xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 277350a0)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define CTX_LRI_HEADER_0		0x01
160 #define CTX_CONTEXT_CONTROL		0x02
161 #define CTX_RING_HEAD			0x04
162 #define CTX_RING_TAIL			0x06
163 #define CTX_RING_BUFFER_START		0x08
164 #define CTX_RING_BUFFER_CONTROL		0x0a
165 #define CTX_BB_HEAD_U			0x0c
166 #define CTX_BB_HEAD_L			0x0e
167 #define CTX_BB_STATE			0x10
168 #define CTX_SECOND_BB_HEAD_U		0x12
169 #define CTX_SECOND_BB_HEAD_L		0x14
170 #define CTX_SECOND_BB_STATE		0x16
171 #define CTX_BB_PER_CTX_PTR		0x18
172 #define CTX_RCS_INDIRECT_CTX		0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
174 #define CTX_LRI_HEADER_1		0x21
175 #define CTX_CTX_TIMESTAMP		0x22
176 #define CTX_PDP3_UDW			0x24
177 #define CTX_PDP3_LDW			0x26
178 #define CTX_PDP2_UDW			0x28
179 #define CTX_PDP2_LDW			0x2a
180 #define CTX_PDP1_UDW			0x2c
181 #define CTX_PDP1_LDW			0x2e
182 #define CTX_PDP0_UDW			0x30
183 #define CTX_PDP0_LDW			0x32
184 #define CTX_LRI_HEADER_2		0x41
185 #define CTX_R_PWR_CLK_STATE		0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
187 
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
195 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199 
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
201 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 }
204 
205 enum {
206 	ADVANCED_CONTEXT = 0,
207 	LEGACY_32B_CONTEXT,
208 	ADVANCED_AD_CONTEXT,
209 	LEGACY_64B_CONTEXT
210 };
211 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
212 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
213 		LEGACY_64B_CONTEXT :\
214 		LEGACY_32B_CONTEXT)
215 enum {
216 	FAULT_AND_HANG = 0,
217 	FAULT_AND_HALT, /* Debug only */
218 	FAULT_AND_STREAM,
219 	FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
223 
224 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
225 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
226 		struct drm_i915_gem_object *default_ctx_obj);
227 
228 
229 /**
230  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231  * @dev: DRM device.
232  * @enable_execlists: value of i915.enable_execlists module parameter.
233  *
234  * Only certain platforms support Execlists (the prerequisites being
235  * support for Logical Ring Contexts and Aliasing PPGTT or better).
236  *
237  * Return: 1 if Execlists is supported and has to be enabled.
238  */
239 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
240 {
241 	WARN_ON(i915.enable_ppgtt == -1);
242 
243 	/* On platforms with execlist available, vGPU will only
244 	 * support execlist mode, no ring buffer mode.
245 	 */
246 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
247 		return 1;
248 
249 	if (INTEL_INFO(dev)->gen >= 9)
250 		return 1;
251 
252 	if (enable_execlists == 0)
253 		return 0;
254 
255 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
256 	    i915.use_mmio_flip >= 0)
257 		return 1;
258 
259 	return 0;
260 }
261 
262 /**
263  * intel_execlists_ctx_id() - get the Execlists Context ID
264  * @ctx_obj: Logical Ring Context backing object.
265  *
266  * Do not confuse with ctx->id! Unfortunately we have a name overload
267  * here: the old context ID we pass to userspace as a handler so that
268  * they can refer to a context, and the new context ID we pass to the
269  * ELSP so that the GPU can inform us of the context status via
270  * interrupts.
271  *
272  * Return: 20-bits globally unique context ID.
273  */
274 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
275 {
276 	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
277 			LRC_PPHWSP_PN * PAGE_SIZE;
278 
279 	/* LRCA is required to be 4K aligned so the more significant 20 bits
280 	 * are globally unique */
281 	return lrca >> 12;
282 }
283 
284 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
285 {
286 	struct drm_device *dev = ring->dev;
287 
288 	return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
289 		(IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
290 	       (ring->id == VCS || ring->id == VCS2);
291 }
292 
293 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
294 				     struct intel_engine_cs *ring)
295 {
296 	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
297 	uint64_t desc;
298 	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
299 			LRC_PPHWSP_PN * PAGE_SIZE;
300 
301 	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
302 
303 	desc = GEN8_CTX_VALID;
304 	desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
305 	if (IS_GEN8(ctx_obj->base.dev))
306 		desc |= GEN8_CTX_L3LLC_COHERENT;
307 	desc |= GEN8_CTX_PRIVILEGE;
308 	desc |= lrca;
309 	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
310 
311 	/* TODO: WaDisableLiteRestore when we start using semaphore
312 	 * signalling between Command Streamers */
313 	/* desc |= GEN8_CTX_FORCE_RESTORE; */
314 
315 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
316 	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
317 	if (disable_lite_restore_wa(ring))
318 		desc |= GEN8_CTX_FORCE_RESTORE;
319 
320 	return desc;
321 }
322 
323 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
324 				 struct drm_i915_gem_request *rq1)
325 {
326 
327 	struct intel_engine_cs *ring = rq0->ring;
328 	struct drm_device *dev = ring->dev;
329 	struct drm_i915_private *dev_priv = dev->dev_private;
330 	uint64_t desc[2];
331 
332 	if (rq1) {
333 		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
334 		rq1->elsp_submitted++;
335 	} else {
336 		desc[1] = 0;
337 	}
338 
339 	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
340 	rq0->elsp_submitted++;
341 
342 	/* You must always write both descriptors in the order below. */
343 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
344 	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
345 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
346 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
347 
348 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
349 	/* The context is automatically loaded after the following */
350 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
351 
352 	/* ELSP is a wo register, use another nearby reg for posting */
353 	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
354 	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
355 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
356 }
357 
358 static int execlists_update_context(struct drm_i915_gem_request *rq)
359 {
360 	struct intel_engine_cs *ring = rq->ring;
361 	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
362 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
363 	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
364 	struct vm_page *page;
365 	uint32_t *reg_state;
366 
367 	BUG_ON(!ctx_obj);
368 	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
369 	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
370 
371 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
372 	reg_state = kmap_atomic(page);
373 
374 	reg_state[CTX_RING_TAIL+1] = rq->tail;
375 	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
376 
377 	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
378 		/* True 32b PPGTT with dynamic page allocation: update PDP
379 		 * registers and point the unallocated PDPs to scratch page.
380 		 * PML4 is allocated during ppgtt init, so this is not needed
381 		 * in 48-bit mode.
382 		 */
383 		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
384 		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
385 		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
386 		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
387 	}
388 
389 	kunmap_atomic(reg_state);
390 
391 	return 0;
392 }
393 
394 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
395 				      struct drm_i915_gem_request *rq1)
396 {
397 	execlists_update_context(rq0);
398 
399 	if (rq1)
400 		execlists_update_context(rq1);
401 
402 	execlists_elsp_write(rq0, rq1);
403 }
404 
405 static void execlists_context_unqueue(struct intel_engine_cs *ring)
406 {
407 	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
408 	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
409 
410 	assert_spin_locked(&ring->execlist_lock);
411 
412 	/*
413 	 * If irqs are not active generate a warning as batches that finish
414 	 * without the irqs may get lost and a GPU Hang may occur.
415 	 */
416 	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
417 
418 	if (list_empty(&ring->execlist_queue))
419 		return;
420 
421 	/* Try to read in pairs */
422 	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
423 				 execlist_link) {
424 		if (!req0) {
425 			req0 = cursor;
426 		} else if (req0->ctx == cursor->ctx) {
427 			/* Same ctx: ignore first request, as second request
428 			 * will update tail past first request's workload */
429 			cursor->elsp_submitted = req0->elsp_submitted;
430 			list_del(&req0->execlist_link);
431 			list_add_tail(&req0->execlist_link,
432 				&ring->execlist_retired_req_list);
433 			req0 = cursor;
434 		} else {
435 			req1 = cursor;
436 			break;
437 		}
438 	}
439 
440 	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
441 		/*
442 		 * WaIdleLiteRestore: make sure we never cause a lite
443 		 * restore with HEAD==TAIL
444 		 */
445 		if (req0->elsp_submitted) {
446 			/*
447 			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
448 			 * as we resubmit the request. See gen8_emit_request()
449 			 * for where we prepare the padding after the end of the
450 			 * request.
