void
4911 intel_dp_connector_unregister(struct drm_connector *connector)
4912 {
4913 	drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4914 	intel_connector_unregister(connector);
4915 }
4916 
4917 static void
4918 intel_dp_connector_destroy(struct drm_connector *connector)
4919 {
4920 	struct intel_connector *intel_connector = to_intel_connector(connector);
4921 
4922 	kfree(intel_connector->detect_edid);
4923 
4924 	if (!IS_ERR_OR_NULL(intel_connector->edid))
4925 		kfree(intel_connector->edid);
4926 
4927 	/*
4928 	 * Can't call intel_dp_is_edp() since the encoder may have been
4929 	 * destroyed already.
4930 	 */
4931 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4932 		intel_panel_fini(&intel_connector->panel);
4933 
4934 	drm_connector_cleanup(connector);
4935 	kfree(connector);
4936 }
4937 
4938 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4939 {
4940 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4941 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4942 
4943 	intel_dp_mst_encoder_cleanup(intel_dig_port);
4944 	if (intel_dp_is_edp(intel_dp)) {
4945 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4946 		/*
4947 		 * vdd might still be enabled do to the delayed vdd off.
4948 		 * Make sure vdd is actually turned off here.
4949 		 */
4950 		pps_lock(intel_dp);
4951 		edp_panel_vdd_off_sync(intel_dp);
4952 		pps_unlock(intel_dp);
4953 
4954 		if (intel_dp->edp_notifier.notifier_call) {
4955 			unregister_reboot_notifier(&intel_dp->edp_notifier);
4956 			intel_dp->edp_notifier.notifier_call = NULL;
4957 		}
4958 	}
4959 
4960 	intel_dp_aux_fini(intel_dp);
4961 
4962 	drm_encoder_cleanup(encoder);
4963 	kfree(intel_dig_port);
4964 }
4965 
4966 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4967 {
4968 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4969 
4970 	if (!intel_dp_is_edp(intel_dp))
4971 		return;
4972 
4973 	/*
4974 	 * vdd might still be enabled do to the delayed vdd off.
4975 	 * Make sure vdd is actually turned off here.
4976 	 */
4977 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4978 	pps_lock(intel_dp);
4979 	edp_panel_vdd_off_sync(intel_dp);
4980 	pps_unlock(intel_dp);
4981 }
4982 
4983 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4984 {
4985 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4986 	struct drm_device *dev = intel_dig_port->base.base.dev;
4987 	struct drm_i915_private *dev_priv = to_i915(dev);
4988 
4989 	lockdep_assert_held(&dev_priv->pps_mutex);
4990 
4991 	if (!edp_have_panel_vdd(intel_dp))
4992 		return;
4993 
4994 	/*
4995 	 * The VDD bit needs a power domain reference, so if the bit is
4996 	 * already enabled when we boot or resume, grab this reference and
4997 	 * schedule a vdd off, so we don't hold on to the reference
4998 	 * indefinitely.
4999 	 */
5000 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5001 	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5002 
5003 	edp_panel_vdd_schedule_off(intel_dp);
5004 }
5005 
5006 static enum i915_pipe vlv_active_pipe(struct intel_dp *intel_dp)
5007 {
5008 	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5009 
5010 	if ((intel_dp->DP & DP_PORT_EN) == 0)
5011 		return INVALID_PIPE;
5012 
5013 	if (IS_CHERRYVIEW(dev_priv))
5014 		return DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5015 	else
5016 		return PORT_TO_PIPE(intel_dp->DP);
5017 }
5018 
5019 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5020 {
5021 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5022 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5023 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5024 
5025 	if (!HAS_DDI(dev_priv))
5026 		intel_dp->DP = I915_READ(intel_dp->output_reg);
5027 
5028 	if (lspcon->active)
5029 		lspcon_resume(lspcon);
5030 
5031 	intel_dp->reset_link_params = true;
5032 
5033 	pps_lock(intel_dp);
5034 
5035 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5036 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5037 
5038 	if (intel_dp_is_edp(intel_dp)) {
5039 		/* Reinit the power sequencer, in case BIOS did something with it. */
5040 		intel_dp_pps_init(encoder->dev, intel_dp);
5041 		intel_edp_panel_vdd_sanitize(intel_dp);
5042 	}
5043 
5044 	pps_unlock(intel_dp);
5045 }
5046 
5047 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5048 	.force = intel_dp_force,
5049 	.fill_modes = drm_helper_probe_single_connector_modes,
5050 	.atomic_get_property = intel_digital_connector_atomic_get_property,
5051 	.atomic_set_property = intel_digital_connector_atomic_set_property,
5052 	.late_register = intel_dp_connector_register,
5053 	.early_unregister = intel_dp_connector_unregister,
5054 	.destroy = intel_dp_connector_destroy,
5055 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5056 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5057 };
5058 
5059 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5060 	.detect_ctx = intel_dp_detect,
5061 	.get_modes = intel_dp_get_modes,
5062 	.mode_valid = intel_dp_mode_valid,
5063 	.atomic_check = intel_digital_connector_atomic_check,
5064 };
5065 
5066 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5067 	.reset = intel_dp_encoder_reset,
5068 	.destroy = intel_dp_encoder_destroy,
5069 };
5070 
5071 enum irqreturn
5072 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5073 {
5074 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5075 	struct drm_device *dev = intel_dig_port->base.base.dev;
5076 	struct drm_i915_private *dev_priv = to_i915(dev);
5077 	enum irqreturn ret = IRQ_NONE;
5078 
5079 	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
5080 	    intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
5081 		intel_dig_port->base.type = INTEL_OUTPUT_DP;
5082 
5083 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5084 		/*
5085 		 * vdd off can generate a long pulse on eDP which
5086 		 * would require vdd on to handle it, and thus we
