xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 32efd857)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140 
141 #define RING_EXECLIST_QFULL		(1 << 0x2)
142 #define RING_EXECLIST1_VALID		(1 << 0x3)
143 #define RING_EXECLIST0_VALID		(1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
147 
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154 
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156 	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 	  GEN8_CTX_STATUS_PREEMPTED | \
158 	  GEN8_CTX_STATUS_ELEMENT_SWITCH)
159 
160 #define CTX_LRI_HEADER_0		0x01
161 #define CTX_CONTEXT_CONTROL		0x02
162 #define CTX_RING_HEAD			0x04
163 #define CTX_RING_TAIL			0x06
164 #define CTX_RING_BUFFER_START		0x08
165 #define CTX_RING_BUFFER_CONTROL		0x0a
166 #define CTX_BB_HEAD_U			0x0c
167 #define CTX_BB_HEAD_L			0x0e
168 #define CTX_BB_STATE			0x10
169 #define CTX_SECOND_BB_HEAD_U		0x12
170 #define CTX_SECOND_BB_HEAD_L		0x14
171 #define CTX_SECOND_BB_STATE		0x16
172 #define CTX_BB_PER_CTX_PTR		0x18
173 #define CTX_RCS_INDIRECT_CTX		0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
175 #define CTX_LRI_HEADER_1		0x21
176 #define CTX_CTX_TIMESTAMP		0x22
177 #define CTX_PDP3_UDW			0x24
178 #define CTX_PDP3_LDW			0x26
179 #define CTX_PDP2_UDW			0x28
180 #define CTX_PDP2_LDW			0x2a
181 #define CTX_PDP1_UDW			0x2c
182 #define CTX_PDP1_LDW			0x2e
183 #define CTX_PDP0_UDW			0x30
184 #define CTX_PDP0_LDW			0x32
185 #define CTX_LRI_HEADER_2		0x41
186 #define CTX_R_PWR_CLK_STATE		0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
188 
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 	(reg_state)[(pos)+1] = (val); \
192 } while (0)
193 
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199 
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204 
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208 
209 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
210 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211 #define WA_TAIL_DWORDS 2
212 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
213 #define PREEMPT_ID 0x1
214 
215 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216 					    struct intel_engine_cs *engine);
217 static void execlists_init_reg_state(u32 *reg_state,
218 				     struct i915_gem_context *ctx,
219 				     struct intel_engine_cs *engine,
220 				     struct intel_ring *ring);
221 
222 /**
223  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224  * @dev_priv: i915 device private
225  * @enable_execlists: value of i915.enable_execlists module parameter.
226  *
227  * Only certain platforms support Execlists (the prerequisites being
228  * support for Logical Ring Contexts and Aliasing PPGTT or better).
229  *
230  * Return: 1 if Execlists is supported and has to be enabled.
231  */
232 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233 {
234 	/* On platforms with execlist available, vGPU will only
235 	 * support execlist mode, no ring buffer mode.
236 	 */
237 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 		return 1;
239 
240 	if (INTEL_GEN(dev_priv) >= 9)
241 		return 1;
242 
243 	if (enable_execlists == 0)
244 		return 0;
245 
246 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
247 	    USES_PPGTT(dev_priv))
248 		return 1;
249 
250 	return 0;
251 }
252 
253 /**
254  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255  * 					  descriptor for a pinned context
256  * @ctx: Context to work on
257  * @engine: Engine the descriptor will be used with
258  *
259  * The context descriptor encodes various attributes of a context,
260  * including its GTT address and some flags. Because it's fairly
261  * expensive to calculate, we'll just do it once and cache the result,
262  * which remains valid until the context is unpinned.
263  *
264  * This is what a descriptor looks like, from LSB to MSB::
265  *
266  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
268  *      bits 32-52:    ctx ID, a globally unique tag
269  *      bits 53-54:    mbz, reserved for use by hardware
270  *      bits 55-63:    group ID, currently unused and set to 0
271  */
272 static void
273 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274 				   struct intel_engine_cs *engine)
275 {
276 	struct intel_context *ce = &ctx->engine[engine->id];
277 	u64 desc;
278 
279 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280 
281 	desc = ctx->desc_template;				/* bits  0-11 */
282 	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283 								/* bits 12-31 */
284 	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285 
286 	ce->lrc_desc = desc;
287 }
288 
289 static struct i915_priolist *
290 lookup_priolist(struct intel_engine_cs *engine,
291 		struct i915_priotree *pt,
292 		int prio)
293 {
294 	struct intel_engine_execlists * const execlists = &engine->execlists;
295 	struct i915_priolist *p;
296 	struct rb_node **parent, *rb;
297 	bool first = true;
298 
299 	if (unlikely(execlists->no_priolist))
300 		prio = I915_PRIORITY_NORMAL;
301 
302 find_priolist:
303 	/* most positive priority is scheduled first, equal priorities fifo */
304 	rb = NULL;
305 	parent = &execlists->queue.rb_node;
306 	while (*parent) {
307 		rb = *parent;
308 		p = rb_entry(rb, typeof(*p), node);
309 		if (prio > p->priority) {
310 			parent = &rb->rb_left;
311 		} else if (prio < p->priority) {
312 			parent = &rb->rb_right;
313 			first = false;
314 		} else {
315 			return p;
316 		}
317 	}
318 
319 	if (prio == I915_PRIORITY_NORMAL) {
320 		p = &execlists->default_priolist;
321 	} else {
322 		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
323 		/* Convert an allocation failure to a priority bump */
324 		if (unlikely(!p)) {
325 			prio = I915_PRIORITY_NORMAL; /* recurses just once */
326 
327 			/* To maintain ordering with all rendering, after an
328 			 * allocation failure we have to disable all scheduling.
329 			 * Requests will then be executed in fifo, and schedule
330 			 * will ensure that dependencies are emitted in fifo.
331 			 * There will be still some reordering with existing
332 			 * requests, so if userspace lied about their
333 			 * dependencies that reordering may be visible.
