xref: /dragonfly/sys/dev/drm/i915/intel_dp.c (revision c4d6eff4)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/export.h>
30 #include <drm/drmP.h>
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_crtc_helper.h>
33 #include <drm/drm_edid.h>
34 #include "intel_drv.h"
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 
38 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
39 
40 /**
41  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
42  * @intel_dp: DP struct
43  *
44  * If a CPU or PCH DP output is attached to an eDP panel, this function
45  * will return true, and false otherwise.
46  */
47 static bool is_edp(struct intel_dp *intel_dp)
48 {
49 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
50 
51 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
52 }
53 
54 /**
55  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
56  * @intel_dp: DP struct
57  *
58  * Returns true if the given DP struct corresponds to a PCH DP port attached
59  * to an eDP panel, false otherwise.  Helpful for determining whether we
60  * may need FDI resources for a given DP output or not.
61  */
62 static bool is_pch_edp(struct intel_dp *intel_dp)
63 {
64 	return intel_dp->is_pch_edp;
65 }
66 
67 /**
68  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
69  * @intel_dp: DP struct
70  *
71  * Returns true if the given DP struct corresponds to a CPU eDP port.
72  */
73 static bool is_cpu_edp(struct intel_dp *intel_dp)
74 {
75 	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
76 }
77 
78 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
79 {
80 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
81 
82 	return intel_dig_port->base.base.dev;
83 }
84 
85 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
86 {
87 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
88 }
89 
90 /**
91  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92  * @encoder: DRM encoder
93  *
94  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
95  * by intel_display.c.
96  */
97 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98 {
99 	struct intel_dp *intel_dp;
100 
101 	if (!encoder)
102 		return false;
103 
104 	intel_dp = enc_to_intel_dp(encoder);
105 
106 	return is_pch_edp(intel_dp);
107 }
108 
109 static void intel_dp_link_down(struct intel_dp *intel_dp);
110 
111 void
112 intel_edp_link_config(struct intel_encoder *intel_encoder,
113 		       int *lane_num, int *link_bw)
114 {
115 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
116 
117 	*lane_num = intel_dp->lane_count;
118 	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
119 }
120 
121 int
122 intel_edp_target_clock(struct intel_encoder *intel_encoder,
123 		       struct drm_display_mode *mode)
124 {
125 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
126 	struct intel_connector *intel_connector = intel_dp->attached_connector;
127 
128 	if (intel_connector->panel.fixed_mode)
129 		return intel_connector->panel.fixed_mode->clock;
130 	else
131 		return mode->clock;
132 }
133 
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138 
139 	switch (max_link_bw) {
140 	case DP_LINK_BW_1_62:
141 	case DP_LINK_BW_2_7:
142 		break;
143 	default:
144 		max_link_bw = DP_LINK_BW_1_62;
145 		break;
146 	}
147 	return max_link_bw;
148 }
149 
150 static int
151 intel_dp_link_clock(uint8_t link_bw)
152 {
153 	if (link_bw == DP_LINK_BW_2_7)
154 		return 270000;
155 	else
156 		return 162000;
157 }
158 
159 /*
160  * The units on the numbers in the next two are... bizarre.  Examples will
161  * make it clearer; this one parallels an example in the eDP spec.
162  *
163  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
164  *
165  *     270000 * 1 * 8 / 10 == 216000
166  *
167  * The actual data capacity of that configuration is 2.16Gbit/s, so the
168  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
169  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
170  * 119000.  At 18bpp that's 2142000 kilobits per second.
171  *
172  * Thus the strange-looking division by 10 in intel_dp_link_required, to
173  * get the result in decakilobits instead of kilobits.
174  */
175 
176 static int
177 intel_dp_link_required(int pixel_clock, int bpp)
178 {
179 	return (pixel_clock * bpp + 9) / 10;
180 }
181 
182 static int
183 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
184 {
185 	return (max_link_clock * max_lanes * 8) / 10;
186 }
187 
188 static bool
189 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
190 			  struct drm_display_mode *mode,
191 			  bool adjust_mode)
192 {
193 	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
194 	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
195 	int max_rate, mode_rate;
196 
197 	mode_rate = intel_dp_link_required(mode->clock, 24);
198 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
199 
200 	if (mode_rate > max_rate) {
201 		mode_rate = intel_dp_link_required(mode->clock, 18);
202 		if (mode_rate > max_rate)
203 			return false;
204 
205 		if (adjust_mode)
206 			mode->private_flags
207 				|= INTEL_MODE_DP_FORCE_6BPC;
208 
209 		return true;
210 	}
211 
212 	return true;
213 }
214 
215 static int
216 intel_dp_mode_valid(struct drm_connector *connector,
217 		    struct drm_display_mode *mode)
218 {
219 	struct intel_dp *intel_dp = intel_attached_dp(connector);
220 	struct intel_connector *intel_connector = to_intel_connector(connector);
221 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
222 
223 	if (is_edp(intel_dp) && fixed_mode) {
224 		if (mode->hdisplay > fixed_mode->hdisplay)
225 			return MODE_PANEL;
226 
227 		if (mode->vdisplay > fixed_mode->vdisplay)
228 			return MODE_PANEL;
229 	}
230 
231 	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
232 		return MODE_CLOCK_HIGH;
233 
234 	if (mode->clock < 10000)
235 		return MODE_CLOCK_LOW;
236 
237 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
238 		return MODE_H_ILLEGAL;
239 
240 	return MODE_OK;
241 }
242 
243 static uint32_t
244 pack_aux(uint8_t *src, int src_bytes)
245 {
246 	int	i;
247 	uint32_t v = 0;
248 
249 	if (src_bytes > 4)
250 		src_bytes = 4;
251 	for (i = 0; i < src_bytes; i++)
252 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
253 	return v;
254 }
255 
256 static void
257 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
258 {
259 	int i;
260 	if (dst_bytes > 4)
261 		dst_bytes = 4;
262 	for (i = 0; i < dst_bytes; i++)
263 		dst[i] = src >> ((3-i) * 8);
264 }
265 
266 /* hrawclock is 1/4 the FSB frequency */
267 static int
268 intel_hrawclk(struct drm_device *dev)
269 {
270 	struct drm_i915_private *dev_priv = dev->dev_private;
271 	uint32_t clkcfg;
272 
273 	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
274 	if (IS_VALLEYVIEW(dev))
275 		return 200;
276 
277 	clkcfg = I915_READ(CLKCFG);
278 	switch (clkcfg & CLKCFG_FSB_MASK) {
279 	case CLKCFG_FSB_400:
280 		return 100;
281 	case CLKCFG_FSB_533:
282 		return 133;
283 	case CLKCFG_FSB_667:
284 		return 166;
285 	case CLKCFG_FSB_800:
286 		return 200;
287 	case CLKCFG_FSB_1067:
288 		return 266;
289 	case CLKCFG_FSB_1333:
290 		return 333;
291 	/* these two are just a guess; one of them might be right */
292 	case CLKCFG_FSB_1600:
293 	case CLKCFG_FSB_1600_ALT:
294 		return 400;
295 	default:
296 		return 133;
297 	}
298 }
299 
300 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
301 {
302 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
303 	struct drm_i915_private *dev_priv = dev->dev_private;
304 
305 	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
306 }
307 
308 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
309 {
310 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
311 	struct drm_i915_private *dev_priv = dev->dev_private;
312 
313 	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
314 }
315 
316 static void
317 intel_dp_check_edp(struct intel_dp *intel_dp)
318 {
319 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
320 	struct drm_i915_private *dev_priv = dev->dev_private;
321 
322 	if (!is_edp(intel_dp))
323 		return;
324 	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
325 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
326 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
327 			      I915_READ(PCH_PP_STATUS),
328 			      I915_READ(PCH_PP_CONTROL));
329 	}
330 }
331 
332 static int
333 intel_dp_aux_ch(struct intel_dp *intel_dp,
334 		uint8_t *send, int send_bytes,
335 		uint8_t *recv, int recv_size)
336 {
337 	uint32_t output_reg = intel_dp->output_reg;
338 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
339 	struct drm_device *dev = intel_dig_port->base.base.dev;
340 	struct drm_i915_private *dev_priv = dev->dev_private;
341 	uint32_t ch_ctl = output_reg + 0x10;
342 	uint32_t ch_data = ch_ctl + 4;
343 	int i;
344 	int recv_bytes;
345 	uint32_t status;
346 	uint32_t aux_clock_divider;
347 	int try, precharge;
348 
349 	if (IS_HASWELL(dev)) {
350 		switch (intel_dig_port->port) {
351 		case PORT_A:
352 			ch_ctl = DPA_AUX_CH_CTL;
353 			ch_data = DPA_AUX_CH_DATA1;
354 			break;
355 		case PORT_B:
356 			ch_ctl = PCH_DPB_AUX_CH_CTL;
357 			ch_data = PCH_DPB_AUX_CH_DATA1;
358 			break;
359 		case PORT_C:
360 			ch_ctl = PCH_DPC_AUX_CH_CTL;
361 			ch_data = PCH_DPC_AUX_CH_DATA1;
362 			break;
363 		case PORT_D:
364 			ch_ctl = PCH_DPD_AUX_CH_CTL;
365 			ch_data = PCH_DPD_AUX_CH_DATA1;
366 			break;
367 		default:
368 			BUG();
369 		}
370 	}
371 
372 	intel_dp_check_edp(intel_dp);
373 	/* The clock divider is based off the hrawclk,
374 	 * and would like to run at 2MHz. So, take the
375 	 * hrawclk value and divide by 2 and use that
376 	 *
377 	 * Note that PCH attached eDP panels should use a 125MHz input
378 	 * clock divider.
379 	 */
380 	if (is_cpu_edp(intel_dp)) {
381 		if (IS_HASWELL(dev))
382 			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
383 		else if (IS_VALLEYVIEW(dev))
384 			aux_clock_divider = 100;
385 		else if (IS_GEN6(dev) || IS_GEN7(dev))
386 			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
387 		else
388 			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
389 	} else if (HAS_PCH_SPLIT(dev))
390 		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
391 	else
392 		aux_clock_divider = intel_hrawclk(dev) / 2;
393 
394 	if (IS_GEN6(dev))
395 		precharge = 3;
396 	else
397 		precharge = 5;
398 
399 	/* Try to wait for any previous AUX channel activity */
400 	for (try = 0; try < 3; try++) {
401 		status = I915_READ(ch_ctl);
402 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
403 			break;
404 		msleep(1);
405 	}
406 
407 	if (try == 3) {
408 		WARN(1, "dp_aux_ch not started status 0x%08x\n",
409 		     I915_READ(ch_ctl));
410 		return -EBUSY;
411 	}
412 
413 	/* Must try at least 3 times according to DP spec */
414 	for (try = 0; try < 5; try++) {
415 		/* Load the send data into the aux channel data registers */
416 		for (i = 0; i < send_bytes; i += 4)
417 			I915_WRITE(ch_data + i,
418 				   pack_aux(send + i, send_bytes - i));
419 
420 		/* Send the command and wait for it to complete */
421 		I915_WRITE(ch_ctl,
422 			   DP_AUX_CH_CTL_SEND_BUSY |
423 			   DP_AUX_CH_CTL_TIME_OUT_400us |
424 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
425 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
426 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
427 			   DP_AUX_CH_CTL_DONE |
428 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
429 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
430 		for (;;) {
431 			status = I915_READ(ch_ctl);
432 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
433 				break;
434 			udelay(100);
435 		}
436 
437 		/* Clear done status and any errors */
438 		I915_WRITE(ch_ctl,
439 			   status |
440 			   DP_AUX_CH_CTL_DONE |
441 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
442 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
443 
444 		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
445 			      DP_AUX_CH_CTL_RECEIVE_ERROR))
446 			continue;
447 		if (status & DP_AUX_CH_CTL_DONE)
448 			break;
449 	}
450 
451 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
452 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
453 		return -EBUSY;
454 	}
455 
456 	/* Check for timeout or receive error.