5087 		 * would end up in an endless cycle of
5088 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5089 		 */
5090 		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5091 			      port_name(intel_dig_port->port));
5092 		return IRQ_HANDLED;
5093 	}
5094 
5095 	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5096 		      port_name(intel_dig_port->port),
5097 		      long_hpd ? "long" : "short");
5098 
5099 	if (long_hpd) {
5100 		intel_dp->reset_link_params = true;
5101 		intel_dp->detect_done = false;
5102 		return IRQ_NONE;
5103 	}
5104 
5105 	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5106 
5107 	if (intel_dp->is_mst) {
5108 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5109 			/*
5110 			 * If we were in MST mode, and device is not
5111 			 * there, get out of MST mode
5112 			 */
5113 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5114 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5115 			intel_dp->is_mst = false;
5116 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5117 							intel_dp->is_mst);
5118 			intel_dp->detect_done = false;
5119 			goto put_power;
5120 		}
5121 	}
5122 
5123 	if (!intel_dp->is_mst) {
5124 		if (!intel_dp_short_pulse(intel_dp)) {
5125 			intel_dp->detect_done = false;
5126 			goto put_power;
5127 		}
5128 	}
5129 
5130 	ret = IRQ_HANDLED;
5131 
5132 put_power:
5133 	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5134 
5135 	return ret;
5136 }
5137 
5138 /* check the VBT to see whether the eDP is on another port */
5139 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5140 {
5141 	/*
5142 	 * eDP not supported on g4x. so bail out early just
5143 	 * for a bit extra safety in case the VBT is bonkers.
5144 	 */
5145 	if (INTEL_GEN(dev_priv) < 5)
5146 		return false;
5147 
5148 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5149 		return true;
5150 
5151 	return intel_bios_is_port_edp(dev_priv, port);
5152 }
5153 
5154 static void
5155 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5156 {
5157 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5158 
5159 	intel_attach_force_audio_property(connector);
5160 	intel_attach_broadcast_rgb_property(connector);
5161 
5162 	if (intel_dp_is_edp(intel_dp)) {
5163 		u32 allowed_scalers;
5164 
5165 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5166 		if (!HAS_GMCH_DISPLAY(dev_priv))
5167 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5168 
5169 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5170 
5171 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5172 
5173 	}
5174 }
5175 
5176 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5177 {
5178 	intel_dp->panel_power_off_time = ktime_get_boottime();
5179 	intel_dp->last_power_on = jiffies;
5180 	intel_dp->last_backlight_off = jiffies;
5181 }
5182 
5183 static void
5184 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
5185 			   struct intel_dp *intel_dp, struct edp_power_seq *seq)
5186 {
5187 	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5188 	struct pps_registers regs;
5189 
5190 	intel_pps_get_registers(dev_priv, intel_dp, &regs);
5191 
5192 	/* Workaround: Need to write PP_CONTROL with the unlock key as
5193 	 * the very first thing. */
5194 	pp_ctl = ironlake_get_pp_control(intel_dp);
5195 
5196 	pp_on = I915_READ(regs.pp_on);
5197 	pp_off = I915_READ(regs.pp_off);
5198 	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv)) {
5199 		I915_WRITE(regs.pp_ctrl, pp_ctl);
5200 		pp_div = I915_READ(regs.pp_div);
5201 	}
5202 
5203 	/* Pull timing values out of registers */
5204 	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5205 		     PANEL_POWER_UP_DELAY_SHIFT;
5206 
5207 	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5208 		  PANEL_LIGHT_ON_DELAY_SHIFT;
5209 
5210 	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5211 		  PANEL_LIGHT_OFF_DELAY_SHIFT;
5212 
5213 	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5214 		   PANEL_POWER_DOWN_DELAY_SHIFT;
5215 
5216 	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5217 		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5218 				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5219 	} else {
5220 		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5221 		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5222 	}
5223 }
5224 
5225 static void
5226 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5227 {
5228 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5229 		      state_name,
5230 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5231 }
5232 
5233 static void
5234 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5235 		       struct intel_dp *intel_dp)
5236 {
5237 	struct edp_power_seq hw;
5238 	struct edp_power_seq *sw = &intel_dp->pps_delays;
5239 
5240 	intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5241 
5242 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5243 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5244 		DRM_ERROR("PPS state mismatch\n");
5245 		intel_pps_dump_state("sw", sw);
5246 		intel_pps_dump_state("hw", &hw);
5247 	}
5248 }
5249 
5250 static void
5251 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5252 				    struct intel_dp *intel_dp)
5253 {
5254 	struct drm_i915_private *dev_priv = to_i915(dev);
5255 	struct edp_power_seq cur, vbt, spec,
5256 		*final = &intel_dp->pps_delays;
5257 
5258 	lockdep_assert_held(&dev_priv->pps_mutex);
5259 
5260 	/* already initialized? */
5261 	if (final->t11_t12 != 0)
5262 		return;
5263 
5264 	intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5265 
5266 	intel_pps_dump_state("cur", &cur);
5267 
5268 	vbt = dev_priv->vbt.edp.pps;
5269 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
5270 	 * of 500ms appears to be too short. Ocassionally the panel
5271 	 * just fails to power back on. Increasing the delay to 800ms
5272 	 * seems sufficient to avoid this problem.