334 			 */
335 			execlists->no_priolist = true;
336 			goto find_priolist;
337 		}
338 	}
339 
340 	p->priority = prio;
341 	INIT_LIST_HEAD(&p->requests);
342 	rb_link_node(&p->node, rb, parent);
343 	rb_insert_color(&p->node, &execlists->queue);
344 
345 	if (first)
346 		execlists->first = &p->node;
347 
348 	return ptr_pack_bits(p, first, 1);
349 }
350 
351 static void unwind_wa_tail(struct drm_i915_gem_request *rq)
352 {
353 	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
354 	assert_ring_tail_valid(rq->ring, rq->tail);
355 }
356 
357 static void unwind_incomplete_requests(struct intel_engine_cs *engine)
358 {
359 	struct drm_i915_gem_request *rq, *rn;
360 	struct i915_priolist *p = NULL;
361 	int last_prio = I915_PRIORITY_INVALID;
362 
363 	lockdep_assert_held(&engine->timeline->lock);
364 
365 	list_for_each_entry_safe_reverse(rq, rn,
366 					 &engine->timeline->requests,
367 					 link) {
368 		if (i915_gem_request_completed(rq))
369 			return;
370 
371 		__i915_gem_request_unsubmit(rq);
372 		unwind_wa_tail(rq);
373 
374 		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
375 		if (rq->priotree.priority != last_prio) {
376 			p = lookup_priolist(engine,
377 					    &rq->priotree,
378 					    rq->priotree.priority);
379 			p = ptr_mask_bits(p, 1);
380 
381 			last_prio = rq->priotree.priority;
382 		}
383 
384 		list_add(&rq->priotree.link, &p->requests);
385 	}
386 }
387 
388 static inline void
389 execlists_context_status_change(struct drm_i915_gem_request *rq,
390 				unsigned long status)
391 {
392 	/*
393 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
394 	 * The compiler should eliminate this function as dead-code.
395 	 */
396 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
397 		return;
398 
399 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
400 				   status, rq);
401 }
402 
403 static void
404 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
405 {
406 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
407 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
408 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
409 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
410 }
411 
412 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
413 {
414 	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
415 	struct i915_hw_ppgtt *ppgtt =
416 		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
417 	u32 *reg_state = ce->lrc_reg_state;
418 
419 	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
420 
421 	/* True 32b PPGTT with dynamic page allocation: update PDP
422 	 * registers and point the unallocated PDPs to scratch page.
423 	 * PML4 is allocated during ppgtt init, so this is not needed
424 	 * in 48-bit mode.
425 	 */
426 	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
427 		execlists_update_context_pdps(ppgtt, reg_state);
428 
429 	return ce->lrc_desc;
430 }
431 
432 static inline void elsp_write(u64 desc, u32 __iomem *elsp)
433 {
434 	writel(upper_32_bits(desc), elsp);
435 	writel(lower_32_bits(desc), elsp);
436 }
437 
438 static void execlists_submit_ports(struct intel_engine_cs *engine)
439 {
440 	struct execlist_port *port = engine->execlists.port;
441 	u32 __iomem *elsp =
442 		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
443 	unsigned int n;
444 
445 	for (n = execlists_num_ports(&engine->execlists); n--; ) {
446 		struct drm_i915_gem_request *rq;
447 		unsigned int count;
448 		u64 desc;
449 
450 		rq = port_unpack(&port[n], &count);
451 		if (rq) {
452 			GEM_BUG_ON(count > !n);
453 			if (!count++)
454 				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
455 			port_set(&port[n], port_pack(rq, count));
456 			desc = execlists_update_context(rq);
457 			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
458 		} else {
459 			GEM_BUG_ON(!n);
460 			desc = 0;
461 		}
462 
463 		elsp_write(desc, elsp);
464 	}
465 }
466 
467 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
468 {
469 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
470 		i915_gem_context_force_single_submission(ctx));
471 }
472 
473 static bool can_merge_ctx(const struct i915_gem_context *prev,
474 			  const struct i915_gem_context *next)
475 {
476 	if (prev != next)
477 		return false;
478 
479 	if (ctx_single_port_submission(prev))
480 		return false;
481 
482 	return true;
483 }
484 
485 static void port_assign(struct execlist_port *port,
486 			struct drm_i915_gem_request *rq)
487 {
488 	GEM_BUG_ON(rq == port_request(port));
489 
490 	if (port_isset(port))
491 		i915_gem_request_put(port_request(port));
492 
493 	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
494 }
495 
496 static void inject_preempt_context(struct intel_engine_cs *engine)
497 {
498 	struct intel_context *ce =
499 		&engine->i915->preempt_context->engine[engine->id];
500 	u32 __iomem *elsp =
501 		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
502 	unsigned int n;
503 
504 	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
505 	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
506 
507 	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
508 	ce->ring->tail += WA_TAIL_BYTES;
509 	ce->ring->tail &= (ce->ring->size - 1);
510 	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
511 
512 	for (n = execlists_num_ports(&engine->execlists); --n; )
513 		elsp_write(0, elsp);
514 
515 	elsp_write(ce->lrc_desc, elsp);
516 }
517 
518 static bool can_preempt(struct intel_engine_cs *engine)
519 {
520 	return INTEL_INFO(engine->i915)->has_logical_ring_preemption;
521 }
522 
523 static void execlists_dequeue(struct intel_engine_cs *engine)
524 {
525 	struct intel_engine_execlists * const execlists = &engine->execlists;
526 	struct execlist_port *port = execlists->port;
527 	const struct execlist_port * const last_port =
528 		&execlists->port[execlists->port_mask];
529 	struct drm_i915_gem_request *last = port_request(port);
530 	struct rb_node *rb;
531 	bool submit = false;
532 
533 	/* Hardware submission is through 2 ports. Conceptually each port
534 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
535 	 * static for a context, and unique to each, so we only execute
536 	 * requests belonging to a single context from each ring. RING_HEAD
537 	 * is maintained by the CS in the context image, it marks the place
538 	 * where it got up to last time, and through RING_TAIL we tell the CS
539 	 * where we want to execute up to this time.
540 	 *
541 	 * In this list the requests are in order of execution. Consecutive
542 	 * requests from the same context are adjacent in the ringbuffer. We
543 	 * can combine these requests into a single RING_TAIL update:
544 	 *
545 	 *              RING_HEAD...req1...req2
546 	 *                                    ^- RING_TAIL
547 	 * since to execute req2 the CS must first execute req1.
548 	 *
549 	 * Our goal then is to point each port to the end of a consecutive
550 	 * sequence of requests as being the most optimal (fewest wake ups
551 	 * and context switches) submission.
552 	 */
553 
554 	spin_lock_irq(&engine->timeline->lock);
555 	rb = execlists->first;
556 	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
557 	if (!rb)
558 		goto unlock;
559 
560 	if (last) {
561 		/*
562 		 * Don't resubmit or switch until all outstanding
563 		 * preemptions (lite-restore) are seen. Then we
564 		 * know the next preemption status we see corresponds
565 		 * to this ELSP update.
566 		 */
567 		if (port_count(&port[0]) > 1)
568 			goto unlock;
569 
570 		if (can_preempt(engine) &&
571 		    rb_entry(rb, struct i915_priolist, node)->priority >
572 		    max(last->priotree.priority, 0)) {
573 			/*
574 			 * Switch to our empty preempt context so
575 			 * the state of the GPU is known (idle).
