xref: /dragonfly/sys/dev/drm/i915/intel_dp.c (revision cab8bf9b)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  * $FreeBSD: src/sys/dev/drm2/i915/intel_dp.c,v 1.1 2012/05/22 11:07:44 kib Exp $
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/drm_crtc.h>
31 #include <drm/drm_crtc_helper.h>
32 #include <drm/drm_edid.h>
33 #include "intel_drv.h"
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 
37 #define DP_RECEIVER_CAP_SIZE	0xf
38 #define DP_LINK_STATUS_SIZE	6
39 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40 
41 #define DP_LINK_CONFIGURATION_SIZE	9
42 
43 /**
44  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
45  * @intel_dp: DP struct
46  *
47  * If a CPU or PCH DP output is attached to an eDP panel, this function
48  * will return true, and false otherwise.
49  */
50 static bool is_edp(struct intel_dp *intel_dp)
51 {
52 	return intel_dp->base.type == INTEL_OUTPUT_EDP;
53 }
54 
55 /**
56  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57  * @intel_dp: DP struct
58  *
59  * Returns true if the given DP struct corresponds to a PCH DP port attached
60  * to an eDP panel, false otherwise.  Helpful for determining whether we
61  * may need FDI resources for a given DP output or not.
62  */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 	return intel_dp->is_pch_edp;
66 }
67 
68 /**
69  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70  * @intel_dp: DP struct
71  *
72  * Returns true if the given DP struct corresponds to a CPU eDP port.
73  */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78 
79 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80 {
81 	return container_of(encoder, struct intel_dp, base.base);
82 }
83 
84 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85 {
86 	return container_of(intel_attached_encoder(connector),
87 			    struct intel_dp, base);
88 }
89 
90 /**
91  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92  * @encoder: DRM encoder
93  *
94  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
95  * by intel_display.c.
96  */
97 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98 {
99 	struct intel_dp *intel_dp;
100 
101 	if (!encoder)
102 		return false;
103 
104 	intel_dp = enc_to_intel_dp(encoder);
105 
106 	return is_pch_edp(intel_dp);
107 }
108 
109 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 
113 void
114 intel_edp_link_config(struct intel_encoder *intel_encoder,
115 		       int *lane_num, int *link_bw)
116 {
117 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118 
119 	*lane_num = intel_dp->lane_count;
120 	if (intel_dp->link_bw == DP_LINK_BW_1_62)
121 		*link_bw = 162000;
122 	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123 		*link_bw = 270000;
124 }
125 
126 static int
127 intel_dp_max_lane_count(struct intel_dp *intel_dp)
128 {
129 	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
130 	switch (max_lane_count) {
131 	case 1: case 2: case 4:
132 		break;
133 	default:
134 		max_lane_count = 4;
135 	}
136 	return max_lane_count;
137 }
138 
139 static int
140 intel_dp_max_link_bw(struct intel_dp *intel_dp)
141 {
142 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
143 
144 	switch (max_link_bw) {
145 	case DP_LINK_BW_1_62:
146 	case DP_LINK_BW_2_7:
147 		break;
148 	default:
149 		max_link_bw = DP_LINK_BW_1_62;
150 		break;
151 	}
152 	return max_link_bw;
153 }
154 
155 static int
156 intel_dp_link_clock(uint8_t link_bw)
157 {
158 	if (link_bw == DP_LINK_BW_2_7)
159 		return 270000;
160 	else
161 		return 162000;
162 }
163 
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180 
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 	return (pixel_clock * bpp + 9) / 10;
185 }
186 
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 	return (max_link_clock * max_lanes * 8) / 10;
191 }
192 
193 static bool
194 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
195 			  const struct drm_display_mode *mode,
196 			  struct drm_display_mode *adjusted_mode)
197 {
198 	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
199 	int max_lanes = intel_dp_max_lane_count(intel_dp);
200 	int max_rate, mode_rate;
201 
202 	mode_rate = intel_dp_link_required(mode->clock, 24);
203 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
204 
205 	if (mode_rate > max_rate) {
206 		mode_rate = intel_dp_link_required(mode->clock, 18);
207 		if (mode_rate > max_rate)
208 			return false;
209 
210 		if (adjusted_mode)
211 			adjusted_mode->private_flags
212 				|= INTEL_MODE_DP_FORCE_6BPC;
213 
214 		return true;
215 	}
216 
217 	return true;
218 }
219 
220 static int
221 intel_dp_mode_valid(struct drm_connector *connector,
222 		    struct drm_display_mode *mode)
223 {
224 	struct intel_dp *intel_dp = intel_attached_dp(connector);
225 
226 	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
227 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
228 			return MODE_PANEL;
229 
230 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
231 			return MODE_PANEL;
232 	}
233 
234 	if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
235 		return MODE_CLOCK_HIGH;
236 
237 	if (mode->clock < 10000)
238 		return MODE_CLOCK_LOW;
239 
240 	return MODE_OK;
241 }
242 
243 static uint32_t
244 pack_aux(uint8_t *src, int src_bytes)
245 {
246 	int	i;
247 	uint32_t v = 0;
248 
249 	if (src_bytes > 4)
250 		src_bytes = 4;
251 	for (i = 0; i < src_bytes; i++)
252 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
253 	return v;
254 }
255 
256 static void
257 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
258 {
259 	int i;
260 	if (dst_bytes > 4)
261 		dst_bytes = 4;
262 	for (i = 0; i < dst_bytes; i++)
263 		dst[i] = src >> ((3-i) * 8);
264 }
265 
266 /* hrawclock is 1/4 the FSB frequency */
267 static int
268 intel_hrawclk(struct drm_device *dev)
269 {
270 	struct drm_i915_private *dev_priv = dev->dev_private;
271 	uint32_t clkcfg;
272 
273 	clkcfg = I915_READ(CLKCFG);
274 	switch (clkcfg & CLKCFG_FSB_MASK) {
275 	case CLKCFG_FSB_400:
276 		return 100;
277 	case CLKCFG_FSB_533:
278 		return 133;
279 	case CLKCFG_FSB_667:
280 		return 166;
281 	case CLKCFG_FSB_800:
282 		return 200;
283 	case CLKCFG_FSB_1067:
284 		return 266;
285 	case CLKCFG_FSB_1333:
286 		return 333;
287 	/* these two are just a guess; one of them might be right */
288 	case CLKCFG_FSB_1600:
289 	case CLKCFG_FSB_1600_ALT:
290 		return 400;
291 	default:
292 		return 133;
293 	}
294 }
295 
296 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
297 {
298 	struct drm_device *dev = intel_dp->base.base.dev;
299 	struct drm_i915_private *dev_priv = dev->dev_private;
300 
301 	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
302 }
303 
304 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
305 {
306 	struct drm_device *dev = intel_dp->base.base.dev;
307 	struct drm_i915_private *dev_priv = dev->dev_private;
308 
309 	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
310 }
311 
312 static void
313 intel_dp_check_edp(struct intel_dp *intel_dp)
314 {
315 	struct drm_device *dev = intel_dp->base.base.dev;
316 	struct drm_i915_private *dev_priv = dev->dev_private;
317 
318 	if (!is_edp(intel_dp))
319 		return;
320 	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
321 		kprintf("eDP powered off while attempting aux channel communication.\n");
322 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
323 			      I915_READ(PCH_PP_STATUS),
324 			      I915_READ(PCH_PP_CONTROL));
325 	}
326 }
327 
328 static int
329 intel_dp_aux_ch(struct intel_dp *intel_dp,
330 		uint8_t *send, int send_bytes,
331 		uint8_t *recv, int recv_size)
332 {
333 	uint32_t output_reg = intel_dp->output_reg;
334 	struct drm_device *dev = intel_dp->base.base.dev;
335 	struct drm_i915_private *dev_priv = dev->dev_private;
336 	uint32_t ch_ctl = output_reg + 0x10;
337 	uint32_t ch_data = ch_ctl + 4;
338 	int i;
339 	int recv_bytes;
340 	uint32_t status;
341 	uint32_t aux_clock_divider;
342 	int try, precharge = 5;
343 
344 	intel_dp_check_edp(intel_dp);
345 	/* The clock divider is based off the hrawclk,
346 	 * and would like to run at 2MHz. So, take the
347 	 * hrawclk value and divide by 2 and use that
348 	 *
349 	 * Note that PCH attached eDP panels should use a 125MHz input
350 	 * clock divider.
351 	 */
352 	if (is_cpu_edp(intel_dp)) {
353 		if (IS_GEN6(dev) || IS_GEN7(dev))
354 			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
355 		else
356 			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
357 	} else if (HAS_PCH_SPLIT(dev))
358 		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
359 	else
360 		aux_clock_divider = intel_hrawclk(dev) / 2;
361 
362 	/* Try to wait for any previous AUX channel activity */
363 	for (try = 0; try < 3; try++) {
364 		status = I915_READ(ch_ctl);
365 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
366 			break;
367 		DELAY(1000);
368 	}
369 
370 	if (try == 3) {
371 		kprintf("dp_aux_ch not started status 0x%08x\n",
372 		     I915_READ(ch_ctl));
373 		return -EBUSY;
374 	}
375 
376 	/* Must try at least 3 times according to DP spec */
377 	for (try = 0; try < 5; try++) {
378 		/* Load the send data into the aux channel data registers */
379 		for (i = 0; i < send_bytes; i += 4)
380 			I915_WRITE(ch_data + i,
381 				   pack_aux(send + i, send_bytes - i));
382 
383 		/* Send the command and wait for it to complete */
384 		I915_WRITE(ch_ctl,
385 			   DP_AUX_CH_CTL_SEND_BUSY |
386 			   DP_AUX_CH_CTL_TIME_OUT_400us |
387 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
388 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
389 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
390 			   DP_AUX_CH_CTL_DONE |
391 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
392 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
393 		for (;;) {
394 			status = I915_READ(ch_ctl);
395 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
396 				break;
397 			DELAY(100);
398 		}
399 
400 		/* Clear done status and any errors */
401 		I915_WRITE(ch_ctl,
402 			   status |
403 			   DP_AUX_CH_CTL_DONE |
404 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
405 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
406 
407 		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
408 			      DP_AUX_CH_CTL_RECEIVE_ERROR))
409 			continue;
410 		if (status & DP_AUX_CH_CTL_DONE)
411 			break;
412 	}
413 
414 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
415 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
416 		return -EBUSY;
417 	}
418 
419 	/* Check for timeout or receive error.
