xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 1487f786)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define CTX_LRI_HEADER_0		0x01
160 #define CTX_CONTEXT_CONTROL		0x02
161 #define CTX_RING_HEAD			0x04
162 #define CTX_RING_TAIL			0x06
163 #define CTX_RING_BUFFER_START		0x08
164 #define CTX_RING_BUFFER_CONTROL		0x0a
165 #define CTX_BB_HEAD_U			0x0c
166 #define CTX_BB_HEAD_L			0x0e
167 #define CTX_BB_STATE			0x10
168 #define CTX_SECOND_BB_HEAD_U		0x12
169 #define CTX_SECOND_BB_HEAD_L		0x14
170 #define CTX_SECOND_BB_STATE		0x16
171 #define CTX_BB_PER_CTX_PTR		0x18
172 #define CTX_RCS_INDIRECT_CTX		0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
174 #define CTX_LRI_HEADER_1		0x21
175 #define CTX_CTX_TIMESTAMP		0x22
176 #define CTX_PDP3_UDW			0x24
177 #define CTX_PDP3_LDW			0x26
178 #define CTX_PDP2_UDW			0x28
179 #define CTX_PDP2_LDW			0x2a
180 #define CTX_PDP1_UDW			0x2c
181 #define CTX_PDP1_LDW			0x2e
182 #define CTX_PDP0_UDW			0x30
183 #define CTX_PDP0_LDW			0x32
184 #define CTX_LRI_HEADER_2		0x41
185 #define CTX_R_PWR_CLK_STATE		0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
187 
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 	(reg_state)[(pos)+1] = (val); \
197 } while (0)
198 
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204 
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209 
210 enum {
211 	FAULT_AND_HANG = 0,
212 	FAULT_AND_HALT, /* Debug only */
213 	FAULT_AND_STREAM,
214 	FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220 
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223 
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225 					    struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227 				struct intel_engine_cs *engine);
228 
229 /**
230  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231  * @dev_priv: i915 device private
232  * @enable_execlists: value of i915.enable_execlists module parameter.
233  *
234  * Only certain platforms support Execlists (the prerequisites being
235  * support for Logical Ring Contexts and Aliasing PPGTT or better).
236  *
237  * Return: 1 if Execlists is supported and has to be enabled.
238  */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241 	/* On platforms with execlist available, vGPU will only
242 	 * support execlist mode, no ring buffer mode.
243 	 */
244 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 		return 1;
246 
247 	if (INTEL_GEN(dev_priv) >= 9)
248 		return 1;
249 
250 	if (enable_execlists == 0)
251 		return 0;
252 
253 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 	    USES_PPGTT(dev_priv) &&
255 	    i915.use_mmio_flip >= 0)
256 		return 1;
257 
258 	return 0;
259 }
260 
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264 	struct drm_i915_private *dev_priv = engine->i915;
265 
266 	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267 		engine->idle_lite_restore_wa = ~0;
268 
269 	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271 					(engine->id == VCS || engine->id == VCS2);
272 
273 	engine->ctx_desc_template = GEN8_CTX_VALID;
274 	if (IS_GEN8(dev_priv))
275 		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 
278 	/* TODO: WaDisableLiteRestore when we start using semaphore
279 	 * signalling between Command Streamers */
280 	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281 
282 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 	if (engine->disable_lite_restore_wa)
285 		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287 
288 /**
289  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290  * 					  descriptor for a pinned context
291  *
292  * @ctx: Context to work on
293  * @engine: Engine the descriptor will be used with
294  *
295  * The context descriptor encodes various attributes of a context,
296  * including its GTT address and some flags. Because it's fairly
297  * expensive to calculate, we'll just do it once and cache the result,
298  * which remains valid until the context is unpinned.
299  *
300  * This is what a descriptor looks like, from LSB to MSB:
301  *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303  *    bits 32-52:    ctx ID, a globally unique tag
304  *    bits 53-54:    mbz, reserved for use by hardware
305  *    bits 55-63:    group ID, currently unused and set to 0
306  */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309 				   struct intel_engine_cs *engine)
310 {
311 	struct intel_context *ce = &ctx->engine[engine->id];
312 	u64 desc;
313 
314 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315 
316 	desc = ctx->desc_template;				/* bits  3-4  */
317 	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 								/* bits 12-31 */
320 	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321 
322 	ce->lrc_desc = desc;
323 }
324 
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326 				     struct intel_engine_cs *engine)
327 {
328 	return ctx->engine[engine->id].lrc_desc;
329 }
330 
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 				 struct drm_i915_gem_request *rq1)
333 {
334 
335 	struct intel_engine_cs *engine = rq0->engine;
336 	struct drm_i915_private *dev_priv = rq0->i915;
337 	uint64_t desc[2];
338 
339 	if (rq1) {
340 		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 		rq1->elsp_submitted++;
342 	} else {
343 		desc[1] = 0;
344 	}
345 
346 	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347 	rq0->elsp_submitted++;
348 
349 	/* You must always write both descriptors in the order below. */
350 	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352 
353 	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354 	/* The context is automatically loaded after the following */
355 	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356 
357 	/* ELSP is a wo register, use another nearby reg for posting */
358 	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360 
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369 
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372 	struct intel_engine_cs *engine = rq->engine;
373 	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374 	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375 
376 	reg_state[CTX_RING_TAIL+1] = rq->tail;
377 
378 	/* True 32b PPGTT with dynamic page allocation: update PDP
379 	 * registers and point the unallocated PDPs to scratch page.
380 	 * PML4 is allocated during ppgtt init, so this is not needed
381 	 * in 48-bit mode.
382 	 */
383 	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 		execlists_update_context_pdps(ppgtt, reg_state);
385 }
386 
387 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 				      struct drm_i915_gem_request *rq1)
389 {
390 	struct drm_i915_private *dev_priv = rq0->i915;
391 	unsigned int fw_domains = rq0->engine->fw_domains;
392 
393 	execlists_update_context(rq0);
394 
395 	if (rq1)
396 		execlists_update_context(rq1);
397 
398 	spin_lock_irq(&dev_priv->uncore.lock);
399 	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400 
401 	execlists_elsp_write(rq0, rq1);
402 
403 	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404 	spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406 
407 static inline void execlists_context_status_change(
408 		struct drm_i915_gem_request *rq,
409 		unsigned long status)
410 {
411 	/*
412 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 	 * The compiler should eliminate this function as dead-code.
414 	 */
415 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 		return;
417 
418 	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420 
421 static void execlists_context_unqueue(struct intel_engine_cs *engine)
422 {
423 	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424 	struct drm_i915_gem_request *cursor, *tmp;
425 
426 	assert_spin_locked(&engine->execlist_lock);
427 
428 	/*
429 	 * If irqs are not active generate a warning as batches that finish
430 	 * without the irqs may get lost and a GPU Hang may occur.
431 	 */
432 	WARN_ON(!intel_irqs_enabled(engine->i915));
433 
434 	/* Try to read in pairs */
435 	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 				 execlist_link) {
437 		if (!req0) {
438 			req0 = cursor;
439 		} else if (req0->ctx == cursor->ctx) {
440 			/* Same ctx: ignore first request, as second request
441 			 * will update tail past first request's workload */
442 			cursor->elsp_submitted = req0->elsp_submitted;
443 			list_del(&req0->execlist_link);
444 			i915_gem_request_unreference(req0);
445 			req0 = cursor;
446 		} else {
447 			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 				/*
449 				 * req0 (after merged) ctx requires single
450 				 * submission, stop picking
451 				 */
452 				if (req0->ctx->execlists_force_single_submission)
453 					break;
454 				/*
455 				 * req0 ctx doesn't require single submission,
456 				 * but next req ctx requires, stop picking
457 				 */
458 				if (cursor->ctx->execlists_force_single_submission)
459 					break;
460 			}
461 			req1 = cursor;
462 			WARN_ON(req1->elsp_submitted);
463 			break;
464 		}
465 	}
466 
467 	if (unlikely(!req0))
468 		return;
469 
470 	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471 
472 	if (req1)
473 		execlists_context_status_change(req1,
474 						INTEL_CONTEXT_SCHEDULE_IN);
475 
476 	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477 		/*
478 		 * WaIdleLiteRestore: make sure we never cause a lite restore
479 		 * with HEAD==TAIL.
480 		 *
481 		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 		 * resubmit the request. See gen8_emit_request() for where we
483 		 * prepare the padding after the end of the request.