5273 	 */
5274 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5275 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5276 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
5277 			      vbt.t11_t12);
5278 	}
5279 	/* T11_T12 delay is special and actually in units of 100ms, but zero
5280 	 * based in the hw (so we need to add 100 ms). But the sw vbt
5281 	 * table multiplies it with 1000 to make it in units of 100usec,
5282 	 * too. */
5283 	vbt.t11_t12 += 100 * 10;
5284 
5285 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5286 	 * our hw here, which are all in 100usec. */
5287 	spec.t1_t3 = 210 * 10;
5288 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5289 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5290 	spec.t10 = 500 * 10;
5291 	/* This one is special and actually in units of 100ms, but zero
5292 	 * based in the hw (so we need to add 100 ms). But the sw vbt
5293 	 * table multiplies it with 1000 to make it in units of 100usec,
5294 	 * too. */
5295 	spec.t11_t12 = (510 + 100) * 10;
5296 
5297 	intel_pps_dump_state("vbt", &vbt);
5298 
5299 	/* Use the max of the register settings and vbt. If both are
5300 	 * unset, fall back to the spec limits. */
5301 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5302 				       spec.field : \
5303 				       max(cur.field, vbt.field))
5304 	assign_final(t1_t3);
5305 	assign_final(t8);
5306 	assign_final(t9);
5307 	assign_final(t10);
5308 	assign_final(t11_t12);
5309 #undef assign_final
5310 
5311 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5312 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
5313 	intel_dp->backlight_on_delay = get_delay(t8);
5314 	intel_dp->backlight_off_delay = get_delay(t9);
5315 	intel_dp->panel_power_down_delay = get_delay(t10);
5316 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5317 #undef get_delay
5318 
5319 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5320 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5321 		      intel_dp->panel_power_cycle_delay);
5322 
5323 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5324 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5325 
5326 	/*
5327 	 * We override the HW backlight delays to 1 because we do manual waits
5328 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
5329 	 * don't do this, we'll end up waiting for the backlight off delay
5330 	 * twice: once when we do the manual sleep, and once when we disable
5331 	 * the panel and wait for the PP_STATUS bit to become zero.
5332 	 */
5333 	final->t8 = 1;
5334 	final->t9 = 1;
5335 
5336 	/*
5337 	 * HW has only a 100msec granularity for t11_t12 so round it up
5338 	 * accordingly.
5339 	 */
5340 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5341 }
5342 
5343 static void
5344 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5345 					      struct intel_dp *intel_dp,
5346 					      bool force_disable_vdd)
5347 {
5348 	struct drm_i915_private *dev_priv = to_i915(dev);
5349 	u32 pp_on, pp_off, pp_div, port_sel = 0;
5350 	int div = dev_priv->rawclk_freq / 1000;
5351 	struct pps_registers regs;
5352 	enum port port = dp_to_dig_port(intel_dp)->port;
5353 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5354 
5355 	lockdep_assert_held(&dev_priv->pps_mutex);
5356 
5357 	intel_pps_get_registers(dev_priv, intel_dp, &regs);
5358 
5359 	/*
5360 	 * On some VLV machines the BIOS can leave the VDD
5361 	 * enabled even on power seqeuencers which aren't
5362 	 * hooked up to any port. This would mess up the
5363 	 * power domain tracking the first time we pick
5364 	 * one of these power sequencers for use since
5365 	 * edp_panel_vdd_on() would notice that the VDD was
5366 	 * already on and therefore wouldn't grab the power
5367 	 * domain reference. Disable VDD first to avoid this.
5368 	 * This also avoids spuriously turning the VDD on as
5369 	 * soon as the new power seqeuencer gets initialized.
5370 	 */
5371 	if (force_disable_vdd) {
5372 		u32 pp = ironlake_get_pp_control(intel_dp);
5373 
5374 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5375 
5376 		if (pp & EDP_FORCE_VDD)
5377 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
5378 
5379 		pp &= ~EDP_FORCE_VDD;
5380 
5381 		I915_WRITE(regs.pp_ctrl, pp);
5382 	}
5383 
5384 	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5385 		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5386 	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5387 		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5388 	/* Compute the divisor for the pp clock, simply match the Bspec
5389 	 * formula. */
5390 	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5391 		pp_div = I915_READ(regs.pp_ctrl);
5392 		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5393 		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5394 				<< BXT_POWER_CYCLE_DELAY_SHIFT);
5395 	} else {
5396 		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5397 		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5398 				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
5399 	}
5400 
5401 	/* Haswell doesn't have any port selection bits for the panel
5402 	 * power sequencer any more. */
5403 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5404 		port_sel = PANEL_PORT_SELECT_VLV(port);
5405 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5406 		if (port == PORT_A)
5407 			port_sel = PANEL_PORT_SELECT_DPA;
5408 		else
5409 			port_sel = PANEL_PORT_SELECT_DPD;
5410 	}
5411 
5412 	pp_on |= port_sel;
5413 
5414 	I915_WRITE(regs.pp_on, pp_on);
5415 	I915_WRITE(regs.pp_off, pp_off);
5416 	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv))
5417 		I915_WRITE(regs.pp_ctrl, pp_div);
5418 	else
5419 		I915_WRITE(regs.pp_div, pp_div);
5420 
5421 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5422 		      I915_READ(regs.pp_on),
5423 		      I915_READ(regs.pp_off),
5424 		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) ?