451 			 */
452 			struct intel_ringbuffer *ringbuf;
453 
454 			ringbuf = req0->ctx->engine[ring->id].ringbuf;
455 			req0->tail += 8;
456 			req0->tail &= ringbuf->size - 1;
457 		}
458 	}
459 
460 	WARN_ON(req1 && req1->elsp_submitted);
461 
462 	execlists_submit_requests(req0, req1);
463 }
464 
465 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
466 					   u32 request_id)
467 {
468 	struct drm_i915_gem_request *head_req;
469 
470 	assert_spin_locked(&ring->execlist_lock);
471 
472 	head_req = list_first_entry_or_null(&ring->execlist_queue,
473 					    struct drm_i915_gem_request,
474 					    execlist_link);
475 
476 	if (head_req != NULL) {
477 		struct drm_i915_gem_object *ctx_obj =
478 				head_req->ctx->engine[ring->id].state;
479 		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
480 			WARN(head_req->elsp_submitted == 0,
481 			     "Never submitted head request\n");
482 
483 			if (--head_req->elsp_submitted <= 0) {
484 				list_del(&head_req->execlist_link);
485 				list_add_tail(&head_req->execlist_link,
486 					&ring->execlist_retired_req_list);
487 				return true;
488 			}
489 		}
490 	}
491 
492 	return false;
493 }
494 
495 /**
496  * intel_lrc_irq_handler() - handle Context Switch interrupts
497  * @ring: Engine Command Streamer to handle.
498  *
499  * Check the unread Context Status Buffers and manage the submission of new
500  * contexts to the ELSP accordingly.
501  */
502 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
503 {
504 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
505 	u32 status_pointer;
506 	u8 read_pointer;
507 	u8 write_pointer;
508 	u32 status = 0;
509 	u32 status_id;
510 	u32 submit_contexts = 0;
511 
512 	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
513 
514 	read_pointer = ring->next_context_status_buffer;
515 	write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
516 	if (read_pointer > write_pointer)
517 		write_pointer += GEN8_CSB_ENTRIES;
518 
519 	lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
520 
521 	while (read_pointer < write_pointer) {
522 		read_pointer++;
523 		status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
524 		status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
525 
526 		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
527 			continue;
528 
529 		if (status & GEN8_CTX_STATUS_PREEMPTED) {
530 			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
531 				if (execlists_check_remove_request(ring, status_id))
532 					WARN(1, "Lite Restored request removed from queue\n");
533 			} else
534 				WARN(1, "Preemption without Lite Restore\n");
535 		}
536 
537 		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
538 		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
539 			if (execlists_check_remove_request(ring, status_id))
540 				submit_contexts++;
541 		}
542 	}
543 
544 	if (disable_lite_restore_wa(ring)) {
545 		/* Prevent a ctx to preempt itself */
546 		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
547 		    (submit_contexts != 0))
548 			execlists_context_unqueue(ring);
549 	} else if (submit_contexts != 0) {
550 		execlists_context_unqueue(ring);
551 	}
552 
553 	lockmgr(&ring->execlist_lock, LK_RELEASE);
554 
555 	WARN(submit_contexts > 2, "More than two context complete events?\n");
556 	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
557 
558 	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
559 		   _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
560 				 ((u32)ring->next_context_status_buffer &
561 				  GEN8_CSB_PTR_MASK) << 8));
562 }
563 
564 static int execlists_context_queue(struct drm_i915_gem_request *request)
565 {
566 	struct intel_engine_cs *ring = request->ring;
567 	struct drm_i915_gem_request *cursor;
568 	int num_elements = 0;
569 
570 	if (request->ctx != ring->default_context)
571 		intel_lr_context_pin(request);
572 
573 	i915_gem_request_reference(request);
574 
575 	spin_lock_irq(&ring->execlist_lock);
576 
577 	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578 		if (++num_elements > 2)
579 			break;
580 
581 	if (num_elements > 2) {
582 		struct drm_i915_gem_request *tail_req;
583 
584 		tail_req = list_last_entry(&ring->execlist_queue,
585 					   struct drm_i915_gem_request,
586 					   execlist_link);
587 
588 		if (request->ctx == tail_req->ctx) {
589 			WARN(tail_req->elsp_submitted != 0,
590 				"More than 2 already-submitted reqs queued\n");
591 			list_del(&tail_req->execlist_link);
592 			list_add_tail(&tail_req->execlist_link,
593 				&ring->execlist_retired_req_list);
594 		}
595 	}
596 
597 	list_add_tail(&request->execlist_link, &ring->execlist_queue);
598 	if (num_elements == 0)
599 		execlists_context_unqueue(ring);
600 
601 	spin_unlock_irq(&ring->execlist_lock);
602 
603 	return 0;
604 }
605 
606 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
607 {
608 	struct intel_engine_cs *ring = req->ring;
609 	uint32_t flush_domains;
610 	int ret;
611 
612 	flush_domains = 0;
613 	if (ring->gpu_caches_dirty)
614 		flush_domains = I915_GEM_GPU_DOMAINS;
615 
616 	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
617 	if (ret)
618 		return ret;
619 
620 	ring->gpu_caches_dirty = false;
621 	return 0;
622 }
623 
624 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
625 				 struct list_head *vmas)
626 {
627 	const unsigned other_rings = ~intel_ring_flag(req->ring);
628 	struct i915_vma *vma;
629 	uint32_t flush_domains = 0;
630 	bool flush_chipset = false;
631 	int ret;
632 
633 	list_for_each_entry(vma, vmas, exec_list) {
634 		struct drm_i915_gem_object *obj = vma->obj;
635 
636 		if (obj->active & other_rings) {
637 			ret = i915_gem_object_sync(obj, req->ring, &req);
638 			if (ret)
639 				return ret;
640 		}
641 
642 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
643 			flush_chipset |= i915_gem_clflush_object(obj, false);
644 
645 		flush_domains |= obj->base.write_domain;
646 	}
647 
648 	if (flush_domains & I915_GEM_DOMAIN_GTT)
649 		wmb();
650 
651 	/* Unconditionally invalidate gpu caches and ensure that we do flush
652 	 * any residual writes from the previous batch.
653 	 */
654 	return logical_ring_invalidate_all_caches(req);
655 }
656 
657 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
658 {
659 	int ret;
660 
661 	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
662 
663 	if (request->ctx != request->ring->default_context) {
664 		ret = intel_lr_context_pin(request);
665 		if (ret)
666 			return ret;
667 	}
668 
669 	return 0;
670 }
671 
672 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
673 				       int bytes)
674 {
675 	struct intel_ringbuffer *ringbuf = req->ringbuf;
676 	struct intel_engine_cs *ring = req->ring;
677 	struct drm_i915_gem_request *target;
678 	unsigned space;
679 	int ret;
680 
681 	if (intel_ring_space(ringbuf) >= bytes)
682 		return 0;
683 
684 	/* The whole point of reserving space is to not wait! */
685 	WARN_ON(ringbuf->reserved_in_use);
686 
687 	list_for_each_entry(target, &ring->request_list, list) {
688 		/*
689 		 * The request queue is per-engine, so can contain requests
690 		 * from multiple ringbuffers. Here, we must ignore any that
691 		 * aren't from the ringbuffer we're considering.
692 		 */
693 		if (target->ringbuf != ringbuf)
694 			continue;
695 
696 		/* Would completion of this request free enough space? */
697 		space = __intel_ring_space(target->postfix, ringbuf->tail,
698 					   ringbuf->size);
699 		if (space >= bytes)
700 			break;
701 	}
702 
703 	if (WARN_ON(&target->list == &ring->request_list))
704 		return -ENOSPC;
705 
706 	ret = i915_wait_request(target);
707 	if (ret)
708 		return ret;
709 
710 	ringbuf->space = space;
711 	return 0;
712 }
713 
714 /*
715  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
716  * @request: Request to advance the logical ringbuffer of.
717  *
718  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
719  * really happens during submission is that the context and current tail will be placed
720  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
721  * point, the tail *inside* the context is updated and the ELSP written to.
722  */
723 static void
724 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
725 {
726 	struct intel_engine_cs *ring = request->ring;
727 
728 	intel_logical_ring_advance(request->ringbuf);
729 
730 	request->tail = request->ringbuf->tail;
731 
732 	if (intel_ring_stopped(ring))
733 		return;
734 
735 #if 0
736 	if (dev_priv->guc.execbuf_client)
737 		i915_guc_submit(dev_priv->guc.execbuf_client, request);
738 	else
739 #endif
740 		execlists_context_queue(request);
741 }
742 
743 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
744 {
745 	uint32_t __iomem *virt;
746 	int rem = ringbuf->size - ringbuf->tail;
747 
748 	virt = (uint32_t *)(ringbuf->virtual_start + ringbuf->tail);
749 	rem /= 4;
750 	while (rem--)
751 		iowrite32(MI_NOOP, virt++);
752 
753 	ringbuf->tail = 0;
754 	intel_ring_update_space(ringbuf);
755 }
756 
757 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
758 {
759 	struct intel_ringbuffer *ringbuf = req->ringbuf;
760 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
761 	int remain_actual = ringbuf->size - ringbuf->tail;
762 	int ret, total_bytes, wait_bytes = 0;
763 	bool need_wrap = false;
764 
765 	if (ringbuf->reserved_in_use)
766 		total_bytes = bytes;
767 	else
768 		total_bytes = bytes + ringbuf->reserved_size;
769 
770 	if (unlikely(bytes > remain_usable)) {
771 		/*
772 		 * Not enough space for the basic request. So need to flush
773 		 * out the remainder and then wait for base + reserved.