457 	 * Timeouts occur when the sink is not connected
458 	 */
459 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
460 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
461 		return -EIO;
462 	}
463 
464 	/* Timeouts occur when the device isn't connected, so they're
465 	 * "normal" -- don't fill the kernel log with these */
466 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
467 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
468 		return -ETIMEDOUT;
469 	}
470 
471 	/* Unload any bytes sent back from the other side */
472 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
473 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
474 	if (recv_bytes > recv_size)
475 		recv_bytes = recv_size;
476 
477 	for (i = 0; i < recv_bytes; i += 4)
478 		unpack_aux(I915_READ(ch_data + i),
479 			   recv + i, recv_bytes - i);
480 
481 	return recv_bytes;
482 }
483 
484 /* Write data to the aux channel in native mode */
485 static int
486 intel_dp_aux_native_write(struct intel_dp *intel_dp,
487 			  uint16_t address, uint8_t *send, int send_bytes)
488 {
489 	int ret;
490 	uint8_t	msg[20];
491 	int msg_bytes;
492 	uint8_t	ack;
493 
494 	intel_dp_check_edp(intel_dp);
495 	if (send_bytes > 16)
496 		return -1;
497 	msg[0] = AUX_NATIVE_WRITE << 4;
498 	msg[1] = address >> 8;
499 	msg[2] = address & 0xff;
500 	msg[3] = send_bytes - 1;
501 	memcpy(&msg[4], send, send_bytes);
502 	msg_bytes = send_bytes + 4;
503 	for (;;) {
504 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
505 		if (ret < 0)
506 			return ret;
507 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
508 			break;
509 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
510 			udelay(100);
511 		else
512 			return -EIO;
513 	}
514 	return send_bytes;
515 }
516 
517 /* Write a single byte to the aux channel in native mode */
518 static int
519 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
520 			    uint16_t address, uint8_t byte)
521 {
522 	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
523 }
524 
525 /* read bytes from a native aux channel */
526 static int
527 intel_dp_aux_native_read(struct intel_dp *intel_dp,
528 			 uint16_t address, uint8_t *recv, int recv_bytes)
529 {
530 	uint8_t msg[4];
531 	int msg_bytes;
532 	uint8_t reply[20];
533 	int reply_bytes;
534 	uint8_t ack;
535 	int ret;
536 
537 	intel_dp_check_edp(intel_dp);
538 	msg[0] = AUX_NATIVE_READ << 4;
539 	msg[1] = address >> 8;
540 	msg[2] = address & 0xff;
541 	msg[3] = recv_bytes - 1;
542 
543 	msg_bytes = 4;
544 	reply_bytes = recv_bytes + 1;
545 
546 	for (;;) {
547 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
548 				      reply, reply_bytes);
549 		if (ret == 0)
550 			return -EPROTO;
551 		if (ret < 0)
552 			return ret;
553 		ack = reply[0];
554 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
555 			memcpy(recv, reply + 1, ret - 1);
556 			return ret - 1;
557 		}
558 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
559 			udelay(100);
560 		else
561 			return -EIO;
562 	}
563 }
564 
565 static int
566 intel_dp_i2c_aux_ch(device_t idev, int mode,
567 		    uint8_t write_byte, uint8_t *read_byte)
568 {
569 	struct iic_dp_aux_data *data;
570 	struct intel_dp *intel_dp;
571 	uint16_t address;
572 
573 	uint8_t msg[5];
574 	uint8_t reply[2];
575 	unsigned retry;
576 	int msg_bytes;
577 	int reply_bytes;
578 	int ret;
579 
580 	data = device_get_softc(idev);
581 	intel_dp = data->priv;
582 	address = data->address;
583 
584 	intel_dp_check_edp(intel_dp);
585 	/* Set up the command byte */
586 	if (mode & MODE_I2C_READ)
587 		msg[0] = AUX_I2C_READ << 4;
588 	else
589 		msg[0] = AUX_I2C_WRITE << 4;
590 
591 	if (!(mode & MODE_I2C_STOP))
592 		msg[0] |= AUX_I2C_MOT << 4;
593 
594 	msg[1] = address >> 8;
595 	msg[2] = address;
596 
597 	switch (mode) {
598 	case MODE_I2C_WRITE:
599 		msg[3] = 0;
600 		msg[4] = write_byte;
601 		msg_bytes = 5;
602 		reply_bytes = 1;
603 		break;
604 	case MODE_I2C_READ:
605 		msg[3] = 0;
606 		msg_bytes = 4;
607 		reply_bytes = 2;
608 		break;
609 	default:
610 		msg_bytes = 3;
611 		reply_bytes = 1;
612 		break;
613 	}
614 
615 	for (retry = 0; retry < 5; retry++) {
616 		ret = intel_dp_aux_ch(intel_dp,
617 				      msg, msg_bytes,
618 				      reply, reply_bytes);
619 		if (ret < 0) {
620 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
621 			return ret;
622 		}
623 
624 		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
625 		case AUX_NATIVE_REPLY_ACK:
626 			/* I2C-over-AUX Reply field is only valid
627 			 * when paired with AUX ACK.
628 			 */
629 			break;
630 		case AUX_NATIVE_REPLY_NACK:
631 			DRM_DEBUG_KMS("aux_ch native nack\n");
632 			return -EREMOTEIO;
633 		case AUX_NATIVE_REPLY_DEFER:
634 			udelay(100);
635 			continue;
636 		default:
637 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
638 				  reply[0]);
639 			return -EREMOTEIO;
640 		}
641 
642 		switch (reply[0] & AUX_I2C_REPLY_MASK) {
643 		case AUX_I2C_REPLY_ACK:
644 			if (mode == MODE_I2C_READ) {
645 				*read_byte = reply[1];
646 			}
647 			return (0/*reply_bytes - 1*/);
648 		case AUX_I2C_REPLY_NACK:
649 			DRM_DEBUG_KMS("aux_i2c nack\n");
650 			return -EREMOTEIO;
651 		case AUX_I2C_REPLY_DEFER:
652 			DRM_DEBUG_KMS("aux_i2c defer\n");
653 			udelay(100);
654 			break;
655 		default:
656 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
657 			return -EREMOTEIO;
658 		}
659 	}
660 
661 	DRM_ERROR("too many retries, giving up\n");
662 	return -EREMOTEIO;
663 }
664 
665 static int
666 intel_dp_i2c_init(struct intel_dp *intel_dp,
667 		  struct intel_connector *intel_connector, const char *name)
668 {
669 	int	ret;
670 
671 	DRM_DEBUG_KMS("i2c_init %s\n", name);
672 
673 	ironlake_edp_panel_vdd_on(intel_dp);
674 	ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
675 	    intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
676 	    &intel_dp->adapter);
677 	ironlake_edp_panel_vdd_off(intel_dp, false);
678 	return ret;
679 }
680 
681 bool
682 intel_dp_mode_fixup(struct drm_encoder *encoder,
683 		    const struct drm_display_mode *mode,
684 		    struct drm_display_mode *adjusted_mode)
685 {
686 	struct drm_device *dev = encoder->dev;
687 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
688 	struct intel_connector *intel_connector = intel_dp->attached_connector;
689 	int lane_count, clock;
690 	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
691 	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
692 	int bpp, mode_rate;
693 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
694 
695 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
696 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
697 				       adjusted_mode);
698 		intel_pch_panel_fitting(dev,
699 					intel_connector->panel.fitting_mode,
700 					mode, adjusted_mode);
701 	}
702 
703 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
704 		return false;
705 
706 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
707 		      "max bw %02x pixel clock %iKHz\n",
708 		      max_lane_count, bws[max_clock], adjusted_mode->clock);
709 
710 	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
711 		return false;
712 
713 	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
714 	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
715 
716 	for (clock = 0; clock <= max_clock; clock++) {
717 		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
718 			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
719 
720 			if (mode_rate <= link_avail) {
721 				intel_dp->link_bw = bws[clock];
722 				intel_dp->lane_count = lane_count;
723 				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
724 				DRM_DEBUG_KMS("DP link bw %02x lane "
725 						"count %d clock %d bpp %d\n",
726 				       intel_dp->link_bw, intel_dp->lane_count,
727 				       adjusted_mode->clock, bpp);
728 				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
729 					      mode_rate, link_avail);
730 				return true;
731 			}
732 		}
733 	}
734 
735 	return false;
736 }
737 
738 struct intel_dp_m_n {
739 	uint32_t	tu;
740 	uint32_t	gmch_m;
741 	uint32_t	gmch_n;
742 	uint32_t	link_m;
743 	uint32_t	link_n;
744 };
745 
746 static void
747 intel_reduce_ratio(uint32_t *num, uint32_t *den)
748 {
749 	while (*num > 0xffffff || *den > 0xffffff) {
750 		*num >>= 1;
751 		*den >>= 1;
752 	}
753 }
754 
755 static void
756 intel_dp_compute_m_n(int bpp,
757 		     int nlanes,
758 		     int pixel_clock,
759 		     int link_clock,
760 		     struct intel_dp_m_n *m_n)
761 {
762 	m_n->tu = 64;
763 	m_n->gmch_m = (pixel_clock * bpp) >> 3;
764 	m_n->gmch_n = link_clock * nlanes;
765 	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
766 	m_n->link_m = pixel_clock;
767 	m_n->link_n = link_clock;
768 	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
769 }
770 
771 void
772 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
773 		 struct drm_display_mode *adjusted_mode)
774 {
775 	struct drm_device *dev = crtc->dev;
776 	struct intel_encoder *intel_encoder;
777 	struct intel_dp *intel_dp;
778 	struct drm_i915_private *dev_priv = dev->dev_private;
779 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
780 	int lane_count = 4;
781 	struct intel_dp_m_n m_n;
782 	int pipe = intel_crtc->pipe;
783 	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
784 	int target_clock;
785 
786 	/*
787 	 * Find the lane count in the intel_encoder private
788 	 */
789 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
790 		intel_dp = enc_to_intel_dp(&intel_encoder->base);
791 
792 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
793 		    intel_encoder->type == INTEL_OUTPUT_EDP)
794 		{
795 			lane_count = intel_dp->lane_count;
796 			break;
797 		}
798 	}
799 
800 	target_clock = mode->clock;
801 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
802 		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
803 			target_clock = intel_edp_target_clock(intel_encoder,
804 							      mode);
805 			break;
806 		}
807 	}
808 
809 	/*
810 	 * Compute the GMCH and Link ratios. The '3' here is
811 	 * the number of bytes_per_pixel post-LUT, which we always
812 	 * set up for 8-bits of R/G/B, or 3 bytes total.