484 		 */
485 		struct intel_ringbuffer *ringbuf;
486 
487 		ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 		req0->tail += 8;
489 		req0->tail &= ringbuf->size - 1;
490 	}
491 
492 	execlists_submit_requests(req0, req1);
493 }
494 
495 static unsigned int
496 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497 {
498 	struct drm_i915_gem_request *head_req;
499 
500 	assert_spin_locked(&engine->execlist_lock);
501 
502 	head_req = list_first_entry_or_null(&engine->execlist_queue,
503 					    struct drm_i915_gem_request,
504 					    execlist_link);
505 
506 	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507                return 0;
508 
509 	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510 
511 	if (--head_req->elsp_submitted > 0)
512 		return 0;
513 
514 	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515 
516 	list_del(&head_req->execlist_link);
517 	i915_gem_request_unreference(head_req);
518 
519 	return 1;
520 }
521 
522 static u32
523 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524 		   u32 *context_id)
525 {
526 	struct drm_i915_private *dev_priv = engine->i915;
527 	u32 status;
528 
529 	read_pointer %= GEN8_CSB_ENTRIES;
530 
531 	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532 
533 	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 		return 0;
535 
536 	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 							      read_pointer));
538 
539 	return status;
540 }
541 
542 /**
543  * intel_lrc_irq_handler() - handle Context Switch interrupts
544  * @data: tasklet handler passed in unsigned long
545  *
546  * Check the unread Context Status Buffers and manage the submission of new
547  * contexts to the ELSP accordingly.
548  */
549 static void intel_lrc_irq_handler(unsigned long data)
550 {
551 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552 	struct drm_i915_private *dev_priv = engine->i915;
553 	u32 status_pointer;
554 	unsigned int read_pointer, write_pointer;
555 	u32 csb[GEN8_CSB_ENTRIES][2];
556 	unsigned int csb_read = 0, i;
557 	unsigned int submit_contexts = 0;
558 
559 	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560 
561 	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562 
563 	read_pointer = engine->next_context_status_buffer;
564 	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565 	if (read_pointer > write_pointer)
566 		write_pointer += GEN8_CSB_ENTRIES;
567 
568 	while (read_pointer < write_pointer) {
569 		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570 			break;
571 		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572 						      &csb[csb_read][1]);
573 		csb_read++;
574 	}
575 
576 	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577 
578 	/* Update the read pointer to the old write pointer. Manual ringbuffer
579 	 * management ftw </sarcasm> */
580 	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581 		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582 				    engine->next_context_status_buffer << 8));
583 
584 	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585 
586 	lockmgr(&engine->execlist_lock, LK_EXCLUSIVE);
587 
588 	for (i = 0; i < csb_read; i++) {
589 		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590 			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591 				if (execlists_check_remove_request(engine, csb[i][1]))
592 					WARN(1, "Lite Restored request removed from queue\n");
593 			} else
594 				WARN(1, "Preemption without Lite Restore\n");
595 		}
596 
597 		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598 		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
599 			submit_contexts +=
600 				execlists_check_remove_request(engine, csb[i][1]);
601 	}
602 
603 	if (submit_contexts) {
604 		if (!engine->disable_lite_restore_wa ||
605 		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606 			execlists_context_unqueue(engine);
607 	}
608 
609 	lockmgr(&engine->execlist_lock, LK_RELEASE);
610 
611 	if (unlikely(submit_contexts > 2))
612 		DRM_ERROR("More than two context complete events?\n");
613 }
614 
615 static void execlists_context_queue(struct drm_i915_gem_request *request)
616 {
617 	struct intel_engine_cs *engine = request->engine;
618 	struct drm_i915_gem_request *cursor;
619 	int num_elements = 0;
620 
621 	spin_lock_bh(&engine->execlist_lock);
622 
623 	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624 		if (++num_elements > 2)
625 			break;
626 
627 	if (num_elements > 2) {
628 		struct drm_i915_gem_request *tail_req;
629 
630 		tail_req = list_last_entry(&engine->execlist_queue,
631 					   struct drm_i915_gem_request,
632 					   execlist_link);
633 
634 		if (request->ctx == tail_req->ctx) {
635 			WARN(tail_req->elsp_submitted != 0,
636 				"More than 2 already-submitted reqs queued\n");
637 			list_del(&tail_req->execlist_link);
638 			i915_gem_request_unreference(tail_req);
639 		}
640 	}
641 
642 	i915_gem_request_reference(request);
643 	list_add_tail(&request->execlist_link, &engine->execlist_queue);
644 	request->ctx_hw_id = request->ctx->hw_id;
645 	if (num_elements == 0)
646 		execlists_context_unqueue(engine);
647 
648 	spin_unlock_bh(&engine->execlist_lock);
649 }
650 
651 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652 {
653 	struct intel_engine_cs *engine = req->engine;
654 	uint32_t flush_domains;
655 	int ret;
656 
657 	flush_domains = 0;
658 	if (engine->gpu_caches_dirty)
659 		flush_domains = I915_GEM_GPU_DOMAINS;
660 
661 	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662 	if (ret)
663 		return ret;
664 
665 	engine->gpu_caches_dirty = false;
666 	return 0;
667 }
668 
669 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670 				 struct list_head *vmas)
671 {
672 	const unsigned other_rings = ~intel_engine_flag(req->engine);
673 	struct i915_vma *vma;
674 	uint32_t flush_domains = 0;
675 	bool flush_chipset = false;
676 	int ret;
677 
678 	list_for_each_entry(vma, vmas, exec_list) {
679 		struct drm_i915_gem_object *obj = vma->obj;
680 
681 		if (obj->active & other_rings) {
682 			ret = i915_gem_object_sync(obj, req->engine, &req);
683 			if (ret)
684 				return ret;
685 		}
686 
687 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 			flush_chipset |= i915_gem_clflush_object(obj, false);
689 
690 		flush_domains |= obj->base.write_domain;
691 	}
692 
693 	if (flush_domains & I915_GEM_DOMAIN_GTT)
694 		wmb();
695 
696 	/* Unconditionally invalidate gpu caches and ensure that we do flush
697 	 * any residual writes from the previous batch.
698 	 */
699 	return logical_ring_invalidate_all_caches(req);
700 }
701 
702 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703 {
704 	struct intel_engine_cs *engine = request->engine;
705 	struct intel_context *ce = &request->ctx->engine[engine->id];
706 	int ret;
707 
708 	/* Flush enough space to reduce the likelihood of waiting after
709 	 * we start building the request - in which case we will just
710 	 * have to repeat work.
711 	 */
712 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
713 
714 	if (!ce->state) {
715 		ret = execlists_context_deferred_alloc(request->ctx, engine);
716 		if (ret)
717 			return ret;
718 	}
719 
720 	request->ringbuf = ce->ringbuf;
721 
722 	if (i915.enable_guc_submission) {
723 		/*
724 		 * Check that the GuC has space for the request before
725 		 * going any further, as the i915_add_request() call
726 		 * later on mustn't fail ...
727 		 */
728 		ret = i915_guc_wq_check_space(request);
729 		if (ret)
730 			return ret;
731 	}
732 
733 	ret = intel_lr_context_pin(request->ctx, engine);
734 	if (ret)
735 		return ret;
736 
737 	ret = intel_ring_begin(request, 0);
738 	if (ret)
739 		goto err_unpin;
740 
741 	if (!ce->initialised) {
742 		ret = engine->init_context(request);
743 		if (ret)
744 			goto err_unpin;
745 
746 		ce->initialised = true;
747 	}
748 
749 	/* Note that after this point, we have committed to using
750 	 * this request as it is being used to both track the
751 	 * state of engine initialisation and liveness of the
752 	 * golden renderstate above. Think twice before you try
753 	 * to cancel/unwind this request now.
754 	 */
755 
756 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757 	return 0;
758 
759 err_unpin:
760 	intel_lr_context_unpin(request->ctx, engine);
761 	return ret;
762 }
763 
764 /*
765  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766  * @request: Request to advance the logical ringbuffer of.
767  *
768  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769  * really happens during submission is that the context and current tail will be placed
770  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771  * point, the tail *inside* the context is updated and the ELSP written to.
772  */
773 static int
774 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775 {
776 	struct intel_ringbuffer *ringbuf = request->ringbuf;
777 	struct intel_engine_cs *engine = request->engine;
778 
779 	intel_logical_ring_advance(ringbuf);
780 	request->tail = ringbuf->tail;
781 
782 	/*
783 	 * Here we add two extra NOOPs as padding to avoid
784 	 * lite restore of a context with HEAD==TAIL.
785 	 *
786 	 * Caller must reserve WA_TAIL_DWORDS for us!
787 	 */
788 	intel_logical_ring_emit(ringbuf, MI_NOOP);
789 	intel_logical_ring_emit(ringbuf, MI_NOOP);
790 	intel_logical_ring_advance(ringbuf);
791 
792 	if (intel_engine_stopped(engine))
793 		return 0;
794 
795 	/* We keep the previous context alive until we retire the following
796 	 * request. This ensures that any the context object is still pinned
797 	 * for any residual writes the HW makes into it on the context switch
798 	 * into the next object following the breadcrumb. Otherwise, we may
799 	 * retire the context too early.
