xref: /dragonfly/sys/dev/drm/i915/intel_dpio_phy.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "intel_drv.h"
25 
26 /**
27  * DOC: DPIO
28  *
29  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
30  * ports. DPIO is the name given to such a display PHY. These PHYs
31  * don't follow the standard programming model using direct MMIO
32  * registers, and instead their registers must be accessed trough IOSF
33  * sideband. VLV has one such PHY for driving ports B and C, and CHV
34  * adds another PHY for driving port D. Each PHY responds to specific
35  * IOSF-SB port.
36  *
37  * Each display PHY is made up of one or two channels. Each channel
38  * houses a common lane part which contains the PLL and other common
39  * logic. CH0 common lane also contains the IOSF-SB logic for the
40  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
41  * must be running when any DPIO registers are accessed.
42  *
43  * In addition to having their own registers, the PHYs are also
44  * controlled through some dedicated signals from the display
45  * controller. These include PLL reference clock enable, PLL enable,
46  * and CRI clock selection, for example.
47  *
48  * Eeach channel also has two splines (also called data lanes), and
49  * each spline is made up of one Physical Access Coding Sub-Layer
50  * (PCS) block and two TX lanes. So each channel has two PCS blocks
51  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
52  * data/clock pairs depending on the output type.
53  *
54  * Additionally the PHY also contains an AUX lane with AUX blocks
55  * for each channel. This is used for DP AUX communication, but
56  * this fact isn't really relevant for the driver since AUX is
57  * controlled from the display controller side. No DPIO registers
58  * need to be accessed during AUX communication,
59  *
60  * Generally on VLV/CHV the common lane corresponds to the pipe and
61  * the spline (PCS/TX) corresponds to the port.
62  *
63  * For dual channel PHY (VLV/CHV):
64  *
65  *  pipe A == CMN/PLL/REF CH0
66  *
67  *  pipe B == CMN/PLL/REF CH1
68  *
69  *  port B == PCS/TX CH0
70  *
71  *  port C == PCS/TX CH1
72  *
73  * This is especially important when we cross the streams
74  * ie. drive port B with pipe B, or port C with pipe A.
75  *
76  * For single channel PHY (CHV):
77  *
78  *  pipe C == CMN/PLL/REF CH0
79  *
80  *  port D == PCS/TX CH0
81  *
82  * On BXT the entire PHY channel corresponds to the port. That means
83  * the PLL is also now associated with the port rather than the pipe,
84  * and so the clock needs to be routed to the appropriate transcoder.
85  * Port A PLL is directly connected to transcoder EDP and port B/C
86  * PLLs can be routed to any transcoder A/B/C.
87  *
88  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
89  * digital port D (CHV) or port A (BXT). ::
90  *
91  *
92  *     Dual channel PHY (VLV/CHV/BXT)
93  *     ---------------------------------
94  *     |      CH0      |      CH1      |
95  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
96  *     |---------------|---------------| Display PHY
97  *     | PCS01 | PCS23 | PCS01 | PCS23 |
98  *     |-------|-------|-------|-------|
99  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
100  *     ---------------------------------
101  *     |     DDI0      |     DDI1      | DP/HDMI ports
102  *     ---------------------------------
103  *
104  *     Single channel PHY (CHV/BXT)
105  *     -----------------
106  *     |      CH0      |
107  *     |  CMN/PLL/REF  |
108  *     |---------------| Display PHY
109  *     | PCS01 | PCS23 |
110  *     |-------|-------|
111  *     |TX0|TX1|TX2|TX3|
112  *     -----------------
113  *     |     DDI2      | DP/HDMI port
114  *     -----------------
115  */
116 
117 /**
118  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
119  */
120 struct bxt_ddi_phy_info {
121 	/**
122 	 * @dual_channel: true if this phy has a second channel.
123 	 */
124 	bool dual_channel;
125 
126 	/**
127 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
128 	 * Otherwise the GRC value will be copied from the phy indicated by
129 	 * this field.
130 	 */
131 	enum dpio_phy rcomp_phy;
132 
133 	/**
134 	 * @reset_delay: delay in us to wait before setting the common reset
135 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
136 	 */
137 	int reset_delay;
138 
139 	/**
140 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
141 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
142 	 */
143 	u32 pwron_mask;
144 
145 	/**
146 	 * @channel: struct containing per channel information.