813 	 */
814 	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
815 			     target_clock, adjusted_mode->clock, &m_n);
816 
817 	if (IS_HASWELL(dev)) {
818 		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
819 			   TU_SIZE(m_n.tu) | m_n.gmch_m);
820 		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
821 		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
822 		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
823 	} else if (HAS_PCH_SPLIT(dev)) {
824 		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
825 		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
826 		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
827 		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
828 	} else if (IS_VALLEYVIEW(dev)) {
829 		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
830 		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
831 		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
832 		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
833 	} else {
834 		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
835 			   TU_SIZE(m_n.tu) | m_n.gmch_m);
836 		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
837 		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
838 		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
839 	}
840 }
841 
842 void intel_dp_init_link_config(struct intel_dp *intel_dp)
843 {
844 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
845 	intel_dp->link_configuration[0] = intel_dp->link_bw;
846 	intel_dp->link_configuration[1] = intel_dp->lane_count;
847 	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
848 	/*
849 	 * Check for DPCD version > 1.1 and enhanced framing support
850 	 */
851 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
852 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
853 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
854 	}
855 }
856 
857 static void
858 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
859 		  struct drm_display_mode *adjusted_mode)
860 {
861 	struct drm_device *dev = encoder->dev;
862 	struct drm_i915_private *dev_priv = dev->dev_private;
863 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
864 	struct drm_crtc *crtc = encoder->crtc;
865 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
866 
867 	/*
868 	 * There are four kinds of DP registers:
869 	 *
870 	 * 	IBX PCH
871 	 * 	SNB CPU
872 	 *	IVB CPU
873 	 * 	CPT PCH
874 	 *
875 	 * IBX PCH and CPU are the same for almost everything,
876 	 * except that the CPU DP PLL is configured in this
877 	 * register
878 	 *
879 	 * CPT PCH is quite different, having many bits moved
880 	 * to the TRANS_DP_CTL register instead. That
881 	 * configuration happens (oddly) in ironlake_pch_enable
882 	 */
883 
884 	/* Preserve the BIOS-computed detected bit. This is
885 	 * supposed to be read-only.
886 	 */
887 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
888 
889 	/* Handle DP bits in common between all three register formats */
890 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
891 
892 	switch (intel_dp->lane_count) {
893 	case 1:
894 		intel_dp->DP |= DP_PORT_WIDTH_1;
895 		break;
896 	case 2:
897 		intel_dp->DP |= DP_PORT_WIDTH_2;
898 		break;
899 	case 4:
900 		intel_dp->DP |= DP_PORT_WIDTH_4;
901 		break;
902 	}
903 	if (intel_dp->has_audio) {
904 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
905 				 pipe_name(intel_crtc->pipe));
906 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
907 		intel_write_eld(encoder, adjusted_mode);
908 	}
909 
910 	intel_dp_init_link_config(intel_dp);
911 
912 	/* Split out the IBX/CPU vs CPT settings */
913 
914 	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
915 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
916 			intel_dp->DP |= DP_SYNC_HS_HIGH;
917 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
918 			intel_dp->DP |= DP_SYNC_VS_HIGH;
919 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
920 
921 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
922 			intel_dp->DP |= DP_ENHANCED_FRAMING;
923 
924 		intel_dp->DP |= intel_crtc->pipe << 29;
925 
926 		/* don't miss out required setting for eDP */
927 		if (adjusted_mode->clock < 200000)
928 			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
929 		else
930 			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
931 	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
932 		intel_dp->DP |= intel_dp->color_range;
933 
934 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
935 			intel_dp->DP |= DP_SYNC_HS_HIGH;
936 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
937 			intel_dp->DP |= DP_SYNC_VS_HIGH;
938 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
939 
940 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
941 			intel_dp->DP |= DP_ENHANCED_FRAMING;
942 
943 		if (intel_crtc->pipe == 1)
944 			intel_dp->DP |= DP_PIPEB_SELECT;
945 
946 		if (is_cpu_edp(intel_dp)) {
947 			/* don't miss out required setting for eDP */
948 			if (adjusted_mode->clock < 200000)
949 				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
950 			else
951 				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
952 		}
953 	} else {
954 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
955 	}
956 }
957 
958 #define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
959 #define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
960 
961 #define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
962 #define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
963 
964 #define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
965 #define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
966 
967 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
968 				       u32 mask,
969 				       u32 value)
970 {
971 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
972 	struct drm_i915_private *dev_priv = dev->dev_private;
973 
974 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
975 		      mask, value,
976 		      I915_READ(PCH_PP_STATUS),
977 		      I915_READ(PCH_PP_CONTROL));
978 
979 	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
980 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
981 			  I915_READ(PCH_PP_STATUS),
982 			  I915_READ(PCH_PP_CONTROL));
983 	}
984 }
985 
986 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
987 {
988 	DRM_DEBUG_KMS("Wait for panel power on\n");
989 	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
990 }
991 
992 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
993 {
994 	DRM_DEBUG_KMS("Wait for panel power off time\n");
995 	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
996 }
997 
998 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
999 {
1000 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1001 	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1002 }
1003 
1004 
1005 /* Read the current pp_control value, unlocking the register if it
1006  * is locked
1007  */
1008 
1009 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1010 {
1011 	u32	control = I915_READ(PCH_PP_CONTROL);
1012 
1013 	control &= ~PANEL_UNLOCK_MASK;
1014 	control |= PANEL_UNLOCK_REGS;
1015 	return control;
1016 }
1017 
1018 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1019 {
1020 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1021 	struct drm_i915_private *dev_priv = dev->dev_private;
1022 	u32 pp;
1023 
1024 	if (!is_edp(intel_dp))
1025 		return;
1026 	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1027 
1028 	WARN(intel_dp->want_panel_vdd,
1029 	     "eDP VDD already requested on\n");
1030 
1031 	intel_dp->want_panel_vdd = true;
1032 
1033 	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1034 		DRM_DEBUG_KMS("eDP VDD already on\n");
1035 		return;
1036 	}
1037 
1038 	if (!ironlake_edp_have_panel_power(intel_dp))
1039 		ironlake_wait_panel_power_cycle(intel_dp);
1040 
1041 	pp = ironlake_get_pp_control(dev_priv);
1042 	pp |= EDP_FORCE_VDD;
1043 	I915_WRITE(PCH_PP_CONTROL, pp);
1044 	POSTING_READ(PCH_PP_CONTROL);
1045 	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1046 		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1047 
1048 	/*
1049 	 * If the panel wasn't on, delay before accessing aux channel
1050 	 */
1051 	if (!ironlake_edp_have_panel_power(intel_dp)) {
1052 		DRM_DEBUG_KMS("eDP was not running\n");
1053 		msleep(intel_dp->panel_power_up_delay);
1054 	}
1055 }
1056 
1057 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1058 {
1059 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1060 	struct drm_i915_private *dev_priv = dev->dev_private;
1061 	u32 pp;
1062 
1063 	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1064 		pp = ironlake_get_pp_control(dev_priv);
1065 		pp &= ~EDP_FORCE_VDD;
1066 		I915_WRITE(PCH_PP_CONTROL, pp);
1067 		POSTING_READ(PCH_PP_CONTROL);
1068 
1069 		/* Make sure sequencer is idle before allowing subsequent activity */
1070 		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1071 			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1072 
1073 		msleep(intel_dp->panel_power_down_delay);
1074 	}
1075 }
1076 
1077 static void ironlake_panel_vdd_work(struct work_struct *__work)
1078 {
1079 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1080 						 struct intel_dp, panel_vdd_work);
1081 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1082 
1083 	lockmgr(&dev->mode_config.mutex, LK_EXCLUSIVE);
1084 	ironlake_panel_vdd_off_sync(intel_dp);
1085 	lockmgr(&dev->mode_config.mutex, LK_RELEASE);
1086 }
1087 
1088 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1089 {
1090 	if (!is_edp(intel_dp))
1091 		return;
1092 
1093 	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1094 	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1095 
1096 	intel_dp->want_panel_vdd = false;
1097 
1098 	if (sync) {
1099 		ironlake_panel_vdd_off_sync(intel_dp);
1100 	} else {
1101 		/*
1102 		 * Queue the timer to fire a long
1103 		 * time from now (relative to the power down delay)
1104 		 * to keep the panel power up across a sequence of operations
1105 		 */
1106 		schedule_delayed_work(&intel_dp->panel_vdd_work,
1107 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1108 	}
1109 }
1110 
1111 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1112 {
1113 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1114 	struct drm_i915_private *dev_priv = dev->dev_private;
1115 	u32 pp;
1116 
1117 	if (!is_edp(intel_dp))
1118 		return;
1119 
1120 	DRM_DEBUG_KMS("Turn eDP power on\n");
1121 
1122 	if (ironlake_edp_have_panel_power(intel_dp)) {
1123 		DRM_DEBUG_KMS("eDP power already on\n");
1124 		return;
1125 	}
1126 
1127 	ironlake_wait_panel_power_cycle(intel_dp);
1128 
1129 	pp = ironlake_get_pp_control(dev_priv);
1130 	if (IS_GEN5(dev)) {
1131 		/* ILK workaround: disable reset around power sequence */
1132 		pp &= ~PANEL_POWER_RESET;
1133 		I915_WRITE(PCH_PP_CONTROL, pp);
1134 		POSTING_READ(PCH_PP_CONTROL);
1135 	}
1136 
1137 	pp |= POWER_TARGET_ON;
1138 	if (!IS_GEN5(dev))
1139 		pp |= PANEL_POWER_RESET;
1140 
1141 	I915_WRITE(PCH_PP_CONTROL, pp);
1142 	POSTING_READ(PCH_PP_CONTROL);
1143 
1144 	ironlake_wait_panel_on(intel_dp);
1145 
1146 	if (IS_GEN5(dev)) {
1147 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1148 		I915_WRITE(PCH_PP_CONTROL, pp);
1149 		POSTING_READ(PCH_PP_CONTROL);
1150 	}
1151 }
1152 
1153 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1154 {
1155 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1156 	struct drm_i915_private *dev_priv = dev->dev_private;
1157 	u32 pp;
1158 
1159 	if (!is_edp(intel_dp))
1160 		return;
1161 
1162 	DRM_DEBUG_KMS("Turn eDP power off\n");
1163 
1164 	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1165 
1166 	pp = ironlake_get_pp_control(dev_priv);
1167 	/* We need to switch off panel power _and_ force vdd, for otherwise some
1168 	 * panels get very unhappy and cease to work. */
1169 	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1170 	I915_WRITE(PCH_PP_CONTROL, pp);
1171 	POSTING_READ(PCH_PP_CONTROL);
1172 
1173 	intel_dp->want_panel_vdd = false;
1174 
1175 	ironlake_wait_panel_off(intel_dp);
1176 }
1177 
1178 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1179 {
1180 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1181 	struct drm_device *dev = intel_dig_port->base.base.dev;
1182 	struct drm_i915_private *dev_priv = dev->dev_private;
1183 	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1184 	u32 pp;
1185 
1186 	if (!is_edp(intel_dp))
1187 		return;
1188 
1189 	DRM_DEBUG_KMS("\n");
1190 	/*
1191 	 * If we enable the backlight right away following a panel power
1192 	 * on, we may see slight flicker as the panel syncs with the eDP
1193 	 * link.  So delay a bit to make sure the image is solid before
1194 	 * allowing it to appear.