420 	 * Timeouts occur when the sink is not connected
421 	 */
422 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
423 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
424 		return -EIO;
425 	}
426 
427 	/* Timeouts occur when the device isn't connected, so they're
428 	 * "normal" -- don't fill the kernel log with these */
429 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
430 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
431 		return -ETIMEDOUT;
432 	}
433 
434 	/* Unload any bytes sent back from the other side */
435 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
436 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
437 	if (recv_bytes > recv_size)
438 		recv_bytes = recv_size;
439 
440 	for (i = 0; i < recv_bytes; i += 4)
441 		unpack_aux(I915_READ(ch_data + i),
442 			   recv + i, recv_bytes - i);
443 
444 	return recv_bytes;
445 }
446 
447 /* Write data to the aux channel in native mode */
448 static int
449 intel_dp_aux_native_write(struct intel_dp *intel_dp,
450 			  uint16_t address, uint8_t *send, int send_bytes)
451 {
452 	int ret;
453 	uint8_t	msg[20];
454 	int msg_bytes;
455 	uint8_t	ack;
456 
457 	intel_dp_check_edp(intel_dp);
458 	if (send_bytes > 16)
459 		return -1;
460 	msg[0] = AUX_NATIVE_WRITE << 4;
461 	msg[1] = address >> 8;
462 	msg[2] = address & 0xff;
463 	msg[3] = send_bytes - 1;
464 	memcpy(&msg[4], send, send_bytes);
465 	msg_bytes = send_bytes + 4;
466 	for (;;) {
467 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
468 		if (ret < 0)
469 			return ret;
470 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
471 			break;
472 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
473 			DELAY(100);
474 		else
475 			return -EIO;
476 	}
477 	return send_bytes;
478 }
479 
480 /* Write a single byte to the aux channel in native mode */
481 static int
482 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
483 			    uint16_t address, uint8_t byte)
484 {
485 	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
486 }
487 
488 /* read bytes from a native aux channel */
489 static int
490 intel_dp_aux_native_read(struct intel_dp *intel_dp,
491 			 uint16_t address, uint8_t *recv, int recv_bytes)
492 {
493 	uint8_t msg[4];
494 	int msg_bytes;
495 	uint8_t reply[20];
496 	int reply_bytes;
497 	uint8_t ack;
498 	int ret;
499 
500 	intel_dp_check_edp(intel_dp);
501 	msg[0] = AUX_NATIVE_READ << 4;
502 	msg[1] = address >> 8;
503 	msg[2] = address & 0xff;
504 	msg[3] = recv_bytes - 1;
505 
506 	msg_bytes = 4;
507 	reply_bytes = recv_bytes + 1;
508 
509 	for (;;) {
510 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
511 				      reply, reply_bytes);
512 		if (ret == 0)
513 			return -EPROTO;
514 		if (ret < 0)
515 			return ret;
516 		ack = reply[0];
517 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
518 			memcpy(recv, reply + 1, ret - 1);
519 			return ret - 1;
520 		}
521 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
522 			DELAY(100);
523 		else
524 			return -EIO;
525 	}
526 }
527 
528 static int
529 intel_dp_i2c_aux_ch(device_t idev, int mode, uint8_t write_byte,
530     uint8_t *read_byte)
531 {
532 	struct iic_dp_aux_data *data;
533 	struct intel_dp *intel_dp;
534 	uint16_t address;
535 	uint8_t msg[5];
536 	uint8_t reply[2];
537 	unsigned retry;
538 	int msg_bytes;
539 	int reply_bytes;
540 	int ret;
541 
542 	data = device_get_softc(idev);
543 	intel_dp = data->priv;
544 	address = data->address;
545 
546 	intel_dp_check_edp(intel_dp);
547 	/* Set up the command byte */
548 	if (mode & MODE_I2C_READ)
549 		msg[0] = AUX_I2C_READ << 4;
550 	else
551 		msg[0] = AUX_I2C_WRITE << 4;
552 
553 	if (!(mode & MODE_I2C_STOP))
554 		msg[0] |= AUX_I2C_MOT << 4;
555 
556 	msg[1] = address >> 8;
557 	msg[2] = address;
558 
559 	switch (mode) {
560 	case MODE_I2C_WRITE:
561 		msg[3] = 0;
562 		msg[4] = write_byte;
563 		msg_bytes = 5;
564 		reply_bytes = 1;
565 		break;
566 	case MODE_I2C_READ:
567 		msg[3] = 0;
568 		msg_bytes = 4;
569 		reply_bytes = 2;
570 		break;
571 	default:
572 		msg_bytes = 3;
573 		reply_bytes = 1;
574 		break;
575 	}
576 
577 	for (retry = 0; retry < 5; retry++) {
578 		ret = intel_dp_aux_ch(intel_dp,
579 				      msg, msg_bytes,
580 				      reply, reply_bytes);
581 		if (ret < 0) {
582 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
583 			return (-ret);
584 		}
585 
586 		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
587 		case AUX_NATIVE_REPLY_ACK:
588 			/* I2C-over-AUX Reply field is only valid
589 			 * when paired with AUX ACK.
590 			 */
591 			break;
592 		case AUX_NATIVE_REPLY_NACK:
593 			DRM_DEBUG_KMS("aux_ch native nack\n");
594 			return (EREMOTEIO);
595 		case AUX_NATIVE_REPLY_DEFER:
596 			DELAY(100);
597 			continue;
598 		default:
599 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
600 				  reply[0]);
601 			return (EREMOTEIO);
602 		}
603 
604 		switch (reply[0] & AUX_I2C_REPLY_MASK) {
605 		case AUX_I2C_REPLY_ACK:
606 			if (mode == MODE_I2C_READ) {
607 				*read_byte = reply[1];
608 			}
609 			return (0/*reply_bytes - 1*/);
610 		case AUX_I2C_REPLY_NACK:
611 			DRM_DEBUG_KMS("aux_i2c nack\n");
612 			return (EREMOTEIO);
613 		case AUX_I2C_REPLY_DEFER:
614 			DRM_DEBUG_KMS("aux_i2c defer\n");
615 			DELAY(100);
616 			break;
617 		default:
618 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
619 			return (EREMOTEIO);
620 		}
621 	}
622 
623 	DRM_ERROR("too many retries, giving up\n");
624 	return (EREMOTEIO);
625 }
626 
627 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
628 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
629 
630 static int
631 intel_dp_i2c_init(struct intel_dp *intel_dp,
632 		  struct intel_connector *intel_connector, const char *name)
633 {
634 	int ret;
635 
636 	DRM_DEBUG_KMS("i2c_init %s\n", name);
637 
638 	ironlake_edp_panel_vdd_on(intel_dp);
639 	ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
640 	    intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
641 	    &intel_dp->adapter);
642 	ironlake_edp_panel_vdd_off(intel_dp, false);
643 	return (ret);
644 }
645 
646 static bool
647 intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
648 		    struct drm_display_mode *adjusted_mode)
649 {
650 	struct drm_device *dev = encoder->dev;
651 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
652 	int lane_count, clock;
653 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
654 	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
655 	int bpp;
656 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
657 
658 	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
659 		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
660 		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
661 					mode, adjusted_mode);
662 	}
663 
664 	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, adjusted_mode))
665 		return false;
666 
667 	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
668 
669 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
670 		for (clock = 0; clock <= max_clock; clock++) {
671 			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
672 
673 			if (intel_dp_link_required(adjusted_mode->clock, bpp)
674 					<= link_avail) {
675 				intel_dp->link_bw = bws[clock];
676 				intel_dp->lane_count = lane_count;
677 				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
678 				DRM_DEBUG_KMS("Display port link bw %02x lane "
679 						"count %d clock %d\n",
680 				       intel_dp->link_bw, intel_dp->lane_count,
681 				       adjusted_mode->clock);
682 				return true;
683 			}
684 		}
685 	}
686 
687 	return false;
688 }
689 
690 struct intel_dp_m_n {
691 	uint32_t	tu;
692 	uint32_t	gmch_m;
693 	uint32_t	gmch_n;
694 	uint32_t	link_m;
695 	uint32_t	link_n;
696 };
697 
698 static void
699 intel_reduce_ratio(uint32_t *num, uint32_t *den)
700 {
701 	while (*num > 0xffffff || *den > 0xffffff) {
702 		*num >>= 1;
703 		*den >>= 1;
704 	}
705 }
706 
707 static void
708 intel_dp_compute_m_n(int bpp,
709 		     int nlanes,
710 		     int pixel_clock,
711 		     int link_clock,
712 		     struct intel_dp_m_n *m_n)
713 {
714 	m_n->tu = 64;
715 	m_n->gmch_m = (pixel_clock * bpp) >> 3;
716 	m_n->gmch_n = link_clock * nlanes;
717 	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
718 	m_n->link_m = pixel_clock;
719 	m_n->link_n = link_clock;
720 	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
721 }
722 
723 void
724 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
725 		 struct drm_display_mode *adjusted_mode)
726 {
727 	struct drm_device *dev = crtc->dev;
728 	struct drm_mode_config *mode_config = &dev->mode_config;
729 	struct drm_encoder *encoder;
730 	struct drm_i915_private *dev_priv = dev->dev_private;
731 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
732 	int lane_count = 4;
733 	struct intel_dp_m_n m_n;
734 	int pipe = intel_crtc->pipe;
735 
736 	/*
737 	 * Find the lane count in the intel_encoder private
738 	 */
739 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
740 		struct intel_dp *intel_dp;
741 
742 		if (encoder->crtc != crtc)
743 			continue;
744 
745 		intel_dp = enc_to_intel_dp(encoder);
746 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
747 		    intel_dp->base.type == INTEL_OUTPUT_EDP)
748 		{
749 			lane_count = intel_dp->lane_count;
750 			break;
751 		}
752 	}
753 
754 	/*
755 	 * Compute the GMCH and Link ratios. The '3' here is
756 	 * the number of bytes_per_pixel post-LUT, which we always
757 	 * set up for 8-bits of R/G/B, or 3 bytes total.