5425 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5426 		      I915_READ(regs.pp_div));
5427 }
5428 
5429 static void intel_dp_pps_init(struct drm_device *dev,
5430 			      struct intel_dp *intel_dp)
5431 {
5432 	struct drm_i915_private *dev_priv = to_i915(dev);
5433 
5434 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5435 		vlv_initial_power_sequencer_setup(intel_dp);
5436 	} else {
5437 		intel_dp_init_panel_power_sequencer(dev, intel_dp);
5438 		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
5439 	}
5440 }
5441 
5442 /**
5443  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5444  * @dev_priv: i915 device
5445  * @crtc_state: a pointer to the active intel_crtc_state
5446  * @refresh_rate: RR to be programmed
5447  *
5448  * This function gets called when refresh rate (RR) has to be changed from
5449  * one frequency to another. Switches can be between high and low RR
5450  * supported by the panel or to any other RR based on media playback (in
5451  * this case, RR value needs to be passed from user space).
5452  *
5453  * The caller of this function needs to take a lock on dev_priv->drrs.
5454  */
5455 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5456 				    const struct intel_crtc_state *crtc_state,
5457 				    int refresh_rate)
5458 {
5459 	struct intel_encoder *encoder;
5460 	struct intel_digital_port *dig_port = NULL;
5461 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
5462 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5463 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5464 
5465 	if (refresh_rate <= 0) {
5466 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5467 		return;
5468 	}
5469 
5470 	if (intel_dp == NULL) {
5471 		DRM_DEBUG_KMS("DRRS not supported.\n");
5472 		return;
5473 	}
5474 
5475 	dig_port = dp_to_dig_port(intel_dp);
5476 	encoder = &dig_port->base;
5477 	intel_crtc = to_intel_crtc(encoder->base.crtc);
5478 
5479 	if (!intel_crtc) {
5480 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5481 		return;
5482 	}
5483 
5484 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5485 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5486 		return;
5487 	}
5488 
5489 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5490 			refresh_rate)
5491 		index = DRRS_LOW_RR;
5492 
5493 	if (index == dev_priv->drrs.refresh_rate_type) {
5494 		DRM_DEBUG_KMS(
5495 			"DRRS requested for previously set RR...ignoring\n");
5496 		return;
5497 	}
5498 
5499 	if (!crtc_state->base.active) {
5500 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5501 		return;
5502 	}
5503 
5504 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5505 		switch (index) {
5506 		case DRRS_HIGH_RR:
5507 			intel_dp_set_m_n(intel_crtc, M1_N1);
5508 			break;
5509 		case DRRS_LOW_RR:
5510 			intel_dp_set_m_n(intel_crtc, M2_N2);
5511 			break;
5512 		case DRRS_MAX_RR:
5513 		default:
5514 			DRM_ERROR("Unsupported refreshrate type\n");
5515 		}
5516 	} else if (INTEL_GEN(dev_priv) > 6) {
5517 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5518 		u32 val;
5519 
5520 		val = I915_READ(reg);
5521 		if (index > DRRS_HIGH_RR) {
5522 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5523 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5524 			else
5525 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
5526 		} else {
5527 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5528 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5529 			else
5530 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5531 		}
5532 		I915_WRITE(reg, val);
5533 	}
5534 
5535 	dev_priv->drrs.refresh_rate_type = index;
5536 
5537 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5538 }
5539 
5540 /**
5541  * intel_edp_drrs_enable - init drrs struct if supported
5542  * @intel_dp: DP struct
5543  * @crtc_state: A pointer to the active crtc state.
5544  *
5545  * Initializes frontbuffer_bits and drrs.dp
5546  */
5547 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5548 			   const struct intel_crtc_state *crtc_state)
5549 {
5550 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5551 	struct drm_i915_private *dev_priv = to_i915(dev);
5552 
5553 	if (!crtc_state->has_drrs) {
5554 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5555 		return;
5556 	}
5557 
5558 	if (dev_priv->psr.enabled) {
5559 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
5560 		return;
5561 	}
5562 
5563 	mutex_lock(&dev_priv->drrs.mutex);
5564 	if (WARN_ON(dev_priv->drrs.dp)) {
5565 		DRM_ERROR("DRRS already enabled\n");
5566 		goto unlock;
5567 	}
5568 
5569 	dev_priv->drrs.busy_frontbuffer_bits = 0;
5570 
5571 	dev_priv->drrs.dp = intel_dp;
5572 
5573 unlock:
5574 	mutex_unlock(&dev_priv->drrs.mutex);
5575 }
5576 
5577 /**
5578  * intel_edp_drrs_disable - Disable DRRS
5579  * @intel_dp: DP struct
5580  * @old_crtc_state: Pointer to old crtc_state.
5581  *
5582  */
5583 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5584 			    const struct intel_crtc_state *old_crtc_state)
5585 {
5586 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5587 	struct drm_i915_private *dev_priv = to_i915(dev);
5588 
5589 	if (!old_crtc_state->has_drrs)
5590 		return;
5591 
5592 	mutex_lock(&dev_priv->drrs.mutex);
5593 	if (!dev_priv->drrs.dp) {
5594 		mutex_unlock(&dev_priv->drrs.mutex);
5595 		return;
5596 	}
5597 
5598 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5599 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5600 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5601 
5602 	dev_priv->drrs.dp = NULL;
5603 	mutex_unlock(&dev_priv->drrs.mutex);
5604 
5605 	cancel_delayed_work_sync(&dev_priv->drrs.work);
5606 }
5607 
5608 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5609 {
5610 	struct drm_i915_private *dev_priv =
5611 		container_of(work, typeof(*dev_priv), drrs.work.work);
5612 	struct intel_dp *intel_dp;
5613 
5614 	mutex_lock(&dev_priv->drrs.mutex);
5615 
5616 	intel_dp = dev_priv->drrs.dp;
5617 
5618 	if (!intel_dp)
5619 		goto unlock;
5620 
5621 	/*
5622 	 * The delayed work can race with an invalidate hence we need to
5623 	 * recheck.