1195 	 */
1196 	msleep(intel_dp->backlight_on_delay);
1197 	pp = ironlake_get_pp_control(dev_priv);
1198 	pp |= EDP_BLC_ENABLE;
1199 	I915_WRITE(PCH_PP_CONTROL, pp);
1200 	POSTING_READ(PCH_PP_CONTROL);
1201 
1202 	intel_panel_enable_backlight(dev, pipe);
1203 }
1204 
1205 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1206 {
1207 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1208 	struct drm_i915_private *dev_priv = dev->dev_private;
1209 	u32 pp;
1210 
1211 	if (!is_edp(intel_dp))
1212 		return;
1213 
1214 	intel_panel_disable_backlight(dev);
1215 
1216 	DRM_DEBUG_KMS("\n");
1217 	pp = ironlake_get_pp_control(dev_priv);
1218 	pp &= ~EDP_BLC_ENABLE;
1219 	I915_WRITE(PCH_PP_CONTROL, pp);
1220 	POSTING_READ(PCH_PP_CONTROL);
1221 	msleep(intel_dp->backlight_off_delay);
1222 }
1223 
1224 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1225 {
1226 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1227 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1228 	struct drm_device *dev = crtc->dev;
1229 	struct drm_i915_private *dev_priv = dev->dev_private;
1230 	u32 dpa_ctl;
1231 
1232 	assert_pipe_disabled(dev_priv,
1233 			     to_intel_crtc(crtc)->pipe);
1234 
1235 	DRM_DEBUG_KMS("\n");
1236 	dpa_ctl = I915_READ(DP_A);
1237 	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1238 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1239 
1240 	/* We don't adjust intel_dp->DP while tearing down the link, to
1241 	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1242 	 * enable bits here to ensure that we don't enable too much. */
1243 	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1244 	intel_dp->DP |= DP_PLL_ENABLE;
1245 	I915_WRITE(DP_A, intel_dp->DP);
1246 	POSTING_READ(DP_A);
1247 	udelay(200);
1248 }
1249 
1250 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1251 {
1252 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1253 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1254 	struct drm_device *dev = crtc->dev;
1255 	struct drm_i915_private *dev_priv = dev->dev_private;
1256 	u32 dpa_ctl;
1257 
1258 	assert_pipe_disabled(dev_priv,
1259 			     to_intel_crtc(crtc)->pipe);
1260 
1261 	dpa_ctl = I915_READ(DP_A);
1262 	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1263 	     "dp pll off, should be on\n");
1264 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1265 
1266 	/* We can't rely on the value tracked for the DP register in
1267 	 * intel_dp->DP because link_down must not change that (otherwise link
1268 	 * re-training will fail. */
1269 	dpa_ctl &= ~DP_PLL_ENABLE;
1270 	I915_WRITE(DP_A, dpa_ctl);
1271 	POSTING_READ(DP_A);
1272 	udelay(200);
1273 }
1274 
1275 /* If the sink supports it, try to set the power state appropriately */
1276 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1277 {
1278 	int ret, i;
1279 
1280 	/* Should have a valid DPCD by this point */
1281 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1282 		return;
1283 
1284 	if (mode != DRM_MODE_DPMS_ON) {
1285 		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1286 						  DP_SET_POWER_D3);
1287 		if (ret != 1)
1288 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1289 	} else {
1290 		/*
1291 		 * When turning on, we need to retry for 1ms to give the sink
1292 		 * time to wake up.
1293 		 */
1294 		for (i = 0; i < 3; i++) {
1295 			ret = intel_dp_aux_native_write_1(intel_dp,
1296 							  DP_SET_POWER,
1297 							  DP_SET_POWER_D0);
1298 			if (ret == 1)
1299 				break;
1300 			msleep(1);
1301 		}
1302 	}
1303 }
1304 
1305 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1306 				  enum i915_pipe *pipe)
1307 {
1308 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1309 	struct drm_device *dev = encoder->base.dev;
1310 	struct drm_i915_private *dev_priv = dev->dev_private;
1311 	u32 tmp = I915_READ(intel_dp->output_reg);
1312 
1313 	if (!(tmp & DP_PORT_EN))
1314 		return false;
1315 
1316 	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1317 		*pipe = PORT_TO_PIPE_CPT(tmp);
1318 	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1319 		*pipe = PORT_TO_PIPE(tmp);
1320 	} else {
1321 		u32 trans_sel;
1322 		u32 trans_dp;
1323 		int i;
1324 
1325 		switch (intel_dp->output_reg) {
1326 		case PCH_DP_B:
1327 			trans_sel = TRANS_DP_PORT_SEL_B;
1328 			break;
1329 		case PCH_DP_C:
1330 			trans_sel = TRANS_DP_PORT_SEL_C;
1331 			break;
1332 		case PCH_DP_D:
1333 			trans_sel = TRANS_DP_PORT_SEL_D;
1334 			break;
1335 		default:
1336 			return true;
1337 		}
1338 
1339 		for_each_pipe(i) {
1340 			trans_dp = I915_READ(TRANS_DP_CTL(i));
1341 			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1342 				*pipe = i;
1343 				return true;
1344 			}
1345 		}
1346 
1347 		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1348 			      intel_dp->output_reg);
1349 	}
1350 
1351 	return true;
1352 }
1353 
1354 static void intel_disable_dp(struct intel_encoder *encoder)
1355 {
1356 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1357 
1358 	/* Make sure the panel is off before trying to change the mode. But also
1359 	 * ensure that we have vdd while we switch off the panel. */
1360 	ironlake_edp_panel_vdd_on(intel_dp);
1361 	ironlake_edp_backlight_off(intel_dp);
1362 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1363 	ironlake_edp_panel_off(intel_dp);
1364 
1365 	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1366 	if (!is_cpu_edp(intel_dp))
1367 		intel_dp_link_down(intel_dp);
1368 }
1369 
1370 static void intel_post_disable_dp(struct intel_encoder *encoder)
1371 {
1372 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1373 
1374 	if (is_cpu_edp(intel_dp)) {
1375 		intel_dp_link_down(intel_dp);
1376 		ironlake_edp_pll_off(intel_dp);
1377 	}
1378 }
1379 
1380 static void intel_enable_dp(struct intel_encoder *encoder)
1381 {
1382 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1383 	struct drm_device *dev = encoder->base.dev;
1384 	struct drm_i915_private *dev_priv = dev->dev_private;
1385 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1386 
1387 	if (WARN_ON(dp_reg & DP_PORT_EN))
1388 		return;
1389 
1390 	ironlake_edp_panel_vdd_on(intel_dp);
1391 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1392 	intel_dp_start_link_train(intel_dp);
1393 	ironlake_edp_panel_on(intel_dp);
1394 	ironlake_edp_panel_vdd_off(intel_dp, true);
1395 	intel_dp_complete_link_train(intel_dp);
1396 	ironlake_edp_backlight_on(intel_dp);
1397 }
1398 
1399 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1400 {
1401 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1402 
1403 	if (is_cpu_edp(intel_dp))
1404 		ironlake_edp_pll_on(intel_dp);
1405 }
1406 
1407 /*
1408  * Native read with retry for link status and receiver capability reads for
1409  * cases where the sink may still be asleep.
1410  */
1411 static bool
1412 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1413 			       uint8_t *recv, int recv_bytes)
1414 {
1415 	int ret, i;
1416 
1417 	/*
1418 	 * Sinks are *supposed* to come up within 1ms from an off state,
1419 	 * but we're also supposed to retry 3 times per the spec.
