xref: /dragonfly/sys/dev/drm/i915/intel_dpio_phy.c (revision 7c47e3df)
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "intel_drv.h"
25 
26 /**
27  * DOC: DPIO
28  *
29  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
30  * ports. DPIO is the name given to such a display PHY. These PHYs
31  * don't follow the standard programming model using direct MMIO
32  * registers, and instead their registers must be accessed trough IOSF
33  * sideband. VLV has one such PHY for driving ports B and C, and CHV
34  * adds another PHY for driving port D. Each PHY responds to specific
35  * IOSF-SB port.
36  *
37  * Each display PHY is made up of one or two channels. Each channel
38  * houses a common lane part which contains the PLL and other common
39  * logic. CH0 common lane also contains the IOSF-SB logic for the
40  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
41  * must be running when any DPIO registers are accessed.
42  *
43  * In addition to having their own registers, the PHYs are also
44  * controlled through some dedicated signals from the display
45  * controller. These include PLL reference clock enable, PLL enable,
46  * and CRI clock selection, for example.
47  *
48  * Eeach channel also has two splines (also called data lanes), and
49  * each spline is made up of one Physical Access Coding Sub-Layer
50  * (PCS) block and two TX lanes. So each channel has two PCS blocks
51  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
52  * data/clock pairs depending on the output type.
53  *
54  * Additionally the PHY also contains an AUX lane with AUX blocks
55  * for each channel. This is used for DP AUX communication, but
56  * this fact isn't really relevant for the driver since AUX is
57  * controlled from the display controller side. No DPIO registers
58  * need to be accessed during AUX communication,
59  *
60  * Generally on VLV/CHV the common lane corresponds to the pipe and
61  * the spline (PCS/TX) corresponds to the port.
62  *
63  * For dual channel PHY (VLV/CHV):
64  *
65  *  pipe A == CMN/PLL/REF CH0
66  *
67  *  pipe B == CMN/PLL/REF CH1
68  *
69  *  port B == PCS/TX CH0
70  *
71  *  port C == PCS/TX CH1
72  *
73  * This is especially important when we cross the streams
74  * ie. drive port B with pipe B, or port C with pipe A.
75  *
76  * For single channel PHY (CHV):
77  *
78  *  pipe C == CMN/PLL/REF CH0
79  *
80  *  port D == PCS/TX CH0
81  *
82  * On BXT the entire PHY channel corresponds to the port. That means
83  * the PLL is also now associated with the port rather than the pipe,
84  * and so the clock needs to be routed to the appropriate transcoder.
85  * Port A PLL is directly connected to transcoder EDP and port B/C
86  * PLLs can be routed to any transcoder A/B/C.
87  *
88  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
89  * digital port D (CHV) or port A (BXT). ::
90  *
91  *
92  *     Dual channel PHY (VLV/CHV/BXT)
93  *     ---------------------------------
94  *     |      CH0      |      CH1      |
95  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
96  *     |---------------|---------------| Display PHY
97  *     | PCS01 | PCS23 | PCS01 | PCS23 |
98  *     |-------|-------|-------|-------|
99  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
100  *     ---------------------------------
101  *     |     DDI0      |     DDI1      | DP/HDMI ports
102  *     ---------------------------------
103  *
104  *     Single channel PHY (CHV/BXT)
105  *     -----------------
106  *     |      CH0      |
107  *     |  CMN/PLL/REF  |
108  *     |---------------| Display PHY
109  *     | PCS01 | PCS23 |
110  *     |-------|-------|
111  *     |TX0|TX1|TX2|TX3|
112  *     -----------------
113  *     |     DDI2      | DP/HDMI port
114  *     -----------------
115  */
116 
117 /**
118  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
119  */
120 struct bxt_ddi_phy_info {
121 	/**
122 	 * @dual_channel: true if this phy has a second channel.
123 	 */
124 	bool dual_channel;
125 
126 	/**
127 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
128 	 * Otherwise the GRC value will be copied from the phy indicated by
129 	 * this field.