5624 	 */
5625 
5626 	if (dev_priv->drrs.busy_frontbuffer_bits)
5627 		goto unlock;
5628 
5629 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5630 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5631 
5632 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5633 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5634 	}
5635 
5636 unlock:
5637 	mutex_unlock(&dev_priv->drrs.mutex);
5638 }
5639 
5640 /**
5641  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5642  * @dev_priv: i915 device
5643  * @frontbuffer_bits: frontbuffer plane tracking bits
5644  *
5645  * This function gets called everytime rendering on the given planes start.
5646  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5647  *
5648  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5649  */
5650 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5651 			       unsigned int frontbuffer_bits)
5652 {
5653 	struct drm_crtc *crtc;
5654 	enum i915_pipe pipe;
5655 
5656 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5657 		return;
5658 
5659 	cancel_delayed_work(&dev_priv->drrs.work);
5660 
5661 	mutex_lock(&dev_priv->drrs.mutex);
5662 	if (!dev_priv->drrs.dp) {
5663 		mutex_unlock(&dev_priv->drrs.mutex);
5664 		return;
5665 	}
5666 
5667 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5668 	pipe = to_intel_crtc(crtc)->pipe;
5669 
5670 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5671 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5672 
5673 	/* invalidate means busy screen hence upclock */
5674 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5675 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5676 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5677 
5678 	mutex_unlock(&dev_priv->drrs.mutex);
5679 }
5680 
5681 /**
5682  * intel_edp_drrs_flush - Restart Idleness DRRS
5683  * @dev_priv: i915 device
5684  * @frontbuffer_bits: frontbuffer plane tracking bits
5685  *
5686  * This function gets called every time rendering on the given planes has
5687  * completed or flip on a crtc is completed. So DRRS should be upclocked
5688  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5689  * if no other planes are dirty.
5690  *
5691  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5692  */
5693 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5694 			  unsigned int frontbuffer_bits)
5695 {
5696 	struct drm_crtc *crtc;
5697 	enum i915_pipe pipe;
5698 
5699 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5700 		return;
5701 
5702 	cancel_delayed_work(&dev_priv->drrs.work);
5703 
5704 	mutex_lock(&dev_priv->drrs.mutex);
5705 	if (!dev_priv->drrs.dp) {
5706 		mutex_unlock(&dev_priv->drrs.mutex);
5707 		return;
5708 	}
5709 
5710 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5711 	pipe = to_intel_crtc(crtc)->pipe;
5712 
5713 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5714 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5715 
5716 	/* flush means busy screen hence upclock */
5717 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5718 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5719 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5720 
5721 	/*
5722 	 * flush also means no more activity hence schedule downclock, if all
5723 	 * other fbs are quiescent too
5724 	 */
5725 	if (!dev_priv->drrs.busy_frontbuffer_bits)
5726 		schedule_delayed_work(&dev_priv->drrs.work,
5727 				msecs_to_jiffies(1000));
5728 	mutex_unlock(&dev_priv->drrs.mutex);
5729 }
5730 
5731 /**
5732  * DOC: Display Refresh Rate Switching (DRRS)
5733  *
5734  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5735  * which enables swtching between low and high refresh rates,
5736  * dynamically, based on the usage scenario. This feature is applicable
5737  * for internal panels.
5738  *
5739  * Indication that the panel supports DRRS is given by the panel EDID, which
5740  * would list multiple refresh rates for one resolution.
5741  *
5742  * DRRS is of 2 types - static and seamless.
5743  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5744  * (may appear as a blink on screen) and is used in dock-undock scenario.
5745  * Seamless DRRS involves changing RR without any visual effect to the user
5746  * and can be used during normal system usage. This is done by programming
5747  * certain registers.
5748  *
5749  * Support for static/seamless DRRS may be indicated in the VBT based on
5750  * inputs from the panel spec.
5751  *
5752  * DRRS saves power by switching to low RR based on usage scenarios.
5753  *
5754  * The implementation is based on frontbuffer tracking implementation.  When
5755  * there is a disturbance on the screen triggered by user activity or a periodic
5756  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5757  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5758  * made.
5759  *
5760  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5761  * and intel_edp_drrs_flush() are called.
5762  *
5763  * DRRS can be further extended to support other internal panels and also
5764  * the scenario of video playback wherein RR is set based on the rate
5765  * requested by userspace.
5766  */
5767 
5768 /**
5769  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5770  * @intel_connector: eDP connector
5771  * @fixed_mode: preferred mode of panel
5772  *
5773  * This function is  called only once at driver load to initialize basic
5774  * DRRS stuff.
5775  *
5776  * Returns:
5777  * Downclock mode if panel supports it, else return NULL.
5778  * DRRS support is determined by the presence of downclock mode (apart
5779  * from VBT setting).