1420 	 */
1421 	for (i = 0; i < 3; i++) {
1422 		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1423 					       recv_bytes);
1424 		if (ret == recv_bytes)
1425 			return true;
1426 		msleep(1);
1427 	}
1428 
1429 	return false;
1430 }
1431 
1432 /*
1433  * Fetch AUX CH registers 0x202 - 0x207 which contain
1434  * link status information
1435  */
1436 static bool
1437 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1438 {
1439 	return intel_dp_aux_native_read_retry(intel_dp,
1440 					      DP_LANE0_1_STATUS,
1441 					      link_status,
1442 					      DP_LINK_STATUS_SIZE);
1443 }
1444 
1445 #if 0
1446 static char	*voltage_names[] = {
1447 	"0.4V", "0.6V", "0.8V", "1.2V"
1448 };
1449 static char	*pre_emph_names[] = {
1450 	"0dB", "3.5dB", "6dB", "9.5dB"
1451 };
1452 static char	*link_train_names[] = {
1453 	"pattern 1", "pattern 2", "idle", "off"
1454 };
1455 #endif
1456 
1457 /*
1458  * These are source-specific values; current Intel hardware supports
1459  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1460  */
1461 
1462 static uint8_t
1463 intel_dp_voltage_max(struct intel_dp *intel_dp)
1464 {
1465 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1466 
1467 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1468 		return DP_TRAIN_VOLTAGE_SWING_800;
1469 	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1470 		return DP_TRAIN_VOLTAGE_SWING_1200;
1471 	else
1472 		return DP_TRAIN_VOLTAGE_SWING_800;
1473 }
1474 
1475 static uint8_t
1476 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1477 {
1478 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1479 
1480 	if (IS_HASWELL(dev)) {
1481 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1482 		case DP_TRAIN_VOLTAGE_SWING_400:
1483 			return DP_TRAIN_PRE_EMPHASIS_9_5;
1484 		case DP_TRAIN_VOLTAGE_SWING_600:
1485 			return DP_TRAIN_PRE_EMPHASIS_6;
1486 		case DP_TRAIN_VOLTAGE_SWING_800:
1487 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1488 		case DP_TRAIN_VOLTAGE_SWING_1200:
1489 		default:
1490 			return DP_TRAIN_PRE_EMPHASIS_0;
1491 		}
1492 	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1493 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1494 		case DP_TRAIN_VOLTAGE_SWING_400:
1495 			return DP_TRAIN_PRE_EMPHASIS_6;
1496 		case DP_TRAIN_VOLTAGE_SWING_600:
1497 		case DP_TRAIN_VOLTAGE_SWING_800:
1498 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1499 		default:
1500 			return DP_TRAIN_PRE_EMPHASIS_0;
1501 		}
1502 	} else {
1503 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1504 		case DP_TRAIN_VOLTAGE_SWING_400:
1505 			return DP_TRAIN_PRE_EMPHASIS_6;
1506 		case DP_TRAIN_VOLTAGE_SWING_600:
1507 			return DP_TRAIN_PRE_EMPHASIS_6;
1508 		case DP_TRAIN_VOLTAGE_SWING_800:
1509 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1510 		case DP_TRAIN_VOLTAGE_SWING_1200:
1511 		default:
1512 			return DP_TRAIN_PRE_EMPHASIS_0;
1513 		}
1514 	}
1515 }
1516 
1517 static void
1518 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1519 {
1520 	uint8_t v = 0;
1521 	uint8_t p = 0;
1522 	int lane;
1523 	uint8_t voltage_max;
1524 	uint8_t preemph_max;
1525 
1526 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1527 		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1528 		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1529 
1530 		if (this_v > v)
1531 			v = this_v;
1532 		if (this_p > p)
1533 			p = this_p;
1534 	}
1535 
1536 	voltage_max = intel_dp_voltage_max(intel_dp);
1537 	if (v >= voltage_max)
1538 		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1539 
1540 	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1541 	if (p >= preemph_max)
1542 		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1543 
1544 	for (lane = 0; lane < 4; lane++)
1545 		intel_dp->train_set[lane] = v | p;
1546 }
1547 
1548 static uint32_t
1549 intel_dp_signal_levels(uint8_t train_set)
1550 {
1551 	uint32_t	signal_levels = 0;
1552 
1553 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1554 	case DP_TRAIN_VOLTAGE_SWING_400:
1555 	default:
1556 		signal_levels |= DP_VOLTAGE_0_4;
1557 		break;
1558 	case DP_TRAIN_VOLTAGE_SWING_600:
1559 		signal_levels |= DP_VOLTAGE_0_6;
1560 		break;
1561 	case DP_TRAIN_VOLTAGE_SWING_800:
1562 		signal_levels |= DP_VOLTAGE_0_8;
1563 		break;
1564 	case DP_TRAIN_VOLTAGE_SWING_1200:
1565 		signal_levels |= DP_VOLTAGE_1_2;
1566 		break;
1567 	}
1568 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1569 	case DP_TRAIN_PRE_EMPHASIS_0:
1570 	default:
1571 		signal_levels |= DP_PRE_EMPHASIS_0;
1572 		break;
1573 	case DP_TRAIN_PRE_EMPHASIS_3_5:
1574 		signal_levels |= DP_PRE_EMPHASIS_3_5;
1575 		break;
1576 	case DP_TRAIN_PRE_EMPHASIS_6:
1577 		signal_levels |= DP_PRE_EMPHASIS_6;
1578 		break;
1579 	case DP_TRAIN_PRE_EMPHASIS_9_5:
1580 		signal_levels |= DP_PRE_EMPHASIS_9_5;
1581 		break;
1582 	}
1583 	return signal_levels;
1584 }
1585 
1586 /* Gen6's DP voltage swing and pre-emphasis control */
1587 static uint32_t
1588 intel_gen6_edp_signal_levels(uint8_t train_set)
1589 {
1590 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1591 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1592 	switch (signal_levels) {
1593 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1594 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1595 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1596 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1597 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1598 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1599 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1600 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1601 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1602 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1603 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1604 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1605 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1606 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1607 	default:
1608 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1609 			      "0x%x\n", signal_levels);
1610 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1611 	}
1612 }
1613 
1614 /* Gen7's DP voltage swing and pre-emphasis control */
1615 static uint32_t
1616 intel_gen7_edp_signal_levels(uint8_t train_set)
1617 {
1618 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1619 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1620 	switch (signal_levels) {
1621 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1622 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1623 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1624 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1625 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1626 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1627 
1628 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1629 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1630 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1631 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1632 
1633 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1634 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1635 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1636 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1637 
1638 	default:
1639 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1640 			      "0x%x\n", signal_levels);
1641 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1642 	}
1643 }
1644 
1645 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1646 static uint32_t
1647 intel_dp_signal_levels_hsw(uint8_t train_set)
1648 {
1649 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1650 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1651 	switch (signal_levels) {
1652 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1653 		return DDI_BUF_EMP_400MV_0DB_HSW;
1654 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1655 		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1656 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1657 		return DDI_BUF_EMP_400MV_6DB_HSW;
1658 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1659 		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1660 
1661 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1662 		return DDI_BUF_EMP_600MV_0DB_HSW;
1663 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1664 		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1665 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1666 		return DDI_BUF_EMP_600MV_6DB_HSW;
1667 
1668 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1669 		return DDI_BUF_EMP_800MV_0DB_HSW;
1670 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1671 		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1672 	default:
1673 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1674 			      "0x%x\n", signal_levels);
1675 		return DDI_BUF_EMP_400MV_0DB_HSW;
1676 	}
1677 }
1678 
1679 static bool
1680 intel_dp_set_link_train(struct intel_dp *intel_dp,
1681 			uint32_t dp_reg_value,
1682 			uint8_t dp_train_pat)
1683 {
1684 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1685 	struct drm_device *dev = intel_dig_port->base.base.dev;
1686 	struct drm_i915_private *dev_priv = dev->dev_private;
1687 	enum port port = intel_dig_port->port;
1688 	int ret;
1689 	uint32_t temp;
1690 
1691 	if (IS_HASWELL(dev)) {
1692 		temp = I915_READ(DP_TP_CTL(port));
1693 
1694 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1695 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1696 		else
1697 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1698 
1699 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1700 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1701 		case DP_TRAINING_PATTERN_DISABLE:
1702 			temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1703 			I915_WRITE(DP_TP_CTL(port), temp);
1704 
1705 			if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1706 				      DP_TP_STATUS_IDLE_DONE), 1))
1707 				DRM_ERROR("Timed out waiting for DP idle patterns\n");
1708 
1709 			temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1710 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1711 
1712 			break;
1713 		case DP_TRAINING_PATTERN_1:
1714 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1715 			break;
1716 		case DP_TRAINING_PATTERN_2:
1717 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1718 			break;
1719 		case DP_TRAINING_PATTERN_3:
1720 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1721 			break;
1722 		}
1723 		I915_WRITE(DP_TP_CTL(port), temp);
1724 
1725 	} else if (HAS_PCH_CPT(dev) &&
1726 		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1727 		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1728 
1729 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1730 		case DP_TRAINING_PATTERN_DISABLE:
1731 			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1732 			break;
1733 		case DP_TRAINING_PATTERN_1:
1734 			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1735 			break;
1736 		case DP_TRAINING_PATTERN_2:
1737 			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1738 			break;
1739 		case DP_TRAINING_PATTERN_3:
1740 			DRM_ERROR("DP training pattern 3 not supported\n");
1741 			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1742 			break;
1743 		}
1744 
1745 	} else {
1746 		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1747 
1748 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1749 		case DP_TRAINING_PATTERN_DISABLE:
1750 			dp_reg_value |= DP_LINK_TRAIN_OFF;
1751 			break;
1752 		case DP_TRAINING_PATTERN_1:
1753 			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1754 			break;
1755 		case DP_TRAINING_PATTERN_2:
1756 			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1757 			break;
1758 		case DP_TRAINING_PATTERN_3:
1759 			DRM_ERROR("DP training pattern 3 not supported\n");
1760 			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1761 			break;
1762 		}
1763 	}
1764 
1765 	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1766 	POSTING_READ(intel_dp->output_reg);
1767 
1768 	intel_dp_aux_native_write_1(intel_dp,
1769 				    DP_TRAINING_PATTERN_SET,
1770 				    dp_train_pat);
1771 
1772 	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1773 	    DP_TRAINING_PATTERN_DISABLE) {
1774 		ret = intel_dp_aux_native_write(intel_dp,
1775 						DP_TRAINING_LANE0_SET,
1776 						intel_dp->train_set,
1777 						intel_dp->lane_count);
1778 		if (ret != intel_dp->lane_count)
1779 			return false;
1780 	}
1781 
1782 	return true;
1783 }
1784 
1785 /* Enable corresponding port and start training pattern 1 */
1786 void
1787 intel_dp_start_link_train(struct intel_dp *intel_dp)
1788 {
1789 	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1790 	struct drm_device *dev = encoder->dev;
1791 	int i;
1792 	uint8_t voltage;
1793 	bool clock_recovery = false;
1794 	int voltage_tries, loop_tries;
1795 	uint32_t DP = intel_dp->DP;
1796 
1797 	if (IS_HASWELL(dev))
1798 		intel_ddi_prepare_link_retrain(encoder);
1799 
1800 	/* Write the link configuration data */
1801 	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1802 				  intel_dp->link_configuration,
1803 				  DP_LINK_CONFIGURATION_SIZE);
1804 
1805 	DP |= DP_PORT_EN;
1806 
1807 	memset(intel_dp->train_set, 0, 4);
1808 	voltage = 0xff;
1809 	voltage_tries = 0;
1810 	loop_tries = 0;
1811 	clock_recovery = false;
1812 	for (;;) {
1813 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1814 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1815 		uint32_t    signal_levels;
1816 
1817 		if (IS_HASWELL(dev)) {
1818 			signal_levels = intel_dp_signal_levels_hsw(
1819 							intel_dp->train_set[0]);
1820 			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1821 		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1822 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1823 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1824 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1825 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1826 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1827 		} else {
1828 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1829 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1830 		}
1831 		DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1832 			      signal_levels);
1833 
1834 		/* Set training pattern 1 */
1835 		if (!intel_dp_set_link_train(intel_dp, DP,
1836 					     DP_TRAINING_PATTERN_1 |
1837 					     DP_LINK_SCRAMBLING_DISABLE))
1838 			break;
1839 
1840 		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1841 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1842 			DRM_ERROR("failed to get link status\n");