130 	 */
131 	enum dpio_phy rcomp_phy;
132 
133 	/**
134 	 * @channel: struct containing per channel information.
135 	 */
136 	struct {
137 		/**
138 		 * @port: which port maps to this channel.
139 		 */
140 		enum port port;
141 	} channel[2];
142 };
143 
144 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
145 	[DPIO_PHY0] = {
146 		.dual_channel = true,
147 		.rcomp_phy = DPIO_PHY1,
148 
149 		.channel = {
150 			[DPIO_CH0] = { .port = PORT_B },
151 			[DPIO_CH1] = { .port = PORT_C },
152 		}
153 	},
154 	[DPIO_PHY1] = {
155 		.dual_channel = false,
156 		.rcomp_phy = -1,
157 
158 		.channel = {
159 			[DPIO_CH0] = { .port = PORT_A },
160 		}
161 	},
162 };
163 
164 static u32 bxt_phy_port_mask(const struct bxt_ddi_phy_info *phy_info)
165 {
166 	return (phy_info->dual_channel * BIT(phy_info->channel[DPIO_CH1].port)) |
167 		BIT(phy_info->channel[DPIO_CH0].port);
168 }
169 
170 void bxt_port_to_phy_channel(enum port port,
171 			     enum dpio_phy *phy, enum dpio_channel *ch)
172 {
173 	const struct bxt_ddi_phy_info *phy_info;
174 	int i;
175 
176 	for (i = 0; i < ARRAY_SIZE(bxt_ddi_phy_info); i++) {
177 		phy_info = &bxt_ddi_phy_info[i];
178 
179 		if (port == phy_info->channel[DPIO_CH0].port) {
180 			*phy = i;
181 			*ch = DPIO_CH0;
182 			return;
183 		}
184 
185 		if (phy_info->dual_channel &&
186 		    port == phy_info->channel[DPIO_CH1].port) {
187 			*phy = i;
188 			*ch = DPIO_CH1;
189 			return;
190 		}
191 	}
192 
193 	WARN(1, "PHY not found for PORT %c", port_name(port));
194 	*phy = DPIO_PHY0;
195 	*ch = DPIO_CH0;
196 }
197 
198 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
199 				  enum port port, u32 margin, u32 scale,
200 				  u32 enable, u32 deemphasis)
201 {
202 	u32 val;
203 	enum dpio_phy phy;
204 	enum dpio_channel ch;
205 
206 	bxt_port_to_phy_channel(port, &phy, &ch);
207 
208 	/*
209 	 * While we write to the group register to program all lanes at once we
210 	 * can read only lane registers and we pick lanes 0/1 for that.
211 	 */
212 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
213 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
214 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
215 
216 	val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
217 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
218 	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
219 	I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
220 
221 	val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
222 	val &= ~SCALE_DCOMP_METHOD;
223 	if (enable)
224 		val |= SCALE_DCOMP_METHOD;
225 
226 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
227 		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
228 
229 	I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
230 
231 	val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
232 	val &= ~DE_EMPHASIS;
233 	val |= deemphasis << DEEMPH_SHIFT;
234 	I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
235 
236 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
237 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
238 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
239 }
240 
241 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
242 			    enum dpio_phy phy)
243 {
244 	const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
245 	enum port port;
246 
247 	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
248 		return false;
249 
250 	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
251 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
252 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
253 				 phy);
254 
255 		return false;
256 	}
257 
258 	if (phy_info->rcomp_phy == -1 &&
259 	    !(I915_READ(BXT_PORT_REF_DW3(phy)) & GRC_DONE)) {
260 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but GRC isn't done\n",
261 				 phy);
262 
263 		return false;
264 	}
265 
266 	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
267 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
268 				 phy);
269 
270 		return false;
271 	}
272 
273 	for_each_port_masked(port, bxt_phy_port_mask(phy_info)) {
274 		u32 tmp = I915_READ(BXT_PHY_CTL(port));
275 
276 		if (tmp & BXT_PHY_CMNLANE_POWERDOWN_ACK) {
277 			DRM_DEBUG_DRIVER("DDI PHY %d powered, but common lane "
278 					 "for port %c powered down "
279 					 "(PHY_CTL %08x)\n",
280 					 phy, port_name(port), tmp);
281 
282 			return false;
283 		}
284 	}
285 
286 	return true;
287 }
288 
289 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
290 {
291 	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
