xref: /dragonfly/sys/dev/drm/i915/intel_dpio_phy.c (revision d2de761e)
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "intel_drv.h"
25 
26 /**
27  * DOC: DPIO
28  *
29  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
30  * ports. DPIO is the name given to such a display PHY. These PHYs
31  * don't follow the standard programming model using direct MMIO
32  * registers, and instead their registers must be accessed trough IOSF
33  * sideband. VLV has one such PHY for driving ports B and C, and CHV
34  * adds another PHY for driving port D. Each PHY responds to specific
35  * IOSF-SB port.
36  *
37  * Each display PHY is made up of one or two channels. Each channel
38  * houses a common lane part which contains the PLL and other common
39  * logic. CH0 common lane also contains the IOSF-SB logic for the
40  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
41  * must be running when any DPIO registers are accessed.
42  *
43  * In addition to having their own registers, the PHYs are also
44  * controlled through some dedicated signals from the display
45  * controller. These include PLL reference clock enable, PLL enable,
46  * and CRI clock selection, for example.
47  *
48  * Eeach channel also has two splines (also called data lanes), and
49  * each spline is made up of one Physical Access Coding Sub-Layer
50  * (PCS) block and two TX lanes. So each channel has two PCS blocks
51  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
52  * data/clock pairs depending on the output type.
53  *
54  * Additionally the PHY also contains an AUX lane with AUX blocks
55  * for each channel. This is used for DP AUX communication, but
56  * this fact isn't really relevant for the driver since AUX is
57  * controlled from the display controller side. No DPIO registers
58  * need to be accessed during AUX communication,
59  *
60  * Generally on VLV/CHV the common lane corresponds to the pipe and
61  * the spline (PCS/TX) corresponds to the port.
62  *
63  * For dual channel PHY (VLV/CHV):
64  *
65  *  pipe A == CMN/PLL/REF CH0
66  *
67  *  pipe B == CMN/PLL/REF CH1
68  *
69  *  port B == PCS/TX CH0
70  *
71  *  port C == PCS/TX CH1
72  *
73  * This is especially important when we cross the streams
74  * ie. drive port B with pipe B, or port C with pipe A.
75  *
76  * For single channel PHY (CHV):
77  *
78  *  pipe C == CMN/PLL/REF CH0
79  *
80  *  port D == PCS/TX CH0
81  *
82  * On BXT the entire PHY channel corresponds to the port. That means
83  * the PLL is also now associated with the port rather than the pipe,
84  * and so the clock needs to be routed to the appropriate transcoder.
85  * Port A PLL is directly connected to transcoder EDP and port B/C
86  * PLLs can be routed to any transcoder A/B/C.
87  *
88  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
89  * digital port D (CHV) or port A (BXT). ::
90  *
91  *
92  *     Dual channel PHY (VLV/CHV/BXT)
93  *     ---------------------------------
94  *     |      CH0      |      CH1      |
95  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
96  *     |---------------|---------------| Display PHY
97  *     | PCS01 | PCS23 | PCS01 | PCS23 |
98  *     |-------|-------|-------|-------|
99  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
100  *     ---------------------------------
101  *     |     DDI0      |     DDI1      | DP/HDMI ports
102  *     ---------------------------------
103  *
104  *     Single channel PHY (CHV/BXT)
105  *     -----------------
106  *     |      CH0      |
107  *     |  CMN/PLL/REF  |
108  *     |---------------| Display PHY
109  *     | PCS01 | PCS23 |
110  *     |-------|-------|
111  *     |TX0|TX1|TX2|TX3|
112  *     -----------------
113  *     |     DDI2      | DP/HDMI port
114  *     -----------------
115  */
116 
117 /**
118  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
119  */
120 struct bxt_ddi_phy_info {
121 	/**
122 	 * @dual_channel: true if this phy has a second channel.
123 	 */
124 	bool dual_channel;
125 
126 	/**
127 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
128 	 * Otherwise the GRC value will be copied from the phy indicated by
129 	 * this field.
130 	 */
131 	enum dpio_phy rcomp_phy;
132 
133 	/**
134 	 * @reset_delay: delay in us to wait before setting the common reset
135 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
136 	 */
137 	int reset_delay;
138 
139 	/**
140 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
141 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
142 	 */
143 	u32 pwron_mask;
144 
145 	/**
146 	 * @channel: struct containing per channel information.