758 	 */
759 	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
760 			     mode->clock, adjusted_mode->clock, &m_n);
761 
762 	if (HAS_PCH_SPLIT(dev)) {
763 		I915_WRITE(TRANSDATA_M1(pipe),
764 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
765 			   m_n.gmch_m);
766 		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
767 		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
768 		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
769 	} else {
770 		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
771 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
772 			   m_n.gmch_m);
773 		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
774 		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
775 		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
776 	}
777 }
778 
779 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
780 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
781 
782 static void
783 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
784 		  struct drm_display_mode *adjusted_mode)
785 {
786 	struct drm_device *dev = encoder->dev;
787 	struct drm_i915_private *dev_priv = dev->dev_private;
788 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
789 	struct drm_crtc *crtc = intel_dp->base.base.crtc;
790 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
791 
792 	/* Turn on the eDP PLL if needed */
793 	if (is_edp(intel_dp)) {
794 		if (!is_pch_edp(intel_dp))
795 			ironlake_edp_pll_on(encoder);
796 		else
797 			ironlake_edp_pll_off(encoder);
798 	}
799 
800 	/*
801 	 * There are four kinds of DP registers:
802 	 *
803 	 * 	IBX PCH
804 	 * 	SNB CPU
805 	 *	IVB CPU
806 	 * 	CPT PCH
807 	 *
808 	 * IBX PCH and CPU are the same for almost everything,
809 	 * except that the CPU DP PLL is configured in this
810 	 * register
811 	 *
812 	 * CPT PCH is quite different, having many bits moved
813 	 * to the TRANS_DP_CTL register instead. That
814 	 * configuration happens (oddly) in ironlake_pch_enable
815 	 */
816 
817 	/* Preserve the BIOS-computed detected bit. This is
818 	 * supposed to be read-only.
819 	 */
820 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
821 	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
822 
823 	/* Handle DP bits in common between all three register formats */
824 
825 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
826 
827 	switch (intel_dp->lane_count) {
828 	case 1:
829 		intel_dp->DP |= DP_PORT_WIDTH_1;
830 		break;
831 	case 2:
832 		intel_dp->DP |= DP_PORT_WIDTH_2;
833 		break;
834 	case 4:
835 		intel_dp->DP |= DP_PORT_WIDTH_4;
836 		break;
837 	}
838 	if (intel_dp->has_audio) {
839 		DRM_DEBUG_KMS("Enabling DP audio on pipe %c\n",
840 				 pipe_name(intel_crtc->pipe));
841 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
842 		intel_write_eld(encoder, adjusted_mode);
843 	}
844 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
845 	intel_dp->link_configuration[0] = intel_dp->link_bw;
846 	intel_dp->link_configuration[1] = intel_dp->lane_count;
847 	/*
848 	 * Check for DPCD version > 1.1 and enhanced framing support
849 	 */
850 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
851 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
852 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
853 	}
854 
855 	/* Split out the IBX/CPU vs CPT settings */
856 
857 	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
858 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
859 			intel_dp->DP |= DP_SYNC_HS_HIGH;
860 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
861 			intel_dp->DP |= DP_SYNC_VS_HIGH;
862 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
863 
864 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
865 			intel_dp->DP |= DP_ENHANCED_FRAMING;
866 
867 		intel_dp->DP |= intel_crtc->pipe << 29;
868 
869 		/* don't miss out required setting for eDP */
870 		intel_dp->DP |= DP_PLL_ENABLE;
871 		if (adjusted_mode->clock < 200000)
872 			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
873 		else
874 			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
875 	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
876 		intel_dp->DP |= intel_dp->color_range;
877 
878 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
879 			intel_dp->DP |= DP_SYNC_HS_HIGH;
880 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
881 			intel_dp->DP |= DP_SYNC_VS_HIGH;
882 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
883 
884 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
885 			intel_dp->DP |= DP_ENHANCED_FRAMING;
886 
887 		if (intel_crtc->pipe == 1)
888 			intel_dp->DP |= DP_PIPEB_SELECT;
889 
890 		if (is_cpu_edp(intel_dp)) {
891 			/* don't miss out required setting for eDP */
892 			intel_dp->DP |= DP_PLL_ENABLE;
893 			if (adjusted_mode->clock < 200000)
894 				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
895 			else
896 				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
897 		}
898 	} else {
899 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
900 	}
901 }
902 
903 #define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
904 #define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
905 
906 #define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
907 #define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
908 
909 #define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
910 #define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
911 
912 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
913 				       u32 mask,
914 				       u32 value)
915 {
916 	struct drm_device *dev = intel_dp->base.base.dev;
917 	struct drm_i915_private *dev_priv = dev->dev_private;
918 
919 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
920 		      mask, value,
921 		      I915_READ(PCH_PP_STATUS),
922 		      I915_READ(PCH_PP_CONTROL));
923 
924 	if (_intel_wait_for(dev,
925 	    (I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10, "915iwp")) {
926 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
927 			  I915_READ(PCH_PP_STATUS),
928 			  I915_READ(PCH_PP_CONTROL));
929 	}
930 }
931 
932 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
933 {
934 	DRM_DEBUG_KMS("Wait for panel power on\n");
935 	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
936 }
937 
938 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
939 {
940 	DRM_DEBUG_KMS("Wait for panel power off time\n");
941 	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
942 }
943 
944 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
945 {
946 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
947 	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
948 }
949 
950 
951 /* Read the current pp_control value, unlocking the register if it
952  * is locked
953  */
954 
955 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
956 {
957 	u32	control = I915_READ(PCH_PP_CONTROL);
958 
959 	control &= ~PANEL_UNLOCK_MASK;
960 	control |= PANEL_UNLOCK_REGS;
961 	return control;
962 }
963 
964 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
965 {
966 	struct drm_device *dev = intel_dp->base.base.dev;
967 	struct drm_i915_private *dev_priv = dev->dev_private;
968 	u32 pp;
969 
970 	if (!is_edp(intel_dp))
971 		return;
972 	DRM_DEBUG_KMS("Turn eDP VDD on\n");
973 
974 	if (intel_dp->want_panel_vdd)
975 		kprintf("eDP VDD already requested on\n");
976 
977 	intel_dp->want_panel_vdd = true;
978 
979 	if (ironlake_edp_have_panel_vdd(intel_dp)) {
980 		DRM_DEBUG_KMS("eDP VDD already on\n");
981 		return;
982 	}
983 
984 	if (!ironlake_edp_have_panel_power(intel_dp))
985 		ironlake_wait_panel_power_cycle(intel_dp);
986 
987 	pp = ironlake_get_pp_control(dev_priv);
988 	pp |= EDP_FORCE_VDD;
989 	I915_WRITE(PCH_PP_CONTROL, pp);
990 	POSTING_READ(PCH_PP_CONTROL);
991 	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
992 		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
993 
994 	/*
995 	 * If the panel wasn't on, delay before accessing aux channel
996 	 */
997 	if (!ironlake_edp_have_panel_power(intel_dp)) {
998 		DRM_DEBUG_KMS("eDP was not running\n");
999 		DELAY(intel_dp->panel_power_up_delay * 1000);
1000 	}
1001 }
1002 
1003 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1004 {
1005 	struct drm_device *dev = intel_dp->base.base.dev;
1006 	struct drm_i915_private *dev_priv = dev->dev_private;
1007 	u32 pp;
1008 
1009 	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1010 		pp = ironlake_get_pp_control(dev_priv);
1011 		pp &= ~EDP_FORCE_VDD;
1012 		I915_WRITE(PCH_PP_CONTROL, pp);
1013 		POSTING_READ(PCH_PP_CONTROL);
1014 
1015 		/* Make sure sequencer is idle before allowing subsequent activity */