147 	 */
148 	struct {
149 		/**
150 		 * @port: which port maps to this channel.
151 		 */
152 		enum port port;
153 	} channel[2];
154 };
155 
156 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
157 	[DPIO_PHY0] = {
158 		.dual_channel = true,
159 		.rcomp_phy = DPIO_PHY1,
160 		.pwron_mask = BIT(0),
161 
162 		.channel = {
163 			[DPIO_CH0] = { .port = PORT_B },
164 			[DPIO_CH1] = { .port = PORT_C },
165 		}
166 	},
167 	[DPIO_PHY1] = {
168 		.dual_channel = false,
169 		.rcomp_phy = -1,
170 		.pwron_mask = BIT(1),
171 
172 		.channel = {
173 			[DPIO_CH0] = { .port = PORT_A },
174 		}
175 	},
176 };
177 
178 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
179 	[DPIO_PHY0] = {
180 		.dual_channel = false,
181 		.rcomp_phy = DPIO_PHY1,
182 		.pwron_mask = BIT(0),
183 		.reset_delay = 20,
184 
185 		.channel = {
186 			[DPIO_CH0] = { .port = PORT_B },
187 		}
188 	},
189 	[DPIO_PHY1] = {
190 		.dual_channel = false,
191 		.rcomp_phy = -1,
192 		.pwron_mask = BIT(3),
193 		.reset_delay = 20,
194 
195 		.channel = {
196 			[DPIO_CH0] = { .port = PORT_A },
197 		}
198 	},
199 	[DPIO_PHY2] = {
200 		.dual_channel = false,
201 		.rcomp_phy = DPIO_PHY1,
202 		.pwron_mask = BIT(1),
203 		.reset_delay = 20,
204 
205 		.channel = {
206 			[DPIO_CH0] = { .port = PORT_C },
207 		}
208 	},
209 };
210 
211 static const struct bxt_ddi_phy_info *
212 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
213 {
214 	if (IS_GEMINILAKE(dev_priv)) {
215 		*count =  ARRAY_SIZE(glk_ddi_phy_info);
216 		return glk_ddi_phy_info;
217 	} else {
218 		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
219 		return bxt_ddi_phy_info;
220 	}
221 }
222 
223 static const struct bxt_ddi_phy_info *
224 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
225 {
226 	int count;
227 	const struct bxt_ddi_phy_info *phy_list =
228 		bxt_get_phy_list(dev_priv, &count);
229 
230 	return &phy_list[phy];
231 }
232 
233 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
234 			     enum dpio_phy *phy, enum dpio_channel *ch)
235 {
236 	const struct bxt_ddi_phy_info *phy_info, *phys;
237 	int i, count;
238 
239 	phys = bxt_get_phy_list(dev_priv, &count);
240 
241 	for (i = 0; i < count; i++) {
242 		phy_info = &phys[i];
243 
244 		if (port == phy_info->channel[DPIO_CH0].port) {
245 			*phy = i;
246 			*ch = DPIO_CH0;
247 			return;
248 		}
249 
250 		if (phy_info->dual_channel &&
251 		    port == phy_info->channel[DPIO_CH1].port) {
252 			*phy = i;
253 			*ch = DPIO_CH1;
254 			return;
255 		}
256 	}
257 
258 	WARN(1, "PHY not found for PORT %c", port_name(port));
259 	*phy = DPIO_PHY0;
260 	*ch = DPIO_CH0;
261 }
262 
263 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
264 				  enum port port, u32 margin, u32 scale,
265 				  u32 enable, u32 deemphasis)
266 {
267 	u32 val;
268 	enum dpio_phy phy;
269 	enum dpio_channel ch;
270 
271 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
272 
273 	/*
274 	 * While we write to the group register to program all lanes at once we
275 	 * can read only lane registers and we pick lanes 0/1 for that.