292 
293 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
294 }
295 
296 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
297 				  enum dpio_phy phy)
298 {
299 	if (intel_wait_for_register(dev_priv,
300 				    BXT_PORT_REF_DW3(phy),
301 				    GRC_DONE, GRC_DONE,
302 				    10))
303 		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
304 }
305 
306 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
307 			      enum dpio_phy phy)
308 {
309 	const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
310 	u32 val;
311 
312 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
313 		/* Still read out the GRC value for state verification */
314 		if (phy_info->rcomp_phy != -1)
315 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
316 
317 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
318 			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
319 					 "won't reprogram it\n", phy);
320 
321 			return;
322 		}
323 
324 		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
325 				 "force reprogramming it\n", phy);
326 	}
327 
328 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
329 	val |= GT_DISPLAY_POWER_ON(phy);
330 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
331 
332 	/*
333 	 * The PHY registers start out inaccessible and respond to reads with
334 	 * all 1s.  Eventually they become accessible as they power up, then
335 	 * the reserved bit will give the default 0.  Poll on the reserved bit
336 	 * becoming 0 to find when the PHY is accessible.
337 	 * HW team confirmed that the time to reach phypowergood status is
338 	 * anywhere between 50 us and 100us.
339 	 */
340 	if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
341 		(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
342 		DRM_ERROR("timeout during PHY%d power on\n", phy);
343 	}
344 
345 	/* Program PLL Rcomp code offset */
346 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
347 	val &= ~IREF0RC_OFFSET_MASK;
348 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
349 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
350 
351 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
352 	val &= ~IREF1RC_OFFSET_MASK;
353 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
354 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
355 
356 	/* Program power gating */
357 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
358 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
359 		SUS_CLK_CONFIG;
360 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
361 
362 	if (phy_info->dual_channel) {
363 		val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
364 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
365 		I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
366 	}
367 
368 	if (phy_info->rcomp_phy != -1) {
369 		uint32_t grc_code;
370 		/*
371 		 * PHY0 isn't connected to an RCOMP resistor so copy over
372 		 * the corresponding calibrated value from PHY1, and disable
373 		 * the automatic calibration on PHY0.
374 		 */
375 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
376 							  phy_info->rcomp_phy);
377 		grc_code = val << GRC_CODE_FAST_SHIFT |
378 			   val << GRC_CODE_SLOW_SHIFT |
379 			   val;
380 		I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
381 
382 		val = I915_READ(BXT_PORT_REF_DW8(phy));
383 		val |= GRC_DIS | GRC_RDY_OVRD;
384 		I915_WRITE(BXT_PORT_REF_DW8(phy), val);
385 	}
386 
387 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
388 	val |= COMMON_RESET_DIS;
389 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
390 
391 	if (phy_info->rcomp_phy == -1)
392 		bxt_phy_wait_grc_done(dev_priv, phy);
393 
394 }
395 
396 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
397 {
398 	uint32_t val;
399 
400 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
401 	val &= ~COMMON_RESET_DIS;
402 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
403 
404 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
405 	val &= ~GT_DISPLAY_POWER_ON(phy);
406 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
407 }
408 
409 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
410 {
411 	const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
412 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
413 	bool was_enabled;
414 
415 	lockdep_assert_held(&dev_priv->power_domains.lock);
416 
417 	if (rcomp_phy != -1) {
418 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
419 
420 		/*
421 		 * We need to copy the GRC calibration value from rcomp_phy,
422 		 * so make sure it's powered up.