1016 		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1017 			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1018 
1019 		DELAY(intel_dp->panel_power_down_delay * 1000);
1020 	}
1021 }
1022 
1023 static void ironlake_panel_vdd_work(struct work_struct *__work)
1024 {
1025 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1026 						 struct intel_dp, panel_vdd_work);
1027 	struct drm_device *dev = intel_dp->base.base.dev;
1028 
1029 	lockmgr(&dev->mode_config.mutex, LK_EXCLUSIVE);
1030 	ironlake_panel_vdd_off_sync(intel_dp);
1031 	lockmgr(&dev->mode_config.mutex, LK_RELEASE);
1032 }
1033 
1034 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1035 {
1036 	if (!is_edp(intel_dp))
1037 		return;
1038 
1039 	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1040 	if (!intel_dp->want_panel_vdd)
1041 		kprintf("eDP VDD not forced on\n");
1042 
1043 	intel_dp->want_panel_vdd = false;
1044 
1045 	if (sync) {
1046 		ironlake_panel_vdd_off_sync(intel_dp);
1047 	} else {
1048 		/*
1049 		 * Queue the timer to fire a long
1050 		 * time from now (relative to the power down delay)
1051 		 * to keep the panel power up across a sequence of operations
1052 		 */
1053 		schedule_delayed_work(&intel_dp->panel_vdd_work,
1054 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1055 	}
1056 }
1057 
1058 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1059 {
1060 	struct drm_device *dev = intel_dp->base.base.dev;
1061 	struct drm_i915_private *dev_priv = dev->dev_private;
1062 	u32 pp;
1063 
1064 	if (!is_edp(intel_dp))
1065 		return;
1066 
1067 	DRM_DEBUG_KMS("Turn eDP power on\n");
1068 
1069 	if (ironlake_edp_have_panel_power(intel_dp)) {
1070 		DRM_DEBUG_KMS("eDP power already on\n");
1071 		return;
1072 	}
1073 
1074 	ironlake_wait_panel_power_cycle(intel_dp);
1075 
1076 	pp = ironlake_get_pp_control(dev_priv);
1077 	if (IS_GEN5(dev)) {
1078 		/* ILK workaround: disable reset around power sequence */
1079 		pp &= ~PANEL_POWER_RESET;
1080 		I915_WRITE(PCH_PP_CONTROL, pp);
1081 		POSTING_READ(PCH_PP_CONTROL);
1082 	}
1083 
1084 	pp |= POWER_TARGET_ON;
1085 	if (!IS_GEN5(dev))
1086 		pp |= PANEL_POWER_RESET;
1087 
1088 	I915_WRITE(PCH_PP_CONTROL, pp);
1089 	POSTING_READ(PCH_PP_CONTROL);
1090 
1091 	ironlake_wait_panel_on(intel_dp);
1092 
1093 	if (IS_GEN5(dev)) {
1094 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1095 		I915_WRITE(PCH_PP_CONTROL, pp);
1096 		POSTING_READ(PCH_PP_CONTROL);
1097 	}
1098 }
1099 
1100 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1101 {
1102 	struct drm_device *dev = intel_dp->base.base.dev;
1103 	struct drm_i915_private *dev_priv = dev->dev_private;
1104 	u32 pp;
1105 
1106 	if (!is_edp(intel_dp))
1107 		return;
1108 
1109 	DRM_DEBUG_KMS("Turn eDP power off\n");
1110 
1111 	if (intel_dp->want_panel_vdd)
1112 		kprintf("Cannot turn power off while VDD is on\n");
1113 
1114 	pp = ironlake_get_pp_control(dev_priv);
1115 	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1116 	I915_WRITE(PCH_PP_CONTROL, pp);
1117 	POSTING_READ(PCH_PP_CONTROL);
1118 
1119 	ironlake_wait_panel_off(intel_dp);
1120 }
1121 
1122 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1123 {
1124 	struct drm_device *dev = intel_dp->base.base.dev;
1125 	struct drm_i915_private *dev_priv = dev->dev_private;
1126 	u32 pp;
1127 
1128 	if (!is_edp(intel_dp))
1129 		return;
1130 
1131 	DRM_DEBUG_KMS("\n");
1132 	/*
1133 	 * If we enable the backlight right away following a panel power
1134 	 * on, we may see slight flicker as the panel syncs with the eDP
1135 	 * link.  So delay a bit to make sure the image is solid before
1136 	 * allowing it to appear.
1137 	 */
1138 	DELAY(intel_dp->backlight_on_delay * 1000);
1139 	pp = ironlake_get_pp_control(dev_priv);
1140 	pp |= EDP_BLC_ENABLE;
1141 	I915_WRITE(PCH_PP_CONTROL, pp);
1142 	POSTING_READ(PCH_PP_CONTROL);
1143 }
1144 
1145 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1146 {
1147 	struct drm_device *dev = intel_dp->base.base.dev;
1148 	struct drm_i915_private *dev_priv = dev->dev_private;
1149 	u32 pp;
1150 
1151 	if (!is_edp(intel_dp))
1152 		return;
1153 
1154 	DRM_DEBUG_KMS("\n");
1155 	pp = ironlake_get_pp_control(dev_priv);
1156 	pp &= ~EDP_BLC_ENABLE;
1157 	I915_WRITE(PCH_PP_CONTROL, pp);
1158 	POSTING_READ(PCH_PP_CONTROL);
1159 	DELAY(intel_dp->backlight_off_delay * 1000);
1160 }
1161 
1162 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1163 {
1164 	struct drm_device *dev = encoder->dev;
1165 	struct drm_i915_private *dev_priv = dev->dev_private;
1166 	u32 dpa_ctl;
1167 
1168 	DRM_DEBUG_KMS("\n");
1169 	dpa_ctl = I915_READ(DP_A);
1170 	dpa_ctl |= DP_PLL_ENABLE;
1171 	I915_WRITE(DP_A, dpa_ctl);
1172 	POSTING_READ(DP_A);
1173 	DELAY(200);
1174 }
1175 
1176 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1177 {
1178 	struct drm_device *dev = encoder->dev;
1179 	struct drm_i915_private *dev_priv = dev->dev_private;
1180 	u32 dpa_ctl;
1181 
1182 	dpa_ctl = I915_READ(DP_A);
1183 	dpa_ctl &= ~DP_PLL_ENABLE;
1184 	I915_WRITE(DP_A, dpa_ctl);
1185 	POSTING_READ(DP_A);
1186 	DELAY(200);
1187 }
1188 
1189 /* If the sink supports it, try to set the power state appropriately */
1190 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1191 {
1192 	int ret, i;
1193 
1194 	/* Should have a valid DPCD by this point */
1195 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1196 		return;
1197 
1198 	if (mode != DRM_MODE_DPMS_ON) {
1199 		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1200 						  DP_SET_POWER_D3);
1201 		if (ret != 1)
1202 			DRM_DEBUG("failed to write sink power state\n");
1203 	} else {
1204 		/*
1205 		 * When turning on, we need to retry for 1ms to give the sink
1206 		 * time to wake up.
1207 		 */
1208 		for (i = 0; i < 3; i++) {
1209 			ret = intel_dp_aux_native_write_1(intel_dp,
1210 							  DP_SET_POWER,
1211 							  DP_SET_POWER_D0);
1212 			if (ret == 1)
1213 				break;
1214 			DELAY(1000);
1215 		}
1216 	}
1217 }
1218 
1219 static void intel_dp_prepare(struct drm_encoder *encoder)
1220 {
1221 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1222 
1223 	ironlake_edp_backlight_off(intel_dp);
1224 	ironlake_edp_panel_off(intel_dp);
1225 
1226 	/* Wake up the sink first */
1227 	ironlake_edp_panel_vdd_on(intel_dp);
1228 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1229 	intel_dp_link_down(intel_dp);
1230 	ironlake_edp_panel_vdd_off(intel_dp, false);
1231 
1232 	/* Make sure the panel is off before trying to
1233 	 * change the mode
1234 	 */
1235 }
1236 
1237 static void intel_dp_commit(struct drm_encoder *encoder)
1238 {
1239 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1240 	struct drm_device *dev = encoder->dev;
1241 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1242 
1243 	ironlake_edp_panel_vdd_on(intel_dp);
1244 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1245 	intel_dp_start_link_train(intel_dp);
1246 	ironlake_edp_panel_on(intel_dp);
1247 	ironlake_edp_panel_vdd_off(intel_dp, true);
1248 	intel_dp_complete_link_train(intel_dp);
1249 	ironlake_edp_backlight_on(intel_dp);
1250 
1251 	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1252 
1253 	if (HAS_PCH_CPT(dev))
1254 		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1255 }
1256 
1257 static void
1258 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1259 {
1260 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1261 	struct drm_device *dev = encoder->dev;
1262 	struct drm_i915_private *dev_priv = dev->dev_private;
1263 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1264 
1265 	if (mode != DRM_MODE_DPMS_ON) {
1266 		ironlake_edp_backlight_off(intel_dp);
1267 		ironlake_edp_panel_off(intel_dp);
1268 
1269 		ironlake_edp_panel_vdd_on(intel_dp);
1270 		intel_dp_sink_dpms(intel_dp, mode);
1271 		intel_dp_link_down(intel_dp);
1272 		ironlake_edp_panel_vdd_off(intel_dp, false);
1273 
1274 		if (is_cpu_edp(intel_dp))
1275 			ironlake_edp_pll_off(encoder);
1276 	} else {
1277 		if (is_cpu_edp(intel_dp))
1278 			ironlake_edp_pll_on(encoder);
1279 
1280 		ironlake_edp_panel_vdd_on(intel_dp);
1281 		intel_dp_sink_dpms(intel_dp, mode);
1282 		if (!(dp_reg & DP_PORT_EN)) {
1283 			intel_dp_start_link_train(intel_dp);
1284 			ironlake_edp_panel_on(intel_dp);
1285 			ironlake_edp_panel_vdd_off(intel_dp, true);
1286 			intel_dp_complete_link_train(intel_dp);
1287 		} else
1288 			ironlake_edp_panel_vdd_off(intel_dp, false);
1289 		ironlake_edp_backlight_on(intel_dp);
1290 	}
1291 	intel_dp->dpms_mode = mode;
1292 }
1293 /*
1294  * Native read with retry for link status and receiver capability reads for
1295  * cases where the sink may still be asleep.