276 	 */
277 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
278 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
279 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
280 
281 	val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
282 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
283 	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
284 	I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
285 
286 	val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
287 	val &= ~SCALE_DCOMP_METHOD;
288 	if (enable)
289 		val |= SCALE_DCOMP_METHOD;
290 
291 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
292 		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
293 
294 	I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
295 
296 	val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
297 	val &= ~DE_EMPHASIS;
298 	val |= deemphasis << DEEMPH_SHIFT;
299 	I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
300 
301 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
302 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
303 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
304 }
305 
306 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
307 			    enum dpio_phy phy)
308 {
309 	const struct bxt_ddi_phy_info *phy_info;
310 
311 	phy_info = bxt_get_phy_info(dev_priv, phy);
312 
313 	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
314 		return false;
315 
316 	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
317 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
318 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
319 				 phy);
320 
321 		return false;
322 	}
323 
324 	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
325 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
326 				 phy);
327 
328 		return false;
329 	}
330 
331 	return true;
332 }
333 
334 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
335 {
336 	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
337 
338 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
339 }
340 
341 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
342 				  enum dpio_phy phy)
343 {
344 	if (intel_wait_for_register(dev_priv,
345 				    BXT_PORT_REF_DW3(phy),
346 				    GRC_DONE, GRC_DONE,
347 				    10))
348 		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
349 }
350 
351 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
352 			      enum dpio_phy phy)
353 {
354 	const struct bxt_ddi_phy_info *phy_info;
355 	u32 val;
356 
357 	phy_info = bxt_get_phy_info(dev_priv, phy);
358 
359 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
360 		/* Still read out the GRC value for state verification */
361 		if (phy_info->rcomp_phy != -1)
362 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
363 
364 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
365 			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
366 					 "won't reprogram it\n", phy);
367 			return;
368 		}
369 
370 		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
371 				 "force reprogramming it\n", phy);
372 	}
373 
374 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
375 	val |= phy_info->pwron_mask;
376 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
377 
378 	/*
379 	 * The PHY registers start out inaccessible and respond to reads with
380 	 * all 1s.  Eventually they become accessible as they power up, then
381 	 * the reserved bit will give the default 0.  Poll on the reserved bit
382 	 * becoming 0 to find when the PHY is accessible.
383 	 * HW team confirmed that the time to reach phypowergood status is
384 	 * anywhere between 50 us and 100us.
385 	 */
386 	if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
387 		(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
388 		DRM_ERROR("timeout during PHY%d power on\n", phy);
389 	}
390 
391 	/* Program PLL Rcomp code offset */
392 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
393 	val &= ~IREF0RC_OFFSET_MASK;
394 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
395 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
396 
397 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
398 	val &= ~IREF1RC_OFFSET_MASK;
399 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
400 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
401 
402 	/* Program power gating */
403 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
404 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
405 		SUS_CLK_CONFIG;
406 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
407 
408 	if (phy_info->dual_channel) {
409 		val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
410 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
411 		I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
412 	}
413 
414 	if (phy_info->rcomp_phy != -1) {
415 		uint32_t grc_code;
416 
417 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
418 
419 		/*
420 		 * PHY0 isn't connected to an RCOMP resistor so copy over
421 		 * the corresponding calibrated value from PHY1, and disable
422 		 * the automatic calibration on PHY0.
423 		 */
424 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
425 							  phy_info->rcomp_phy);
426 		grc_code = val << GRC_CODE_FAST_SHIFT |
427 			   val << GRC_CODE_SLOW_SHIFT |
428 			   val;
429 		I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
430 
431 		val = I915_READ(BXT_PORT_REF_DW8(phy));
432 		val |= GRC_DIS | GRC_RDY_OVRD;
433 		I915_WRITE(BXT_PORT_REF_DW8(phy), val);
434 	}
435 
436 	if (phy_info->reset_delay)
437 		udelay(phy_info->reset_delay);
438 
439 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
440 	val |= COMMON_RESET_DIS;
441 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
442 }
443 
444 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
445 {
446 	const struct bxt_ddi_phy_info *phy_info;
447 	uint32_t val;
448 
449 	phy_info = bxt_get_phy_info(dev_priv, phy);
450 
451 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
452 	val &= ~COMMON_RESET_DIS;
453 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
454 
455 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
456 	val &= ~phy_info->pwron_mask;
457 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
458 }
459 
460 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
461 {
462 	const struct bxt_ddi_phy_info *phy_info =
463 		bxt_get_phy_info(dev_priv, phy);
464 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
465 	bool was_enabled;
466 
467 	lockdep_assert_held(&dev_priv->power_domains.lock);
468 
469 	if (rcomp_phy != -1) {
470 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
471 
472 		/*
473 		 * We need to copy the GRC calibration value from rcomp_phy,
474 		 * so make sure it's powered up.