576 			 */
577 			inject_preempt_context(engine);
578 			execlists_set_active(execlists,
579 					     EXECLISTS_ACTIVE_PREEMPT);
580 			goto unlock;
581 		} else {
582 			/*
583 			 * In theory, we could coalesce more requests onto
584 			 * the second port (the first port is active, with
585 			 * no preemptions pending). However, that means we
586 			 * then have to deal with the possible lite-restore
587 			 * of the second port (as we submit the ELSP, there
588 			 * may be a context-switch) but also we may complete
589 			 * the resubmission before the context-switch. Ergo,
590 			 * coalescing onto the second port will cause a
591 			 * preemption event, but we cannot predict whether
592 			 * that will affect port[0] or port[1].
593 			 *
594 			 * If the second port is already active, we can wait
595 			 * until the next context-switch before contemplating
596 			 * new requests. The GPU will be busy and we should be
597 			 * able to resubmit the new ELSP before it idles,
598 			 * avoiding pipeline bubbles (momentary pauses where
599 			 * the driver is unable to keep up the supply of new
600 			 * work).
601 			 */
602 			if (port_count(&port[1]))
603 				goto unlock;
604 
605 			/* WaIdleLiteRestore:bdw,skl
606 			 * Apply the wa NOOPs to prevent
607 			 * ring:HEAD == req:TAIL as we resubmit the
608 			 * request. See gen8_emit_breadcrumb() for
609 			 * where we prepare the padding after the
610 			 * end of the request.
611 			 */
612 			last->tail = last->wa_tail;
613 		}
614 	}
615 
616 	do {
617 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
618 		struct drm_i915_gem_request *rq, *rn;
619 
620 		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
621 			/*
622 			 * Can we combine this request with the current port?
623 			 * It has to be the same context/ringbuffer and not
624 			 * have any exceptions (e.g. GVT saying never to
625 			 * combine contexts).
626 			 *
627 			 * If we can combine the requests, we can execute both
628 			 * by updating the RING_TAIL to point to the end of the
629 			 * second request, and so we never need to tell the
630 			 * hardware about the first.
631 			 */
632 			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
633 				/*
634 				 * If we are on the second port and cannot
635 				 * combine this request with the last, then we
636 				 * are done.
637 				 */
638 				if (port == last_port) {
639 					__list_del_many(&p->requests,
640 							&rq->priotree.link);
641 					goto done;
642 				}
643 
644 				/*
645 				 * If GVT overrides us we only ever submit
646 				 * port[0], leaving port[1] empty. Note that we
647 				 * also have to be careful that we don't queue
648 				 * the same context (even though a different
649 				 * request) to the second port.
650 				 */
651 				if (ctx_single_port_submission(last->ctx) ||
652 				    ctx_single_port_submission(rq->ctx)) {
653 					__list_del_many(&p->requests,
654 							&rq->priotree.link);
655 					goto done;
656 				}
657 
658 				GEM_BUG_ON(last->ctx == rq->ctx);
659 
660 				if (submit)
661 					port_assign(port, last);
662 				port++;
663 
664 				GEM_BUG_ON(port_isset(port));
665 			}
666 
667 			INIT_LIST_HEAD(&rq->priotree.link);
668 			__i915_gem_request_submit(rq);
669 			trace_i915_gem_request_in(rq, port_index(port, execlists));
670 			last = rq;
671 			submit = true;
672 		}
673 
674 		rb = rb_next(rb);
675 		rb_erase(&p->node, &execlists->queue);
676 		INIT_LIST_HEAD(&p->requests);
677 		if (p->priority != I915_PRIORITY_NORMAL)
678 			kmem_cache_free(engine->i915->priorities, p);
679 	} while (rb);
680 done:
681 	execlists->first = rb;
682 	if (submit)
683 		port_assign(port, last);
684 unlock:
685 	spin_unlock_irq(&engine->timeline->lock);
686 
687 	if (submit) {
688 		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
689 		execlists_submit_ports(engine);
690 	}
691 }
692 
693 static void
694 execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
695 {
696 	struct execlist_port *port = execlists->port;
697 	unsigned int num_ports = execlists_num_ports(execlists);
698 
699 	while (num_ports-- && port_isset(port)) {
700 		struct drm_i915_gem_request *rq = port_request(port);
701 
702 		GEM_BUG_ON(!execlists->active);
703 		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
704 		i915_gem_request_put(rq);
705 
706 		memset(port, 0, sizeof(*port));
707 		port++;
708 	}
709 }
710 
711 static void execlists_cancel_requests(struct intel_engine_cs *engine)
712 {
713 	struct intel_engine_execlists * const execlists = &engine->execlists;
714 	struct drm_i915_gem_request *rq, *rn;
715 	struct rb_node *rb;
716 	unsigned long flags;
717 
718 	spin_lock_irqsave(&engine->timeline->lock, flags);
719 
720 	/* Cancel the requests on the HW and clear the ELSP tracker. */
721 	execlist_cancel_port_requests(execlists);
722 
723 	/* Mark all executing requests as skipped. */
724 	list_for_each_entry(rq, &engine->timeline->requests, link) {
725 		GEM_BUG_ON(!rq->global_seqno);
726 		if (!i915_gem_request_completed(rq))
727 			dma_fence_set_error(&rq->fence, -EIO);
728 	}
729 
730 	/* Flush the queued requests to the timeline list (for retiring). */
731 	rb = execlists->first;
732 	while (rb) {
733 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
734 
735 		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
736 			INIT_LIST_HEAD(&rq->priotree.link);
737 
738 			dma_fence_set_error(&rq->fence, -EIO);
739 			__i915_gem_request_submit(rq);
740 		}
741 
742 		rb = rb_next(rb);
743 		rb_erase(&p->node, &execlists->queue);
744 		INIT_LIST_HEAD(&p->requests);
745 		if (p->priority != I915_PRIORITY_NORMAL)
746 			kmem_cache_free(engine->i915->priorities, p);
747 	}
748 
749 	/* Remaining _unready_ requests will be nop'ed when submitted */
750 
751 
752 	execlists->queue = LINUX_RB_ROOT;
753 	execlists->first = NULL;
754 	GEM_BUG_ON(port_isset(execlists->port));
755 
756 	/*
757 	 * The port is checked prior to scheduling a tasklet, but
758 	 * just in case we have suspended the tasklet to do the
759 	 * wedging make sure that when it wakes, it decides there
760 	 * is no work to do by clearing the irq_posted bit.
761 	 */
762 	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
763 
764 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
765 }
766 
767 /*
768  * Check the unread Context Status Buffers and manage the submission of new
769  * contexts to the ELSP accordingly.