800 	 */
801 	request->previous_context = engine->last_context;
802 	engine->last_context = request->ctx;
803 
804 	if (i915.enable_guc_submission)
805 		i915_guc_submit(request);
806 	else
807 		execlists_context_queue(request);
808 
809 	return 0;
810 }
811 
812 /**
813  * execlists_submission() - submit a batchbuffer for execution, Execlists style
814  * @params: execbuffer call parameters.
815  * @args: execbuffer call arguments.
816  * @vmas: list of vmas.
817  *
818  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
819  * away the submission details of the execbuffer ioctl call.
820  *
821  * Return: non-zero if the submission fails.
822  */
823 int intel_execlists_submission(struct i915_execbuffer_params *params,
824 			       struct drm_i915_gem_execbuffer2 *args,
825 			       struct list_head *vmas)
826 {
827 	struct drm_device       *dev = params->dev;
828 	struct intel_engine_cs *engine = params->engine;
829 	struct drm_i915_private *dev_priv = dev->dev_private;
830 	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
831 	u64 exec_start;
832 	int instp_mode;
833 	u32 instp_mask;
834 	int ret;
835 
836 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
837 	instp_mask = I915_EXEC_CONSTANTS_MASK;
838 	switch (instp_mode) {
839 	case I915_EXEC_CONSTANTS_REL_GENERAL:
840 	case I915_EXEC_CONSTANTS_ABSOLUTE:
841 	case I915_EXEC_CONSTANTS_REL_SURFACE:
842 		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
843 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
844 			return -EINVAL;
845 		}
846 
847 		if (instp_mode != dev_priv->relative_constants_mode) {
848 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
849 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
850 				return -EINVAL;
851 			}
852 
853 			/* The HW changed the meaning on this bit on gen6 */
854 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
855 		}
856 		break;
857 	default:
858 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
859 		return -EINVAL;
860 	}
861 
862 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
863 		DRM_DEBUG("sol reset is gen7 only\n");
864 		return -EINVAL;
865 	}
866 
867 	ret = execlists_move_to_gpu(params->request, vmas);
868 	if (ret)
869 		return ret;
870 
871 	if (engine == &dev_priv->engine[RCS] &&
872 	    instp_mode != dev_priv->relative_constants_mode) {
873 		ret = intel_ring_begin(params->request, 4);
874 		if (ret)
875 			return ret;
876 
877 		intel_logical_ring_emit(ringbuf, MI_NOOP);
878 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
879 		intel_logical_ring_emit_reg(ringbuf, INSTPM);
880 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
881 		intel_logical_ring_advance(ringbuf);
882 
883 		dev_priv->relative_constants_mode = instp_mode;
884 	}
885 
886 	exec_start = params->batch_obj_vm_offset +
887 		     args->batch_start_offset;
888 
889 	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
890 	if (ret)
891 		return ret;
892 
893 	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
894 
895 	i915_gem_execbuffer_move_to_active(vmas, params->request);
896 
897 	return 0;
898 }
899 
900 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
901 {
902 	struct drm_i915_gem_request *req, *tmp;
903 	LINUX_LIST_HEAD(cancel_list);
904 
905 	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
906 
907 	spin_lock_bh(&engine->execlist_lock);
908 	list_replace_init(&engine->execlist_queue, &cancel_list);
909 	spin_unlock_bh(&engine->execlist_lock);
910 
911 	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
912 		list_del(&req->execlist_link);
913 		i915_gem_request_unreference(req);
914 	}
915 }
916 
917 void intel_logical_ring_stop(struct intel_engine_cs *engine)
918 {
919 	struct drm_i915_private *dev_priv = engine->i915;
920 	int ret;
921 
922 	if (!intel_engine_initialized(engine))
923 		return;
924 
925 	ret = intel_engine_idle(engine);
926 	if (ret)
927 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
928 			  engine->name, ret);
929 
930 	/* TODO: Is this correct with Execlists enabled? */
931 	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
932 	if (intel_wait_for_register(dev_priv,
933 				    RING_MI_MODE(engine->mmio_base),
934 				    MODE_IDLE, MODE_IDLE,
935 				    1000)) {
936 		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
937 		return;
938 	}
939 	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
940 }
941 
942 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
943 {
944 	struct intel_engine_cs *engine = req->engine;
945 	int ret;
946 
947 	if (!engine->gpu_caches_dirty)
948 		return 0;
949 
950 	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
951 	if (ret)
952 		return ret;
953 
954 	engine->gpu_caches_dirty = false;
955 	return 0;
956 }
957 
958 static int intel_lr_context_pin(struct i915_gem_context *ctx,
959 				struct intel_engine_cs *engine)
960 {
961 	struct drm_i915_private *dev_priv = ctx->i915;
962 	struct intel_context *ce = &ctx->engine[engine->id];
963 	void *vaddr;
964 	u32 *lrc_reg_state;
965 	int ret;
966 
967 	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
968 
969 	if (ce->pin_count++)
970 		return 0;
971 
972 	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
973 				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
974 	if (ret)
975 		goto err;
976 
977 	vaddr = i915_gem_object_pin_map(ce->state);
978 	if (IS_ERR(vaddr)) {
979 		ret = PTR_ERR(vaddr);
980 		goto unpin_ctx_obj;
981 	}
982 
983 	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
984 
985 	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
986 	if (ret)
987 		goto unpin_map;
988 
989 	i915_gem_context_reference(ctx);
990 	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
991 	intel_lr_context_descriptor_update(ctx, engine);
992 
993 	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
994 	ce->lrc_reg_state = lrc_reg_state;
995 	ce->state->dirty = true;
996 
997 	/* Invalidate GuC TLB. */
998 	if (i915.enable_guc_submission)
999 		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1000 
1001 	return 0;
1002 
1003 unpin_map:
1004 	i915_gem_object_unpin_map(ce->state);
1005 unpin_ctx_obj:
1006 	i915_gem_object_ggtt_unpin(ce->state);
1007 err:
1008 	ce->pin_count = 0;
1009 	return ret;
1010 }
1011 
1012 void intel_lr_context_unpin(struct i915_gem_context *ctx,
1013 			    struct intel_engine_cs *engine)
1014 {
1015 	struct intel_context *ce = &ctx->engine[engine->id];
1016 
1017 	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1018 	GEM_BUG_ON(ce->pin_count == 0);
1019 
1020 	if (--ce->pin_count)
1021 		return;
1022 
1023 	intel_unpin_ringbuffer_obj(ce->ringbuf);
1024 
1025 	i915_gem_object_unpin_map(ce->state);
1026 	i915_gem_object_ggtt_unpin(ce->state);
1027 
1028 	ce->lrc_vma = NULL;
1029 	ce->lrc_desc = 0;
1030 	ce->lrc_reg_state = NULL;
1031 
1032 	i915_gem_context_unreference(ctx);
1033 }
1034 
1035 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1036 {
1037 	int ret, i;
1038 	struct intel_engine_cs *engine = req->engine;
1039 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1040 	struct i915_workarounds *w = &req->i915->workarounds;
1041 
1042 	if (w->count == 0)
1043 		return 0;
1044 
1045 	engine->gpu_caches_dirty = true;
1046 	ret = logical_ring_flush_all_caches(req);
1047 	if (ret)
1048 		return ret;
1049 
1050 	ret = intel_ring_begin(req, w->count * 2 + 2);
1051 	if (ret)
1052 		return ret;
1053 
1054 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1055 	for (i = 0; i < w->count; i++) {
1056 		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1057 		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1058 	}
1059 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1060 
1061 	intel_logical_ring_advance(ringbuf);
1062 
1063 	engine->gpu_caches_dirty = true;
1064 	ret = logical_ring_flush_all_caches(req);
1065 	if (ret)
1066 		return ret;
1067 
1068 	return 0;
1069 }
1070 
1071 #define wa_ctx_emit(batch, index, cmd)					\
1072 	do {								\
1073 		int __index = (index)++;				\
1074 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1075 			return -ENOSPC;					\
1076 		}							\
1077 		batch[__index] = (cmd);					\
1078 	} while (0)
1079 
1080 #define wa_ctx_emit_reg(batch, index, reg) \
1081 	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1082 
1083 /*
1084  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1085  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1086  * but there is a slight complication as this is applied in WA batch where the
1087  * values are only initialized once so we cannot take register value at the
1088  * beginning and reuse it further; hence we save its value to memory, upload a
1089  * constant value with bit21 set and then we restore it back with the saved value.
1090  * To simplify the WA, a constant value is formed by using the default value
1091  * of this register. This shouldn't be a problem because we are only modifying
1092  * it for a short period and this batch in non-premptible. We can ofcourse
1093  * use additional instructions that read the actual value of the register
1094  * at that time and set our bit of interest but it makes the WA complicated.
1095  *
1096  * This WA is also required for Gen9 so extracting as a function avoids
1097  * code duplication.