423 		 */
424 		if (!was_enabled)
425 			_bxt_ddi_phy_init(dev_priv, rcomp_phy);
426 	}
427 
428 	_bxt_ddi_phy_init(dev_priv, phy);
429 
430 	if (rcomp_phy != -1 && !was_enabled)
431 		bxt_ddi_phy_uninit(dev_priv, phy_info->rcomp_phy);
432 }
433 
434 static bool __printf(6, 7)
435 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
436 		       i915_reg_t reg, u32 mask, u32 expected,
437 		       const char *reg_fmt, ...)
438 {
439 	struct va_format vaf;
440 	va_list args;
441 	u32 val;
442 
443 	val = I915_READ(reg);
444 	if ((val & mask) == expected)
445 		return true;
446 
447 	va_start(args, reg_fmt);
448 	vaf.fmt = reg_fmt;
449 	vaf.va = &args;
450 
451 	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
452 			 "current %08x, expected %08x (mask %08x)\n",
453 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
454 			 mask);
455 
456 	va_end(args);
457 
458 	return false;
459 }
460 
461 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
462 			      enum dpio_phy phy)
463 {
464 	const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
465 	uint32_t mask;
466 	bool ok;
467 
468 #define _CHK(reg, mask, exp, fmt, ...)					\
469 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
470 			       ## __VA_ARGS__)
471 
472 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
473 		return false;
474 
475 	ok = true;
476 
477 	/* PLL Rcomp code offset */
478 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
479 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
480 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
481 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
482 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
483 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
484 
485 	/* Power gating */
486 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
487 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
488 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
489 
490 	if (phy_info->dual_channel)
491 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
492 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
493 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
494 
495 	if (phy_info->rcomp_phy != -1) {
496 		u32 grc_code = dev_priv->bxt_phy_grc;
497 
498 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
499 			   grc_code << GRC_CODE_SLOW_SHIFT |
500 			   grc_code;
501 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
502 		       GRC_CODE_NOM_MASK;
503 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
504 			   "BXT_PORT_REF_DW6(%d)", phy);
505 
506 		mask = GRC_DIS | GRC_RDY_OVRD;
507 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
508 			    "BXT_PORT_REF_DW8(%d)", phy);
509 	}
510 
511 	return ok;
512 #undef _CHK
513 }
514 
515 uint8_t
516 bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
517 				     uint8_t lane_count)
518 {
519 	switch (lane_count) {
520 	case 1:
521 		return 0;
522 	case 2:
523 		return BIT(2) | BIT(0);
524 	case 4:
525 		return BIT(3) | BIT(2) | BIT(0);
526 	default:
527 		MISSING_CASE(lane_count);
528 
529 		return 0;
530 	}
531 }
532 
533 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
534 				     uint8_t lane_lat_optim_mask)
535 {
536 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
537 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
538 	enum port port = dport->port;
539 	enum dpio_phy phy;
540 	enum dpio_channel ch;
541 	int lane;
542 
543 	bxt_port_to_phy_channel(port, &phy, &ch);
544 
545 	for (lane = 0; lane < 4; lane++) {
546 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
547 
548 		/*
549 		 * Note that on CHV this flag is called UPAR, but has
550 		 * the same function.
551 		 */
552 		val &= ~LATENCY_OPTIM;
553 		if (lane_lat_optim_mask & BIT(lane))
554 			val |= LATENCY_OPTIM;
555 
556 		I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
557 	}
558 }
559 
560 uint8_t
561 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
562 {
563 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
564 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
565 	enum port port = dport->port;
566 	enum dpio_phy phy;
567 	enum dpio_channel ch;
568 	int lane;
569 	uint8_t mask;
570 
571 	bxt_port_to_phy_channel(port, &phy, &ch);
572 
573 	mask = 0;
574 	for (lane = 0; lane < 4; lane++) {
575 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
576 
577 		if (val & LATENCY_OPTIM)
578 			mask |= BIT(lane);
579 	}
580 
581 	return mask;
582 }
583 
584 
585 void chv_set_phy_signal_level(struct intel_encoder *encoder,
586 			      u32 deemph_reg_value, u32 margin_reg_value,
587 			      bool uniq_trans_scale)
588 {
589 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
590 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
591 	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
592 	enum dpio_channel ch = vlv_dport_to_channel(dport);
593 	enum i915_pipe pipe = intel_crtc->pipe;
594 	u32 val;
595 	int i;
596 
597 	mutex_lock(&dev_priv->sb_lock);
598 
599 	/* Clear calc init */
600 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
601 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
602 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
603 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
604 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
605 
606 	if (intel_crtc->config->lane_count > 2) {
607 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
608 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
609 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
610 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
611 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
612 	}
613 
614 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
615 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
616 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
617 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
618 
619 	if (intel_crtc->config->lane_count > 2) {
620 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
621 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
622 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
623 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
624 	}
625 
626 	/* Program swing deemph */
627 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
628 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
629 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
630 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
631 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
632 	}
633 
634 	/* Program swing margin */
635 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
636 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
637 
638 		val &= ~DPIO_SWING_MARGIN000_MASK;
639 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
640 
641 		/*
642 		 * Supposedly this value shouldn't matter when unique transition
643 		 * scale is disabled, but in fact it does matter. Let's just
644 		 * always program the same value and hope it's OK.