1296  */
1297 static bool
1298 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1299 			       uint8_t *recv, int recv_bytes)
1300 {
1301 	int ret, i;
1302 
1303 	/*
1304 	 * Sinks are *supposed* to come up within 1ms from an off state,
1305 	 * but we're also supposed to retry 3 times per the spec.
1306 	 */
1307 	for (i = 0; i < 3; i++) {
1308 		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1309 					       recv_bytes);
1310 		if (ret == recv_bytes)
1311 			return true;
1312 		DELAY(1000);
1313 	}
1314 
1315 	return false;
1316 }
1317 
1318 /*
1319  * Fetch AUX CH registers 0x202 - 0x207 which contain
1320  * link status information
1321  */
1322 static bool
1323 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1324 {
1325 	return intel_dp_aux_native_read_retry(intel_dp,
1326 					      DP_LANE0_1_STATUS,
1327 					      link_status,
1328 					      DP_LINK_STATUS_SIZE);
1329 }
1330 
1331 static uint8_t
1332 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1333 		     int r)
1334 {
1335 	return link_status[r - DP_LANE0_1_STATUS];
1336 }
1337 
1338 static uint8_t
1339 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1340 				 int lane)
1341 {
1342 	int	    s = ((lane & 1) ?
1343 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1344 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1345 	uint8_t l = adjust_request[lane>>1];
1346 
1347 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1348 }
1349 
1350 static uint8_t
1351 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1352 				      int lane)
1353 {
1354 	int	    s = ((lane & 1) ?
1355 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1356 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1357 	uint8_t l = adjust_request[lane>>1];
1358 
1359 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1360 }
1361 
1362 
1363 #if 0
1364 static char	*voltage_names[] = {
1365 	"0.4V", "0.6V", "0.8V", "1.2V"
1366 };
1367 static char	*pre_emph_names[] = {
1368 	"0dB", "3.5dB", "6dB", "9.5dB"
1369 };
1370 static char	*link_train_names[] = {
1371 	"pattern 1", "pattern 2", "idle", "off"
1372 };
1373 #endif
1374 
1375 /*
1376  * These are source-specific values; current Intel hardware supports
1377  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1378  */
1379 
1380 static uint8_t
1381 intel_dp_voltage_max(struct intel_dp *intel_dp)
1382 {
1383 	struct drm_device *dev = intel_dp->base.base.dev;
1384 
1385 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1386 		return DP_TRAIN_VOLTAGE_SWING_800;
1387 	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1388 		return DP_TRAIN_VOLTAGE_SWING_1200;
1389 	else
1390 		return DP_TRAIN_VOLTAGE_SWING_800;
1391 }
1392 
1393 static uint8_t
1394 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1395 {
1396 	struct drm_device *dev = intel_dp->base.base.dev;
1397 
1398 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1399 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1400 		case DP_TRAIN_VOLTAGE_SWING_400:
1401 			return DP_TRAIN_PRE_EMPHASIS_6;
1402 		case DP_TRAIN_VOLTAGE_SWING_600:
1403 		case DP_TRAIN_VOLTAGE_SWING_800:
1404 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1405 		default:
1406 			return DP_TRAIN_PRE_EMPHASIS_0;
1407 		}
1408 	} else {
1409 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1410 		case DP_TRAIN_VOLTAGE_SWING_400:
1411 			return DP_TRAIN_PRE_EMPHASIS_6;
1412 		case DP_TRAIN_VOLTAGE_SWING_600:
1413 			return DP_TRAIN_PRE_EMPHASIS_6;
1414 		case DP_TRAIN_VOLTAGE_SWING_800:
1415 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1416 		case DP_TRAIN_VOLTAGE_SWING_1200:
1417 		default:
1418 			return DP_TRAIN_PRE_EMPHASIS_0;
1419 		}
1420 	}
1421 }
1422 
1423 static void
1424 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1425 {
1426 	uint8_t v = 0;
1427 	uint8_t p = 0;
1428 	int lane;
1429 	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1430 	uint8_t voltage_max;
1431 	uint8_t preemph_max;
1432 
1433 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1434 		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1435 		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1436 
1437 		if (this_v > v)
1438 			v = this_v;
1439 		if (this_p > p)
1440 			p = this_p;
1441 	}
1442 
1443 	voltage_max = intel_dp_voltage_max(intel_dp);
1444 	if (v >= voltage_max)
1445 		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1446 
1447 	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1448 	if (p >= preemph_max)
1449 		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1450 
1451 	for (lane = 0; lane < 4; lane++)
1452 		intel_dp->train_set[lane] = v | p;
1453 }
1454 
1455 static uint32_t
1456 intel_dp_signal_levels(uint8_t train_set)
1457 {
1458 	uint32_t	signal_levels = 0;
1459 
1460 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1461 	case DP_TRAIN_VOLTAGE_SWING_400:
1462 	default:
1463 		signal_levels |= DP_VOLTAGE_0_4;
1464 		break;
1465 	case DP_TRAIN_VOLTAGE_SWING_600:
1466 		signal_levels |= DP_VOLTAGE_0_6;
1467 		break;
1468 	case DP_TRAIN_VOLTAGE_SWING_800:
1469 		signal_levels |= DP_VOLTAGE_0_8;
1470 		break;
1471 	case DP_TRAIN_VOLTAGE_SWING_1200:
1472 		signal_levels |= DP_VOLTAGE_1_2;
1473 		break;
1474 	}
1475 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1476 	case DP_TRAIN_PRE_EMPHASIS_0:
1477 	default:
1478 		signal_levels |= DP_PRE_EMPHASIS_0;
1479 		break;
1480 	case DP_TRAIN_PRE_EMPHASIS_3_5:
1481 		signal_levels |= DP_PRE_EMPHASIS_3_5;
1482 		break;
1483 	case DP_TRAIN_PRE_EMPHASIS_6:
1484 		signal_levels |= DP_PRE_EMPHASIS_6;
1485 		break;
1486 	case DP_TRAIN_PRE_EMPHASIS_9_5:
1487 		signal_levels |= DP_PRE_EMPHASIS_9_5;
1488 		break;
1489 	}
1490 	return signal_levels;
1491 }
1492 
1493 /* Gen6's DP voltage swing and pre-emphasis control */
1494 static uint32_t
1495 intel_gen6_edp_signal_levels(uint8_t train_set)
1496 {
1497 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1498 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1499 	switch (signal_levels) {
1500 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1501 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1502 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1503 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1504 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1505 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1506 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1507 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1508 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1509 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1510 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1511 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1512 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1513 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1514 	default:
1515 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1516 			      "0x%x\n", signal_levels);
1517 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1518 	}
1519 }
1520 
1521 /* Gen7's DP voltage swing and pre-emphasis control */
1522 static uint32_t
1523 intel_gen7_edp_signal_levels(uint8_t train_set)
1524 {
1525 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1526 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1527 	switch (signal_levels) {
1528 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1529 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1530 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1531 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1532 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1533 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1534 
1535 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1536 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1537 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1538 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1539 
1540 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1541 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1542 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1543 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1544 
1545 	default:
1546 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1547 			      "0x%x\n", signal_levels);
1548 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1549 	}
1550 }
1551 
1552 static uint8_t
1553 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1554 		      int lane)
1555 {
1556 	int s = (lane & 1) * 4;
1557 	uint8_t l = link_status[lane>>1];
1558 
1559 	return (l >> s) & 0xf;
1560 }
1561 
1562 /* Check for clock recovery is done on all channels */
1563 static bool
1564 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1565 {
1566 	int lane;
1567 	uint8_t lane_status;
1568 
1569 	for (lane = 0; lane < lane_count; lane++) {
1570 		lane_status = intel_get_lane_status(link_status, lane);
1571 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1572 			return false;
1573 	}
1574 	return true;
1575 }
1576 
1577 /* Check to see if channel eq is done on all channels */
1578 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1579 			 DP_LANE_CHANNEL_EQ_DONE|\
1580 			 DP_LANE_SYMBOL_LOCKED)
1581 static bool
1582 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1583 {
1584 	uint8_t lane_align;
1585 	uint8_t lane_status;
1586 	int lane;
1587 
1588 	lane_align = intel_dp_link_status(link_status,
1589 					  DP_LANE_ALIGN_STATUS_UPDATED);
1590 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1591 		return false;