1098  */
1099 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1100 						uint32_t *const batch,
1101 						uint32_t index)
1102 {
1103 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1104 
1105 	/*
1106 	 * WaDisableLSQCROPERFforOCL:skl,kbl
1107 	 * This WA is implemented in skl_init_clock_gating() but since
1108 	 * this batch updates GEN8_L3SQCREG4 with default value we need to
1109 	 * set this bit here to retain the WA during flush.
1110 	 */
1111 	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1112 	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1113 		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1114 
1115 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1116 				   MI_SRM_LRM_GLOBAL_GTT));
1117 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1118 	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1119 	wa_ctx_emit(batch, index, 0);
1120 
1121 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1122 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1123 	wa_ctx_emit(batch, index, l3sqc4_flush);
1124 
1125 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1126 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1127 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
1128 	wa_ctx_emit(batch, index, 0);
1129 	wa_ctx_emit(batch, index, 0);
1130 	wa_ctx_emit(batch, index, 0);
1131 	wa_ctx_emit(batch, index, 0);
1132 
1133 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1134 				   MI_SRM_LRM_GLOBAL_GTT));
1135 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1136 	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1137 	wa_ctx_emit(batch, index, 0);
1138 
1139 	return index;
1140 }
1141 
1142 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1143 				    uint32_t offset,
1144 				    uint32_t start_alignment)
1145 {
1146 	return wa_ctx->offset = ALIGN(offset, start_alignment);
1147 }
1148 
1149 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1150 			     uint32_t offset,
1151 			     uint32_t size_alignment)
1152 {
1153 	wa_ctx->size = offset - wa_ctx->offset;
1154 
1155 	WARN(wa_ctx->size % size_alignment,
1156 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1157 	     wa_ctx->size, size_alignment);
1158 	return 0;
1159 }
1160 
1161 /**
1162  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1163  *
1164  * @engine: only applicable for RCS
1165  * @wa_ctx: structure representing wa_ctx
1166  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1167  *    with the offset value received as input.
1168  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1169  * @batch: page in which WA are loaded
1170  * @offset: This field specifies the start of the batch, it should be
1171  *  cache-aligned otherwise it is adjusted accordingly.
1172  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1173  *  initialized at the beginning and shared across all contexts but this field
1174  *  helps us to have multiple batches at different offsets and select them based
1175  *  on a criteria. At the moment this batch always start at the beginning of the page
1176  *  and at this point we don't have multiple wa_ctx batch buffers.
1177  *
1178  *  The number of WA applied are not known at the beginning; we use this field
1179  *  to return the no of DWORDS written.
1180  *
1181  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1182  *  so it adds NOOPs as padding to make it cacheline aligned.
1183  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1184  *  makes a complete batch buffer.
1185  *
1186  * Return: non-zero if we exceed the PAGE_SIZE limit.
1187  */
1188 
1189 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1190 				    struct i915_wa_ctx_bb *wa_ctx,
1191 				    uint32_t *const batch,
1192 				    uint32_t *offset)
1193 {
1194 	uint32_t scratch_addr;
1195 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1196 
1197 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1198 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1199 
1200 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1201 	if (IS_BROADWELL(engine->i915)) {
1202 		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1203 		if (rc < 0)
1204 			return rc;
1205 		index = rc;
1206 	}
1207 
1208 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1209 	/* Actual scratch location is at 128 bytes offset */
1210 	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1211 
1212 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1213 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1214 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1215 				   PIPE_CONTROL_CS_STALL |
1216 				   PIPE_CONTROL_QW_WRITE));
1217 	wa_ctx_emit(batch, index, scratch_addr);
1218 	wa_ctx_emit(batch, index, 0);
1219 	wa_ctx_emit(batch, index, 0);
1220 	wa_ctx_emit(batch, index, 0);
1221 
1222 	/* Pad to end of cacheline */
1223 	while (index % CACHELINE_DWORDS)
1224 		wa_ctx_emit(batch, index, MI_NOOP);
1225 
1226 	/*
1227 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1228 	 * execution depends on the length specified in terms of cache lines
1229 	 * in the register CTX_RCS_INDIRECT_CTX
1230 	 */
1231 
1232 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1233 }
1234 
1235 /**
1236  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1237  *
1238  * @engine: only applicable for RCS
1239  * @wa_ctx: structure representing wa_ctx
1240  *  offset: specifies start of the batch, should be cache-aligned.
1241  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1242  * @batch: page in which WA are loaded
1243  * @offset: This field specifies the start of this batch.
1244  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1245  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1246  *
1247  *   The number of DWORDS written are returned using this field.
1248  *
1249  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1250  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1251  */
1252 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1253 			       struct i915_wa_ctx_bb *wa_ctx,
1254 			       uint32_t *const batch,
1255 			       uint32_t *offset)
1256 {
1257 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1258 
1259 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1260 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1261 
1262 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1263 
1264 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1265 }
1266 
1267 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1268 				    struct i915_wa_ctx_bb *wa_ctx,
1269 				    uint32_t *const batch,
1270 				    uint32_t *offset)
1271 {
1272 	int ret;
1273 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1274 
1275 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1276 	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1277 	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1278 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1279 
1280 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1281 	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1282 	if (ret < 0)
1283 		return ret;
1284 	index = ret;
1285 
1286 	/* WaClearSlmSpaceAtContextSwitch:kbl */
1287 	/* Actual scratch location is at 128 bytes offset */
1288 	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1289 		uint32_t scratch_addr
1290 			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1291 
1292 		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1293 		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1294 					   PIPE_CONTROL_GLOBAL_GTT_IVB |
1295 					   PIPE_CONTROL_CS_STALL |
1296 					   PIPE_CONTROL_QW_WRITE));
1297 		wa_ctx_emit(batch, index, scratch_addr);
1298 		wa_ctx_emit(batch, index, 0);
1299 		wa_ctx_emit(batch, index, 0);
1300 		wa_ctx_emit(batch, index, 0);
1301 	}
1302 	/* Pad to end of cacheline */
1303 	while (index % CACHELINE_DWORDS)
1304 		wa_ctx_emit(batch, index, MI_NOOP);
1305 
1306 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1307 }
1308 
1309 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1310 			       struct i915_wa_ctx_bb *wa_ctx,
1311 			       uint32_t *const batch,
1312 			       uint32_t *offset)
1313 {
1314 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1315 
1316 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1317 	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1318 	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1319 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1320 		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1321 		wa_ctx_emit(batch, index,
1322 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1323 		wa_ctx_emit(batch, index, MI_NOOP);
1324 	}
1325 
1326 	/* WaClearTdlStateAckDirtyBits:bxt */
1327 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1328 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1329 
1330 		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1331 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1332 
1333 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1334 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1335 
1336 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1337 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1338 
1339 		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1340 		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1341 		wa_ctx_emit(batch, index, 0x0);
1342 		wa_ctx_emit(batch, index, MI_NOOP);
1343 	}
1344 
1345 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1346 	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1347 	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1348 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1349 
1350 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1351 
1352 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1353 }
1354 
1355 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1356 {
1357 	int ret;
1358 
1359 	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1360 						   PAGE_ALIGN(size));
1361 	if (IS_ERR(engine->wa_ctx.obj)) {
1362 		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1363 		ret = PTR_ERR(engine->wa_ctx.obj);
1364 		engine->wa_ctx.obj = NULL;
1365 		return ret;
1366 	}
1367 
1368 	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1369 	if (ret) {
1370 		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1371 				 ret);
1372 		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1373 		return ret;
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1380 {
1381 	if (engine->wa_ctx.obj) {
1382 		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1383 		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1384 		engine->wa_ctx.obj = NULL;
1385 	}
1386 }
1387 
1388 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1389 {
1390 	int ret;
1391 	uint32_t *batch;
1392 	uint32_t offset;
1393 	struct page *page;
1394 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1395 
1396 	WARN_ON(engine->id != RCS);
1397 
1398 	/* update this when WA for higher Gen are added */
1399 	if (INTEL_GEN(engine->i915) > 9) {
1400 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1401 			  INTEL_GEN(engine->i915));
1402 		return 0;
1403 	}
1404 
1405 	/* some WA perform writes to scratch page, ensure it is valid */
1406 	if (engine->scratch.obj == NULL) {
1407 		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1408 		return -EINVAL;
1409 	}
1410 
1411 	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1412 	if (ret) {
1413 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1414 		return ret;
1415 	}
1416 
1417 	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1418 	batch = kmap_atomic(page);
1419 	offset = 0;
1420 
1421 	if (IS_GEN8(engine->i915)) {
1422 		ret = gen8_init_indirectctx_bb(engine,
1423 					       &wa_ctx->indirect_ctx,
1424 					       batch,
1425 					       &offset);
1426 		if (ret)
1427 			goto out;
1428 
1429 		ret = gen8_init_perctx_bb(engine,
1430 					  &wa_ctx->per_ctx,
1431 					  batch,
1432 					  &offset);
1433 		if (ret)
1434 			goto out;
1435 	} else if (IS_GEN9(engine->i915)) {
1436 		ret = gen9_init_indirectctx_bb(engine,
1437 					       &wa_ctx->indirect_ctx,
1438 					       batch,
1439 					       &offset);
1440 		if (ret)
1441 			goto out;
1442 
1443 		ret = gen9_init_perctx_bb(engine,
1444 					  &wa_ctx->per_ctx,
1445 					  batch,
1446 					  &offset);
1447 		if (ret)
1448 			goto out;
1449 	}
1450 
1451 out:
1452 	kunmap_atomic(batch);
1453 	if (ret)
1454 		lrc_destroy_wa_ctx_obj(engine);
1455 
1456 	return ret;
1457 }
1458 
1459 static void lrc_init_hws(struct intel_engine_cs *engine)
1460 {
1461 	struct drm_i915_private *dev_priv = engine->i915;
1462 
1463 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1464 		   (u32)engine->status_page.gfx_addr);
1465 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1466 }
1467 
1468 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1469 {
1470 	struct drm_i915_private *dev_priv = engine->i915;
1471 	unsigned int next_context_status_buffer_hw;
1472 
1473 	lrc_init_hws(engine);
1474 
1475 	I915_WRITE_IMR(engine,
1476 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1477 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1478 
1479 	I915_WRITE(RING_MODE_GEN7(engine),
1480 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1481 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1482 	POSTING_READ(RING_MODE_GEN7(engine));
1483 
1484 	/*
1485 	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1486 	 * zero, we need to read the write pointer from hardware and use its
1487 	 * value because "this register is power context save restored".