774 		 */
775 		wait_bytes = remain_actual + total_bytes;
776 		need_wrap = true;
777 	} else {
778 		if (unlikely(total_bytes > remain_usable)) {
779 			/*
780 			 * The base request will fit but the reserved space
781 			 * falls off the end. So only need to to wait for the
782 			 * reserved size after flushing out the remainder.
783 			 */
784 			wait_bytes = remain_actual + ringbuf->reserved_size;
785 			need_wrap = true;
786 		} else if (total_bytes > ringbuf->space) {
787 			/* No wrapping required, just waiting. */
788 			wait_bytes = total_bytes;
789 		}
790 	}
791 
792 	if (wait_bytes) {
793 		ret = logical_ring_wait_for_space(req, wait_bytes);
794 		if (unlikely(ret))
795 			return ret;
796 
797 		if (need_wrap)
798 			__wrap_ring_buffer(ringbuf);
799 	}
800 
801 	return 0;
802 }
803 
804 /**
805  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
806  *
807  * @req: The request to start some new work for
808  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
809  *
810  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
811  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
812  * and also preallocates a request (every workload submission is still mediated through
813  * requests, same as it did with legacy ringbuffer submission).
814  *
815  * Return: non-zero if the ringbuffer is not ready to be written to.
816  */
817 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
818 {
819 	struct drm_i915_private *dev_priv;
820 	int ret;
821 
822 	WARN_ON(req == NULL);
823 	dev_priv = req->ring->dev->dev_private;
824 
825 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
826 				   dev_priv->mm.interruptible);
827 	if (ret)
828 		return ret;
829 
830 	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
831 	if (ret)
832 		return ret;
833 
834 	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
835 	return 0;
836 }
837 
838 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
839 {
840 	/*
841 	 * The first call merely notes the reserve request and is common for
842 	 * all back ends. The subsequent localised _begin() call actually
843 	 * ensures that the reservation is available. Without the begin, if
844 	 * the request creator immediately submitted the request without
845 	 * adding any commands to it then there might not actually be
846 	 * sufficient room for the submission commands.
847 	 */
848 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
849 
850 	return intel_logical_ring_begin(request, 0);
851 }
852 
853 /**
854  * execlists_submission() - submit a batchbuffer for execution, Execlists style
855  * @dev: DRM device.
856  * @file: DRM file.
857  * @ring: Engine Command Streamer to submit to.
858  * @ctx: Context to employ for this submission.
859  * @args: execbuffer call arguments.
860  * @vmas: list of vmas.
861  * @batch_obj: the batchbuffer to submit.
862  * @exec_start: batchbuffer start virtual address pointer.
863  * @dispatch_flags: translated execbuffer call flags.
864  *
865  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
866  * away the submission details of the execbuffer ioctl call.
867  *
868  * Return: non-zero if the submission fails.
869  */
870 int intel_execlists_submission(struct i915_execbuffer_params *params,
871 			       struct drm_i915_gem_execbuffer2 *args,
872 			       struct list_head *vmas)
873 {
874 	struct drm_device       *dev = params->dev;
875 	struct intel_engine_cs  *ring = params->ring;
876 	struct drm_i915_private *dev_priv = dev->dev_private;
877 	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
878 	u64 exec_start;
879 	int instp_mode;
880 	u32 instp_mask;
881 	int ret;
882 
883 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
884 	instp_mask = I915_EXEC_CONSTANTS_MASK;
885 	switch (instp_mode) {
886 	case I915_EXEC_CONSTANTS_REL_GENERAL:
887 	case I915_EXEC_CONSTANTS_ABSOLUTE:
888 	case I915_EXEC_CONSTANTS_REL_SURFACE:
889 		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
890 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
891 			return -EINVAL;
892 		}
893 
894 		if (instp_mode != dev_priv->relative_constants_mode) {
895 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
896 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
897 				return -EINVAL;
898 			}
899 
900 			/* The HW changed the meaning on this bit on gen6 */
901 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
902 		}
903 		break;
904 	default:
905 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
906 		return -EINVAL;
907 	}
908 
909 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
910 		DRM_DEBUG("sol reset is gen7 only\n");
911 		return -EINVAL;
912 	}
913 
914 	ret = execlists_move_to_gpu(params->request, vmas);
915 	if (ret)
916 		return ret;
917 
918 	if (ring == &dev_priv->ring[RCS] &&
919 	    instp_mode != dev_priv->relative_constants_mode) {
920 		ret = intel_logical_ring_begin(params->request, 4);
921 		if (ret)
922 			return ret;
923 
924 		intel_logical_ring_emit(ringbuf, MI_NOOP);
925 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
926 		intel_logical_ring_emit(ringbuf, INSTPM);
927 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
928 		intel_logical_ring_advance(ringbuf);
929 
930 		dev_priv->relative_constants_mode = instp_mode;
931 	}
932 
933 	exec_start = params->batch_obj_vm_offset +
934 		     args->batch_start_offset;
935 
936 	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
937 	if (ret)
938 		return ret;
939 
940 	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
941 
942 	i915_gem_execbuffer_move_to_active(vmas, params->request);
943 	i915_gem_execbuffer_retire_commands(params);
944 
945 	return 0;
946 }
947 
948 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
949 {
950 	struct drm_i915_gem_request *req, *tmp;
951 	struct list_head retired_list;
952 
953 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
954 	if (list_empty(&ring->execlist_retired_req_list))
955 		return;
956 
957 	INIT_LIST_HEAD(&retired_list);
958 	spin_lock_irq(&ring->execlist_lock);
959 	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
960 	spin_unlock_irq(&ring->execlist_lock);
961 
962 	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
963 		struct intel_context *ctx = req->ctx;
964 		struct drm_i915_gem_object *ctx_obj =
965 				ctx->engine[ring->id].state;
966 
967 		if (ctx_obj && (ctx != ring->default_context))
968 			intel_lr_context_unpin(req);
969 		list_del(&req->execlist_link);
970 		i915_gem_request_unreference(req);
971 	}
972 }
973 
974 void intel_logical_ring_stop(struct intel_engine_cs *ring)
975 {
976 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
977 	int ret;
978 
979 	if (!intel_ring_initialized(ring))
980 		return;
981 
982 	ret = intel_ring_idle(ring);
983 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
984 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
985 			  ring->name, ret);
986 
987 	/* TODO: Is this correct with Execlists enabled? */
988 	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
989 	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
990 		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
991 		return;
992 	}
993 	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
994 }
995 
996 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
997 {
998 	struct intel_engine_cs *ring = req->ring;
999 	int ret;
1000 
1001 	if (!ring->gpu_caches_dirty)
1002 		return 0;
1003 
1004 	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1005 	if (ret)
1006 		return ret;
1007 
1008 	ring->gpu_caches_dirty = false;
1009 	return 0;
1010 }
1011 
1012 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1013 		struct drm_i915_gem_object *ctx_obj,
1014 		struct intel_ringbuffer *ringbuf)
1015 {
1016 	struct drm_device *dev = ring->dev;
1017 	struct drm_i915_private *dev_priv = dev->dev_private;
1018 	int ret = 0;
1019 
1020 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1021 	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1022 			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1023 	if (ret)
1024 		return ret;
1025 
1026 	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1027 	if (ret)
1028 		goto unpin_ctx_obj;
1029 
1030 	ctx_obj->dirty = true;
1031 
1032 	/* Invalidate GuC TLB. */
1033 	if (i915.enable_guc_submission)
1034 		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1035 
1036 	return ret;
1037 
1038 unpin_ctx_obj:
1039 	i915_gem_object_ggtt_unpin(ctx_obj);
1040 
1041 	return ret;
1042 }
1043 
1044 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1045 {
1046 	int ret = 0;
1047 	struct intel_engine_cs *ring = rq->ring;
1048 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1049 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1050 
1051 	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1052 		ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1053 		if (ret)
1054 			goto reset_pin_count;
1055 	}
1056 	return ret;
1057 
1058 reset_pin_count:
1059 	rq->ctx->engine[ring->id].pin_count = 0;
1060 	return ret;
1061 }
1062 
1063 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1064 {
1065 	struct intel_engine_cs *ring = rq->ring;
1066 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1067 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1068 
1069 	if (ctx_obj) {
1070 		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1071 		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1072 			intel_unpin_ringbuffer_obj(ringbuf);
1073 			i915_gem_object_ggtt_unpin(ctx_obj);
1074 		}
1075 	}
1076 }
1077 
1078 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1079 {
1080 	int ret, i;
1081 	struct intel_engine_cs *ring = req->ring;
1082 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1083 	struct drm_device *dev = ring->dev;
1084 	struct drm_i915_private *dev_priv = dev->dev_private;
1085 	struct i915_workarounds *w = &dev_priv->workarounds;
1086 
1087 	if (WARN_ON_ONCE(w->count == 0))
1088 		return 0;
1089 
1090 	ring->gpu_caches_dirty = true;
1091 	ret = logical_ring_flush_all_caches(req);
1092 	if (ret)
1093 		return ret;
1094 
1095 	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1096 	if (ret)
1097 		return ret;
1098 
1099 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1100 	for (i = 0; i < w->count; i++) {
1101 		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1102 		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1103 	}
1104 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1105 
1106 	intel_logical_ring_advance(ringbuf);
1107 
1108 	ring->gpu_caches_dirty = true;
1109 	ret = logical_ring_flush_all_caches(req);
1110 	if (ret)
1111 		return ret;
1112 
1113 	return 0;
1114 }
1115 
1116 #define wa_ctx_emit(batch, index, cmd)					\
1117 	do {								\
1118 		int __index = (index)++;				\
1119 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1120 			return -ENOSPC;					\
1121 		}							\
1122 		batch[__index] = (cmd);					\
1123 	} while (0)
1124 
1125 
1126 /*
1127  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1128  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1129  * but there is a slight complication as this is applied in WA batch where the
1130  * values are only initialized once so we cannot take register value at the
1131  * beginning and reuse it further; hence we save its value to memory, upload a
1132  * constant value with bit21 set and then we restore it back with the saved value.