770  */
771 static void intel_lrc_irq_handler(unsigned long data)
772 {
773 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
774 	struct intel_engine_execlists * const execlists = &engine->execlists;
775 	struct execlist_port * const port = execlists->port;
776 	struct drm_i915_private *dev_priv = engine->i915;
777 
778 	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
779 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
780 	 * not be relinquished until the device is idle (see
781 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
782 	 * that all ELSP are drained i.e. we have processed the CSB,
783 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
784 	 */
785 	GEM_BUG_ON(!dev_priv->gt.awake);
786 
787 	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
788 
789 	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
790 	 * imposing the cost of a locked atomic transaction when submitting a
791 	 * new request (outside of the context-switch interrupt).
792 	 */
793 	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
794 		/* The HWSP contains a (cacheable) mirror of the CSB */
795 		const u32 *buf =
796 			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
797 		unsigned int head, tail;
798 
799 		if (unlikely(execlists->csb_use_mmio)) {
800 			buf = (u32 * __force)
801 				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
802 			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
803 		}
804 
805 		/* The write will be ordered by the uncached read (itself
806 		 * a memory barrier), so we do not need another in the form
807 		 * of a locked instruction. The race between the interrupt
808 		 * handler and the split test/clear is harmless as we order
809 		 * our clear before the CSB read. If the interrupt arrived
810 		 * first between the test and the clear, we read the updated
811 		 * CSB and clear the bit. If the interrupt arrives as we read
812 		 * the CSB or later (i.e. after we had cleared the bit) the bit
813 		 * is set and we do a new loop.
814 		 */
815 		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
816 		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
817 			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
818 			tail = GEN8_CSB_WRITE_PTR(head);
819 			head = GEN8_CSB_READ_PTR(head);
820 			execlists->csb_head = head;
821 		} else {
822 			const int write_idx =
823 				intel_hws_csb_write_index(dev_priv) -
824 				I915_HWS_CSB_BUF0_INDEX;
825 
826 			head = execlists->csb_head;
827 			tail = READ_ONCE(buf[write_idx]);
828 		}
829 
830 		while (head != tail) {
831 			struct drm_i915_gem_request *rq;
832 			unsigned int status;
833 			unsigned int count;
834 
835 			if (++head == GEN8_CSB_ENTRIES)
836 				head = 0;
837 
838 			/* We are flying near dragons again.
839 			 *
840 			 * We hold a reference to the request in execlist_port[]
841 			 * but no more than that. We are operating in softirq
842 			 * context and so cannot hold any mutex or sleep. That
843 			 * prevents us stopping the requests we are processing
844 			 * in port[] from being retired simultaneously (the
845 			 * breadcrumb will be complete before we see the
846 			 * context-switch). As we only hold the reference to the
847 			 * request, any pointer chasing underneath the request
848 			 * is subject to a potential use-after-free. Thus we
849 			 * store all of the bookkeeping within port[] as
850 			 * required, and avoid using unguarded pointers beneath
851 			 * request itself. The same applies to the atomic
852 			 * status notifier.
853 			 */
854 
855 			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
856 			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
857 				continue;
858 
859 			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE &&
860 			    buf[2*head + 1] == PREEMPT_ID) {
861 				execlist_cancel_port_requests(execlists);
862 
863 				spin_lock_irq(&engine->timeline->lock);
864 				unwind_incomplete_requests(engine);
865 				spin_unlock_irq(&engine->timeline->lock);
866 
867 				GEM_BUG_ON(!execlists_is_active(execlists,
868 								EXECLISTS_ACTIVE_PREEMPT));
869 				execlists_clear_active(execlists,
870 						       EXECLISTS_ACTIVE_PREEMPT);
871 				continue;
872 			}
873 
874 			if (status & GEN8_CTX_STATUS_PREEMPTED &&
875 			    execlists_is_active(execlists,
876 						EXECLISTS_ACTIVE_PREEMPT))
877 				continue;
878 
879 			GEM_BUG_ON(!execlists_is_active(execlists,
880 							EXECLISTS_ACTIVE_USER));
881 
882 			/* Check the context/desc id for this event matches */
883 			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
884 
885 			rq = port_unpack(port, &count);
886 			GEM_BUG_ON(count == 0);
887 			if (--count == 0) {
888 				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
889 				/*
890 				 * XXX DragonFly XXX
891 				 *
892 				 * This gets hit for me on an i5-6500 on X
893 				 * startup.  Report and ignore for now.  May
894 				 * be related to a ring timeout during early
895 				 * startup.
896 				 */
897 				//GEM_BUG_ON(!i915_gem_request_completed(rq));
898 				if (!i915_gem_request_completed(rq)) {
899 					kprintf("i915: warning, request %p "
900 						"not completed\n", rq);
901 				}
902 				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
903 
904 				trace_i915_gem_request_out(rq);
905 				i915_gem_request_put(rq);
906 
907 				execlists_port_complete(execlists, port);
908 			} else {
909 				port_set(port, port_pack(rq, count));
910 			}
911 
912 			/* After the final element, the hw should be idle */
913 			GEM_BUG_ON(port_count(port) == 0 &&
914 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
915 			if (port_count(port) == 0)
916 				execlists_clear_active(execlists,
917 						       EXECLISTS_ACTIVE_USER);
918 		}
919 
920 		if (head != execlists->csb_head) {
921 			execlists->csb_head = head;
922 			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
923 			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
924 		}
925 	}
926 
927 	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
928 		execlists_dequeue(engine);
929 
930 	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
931 }
932 
933 static void insert_request(struct intel_engine_cs *engine,
934 			   struct i915_priotree *pt,
935 			   int prio)
936 {
937 	struct i915_priolist *p = lookup_priolist(engine, pt, prio);
938 
939 	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
940 	if (ptr_unmask_bits(p, 1))
941 		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
942 }
943 
944 static void execlists_submit_request(struct drm_i915_gem_request *request)
945 {
946 	struct intel_engine_cs *engine = request->engine;
947 	unsigned long flags;
948 
949 	/* Will be called from irq-context when using foreign fences. */
950 	spin_lock_irqsave(&engine->timeline->lock, flags);
951 
952 	insert_request(engine, &request->priotree, request->priotree.priority);
953 
954 	GEM_BUG_ON(!engine->execlists.first);
955 	GEM_BUG_ON(list_empty(&request->priotree.link));
956 
957 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
958 }
959 
960 static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
961 {
962 	return container_of(pt, struct drm_i915_gem_request, priotree);
963 }
964 
965 static struct intel_engine_cs *
966 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
967 {
968 	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
969 
970 	GEM_BUG_ON(!locked);
971 
972 	if (engine != locked) {
973 		lockmgr(&locked->timeline->lock, LK_RELEASE);
974 		lockmgr(&engine->timeline->lock, LK_EXCLUSIVE);
975 	}
976 
977 	return engine;
978 }
979 
980 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
981 {
982 	struct intel_engine_cs *engine;
983 	struct i915_dependency *dep, *p;
984 	struct i915_dependency stack;
985 	LINUX_LIST_HEAD(dfs);
986 
987 	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
988 
989 	if (i915_gem_request_completed(request))
990 		return;
991 
992 	if (prio <= READ_ONCE(request->priotree.priority))
993 		return;
994 
995 	/* Need BKL in order to use the temporary link inside i915_dependency */
996 	lockdep_assert_held(&request->i915->drm.struct_mutex);
997 
998 	stack.signaler = &request->priotree;
999 	list_add(&stack.dfs_link, &dfs);
1000 
1001 	/* Recursively bump all dependent priorities to match the new request.