475 		 */
476 		if (!was_enabled)
477 			_bxt_ddi_phy_init(dev_priv, rcomp_phy);
478 	}
479 
480 	_bxt_ddi_phy_init(dev_priv, phy);
481 
482 	if (rcomp_phy != -1 && !was_enabled)
483 		bxt_ddi_phy_uninit(dev_priv, phy_info->rcomp_phy);
484 }
485 
486 static bool __printf(6, 7)
487 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
488 		       i915_reg_t reg, u32 mask, u32 expected,
489 		       const char *reg_fmt, ...)
490 {
491 	struct va_format vaf;
492 	va_list args;
493 	u32 val;
494 
495 	val = I915_READ(reg);
496 	if ((val & mask) == expected)
497 		return true;
498 
499 	va_start(args, reg_fmt);
500 	vaf.fmt = reg_fmt;
501 	vaf.va = &args;
502 
503 	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
504 			 "current %08x, expected %08x (mask %08x)\n",
505 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
506 			 mask);
507 
508 	va_end(args);
509 
510 	return false;
511 }
512 
513 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
514 			      enum dpio_phy phy)
515 {
516 	const struct bxt_ddi_phy_info *phy_info;
517 	uint32_t mask;
518 	bool ok;
519 
520 	phy_info = bxt_get_phy_info(dev_priv, phy);
521 
522 #define _CHK(reg, mask, exp, fmt, ...)					\
523 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
524 			       ## __VA_ARGS__)
525 
526 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
527 		return false;
528 
529 	ok = true;
530 
531 	/* PLL Rcomp code offset */
532 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
533 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
534 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
535 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
536 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
537 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
538 
539 	/* Power gating */
540 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
541 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
542 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
543 
544 	if (phy_info->dual_channel)
545 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
546 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
547 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
548 
549 	if (phy_info->rcomp_phy != -1) {
550 		u32 grc_code = dev_priv->bxt_phy_grc;
551 
552 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
553 			   grc_code << GRC_CODE_SLOW_SHIFT |
554 			   grc_code;
555 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
556 		       GRC_CODE_NOM_MASK;
557 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
558 			   "BXT_PORT_REF_DW6(%d)", phy);
559 
560 		mask = GRC_DIS | GRC_RDY_OVRD;
561 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
562 			    "BXT_PORT_REF_DW8(%d)", phy);
563 	}
564 
565 	return ok;
566 #undef _CHK
567 }
568 
569 uint8_t
570 bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
571 				     uint8_t lane_count)
572 {
573 	switch (lane_count) {
574 	case 1:
575 		return 0;
576 	case 2:
577 		return BIT(2) | BIT(0);
578 	case 4:
579 		return BIT(3) | BIT(2) | BIT(0);
580 	default:
581 		MISSING_CASE(lane_count);
582 
583 		return 0;
584 	}
585 }
586 
587 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
588 				     uint8_t lane_lat_optim_mask)
589 {
590 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
591 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
592 	enum port port = dport->port;
593 	enum dpio_phy phy;
594 	enum dpio_channel ch;
595 	int lane;
596 
597 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
598 
599 	for (lane = 0; lane < 4; lane++) {
600 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
601 
602 		/*
603 		 * Note that on CHV this flag is called UPAR, but has
604 		 * the same function.