645 		 */
646 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
647 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
648 
649 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
650 	}
651 
652 	/*
653 	 * The document said it needs to set bit 27 for ch0 and bit 26
654 	 * for ch1. Might be a typo in the doc.
655 	 * For now, for this unique transition scale selection, set bit
656 	 * 27 for ch0 and ch1.
657 	 */
658 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
659 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
660 		if (uniq_trans_scale)
661 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
662 		else
663 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
664 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
665 	}
666 
667 	/* Start swing calculation */
668 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
669 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
670 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
671 
672 	if (intel_crtc->config->lane_count > 2) {
673 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
674 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
675 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
676 	}
677 
678 	mutex_unlock(&dev_priv->sb_lock);
679 
680 }
681 
682 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
683 			      bool reset)
684 {
685 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
686 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
687 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
688 	enum i915_pipe pipe = crtc->pipe;
689 	uint32_t val;
690 
691 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
692 	if (reset)
693 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
694 	else
695 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
696 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
697 
698 	if (crtc->config->lane_count > 2) {
699 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
700 		if (reset)
701 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
702 		else
703 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
704 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
705 	}
706 
707 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
708 	val |= CHV_PCS_REQ_SOFTRESET_EN;
709 	if (reset)
710 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
711 	else
712 		val |= DPIO_PCS_CLK_SOFT_RESET;
713 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
714 
715 	if (crtc->config->lane_count > 2) {
716 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
717 		val |= CHV_PCS_REQ_SOFTRESET_EN;
718 		if (reset)
719 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
720 		else
721 			val |= DPIO_PCS_CLK_SOFT_RESET;
722 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
723 	}
724 }
725 
726 void chv_phy_pre_pll_enable(struct intel_encoder *encoder)
727 {
728 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
729 	struct drm_device *dev = encoder->base.dev;
730 	struct drm_i915_private *dev_priv = to_i915(dev);
731 	struct intel_crtc *intel_crtc =
732 		to_intel_crtc(encoder->base.crtc);
733 	enum dpio_channel ch = vlv_dport_to_channel(dport);
734 	enum i915_pipe pipe = intel_crtc->pipe;
735 	unsigned int lane_mask =
736 		intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
737 	u32 val;
738 
739 	/*
740 	 * Must trick the second common lane into life.
741 	 * Otherwise we can't even access the PLL.