147 	 */
148 	struct {
149 		/**
150 		 * @port: which port maps to this channel.
151 		 */
152 		enum port port;
153 	} channel[2];
154 };
155 
156 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
157 	[DPIO_PHY0] = {
158 		.dual_channel = true,
159 		.rcomp_phy = DPIO_PHY1,
160 		.pwron_mask = BIT(0),
161 
162 		.channel = {
163 			[DPIO_CH0] = { .port = PORT_B },
164 			[DPIO_CH1] = { .port = PORT_C },
165 		}
166 	},
167 	[DPIO_PHY1] = {
168 		.dual_channel = false,
169 		.rcomp_phy = -1,
170 		.pwron_mask = BIT(1),
171 
172 		.channel = {
173 			[DPIO_CH0] = { .port = PORT_A },
174 		}
175 	},
176 };
177 
178 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
179 	[DPIO_PHY0] = {
180 		.dual_channel = false,
181 		.rcomp_phy = DPIO_PHY1,
182 		.pwron_mask = BIT(0),
183 		.reset_delay = 20,
184 
185 		.channel = {
186 			[DPIO_CH0] = { .port = PORT_B },
187 		}
188 	},
189 	[DPIO_PHY1] = {
190 		.dual_channel = false,
191 		.rcomp_phy = -1,
192 		.pwron_mask = BIT(3),
193 		.reset_delay = 20,
194 
195 		.channel = {
196 			[DPIO_CH0] = { .port = PORT_A },
197 		}
198 	},
199 	[DPIO_PHY2] = {
200 		.dual_channel = false,
201 		.rcomp_phy = DPIO_PHY1,
202 		.pwron_mask = BIT(1),
203 		.reset_delay = 20,
204 
205 		.channel = {
206 			[DPIO_CH0] = { .port = PORT_C },
207 		}
208 	},
209 };
210 
211 static u32 bxt_phy_port_mask(const struct bxt_ddi_phy_info *phy_info)
212 {
213 	return (phy_info->dual_channel * BIT(phy_info->channel[DPIO_CH1].port)) |
214 		BIT(phy_info->channel[DPIO_CH0].port);
215 }
216 
217 static const struct bxt_ddi_phy_info *
218 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
219 {
220 	if (IS_GEMINILAKE(dev_priv)) {
221 		*count =  ARRAY_SIZE(glk_ddi_phy_info);
222 		return glk_ddi_phy_info;
223 	} else {
224 		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
225 		return bxt_ddi_phy_info;
226 	}
227 }
228 
229 static const struct bxt_ddi_phy_info *
230 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
231 {
232 	int count;
233 	const struct bxt_ddi_phy_info *phy_list =
234 		bxt_get_phy_list(dev_priv, &count);
235 
236 	return &phy_list[phy];
237 }
238 
239 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
240 			     enum dpio_phy *phy, enum dpio_channel *ch)
241 {
242 	const struct bxt_ddi_phy_info *phy_info, *phys;
243 	int i, count;
244 
245 	phys = bxt_get_phy_list(dev_priv, &count);
246 
247 	for (i = 0; i < count; i++) {
248 		phy_info = &phys[i];
249 
250 		if (port == phy_info->channel[DPIO_CH0].port) {
251 			*phy = i;
252 			*ch = DPIO_CH0;
253 			return;
254 		}
255 
256 		if (phy_info->dual_channel &&
257 		    port == phy_info->channel[DPIO_CH1].port) {
258 			*phy = i;
259 			*ch = DPIO_CH1;
260 			return;
261 		}
262 	}
263 
264 	WARN(1, "PHY not found for PORT %c", port_name(port));
265 	*phy = DPIO_PHY0;
266 	*ch = DPIO_CH0;
267 }
268 
269 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
270 				  enum port port, u32 margin, u32 scale,
271 				  u32 enable, u32 deemphasis)
272 {
273 	u32 val;
274 	enum dpio_phy phy;
275 	enum dpio_channel ch;
276 
277 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
278 
279 	/*
280 	 * While we write to the group register to program all lanes at once we
281 	 * can read only lane registers and we pick lanes 0/1 for that.