1133  * To simplify the WA, a constant value is formed by using the default value
1134  * of this register. This shouldn't be a problem because we are only modifying
1135  * it for a short period and this batch in non-premptible. We can ofcourse
1136  * use additional instructions that read the actual value of the register
1137  * at that time and set our bit of interest but it makes the WA complicated.
1138  *
1139  * This WA is also required for Gen9 so extracting as a function avoids
1140  * code duplication.
1141  */
1142 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1143 						uint32_t *const batch,
1144 						uint32_t index)
1145 {
1146 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1147 
1148 	/*
1149 	 * WaDisableLSQCROPERFforOCL:skl
1150 	 * This WA is implemented in skl_init_clock_gating() but since
1151 	 * this batch updates GEN8_L3SQCREG4 with default value we need to
1152 	 * set this bit here to retain the WA during flush.
1153 	 */
1154 	if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1155 		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1156 
1157 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1158 				   MI_SRM_LRM_GLOBAL_GTT));
1159 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1160 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1161 	wa_ctx_emit(batch, index, 0);
1162 
1163 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1164 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1165 	wa_ctx_emit(batch, index, l3sqc4_flush);
1166 
1167 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1168 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1169 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
1170 	wa_ctx_emit(batch, index, 0);
1171 	wa_ctx_emit(batch, index, 0);
1172 	wa_ctx_emit(batch, index, 0);
1173 	wa_ctx_emit(batch, index, 0);
1174 
1175 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1176 				   MI_SRM_LRM_GLOBAL_GTT));
1177 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1178 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1179 	wa_ctx_emit(batch, index, 0);
1180 
1181 	return index;
1182 }
1183 
1184 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1185 				    uint32_t offset,
1186 				    uint32_t start_alignment)
1187 {
1188 	return wa_ctx->offset = ALIGN(offset, start_alignment);
1189 }
1190 
1191 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1192 			     uint32_t offset,
1193 			     uint32_t size_alignment)
1194 {
1195 	wa_ctx->size = offset - wa_ctx->offset;
1196 
1197 	WARN(wa_ctx->size % size_alignment,
1198 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1199 	     wa_ctx->size, size_alignment);
1200 	return 0;
1201 }
1202 
1203 /**
1204  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1205  *
1206  * @ring: only applicable for RCS
1207  * @wa_ctx: structure representing wa_ctx
1208  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1209  *    with the offset value received as input.
1210  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1211  * @batch: page in which WA are loaded
1212  * @offset: This field specifies the start of the batch, it should be
1213  *  cache-aligned otherwise it is adjusted accordingly.
1214  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1215  *  initialized at the beginning and shared across all contexts but this field
1216  *  helps us to have multiple batches at different offsets and select them based
1217  *  on a criteria. At the moment this batch always start at the beginning of the page
1218  *  and at this point we don't have multiple wa_ctx batch buffers.
1219  *
1220  *  The number of WA applied are not known at the beginning; we use this field
1221  *  to return the no of DWORDS written.
1222  *
1223  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1224  *  so it adds NOOPs as padding to make it cacheline aligned.
1225  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1226  *  makes a complete batch buffer.
1227  *
1228  * Return: non-zero if we exceed the PAGE_SIZE limit.
1229  */
1230 
1231 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1232 				    struct i915_wa_ctx_bb *wa_ctx,
1233 				    uint32_t *const batch,
1234 				    uint32_t *offset)
1235 {
1236 	uint32_t scratch_addr;
1237 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1238 
1239 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1240 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1241 
1242 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1243 	if (IS_BROADWELL(ring->dev)) {
1244 		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1245 		if (rc < 0)
1246 			return rc;
1247 		index = rc;
1248 	}
1249 
1250 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1251 	/* Actual scratch location is at 128 bytes offset */
1252 	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1253 
1254 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1255 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1256 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1257 				   PIPE_CONTROL_CS_STALL |
1258 				   PIPE_CONTROL_QW_WRITE));
1259 	wa_ctx_emit(batch, index, scratch_addr);
1260 	wa_ctx_emit(batch, index, 0);
1261 	wa_ctx_emit(batch, index, 0);
1262 	wa_ctx_emit(batch, index, 0);
1263 
1264 	/* Pad to end of cacheline */
1265 	while (index % CACHELINE_DWORDS)
1266 		wa_ctx_emit(batch, index, MI_NOOP);
1267 
1268 	/*
1269 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1270 	 * execution depends on the length specified in terms of cache lines
1271 	 * in the register CTX_RCS_INDIRECT_CTX
1272 	 */
1273 
1274 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1275 }
1276 
1277 /**
1278  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1279  *
1280  * @ring: only applicable for RCS
1281  * @wa_ctx: structure representing wa_ctx
1282  *  offset: specifies start of the batch, should be cache-aligned.
1283  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1284  * @batch: page in which WA are loaded
1285  * @offset: This field specifies the start of this batch.
1286  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1287  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1288  *
1289  *   The number of DWORDS written are returned using this field.