605 		 */
606 		val &= ~LATENCY_OPTIM;
607 		if (lane_lat_optim_mask & BIT(lane))
608 			val |= LATENCY_OPTIM;
609 
610 		I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
611 	}
612 }
613 
614 uint8_t
615 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
616 {
617 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
618 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
619 	enum port port = dport->port;
620 	enum dpio_phy phy;
621 	enum dpio_channel ch;
622 	int lane;
623 	uint8_t mask;
624 
625 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
626 
627 	mask = 0;
628 	for (lane = 0; lane < 4; lane++) {
629 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
630 
631 		if (val & LATENCY_OPTIM)
632 			mask |= BIT(lane);
633 	}
634 
635 	return mask;
636 }
637 
638 
639 void chv_set_phy_signal_level(struct intel_encoder *encoder,
640 			      u32 deemph_reg_value, u32 margin_reg_value,
641 			      bool uniq_trans_scale)
642 {
643 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
644 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
645 	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
646 	enum dpio_channel ch = vlv_dport_to_channel(dport);
647 	enum i915_pipe pipe = intel_crtc->pipe;
648 	u32 val;
649 	int i;
650 
651 	mutex_lock(&dev_priv->sb_lock);
652 
653 	/* Clear calc init */
654 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
655 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
656 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
657 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
658 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
659 
660 	if (intel_crtc->config->lane_count > 2) {
661 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
662 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
663 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
664 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
665 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
666 	}
667 
668 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
669 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
670 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
671 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
672 
673 	if (intel_crtc->config->lane_count > 2) {
674 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
675 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
676 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
677 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
678 	}
679 
680 	/* Program swing deemph */
681 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
682 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
683 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
684 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
685 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
686 	}
687 
688 	/* Program swing margin */
689 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
690 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
691 
692 		val &= ~DPIO_SWING_MARGIN000_MASK;
693 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
694 
695 		/*
696 		 * Supposedly this value shouldn't matter when unique transition
697 		 * scale is disabled, but in fact it does matter. Let's just
698 		 * always program the same value and hope it's OK.
699 		 */
700 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
701 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
702 
703 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
704 	}
705 
706 	/*
707 	 * The document said it needs to set bit 27 for ch0 and bit 26
708 	 * for ch1. Might be a typo in the doc.
709 	 * For now, for this unique transition scale selection, set bit
710 	 * 27 for ch0 and ch1.
711 	 */
712 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
713 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
714 		if (uniq_trans_scale)
715 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
716 		else
717 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
718 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
719 	}
720 
721 	/* Start swing calculation */
722 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
723 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
724 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
725 
726 	if (intel_crtc->config->lane_count > 2) {
727 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
728 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
729 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
730 	}
731 
732 	mutex_unlock(&dev_priv->sb_lock);
733 
734 }
735 
736 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
737 			      bool reset)
738 {
739 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
740 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
741 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
742 	enum i915_pipe pipe = crtc->pipe;
743 	uint32_t val;
744 
745 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
746 	if (reset)
747 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
748 	else
749 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
750 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
751 
752 	if (crtc->config->lane_count > 2) {
753 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
754 		if (reset)
755 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
756 		else
757 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
758 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
759 	}
760 
761 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
762 	val |= CHV_PCS_REQ_SOFTRESET_EN;
763 	if (reset)
764 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
765 	else
766 		val |= DPIO_PCS_CLK_SOFT_RESET;
767 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
768 
769 	if (crtc->config->lane_count > 2) {
770 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
771 		val |= CHV_PCS_REQ_SOFTRESET_EN;
772 		if (reset)
773 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
774 		else
775 			val |= DPIO_PCS_CLK_SOFT_RESET;
776 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
777 	}
778 }
779 
780 void chv_phy_pre_pll_enable(struct intel_encoder *encoder)
781 {
782 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
783 	struct drm_device *dev = encoder->base.dev;
784 	struct drm_i915_private *dev_priv = to_i915(dev);
785 	struct intel_crtc *intel_crtc =
786 		to_intel_crtc(encoder->base.crtc);
787 	enum dpio_channel ch = vlv_dport_to_channel(dport);
788 	enum i915_pipe pipe = intel_crtc->pipe;
789 	unsigned int lane_mask =
790 		intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
791 	u32 val;
792 
793 	/*
794 	 * Must trick the second common lane into life.
795 	 * Otherwise we can't even access the PLL.