742 	 */
743 	if (ch == DPIO_CH0 && pipe == PIPE_B)
744 		dport->release_cl2_override =
745 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
746 
747 	chv_phy_powergate_lanes(encoder, true, lane_mask);
748 
749 	mutex_lock(&dev_priv->sb_lock);
750 
751 	/* Assert data lane reset */
752 	chv_data_lane_soft_reset(encoder, true);
753 
754 	/* program left/right clock distribution */
755 	if (pipe != PIPE_B) {
756 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
757 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
758 		if (ch == DPIO_CH0)
759 			val |= CHV_BUFLEFTENA1_FORCE;
760 		if (ch == DPIO_CH1)
761 			val |= CHV_BUFRIGHTENA1_FORCE;
762 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
763 	} else {
764 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
765 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
766 		if (ch == DPIO_CH0)
767 			val |= CHV_BUFLEFTENA2_FORCE;
768 		if (ch == DPIO_CH1)
769 			val |= CHV_BUFRIGHTENA2_FORCE;
770 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
771 	}
772 
773 	/* program clock channel usage */
774 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
775 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
776 	if (pipe != PIPE_B)
777 		val &= ~CHV_PCS_USEDCLKCHANNEL;
778 	else
779 		val |= CHV_PCS_USEDCLKCHANNEL;
780 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
781 
782 	if (intel_crtc->config->lane_count > 2) {
783 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
784 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
785 		if (pipe != PIPE_B)
786 			val &= ~CHV_PCS_USEDCLKCHANNEL;
787 		else
788 			val |= CHV_PCS_USEDCLKCHANNEL;
789 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
790 	}
791 
792 	/*
793 	 * This a a bit weird since generally CL
794 	 * matches the pipe, but here we need to
795 	 * pick the CL based on the port.
796 	 */
797 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
798 	if (pipe != PIPE_B)
799 		val &= ~CHV_CMN_USEDCLKCHANNEL;
800 	else
801 		val |= CHV_CMN_USEDCLKCHANNEL;
802 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
803 
804 	mutex_unlock(&dev_priv->sb_lock);
805 }
806 
807 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder)
808 {
809 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
810 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
811 	struct drm_device *dev = encoder->base.dev;
812 	struct drm_i915_private *dev_priv = to_i915(dev);
813 	struct intel_crtc *intel_crtc =
814 		to_intel_crtc(encoder->base.crtc);
815 	enum dpio_channel ch = vlv_dport_to_channel(dport);
816 	int pipe = intel_crtc->pipe;
817 	int data, i, stagger;
818 	u32 val;
819 
820 	mutex_lock(&dev_priv->sb_lock);
821 
822 	/* allow hardware to manage TX FIFO reset source */
823 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
824 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
825 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
826 
827 	if (intel_crtc->config->lane_count > 2) {
828 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
829 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
830 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
831 	}
832 
833 	/* Program Tx lane latency optimal setting*/
834 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
835 		/* Set the upar bit */
836 		if (intel_crtc->config->lane_count == 1)
837 			data = 0x0;
838 		else
839 			data = (i == 1) ? 0x0 : 0x1;
840 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
841 				data << DPIO_UPAR_SHIFT);
842 	}
843 
844 	/* Data lane stagger programming */
845 	if (intel_crtc->config->port_clock > 270000)
846 		stagger = 0x18;
847 	else if (intel_crtc->config->port_clock > 135000)
848 		stagger = 0xd;
849 	else if (intel_crtc->config->port_clock > 67500)
850 		stagger = 0x7;
851 	else if (intel_crtc->config->port_clock > 33750)
852 		stagger = 0x4;
853 	else
854 		stagger = 0x2;
855 
856 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
857 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
858 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
859 
860 	if (intel_crtc->config->lane_count > 2) {
861 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
862 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
863 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
864 	}
865 
866 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
867 		       DPIO_LANESTAGGER_STRAP(stagger) |
868 		       DPIO_LANESTAGGER_STRAP_OVRD |
869 		       DPIO_TX1_STAGGER_MASK(0x1f) |
870 		       DPIO_TX1_STAGGER_MULT(6) |
871 		       DPIO_TX2_STAGGER_MULT(0));
872 
873 	if (intel_crtc->config->lane_count > 2) {
874 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
875 			       DPIO_LANESTAGGER_STRAP(stagger) |
876 			       DPIO_LANESTAGGER_STRAP_OVRD |
877 			       DPIO_TX1_STAGGER_MASK(0x1f) |
878 			       DPIO_TX1_STAGGER_MULT(7) |
879 			       DPIO_TX2_STAGGER_MULT(5));
880 	}
881 
882 	/* Deassert data lane reset */
883 	chv_data_lane_soft_reset(encoder, false);
884 
885 	mutex_unlock(&dev_priv->sb_lock);
886 }
887 
888 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
889 {
890 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
891 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
892 
893 	if (dport->release_cl2_override) {
894 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
895 		dport->release_cl2_override = false;
896 	}
897 }
898 
899 void chv_phy_post_pll_disable(struct intel_encoder *encoder)
900 {
901 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
902 	enum i915_pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
903 	u32 val;
904 
905 	mutex_lock(&dev_priv->sb_lock);
906 
907 	/* disable left/right clock distribution */
908 	if (pipe != PIPE_B) {
909 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
910 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
911 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
912 	} else {
913 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
914 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
915 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
916 	}
917 
918 	mutex_unlock(&dev_priv->sb_lock);
919 
920 	/*
921 	 * Leave the power down bit cleared for at least one
922 	 * lane so that chv_powergate_phy_ch() will power
923 	 * on something when the channel is otherwise unused.