1002 	 *
1003 	 * A naive approach would be to use recursion:
1004 	 * static void update_priorities(struct i915_priotree *pt, prio) {
1005 	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
1006 	 *		update_priorities(dep->signal, prio)
1007 	 *	insert_request(pt);
1008 	 * }
1009 	 * but that may have unlimited recursion depth and so runs a very
1010 	 * real risk of overunning the kernel stack. Instead, we build
1011 	 * a flat list of all dependencies starting with the current request.
1012 	 * As we walk the list of dependencies, we add all of its dependencies
1013 	 * to the end of the list (this may include an already visited
1014 	 * request) and continue to walk onwards onto the new dependencies. The
1015 	 * end result is a topological list of requests in reverse order, the
1016 	 * last element in the list is the request we must execute first.
1017 	 */
1018 	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
1019 		struct i915_priotree *pt = dep->signaler;
1020 
1021 		/* Within an engine, there can be no cycle, but we may
1022 		 * refer to the same dependency chain multiple times
1023 		 * (redundant dependencies are not eliminated) and across
1024 		 * engines.
1025 		 */
1026 		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1027 			if (i915_gem_request_completed(pt_to_request(p->signaler)))
1028 				continue;
1029 
1030 			GEM_BUG_ON(p->signaler->priority < pt->priority);
1031 			if (prio > READ_ONCE(p->signaler->priority))
1032 				list_move_tail(&p->dfs_link, &dfs);
1033 		}
1034 
1035 		list_safe_reset_next(dep, p, dfs_link);
1036 	}
1037 
1038 	/* If we didn't need to bump any existing priorities, and we haven't
1039 	 * yet submitted this request (i.e. there is no potential race with
1040 	 * execlists_submit_request()), we can set our own priority and skip
1041 	 * acquiring the engine locks.
1042 	 */
1043 	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1044 		GEM_BUG_ON(!list_empty(&request->priotree.link));
1045 		request->priotree.priority = prio;
1046 		if (stack.dfs_link.next == stack.dfs_link.prev)
1047 			return;
1048 		__list_del_entry(&stack.dfs_link);
1049 	}
1050 
1051 	engine = request->engine;
1052 	spin_lock_irq(&engine->timeline->lock);
1053 
1054 	/* Fifo and depth-first replacement ensure our deps execute before us */
1055 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1056 		struct i915_priotree *pt = dep->signaler;
1057 
1058 		INIT_LIST_HEAD(&dep->dfs_link);
1059 
1060 		engine = pt_lock_engine(pt, engine);
1061 
1062 		if (prio <= pt->priority)
1063 			continue;
1064 
1065 		pt->priority = prio;
1066 		if (!list_empty(&pt->link)) {
1067 			__list_del_entry(&pt->link);
1068 			insert_request(engine, pt, prio);
1069 		}
1070 	}
1071 
1072 	spin_unlock_irq(&engine->timeline->lock);
1073 }
1074 
1075 static struct intel_ring *
1076 execlists_context_pin(struct intel_engine_cs *engine,
1077 		      struct i915_gem_context *ctx)
1078 {
1079 	struct intel_context *ce = &ctx->engine[engine->id];
1080 	unsigned int flags;
1081 	void *vaddr;
1082 	int ret;
1083 
1084 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1085 
1086 	if (likely(ce->pin_count++))
1087 		goto out;
1088 	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1089 
1090 	if (!ce->state) {
1091 		ret = execlists_context_deferred_alloc(ctx, engine);
1092 		if (ret)
1093 			goto err;
1094 	}
1095 	GEM_BUG_ON(!ce->state);
1096 
1097 	flags = PIN_GLOBAL | PIN_HIGH;
1098 	if (ctx->ggtt_offset_bias)
1099 		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1100 
1101 	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1102 	if (ret)
1103 		goto err;
1104 
1105 	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1106 	if (IS_ERR(vaddr)) {
1107 		ret = PTR_ERR(vaddr);
1108 		goto unpin_vma;
1109 	}
1110 
1111 	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1112 	if (ret)
1113 		goto unpin_map;
1114 
1115 	intel_lr_context_descriptor_update(ctx, engine);
1116 
1117 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1118 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1119 		i915_ggtt_offset(ce->ring->vma);
1120 
1121 	ce->state->obj->mm.dirty = true;
1122 	ce->state->obj->pin_global++;
1123 
1124 	i915_gem_context_get(ctx);
1125 out:
1126 	return ce->ring;
1127 
1128 unpin_map:
1129 	i915_gem_object_unpin_map(ce->state->obj);
1130 unpin_vma:
1131 	__i915_vma_unpin(ce->state);
1132 err:
1133 	ce->pin_count = 0;
1134 	return ERR_PTR(ret);
1135 }
1136 
1137 static void execlists_context_unpin(struct intel_engine_cs *engine,
1138 				    struct i915_gem_context *ctx)
1139 {
1140 	struct intel_context *ce = &ctx->engine[engine->id];
1141 
1142 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1143 	GEM_BUG_ON(ce->pin_count == 0);
1144 
1145 	if (--ce->pin_count)
1146 		return;
1147 
1148 	intel_ring_unpin(ce->ring);
1149 
1150 	ce->state->obj->pin_global--;
1151 	i915_gem_object_unpin_map(ce->state->obj);
1152 	i915_vma_unpin(ce->state);
1153 
1154 	i915_gem_context_put(ctx);
1155 }
1156 
1157 static int execlists_request_alloc(struct drm_i915_gem_request *request)
1158 {
1159 	struct intel_engine_cs *engine = request->engine;
1160 	struct intel_context *ce = &request->ctx->engine[engine->id];
1161 	u32 *cs;
1162 	int ret;
1163 
1164 	GEM_BUG_ON(!ce->pin_count);
1165 
1166 	/* Flush enough space to reduce the likelihood of waiting after
1167 	 * we start building the request - in which case we will just
1168 	 * have to repeat work.