796 	 */
797 	if (ch == DPIO_CH0 && pipe == PIPE_B)
798 		dport->release_cl2_override =
799 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
800 
801 	chv_phy_powergate_lanes(encoder, true, lane_mask);
802 
803 	mutex_lock(&dev_priv->sb_lock);
804 
805 	/* Assert data lane reset */
806 	chv_data_lane_soft_reset(encoder, true);
807 
808 	/* program left/right clock distribution */
809 	if (pipe != PIPE_B) {
810 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
811 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
812 		if (ch == DPIO_CH0)
813 			val |= CHV_BUFLEFTENA1_FORCE;
814 		if (ch == DPIO_CH1)
815 			val |= CHV_BUFRIGHTENA1_FORCE;
816 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
817 	} else {
818 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
819 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
820 		if (ch == DPIO_CH0)
821 			val |= CHV_BUFLEFTENA2_FORCE;
822 		if (ch == DPIO_CH1)
823 			val |= CHV_BUFRIGHTENA2_FORCE;
824 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
825 	}
826 
827 	/* program clock channel usage */
828 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
829 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
830 	if (pipe != PIPE_B)
831 		val &= ~CHV_PCS_USEDCLKCHANNEL;
832 	else
833 		val |= CHV_PCS_USEDCLKCHANNEL;
834 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
835 
836 	if (intel_crtc->config->lane_count > 2) {
837 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
838 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
839 		if (pipe != PIPE_B)
840 			val &= ~CHV_PCS_USEDCLKCHANNEL;
841 		else
842 			val |= CHV_PCS_USEDCLKCHANNEL;
843 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
844 	}
845 
846 	/*
847 	 * This a a bit weird since generally CL
848 	 * matches the pipe, but here we need to
849 	 * pick the CL based on the port.
850 	 */
851 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
852 	if (pipe != PIPE_B)
853 		val &= ~CHV_CMN_USEDCLKCHANNEL;
854 	else
855 		val |= CHV_CMN_USEDCLKCHANNEL;
856 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
857 
858 	mutex_unlock(&dev_priv->sb_lock);
859 }
860 
861 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder)
862 {
863 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
864 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
865 	struct drm_device *dev = encoder->base.dev;
866 	struct drm_i915_private *dev_priv = to_i915(dev);
867 	struct intel_crtc *intel_crtc =
868 		to_intel_crtc(encoder->base.crtc);
869 	enum dpio_channel ch = vlv_dport_to_channel(dport);
870 	int pipe = intel_crtc->pipe;
871 	int data, i, stagger;
872 	u32 val;
873 
874 	mutex_lock(&dev_priv->sb_lock);
875 
876 	/* allow hardware to manage TX FIFO reset source */
877 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
878 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
879 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
880 
881 	if (intel_crtc->config->lane_count > 2) {
882 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
883 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
884 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
885 	}
886 
887 	/* Program Tx lane latency optimal setting*/
888 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
889 		/* Set the upar bit */
890 		if (intel_crtc->config->lane_count == 1)
891 			data = 0x0;
892 		else
893 			data = (i == 1) ? 0x0 : 0x1;
894 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
895 				data << DPIO_UPAR_SHIFT);
896 	}
897 
898 	/* Data lane stagger programming */
899 	if (intel_crtc->config->port_clock > 270000)
900 		stagger = 0x18;
901 	else if (intel_crtc->config->port_clock > 135000)
902 		stagger = 0xd;
903 	else if (intel_crtc->config->port_clock > 67500)
904 		stagger = 0x7;
905 	else if (intel_crtc->config->port_clock > 33750)
906 		stagger = 0x4;
907 	else
908 		stagger = 0x2;
909 
910 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
911 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
912 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
913 
914 	if (intel_crtc->config->lane_count > 2) {
915 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
916 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
917 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
918 	}
919 
920 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
921 		       DPIO_LANESTAGGER_STRAP(stagger) |
922 		       DPIO_LANESTAGGER_STRAP_OVRD |
923 		       DPIO_TX1_STAGGER_MASK(0x1f) |
924 		       DPIO_TX1_STAGGER_MULT(6) |
925 		       DPIO_TX2_STAGGER_MULT(0));
926 
927 	if (intel_crtc->config->lane_count > 2) {
928 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
929 			       DPIO_LANESTAGGER_STRAP(stagger) |
930 			       DPIO_LANESTAGGER_STRAP_OVRD |
931 			       DPIO_TX1_STAGGER_MASK(0x1f) |
932 			       DPIO_TX1_STAGGER_MULT(7) |
933 			       DPIO_TX2_STAGGER_MULT(5));
934 	}
935 
936 	/* Deassert data lane reset */
937 	chv_data_lane_soft_reset(encoder, false);
938 
939 	mutex_unlock(&dev_priv->sb_lock);
940 }
941 
942 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
943 {
944 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
945 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
946 
947 	if (dport->release_cl2_override) {
948 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
949 		dport->release_cl2_override = false;
950 	}
951 }
952 
953 void chv_phy_post_pll_disable(struct intel_encoder *encoder)
954 {
955 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
956 	enum i915_pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
957 	u32 val;
958 
959 	mutex_lock(&dev_priv->sb_lock);
960 
961 	/* disable left/right clock distribution */
962 	if (pipe != PIPE_B) {
963 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
964 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
965 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
966 	} else {
967 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
968 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
969 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
970 	}
971 
972 	mutex_unlock(&dev_priv->sb_lock);
973 
974 	/*
975 	 * Leave the power down bit cleared for at least one
976 	 * lane so that chv_powergate_phy_ch() will power
977 	 * on something when the channel is otherwise unused.