1290  *
1291  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1292  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1293  */
1294 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1295 			       struct i915_wa_ctx_bb *wa_ctx,
1296 			       uint32_t *const batch,
1297 			       uint32_t *offset)
1298 {
1299 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1300 
1301 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1302 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1303 
1304 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1305 
1306 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1307 }
1308 
1309 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1310 				    struct i915_wa_ctx_bb *wa_ctx,
1311 				    uint32_t *const batch,
1312 				    uint32_t *offset)
1313 {
1314 	int ret;
1315 	struct drm_device *dev = ring->dev;
1316 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1317 
1318 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1319 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1320 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1321 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1322 
1323 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1324 	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1325 	if (ret < 0)
1326 		return ret;
1327 	index = ret;
1328 
1329 	/* Pad to end of cacheline */
1330 	while (index % CACHELINE_DWORDS)
1331 		wa_ctx_emit(batch, index, MI_NOOP);
1332 
1333 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1334 }
1335 
1336 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1337 			       struct i915_wa_ctx_bb *wa_ctx,
1338 			       uint32_t *const batch,
1339 			       uint32_t *offset)
1340 {
1341 	struct drm_device *dev = ring->dev;
1342 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1343 
1344 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1345 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1346 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1347 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1348 		wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1349 		wa_ctx_emit(batch, index,
1350 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1351 		wa_ctx_emit(batch, index, MI_NOOP);
1352 	}
1353 
1354 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1355 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1356 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1357 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1358 
1359 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1360 
1361 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1362 }
1363 
1364 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1365 {
1366 	int ret;
1367 
1368 	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1369 	if (!ring->wa_ctx.obj) {
1370 		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1371 		return -ENOMEM;
1372 	}
1373 
1374 	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1375 	if (ret) {
1376 		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1377 				 ret);
1378 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1379 		return ret;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1386 {
1387 	if (ring->wa_ctx.obj) {
1388 		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1389 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1390 		ring->wa_ctx.obj = NULL;
1391 	}
1392 }
1393 
1394 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1395 {
1396 	int ret;
1397 	uint32_t *batch;
1398 	uint32_t offset;
1399 	struct vm_page *page;
1400 	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1401 
1402 	WARN_ON(ring->id != RCS);
1403 
1404 	/* update this when WA for higher Gen are added */
1405 	if (INTEL_INFO(ring->dev)->gen > 9) {
1406 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1407 			  INTEL_INFO(ring->dev)->gen);
1408 		return 0;
1409 	}
1410 
1411 	/* some WA perform writes to scratch page, ensure it is valid */
1412 	if (ring->scratch.obj == NULL) {
1413 		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1414 		return -EINVAL;
1415 	}
1416 
1417 	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1418 	if (ret) {
1419 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1420 		return ret;
1421 	}
1422 
1423 	page = i915_gem_object_get_page(wa_ctx->obj, 0);
1424 	batch = kmap_atomic(page);
1425 	offset = 0;
1426 
1427 	if (INTEL_INFO(ring->dev)->gen == 8) {
1428 		ret = gen8_init_indirectctx_bb(ring,
1429 					       &wa_ctx->indirect_ctx,
1430 					       batch,
1431 					       &offset);
1432 		if (ret)
1433 			goto out;
1434 
1435 		ret = gen8_init_perctx_bb(ring,
1436 					  &wa_ctx->per_ctx,
1437 					  batch,
1438 					  &offset);
1439 		if (ret)
1440 			goto out;
1441 	} else if (INTEL_INFO(ring->dev)->gen == 9) {
1442 		ret = gen9_init_indirectctx_bb(ring,
1443 					       &wa_ctx->indirect_ctx,
1444 					       batch,
1445 					       &offset);
1446 		if (ret)
1447 			goto out;
1448 
1449 		ret = gen9_init_perctx_bb(ring,
1450 					  &wa_ctx->per_ctx,
1451 					  batch,
1452 					  &offset);
1453 		if (ret)
1454 			goto out;
1455 	}
1456 
1457 out:
1458 	kunmap_atomic(batch);
1459 	if (ret)
1460 		lrc_destroy_wa_ctx_obj(ring);
1461 
1462 	return ret;
1463 }
1464 
1465 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1466 {
1467 	struct drm_device *dev = ring->dev;
1468 	struct drm_i915_private *dev_priv = dev->dev_private;
1469 	u8 next_context_status_buffer_hw;
1470 
1471 	lrc_setup_hardware_status_page(ring,
1472 				ring->default_context->engine[ring->id].state);
1473 
1474 	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1475 	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1476 
1477 	if (ring->status_page.obj) {
1478 		I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1479 			   (u32)ring->status_page.gfx_addr);
1480 		POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1481 	}
1482 
1483 	I915_WRITE(RING_MODE_GEN7(ring),
1484 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1485 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1486 	POSTING_READ(RING_MODE_GEN7(ring));
1487 
1488 	/*
1489 	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1490 	 * zero, we need to read the write pointer from hardware and use its
1491 	 * value because "this register is power context save restored".
1492 	 * Effectively, these states have been observed:
1493 	 *
1494 	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1495 	 * BDW  | CSB regs not reset       | CSB regs reset       |
1496 	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1497 	 */
1498 	next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1499 						   & GEN8_CSB_PTR_MASK);
1500 
1501 	/*
1502 	 * When the CSB registers are reset (also after power-up / gpu reset),
1503 	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1504 	 * this special case, so the first element read is CSB[0].
1505 	 */
1506 	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1507 		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1508 
1509 	ring->next_context_status_buffer = next_context_status_buffer_hw;
1510 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1511 
1512 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1513 
1514 	return 0;
1515 }
1516 
1517 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1518 {
1519 	struct drm_device *dev = ring->dev;
1520 	struct drm_i915_private *dev_priv = dev->dev_private;
1521 	int ret;
1522 
1523 	ret = gen8_init_common_ring(ring);
1524 	if (ret)
1525 		return ret;
1526 
1527 	/* We need to disable the AsyncFlip performance optimisations in order
1528 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1529 	 * programmed to '1' on all products.
1530 	 *
1531 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1532 	 */
1533 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1534 
1535 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1536 
1537 	return init_workarounds_ring(ring);
1538 }
1539 
1540 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1541 {
1542 	int ret;
1543 
1544 	ret = gen8_init_common_ring(ring);
1545 	if (ret)
1546 		return ret;
1547 
1548 	return init_workarounds_ring(ring);
1549 }
1550 
1551 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1552 {
1553 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1554 	struct intel_engine_cs *ring = req->ring;
1555 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1556 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1557 	int i, ret;
1558 
1559 	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1560 	if (ret)
1561 		return ret;
1562 
1563 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1564 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1565 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1566 
1567 		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1568 		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1569 		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1570 		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1571 	}
1572 
1573 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1574 	intel_logical_ring_advance(ringbuf);
1575 
1576 	return 0;
1577 }
1578 
1579 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1580 			      u64 offset, unsigned dispatch_flags)
1581 {
1582 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1583 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1584 	int ret;
1585 
1586 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1587 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1588 	 * but we can't. Force Restore would be a second option, but
1589 	 * it is unsafe in case of lite-restore (because the ctx is
1590 	 * not idle). PML4 is allocated during ppgtt init so this is
1591 	 * not needed in 48-bit.*/
1592 	if (req->ctx->ppgtt &&
1593 	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1594 		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1595 		    !intel_vgpu_active(req->i915->dev)) {
1596 			ret = intel_logical_ring_emit_pdps(req);
1597 			if (ret)
1598 				return ret;
1599 		}
1600 
1601 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1602 	}
1603 
1604 	ret = intel_logical_ring_begin(req, 4);
1605 	if (ret)
1606 		return ret;
1607 
1608 	/* FIXME(BDW): Address space and security selectors. */
1609 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1610 				(ppgtt<<8) |
1611 				(dispatch_flags & I915_DISPATCH_RS ?
1612 				 MI_BATCH_RESOURCE_STREAMER : 0));
1613 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1614 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1615 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1616 	intel_logical_ring_advance(ringbuf);
1617 
1618 	return 0;
1619 }
1620 
1621 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1622 {
1623 	struct drm_device *dev = ring->dev;
1624 	struct drm_i915_private *dev_priv = dev->dev_private;
1625 	unsigned long flags;
1626 
1627 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1628 		return false;
1629 
1630 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1631 	if (ring->irq_refcount++ == 0) {
1632 		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1633 		POSTING_READ(RING_IMR(ring->mmio_base));
1634 	}
1635 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1636 
1637 	return true;
1638 }
1639 
1640 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1641 {
1642 	struct drm_device *dev = ring->dev;
1643 	struct drm_i915_private *dev_priv = dev->dev_private;
1644 	unsigned long flags;
1645 
1646 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1647 	if (--ring->irq_refcount == 0) {
1648 		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1649 		POSTING_READ(RING_IMR(ring->mmio_base));
1650 	}
1651 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1652 }
1653 
1654 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1655 			   u32 invalidate_domains,
1656 			   u32 unused)
1657 {
1658 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1659 	struct intel_engine_cs *ring = ringbuf->ring;
1660 	struct drm_device *dev = ring->dev;
1661 	struct drm_i915_private *dev_priv = dev->dev_private;
1662 	uint32_t cmd;
1663 	int ret;
1664 
1665 	ret = intel_logical_ring_begin(request, 4);
1666 	if (ret)
1667 		return ret;
1668 
1669 	cmd = MI_FLUSH_DW + 1;
1670 
1671 	/* We always require a command barrier so that subsequent
1672 	 * commands, such as breadcrumb interrupts, are strictly ordered
1673 	 * wrt the contents of the write cache being flushed to memory
1674 	 * (and thus being coherent from the CPU).
1675 	 */
1676 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1677 
1678 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1679 		cmd |= MI_INVALIDATE_TLB;
1680 		if (ring == &dev_priv->ring[VCS])
1681 			cmd |= MI_INVALIDATE_BSD;
1682 	}
1683 
1684 	intel_logical_ring_emit(ringbuf, cmd);
1685 	intel_logical_ring_emit(ringbuf,
1686 				I915_GEM_HWS_SCRATCH_ADDR |
1687 				MI_FLUSH_DW_USE_GTT);
1688 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1689 	intel_logical_ring_emit(ringbuf, 0); /* value */
1690 	intel_logical_ring_advance(ringbuf);
1691 
1692 	return 0;
1693 }
1694 
1695 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1696 				  u32 invalidate_domains,
1697 				  u32 flush_domains)
1698 {
1699 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1700 	struct intel_engine_cs *ring = ringbuf->ring;
1701 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1702 	bool vf_flush_wa;
1703 	u32 flags = 0;
1704 	int ret;
1705 
1706 	flags |= PIPE_CONTROL_CS_STALL;
1707 
1708 	if (flush_domains) {
1709 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1710 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1711 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1712 	}
1713 
1714 	if (invalidate_domains) {
1715 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1716 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1717 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1718 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1719 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1720 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1721 		flags |= PIPE_CONTROL_QW_WRITE;
1722 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1723 	}
1724 
1725 	/*
1726 	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1727 	 * control.