924 	 * When the port is off and the override is removed
925 	 * the lanes power down anyway, so otherwise it doesn't
926 	 * really matter what the state of power down bits is
927 	 * after this.
928 	 */
929 	chv_phy_powergate_lanes(encoder, false, 0x0);
930 }
931 
932 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
933 			      u32 demph_reg_value, u32 preemph_reg_value,
934 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
935 {
936 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
937 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
938 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
939 	enum dpio_channel port = vlv_dport_to_channel(dport);
940 	int pipe = intel_crtc->pipe;
941 
942 	mutex_lock(&dev_priv->sb_lock);
943 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
944 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
945 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
946 			 uniqtranscale_reg_value);
947 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
948 
949 	if (tx3_demph)
950 		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
951 
952 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
953 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
954 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
955 	mutex_unlock(&dev_priv->sb_lock);
956 }
957 
958 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder)
959 {
960 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
961 	struct drm_device *dev = encoder->base.dev;
962 	struct drm_i915_private *dev_priv = to_i915(dev);
963 	struct intel_crtc *intel_crtc =
964 		to_intel_crtc(encoder->base.crtc);
965 	enum dpio_channel port = vlv_dport_to_channel(dport);
966 	int pipe = intel_crtc->pipe;
967 
968 	/* Program Tx lane resets to default */
969 	mutex_lock(&dev_priv->sb_lock);
970 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
971 			 DPIO_PCS_TX_LANE2_RESET |
972 			 DPIO_PCS_TX_LANE1_RESET);
973 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
974 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
975 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
976 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
977 				 DPIO_PCS_CLK_SOFT_RESET);
978 
979 	/* Fix up inter-pair skew failure */
980 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
981 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
982 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
983 	mutex_unlock(&dev_priv->sb_lock);
984 }
985 
986 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder)
987 {
988 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
989 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
990 	struct drm_device *dev = encoder->base.dev;
991 	struct drm_i915_private *dev_priv = to_i915(dev);
992 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
993 	enum dpio_channel port = vlv_dport_to_channel(dport);
994 	int pipe = intel_crtc->pipe;
995 	u32 val;
996 
997 	mutex_lock(&dev_priv->sb_lock);
998 
999 	/* Enable clock channels for this port */
1000 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1001 	val = 0;
1002 	if (pipe)
1003 		val |= (1<<21);
1004 	else
1005 		val &= ~(1<<21);
1006 	val |= 0x001000c4;
1007 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1008 
1009 	/* Program lane clock */
1010 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1011 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1012 
1013 	mutex_unlock(&dev_priv->sb_lock);
1014 }
1015 
1016 void vlv_phy_reset_lanes(struct intel_encoder *encoder)
1017 {
1018 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 	struct intel_crtc *intel_crtc =
1021 		to_intel_crtc(encoder->base.crtc);
1022 	enum dpio_channel port = vlv_dport_to_channel(dport);
1023 	int pipe = intel_crtc->pipe;
1024 
1025 	mutex_lock(&dev_priv->sb_lock);
1026 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1027 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1028 	mutex_unlock(&dev_priv->sb_lock);
1029 }
1030