1169 	 */
1170 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1171 
1172 	cs = intel_ring_begin(request, 0);
1173 	if (IS_ERR(cs))
1174 		return PTR_ERR(cs);
1175 
1176 	if (!ce->initialised) {
1177 		ret = engine->init_context(request);
1178 		if (ret)
1179 			return ret;
1180 
1181 		ce->initialised = true;
1182 	}
1183 
1184 	/* Note that after this point, we have committed to using
1185 	 * this request as it is being used to both track the
1186 	 * state of engine initialisation and liveness of the
1187 	 * golden renderstate above. Think twice before you try
1188 	 * to cancel/unwind this request now.
1189 	 */
1190 
1191 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1192 	return 0;
1193 }
1194 
1195 /*
1196  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1197  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1198  * but there is a slight complication as this is applied in WA batch where the
1199  * values are only initialized once so we cannot take register value at the
1200  * beginning and reuse it further; hence we save its value to memory, upload a
1201  * constant value with bit21 set and then we restore it back with the saved value.
1202  * To simplify the WA, a constant value is formed by using the default value
1203  * of this register. This shouldn't be a problem because we are only modifying
1204  * it for a short period and this batch in non-premptible. We can ofcourse
1205  * use additional instructions that read the actual value of the register
1206  * at that time and set our bit of interest but it makes the WA complicated.
1207  *
1208  * This WA is also required for Gen9 so extracting as a function avoids
1209  * code duplication.
1210  */
1211 static u32 *
1212 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1213 {
1214 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1215 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1216 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1217 	*batch++ = 0;
1218 
1219 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1220 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1221 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1222 
1223 	batch = gen8_emit_pipe_control(batch,
1224 				       PIPE_CONTROL_CS_STALL |
1225 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1226 				       0);
1227 
1228 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1229 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1230 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1231 	*batch++ = 0;
1232 
1233 	return batch;
1234 }
1235 
1236 /*
1237  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1238  * initialized at the beginning and shared across all contexts but this field
1239  * helps us to have multiple batches at different offsets and select them based
1240  * on a criteria. At the moment this batch always start at the beginning of the page
1241  * and at this point we don't have multiple wa_ctx batch buffers.
1242  *
1243  * The number of WA applied are not known at the beginning; we use this field
1244  * to return the no of DWORDS written.
1245  *
1246  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1247  * so it adds NOOPs as padding to make it cacheline aligned.
1248  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1249  * makes a complete batch buffer.
1250  */
1251 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1252 {
1253 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1254 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1255 
1256 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1257 	if (IS_BROADWELL(engine->i915))
1258 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1259 
1260 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1261 	/* Actual scratch location is at 128 bytes offset */
1262 	batch = gen8_emit_pipe_control(batch,
1263 				       PIPE_CONTROL_FLUSH_L3 |
1264 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1265 				       PIPE_CONTROL_CS_STALL |
1266 				       PIPE_CONTROL_QW_WRITE,
1267 				       i915_ggtt_offset(engine->scratch) +
1268 				       2 * CACHELINE_BYTES);
1269 
1270 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1271 
1272 	/* Pad to end of cacheline */
1273 	while ((unsigned long)batch % CACHELINE_BYTES)
1274 		*batch++ = MI_NOOP;
1275 
1276 	/*
1277 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1278 	 * execution depends on the length specified in terms of cache lines
1279 	 * in the register CTX_RCS_INDIRECT_CTX
1280 	 */
1281 
1282 	return batch;
1283 }
1284 
1285 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1286 {
1287 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1288 
1289 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1290 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1291 
1292 	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1293 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1294 	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1295 	*batch++ = _MASKED_BIT_DISABLE(
1296 			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1297 	*batch++ = MI_NOOP;
1298 
1299 	/* WaClearSlmSpaceAtContextSwitch:kbl */
1300 	/* Actual scratch location is at 128 bytes offset */
1301 	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1302 		batch = gen8_emit_pipe_control(batch,
1303 					       PIPE_CONTROL_FLUSH_L3 |
1304 					       PIPE_CONTROL_GLOBAL_GTT_IVB |
1305 					       PIPE_CONTROL_CS_STALL |
1306 					       PIPE_CONTROL_QW_WRITE,
1307 					       i915_ggtt_offset(engine->scratch)
1308 					       + 2 * CACHELINE_BYTES);
1309 	}
1310 
1311 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1312 	if (HAS_POOLED_EU(engine->i915)) {
1313 		/*
1314 		 * EU pool configuration is setup along with golden context
1315 		 * during context initialization. This value depends on
1316 		 * device type (2x6 or 3x6) and needs to be updated based
1317 		 * on which subslice is disabled especially for 2x6
1318 		 * devices, however it is safe to load default
1319 		 * configuration of 3x6 device instead of masking off
1320 		 * corresponding bits because HW ignores bits of a disabled
1321 		 * subslice and drops down to appropriate config. Please
1322 		 * see render_state_setup() in i915_gem_render_state.c for
1323 		 * possible configurations, to avoid duplication they are
1324 		 * not shown here again.
1325 		 */
1326 		*batch++ = GEN9_MEDIA_POOL_STATE;
1327 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1328 		*batch++ = 0x00777000;
1329 		*batch++ = 0;
1330 		*batch++ = 0;
1331 		*batch++ = 0;
1332 	}
1333 
1334 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1335 
1336 	/* Pad to end of cacheline */
1337 	while ((unsigned long)batch % CACHELINE_BYTES)
1338 		*batch++ = MI_NOOP;
1339 
1340 	return batch;
1341 }
1342 
1343 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1344 
1345 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1346 {
1347 	struct drm_i915_gem_object *obj;
1348 	struct i915_vma *vma;
1349 	int err;
1350 
1351 	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1352 	if (IS_ERR(obj))
1353 		return PTR_ERR(obj);
1354 
1355 	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1356 	if (IS_ERR(vma)) {
1357 		err = PTR_ERR(vma);
1358 		goto err;
1359 	}
1360 
1361 	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1362 	if (err)
1363 		goto err;
1364 
1365 	engine->wa_ctx.vma = vma;
1366 	return 0;
1367 
1368 err:
1369 	i915_gem_object_put(obj);
1370 	return err;
1371 }
1372 
1373 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1374 {
1375 	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1376 }
1377 
1378 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1379 
1380 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1381 {
1382 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1383 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1384 					    &wa_ctx->per_ctx };
1385 	wa_bb_func_t wa_bb_fn[2];
1386 	struct page *page;
1387 	void *batch, *batch_ptr;
1388 	unsigned int i;
1389 	int ret;
1390 
1391 	if (WARN_ON(engine->id != RCS || !engine->scratch))
1392 		return -EINVAL;
1393 
1394 	switch (INTEL_GEN(engine->i915)) {
1395 	case 10:
1396 		return 0;
1397 	case 9:
1398 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1399 		wa_bb_fn[1] = NULL;
1400 		break;
1401 	case 8:
1402 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1403 		wa_bb_fn[1] = NULL;
1404 		break;
1405 	default:
1406 		MISSING_CASE(INTEL_GEN(engine->i915));
1407 		return 0;
1408 	}
1409 
1410 	ret = lrc_setup_wa_ctx(engine);
1411 	if (ret) {
1412 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1413 		return ret;
1414 	}
1415 
1416 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1417 	batch = batch_ptr = kmap_atomic(page);
1418 
1419 	/*
1420 	 * Emit the two workaround batch buffers, recording the offset from the
1421 	 * start of the workaround batch buffer object for each and their
1422 	 * respective sizes.