1843 			break;
1844 		}
1845 
1846 		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1847 			DRM_DEBUG_KMS("clock recovery OK\n");
1848 			clock_recovery = true;
1849 			break;
1850 		}
1851 
1852 		/* Check to see if we've tried the max voltage */
1853 		for (i = 0; i < intel_dp->lane_count; i++)
1854 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1855 				break;
1856 		if (i == intel_dp->lane_count) {
1857 			++loop_tries;
1858 			if (loop_tries == 5) {
1859 				DRM_DEBUG_KMS("too many full retries, give up\n");
1860 				break;
1861 			}
1862 			memset(intel_dp->train_set, 0, 4);
1863 			voltage_tries = 0;
1864 			continue;
1865 		}
1866 
1867 		/* Check to see if we've tried the same voltage 5 times */
1868 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1869 			++voltage_tries;
1870 			if (voltage_tries == 5) {
1871 				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1872 				break;
1873 			}
1874 		} else
1875 			voltage_tries = 0;
1876 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1877 
1878 		/* Compute new intel_dp->train_set as requested by target */
1879 		intel_get_adjust_train(intel_dp, link_status);
1880 	}
1881 
1882 	intel_dp->DP = DP;
1883 }
1884 
1885 void
1886 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1887 {
1888 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1889 	bool channel_eq = false;
1890 	int tries, cr_tries;
1891 	uint32_t DP = intel_dp->DP;
1892 
1893 	/* channel equalization */
1894 	tries = 0;
1895 	cr_tries = 0;
1896 	channel_eq = false;
1897 	for (;;) {
1898 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1899 		uint32_t    signal_levels;
1900 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1901 
1902 		if (cr_tries > 5) {
1903 			DRM_ERROR("failed to train DP, aborting\n");
1904 			intel_dp_link_down(intel_dp);
1905 			break;
1906 		}
1907 
1908 		if (IS_HASWELL(dev)) {
1909 			signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1910 			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1911 		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1912 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1913 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1914 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1915 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1916 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1917 		} else {
1918 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1919 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1920 		}
1921 
1922 		/* channel eq pattern */
1923 		if (!intel_dp_set_link_train(intel_dp, DP,
1924 					     DP_TRAINING_PATTERN_2 |
1925 					     DP_LINK_SCRAMBLING_DISABLE))
1926 			break;
1927 
1928 		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1929 		if (!intel_dp_get_link_status(intel_dp, link_status))
1930 			break;
1931 
1932 		/* Make sure clock is still ok */
1933 		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1934 			intel_dp_start_link_train(intel_dp);
1935 			cr_tries++;
1936 			continue;
1937 		}
1938 
1939 		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1940 			channel_eq = true;
1941 			break;
1942 		}
1943 
1944 		/* Try 5 times, then try clock recovery if that fails */
1945 		if (tries > 5) {
1946 			intel_dp_link_down(intel_dp);
1947 			intel_dp_start_link_train(intel_dp);
1948 			tries = 0;
1949 			cr_tries++;
1950 			continue;
1951 		}
1952 
1953 		/* Compute new intel_dp->train_set as requested by target */
1954 		intel_get_adjust_train(intel_dp, link_status);
1955 		++tries;
1956 	}
1957 
1958 	if (channel_eq)
1959 		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1960 
1961 	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1962 }
1963 
1964 static void
1965 intel_dp_link_down(struct intel_dp *intel_dp)
1966 {
1967 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1968 	struct drm_device *dev = intel_dig_port->base.base.dev;
1969 	struct drm_i915_private *dev_priv = dev->dev_private;
1970 	uint32_t DP = intel_dp->DP;
1971 
1972 	/*
1973 	 * DDI code has a strict mode set sequence and we should try to respect
1974 	 * it, otherwise we might hang the machine in many different ways. So we
1975 	 * really should be disabling the port only on a complete crtc_disable
1976 	 * sequence. This function is just called under two conditions on DDI
1977 	 * code:
1978 	 * - Link train failed while doing crtc_enable, and on this case we
1979 	 *   really should respect the mode set sequence and wait for a
1980 	 *   crtc_disable.
1981 	 * - Someone turned the monitor off and intel_dp_check_link_status
1982 	 *   called us. We don't need to disable the whole port on this case, so
1983 	 *   when someone turns the monitor on again,
1984 	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
1985 	 *   train.
1986 	 */
1987 	if (IS_HASWELL(dev))
1988 		return;
1989 
1990 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1991 		return;
1992 
1993 	DRM_DEBUG_KMS("\n");
1994 
1995 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1996 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1997 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1998 	} else {
1999 		DP &= ~DP_LINK_TRAIN_MASK;
2000 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2001 	}
2002 	POSTING_READ(intel_dp->output_reg);
2003 
2004 	msleep(17);
2005 
2006 	if (HAS_PCH_IBX(dev) &&
2007 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2008 		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2009 
2010 		/* Hardware workaround: leaving our transcoder select
2011 		 * set to transcoder B while it's off will prevent the
2012 		 * corresponding HDMI output on transcoder A.
2013 		 *
2014 		 * Combine this with another hardware workaround:
2015 		 * transcoder select bit can only be cleared while the
2016 		 * port is enabled.
2017 		 */
2018 		DP &= ~DP_PIPEB_SELECT;
2019 		I915_WRITE(intel_dp->output_reg, DP);
2020 
2021 		/* Changes to enable or select take place the vblank
2022 		 * after being written.
2023 		 */
2024 		if (crtc == NULL) {
2025 			/* We can arrive here never having been attached
2026 			 * to a CRTC, for instance, due to inheriting
2027 			 * random state from the BIOS.
2028 			 *
2029 			 * If the pipe is not running, play safe and
2030 			 * wait for the clocks to stabilise before
2031 			 * continuing.
2032 			 */
2033 			POSTING_READ(intel_dp->output_reg);
2034 			msleep(50);
2035 		} else
2036 			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2037 	}
2038 
2039 	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2040 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2041 	POSTING_READ(intel_dp->output_reg);
2042 	msleep(intel_dp->panel_power_down_delay);
2043 }
2044 
2045 static bool
2046 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2047 {
2048 	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2049 					   sizeof(intel_dp->dpcd)) == 0)
2050 		return false; /* aux transfer failed */
2051 
2052 	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2053 		return false; /* DPCD not present */
2054 
2055 	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2056 	      DP_DWN_STRM_PORT_PRESENT))
2057 		return true; /* native DP sink */
2058 
2059 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2060 		return true; /* no per-port downstream info */
2061 
2062 	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2063 					   intel_dp->downstream_ports,
2064 					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2065 		return false; /* downstream port status fetch failed */
2066 
2067 	return true;
2068 }
2069 
2070 static void
2071 intel_dp_probe_oui(struct intel_dp *intel_dp)
2072 {
2073 	u8 buf[3];
2074 
2075 	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2076 		return;
2077 
2078 	ironlake_edp_panel_vdd_on(intel_dp);
2079 
2080 	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2081 		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2082 			      buf[0], buf[1], buf[2]);
2083 
2084 	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2085 		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2086 			      buf[0], buf[1], buf[2]);
2087 
2088 	ironlake_edp_panel_vdd_off(intel_dp, false);
2089 }
2090 
2091 static bool
2092 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2093 {
2094 	int ret;
2095 
2096 	ret = intel_dp_aux_native_read_retry(intel_dp,
2097 					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2098 					     sink_irq_vector, 1);
2099 	if (!ret)
2100 		return false;
2101 
2102 	return true;
2103 }
2104 
2105 static void
2106 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2107 {
2108 	/* NAK by default */
2109 	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2110 }
2111 
2112 /*
2113  * According to DP spec
2114  * 5.1.2:
2115  *  1. Read DPCD
2116  *  2. Configure link according to Receiver Capabilities
2117  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2118  *  4. Check link status on receipt of hot-plug interrupt
2119  */
2120 
2121 void
2122 intel_dp_check_link_status(struct intel_dp *intel_dp)
2123 {
2124 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2125 	u8 sink_irq_vector;
2126 	u8 link_status[DP_LINK_STATUS_SIZE];
2127 
2128 	if (!intel_encoder->connectors_active)
2129 		return;
2130 
2131 	if (WARN_ON(!intel_encoder->base.crtc))
2132 		return;
2133 
2134 	/* Try to read receiver status if the link appears to be up */
2135 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2136 		intel_dp_link_down(intel_dp);
2137 		return;
2138 	}
2139 
2140 	/* Now read the DPCD to see if it's actually running */
2141 	if (!intel_dp_get_dpcd(intel_dp)) {
2142 		intel_dp_link_down(intel_dp);
2143 		return;
2144 	}
2145 
2146 	/* Try to read the source of the interrupt */
2147 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2148 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2149 		/* Clear interrupt source */
2150 		intel_dp_aux_native_write_1(intel_dp,
2151 					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2152 					    sink_irq_vector);
2153 
2154 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2155 			intel_dp_handle_test_request(intel_dp);
2156 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2157 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2158 	}
2159 
2160 	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2161 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2162 			      drm_get_encoder_name(&intel_encoder->base));
2163 		intel_dp_start_link_train(intel_dp);
2164 		intel_dp_complete_link_train(intel_dp);
2165 	}
2166 }
2167 
2168 /* XXX this is probably wrong for multiple downstream ports */
2169 static enum drm_connector_status
2170 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2171 {
2172 	uint8_t *dpcd = intel_dp->dpcd;
2173 	bool hpd;
2174 	uint8_t type;
2175 
2176 	if (!intel_dp_get_dpcd(intel_dp))
2177 		return connector_status_disconnected;
2178 
2179 	/* if there's no downstream port, we're done */
2180 	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2181 		return connector_status_connected;
2182 
2183 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2184 	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2185 	if (hpd) {
2186 		uint8_t reg;
2187 		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2188 						    &reg, 1))
2189 			return connector_status_unknown;
2190 		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2191 					      : connector_status_disconnected;
2192 	}
2193 
2194 	/* If no HPD, poke DDC gently */
2195 	if (drm_probe_ddc(intel_dp->adapter))
2196 		return connector_status_connected;
2197 
2198 	/* Well we tried, say unknown for unreliable port types */
2199 	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2200 	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2201 		return connector_status_unknown;
2202 
2203 	/* Anything else is out of spec, warn and ignore */
2204 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2205 	return connector_status_disconnected;
2206 }
2207 
2208 static enum drm_connector_status
2209 ironlake_dp_detect(struct intel_dp *intel_dp)
2210 {
2211 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2212 	enum drm_connector_status status;
2213 
2214 	/* Can't disconnect eDP, but you can close the lid... */
2215 	if (is_edp(intel_dp)) {
2216 		status = intel_panel_detect(dev);
2217 		if (status == connector_status_unknown)
2218 			status = connector_status_connected;
2219 		return status;
2220 	}
2221 
2222 	return intel_dp_detect_dpcd(intel_dp);
2223 }
2224 
2225 static enum drm_connector_status
2226 g4x_dp_detect(struct intel_dp *intel_dp)
2227 {
2228 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2229 	struct drm_i915_private *dev_priv = dev->dev_private;
2230 	uint32_t bit;
2231 
2232 	switch (intel_dp->output_reg) {
2233 	case DP_B:
2234 		bit = DPB_HOTPLUG_LIVE_STATUS;
2235 		break;
2236 	case DP_C:
2237 		bit = DPC_HOTPLUG_LIVE_STATUS;
2238 		break;
2239 	case DP_D:
2240 		bit = DPD_HOTPLUG_LIVE_STATUS;
2241 		break;
2242 	default:
2243 		return connector_status_unknown;
2244 	}
2245 
2246 	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2247 		return connector_status_disconnected;
2248 
2249 	return intel_dp_detect_dpcd(intel_dp);
2250 }
2251 
2252 static struct edid *
2253 intel_dp_get_edid(struct drm_connector *connector, struct device *adapter)
2254 {
2255 	struct intel_connector *intel_connector = to_intel_connector(connector);
2256 
2257 	/* use cached edid if we have one */
2258 	if (intel_connector->edid) {
2259 		struct edid *edid;
2260 		int size;
2261 
2262 		/* invalid edid */
2263 		if (IS_ERR(intel_connector->edid))
2264 			return NULL;
2265 
2266 		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2267 		edid = kmalloc(size, M_DRM, M_WAITOK);
2268 		if (!edid)
2269 			return NULL;
2270 
2271 		memcpy(edid, intel_connector->edid, size);
2272 		return edid;
2273 	}
2274 
2275 	return drm_get_edid(connector, adapter);
2276 }
2277 
2278 static int
2279 intel_dp_get_edid_modes(struct drm_connector *connector, struct device *adapter)
2280 {
2281 	struct intel_connector *intel_connector = to_intel_connector(connector);
2282 
2283 	/* use cached edid if we have one */
2284 	if (intel_connector->edid) {
2285 		/* invalid edid */
2286 		if (IS_ERR(intel_connector->edid))
2287 			return 0;
2288 
2289 		return intel_connector_update_modes(connector,
2290 						    intel_connector->edid);
2291 	}
2292 
2293 	return intel_ddc_get_modes(connector, adapter);
2294 }
2295 
2296 
2297 /**
2298  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2299  *
2300  * \return true if DP port is connected.