978 	 * When the port is off and the override is removed
979 	 * the lanes power down anyway, so otherwise it doesn't
980 	 * really matter what the state of power down bits is
981 	 * after this.
982 	 */
983 	chv_phy_powergate_lanes(encoder, false, 0x0);
984 }
985 
986 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
987 			      u32 demph_reg_value, u32 preemph_reg_value,
988 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
989 {
990 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
991 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
992 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
993 	enum dpio_channel port = vlv_dport_to_channel(dport);
994 	int pipe = intel_crtc->pipe;
995 
996 	mutex_lock(&dev_priv->sb_lock);
997 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
998 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
999 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1000 			 uniqtranscale_reg_value);
1001 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1002 
1003 	if (tx3_demph)
1004 		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1005 
1006 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1007 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1008 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1009 	mutex_unlock(&dev_priv->sb_lock);
1010 }
1011 
1012 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder)
1013 {
1014 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1015 	struct drm_device *dev = encoder->base.dev;
1016 	struct drm_i915_private *dev_priv = to_i915(dev);
1017 	struct intel_crtc *intel_crtc =
1018 		to_intel_crtc(encoder->base.crtc);
1019 	enum dpio_channel port = vlv_dport_to_channel(dport);
1020 	int pipe = intel_crtc->pipe;
1021 
1022 	/* Program Tx lane resets to default */
1023 	mutex_lock(&dev_priv->sb_lock);
1024 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1025 			 DPIO_PCS_TX_LANE2_RESET |
1026 			 DPIO_PCS_TX_LANE1_RESET);
1027 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1028 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1029 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1030 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1031 				 DPIO_PCS_CLK_SOFT_RESET);
1032 
1033 	/* Fix up inter-pair skew failure */
1034 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1035 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1036 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1037 	mutex_unlock(&dev_priv->sb_lock);
1038 }
1039 
1040 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder)
1041 {
1042 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1043 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1044 	struct drm_device *dev = encoder->base.dev;
1045 	struct drm_i915_private *dev_priv = to_i915(dev);
1046 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1047 	enum dpio_channel port = vlv_dport_to_channel(dport);
1048 	int pipe = intel_crtc->pipe;
1049 	u32 val;
1050 
1051 	mutex_lock(&dev_priv->sb_lock);
1052 
1053 	/* Enable clock channels for this port */
1054 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1055 	val = 0;
1056 	if (pipe)
1057 		val |= (1<<21);
1058 	else
1059 		val &= ~(1<<21);
1060 	val |= 0x001000c4;
1061 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1062 
1063 	/* Program lane clock */
1064 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1065 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1066 
1067 	mutex_unlock(&dev_priv->sb_lock);
1068 }
1069 
1070 void vlv_phy_reset_lanes(struct intel_encoder *encoder)
1071 {
1072 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1073 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1074 	struct intel_crtc *intel_crtc =
1075 		to_intel_crtc(encoder->base.crtc);
1076 	enum dpio_channel port = vlv_dport_to_channel(dport);
1077 	int pipe = intel_crtc->pipe;
1078 
1079 	mutex_lock(&dev_priv->sb_lock);
1080 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1081 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1082 	mutex_unlock(&dev_priv->sb_lock);
1083 }
1084