5780  */
5781 static struct drm_display_mode *
5782 intel_dp_drrs_init(struct intel_connector *intel_connector,
5783 		struct drm_display_mode *fixed_mode)
5784 {
5785 	struct drm_connector *connector = &intel_connector->base;
5786 	struct drm_device *dev = connector->dev;
5787 	struct drm_i915_private *dev_priv = to_i915(dev);
5788 	struct drm_display_mode *downclock_mode = NULL;
5789 
5790 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5791 	lockinit(&dev_priv->drrs.mutex, "i915dm", 0, LK_CANRECURSE);
5792 
5793 	if (INTEL_GEN(dev_priv) <= 6) {
5794 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5795 		return NULL;
5796 	}
5797 
5798 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5799 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5800 		return NULL;
5801 	}
5802 
5803 	downclock_mode = intel_find_panel_downclock
5804 					(dev_priv, fixed_mode, connector);
5805 
5806 	if (!downclock_mode) {
5807 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5808 		return NULL;
5809 	}
5810 
5811 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5812 
5813 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5814 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5815 	return downclock_mode;
5816 }
5817 
5818 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5819 				     struct intel_connector *intel_connector)
5820 {
5821 	struct drm_connector *connector = &intel_connector->base;
5822 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5823 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
5824 	struct drm_device *dev = intel_encoder->base.dev;
5825 	struct drm_i915_private *dev_priv = to_i915(dev);
5826 	struct drm_display_mode *fixed_mode = NULL;
5827 	struct drm_display_mode *alt_fixed_mode = NULL;
5828 	struct drm_display_mode *downclock_mode = NULL;
5829 	bool has_dpcd;
5830 	struct drm_display_mode *scan;
5831 	struct edid *edid;
5832 	enum i915_pipe pipe = INVALID_PIPE;
5833 
5834 	if (!intel_dp_is_edp(intel_dp))
5835 		return true;
5836 
5837 	/*
5838 	 * On IBX/CPT we may get here with LVDS already registered. Since the
5839 	 * driver uses the only internal power sequencer available for both
5840 	 * eDP and LVDS bail out early in this case to prevent interfering
5841 	 * with an already powered-on LVDS power sequencer.
5842 	 */
5843 	if (intel_get_lvds_encoder(dev)) {
5844 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5845 		DRM_INFO("LVDS was detected, not registering eDP\n");
5846 
5847 		return false;
5848 	}
5849 
5850 	pps_lock(intel_dp);
5851 
5852 	intel_dp_init_panel_power_timestamps(intel_dp);
5853 	intel_dp_pps_init(dev, intel_dp);
5854 	intel_edp_panel_vdd_sanitize(intel_dp);
5855 
5856 	pps_unlock(intel_dp);
5857 
5858 	/* Cache DPCD and EDID for edp. */
5859 	has_dpcd = intel_edp_init_dpcd(intel_dp);
5860 
5861 	if (!has_dpcd) {
5862 		/* if this fails, presume the device is a ghost */
5863 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
5864 		goto out_vdd_off;
5865 	}
5866 
5867 	mutex_lock(&dev->mode_config.mutex);
5868 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5869 	if (edid) {
5870 		if (drm_add_edid_modes(connector, edid)) {
5871 			drm_mode_connector_update_edid_property(connector,
5872 								edid);
5873 			drm_edid_to_eld(connector, edid);
5874 		} else {
5875 			kfree(edid);
5876 			edid = ERR_PTR(-EINVAL);
5877 		}
5878 	} else {
5879 		edid = ERR_PTR(-ENOENT);
5880 	}
5881 	intel_connector->edid = edid;
5882 
5883 	/* prefer fixed mode from EDID if available, save an alt mode also */
5884 	list_for_each_entry(scan, &connector->probed_modes, head) {
5885 		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5886 			fixed_mode = drm_mode_duplicate(dev, scan);
5887 			downclock_mode = intel_dp_drrs_init(
5888 						intel_connector, fixed_mode);
5889 		} else if (!alt_fixed_mode) {
5890 			alt_fixed_mode = drm_mode_duplicate(dev, scan);
5891 		}
5892 	}
5893 
5894 	/* fallback to VBT if available for eDP */
5895 	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5896 		fixed_mode = drm_mode_duplicate(dev,
5897 					dev_priv->vbt.lfp_lvds_vbt_mode);
5898 		if (fixed_mode) {
5899 			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5900 			connector->display_info.width_mm = fixed_mode->width_mm;
5901 			connector->display_info.height_mm = fixed_mode->height_mm;
5902 		}
5903 	}
5904 	mutex_unlock(&dev->mode_config.mutex);
5905 
5906 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5907 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5908 		register_reboot_notifier(&intel_dp->edp_notifier);
5909 
5910 		/*
5911 		 * Figure out the current pipe for the initial backlight setup.
5912 		 * If the current pipe isn't valid, try the PPS pipe, and if that
5913 		 * fails just assume pipe A.
5914 		 */
5915 		pipe = vlv_active_pipe(intel_dp);
5916 
5917 		if (pipe != PIPE_A && pipe != PIPE_B)
5918 			pipe = intel_dp->pps_pipe;
5919 
5920 		if (pipe != PIPE_A && pipe != PIPE_B)
5921 			pipe = PIPE_A;
5922 
5923 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5924 			      pipe_name(pipe));
5925 	}
5926 
5927 	intel_panel_init(&intel_connector->panel, fixed_mode, alt_fixed_mode,
5928 			 downclock_mode);
5929 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
5930 	intel_panel_setup_backlight(connector, pipe);
5931 
5932 	return true;
5933 
5934 out_vdd_off:
5935 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5936 	/*
5937 	 * vdd might still be enabled do to the delayed vdd off.