1728 	 */
1729 	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1730 		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1731 
1732 	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1733 	if (ret)
1734 		return ret;
1735 
1736 	if (vf_flush_wa) {
1737 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1738 		intel_logical_ring_emit(ringbuf, 0);
1739 		intel_logical_ring_emit(ringbuf, 0);
1740 		intel_logical_ring_emit(ringbuf, 0);
1741 		intel_logical_ring_emit(ringbuf, 0);
1742 		intel_logical_ring_emit(ringbuf, 0);
1743 	}
1744 
1745 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746 	intel_logical_ring_emit(ringbuf, flags);
1747 	intel_logical_ring_emit(ringbuf, scratch_addr);
1748 	intel_logical_ring_emit(ringbuf, 0);
1749 	intel_logical_ring_emit(ringbuf, 0);
1750 	intel_logical_ring_emit(ringbuf, 0);
1751 	intel_logical_ring_advance(ringbuf);
1752 
1753 	return 0;
1754 }
1755 
1756 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1757 {
1758 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1759 }
1760 
1761 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1762 {
1763 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1764 }
1765 
1766 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1767 {
1768 
1769 	/*
1770 	 * On BXT A steppings there is a HW coherency issue whereby the
1771 	 * MI_STORE_DATA_IMM storing the completed request's seqno
1772 	 * occasionally doesn't invalidate the CPU cache. Work around this by
1773 	 * clflushing the corresponding cacheline whenever the caller wants
1774 	 * the coherency to be guaranteed. Note that this cacheline is known
1775 	 * to be clean at this point, since we only write it in
1776 	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1777 	 * this clflush in practice becomes an invalidate operation.
1778 	 */
1779 
1780 	if (!lazy_coherency)
1781 		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1782 
1783 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1784 }
1785 
1786 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1787 {
1788 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1789 
1790 	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1791 	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1792 }
1793 
1794 static int gen8_emit_request(struct drm_i915_gem_request *request)
1795 {
1796 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1797 	struct intel_engine_cs *ring = ringbuf->ring;
1798 	u32 cmd;
1799 	int ret;
1800 
1801 	/*
1802 	 * Reserve space for 2 NOOPs at the end of each request to be
1803 	 * used as a workaround for not being allowed to do lite
1804 	 * restore with HEAD==TAIL (WaIdleLiteRestore).
1805 	 */
1806 	ret = intel_logical_ring_begin(request, 8);
1807 	if (ret)
1808 		return ret;
1809 
1810 	cmd = MI_STORE_DWORD_IMM_GEN4;
1811 	cmd |= MI_GLOBAL_GTT;
1812 
1813 	intel_logical_ring_emit(ringbuf, cmd);
1814 	intel_logical_ring_emit(ringbuf,
1815 				(ring->status_page.gfx_addr +
1816 				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1817 	intel_logical_ring_emit(ringbuf, 0);
1818 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1819 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1820 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1821 	intel_logical_ring_advance_and_submit(request);
1822 
1823 	/*
1824 	 * Here we add two extra NOOPs as padding to avoid
1825 	 * lite restore of a context with HEAD==TAIL.
1826 	 */
1827 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1828 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1829 	intel_logical_ring_advance(ringbuf);
1830 
1831 	return 0;
1832 }
1833 
1834 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1835 {
1836 	struct render_state so;
1837 	int ret;
1838 
1839 	ret = i915_gem_render_state_prepare(req->ring, &so);
1840 	if (ret)
1841 		return ret;
1842 
1843 	if (so.rodata == NULL)
1844 		return 0;
1845 
1846 	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1847 				       I915_DISPATCH_SECURE);
1848 	if (ret)
1849 		goto out;
1850 
1851 	ret = req->ring->emit_bb_start(req,
1852 				       (so.ggtt_offset + so.aux_batch_offset),
1853 				       I915_DISPATCH_SECURE);
1854 	if (ret)
1855 		goto out;
1856 
1857 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1858 
1859 out:
1860 	i915_gem_render_state_fini(&so);
1861 	return ret;
1862 }
1863 
1864 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1865 {
1866 	int ret;
1867 
1868 	ret = intel_logical_ring_workarounds_emit(req);
1869 	if (ret)
1870 		return ret;
1871 
1872 	ret = intel_rcs_context_init_mocs(req);
1873 	/*
1874 	 * Failing to program the MOCS is non-fatal.The system will not
1875 	 * run at peak performance. So generate an error and carry on.
1876 	 */
1877 	if (ret)
1878 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1879 
1880 	return intel_lr_context_render_state_init(req);
1881 }
1882 
1883 /**
1884  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1885  *
1886  * @ring: Engine Command Streamer.
1887  *
1888  */
1889 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1890 {
1891 	struct drm_i915_private *dev_priv;
1892 
1893 	if (!intel_ring_initialized(ring))
1894 		return;
1895 
1896 	dev_priv = ring->dev->dev_private;
1897 
1898 	intel_logical_ring_stop(ring);
1899 	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1900 
1901 	if (ring->cleanup)
1902 		ring->cleanup(ring);
1903 
1904 	i915_cmd_parser_fini_ring(ring);
1905 	i915_gem_batch_pool_fini(&ring->batch_pool);
1906 
1907 	if (ring->status_page.obj) {
1908 		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1909 		ring->status_page.obj = NULL;
1910 	}
1911 
1912 	lrc_destroy_wa_ctx_obj(ring);
1913 }
1914 
1915 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1916 {
1917 	int ret;
1918 
1919 	/* Intentionally left blank. */
1920 	ring->buffer = NULL;
1921 
1922 	ring->dev = dev;
1923 	INIT_LIST_HEAD(&ring->active_list);
1924 	INIT_LIST_HEAD(&ring->request_list);
1925 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1926 	init_waitqueue_head(&ring->irq_queue);
1927 
1928 	INIT_LIST_HEAD(&ring->execlist_queue);
1929 	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1930 	lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1931 
1932 	ret = i915_cmd_parser_init_ring(ring);
1933 	if (ret)
1934 		return ret;
1935 
1936 	ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1937 	if (ret)
1938 		return ret;
1939 
1940 	/* As this is the default context, always pin it */
1941 	ret = intel_lr_context_do_pin(
1942 			ring,
1943 			ring->default_context->engine[ring->id].state,
1944 			ring->default_context->engine[ring->id].ringbuf);
1945 	if (ret) {
1946 		DRM_ERROR(
1947 			"Failed to pin and map ringbuffer %s: %d\n",
1948 			ring->name, ret);
1949 		return ret;
1950 	}
1951 
1952 	return ret;
1953 }
1954 
1955 static int logical_render_ring_init(struct drm_device *dev)
1956 {
1957 	struct drm_i915_private *dev_priv = dev->dev_private;
1958 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1959 	int ret;
1960 
1961 	ring->name = "render ring";
1962 	ring->id = RCS;
1963 	ring->mmio_base = RENDER_RING_BASE;
1964 	ring->irq_enable_mask =
1965 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1966 	ring->irq_keep_mask =
1967 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1968 	if (HAS_L3_DPF(dev))
1969 		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1970 
1971 	if (INTEL_INFO(dev)->gen >= 9)
1972 		ring->init_hw = gen9_init_render_ring;
1973 	else
1974 		ring->init_hw = gen8_init_render_ring;
1975 	ring->init_context = gen8_init_rcs_context;
1976 	ring->cleanup = intel_fini_pipe_control;
1977 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1978 		ring->get_seqno = bxt_a_get_seqno;
1979 		ring->set_seqno = bxt_a_set_seqno;
1980 	} else {
1981 		ring->get_seqno = gen8_get_seqno;
1982 		ring->set_seqno = gen8_set_seqno;
1983 	}
1984 	ring->emit_request = gen8_emit_request;
1985 	ring->emit_flush = gen8_emit_flush_render;
1986 	ring->irq_get = gen8_logical_ring_get_irq;
1987 	ring->irq_put = gen8_logical_ring_put_irq;
1988 	ring->emit_bb_start = gen8_emit_bb_start;
1989 
1990 	ring->dev = dev;
1991 
1992 	ret = intel_init_pipe_control(ring);
1993 	if (ret)
1994 		return ret;
1995 
1996 	ret = intel_init_workaround_bb(ring);
1997 	if (ret) {
1998 		/*
1999 		 * We continue even if we fail to initialize WA batch
2000 		 * because we only expect rare glitches but nothing
2001 		 * critical to prevent us from using GPU
2002 		 */
2003 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2004 			  ret);
2005 	}
2006 
2007 	ret = logical_ring_init(dev, ring);
2008 	if (ret) {
2009 		lrc_destroy_wa_ctx_obj(ring);
2010 	}
2011 
2012 	return ret;
2013 }
2014 
2015 static int logical_bsd_ring_init(struct drm_device *dev)
2016 {
2017 	struct drm_i915_private *dev_priv = dev->dev_private;
2018 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2019 