2301  * \return false if DP port is disconnected.
2302  */
2303 static enum drm_connector_status
2304 intel_dp_detect(struct drm_connector *connector, bool force)
2305 {
2306 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2307 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2308 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2309 	struct drm_device *dev = connector->dev;
2310 	enum drm_connector_status status;
2311 	struct edid *edid = NULL;
2312 	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2313 
2314 	intel_dp->has_audio = false;
2315 
2316 	if (HAS_PCH_SPLIT(dev))
2317 		status = ironlake_dp_detect(intel_dp);
2318 	else
2319 		status = g4x_dp_detect(intel_dp);
2320 
2321 	ksnprintf(dpcd_hex_dump,
2322 		  sizeof(dpcd_hex_dump),
2323 		  "%02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2324 		  intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2325 		  intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2326 		  intel_dp->dpcd[6], intel_dp->dpcd[7]);
2327 	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2328 
2329 	if (status != connector_status_connected)
2330 		return status;
2331 
2332 	intel_dp_probe_oui(intel_dp);
2333 
2334 	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2335 		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2336 	} else {
2337 		edid = intel_dp_get_edid(connector, intel_dp->adapter);
2338 		if (edid) {
2339 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2340 			kfree(edid, M_DRM);
2341 		}
2342 	}
2343 
2344 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2345 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2346 	return connector_status_connected;
2347 }
2348 
2349 static int intel_dp_get_modes(struct drm_connector *connector)
2350 {
2351 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2352 	struct intel_connector *intel_connector = to_intel_connector(connector);
2353 	struct drm_device *dev = connector->dev;
2354 	int ret;
2355 
2356 	/* We should parse the EDID data and find out if it has an audio sink
2357 	 */
2358 
2359 	ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2360 	if (ret)
2361 		return ret;
2362 
2363 	/* if eDP has no EDID, fall back to fixed mode */
2364 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2365 		struct drm_display_mode *mode;
2366 		mode = drm_mode_duplicate(dev,
2367 					  intel_connector->panel.fixed_mode);
2368 		if (mode) {
2369 			drm_mode_probed_add(connector, mode);
2370 			return 1;
2371 		}
2372 	}
2373 	return 0;
2374 }
2375 
2376 static bool
2377 intel_dp_detect_audio(struct drm_connector *connector)
2378 {
2379 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2380 	struct edid *edid;
2381 	bool has_audio = false;
2382 
2383 	edid = intel_dp_get_edid(connector, intel_dp->adapter);
2384 	if (edid) {
2385 		has_audio = drm_detect_monitor_audio(edid);
2386 		kfree(edid, M_DRM);
2387 	}
2388 
2389 	return has_audio;
2390 }
2391 
2392 static int
2393 intel_dp_set_property(struct drm_connector *connector,
2394 		      struct drm_property *property,
2395 		      uint64_t val)
2396 {
2397 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2398 	struct intel_connector *intel_connector = to_intel_connector(connector);
2399 	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2400 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2401 	int ret;
2402 
2403 	ret = drm_object_property_set_value(&connector->base, property, val);
2404 	if (ret)
2405 		return ret;
2406 
2407 	if (property == dev_priv->force_audio_property) {
2408 		int i = val;
2409 		bool has_audio;
2410 
2411 		if (i == intel_dp->force_audio)
2412 			return 0;
2413 
2414 		intel_dp->force_audio = i;
2415 
2416 		if (i == HDMI_AUDIO_AUTO)
2417 			has_audio = intel_dp_detect_audio(connector);
2418 		else
2419 			has_audio = (i == HDMI_AUDIO_ON);
2420 
2421 		if (has_audio == intel_dp->has_audio)
2422 			return 0;
2423 
2424 		intel_dp->has_audio = has_audio;
2425 		goto done;
2426 	}
2427 
2428 	if (property == dev_priv->broadcast_rgb_property) {
2429 		if (val == !!intel_dp->color_range)
2430 			return 0;
2431 
2432 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2433 		goto done;
2434 	}
2435 
2436 	if (is_edp(intel_dp) &&
2437 	    property == connector->dev->mode_config.scaling_mode_property) {
2438 		if (val == DRM_MODE_SCALE_NONE) {
2439 			DRM_DEBUG_KMS("no scaling not supported\n");
2440 			return -EINVAL;
2441 		}
2442 
2443 		if (intel_connector->panel.fitting_mode == val) {
2444 			/* the eDP scaling property is not changed */
2445 			return 0;
2446 		}
2447 		intel_connector->panel.fitting_mode = val;
2448 
2449 		goto done;
2450 	}
2451 
2452 	return -EINVAL;
2453 
2454 done:
2455 	if (intel_encoder->base.crtc) {
2456 		struct drm_crtc *crtc = intel_encoder->base.crtc;
2457 		intel_set_mode(crtc, &crtc->mode,
2458 			       crtc->x, crtc->y, crtc->fb);
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 static void
2465 intel_dp_destroy(struct drm_connector *connector)
2466 {
2467 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2468 	struct intel_connector *intel_connector = to_intel_connector(connector);
2469 
2470 	if (!IS_ERR_OR_NULL(intel_connector->edid))
2471 		kfree(intel_connector->edid, M_DRM);
2472 
2473 	if (is_edp(intel_dp))
2474 		intel_panel_fini(&intel_connector->panel);
2475 
2476 #if 0
2477 	drm_sysfs_connector_remove(connector);
2478 #endif
2479 	drm_connector_cleanup(connector);
2480 	kfree(connector, M_DRM);
2481 }
2482 
2483 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2484 {
2485 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2486 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2487 	struct drm_device *dev = encoder->dev;
2488 
2489 	if (intel_dp->dp_iic_bus != NULL) {
2490 		if (intel_dp->adapter != NULL) {
2491 			device_delete_child(intel_dp->dp_iic_bus,
2492 			    intel_dp->adapter);
2493 		}
2494 		device_delete_child(dev->dev, intel_dp->dp_iic_bus);
2495 	}
2496 	drm_encoder_cleanup(encoder);
2497 	if (is_edp(intel_dp)) {
2498 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2499 		ironlake_panel_vdd_off_sync(intel_dp);
2500 	}
2501 	kfree(intel_dig_port, M_DRM);
2502 }
2503 
2504 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2505 	.mode_fixup = intel_dp_mode_fixup,
2506 	.mode_set = intel_dp_mode_set,
2507 	.disable = intel_encoder_noop,
2508 };
2509 
2510 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2511 	.dpms = intel_connector_dpms,
2512 	.detect = intel_dp_detect,
2513 	.fill_modes = drm_helper_probe_single_connector_modes,
2514 	.set_property = intel_dp_set_property,
2515 	.destroy = intel_dp_destroy,
2516 };
2517 
2518 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2519 	.get_modes = intel_dp_get_modes,
2520 	.mode_valid = intel_dp_mode_valid,
2521 	.best_encoder = intel_best_encoder,
2522 };
2523 
2524 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2525 	.destroy = intel_dp_encoder_destroy,
2526 };
2527 
2528 static void
2529 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2530 {
2531 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2532 
2533 	intel_dp_check_link_status(intel_dp);
2534 }
2535 
2536 /* Return which DP Port should be selected for Transcoder DP control */
2537 int
2538 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2539 {
2540 	struct drm_device *dev = crtc->dev;
2541 	struct intel_encoder *intel_encoder;
2542 	struct intel_dp *intel_dp;
2543 
2544 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2545 		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2546 
2547 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2548 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2549 			return intel_dp->output_reg;
2550 	}
2551 
2552 	return -1;
2553 }
2554 
2555 /* check the VBT to see whether the eDP is on DP-D port */
2556 bool intel_dpd_is_edp(struct drm_device *dev)
2557 {
2558 	struct drm_i915_private *dev_priv = dev->dev_private;
2559 	struct child_device_config *p_child;
2560 	int i;
2561 
2562 	if (!dev_priv->child_dev_num)
2563 		return false;
2564 
2565 	for (i = 0; i < dev_priv->child_dev_num; i++) {
2566 		p_child = dev_priv->child_dev + i;
2567 
2568 		if (p_child->dvo_port == PORT_IDPD &&
2569 		    p_child->device_type == DEVICE_TYPE_eDP)
2570 			return true;
2571 	}
2572 	return false;
2573 }
2574 
2575 static void
2576 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2577 {
2578 	struct intel_connector *intel_connector = to_intel_connector(connector);
2579 
2580 	intel_attach_force_audio_property(connector);
2581 	intel_attach_broadcast_rgb_property(connector);
2582 
2583 	if (is_edp(intel_dp)) {
2584 		drm_mode_create_scaling_mode_property(connector->dev);
2585 		drm_object_attach_property(
2586 			&connector->base,
2587 			connector->dev->mode_config.scaling_mode_property,
2588 			DRM_MODE_SCALE_ASPECT);
2589 		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2590 	}
2591 }
2592 
2593 static void
2594 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2595 				    struct intel_dp *intel_dp,
2596 				    struct edp_power_seq *out)
2597 {
2598 	struct drm_i915_private *dev_priv = dev->dev_private;
2599 	struct edp_power_seq cur, vbt, spec, final;
2600 	u32 pp_on, pp_off, pp_div, pp;
2601 
2602 	/* Workaround: Need to write PP_CONTROL with the unlock key as
2603 	 * the very first thing. */
2604 	pp = ironlake_get_pp_control(dev_priv);
2605 	I915_WRITE(PCH_PP_CONTROL, pp);
2606 
2607 	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2608 	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2609 	pp_div = I915_READ(PCH_PP_DIVISOR);
2610 
2611 	/* Pull timing values out of registers */
2612 	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2613 		PANEL_POWER_UP_DELAY_SHIFT;
2614 
2615 	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2616 		PANEL_LIGHT_ON_DELAY_SHIFT;
2617 
2618 	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2619 		PANEL_LIGHT_OFF_DELAY_SHIFT;
2620 
2621 	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2622 		PANEL_POWER_DOWN_DELAY_SHIFT;
2623 
2624 	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2625 		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2626 
2627 	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2628 		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2629 
2630 	vbt = dev_priv->edp.pps;
2631 
2632 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2633 	 * our hw here, which are all in 100usec. */