1592 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1593 		lane_status = intel_get_lane_status(link_status, lane);
1594 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1595 			return false;
1596 	}
1597 	return true;
1598 }
1599 
1600 static bool
1601 intel_dp_set_link_train(struct intel_dp *intel_dp,
1602 			uint32_t dp_reg_value,
1603 			uint8_t dp_train_pat)
1604 {
1605 	struct drm_device *dev = intel_dp->base.base.dev;
1606 	struct drm_i915_private *dev_priv = dev->dev_private;
1607 	int ret;
1608 
1609 	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1610 	POSTING_READ(intel_dp->output_reg);
1611 
1612 	intel_dp_aux_native_write_1(intel_dp,
1613 				    DP_TRAINING_PATTERN_SET,
1614 				    dp_train_pat);
1615 
1616 	ret = intel_dp_aux_native_write(intel_dp,
1617 					DP_TRAINING_LANE0_SET,
1618 					intel_dp->train_set,
1619 					intel_dp->lane_count);
1620 	if (ret != intel_dp->lane_count)
1621 		return false;
1622 
1623 	return true;
1624 }
1625 
1626 /* Enable corresponding port and start training pattern 1 */
1627 static void
1628 intel_dp_start_link_train(struct intel_dp *intel_dp)
1629 {
1630 	struct drm_device *dev = intel_dp->base.base.dev;
1631 	struct drm_i915_private *dev_priv = dev->dev_private;
1632 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1633 	int i;
1634 	uint8_t voltage;
1635 	bool clock_recovery = false;
1636 	int voltage_tries, loop_tries;
1637 	u32 reg;
1638 	uint32_t DP = intel_dp->DP;
1639 
1640 	/* Enable output, wait for it to become active */
1641 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1642 	POSTING_READ(intel_dp->output_reg);
1643 	intel_wait_for_vblank(dev, intel_crtc->pipe);
1644 
1645 	/* Write the link configuration data */
1646 	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1647 				  intel_dp->link_configuration,
1648 				  DP_LINK_CONFIGURATION_SIZE);
1649 
1650 	DP |= DP_PORT_EN;
1651 
1652 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1653 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1654 	else
1655 		DP &= ~DP_LINK_TRAIN_MASK;
1656 	memset(intel_dp->train_set, 0, 4);
1657 	voltage = 0xff;
1658 	voltage_tries = 0;
1659 	loop_tries = 0;
1660 	clock_recovery = false;
1661 	for (;;) {
1662 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1663 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1664 		uint32_t    signal_levels;
1665 
1666 
1667 		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1668 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1669 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1670 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1671 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1672 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1673 		} else {
1674 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1675 			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1676 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1677 		}
1678 
1679 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1680 			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1681 		else
1682 			reg = DP | DP_LINK_TRAIN_PAT_1;
1683 
1684 		if (!intel_dp_set_link_train(intel_dp, reg,
1685 					     DP_TRAINING_PATTERN_1))
1686 			break;
1687 		/* Set training pattern 1 */
1688 
1689 		DELAY(100);
1690 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1691 			DRM_ERROR("failed to get link status\n");
1692 			break;
1693 		}
1694 
1695 		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1696 			DRM_DEBUG_KMS("clock recovery OK\n");
1697 			clock_recovery = true;
1698 			break;
1699 		}
1700 
1701 		/* Check to see if we've tried the max voltage */
1702 		for (i = 0; i < intel_dp->lane_count; i++)
1703 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1704 				break;
1705 		if (i == intel_dp->lane_count) {
1706 			++loop_tries;
1707 			if (loop_tries == 5) {
1708 				DRM_DEBUG_KMS("too many full retries, give up\n");
1709 				break;
1710 			}
1711 			memset(intel_dp->train_set, 0, 4);
1712 			voltage_tries = 0;
1713 			continue;
1714 		}
1715 
1716 		/* Check to see if we've tried the same voltage 5 times */
1717 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1718 			++voltage_tries;
1719 			if (voltage_tries == 5) {
1720 				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1721 				break;
1722 			}
1723 		} else
1724 			voltage_tries = 0;
1725 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1726 
1727 		/* Compute new intel_dp->train_set as requested by target */
1728 		intel_get_adjust_train(intel_dp, link_status);
1729 	}
1730 
1731 	intel_dp->DP = DP;
1732 }
1733 
1734 static void
1735 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1736 {
1737 	struct drm_device *dev = intel_dp->base.base.dev;
1738 	struct drm_i915_private *dev_priv = dev->dev_private;
1739 	bool channel_eq = false;
1740 	int tries, cr_tries;
1741 	u32 reg;
1742 	uint32_t DP = intel_dp->DP;
1743 
1744 	/* channel equalization */
1745 	tries = 0;
1746 	cr_tries = 0;
1747 	channel_eq = false;
1748 	for (;;) {
1749 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1750 		uint32_t    signal_levels;
1751 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1752 
1753 		if (cr_tries > 5) {
1754 			DRM_ERROR("failed to train DP, aborting\n");
1755 			intel_dp_link_down(intel_dp);
1756 			break;
1757 		}
1758 
1759 		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1760 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1761 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1762 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1763 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1764 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1765 		} else {
1766 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1767 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1768 		}
1769 
1770 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1771 			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1772 		else
1773 			reg = DP | DP_LINK_TRAIN_PAT_2;
1774 
1775 		/* channel eq pattern */
1776 		if (!intel_dp_set_link_train(intel_dp, reg,
1777 					     DP_TRAINING_PATTERN_2))
1778 			break;
1779 
1780 		DELAY(400);
1781 		if (!intel_dp_get_link_status(intel_dp, link_status))
1782 			break;
1783 
1784 		/* Make sure clock is still ok */
1785 		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1786 			intel_dp_start_link_train(intel_dp);
1787 			cr_tries++;
1788 			continue;
1789 		}
1790 
1791 		if (intel_channel_eq_ok(intel_dp, link_status)) {
1792 			channel_eq = true;
1793 			break;
1794 		}
1795 
1796 		/* Try 5 times, then try clock recovery if that fails */
1797 		if (tries > 5) {
1798 			intel_dp_link_down(intel_dp);
1799 			intel_dp_start_link_train(intel_dp);
1800 			tries = 0;
1801 			cr_tries++;
1802 			continue;
1803 		}
1804 
1805 		/* Compute new intel_dp->train_set as requested by target */
1806 		intel_get_adjust_train(intel_dp, link_status);
1807 		++tries;
1808 	}
1809 
1810 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1811 		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1812 	else
1813 		reg = DP | DP_LINK_TRAIN_OFF;
1814 
1815 	I915_WRITE(intel_dp->output_reg, reg);
1816 	POSTING_READ(intel_dp->output_reg);
1817 	intel_dp_aux_native_write_1(intel_dp,
1818 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1819 }
1820 
1821 static void
1822 intel_dp_link_down(struct intel_dp *intel_dp)
1823 {
1824 	struct drm_device *dev = intel_dp->base.base.dev;
1825 	struct drm_i915_private *dev_priv = dev->dev_private;
1826 	uint32_t DP = intel_dp->DP;
1827 
1828 	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1829 		return;
1830 
1831 	DRM_DEBUG_KMS("\n");
1832 
1833 	if (is_edp(intel_dp)) {
1834 		DP &= ~DP_PLL_ENABLE;
1835 		I915_WRITE(intel_dp->output_reg, DP);
1836 		POSTING_READ(intel_dp->output_reg);
1837 		DELAY(100);
1838 	}
1839 
1840 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1841 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1842 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1843 	} else {
1844 		DP &= ~DP_LINK_TRAIN_MASK;
1845 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1846 	}
1847 	POSTING_READ(intel_dp->output_reg);
1848 
1849 	DELAY(17*1000);
1850 
1851 	if (is_edp(intel_dp)) {
1852 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1853 			DP |= DP_LINK_TRAIN_OFF_CPT;
1854 		else
1855 			DP |= DP_LINK_TRAIN_OFF;
1856 	}
1857 
1858 
1859 	if (!HAS_PCH_CPT(dev) &&
1860 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1861 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1862 
1863 		/* Hardware workaround: leaving our transcoder select
1864 		 * set to transcoder B while it's off will prevent the
1865 		 * corresponding HDMI output on transcoder A.
1866 		 *
1867 		 * Combine this with another hardware workaround:
1868 		 * transcoder select bit can only be cleared while the
1869 		 * port is enabled.
1870 		 */
1871 		DP &= ~DP_PIPEB_SELECT;
1872 		I915_WRITE(intel_dp->output_reg, DP);
1873 
1874 		/* Changes to enable or select take place the vblank
1875 		 * after being written.
1876 		 */
1877 		if (crtc == NULL) {
1878 			/* We can arrive here never having been attached
1879 			 * to a CRTC, for instance, due to inheriting
1880 			 * random state from the BIOS.
1881 			 *
1882 			 * If the pipe is not running, play safe and
1883 			 * wait for the clocks to stabilise before
1884 			 * continuing.