2020 	ring->name = "bsd ring";
2021 	ring->id = VCS;
2022 	ring->mmio_base = GEN6_BSD_RING_BASE;
2023 	ring->irq_enable_mask =
2024 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2025 	ring->irq_keep_mask =
2026 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2027 
2028 	ring->init_hw = gen8_init_common_ring;
2029 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2030 		ring->get_seqno = bxt_a_get_seqno;
2031 		ring->set_seqno = bxt_a_set_seqno;
2032 	} else {
2033 		ring->get_seqno = gen8_get_seqno;
2034 		ring->set_seqno = gen8_set_seqno;
2035 	}
2036 	ring->emit_request = gen8_emit_request;
2037 	ring->emit_flush = gen8_emit_flush;
2038 	ring->irq_get = gen8_logical_ring_get_irq;
2039 	ring->irq_put = gen8_logical_ring_put_irq;
2040 	ring->emit_bb_start = gen8_emit_bb_start;
2041 
2042 	return logical_ring_init(dev, ring);
2043 }
2044 
2045 static int logical_bsd2_ring_init(struct drm_device *dev)
2046 {
2047 	struct drm_i915_private *dev_priv = dev->dev_private;
2048 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2049 
2050 	ring->name = "bds2 ring";
2051 	ring->id = VCS2;
2052 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2053 	ring->irq_enable_mask =
2054 		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2055 	ring->irq_keep_mask =
2056 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2057 
2058 	ring->init_hw = gen8_init_common_ring;
2059 	ring->get_seqno = gen8_get_seqno;
2060 	ring->set_seqno = gen8_set_seqno;
2061 	ring->emit_request = gen8_emit_request;
2062 	ring->emit_flush = gen8_emit_flush;
2063 	ring->irq_get = gen8_logical_ring_get_irq;
2064 	ring->irq_put = gen8_logical_ring_put_irq;
2065 	ring->emit_bb_start = gen8_emit_bb_start;
2066 
2067 	return logical_ring_init(dev, ring);
2068 }
2069 
2070 static int logical_blt_ring_init(struct drm_device *dev)
2071 {
2072 	struct drm_i915_private *dev_priv = dev->dev_private;
2073 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2074 
2075 	ring->name = "blitter ring";
2076 	ring->id = BCS;
2077 	ring->mmio_base = BLT_RING_BASE;
2078 	ring->irq_enable_mask =
2079 		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2080 	ring->irq_keep_mask =
2081 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2082 
2083 	ring->init_hw = gen8_init_common_ring;
2084 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2085 		ring->get_seqno = bxt_a_get_seqno;
2086 		ring->set_seqno = bxt_a_set_seqno;
2087 	} else {
2088 		ring->get_seqno = gen8_get_seqno;
2089 		ring->set_seqno = gen8_set_seqno;
2090 	}
2091 	ring->emit_request = gen8_emit_request;
2092 	ring->emit_flush = gen8_emit_flush;
2093 	ring->irq_get = gen8_logical_ring_get_irq;
2094 	ring->irq_put = gen8_logical_ring_put_irq;
2095 	ring->emit_bb_start = gen8_emit_bb_start;
2096 
2097 	return logical_ring_init(dev, ring);
2098 }
2099 
2100 static int logical_vebox_ring_init(struct drm_device *dev)
2101 {
2102 	struct drm_i915_private *dev_priv = dev->dev_private;
2103 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2104 
2105 	ring->name = "video enhancement ring";
2106 	ring->id = VECS;
2107 	ring->mmio_base = VEBOX_RING_BASE;
2108 	ring->irq_enable_mask =
2109 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2110 	ring->irq_keep_mask =
2111 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2112 
2113 	ring->init_hw = gen8_init_common_ring;
2114 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2115 		ring->get_seqno = bxt_a_get_seqno;
2116 		ring->set_seqno = bxt_a_set_seqno;
2117 	} else {
2118 		ring->get_seqno = gen8_get_seqno;
2119 		ring->set_seqno = gen8_set_seqno;
2120 	}
2121 	ring->emit_request = gen8_emit_request;
2122 	ring->emit_flush = gen8_emit_flush;
2123 	ring->irq_get = gen8_logical_ring_get_irq;
2124 	ring->irq_put = gen8_logical_ring_put_irq;
2125 	ring->emit_bb_start = gen8_emit_bb_start;
2126 
2127 	return logical_ring_init(dev, ring);
2128 }
2129 
2130 /**
2131  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2132  * @dev: DRM device.
2133  *
2134  * This function inits the engines for an Execlists submission style (the equivalent in the
2135  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2136  * those engines that are present in the hardware.
2137  *
2138  * Return: non-zero if the initialization failed.
2139  */
2140 int intel_logical_rings_init(struct drm_device *dev)
2141 {
2142 	struct drm_i915_private *dev_priv = dev->dev_private;
2143 	int ret;
2144 
2145 	ret = logical_render_ring_init(dev);
2146 	if (ret)
2147 		return ret;
2148 
2149 	if (HAS_BSD(dev)) {
2150 		ret = logical_bsd_ring_init(dev);
2151 		if (ret)
2152 			goto cleanup_render_ring;
2153 	}
2154 
2155 	if (HAS_BLT(dev)) {
2156 		ret = logical_blt_ring_init(dev);
2157 		if (ret)
2158 			goto cleanup_bsd_ring;
2159 	}
2160 
2161 	if (HAS_VEBOX(dev)) {
2162 		ret = logical_vebox_ring_init(dev);
2163 		if (ret)
2164 			goto cleanup_blt_ring;
2165 	}
2166 
2167 	if (HAS_BSD2(dev)) {
2168 		ret = logical_bsd2_ring_init(dev);
2169 		if (ret)
2170 			goto cleanup_vebox_ring;
2171 	}
2172 
2173 	return 0;
2174 
2175 cleanup_vebox_ring:
2176 	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2177 cleanup_blt_ring:
2178 	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2179 cleanup_bsd_ring:
2180 	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2181 cleanup_render_ring:
2182 	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2183 
2184 	return ret;
2185 }
2186 
2187 static u32
2188 make_rpcs(struct drm_device *dev)
2189 {
2190 	u32 rpcs = 0;
2191 
2192 	/*
2193 	 * No explicit RPCS request is needed to ensure full
2194 	 * slice/subslice/EU enablement prior to Gen9.
2195 	*/
2196 	if (INTEL_INFO(dev)->gen < 9)
2197 		return 0;
2198 
2199 	/*
2200 	 * Starting in Gen9, render power gating can leave
2201 	 * slice/subslice/EU in a partially enabled state. We
2202 	 * must make an explicit request through RPCS for full
2203 	 * enablement.
2204 	*/
2205 	if (INTEL_INFO(dev)->has_slice_pg) {
2206 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2207 		rpcs |= INTEL_INFO(dev)->slice_total <<
2208 			GEN8_RPCS_S_CNT_SHIFT;
2209 		rpcs |= GEN8_RPCS_ENABLE;
2210 	}
2211 
2212 	if (INTEL_INFO(dev)->has_subslice_pg) {
2213 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2214 		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2215 			GEN8_RPCS_SS_CNT_SHIFT;
2216 		rpcs |= GEN8_RPCS_ENABLE;
2217 	}
2218 
2219 	if (INTEL_INFO(dev)->has_eu_pg) {
2220 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2221 			GEN8_RPCS_EU_MIN_SHIFT;
2222 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2223 			GEN8_RPCS_EU_MAX_SHIFT;
2224 		rpcs |= GEN8_RPCS_ENABLE;
2225 	}
2226 
2227 	return rpcs;
2228 }
2229 
2230 static int
2231 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2232 		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2233 {
2234 	struct drm_device *dev = ring->dev;
2235 	struct drm_i915_private *dev_priv = dev->dev_private;
2236 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2237 	struct vm_page *page;
2238 	uint32_t *reg_state;
2239 	int ret;
2240 
2241 	if (!ppgtt)
2242 		ppgtt = dev_priv->mm.aliasing_ppgtt;
2243 
2244 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2245 	if (ret) {
2246 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2247 		return ret;
2248 	}
2249 
2250 	ret = i915_gem_object_get_pages(ctx_obj);
2251 	if (ret) {
2252 		DRM_DEBUG_DRIVER("Could not get object pages\n");
2253 		return ret;
2254 	}
2255 
2256 	i915_gem_object_pin_pages(ctx_obj);
2257 
2258 	/* The second page of the context object contains some fields which must
2259 	 * be set up prior to the first execution. */
2260 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2261 	reg_state = kmap_atomic(page);
2262 
2263 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2264 	 * commands followed by (reg, value) pairs. The values we are setting here are
2265 	 * only for the first context restore: on a subsequent save, the GPU will
2266 	 * recreate this batchbuffer with new values (including all the missing
2267 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2268 	if (ring->id == RCS)
2269 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2270 	else
2271 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2272 	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2273 	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2274 	reg_state[CTX_CONTEXT_CONTROL+1] =
2275 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2276 				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2277 				   CTX_CTRL_RS_CTX_ENABLE);
2278 	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2279 	reg_state[CTX_RING_HEAD+1] = 0;
2280 	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2281 	reg_state[CTX_RING_TAIL+1] = 0;
2282 	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2283 	/* Ring buffer start address is not known until the buffer is pinned.