1488 	 * Effectively, these states have been observed:
1489 	 *
1490 	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1491 	 * BDW  | CSB regs not reset       | CSB regs reset       |
1492 	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1493 	 * SKL  |         ?                |         ?            |
1494 	 * BXT  |         ?                |         ?            |
1495 	 */
1496 	next_context_status_buffer_hw =
1497 		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1498 
1499 	/*
1500 	 * When the CSB registers are reset (also after power-up / gpu reset),
1501 	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1502 	 * this special case, so the first element read is CSB[0].
1503 	 */
1504 	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1505 		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1506 
1507 	engine->next_context_status_buffer = next_context_status_buffer_hw;
1508 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1509 
1510 	intel_engine_init_hangcheck(engine);
1511 
1512 	return intel_mocs_init_engine(engine);
1513 }
1514 
1515 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1516 {
1517 	struct drm_i915_private *dev_priv = engine->i915;
1518 	int ret;
1519 
1520 	ret = gen8_init_common_ring(engine);
1521 	if (ret)
1522 		return ret;
1523 
1524 	/* We need to disable the AsyncFlip performance optimisations in order
1525 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1526 	 * programmed to '1' on all products.
1527 	 *
1528 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1529 	 */
1530 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1531 
1532 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1533 
1534 	return init_workarounds_ring(engine);
1535 }
1536 
1537 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1538 {
1539 	int ret;
1540 
1541 	ret = gen8_init_common_ring(engine);
1542 	if (ret)
1543 		return ret;
1544 
1545 	return init_workarounds_ring(engine);
1546 }
1547 
1548 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1549 {
1550 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1551 	struct intel_engine_cs *engine = req->engine;
1552 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1553 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1554 	int i, ret;
1555 
1556 	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1557 	if (ret)
1558 		return ret;
1559 
1560 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1561 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1562 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1563 
1564 		intel_logical_ring_emit_reg(ringbuf,
1565 					    GEN8_RING_PDP_UDW(engine, i));
1566 		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1567 		intel_logical_ring_emit_reg(ringbuf,
1568 					    GEN8_RING_PDP_LDW(engine, i));
1569 		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1570 	}
1571 
1572 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1573 	intel_logical_ring_advance(ringbuf);
1574 
1575 	return 0;
1576 }
1577 
1578 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1579 			      u64 offset, unsigned dispatch_flags)
1580 {
1581 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1582 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1583 	int ret;
1584 
1585 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1586 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1587 	 * but we can't. Force Restore would be a second option, but
1588 	 * it is unsafe in case of lite-restore (because the ctx is
1589 	 * not idle). PML4 is allocated during ppgtt init so this is
1590 	 * not needed in 48-bit.*/
1591 	if (req->ctx->ppgtt &&
1592 	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1593 		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1594 		    !intel_vgpu_active(req->i915)) {
1595 			ret = intel_logical_ring_emit_pdps(req);
1596 			if (ret)
1597 				return ret;
1598 		}
1599 
1600 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1601 	}
1602 
1603 	ret = intel_ring_begin(req, 4);
1604 	if (ret)
1605 		return ret;
1606 
1607 	/* FIXME(BDW): Address space and security selectors. */
1608 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1609 				(ppgtt<<8) |
1610 				(dispatch_flags & I915_DISPATCH_RS ?
1611 				 MI_BATCH_RESOURCE_STREAMER : 0));
1612 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1613 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1614 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1615 	intel_logical_ring_advance(ringbuf);
1616 
1617 	return 0;
1618 }
1619 
1620 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1621 {
1622 	struct drm_i915_private *dev_priv = engine->i915;
1623 	unsigned long flags;
1624 
1625 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1626 		return false;
1627 
1628 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1629 	if (engine->irq_refcount++ == 0) {
1630 		I915_WRITE_IMR(engine,
1631 			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1632 		POSTING_READ(RING_IMR(engine->mmio_base));
1633 	}
1634 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1635 
1636 	return true;
1637 }
1638 
1639 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1640 {
1641 	struct drm_i915_private *dev_priv = engine->i915;
1642 	unsigned long flags;
1643 
1644 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1645 	if (--engine->irq_refcount == 0) {
1646 		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1647 		POSTING_READ(RING_IMR(engine->mmio_base));
1648 	}
1649 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1650 }
1651 
1652 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1653 			   u32 invalidate_domains,
1654 			   u32 unused)
1655 {
1656 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1657 	struct intel_engine_cs *engine = ringbuf->engine;
1658 	struct drm_i915_private *dev_priv = request->i915;
1659 	uint32_t cmd;
1660 	int ret;
1661 
1662 	ret = intel_ring_begin(request, 4);
1663 	if (ret)
1664 		return ret;
1665 
1666 	cmd = MI_FLUSH_DW + 1;
1667 
1668 	/* We always require a command barrier so that subsequent
1669 	 * commands, such as breadcrumb interrupts, are strictly ordered
1670 	 * wrt the contents of the write cache being flushed to memory
1671 	 * (and thus being coherent from the CPU).
1672 	 */
1673 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1674 
1675 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1676 		cmd |= MI_INVALIDATE_TLB;
1677 		if (engine == &dev_priv->engine[VCS])
1678 			cmd |= MI_INVALIDATE_BSD;
1679 	}
1680 
1681 	intel_logical_ring_emit(ringbuf, cmd);
1682 	intel_logical_ring_emit(ringbuf,
1683 				I915_GEM_HWS_SCRATCH_ADDR |
1684 				MI_FLUSH_DW_USE_GTT);
1685 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1686 	intel_logical_ring_emit(ringbuf, 0); /* value */
1687 	intel_logical_ring_advance(ringbuf);
1688 
1689 	return 0;
1690 }
1691 
1692 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1693 				  u32 invalidate_domains,
1694 				  u32 flush_domains)
1695 {
1696 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1697 	struct intel_engine_cs *engine = ringbuf->engine;
1698 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1699 	bool vf_flush_wa = false, dc_flush_wa = false;
1700 	u32 flags = 0;
1701 	int ret;
1702 	int len;
1703 
1704 	flags |= PIPE_CONTROL_CS_STALL;
1705 
1706 	if (flush_domains) {
1707 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1708 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1709 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1710 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1711 	}
1712 
1713 	if (invalidate_domains) {
1714 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1715 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1716 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1717 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1718 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1719 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1720 		flags |= PIPE_CONTROL_QW_WRITE;
1721 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1722 
1723 		/*
1724 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1725 		 * pipe control.