282 	 */
283 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
284 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
285 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
286 
287 	val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
288 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
289 	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
290 	I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
291 
292 	val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
293 	val &= ~SCALE_DCOMP_METHOD;
294 	if (enable)
295 		val |= SCALE_DCOMP_METHOD;
296 
297 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
298 		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
299 
300 	I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
301 
302 	val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
303 	val &= ~DE_EMPHASIS;
304 	val |= deemphasis << DEEMPH_SHIFT;
305 	I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
306 
307 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
308 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
309 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
310 }
311 
312 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
313 			    enum dpio_phy phy)
314 {
315 	const struct bxt_ddi_phy_info *phy_info;
316 	enum port port;
317 
318 	phy_info = bxt_get_phy_info(dev_priv, phy);
319 
320 	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
321 		return false;
322 
323 	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
324 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
325 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
326 				 phy);
327 
328 		return false;
329 	}
330 
331 	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
332 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
333 				 phy);
334 
335 		return false;
336 	}
337 
338 	for_each_port_masked(port, bxt_phy_port_mask(phy_info)) {
339 		u32 tmp = I915_READ(BXT_PHY_CTL(port));
340 
341 		if (tmp & BXT_PHY_CMNLANE_POWERDOWN_ACK) {
342 			DRM_DEBUG_DRIVER("DDI PHY %d powered, but common lane "
343 					 "for port %c powered down "
344 					 "(PHY_CTL %08x)\n",
345 					 phy, port_name(port), tmp);
346 
347 			return false;
348 		}
349 	}
350 
351 	return true;
352 }
353 
354 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
355 {
356 	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
357 
358 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
359 }
360 
361 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
362 				  enum dpio_phy phy)
363 {
364 	if (intel_wait_for_register(dev_priv,
365 				    BXT_PORT_REF_DW3(phy),
366 				    GRC_DONE, GRC_DONE,
367 				    10))
368 		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
369 }
370 
371 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
372 			      enum dpio_phy phy)
373 {
374 	const struct bxt_ddi_phy_info *phy_info;
375 	u32 val;
376 
377 	phy_info = bxt_get_phy_info(dev_priv, phy);
378 
379 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
380 		/* Still read out the GRC value for state verification */
381 		if (phy_info->rcomp_phy != -1)
382 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
383 
384 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
385 			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
386 					 "won't reprogram it\n", phy);
387 			return;
388 		}
389 
390 		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
391 				 "force reprogramming it\n", phy);
392 	}
393 
394 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
395 	val |= phy_info->pwron_mask;
396 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
397 
398 	/*
399 	 * The PHY registers start out inaccessible and respond to reads with
400 	 * all 1s.  Eventually they become accessible as they power up, then
401 	 * the reserved bit will give the default 0.  Poll on the reserved bit
402 	 * becoming 0 to find when the PHY is accessible.
403 	 * HW team confirmed that the time to reach phypowergood status is
404 	 * anywhere between 50 us and 100us.
405 	 */
406 	if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
407 		(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
408 		DRM_ERROR("timeout during PHY%d power on\n", phy);
409 	}
410 
411 	/* Program PLL Rcomp code offset */
412 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
413 	val &= ~IREF0RC_OFFSET_MASK;
414 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
415 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
416 
417 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
418 	val &= ~IREF1RC_OFFSET_MASK;
419 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
420 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
421 
422 	/* Program power gating */
423 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
424 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
425 		SUS_CLK_CONFIG;
426 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
427 
428 	if (phy_info->dual_channel) {
429 		val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
430 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
431 		I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
432 	}
433 
434 	if (phy_info->rcomp_phy != -1) {
435 		uint32_t grc_code;
436 
437 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
438 
439 		/*
440 		 * PHY0 isn't connected to an RCOMP resistor so copy over
441 		 * the corresponding calibrated value from PHY1, and disable
442 		 * the automatic calibration on PHY0.