2634 	spec.t1_t3 = 210 * 10;
2635 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2636 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2637 	spec.t10 = 500 * 10;
2638 	/* This one is special and actually in units of 100ms, but zero
2639 	 * based in the hw (so we need to add 100 ms). But the sw vbt
2640 	 * table multiplies it with 1000 to make it in units of 100usec,
2641 	 * too. */
2642 	spec.t11_t12 = (510 + 100) * 10;
2643 
2644 	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2645 		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2646 
2647 	/* Use the max of the register settings and vbt. If both are
2648 	 * unset, fall back to the spec limits. */
2649 #define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2650 				       spec.field : \
2651 				       max(cur.field, vbt.field))
2652 	assign_final(t1_t3);
2653 	assign_final(t8);
2654 	assign_final(t9);
2655 	assign_final(t10);
2656 	assign_final(t11_t12);
2657 #undef assign_final
2658 
2659 #define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2660 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2661 	intel_dp->backlight_on_delay = get_delay(t8);
2662 	intel_dp->backlight_off_delay = get_delay(t9);
2663 	intel_dp->panel_power_down_delay = get_delay(t10);
2664 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2665 #undef get_delay
2666 
2667 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2668 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2669 		      intel_dp->panel_power_cycle_delay);
2670 
2671 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2672 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2673 
2674 	if (out)
2675 		*out = final;
2676 }
2677 
2678 static void
2679 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2680 					      struct intel_dp *intel_dp,
2681 					      struct edp_power_seq *seq)
2682 {
2683 	struct drm_i915_private *dev_priv = dev->dev_private;
2684 	u32 pp_on, pp_off, pp_div;
2685 
2686 	/* And finally store the new values in the power sequencer. */
2687 	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2688 		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2689 	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2690 		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2691 	/* Compute the divisor for the pp clock, simply match the Bspec
2692 	 * formula. */
2693 	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2694 			<< PP_REFERENCE_DIVIDER_SHIFT;
2695 	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2696 			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2697 
2698 	/* Haswell doesn't have any port selection bits for the panel
2699 	 * power sequencer any more. */
2700 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2701 		if (is_cpu_edp(intel_dp))
2702 			pp_on |= PANEL_POWER_PORT_DP_A;
2703 		else
2704 			pp_on |= PANEL_POWER_PORT_DP_D;
2705 	}
2706 
2707 	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2708 	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2709 	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2710 
2711 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2712 		      I915_READ(PCH_PP_ON_DELAYS),
2713 		      I915_READ(PCH_PP_OFF_DELAYS),
2714 		      I915_READ(PCH_PP_DIVISOR));
2715 }
2716 
2717 void
2718 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2719 			struct intel_connector *intel_connector)
2720 {
2721 	struct drm_connector *connector = &intel_connector->base;
2722 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2723 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2724 	struct drm_device *dev = intel_encoder->base.dev;
2725 	struct drm_i915_private *dev_priv = dev->dev_private;
2726 	struct drm_display_mode *fixed_mode = NULL;
2727 	struct edp_power_seq power_seq = { 0 };
2728 	enum port port = intel_dig_port->port;
2729 	const char *name = NULL;
2730 	int type;
2731 
2732 	/* Preserve the current hw state. */
2733 	intel_dp->DP = I915_READ(intel_dp->output_reg);
2734 	intel_dp->attached_connector = intel_connector;
2735 
2736 	if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2737 		if (intel_dpd_is_edp(dev))
2738 			intel_dp->is_pch_edp = true;
2739 
2740 	/*
2741 	 * FIXME : We need to initialize built-in panels before external panels.
2742 	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2743 	 */
2744 	if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2745 		type = DRM_MODE_CONNECTOR_eDP;
2746 		intel_encoder->type = INTEL_OUTPUT_EDP;
2747 	} else if (port == PORT_A || is_pch_edp(intel_dp)) {
2748 		type = DRM_MODE_CONNECTOR_eDP;
2749 		intel_encoder->type = INTEL_OUTPUT_EDP;
2750 	} else {
2751 		/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2752 		 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2753 		 * rewrite it.
2754 		 */
2755 		type = DRM_MODE_CONNECTOR_DisplayPort;
2756 	}
2757 
2758 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2759 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2760 
2761 	connector->polled = DRM_CONNECTOR_POLL_HPD;
2762 	connector->interlace_allowed = true;
2763 	connector->doublescan_allowed = 0;
2764 
2765 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2766 			  ironlake_panel_vdd_work);
2767 
2768 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2769 #if 0
2770 	drm_sysfs_connector_add(connector);
2771 #endif
2772 
2773 	if (IS_HASWELL(dev))
2774 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2775 	else
2776 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2777 
2778 
2779 	/* Set up the DDC bus. */
2780 	switch (port) {
2781 	case PORT_A:
2782 		name = "DPDDC-A";
2783 		break;
2784 	case PORT_B:
2785 		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2786 		name = "DPDDC-B";
2787 		break;
2788 	case PORT_C:
2789 		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2790 		name = "DPDDC-C";
2791 		break;
2792 	case PORT_D:
2793 		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2794 		name = "DPDDC-D";
2795 		break;
2796 	default:
2797 		WARN(1, "Invalid port %c\n", port_name(port));
2798 		break;
2799 	}
2800 
2801 	if (is_edp(intel_dp))
2802 		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2803 
2804 	intel_dp_i2c_init(intel_dp, intel_connector, name);
2805 
2806 	/* Cache DPCD and EDID for edp. */
2807 	if (is_edp(intel_dp)) {
2808 		bool ret;
2809 		struct drm_display_mode *scan;
2810 		struct edid *edid;
2811 
2812 		ironlake_edp_panel_vdd_on(intel_dp);
2813 		ret = intel_dp_get_dpcd(intel_dp);
2814 		ironlake_edp_panel_vdd_off(intel_dp, false);
2815 
2816 		if (ret) {
2817 			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2818 				dev_priv->no_aux_handshake =
2819 					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2820 					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2821 		} else {
2822 			/* if this fails, presume the device is a ghost */
2823 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2824 			intel_dp_encoder_destroy(&intel_encoder->base);
2825 			intel_dp_destroy(connector);
2826 			return;
2827 		}
2828 
2829 		/* We now know it's not a ghost, init power sequence regs. */
2830 		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2831 							      &power_seq);
2832 
2833 		ironlake_edp_panel_vdd_on(intel_dp);
2834 		edid = drm_get_edid(connector, intel_dp->adapter);
2835 		if (edid) {
2836 			if (drm_add_edid_modes(connector, edid)) {
2837 				drm_mode_connector_update_edid_property(connector, edid);
2838 				drm_edid_to_eld(connector, edid);
2839 			} else {
2840 				kfree(edid, M_DRM);
2841 				edid = ERR_PTR(-EINVAL);
2842 			}
2843 		} else {
2844 			edid = ERR_PTR(-ENOENT);
2845 		}
2846 		intel_connector->edid = edid;
2847 
2848 		/* prefer fixed mode from EDID if available */
2849 		list_for_each_entry(scan, &connector->probed_modes, head) {
2850 			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2851 				fixed_mode = drm_mode_duplicate(dev, scan);
2852 				break;
2853 			}
2854 		}
2855 
2856 		/* fallback to VBT if available for eDP */
2857 		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2858 			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2859 			if (fixed_mode)
2860 				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2861 		}
2862 
2863 		ironlake_edp_panel_vdd_off(intel_dp, false);
2864 	}
2865 
2866 	if (is_edp(intel_dp)) {
2867 		intel_panel_init(&intel_connector->panel, fixed_mode);
2868 		intel_panel_setup_backlight(connector);
2869 	}
2870 
2871 	intel_dp_add_properties(intel_dp, connector);
2872 
2873 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2874 	 * 0xd.  Failure to do so will result in spurious interrupts being
2875 	 * generated on the port when a cable is not attached.
2876 	 */
2877 	if (IS_G4X(dev) && !IS_GM45(dev)) {
2878 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2879 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2880 	}
2881 }
2882 
2883 void
2884 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2885 {
2886 	struct intel_digital_port *intel_dig_port;
2887 	struct intel_encoder *intel_encoder;
2888 	struct drm_encoder *encoder;
2889 	struct intel_connector *intel_connector;
2890 
2891 	intel_dig_port = kmalloc(sizeof(struct intel_digital_port), M_DRM,
2892 	    M_WAITOK | M_ZERO);
2893 	if (!intel_dig_port)
2894 		return;
2895 
2896 	intel_connector = kmalloc(sizeof(struct intel_connector), M_DRM,
2897 	    M_WAITOK | M_ZERO);
2898 	if (!intel_connector) {
2899 		kfree(intel_dig_port, M_DRM);
2900 		return;
2901 	}
2902 
2903 	intel_encoder = &intel_dig_port->base;
2904 	encoder = &intel_encoder->base;
2905 
2906 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2907 			 DRM_MODE_ENCODER_TMDS);
2908 	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2909 
2910 	intel_encoder->enable = intel_enable_dp;
2911 	intel_encoder->pre_enable = intel_pre_enable_dp;
2912 	intel_encoder->disable = intel_disable_dp;
2913 	intel_encoder->post_disable = intel_post_disable_dp;
2914 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2915 
2916 	intel_dig_port->port = port;
2917 	intel_dig_port->dp.output_reg = output_reg;
2918 
2919 	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2920 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2921 	intel_encoder->cloneable = false;
2922 	intel_encoder->hot_plug = intel_dp_hot_plug;
2923 
2924 	intel_dp_init_connector(intel_dig_port, intel_connector);
2925 }
2926