1726 		 */
1727 		if (IS_GEN9(request->i915))
1728 			vf_flush_wa = true;
1729 
1730 		/* WaForGAMHang:kbl */
1731 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1732 			dc_flush_wa = true;
1733 	}
1734 
1735 	len = 6;
1736 
1737 	if (vf_flush_wa)
1738 		len += 6;
1739 
1740 	if (dc_flush_wa)
1741 		len += 12;
1742 
1743 	ret = intel_ring_begin(request, len);
1744 	if (ret)
1745 		return ret;
1746 
1747 	if (vf_flush_wa) {
1748 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1749 		intel_logical_ring_emit(ringbuf, 0);
1750 		intel_logical_ring_emit(ringbuf, 0);
1751 		intel_logical_ring_emit(ringbuf, 0);
1752 		intel_logical_ring_emit(ringbuf, 0);
1753 		intel_logical_ring_emit(ringbuf, 0);
1754 	}
1755 
1756 	if (dc_flush_wa) {
1757 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1758 		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1759 		intel_logical_ring_emit(ringbuf, 0);
1760 		intel_logical_ring_emit(ringbuf, 0);
1761 		intel_logical_ring_emit(ringbuf, 0);
1762 		intel_logical_ring_emit(ringbuf, 0);
1763 	}
1764 
1765 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1766 	intel_logical_ring_emit(ringbuf, flags);
1767 	intel_logical_ring_emit(ringbuf, scratch_addr);
1768 	intel_logical_ring_emit(ringbuf, 0);
1769 	intel_logical_ring_emit(ringbuf, 0);
1770 	intel_logical_ring_emit(ringbuf, 0);
1771 
1772 	if (dc_flush_wa) {
1773 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1774 		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1775 		intel_logical_ring_emit(ringbuf, 0);
1776 		intel_logical_ring_emit(ringbuf, 0);
1777 		intel_logical_ring_emit(ringbuf, 0);
1778 		intel_logical_ring_emit(ringbuf, 0);
1779 	}
1780 
1781 	intel_logical_ring_advance(ringbuf);
1782 
1783 	return 0;
1784 }
1785 
1786 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1787 {
1788 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1789 }
1790 
1791 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1792 {
1793 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1794 }
1795 
1796 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1797 {
1798 	/*
1799 	 * On BXT A steppings there is a HW coherency issue whereby the
1800 	 * MI_STORE_DATA_IMM storing the completed request's seqno
1801 	 * occasionally doesn't invalidate the CPU cache. Work around this by
1802 	 * clflushing the corresponding cacheline whenever the caller wants
1803 	 * the coherency to be guaranteed. Note that this cacheline is known
1804 	 * to be clean at this point, since we only write it in
1805 	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1806 	 * this clflush in practice becomes an invalidate operation.
1807 	 */
1808 	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1809 }
1810 
1811 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1812 {
1813 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1814 
1815 	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1816 	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1817 }
1818 
1819 /*
1820  * Reserve space for 2 NOOPs at the end of each request to be
1821  * used as a workaround for not being allowed to do lite
1822  * restore with HEAD==TAIL (WaIdleLiteRestore).
1823  */
1824 #define WA_TAIL_DWORDS 2
1825 
1826 static int gen8_emit_request(struct drm_i915_gem_request *request)
1827 {
1828 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1829 	int ret;
1830 
1831 	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1832 	if (ret)
1833 		return ret;
1834 
1835 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1836 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1837 
1838 	intel_logical_ring_emit(ringbuf,
1839 				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1840 	intel_logical_ring_emit(ringbuf,
1841 				intel_hws_seqno_address(request->engine) |
1842 				MI_FLUSH_DW_USE_GTT);
1843 	intel_logical_ring_emit(ringbuf, 0);
1844 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1845 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1846 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1847 	return intel_logical_ring_advance_and_submit(request);
1848 }
1849 
1850 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1851 {
1852 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1853 	int ret;
1854 
1855 	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1856 	if (ret)
1857 		return ret;
1858 
1859 	/* We're using qword write, seqno should be aligned to 8 bytes. */
1860 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1861 
1862 	/* w/a for post sync ops following a GPGPU operation we
1863 	 * need a prior CS_STALL, which is emitted by the flush
1864 	 * following the batch.
1865 	 */
1866 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1867 	intel_logical_ring_emit(ringbuf,
1868 				(PIPE_CONTROL_GLOBAL_GTT_IVB |
1869 				 PIPE_CONTROL_CS_STALL |
1870 				 PIPE_CONTROL_QW_WRITE));
1871 	intel_logical_ring_emit(ringbuf,
1872 				intel_hws_seqno_address(request->engine));
1873 	intel_logical_ring_emit(ringbuf, 0);
1874 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1875 	/* We're thrashing one dword of HWS. */
1876 	intel_logical_ring_emit(ringbuf, 0);
1877 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1878 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1879 	return intel_logical_ring_advance_and_submit(request);
1880 }
1881 
1882 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1883 {
1884 	struct render_state so;
1885 	int ret;
1886 
1887 	ret = i915_gem_render_state_prepare(req->engine, &so);
1888 	if (ret)
1889 		return ret;
1890 
1891 	if (so.rodata == NULL)
1892 		return 0;
1893 
1894 	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1895 				       I915_DISPATCH_SECURE);
1896 	if (ret)
1897 		goto out;
1898 
1899 	ret = req->engine->emit_bb_start(req,
1900 				       (so.ggtt_offset + so.aux_batch_offset),
1901 				       I915_DISPATCH_SECURE);
1902 	if (ret)
1903 		goto out;
1904 
1905 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1906 
1907 out:
1908 	i915_gem_render_state_fini(&so);
1909 	return ret;
1910 }
1911 
1912 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1913 {
1914 	int ret;
1915 
1916 	ret = intel_logical_ring_workarounds_emit(req);
1917 	if (ret)
1918 		return ret;
1919 
1920 	ret = intel_rcs_context_init_mocs(req);
1921 	/*
1922 	 * Failing to program the MOCS is non-fatal.The system will not
1923 	 * run at peak performance. So generate an error and carry on.
1924 	 */
1925 	if (ret)
1926 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1927 
1928 	return intel_lr_context_render_state_init(req);
1929 }
1930 
1931 /**
1932  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1933  *
1934  * @engine: Engine Command Streamer.
1935  *
1936  */
1937 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1938 {
1939 	struct drm_i915_private *dev_priv;
1940 
1941 	if (!intel_engine_initialized(engine))
1942 		return;
1943 
1944 	/*
1945 	 * Tasklet cannot be active at this point due intel_mark_active/idle
1946 	 * so this is just for documentation.
1947 	 */
1948 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1949 		tasklet_kill(&engine->irq_tasklet);
1950 
1951 	dev_priv = engine->i915;
1952 
1953 	if (engine->buffer) {
1954 		intel_logical_ring_stop(engine);
1955 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1956 	}
1957 
1958 	if (engine->cleanup)
1959 		engine->cleanup(engine);
1960 
1961 	i915_cmd_parser_fini_ring(engine);
1962 	i915_gem_batch_pool_fini(&engine->batch_pool);
1963 
1964 	if (engine->status_page.obj) {
1965 		i915_gem_object_unpin_map(engine->status_page.obj);
1966 		engine->status_page.obj = NULL;
1967 	}
1968 	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1969 
1970 	engine->idle_lite_restore_wa = 0;
1971 	engine->disable_lite_restore_wa = false;
1972 	engine->ctx_desc_template = 0;
1973 
1974 	lrc_destroy_wa_ctx_obj(engine);
1975 	engine->i915 = NULL;
1976 }
1977 
1978 static void
1979 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1980 {
1981 	/* Default vfuncs which can be overriden by each engine. */
1982 	engine->init_hw = gen8_init_common_ring;
1983 	engine->emit_request = gen8_emit_request;
1984 	engine->emit_flush = gen8_emit_flush;
1985 	engine->irq_get = gen8_logical_ring_get_irq;
1986 	engine->irq_put = gen8_logical_ring_put_irq;
1987 	engine->emit_bb_start = gen8_emit_bb_start;
1988 	engine->get_seqno = gen8_get_seqno;
1989 	engine->set_seqno = gen8_set_seqno;