443 		 */
444 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
445 							  phy_info->rcomp_phy);
446 		grc_code = val << GRC_CODE_FAST_SHIFT |
447 			   val << GRC_CODE_SLOW_SHIFT |
448 			   val;
449 		I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
450 
451 		val = I915_READ(BXT_PORT_REF_DW8(phy));
452 		val |= GRC_DIS | GRC_RDY_OVRD;
453 		I915_WRITE(BXT_PORT_REF_DW8(phy), val);
454 	}
455 
456 	if (phy_info->reset_delay)
457 		udelay(phy_info->reset_delay);
458 
459 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
460 	val |= COMMON_RESET_DIS;
461 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
462 }
463 
464 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
465 {
466 	const struct bxt_ddi_phy_info *phy_info;
467 	uint32_t val;
468 
469 	phy_info = bxt_get_phy_info(dev_priv, phy);
470 
471 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
472 	val &= ~COMMON_RESET_DIS;
473 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
474 
475 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
476 	val &= ~phy_info->pwron_mask;
477 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
478 }
479 
480 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
481 {
482 	const struct bxt_ddi_phy_info *phy_info =
483 		bxt_get_phy_info(dev_priv, phy);
484 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
485 	bool was_enabled;
486 
487 	lockdep_assert_held(&dev_priv->power_domains.lock);
488 
489 	if (rcomp_phy != -1) {
490 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
491 
492 		/*
493 		 * We need to copy the GRC calibration value from rcomp_phy,
494 		 * so make sure it's powered up.
495 		 */
496 		if (!was_enabled)
497 			_bxt_ddi_phy_init(dev_priv, rcomp_phy);
498 	}
499 
500 	_bxt_ddi_phy_init(dev_priv, phy);
501 
502 	if (rcomp_phy != -1 && !was_enabled)
503 		bxt_ddi_phy_uninit(dev_priv, phy_info->rcomp_phy);
504 }
505 
506 static bool __printf(6, 7)
507 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
508 		       i915_reg_t reg, u32 mask, u32 expected,
509 		       const char *reg_fmt, ...)
510 {
511 	struct va_format vaf;
512 	va_list args;
513 	u32 val;
514 
515 	val = I915_READ(reg);
516 	if ((val & mask) == expected)
517 		return true;
518 
519 	va_start(args, reg_fmt);
520 	vaf.fmt = reg_fmt;
521 	vaf.va = &args;
522 
523 	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
524 			 "current %08x, expected %08x (mask %08x)\n",
525 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
526 			 mask);
527 
528 	va_end(args);
529 
530 	return false;
531 }
532 
533 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
534 			      enum dpio_phy phy)
535 {
536 	const struct bxt_ddi_phy_info *phy_info;
537 	uint32_t mask;
538 	bool ok;
539 
540 	phy_info = bxt_get_phy_info(dev_priv, phy);
541 
542 #define _CHK(reg, mask, exp, fmt, ...)					\
543 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
544 			       ## __VA_ARGS__)
545 
546 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
547 		return false;
548 
549 	ok = true;
550 
551 	/* PLL Rcomp code offset */
552 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
553 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
554 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
555 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
556 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
557 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
558 
559 	/* Power gating */
560 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
561 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
562 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
563 
564 	if (phy_info->dual_channel)
565 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
566 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
567 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
568 
569 	if (phy_info->rcomp_phy != -1) {
570 		u32 grc_code = dev_priv->bxt_phy_grc;
571 
572 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
573 			   grc_code << GRC_CODE_SLOW_SHIFT |
574 			   grc_code;
575 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
576 		       GRC_CODE_NOM_MASK;
577 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
578 			   "BXT_PORT_REF_DW6(%d)", phy);
579 
580 		mask = GRC_DIS | GRC_RDY_OVRD;
581 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
582 			    "BXT_PORT_REF_DW8(%d)", phy);
583 	}
584 
585 	return ok;
586 #undef _CHK
587 }
588 
589 uint8_t
590 bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
591 				     uint8_t lane_count)
592 {
593 	switch (lane_count) {
594 	case 1:
595 		return 0;
596 	case 2:
597 		return BIT(2) | BIT(0);
598 	case 4:
599 		return BIT(3) | BIT(2) | BIT(0);
600 	default:
601 		MISSING_CASE(lane_count);
602 
603 		return 0;
604 	}
605 }
606 
607 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
608 				     uint8_t lane_lat_optim_mask)
609 {
610 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
611 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
612 	enum port port = dport->port;
613 	enum dpio_phy phy;
614 	enum dpio_channel ch;
615 	int lane;
616 
617 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
618 
619 	for (lane = 0; lane < 4; lane++) {
620 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
621 
622 		/*
623 		 * Note that on CHV this flag is called UPAR, but has
624 		 * the same function.