5938 	 * Make sure vdd is actually turned off here.
5939 	 */
5940 	pps_lock(intel_dp);
5941 	edp_panel_vdd_off_sync(intel_dp);
5942 	pps_unlock(intel_dp);
5943 
5944 	return false;
5945 }
5946 
5947 /* Set up the hotplug pin and aux power domain. */
5948 static void
5949 intel_dp_init_connector_port_info(struct intel_digital_port *intel_dig_port)
5950 {
5951 	struct intel_encoder *encoder = &intel_dig_port->base;
5952 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5953 
5954 	encoder->hpd_pin = intel_hpd_pin(intel_dig_port->port);
5955 
5956 	switch (intel_dig_port->port) {
5957 	case PORT_A:
5958 		intel_dp->aux_power_domain = POWER_DOMAIN_AUX_A;
5959 		break;
5960 	case PORT_B:
5961 		intel_dp->aux_power_domain = POWER_DOMAIN_AUX_B;
5962 		break;
5963 	case PORT_C:
5964 		intel_dp->aux_power_domain = POWER_DOMAIN_AUX_C;
5965 		break;
5966 	case PORT_D:
5967 		intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5968 		break;
5969 	case PORT_E:
5970 		/* FIXME: Check VBT for actual wiring of PORT E */
5971 		intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5972 		break;
5973 	default:
5974 		MISSING_CASE(intel_dig_port->port);
5975 	}
5976 }
5977 
5978 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
5979 {
5980 	struct intel_connector *intel_connector;
5981 	struct drm_connector *connector;
5982 
5983 	intel_connector = container_of(work, typeof(*intel_connector),
5984 				       modeset_retry_work);
5985 	connector = &intel_connector->base;
5986 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
5987 		      connector->name);
5988 
5989 	/* Grab the locks before changing connector property*/
5990 	mutex_lock(&connector->dev->mode_config.mutex);
5991 	/* Set connector link status to BAD and send a Uevent to notify
5992 	 * userspace to do a modeset.
5993 	 */
5994 	drm_mode_connector_set_link_status_property(connector,
5995 						    DRM_MODE_LINK_STATUS_BAD);
5996 	mutex_unlock(&connector->dev->mode_config.mutex);
5997 	/* Send Hotplug uevent so userspace can reprobe */
5998 	drm_kms_helper_hotplug_event(connector->dev);
5999 }
6000 
6001 bool
6002 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6003 			struct intel_connector *intel_connector)
6004 {
6005 	struct drm_connector *connector = &intel_connector->base;
6006 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6007 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
6008 	struct drm_device *dev = intel_encoder->base.dev;
6009 	struct drm_i915_private *dev_priv = to_i915(dev);
6010 	enum port port = intel_dig_port->port;
6011 	int type;
6012 
6013 	/* Initialize the work for modeset in case of link train failure */
6014 	INIT_WORK(&intel_connector->modeset_retry_work,
6015 		  intel_dp_modeset_retry_work_fn);
6016 
6017 	if (WARN(intel_dig_port->max_lanes < 1,
6018 		 "Not enough lanes (%d) for DP on port %c\n",
6019 		 intel_dig_port->max_lanes, port_name(port)))
6020 		return false;
6021 
6022 	intel_dp_set_source_rates(intel_dp);
6023 
6024 	intel_dp->reset_link_params = true;
6025 	intel_dp->pps_pipe = INVALID_PIPE;
6026 	intel_dp->active_pipe = INVALID_PIPE;
6027 
6028 	/* intel_dp vfuncs */
6029 	if (INTEL_GEN(dev_priv) >= 9)
6030 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
6031 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6032 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
6033 	else if (HAS_PCH_SPLIT(dev_priv))
6034 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
6035 	else
6036 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
6037 
6038 	if (INTEL_GEN(dev_priv) >= 9)
6039 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
6040 	else
6041 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
6042 
6043 	if (HAS_DDI(dev_priv))
6044 		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6045 
6046 	/* Preserve the current hw state. */
6047 	intel_dp->DP = I915_READ(intel_dp->output_reg);
6048 	intel_dp->attached_connector = intel_connector;
6049 
6050 	if (intel_dp_is_port_edp(dev_priv, port))
6051 		type = DRM_MODE_CONNECTOR_eDP;
6052 	else
6053 		type = DRM_MODE_CONNECTOR_DisplayPort;
6054 
6055 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6056 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6057 
6058 	/*
6059 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6060 	 * for DP the encoder type can be set by the caller to
6061 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6062 	 */
6063 	if (type == DRM_MODE_CONNECTOR_eDP)
6064 		intel_encoder->type = INTEL_OUTPUT_EDP;
6065 
6066 	/* eDP only on port B and/or C on vlv/chv */
6067 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6068 		    intel_dp_is_edp(intel_dp) &&
6069 		    port != PORT_B && port != PORT_C))
6070 		return false;
6071 
6072 	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6073 			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6074 			port_name(port));
6075 
6076 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6077 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6078 
6079 	connector->interlace_allowed = true;
6080 	connector->doublescan_allowed = 0;
6081 
6082 	intel_dp_init_connector_port_info(intel_dig_port);
6083 
6084 	intel_dp_aux_init(intel_dp);
6085 
6086 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6087 			  edp_panel_vdd_work);
6088 
6089 	intel_connector_attach_encoder(intel_connector, intel_encoder);
6090 
6091 	if (HAS_DDI(dev_priv))
6092 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6093 	else
6094 		intel_connector->get_hw_state = intel_connector_get_hw_state;
6095 
6096 	/* init MST on ports that can support it */
6097 	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6098 	    (port == PORT_B || port == PORT_C || port == PORT_D))
6099 		intel_dp_mst_encoder_init(intel_dig_port,
6100 					  intel_connector->base.base.id);
6101 
6102 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6103 		intel_dp_aux_fini(intel_dp);
6104 		intel_dp_mst_encoder_cleanup(intel_dig_port);
6105 		goto fail;
6106 	}
6107 
6108 	intel_dp_add_properties(intel_dp, connector);
6109 
6110 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6111 	 * 0xd.  Failure to do so will result in spurious interrupts being
6112 	 * generated on the port when a cable is not attached.