1885 			 */
1886 			POSTING_READ(intel_dp->output_reg);
1887 			DELAY(50 * 1000);
1888 		} else
1889 			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1890 	}
1891 
1892 	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1893 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1894 	POSTING_READ(intel_dp->output_reg);
1895 	DELAY(intel_dp->panel_power_down_delay * 1000);
1896 }
1897 
1898 static bool
1899 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1900 {
1901 	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1902 					   sizeof(intel_dp->dpcd)) &&
1903 	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1904 		return true;
1905 	}
1906 
1907 	return false;
1908 }
1909 
1910 static bool
1911 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1912 {
1913 	int ret;
1914 
1915 	ret = intel_dp_aux_native_read_retry(intel_dp,
1916 					     DP_DEVICE_SERVICE_IRQ_VECTOR,
1917 					     sink_irq_vector, 1);
1918 	if (!ret)
1919 		return false;
1920 
1921 	return true;
1922 }
1923 
1924 static void
1925 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1926 {
1927 	/* NAK by default */
1928 	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1929 }
1930 
1931 /*
1932  * According to DP spec
1933  * 5.1.2:
1934  *  1. Read DPCD
1935  *  2. Configure link according to Receiver Capabilities
1936  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1937  *  4. Check link status on receipt of hot-plug interrupt
1938  */
1939 
1940 static void
1941 intel_dp_check_link_status(struct intel_dp *intel_dp)
1942 {
1943 	u8 sink_irq_vector;
1944 	u8 link_status[DP_LINK_STATUS_SIZE];
1945 
1946 	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1947 		return;
1948 
1949 	if (!intel_dp->base.base.crtc)
1950 		return;
1951 
1952 	/* Try to read receiver status if the link appears to be up */
1953 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
1954 		intel_dp_link_down(intel_dp);
1955 		return;
1956 	}
1957 
1958 	/* Now read the DPCD to see if it's actually running */
1959 	if (!intel_dp_get_dpcd(intel_dp)) {
1960 		intel_dp_link_down(intel_dp);
1961 		return;
1962 	}
1963 
1964 	/* Try to read the source of the interrupt */
1965 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1966 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1967 		/* Clear interrupt source */
1968 		intel_dp_aux_native_write_1(intel_dp,
1969 					    DP_DEVICE_SERVICE_IRQ_VECTOR,
1970 					    sink_irq_vector);
1971 
1972 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1973 			intel_dp_handle_test_request(intel_dp);
1974 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1975 			DRM_DEBUG_KMS("CP or sink specific irq unhandled\n");
1976 	}
1977 
1978 	if (!intel_channel_eq_ok(intel_dp, link_status)) {
1979 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1980 			      drm_get_encoder_name(&intel_dp->base.base));
1981  		intel_dp_start_link_train(intel_dp);
1982 		intel_dp_complete_link_train(intel_dp);
1983 	}
1984 }
1985 
1986 static enum drm_connector_status
1987 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1988 {
1989 	if (intel_dp_get_dpcd(intel_dp))
1990 		return connector_status_connected;
1991 	return connector_status_disconnected;
1992 }
1993 
1994 static enum drm_connector_status
1995 ironlake_dp_detect(struct intel_dp *intel_dp)
1996 {
1997 	enum drm_connector_status status;
1998 
1999 	/* Can't disconnect eDP, but you can close the lid... */
2000 	if (is_edp(intel_dp)) {
2001 		status = intel_panel_detect(intel_dp->base.base.dev);
2002 		if (status == connector_status_unknown)
2003 			status = connector_status_connected;
2004 		return status;
2005 	}
2006 
2007 	return intel_dp_detect_dpcd(intel_dp);
2008 }
2009 
2010 static enum drm_connector_status
2011 g4x_dp_detect(struct intel_dp *intel_dp)
2012 {
2013 	struct drm_device *dev = intel_dp->base.base.dev;
2014 	struct drm_i915_private *dev_priv = dev->dev_private;
2015 	uint32_t temp, bit;
2016 
2017 	switch (intel_dp->output_reg) {
2018 	case DP_B:
2019 		bit = DPB_HOTPLUG_INT_STATUS;
2020 		break;
2021 	case DP_C:
2022 		bit = DPC_HOTPLUG_INT_STATUS;
2023 		break;
2024 	case DP_D:
2025 		bit = DPD_HOTPLUG_INT_STATUS;
2026 		break;
2027 	default:
2028 		return connector_status_unknown;
2029 	}
2030 
2031 	temp = I915_READ(PORT_HOTPLUG_STAT);
2032 
2033 	if ((temp & bit) == 0)
2034 		return connector_status_disconnected;
2035 
2036 	return intel_dp_detect_dpcd(intel_dp);
2037 }
2038 
2039 static struct edid *
2040 intel_dp_get_edid(struct drm_connector *connector, device_t adapter)
2041 {
2042 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2043 	struct edid	*edid;
2044 
2045 	ironlake_edp_panel_vdd_on(intel_dp);
2046 	edid = drm_get_edid(connector, adapter);
2047 	ironlake_edp_panel_vdd_off(intel_dp, false);
2048 	return edid;
2049 }
2050 
2051 static int
2052 intel_dp_get_edid_modes(struct drm_connector *connector, device_t adapter)
2053 {
2054 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2055 	int	ret;
2056 
2057 	ironlake_edp_panel_vdd_on(intel_dp);
2058 	ret = intel_ddc_get_modes(connector, adapter);
2059 	ironlake_edp_panel_vdd_off(intel_dp, false);
2060 	return ret;
2061 }
2062 
2063 
2064 /**
2065  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2066  *
2067  * \return true if DP port is connected.
2068  * \return false if DP port is disconnected.
2069  */
2070 static enum drm_connector_status
2071 intel_dp_detect(struct drm_connector *connector, bool force)
2072 {
2073 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2074 	struct drm_device *dev = intel_dp->base.base.dev;
2075 	enum drm_connector_status status;
2076 	struct edid *edid = NULL;
2077 
2078 	intel_dp->has_audio = false;
2079 
2080 	if (HAS_PCH_SPLIT(dev))
2081 		status = ironlake_dp_detect(intel_dp);
2082 	else
2083 		status = g4x_dp_detect(intel_dp);
2084 	if (status != connector_status_connected)
2085 		return status;
2086 
2087 	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2088 		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2089 	} else {
2090 		edid = intel_dp_get_edid(connector, intel_dp->adapter);
2091 		if (edid) {
2092 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2093 			drm_free(edid, DRM_MEM_KMS);
2094 		}
2095 	}
2096 
2097 	return connector_status_connected;
2098 }
2099 
2100 static int intel_dp_get_modes(struct drm_connector *connector)
2101 {
2102 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2103 	struct drm_device *dev = intel_dp->base.base.dev;
2104 	struct drm_i915_private *dev_priv = dev->dev_private;
2105 	int ret;
2106 
2107 	/* We should parse the EDID data and find out if it has an audio sink
2108 	 */
2109 
2110 	ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2111 	if (ret) {
2112 		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2113 			struct drm_display_mode *newmode;
2114 			list_for_each_entry(newmode, &connector->probed_modes,
2115 					    head) {
2116 				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2117 					intel_dp->panel_fixed_mode =
2118 						drm_mode_duplicate(dev, newmode);
2119 					break;
2120 				}
2121 			}
2122 		}
2123 		return ret;
2124 	}
2125 
2126 	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2127 	if (is_edp(intel_dp)) {
2128 		/* initialize panel mode from VBT if available for eDP */
2129 		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2130 			intel_dp->panel_fixed_mode =
2131 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2132 			if (intel_dp->panel_fixed_mode) {
2133 				intel_dp->panel_fixed_mode->type |=
2134 					DRM_MODE_TYPE_PREFERRED;
2135 			}
2136 		}
2137 		if (intel_dp->panel_fixed_mode) {
2138 			struct drm_display_mode *mode;
2139 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2140 			drm_mode_probed_add(connector, mode);
2141 			return 1;
2142 		}
2143 	}
2144 	return 0;
2145 }
2146 
2147 static bool
2148 intel_dp_detect_audio(struct drm_connector *connector)
2149 {
2150 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2151 	struct edid *edid;
2152 	bool has_audio = false;
2153 
2154 	edid = intel_dp_get_edid(connector, intel_dp->adapter);
2155 	if (edid) {
2156 		has_audio = drm_detect_monitor_audio(edid);
2157 
2158 		drm_free(edid, DRM_MEM_KMS);
2159 	}
2160 
2161 	return has_audio;
2162 }
2163 
2164 static int
2165 intel_dp_set_property(struct drm_connector *connector,
2166 		      struct drm_property *property,
2167 		      uint64_t val)
2168 {
2169 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2170 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2171 	int ret;
2172 
2173 	ret = drm_object_property_set_value(&connector->base, property, val);
2174 	if (ret)
2175 		return ret;
2176 
2177 	if (property == dev_priv->force_audio_property) {
2178 		int i = val;
2179 		bool has_audio;
2180 
2181 		if (i == intel_dp->force_audio)
2182 			return 0;
2183 
2184 		intel_dp->force_audio = i;
2185 
2186 		if (i == HDMI_AUDIO_AUTO)
2187 			has_audio = intel_dp_detect_audio(connector);
2188 		else
2189 			has_audio = (i == HDMI_AUDIO_ON);
2190 
2191 		if (has_audio == intel_dp->has_audio)
2192 			return 0;
2193 
2194 		intel_dp->has_audio = has_audio;
2195 		goto done;
2196 	}
2197 
2198 	if (property == dev_priv->broadcast_rgb_property) {
2199 		if (val == !!intel_dp->color_range)
2200 			return 0;
2201 
2202 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2203 		goto done;
2204 	}
2205 
2206 	return -EINVAL;
2207 
2208 done:
2209 	if (intel_dp->base.base.crtc) {
2210 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2211 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
2212 					 crtc->x, crtc->y,
2213 					 crtc->fb);
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static void