625 		 */
626 		val &= ~LATENCY_OPTIM;
627 		if (lane_lat_optim_mask & BIT(lane))
628 			val |= LATENCY_OPTIM;
629 
630 		I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
631 	}
632 }
633 
634 uint8_t
635 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
636 {
637 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
638 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
639 	enum port port = dport->port;
640 	enum dpio_phy phy;
641 	enum dpio_channel ch;
642 	int lane;
643 	uint8_t mask;
644 
645 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
646 
647 	mask = 0;
648 	for (lane = 0; lane < 4; lane++) {
649 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
650 
651 		if (val & LATENCY_OPTIM)
652 			mask |= BIT(lane);
653 	}
654 
655 	return mask;
656 }
657 
658 
659 void chv_set_phy_signal_level(struct intel_encoder *encoder,
660 			      u32 deemph_reg_value, u32 margin_reg_value,
661 			      bool uniq_trans_scale)
662 {
663 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
664 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
665 	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
666 	enum dpio_channel ch = vlv_dport_to_channel(dport);
667 	enum i915_pipe pipe = intel_crtc->pipe;
668 	u32 val;
669 	int i;
670 
671 	mutex_lock(&dev_priv->sb_lock);
672 
673 	/* Clear calc init */
674 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
675 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
676 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
677 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
678 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
679 
680 	if (intel_crtc->config->lane_count > 2) {
681 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
682 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
683 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
684 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
685 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
686 	}
687 
688 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
689 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
690 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
691 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
692 
693 	if (intel_crtc->config->lane_count > 2) {
694 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
695 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
696 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
697 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
698 	}
699 
700 	/* Program swing deemph */
701 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
702 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
703 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
704 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
705 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
706 	}
707 
708 	/* Program swing margin */
709 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
710 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
711 
712 		val &= ~DPIO_SWING_MARGIN000_MASK;
713 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
714 
715 		/*
716 		 * Supposedly this value shouldn't matter when unique transition
717 		 * scale is disabled, but in fact it does matter. Let's just
718 		 * always program the same value and hope it's OK.
719 		 */
720 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
721 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
722 
723 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
724 	}
725 
726 	/*
727 	 * The document said it needs to set bit 27 for ch0 and bit 26
728 	 * for ch1. Might be a typo in the doc.
729 	 * For now, for this unique transition scale selection, set bit
730 	 * 27 for ch0 and ch1.
731 	 */
732 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
733 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
734 		if (uniq_trans_scale)
735 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
736 		else
737 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
738 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
739 	}
740 
741 	/* Start swing calculation */
742 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
743 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
744 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
745 
746 	if (intel_crtc->config->lane_count > 2) {
747 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
748 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
749 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
750 	}
751 
752 	mutex_unlock(&dev_priv->sb_lock);
753 
754 }
755 
756 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
757 			      bool reset)
758 {
759 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
760 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
761 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
762 	enum i915_pipe pipe = crtc->pipe;
763 	uint32_t val;
764 
765 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
766 	if (reset)
767 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
768 	else
769 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
770 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
771 
772 	if (crtc->config->lane_count > 2) {
773 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
774 		if (reset)
775 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
776 		else
777 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
778 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
779 	}
780 
781 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
782 	val |= CHV_PCS_REQ_SOFTRESET_EN;
783 	if (reset)
784 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
785 	else
786 		val |= DPIO_PCS_CLK_SOFT_RESET;
787 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
788 
789 	if (crtc->config->lane_count > 2) {
790 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
791 		val |= CHV_PCS_REQ_SOFTRESET_EN;
792 		if (reset)
793 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
794 		else
795 			val |= DPIO_PCS_CLK_SOFT_RESET;
796 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
797 	}
798 }
799 
800 void chv_phy_pre_pll_enable(struct intel_encoder *encoder)
801 {
802 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
803 	struct drm_device *dev = encoder->base.dev;
804 	struct drm_i915_private *dev_priv = to_i915(dev);
805 	struct intel_crtc *intel_crtc =
806 		to_intel_crtc(encoder->base.crtc);
807 	enum dpio_channel ch = vlv_dport_to_channel(dport);
808 	enum i915_pipe pipe = intel_crtc->pipe;
809 	unsigned int lane_mask =
810 		intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
811 	u32 val;
812 
813 	/*
814 	 * Must trick the second common lane into life.
815 	 * Otherwise we can't even access the PLL.