1990 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1991 		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1992 		engine->set_seqno = bxt_a_set_seqno;
1993 	}
1994 }
1995 
1996 static inline void
1997 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1998 {
1999 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2000 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2001 	init_waitqueue_head(&engine->irq_queue);
2002 }
2003 
2004 static int
2005 lrc_setup_hws(struct intel_engine_cs *engine,
2006 	      struct drm_i915_gem_object *dctx_obj)
2007 {
2008 	void *hws;
2009 
2010 	/* The HWSP is part of the default context object in LRC mode. */
2011 	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2012 				       LRC_PPHWSP_PN * PAGE_SIZE;
2013 	hws = i915_gem_object_pin_map(dctx_obj);
2014 	if (IS_ERR(hws))
2015 		return PTR_ERR(hws);
2016 	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2017 	engine->status_page.obj = dctx_obj;
2018 
2019 	return 0;
2020 }
2021 
2022 static int
2023 logical_ring_init(struct intel_engine_cs *engine)
2024 {
2025 	struct i915_gem_context *dctx = engine->i915->kernel_context;
2026 	int ret;
2027 
2028 	ret = i915_cmd_parser_init_ring(engine);
2029 	if (ret)
2030 		goto error;
2031 
2032 	ret = execlists_context_deferred_alloc(dctx, engine);
2033 	if (ret)
2034 		goto error;
2035 
2036 	/* As this is the default context, always pin it */
2037 	ret = intel_lr_context_pin(dctx, engine);
2038 	if (ret) {
2039 		DRM_ERROR("Failed to pin context for %s: %d\n",
2040 			  engine->name, ret);
2041 		goto error;
2042 	}
2043 
2044 	/* And setup the hardware status page. */
2045 	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2046 	if (ret) {
2047 		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2048 		goto error;
2049 	}
2050 
2051 	return 0;
2052 
2053 error:
2054 	intel_logical_ring_cleanup(engine);
2055 	return ret;
2056 }
2057 
2058 static int logical_render_ring_init(struct intel_engine_cs *engine)
2059 {
2060 	struct drm_i915_private *dev_priv = engine->i915;
2061 	int ret;
2062 
2063 	if (HAS_L3_DPF(dev_priv))
2064 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2065 
2066 	/* Override some for render ring. */
2067 	if (INTEL_GEN(dev_priv) >= 9)
2068 		engine->init_hw = gen9_init_render_ring;
2069 	else
2070 		engine->init_hw = gen8_init_render_ring;
2071 	engine->init_context = gen8_init_rcs_context;
2072 	engine->cleanup = intel_fini_pipe_control;
2073 	engine->emit_flush = gen8_emit_flush_render;
2074 	engine->emit_request = gen8_emit_request_render;
2075 
2076 	ret = intel_init_pipe_control(engine);
2077 	if (ret)
2078 		return ret;
2079 
2080 	ret = intel_init_workaround_bb(engine);
2081 	if (ret) {
2082 		/*
2083 		 * We continue even if we fail to initialize WA batch
2084 		 * because we only expect rare glitches but nothing
2085 		 * critical to prevent us from using GPU
2086 		 */
2087 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2088 			  ret);
2089 	}
2090 
2091 	ret = logical_ring_init(engine);
2092 	if (ret) {
2093 		lrc_destroy_wa_ctx_obj(engine);
2094 	}
2095 
2096 	return ret;
2097 }
2098 
2099 static const struct logical_ring_info {
2100 	const char *name;
2101 	unsigned exec_id;
2102 	unsigned guc_id;
2103 	u32 mmio_base;
2104 	unsigned irq_shift;
2105 	int (*init)(struct intel_engine_cs *engine);
2106 } logical_rings[] = {
2107 	[RCS] = {
2108 		.name = "render ring",
2109 		.exec_id = I915_EXEC_RENDER,
2110 		.guc_id = GUC_RENDER_ENGINE,
2111 		.mmio_base = RENDER_RING_BASE,
2112 		.irq_shift = GEN8_RCS_IRQ_SHIFT,
2113 		.init = logical_render_ring_init,
2114 	},
2115 	[BCS] = {
2116 		.name = "blitter ring",
2117 		.exec_id = I915_EXEC_BLT,
2118 		.guc_id = GUC_BLITTER_ENGINE,
2119 		.mmio_base = BLT_RING_BASE,
2120 		.irq_shift = GEN8_BCS_IRQ_SHIFT,
2121 		.init = logical_ring_init,
2122 	},
2123 	[VCS] = {
2124 		.name = "bsd ring",
2125 		.exec_id = I915_EXEC_BSD,
2126 		.guc_id = GUC_VIDEO_ENGINE,
2127 		.mmio_base = GEN6_BSD_RING_BASE,
2128 		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
2129 		.init = logical_ring_init,
2130 	},
2131 	[VCS2] = {
2132 		.name = "bsd2 ring",
2133 		.exec_id = I915_EXEC_BSD,
2134 		.guc_id = GUC_VIDEO_ENGINE2,
2135 		.mmio_base = GEN8_BSD2_RING_BASE,
2136 		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
2137 		.init = logical_ring_init,
2138 	},
2139 	[VECS] = {
2140 		.name = "video enhancement ring",
2141 		.exec_id = I915_EXEC_VEBOX,
2142 		.guc_id = GUC_VIDEOENHANCE_ENGINE,
2143 		.mmio_base = VEBOX_RING_BASE,
2144 		.irq_shift = GEN8_VECS_IRQ_SHIFT,
2145 		.init = logical_ring_init,
2146 	},
2147 };
2148 
2149 static struct intel_engine_cs *
2150 logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
2151 {
2152 	const struct logical_ring_info *info = &logical_rings[id];
2153 	struct intel_engine_cs *engine = &dev_priv->engine[id];
2154 	enum forcewake_domains fw_domains;
2155 
2156 	engine->id = id;
2157 	engine->name = info->name;
2158 	engine->exec_id = info->exec_id;
2159 	engine->guc_id = info->guc_id;
2160 	engine->mmio_base = info->mmio_base;
2161 
2162 	engine->i915 = dev_priv;
2163 
2164 	/* Intentionally left blank. */
2165 	engine->buffer = NULL;
2166 
2167 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2168 						    RING_ELSP(engine),
2169 						    FW_REG_WRITE);
2170 
2171 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2172 						     RING_CONTEXT_STATUS_PTR(engine),
2173 						     FW_REG_READ | FW_REG_WRITE);
2174 
2175 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2176 						     RING_CONTEXT_STATUS_BUF_BASE(engine),
2177 						     FW_REG_READ);
2178 
2179 	engine->fw_domains = fw_domains;
2180 
2181 	INIT_LIST_HEAD(&engine->active_list);
2182 	INIT_LIST_HEAD(&engine->request_list);
2183 	INIT_LIST_HEAD(&engine->buffers);
2184 	INIT_LIST_HEAD(&engine->execlist_queue);
2185 	lockinit(&engine->execlist_lock, "i915el", 0, LK_CANRECURSE);
2186 
2187 	tasklet_init(&engine->irq_tasklet,
2188 		     intel_lrc_irq_handler, (unsigned long)engine);
2189 
2190 	logical_ring_init_platform_invariants(engine);
2191 	logical_ring_default_vfuncs(engine);
2192 	logical_ring_default_irqs(engine, info->irq_shift);
2193 
2194 	intel_engine_init_hangcheck(engine);
2195 	i915_gem_batch_pool_init(dev_priv->dev, &engine->batch_pool);
2196 
2197 	return engine;
2198 }
2199 
2200 /**
2201  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2202  * @dev: DRM device.
2203  *
2204  * This function inits the engines for an Execlists submission style (the
2205  * equivalent in the legacy ringbuffer submission world would be
2206  * i915_gem_init_engines). It does it only for those engines that are present in
2207  * the hardware.
2208  *
2209  * Return: non-zero if the initialization failed.
2210  */
2211 int intel_logical_rings_init(struct drm_device *dev)
2212 {
2213 	struct drm_i915_private *dev_priv = dev->dev_private;
2214 	unsigned int mask = 0;
2215 	unsigned int i;
2216 	int ret;
2217 
2218 	WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
2219 		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
2220 
2221 	for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
2222 		if (!HAS_ENGINE(dev_priv, i))
2223 			continue;
2224 
2225 		if (!logical_rings[i].init)
2226 			continue;
2227 
2228 		ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
2229 		if (ret)
2230 			goto cleanup;
2231 
2232 		mask |= ENGINE_MASK(i);
2233 	}
2234 
2235 	/*
2236 	 * Catch failures to update logical_rings table when the new engines
2237 	 * are added to the driver by a warning and disabling the forgotten
2238 	 * engines.
2239 	 */
2240 	if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
2241 		struct intel_device_info *info =
2242 			(struct intel_device_info *)&dev_priv->info;
2243 		info->ring_mask = mask;
2244 	}
2245 
2246 	return 0;
2247 
2248 cleanup:
2249 	for (i = 0; i < I915_NUM_ENGINES; i++)
2250 		intel_logical_ring_cleanup(&dev_priv->engine[i]);
2251 
2252 	return ret;
2253 }
2254 
2255 static u32
2256 make_rpcs(struct drm_i915_private *dev_priv)
2257 {
2258 	u32 rpcs = 0;
2259 
2260 	/*
2261 	 * No explicit RPCS request is needed to ensure full
2262 	 * slice/subslice/EU enablement prior to Gen9.
2263 	*/
2264 	if (INTEL_GEN(dev_priv) < 9)
2265 		return 0;
2266 
2267 	/*
2268 	 * Starting in Gen9, render power gating can leave
2269 	 * slice/subslice/EU in a partially enabled state. We
2270 	 * must make an explicit request through RPCS for full
2271 	 * enablement.