6113 	 */
6114 	if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
6115 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6116 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6117 	}
6118 
6119 	return true;
6120 
6121 fail:
6122 	drm_connector_cleanup(connector);
6123 
6124 	return false;
6125 }
6126 
6127 bool intel_dp_init(struct drm_i915_private *dev_priv,
6128 		   i915_reg_t output_reg,
6129 		   enum port port)
6130 {
6131 	struct intel_digital_port *intel_dig_port;
6132 	struct intel_encoder *intel_encoder;
6133 	struct drm_encoder *encoder;
6134 	struct intel_connector *intel_connector;
6135 
6136 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6137 	if (!intel_dig_port)
6138 		return false;
6139 
6140 	intel_connector = intel_connector_alloc();
6141 	if (!intel_connector)
6142 		goto err_connector_alloc;
6143 
6144 	intel_encoder = &intel_dig_port->base;
6145 	encoder = &intel_encoder->base;
6146 
6147 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6148 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6149 			     "DP %c", port_name(port)))
6150 		goto err_encoder_init;
6151 
6152 	intel_encoder->compute_config = intel_dp_compute_config;
6153 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6154 	intel_encoder->get_config = intel_dp_get_config;
6155 	intel_encoder->suspend = intel_dp_encoder_suspend;
6156 	if (IS_CHERRYVIEW(dev_priv)) {
6157 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6158 		intel_encoder->pre_enable = chv_pre_enable_dp;
6159 		intel_encoder->enable = vlv_enable_dp;
6160 		intel_encoder->disable = vlv_disable_dp;
6161 		intel_encoder->post_disable = chv_post_disable_dp;
6162 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6163 	} else if (IS_VALLEYVIEW(dev_priv)) {
6164 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6165 		intel_encoder->pre_enable = vlv_pre_enable_dp;
6166 		intel_encoder->enable = vlv_enable_dp;
6167 		intel_encoder->disable = vlv_disable_dp;
6168 		intel_encoder->post_disable = vlv_post_disable_dp;
6169 	} else if (INTEL_GEN(dev_priv) >= 5) {
6170 		intel_encoder->pre_enable = g4x_pre_enable_dp;
6171 		intel_encoder->enable = g4x_enable_dp;
6172 		intel_encoder->disable = ilk_disable_dp;
6173 		intel_encoder->post_disable = ilk_post_disable_dp;
6174 	} else {
6175 		intel_encoder->pre_enable = g4x_pre_enable_dp;
6176 		intel_encoder->enable = g4x_enable_dp;
6177 		intel_encoder->disable = g4x_disable_dp;
6178 	}
6179 
6180 	intel_dig_port->port = port;
6181 	intel_dig_port->dp.output_reg = output_reg;
6182 	intel_dig_port->max_lanes = 4;
6183 
6184 	intel_encoder->type = INTEL_OUTPUT_DP;
6185 	intel_encoder->power_domain = intel_port_to_power_domain(port);
6186 	if (IS_CHERRYVIEW(dev_priv)) {
6187 		if (port == PORT_D)
6188 			intel_encoder->crtc_mask = 1 << 2;
6189 		else
6190 			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6191 	} else {
6192 		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6193 	}
6194 	intel_encoder->cloneable = 0;
6195 	intel_encoder->port = port;
6196 
6197 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6198 	dev_priv->hotplug.irq_port[port] = intel_dig_port;
6199 
6200 	if (port != PORT_A)
6201 		intel_infoframe_init(intel_dig_port);
6202 
6203 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6204 		goto err_init_connector;
6205 
6206 	return true;
6207 
6208 err_init_connector:
6209 	drm_encoder_cleanup(encoder);
6210 err_encoder_init:
6211 	kfree(intel_connector);
6212 err_connector_alloc:
6213 	kfree(intel_dig_port);
6214 	return false;
6215 }
6216 
6217 void intel_dp_mst_suspend(struct drm_device *dev)
6218 {
6219 	struct drm_i915_private *dev_priv = to_i915(dev);
6220 	int i;
6221 
6222 	/* disable MST */
6223 	for (i = 0; i < I915_MAX_PORTS; i++) {
6224 		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6225 
6226 		if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6227 			continue;
6228 
6229 		if (intel_dig_port->dp.is_mst)
6230 			drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6231 	}
6232 }
6233 
6234 void intel_dp_mst_resume(struct drm_device *dev)
6235 {
6236 	struct drm_i915_private *dev_priv = to_i915(dev);
6237 	int i;
6238 
6239 	for (i = 0; i < I915_MAX_PORTS; i++) {
6240 		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6241 		int ret;
6242 
6243 		if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6244 			continue;
6245 
6246 		ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6247 		if (ret)
6248 			intel_dp_check_mst_status(&intel_dig_port->dp);
6249 	}
6250 }
6251