2284 	 * It is written to the context image in execlists_update_context()
2285 	 */
2286 	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2287 	reg_state[CTX_RING_BUFFER_CONTROL+1] =
2288 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2289 	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2290 	reg_state[CTX_BB_HEAD_U+1] = 0;
2291 	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2292 	reg_state[CTX_BB_HEAD_L+1] = 0;
2293 	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2294 	reg_state[CTX_BB_STATE+1] = (1<<5);
2295 	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2296 	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2297 	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2298 	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2299 	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2300 	reg_state[CTX_SECOND_BB_STATE+1] = 0;
2301 	if (ring->id == RCS) {
2302 		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2303 		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2304 		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2305 		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2306 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2307 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2308 		if (ring->wa_ctx.obj) {
2309 			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2310 			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2311 
2312 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2313 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2314 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2315 
2316 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2317 				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2318 
2319 			reg_state[CTX_BB_PER_CTX_PTR+1] =
2320 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2321 				0x01;
2322 		}
2323 	}
2324 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2325 	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2326 	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2327 	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2328 	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2329 	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2330 	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2331 	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2332 	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2333 	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2334 	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2335 	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2336 
2337 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2338 		/* 64b PPGTT (48bit canonical)
2339 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2340 		 * other PDP Descriptors are ignored.
2341 		 */
2342 		ASSIGN_CTX_PML4(ppgtt, reg_state);
2343 	} else {
2344 		/* 32b PPGTT
2345 		 * PDP*_DESCRIPTOR contains the base address of space supported.
2346 		 * With dynamic page allocation, PDPs may not be allocated at
2347 		 * this point. Point the unallocated PDPs to the scratch page
2348 		 */
2349 		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2350 		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2351 		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2352 		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2353 	}
2354 
2355 	if (ring->id == RCS) {
2356 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2357 		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2358 		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2359 	}
2360 
2361 	kunmap_atomic(reg_state);
2362 
2363 	ctx_obj->dirty = 1;
2364 	set_page_dirty(page);
2365 	i915_gem_object_unpin_pages(ctx_obj);
2366 
2367 	return 0;
2368 }
2369 
2370 /**
2371  * intel_lr_context_free() - free the LRC specific bits of a context
2372  * @ctx: the LR context to free.
2373  *
2374  * The real context freeing is done in i915_gem_context_free: this only
2375  * takes care of the bits that are LRC related: the per-engine backing
2376  * objects and the logical ringbuffer.
2377  */
2378 void intel_lr_context_free(struct intel_context *ctx)
2379 {
2380 	int i;
2381 
2382 	for (i = 0; i < I915_NUM_RINGS; i++) {
2383 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2384 
2385 		if (ctx_obj) {
2386 			struct intel_ringbuffer *ringbuf =
2387 					ctx->engine[i].ringbuf;
2388 			struct intel_engine_cs *ring = ringbuf->ring;
2389 
2390 			if (ctx == ring->default_context) {
2391 				intel_unpin_ringbuffer_obj(ringbuf);
2392 				i915_gem_object_ggtt_unpin(ctx_obj);
2393 			}
2394 			WARN_ON(ctx->engine[ring->id].pin_count);
2395 			intel_ringbuffer_free(ringbuf);
2396 			drm_gem_object_unreference(&ctx_obj->base);
2397 		}
2398 	}
2399 }
2400 
2401 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2402 {
2403 	int ret = 0;
2404 
2405 	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2406 
2407 	switch (ring->id) {
2408 	case RCS:
2409 		if (INTEL_INFO(ring->dev)->gen >= 9)
2410 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2411 		else
2412 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2413 		break;
2414 	case VCS:
2415 	case BCS:
2416 	case VECS:
2417 	case VCS2:
2418 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2419 		break;
2420 	}
2421 
2422 	return ret;
2423 }
2424 
2425 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2426 		struct drm_i915_gem_object *default_ctx_obj)
2427 {
2428 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2429 	struct vm_page *page;
2430 
2431 	/* The HWSP is part of the default context object in LRC mode. */
2432 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2433 			+ LRC_PPHWSP_PN * PAGE_SIZE;
2434 	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2435 	ring->status_page.page_addr = kmap(page);
2436 	ring->status_page.obj = default_ctx_obj;
2437 
2438 	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2439 			(u32)ring->status_page.gfx_addr);
2440 	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2441 }
2442 
2443 /**
2444  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2445  * @ctx: LR context to create.
2446  * @ring: engine to be used with the context.
2447  *
2448  * This function can be called more than once, with different engines, if we plan
2449  * to use the context with them. The context backing objects and the ringbuffers
2450  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2451  * the creation is a deferred call: it's better to make sure first that we need to use
2452  * a given ring with the context.
2453  *
2454  * Return: non-zero on error.
2455  */
2456 
2457 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2458 				     struct intel_engine_cs *ring)
2459 {
2460 	struct drm_device *dev = ring->dev;
2461 	struct drm_i915_gem_object *ctx_obj;
2462 	uint32_t context_size;
2463 	struct intel_ringbuffer *ringbuf;
2464 	int ret;
2465 
2466 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2467 	WARN_ON(ctx->engine[ring->id].state);
2468 
2469 	context_size = round_up(get_lr_context_size(ring), 4096);
2470 
2471 	/* One extra page as the sharing data between driver and GuC */
2472 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2473 
2474 	ctx_obj = i915_gem_alloc_object(dev, context_size);
2475 	if (!ctx_obj) {
2476 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2477 		return -ENOMEM;
2478 	}
2479 
2480 	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2481 	if (IS_ERR(ringbuf)) {
2482 		ret = PTR_ERR(ringbuf);
2483 		goto error_deref_obj;
2484 	}
2485 
2486 	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2487 	if (ret) {
2488 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2489 		goto error_ringbuf;
2490 	}
2491 
2492 	ctx->engine[ring->id].ringbuf = ringbuf;
2493 	ctx->engine[ring->id].state = ctx_obj;
2494 
2495 	if (ctx != ring->default_context && ring->init_context) {
2496 		struct drm_i915_gem_request *req;
2497 
2498 		ret = i915_gem_request_alloc(ring,
2499 			ctx, &req);
2500 		if (ret) {
2501 			DRM_ERROR("ring create req: %d\n",
2502 				ret);
2503 			goto error_ringbuf;
2504 		}
2505 
2506 		ret = ring->init_context(req);
2507 		if (ret) {
2508 			DRM_ERROR("ring init context: %d\n",
2509 				ret);
2510 			i915_gem_request_cancel(req);
2511 			goto error_ringbuf;
2512 		}
2513 		i915_add_request_no_flush(req);
2514 	}
2515 	return 0;
2516 
2517 error_ringbuf:
2518 	intel_ringbuffer_free(ringbuf);
2519 error_deref_obj:
2520 	drm_gem_object_unreference(&ctx_obj->base);
2521 	ctx->engine[ring->id].ringbuf = NULL;
2522 	ctx->engine[ring->id].state = NULL;
2523 	return ret;
2524 }
2525 
2526 void intel_lr_context_reset(struct drm_device *dev,
2527 			struct intel_context *ctx)
2528 {
2529 	struct drm_i915_private *dev_priv = dev->dev_private;
2530 	struct intel_engine_cs *ring;
2531 	int i;
2532 
2533 	for_each_ring(ring, dev_priv, i) {
2534 		struct drm_i915_gem_object *ctx_obj =
2535 				ctx->engine[ring->id].state;
2536 		struct intel_ringbuffer *ringbuf =
2537 				ctx->engine[ring->id].ringbuf;
2538 		uint32_t *reg_state;
2539 		struct vm_page *page;
2540 
2541 		if (!ctx_obj)
2542 			continue;
2543 
2544 		if (i915_gem_object_get_pages(ctx_obj)) {
2545 			WARN(1, "Failed get_pages for context obj\n");
2546 			continue;
2547 		}
2548 		page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2549 		reg_state = kmap_atomic(page);
2550 
2551 		reg_state[CTX_RING_HEAD+1] = 0;
2552 		reg_state[CTX_RING_TAIL+1] = 0;
2553 
2554 		kunmap_atomic(reg_state);
2555 
2556 		ringbuf->head = 0;
2557 		ringbuf->tail = 0;
2558 	}
2559 }
2560