2272 	*/
2273 	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2274 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2275 		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2276 			GEN8_RPCS_S_CNT_SHIFT;
2277 		rpcs |= GEN8_RPCS_ENABLE;
2278 	}
2279 
2280 	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2281 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2282 		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2283 			GEN8_RPCS_SS_CNT_SHIFT;
2284 		rpcs |= GEN8_RPCS_ENABLE;
2285 	}
2286 
2287 	if (INTEL_INFO(dev_priv)->has_eu_pg) {
2288 		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2289 			GEN8_RPCS_EU_MIN_SHIFT;
2290 		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2291 			GEN8_RPCS_EU_MAX_SHIFT;
2292 		rpcs |= GEN8_RPCS_ENABLE;
2293 	}
2294 
2295 	return rpcs;
2296 }
2297 
2298 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2299 {
2300 	u32 indirect_ctx_offset;
2301 
2302 	switch (INTEL_GEN(engine->i915)) {
2303 	default:
2304 		MISSING_CASE(INTEL_GEN(engine->i915));
2305 		/* fall through */
2306 	case 9:
2307 		indirect_ctx_offset =
2308 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2309 		break;
2310 	case 8:
2311 		indirect_ctx_offset =
2312 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2313 		break;
2314 	}
2315 
2316 	return indirect_ctx_offset;
2317 }
2318 
2319 static int
2320 populate_lr_context(struct i915_gem_context *ctx,
2321 		    struct drm_i915_gem_object *ctx_obj,
2322 		    struct intel_engine_cs *engine,
2323 		    struct intel_ringbuffer *ringbuf)
2324 {
2325 	struct drm_i915_private *dev_priv = ctx->i915;
2326 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2327 	void *vaddr;
2328 	u32 *reg_state;
2329 	int ret;
2330 
2331 	if (!ppgtt)
2332 		ppgtt = dev_priv->mm.aliasing_ppgtt;
2333 
2334 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2335 	if (ret) {
2336 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2337 		return ret;
2338 	}
2339 
2340 	vaddr = i915_gem_object_pin_map(ctx_obj);
2341 	if (IS_ERR(vaddr)) {
2342 		ret = PTR_ERR(vaddr);
2343 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2344 		return ret;
2345 	}
2346 	ctx_obj->dirty = true;
2347 
2348 	/* The second page of the context object contains some fields which must
2349 	 * be set up prior to the first execution. */
2350 	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2351 
2352 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2353 	 * commands followed by (reg, value) pairs. The values we are setting here are
2354 	 * only for the first context restore: on a subsequent save, the GPU will
2355 	 * recreate this batchbuffer with new values (including all the missing
2356 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2357 	reg_state[CTX_LRI_HEADER_0] =
2358 		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2359 	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2360 		       RING_CONTEXT_CONTROL(engine),
2361 		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2362 					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2363 					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2364 					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2365 	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2366 		       0);
2367 	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2368 		       0);
2369 	/* Ring buffer start address is not known until the buffer is pinned.
2370 	 * It is written to the context image in execlists_update_context()
2371 	 */
2372 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2373 		       RING_START(engine->mmio_base), 0);
2374 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2375 		       RING_CTL(engine->mmio_base),
2376 		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2377 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2378 		       RING_BBADDR_UDW(engine->mmio_base), 0);
2379 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2380 		       RING_BBADDR(engine->mmio_base), 0);
2381 	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2382 		       RING_BBSTATE(engine->mmio_base),
2383 		       RING_BB_PPGTT);
2384 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2385 		       RING_SBBADDR_UDW(engine->mmio_base), 0);
2386 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2387 		       RING_SBBADDR(engine->mmio_base), 0);
2388 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2389 		       RING_SBBSTATE(engine->mmio_base), 0);
2390 	if (engine->id == RCS) {
2391 		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2392 			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2393 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2394 			       RING_INDIRECT_CTX(engine->mmio_base), 0);
2395 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2396 			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2397 		if (engine->wa_ctx.obj) {
2398 			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2399 			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2400 
2401 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2402 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2403 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2404 
2405 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2406 				intel_lr_indirect_ctx_offset(engine) << 6;
2407 
2408 			reg_state[CTX_BB_PER_CTX_PTR+1] =
2409 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2410 				0x01;
2411 		}
2412 	}
2413 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2414 	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2415 		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2416 	/* PDP values well be assigned later if needed */
2417 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2418 		       0);
2419 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2420 		       0);
2421 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2422 		       0);
2423 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2424 		       0);
2425 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2426 		       0);
2427 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2428 		       0);
2429 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2430 		       0);
2431 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2432 		       0);
2433 
2434 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2435 		/* 64b PPGTT (48bit canonical)
2436 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2437 		 * other PDP Descriptors are ignored.
2438 		 */
2439 		ASSIGN_CTX_PML4(ppgtt, reg_state);
2440 	} else {
2441 		/* 32b PPGTT
2442 		 * PDP*_DESCRIPTOR contains the base address of space supported.
2443 		 * With dynamic page allocation, PDPs may not be allocated at
2444 		 * this point. Point the unallocated PDPs to the scratch page
2445 		 */
2446 		execlists_update_context_pdps(ppgtt, reg_state);
2447 	}
2448 
2449 	if (engine->id == RCS) {
2450 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2451 		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2452 			       make_rpcs(dev_priv));
2453 	}
2454 
2455 	i915_gem_object_unpin_map(ctx_obj);
2456 
2457 	return 0;
2458 }
2459 
2460 /**
2461  * intel_lr_context_size() - return the size of the context for an engine
2462  * @engine: which engine to find the context size for
2463  *
2464  * Each engine may require a different amount of space for a context image,
2465  * so when allocating (or copying) an image, this function can be used to
2466  * find the right size for the specific engine.
2467  *
2468  * Return: size (in bytes) of an engine-specific context image
2469  *
2470  * Note: this size includes the HWSP, which is part of the context image
2471  * in LRC mode, but does not include the "shared data page" used with
2472  * GuC submission. The caller should account for this if using the GuC.
2473  */
2474 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2475 {
2476 	int ret = 0;
2477 
2478 	WARN_ON(INTEL_GEN(engine->i915) < 8);
2479 
2480 	switch (engine->id) {
2481 	case RCS:
2482 		if (INTEL_GEN(engine->i915) >= 9)
2483 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2484 		else
2485 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2486 		break;
2487 	case VCS:
2488 	case BCS:
2489 	case VECS:
2490 	case VCS2:
2491 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2492 		break;
2493 	}
2494 
2495 	return ret;
2496 }
2497 
2498 /**
2499  * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2500  * @ctx: LR context to create.
2501  * @engine: engine to be used with the context.
2502  *
2503  * This function can be called more than once, with different engines, if we plan
2504  * to use the context with them. The context backing objects and the ringbuffers
2505  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2506  * the creation is a deferred call: it's better to make sure first that we need to use
2507  * a given ring with the context.
2508  *
2509  * Return: non-zero on error.
2510  */
2511 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2512 					    struct intel_engine_cs *engine)
2513 {
2514 	struct drm_i915_gem_object *ctx_obj;
2515 	struct intel_context *ce = &ctx->engine[engine->id];
2516 	uint32_t context_size;
2517 	struct intel_ringbuffer *ringbuf;
2518 	int ret;
2519 
2520 	WARN_ON(ce->state);
2521 
2522 	context_size = round_up(intel_lr_context_size(engine), 4096);
2523 
2524 	/* One extra page as the sharing data between driver and GuC */
2525 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2526 
2527 	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2528 	if (IS_ERR(ctx_obj)) {
2529 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2530 		return PTR_ERR(ctx_obj);
2531 	}
2532 
2533 	ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2534 	if (IS_ERR(ringbuf)) {
2535 		ret = PTR_ERR(ringbuf);
2536 		goto error_deref_obj;
2537 	}
2538 
2539 	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2540 	if (ret) {
2541 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2542 		goto error_ringbuf;
2543 	}
2544 
2545 	ce->ringbuf = ringbuf;
2546 	ce->state = ctx_obj;
2547 	ce->initialised = engine->init_context == NULL;
2548 
2549 	return 0;
2550 
2551 error_ringbuf:
2552 	intel_ringbuffer_free(ringbuf);
2553 error_deref_obj:
2554 	drm_gem_object_unreference(&ctx_obj->base);
2555 	ce->ringbuf = NULL;
2556 	ce->state = NULL;
2557 	return ret;
2558 }
2559 
2560 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2561 			    struct i915_gem_context *ctx)
2562 {
2563 	struct intel_engine_cs *engine;
2564 
2565 	for_each_engine(engine, dev_priv) {
2566 		struct intel_context *ce = &ctx->engine[engine->id];
2567 		struct drm_i915_gem_object *ctx_obj = ce->state;
2568 		void *vaddr;
2569 		uint32_t *reg_state;
2570 
2571 		if (!ctx_obj)
2572 			continue;
2573 
2574 		vaddr = i915_gem_object_pin_map(ctx_obj);
2575 		if (WARN_ON(IS_ERR(vaddr)))
2576 			continue;
2577 
2578 		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2579 		ctx_obj->dirty = true;
2580 
2581 		reg_state[CTX_RING_HEAD+1] = 0;
2582 		reg_state[CTX_RING_TAIL+1] = 0;
2583 
2584 		i915_gem_object_unpin_map(ctx_obj);
2585 
2586 		ce->ringbuf->head = 0;
2587 		ce->ringbuf->tail = 0;
2588 	}
2589 }
2590