1423 	 */
1424 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1425 		wa_bb[i]->offset = batch_ptr - batch;
1426 		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1427 			ret = -EINVAL;
1428 			break;
1429 		}
1430 		if (wa_bb_fn[i])
1431 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1432 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1433 	}
1434 
1435 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1436 
1437 	kunmap_atomic(batch);
1438 	if (ret)
1439 		lrc_destroy_wa_ctx(engine);
1440 
1441 	return ret;
1442 }
1443 
1444 static u8 gtiir[] = {
1445 	[RCS] = 0,
1446 	[BCS] = 0,
1447 	[VCS] = 1,
1448 	[VCS2] = 1,
1449 	[VECS] = 3,
1450 };
1451 
1452 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1453 {
1454 	struct drm_i915_private *dev_priv = engine->i915;
1455 	struct intel_engine_execlists * const execlists = &engine->execlists;
1456 	int ret;
1457 
1458 	ret = intel_mocs_init_engine(engine);
1459 	if (ret)
1460 		return ret;
1461 
1462 	intel_engine_reset_breadcrumbs(engine);
1463 	intel_engine_init_hangcheck(engine);
1464 
1465 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1466 	I915_WRITE(RING_MODE_GEN7(engine),
1467 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1468 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1469 		   engine->status_page.ggtt_offset);
1470 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1471 
1472 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1473 
1474 	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1475 
1476 	/*
1477 	 * Clear any pending interrupt state.
1478 	 *
1479 	 * We do it twice out of paranoia that some of the IIR are double
1480 	 * buffered, and if we only reset it once there may still be
1481 	 * an interrupt pending.
1482 	 */
1483 	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1484 		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1485 	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1486 		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1487 	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1488 	execlists->csb_head = -1;
1489 	execlists->active = 0;
1490 
1491 	/* After a GPU reset, we may have requests to replay */
1492 	if (!i915_modparams.enable_guc_submission && execlists->first)
1493 		tasklet_schedule(&execlists->irq_tasklet);
1494 
1495 	return 0;
1496 }
1497 
1498 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1499 {
1500 	struct drm_i915_private *dev_priv = engine->i915;
1501 	int ret;
1502 
1503 	ret = gen8_init_common_ring(engine);
1504 	if (ret)
1505 		return ret;
1506 
1507 	/* We need to disable the AsyncFlip performance optimisations in order
1508 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1509 	 * programmed to '1' on all products.
1510 	 *
1511 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1512 	 */
1513 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1514 
1515 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1516 
1517 	return init_workarounds_ring(engine);
1518 }
1519 
1520 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1521 {
1522 	int ret;
1523 
1524 	ret = gen8_init_common_ring(engine);
1525 	if (ret)
1526 		return ret;
1527 
1528 	return init_workarounds_ring(engine);
1529 }
1530 
1531 static void reset_common_ring(struct intel_engine_cs *engine,
1532 			      struct drm_i915_gem_request *request)
1533 {
1534 	struct intel_engine_execlists * const execlists = &engine->execlists;
1535 	struct intel_context *ce;
1536 	unsigned long flags;
1537 
1538 	spin_lock_irqsave(&engine->timeline->lock, flags);
1539 
1540 	/*
1541 	 * Catch up with any missed context-switch interrupts.
1542 	 *
1543 	 * Ideally we would just read the remaining CSB entries now that we
1544 	 * know the gpu is idle. However, the CSB registers are sometimes^W
1545 	 * often trashed across a GPU reset! Instead we have to rely on
1546 	 * guessing the missed context-switch events by looking at what
1547 	 * requests were completed.
1548 	 */
1549 	execlist_cancel_port_requests(execlists);
1550 
1551 	/* Push back any incomplete requests for replay after the reset. */
1552 	unwind_incomplete_requests(engine);
1553 
1554 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1555 
1556 	/* If the request was innocent, we leave the request in the ELSP
1557 	 * and will try to replay it on restarting. The context image may
1558 	 * have been corrupted by the reset, in which case we may have
1559 	 * to service a new GPU hang, but more likely we can continue on
1560 	 * without impact.
1561 	 *
1562 	 * If the request was guilty, we presume the context is corrupt
1563 	 * and have to at least restore the RING register in the context
1564 	 * image back to the expected values to skip over the guilty request.
1565 	 */
1566 	if (!request || request->fence.error != -EIO)
1567 		return;
1568 
1569 	/* We want a simple context + ring to execute the breadcrumb update.
1570 	 * We cannot rely on the context being intact across the GPU hang,
1571 	 * so clear it and rebuild just what we need for the breadcrumb.
1572 	 * All pending requests for this context will be zapped, and any
1573 	 * future request will be after userspace has had the opportunity
1574 	 * to recreate its own state.