816 	 */
817 	if (ch == DPIO_CH0 && pipe == PIPE_B)
818 		dport->release_cl2_override =
819 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
820 
821 	chv_phy_powergate_lanes(encoder, true, lane_mask);
822 
823 	mutex_lock(&dev_priv->sb_lock);
824 
825 	/* Assert data lane reset */
826 	chv_data_lane_soft_reset(encoder, true);
827 
828 	/* program left/right clock distribution */
829 	if (pipe != PIPE_B) {
830 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
831 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
832 		if (ch == DPIO_CH0)
833 			val |= CHV_BUFLEFTENA1_FORCE;
834 		if (ch == DPIO_CH1)
835 			val |= CHV_BUFRIGHTENA1_FORCE;
836 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
837 	} else {
838 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
839 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
840 		if (ch == DPIO_CH0)
841 			val |= CHV_BUFLEFTENA2_FORCE;
842 		if (ch == DPIO_CH1)
843 			val |= CHV_BUFRIGHTENA2_FORCE;
844 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
845 	}
846 
847 	/* program clock channel usage */
848 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
849 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
850 	if (pipe != PIPE_B)
851 		val &= ~CHV_PCS_USEDCLKCHANNEL;
852 	else
853 		val |= CHV_PCS_USEDCLKCHANNEL;
854 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
855 
856 	if (intel_crtc->config->lane_count > 2) {
857 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
858 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
859 		if (pipe != PIPE_B)
860 			val &= ~CHV_PCS_USEDCLKCHANNEL;
861 		else
862 			val |= CHV_PCS_USEDCLKCHANNEL;
863 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
864 	}
865 
866 	/*
867 	 * This a a bit weird since generally CL
868 	 * matches the pipe, but here we need to
869 	 * pick the CL based on the port.
870 	 */
871 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
872 	if (pipe != PIPE_B)
873 		val &= ~CHV_CMN_USEDCLKCHANNEL;
874 	else
875 		val |= CHV_CMN_USEDCLKCHANNEL;
876 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
877 
878 	mutex_unlock(&dev_priv->sb_lock);
879 }
880 
881 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder)
882 {
883 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
884 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
885 	struct drm_device *dev = encoder->base.dev;
886 	struct drm_i915_private *dev_priv = to_i915(dev);
887 	struct intel_crtc *intel_crtc =
888 		to_intel_crtc(encoder->base.crtc);
889 	enum dpio_channel ch = vlv_dport_to_channel(dport);
890 	int pipe = intel_crtc->pipe;
891 	int data, i, stagger;
892 	u32 val;
893 
894 	mutex_lock(&dev_priv->sb_lock);
895 
896 	/* allow hardware to manage TX FIFO reset source */
897 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
898 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
899 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
900 
901 	if (intel_crtc->config->lane_count > 2) {
902 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
903 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
904 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
905 	}
906 
907 	/* Program Tx lane latency optimal setting*/
908 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
909 		/* Set the upar bit */
910 		if (intel_crtc->config->lane_count == 1)
911 			data = 0x0;
912 		else
913 			data = (i == 1) ? 0x0 : 0x1;
914 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
915 				data << DPIO_UPAR_SHIFT);
916 	}
917 
918 	/* Data lane stagger programming */
919 	if (intel_crtc->config->port_clock > 270000)
920 		stagger = 0x18;
921 	else if (intel_crtc->config->port_clock > 135000)
922 		stagger = 0xd;
923 	else if (intel_crtc->config->port_clock > 67500)
924 		stagger = 0x7;
925 	else if (intel_crtc->config->port_clock > 33750)
926 		stagger = 0x4;
927 	else
928 		stagger = 0x2;
929 
930 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
931 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
932 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
933 
934 	if (intel_crtc->config->lane_count > 2) {
935 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
936 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
937 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
938 	}
939 
940 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
941 		       DPIO_LANESTAGGER_STRAP(stagger) |
942 		       DPIO_LANESTAGGER_STRAP_OVRD |
943 		       DPIO_TX1_STAGGER_MASK(0x1f) |
944 		       DPIO_TX1_STAGGER_MULT(6) |
945 		       DPIO_TX2_STAGGER_MULT(0));
946 
947 	if (intel_crtc->config->lane_count > 2) {
948 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
949 			       DPIO_LANESTAGGER_STRAP(stagger) |
950 			       DPIO_LANESTAGGER_STRAP_OVRD |
951 			       DPIO_TX1_STAGGER_MASK(0x1f) |
952 			       DPIO_TX1_STAGGER_MULT(7) |
953 			       DPIO_TX2_STAGGER_MULT(5));
954 	}
955 
956 	/* Deassert data lane reset */
957 	chv_data_lane_soft_reset(encoder, false);
958 
959 	mutex_unlock(&dev_priv->sb_lock);
960 }
961 
962 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
963 {
964 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
965 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
966 
967 	if (dport->release_cl2_override) {
968 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
969 		dport->release_cl2_override = false;
970 	}
971 }
972 
973 void chv_phy_post_pll_disable(struct intel_encoder *encoder)
974 {
975 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
976 	enum i915_pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
977 	u32 val;
978 
979 	mutex_lock(&dev_priv->sb_lock);
980 
981 	/* disable left/right clock distribution */
982 	if (pipe != PIPE_B) {
983 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
984 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
985 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
986 	} else {
987 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
988 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
989 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
990 	}
991 
992 	mutex_unlock(&dev_priv->sb_lock);
993 
994 	/*
995 	 * Leave the power down bit cleared for at least one
996 	 * lane so that chv_powergate_phy_ch() will power
997 	 * on something when the channel is otherwise unused.