2220 intel_dp_destroy(struct drm_connector *connector)
2221 {
2222 	struct drm_device *dev = connector->dev;
2223 
2224 	if (intel_dpd_is_edp(dev))
2225 		intel_panel_destroy_backlight(dev);
2226 
2227 #if 0
2228 	drm_sysfs_connector_remove(connector);
2229 #endif
2230 	drm_connector_cleanup(connector);
2231 	drm_free(connector, DRM_MEM_KMS);
2232 }
2233 
2234 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2235 {
2236 	struct drm_device *dev;
2237 	struct intel_dp *intel_dp;
2238 
2239 	intel_dp = enc_to_intel_dp(encoder);
2240 	dev = encoder->dev;
2241 
2242 	if (intel_dp->dp_iic_bus != NULL) {
2243 		if (intel_dp->adapter != NULL) {
2244 			device_delete_child(intel_dp->dp_iic_bus,
2245 			    intel_dp->adapter);
2246 		}
2247 		device_delete_child(dev->dev, intel_dp->dp_iic_bus);
2248 	}
2249 	drm_encoder_cleanup(encoder);
2250 	if (is_edp(intel_dp)) {
2251 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2252 		ironlake_panel_vdd_off_sync(intel_dp);
2253 	}
2254 	drm_free(intel_dp, DRM_MEM_KMS);
2255 }
2256 
2257 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2258 	.dpms = intel_dp_dpms,
2259 	.mode_fixup = intel_dp_mode_fixup,
2260 	.prepare = intel_dp_prepare,
2261 	.mode_set = intel_dp_mode_set,
2262 	.commit = intel_dp_commit,
2263 };
2264 
2265 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2266 	.dpms = drm_helper_connector_dpms,
2267 	.detect = intel_dp_detect,
2268 	.fill_modes = drm_helper_probe_single_connector_modes,
2269 	.set_property = intel_dp_set_property,
2270 	.destroy = intel_dp_destroy,
2271 };
2272 
2273 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2274 	.get_modes = intel_dp_get_modes,
2275 	.mode_valid = intel_dp_mode_valid,
2276 	.best_encoder = intel_best_encoder,
2277 };
2278 
2279 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2280 	.destroy = intel_dp_encoder_destroy,
2281 };
2282 
2283 static void
2284 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2285 {
2286 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2287 
2288 	intel_dp_check_link_status(intel_dp);
2289 }
2290 
2291 /* Return which DP Port should be selected for Transcoder DP control */
2292 int
2293 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2294 {
2295 	struct drm_device *dev = crtc->dev;
2296 	struct drm_mode_config *mode_config = &dev->mode_config;
2297 	struct drm_encoder *encoder;
2298 
2299 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2300 		struct intel_dp *intel_dp;
2301 
2302 		if (encoder->crtc != crtc)
2303 			continue;
2304 
2305 		intel_dp = enc_to_intel_dp(encoder);
2306 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2307 		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2308 			return intel_dp->output_reg;
2309 	}
2310 
2311 	return -1;
2312 }
2313 
2314 /* check the VBT to see whether the eDP is on DP-D port */
2315 bool intel_dpd_is_edp(struct drm_device *dev)
2316 {
2317 	struct drm_i915_private *dev_priv = dev->dev_private;
2318 	struct child_device_config *p_child;
2319 	int i;
2320 
2321 	if (!dev_priv->child_dev_num)
2322 		return false;
2323 
2324 	for (i = 0; i < dev_priv->child_dev_num; i++) {
2325 		p_child = dev_priv->child_dev + i;
2326 
2327 		if (p_child->dvo_port == PORT_IDPD &&
2328 		    p_child->device_type == DEVICE_TYPE_eDP)
2329 			return true;
2330 	}
2331 	return false;
2332 }
2333 
2334 static void
2335 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2336 {
2337 	intel_attach_force_audio_property(connector);
2338 	intel_attach_broadcast_rgb_property(connector);
2339 }
2340 
2341 void
2342 intel_dp_init(struct drm_device *dev, int output_reg)
2343 {
2344 	struct drm_i915_private *dev_priv = dev->dev_private;
2345 	struct drm_connector *connector;
2346 	struct intel_dp *intel_dp;
2347 	struct intel_encoder *intel_encoder;
2348 	struct intel_connector *intel_connector;
2349 	const char *name = NULL;
2350 	int type;
2351 
2352 	intel_dp = kmalloc(sizeof(struct intel_dp), DRM_MEM_KMS,
2353 	    M_WAITOK | M_ZERO);
2354 
2355 	intel_dp->output_reg = output_reg;
2356 	intel_dp->dpms_mode = -1;
2357 
2358 	intel_connector = kmalloc(sizeof(struct intel_connector), DRM_MEM_KMS,
2359 	    M_WAITOK | M_ZERO);
2360 	intel_encoder = &intel_dp->base;
2361 
2362 	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2363 		if (intel_dpd_is_edp(dev))
2364 			intel_dp->is_pch_edp = true;
2365 
2366 	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2367 		type = DRM_MODE_CONNECTOR_eDP;
2368 		intel_encoder->type = INTEL_OUTPUT_EDP;
2369 	} else {
2370 		type = DRM_MODE_CONNECTOR_DisplayPort;
2371 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2372 	}
2373 
2374 	connector = &intel_connector->base;
2375 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2376 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2377 
2378 	connector->polled = DRM_CONNECTOR_POLL_HPD;
2379 
2380 	if (output_reg == DP_B || output_reg == PCH_DP_B)
2381 		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2382 	else if (output_reg == DP_C || output_reg == PCH_DP_C)
2383 		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2384 	else if (output_reg == DP_D || output_reg == PCH_DP_D)
2385 		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2386 
2387 	if (is_edp(intel_dp)) {
2388 		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2389 		INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2390 			  ironlake_panel_vdd_work);
2391 	}
2392 
2393 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2394 	connector->interlace_allowed = true;
2395 	connector->doublescan_allowed = 0;
2396 
2397 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2398 			 DRM_MODE_ENCODER_TMDS);
2399 	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2400 
2401 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2402 #if 0
2403 	drm_sysfs_connector_add(connector);
2404 #endif
2405 
2406 	/* Set up the DDC bus. */
2407 	switch (output_reg) {
2408 		case DP_A:
2409 			name = "DPDDC-A";
2410 			break;
2411 		case DP_B:
2412 		case PCH_DP_B:
2413 			dev_priv->hotplug_supported_mask |=
2414 				HDMIB_HOTPLUG_INT_STATUS;
2415 			name = "DPDDC-B";
2416 			break;
2417 		case DP_C:
2418 		case PCH_DP_C:
2419 			dev_priv->hotplug_supported_mask |=
2420 				HDMIC_HOTPLUG_INT_STATUS;
2421 			name = "DPDDC-C";
2422 			break;
2423 		case DP_D:
2424 		case PCH_DP_D:
2425 			dev_priv->hotplug_supported_mask |=
2426 				HDMID_HOTPLUG_INT_STATUS;
2427 			name = "DPDDC-D";
2428 			break;
2429 	}
2430 
2431 	/* Cache some DPCD data in the eDP case */
2432 	if (is_edp(intel_dp)) {
2433 		bool ret;
2434 		struct edp_power_seq	cur, vbt;
2435 		u32 pp_on, pp_off, pp_div;
2436 
2437 		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2438 		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2439 		pp_div = I915_READ(PCH_PP_DIVISOR);
2440 
2441 		/* Pull timing values out of registers */
2442 		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2443 			PANEL_POWER_UP_DELAY_SHIFT;
2444 
2445 		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2446 			PANEL_LIGHT_ON_DELAY_SHIFT;
2447 
2448 		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2449 			PANEL_LIGHT_OFF_DELAY_SHIFT;
2450 
2451 		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2452 			PANEL_POWER_DOWN_DELAY_SHIFT;
2453 
2454 		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2455 			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2456 
2457 		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2458 			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2459 
2460 		vbt = dev_priv->edp.pps;
2461 
2462 		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2463 			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2464 
2465 #define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2466 
2467 		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2468 		intel_dp->backlight_on_delay = get_delay(t8);
2469 		intel_dp->backlight_off_delay = get_delay(t9);
2470 		intel_dp->panel_power_down_delay = get_delay(t10);
2471 		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2472 
2473 		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2474 			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2475 			      intel_dp->panel_power_cycle_delay);
2476 
2477 		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2478 			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2479 
2480 		ironlake_edp_panel_vdd_on(intel_dp);
2481 		ret = intel_dp_get_dpcd(intel_dp);
2482 		ironlake_edp_panel_vdd_off(intel_dp, false);
2483 
2484 		if (ret) {
2485 			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2486 				dev_priv->no_aux_handshake =
2487 					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2488 					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2489 		} else {
2490 			/* if this fails, presume the device is a ghost */
2491 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2492 			intel_dp_encoder_destroy(&intel_dp->base.base);
2493 			intel_dp_destroy(&intel_connector->base);
2494 			return;
2495 		}
2496 	}
2497 
2498 	intel_dp_i2c_init(intel_dp, intel_connector, name);
2499 
2500 	intel_encoder->hot_plug = intel_dp_hot_plug;
2501 
2502 	if (is_edp(intel_dp)) {
2503 		dev_priv->int_edp_connector = connector;
2504 		intel_panel_setup_backlight(dev);
2505 	}
2506 
2507 	intel_dp_add_properties(intel_dp, connector);
2508 
2509 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2510 	 * 0xd.  Failure to do so will result in spurious interrupts being
2511 	 * generated on the port when a cable is not attached.
2512 	 */
2513 	if (IS_G4X(dev) && !IS_GM45(dev)) {
2514 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2515 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2516 	}
2517 }
2518