998 	 * When the port is off and the override is removed
999 	 * the lanes power down anyway, so otherwise it doesn't
1000 	 * really matter what the state of power down bits is
1001 	 * after this.
1002 	 */
1003 	chv_phy_powergate_lanes(encoder, false, 0x0);
1004 }
1005 
1006 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1007 			      u32 demph_reg_value, u32 preemph_reg_value,
1008 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1009 {
1010 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1011 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1012 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1013 	enum dpio_channel port = vlv_dport_to_channel(dport);
1014 	int pipe = intel_crtc->pipe;
1015 
1016 	mutex_lock(&dev_priv->sb_lock);
1017 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1018 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1019 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1020 			 uniqtranscale_reg_value);
1021 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1022 
1023 	if (tx3_demph)
1024 		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1025 
1026 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1027 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1028 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1029 	mutex_unlock(&dev_priv->sb_lock);
1030 }
1031 
1032 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder)
1033 {
1034 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1035 	struct drm_device *dev = encoder->base.dev;
1036 	struct drm_i915_private *dev_priv = to_i915(dev);
1037 	struct intel_crtc *intel_crtc =
1038 		to_intel_crtc(encoder->base.crtc);
1039 	enum dpio_channel port = vlv_dport_to_channel(dport);
1040 	int pipe = intel_crtc->pipe;
1041 
1042 	/* Program Tx lane resets to default */
1043 	mutex_lock(&dev_priv->sb_lock);
1044 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1045 			 DPIO_PCS_TX_LANE2_RESET |
1046 			 DPIO_PCS_TX_LANE1_RESET);
1047 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1048 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1049 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1050 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1051 				 DPIO_PCS_CLK_SOFT_RESET);
1052 
1053 	/* Fix up inter-pair skew failure */
1054 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1055 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1056 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1057 	mutex_unlock(&dev_priv->sb_lock);
1058 }
1059 
1060 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder)
1061 {
1062 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1063 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1064 	struct drm_device *dev = encoder->base.dev;
1065 	struct drm_i915_private *dev_priv = to_i915(dev);
1066 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1067 	enum dpio_channel port = vlv_dport_to_channel(dport);
1068 	int pipe = intel_crtc->pipe;
1069 	u32 val;
1070 
1071 	mutex_lock(&dev_priv->sb_lock);
1072 
1073 	/* Enable clock channels for this port */
1074 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1075 	val = 0;
1076 	if (pipe)
1077 		val |= (1<<21);
1078 	else
1079 		val &= ~(1<<21);
1080 	val |= 0x001000c4;
1081 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1082 
1083 	/* Program lane clock */
1084 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1085 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1086 
1087 	mutex_unlock(&dev_priv->sb_lock);
1088 }
1089 
1090 void vlv_phy_reset_lanes(struct intel_encoder *encoder)
1091 {
1092 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1093 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1094 	struct intel_crtc *intel_crtc =
1095 		to_intel_crtc(encoder->base.crtc);
1096 	enum dpio_channel port = vlv_dport_to_channel(dport);
1097 	int pipe = intel_crtc->pipe;
1098 
1099 	mutex_lock(&dev_priv->sb_lock);
1100 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1101 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1102 	mutex_unlock(&dev_priv->sb_lock);
1103 }
1104