1575 	 */
1576 	ce = &request->ctx->engine[engine->id];
1577 	execlists_init_reg_state(ce->lrc_reg_state,
1578 				 request->ctx, engine, ce->ring);
1579 
1580 	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1581 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1582 		i915_ggtt_offset(ce->ring->vma);
1583 	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1584 
1585 	request->ring->head = request->postfix;
1586 	intel_ring_update_space(request->ring);
1587 
1588 	/* Reset WaIdleLiteRestore:bdw,skl as well */
1589 	unwind_wa_tail(request);
1590 }
1591 
1592 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1593 {
1594 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1595 	struct intel_engine_cs *engine = req->engine;
1596 	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1597 	u32 *cs;
1598 	int i;
1599 
1600 	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1601 	if (IS_ERR(cs))
1602 		return PTR_ERR(cs);
1603 
1604 	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1605 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1606 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1607 
1608 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1609 		*cs++ = upper_32_bits(pd_daddr);
1610 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1611 		*cs++ = lower_32_bits(pd_daddr);
1612 	}
1613 
1614 	*cs++ = MI_NOOP;
1615 	intel_ring_advance(req, cs);
1616 
1617 	return 0;
1618 }
1619 
1620 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1621 			      u64 offset, u32 len,
1622 			      const unsigned int flags)
1623 {
1624 	u32 *cs;
1625 	int ret;
1626 
1627 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1628 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1629 	 * but we can't. Force Restore would be a second option, but
1630 	 * it is unsafe in case of lite-restore (because the ctx is
1631 	 * not idle). PML4 is allocated during ppgtt init so this is
1632 	 * not needed in 48-bit.*/
1633 	if (req->ctx->ppgtt &&
1634 	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1635 	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1636 	    !intel_vgpu_active(req->i915)) {
1637 		ret = intel_logical_ring_emit_pdps(req);
1638 		if (ret)
1639 			return ret;
1640 
1641 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1642 	}
1643 
1644 	cs = intel_ring_begin(req, 4);
1645 	if (IS_ERR(cs))
1646 		return PTR_ERR(cs);
1647 
1648 	/*
1649 	 * WaDisableCtxRestoreArbitration:bdw,chv
1650 	 *
1651 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1652 	 * particular all the gen that do not need the w/a at all!), if we
1653 	 * took care to make sure that on every switch into this context
1654 	 * (both ordinary and for preemption) that arbitrartion was enabled
1655 	 * we would be fine. However, there doesn't seem to be a downside to
1656 	 * being paranoid and making sure it is set before each batch and
1657 	 * every context-switch.
1658 	 *
1659 	 * Note that if we fail to enable arbitration before the request
1660 	 * is complete, then we do not see the context-switch interrupt and
1661 	 * the engine hangs (with RING_HEAD == RING_TAIL).
1662 	 *
1663 	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1664 	 */
1665 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1666 
1667 	/* FIXME(BDW): Address space and security selectors. */
1668 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
1669 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1670 		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1671 	*cs++ = lower_32_bits(offset);
1672 	*cs++ = upper_32_bits(offset);
1673 	intel_ring_advance(req, cs);
1674 
1675 	return 0;
1676 }
1677 
1678 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1679 {
1680 	struct drm_i915_private *dev_priv = engine->i915;
1681 	I915_WRITE_IMR(engine,
1682 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1683 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1684 }
1685 
1686 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1687 {
1688 	struct drm_i915_private *dev_priv = engine->i915;
1689 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1690 }
1691 
1692 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1693 {
1694 	u32 cmd, *cs;
1695 
1696 	cs = intel_ring_begin(request, 4);
1697 	if (IS_ERR(cs))
1698 		return PTR_ERR(cs);
1699 
1700 	cmd = MI_FLUSH_DW + 1;
1701 
1702 	/* We always require a command barrier so that subsequent
1703 	 * commands, such as breadcrumb interrupts, are strictly ordered
1704 	 * wrt the contents of the write cache being flushed to memory
1705 	 * (and thus being coherent from the CPU).
1706 	 */
1707 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1708 
1709 	if (mode & EMIT_INVALIDATE) {
1710 		cmd |= MI_INVALIDATE_TLB;
1711 		if (request->engine->id == VCS)
1712 			cmd |= MI_INVALIDATE_BSD;
1713 	}
1714 
1715 	*cs++ = cmd;
1716 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1717 	*cs++ = 0; /* upper addr */
1718 	*cs++ = 0; /* value */
1719 	intel_ring_advance(request, cs);
1720 
1721 	return 0;
1722 }
1723 
1724 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1725 				  u32 mode)
1726 {
1727 	struct intel_engine_cs *engine = request->engine;
1728 	u32 scratch_addr =
1729 		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1730 	bool vf_flush_wa = false, dc_flush_wa = false;
1731 	u32 *cs, flags = 0;
1732 	int len;
1733 
1734 	flags |= PIPE_CONTROL_CS_STALL;
1735 
1736 	if (mode & EMIT_FLUSH) {
1737 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1738 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1739 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1740 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1741 	}
1742 
1743 	if (mode & EMIT_INVALIDATE) {
1744 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1745 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1746 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1747 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1748 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1749 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1750 		flags |= PIPE_CONTROL_QW_WRITE;
1751 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1752 
1753 		/*
1754 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1755 		 * pipe control.
1756 		 */
1757 		if (IS_GEN9(request->i915))
1758 			vf_flush_wa = true;
1759 
1760 		/* WaForGAMHang:kbl */
1761 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1762 			dc_flush_wa = true;
1763 	}
1764 
1765 	len = 6;
1766 
1767 	if (vf_flush_wa)
1768 		len += 6;
1769 
1770 	if (dc_flush_wa)
1771 		len += 12;
1772 
1773 	cs = intel_ring_begin(request, len);
1774 	if (IS_ERR(cs))
1775 		return PTR_ERR(cs);
1776 
1777 	if (vf_flush_wa)
1778 		cs = gen8_emit_pipe_control(cs, 0, 0);
1779 
1780 	if (dc_flush_wa)
1781 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1782 					    0);
1783 
1784 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1785 
1786 	if (dc_flush_wa)
1787 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1788 
1789 	intel_ring_advance(request, cs);
1790 
1791 	return 0;
1792 }
1793 
1794 /*
1795  * Reserve space for 2 NOOPs at the end of each request to be
1796  * used as a workaround for not being allowed to do lite
1797  * restore with HEAD==TAIL (WaIdleLiteRestore).
1798  */
1799 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1800 {
1801 	/* Ensure there's always at least one preemption point per-request. */
1802 	*cs++ = MI_ARB_CHECK;
1803 	*cs++ = MI_NOOP;
1804 	request->wa_tail = intel_ring_offset(request, cs);
1805 }
1806 
1807 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1808 {
1809 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1810 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1811 
1812 	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1813 	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1814 	*cs++ = 0;
1815 	*cs++ = request->global_seqno;
1816 	*cs++ = MI_USER_INTERRUPT;
1817 	*cs++ = MI_NOOP;
1818 	request->tail = intel_ring_offset(request, cs);
1819 	assert_ring_tail_valid(request->ring, request->tail);
1820 
1821 	gen8_emit_wa_tail(request, cs);
1822 }
1823 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1824 
1825 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1826 					u32 *cs)
1827 {
1828 	/* We're using qword write, seqno should be aligned to 8 bytes. */
1829 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1830 
1831 	/* w/a for post sync ops following a GPGPU operation we
1832 	 * need a prior CS_STALL, which is emitted by the flush
1833 	 * following the batch.
1834 	 */
1835 	*cs++ = GFX_OP_PIPE_CONTROL(6);
1836 	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1837 		PIPE_CONTROL_QW_WRITE;
1838 	*cs++ = intel_hws_seqno_address(request->engine);
1839 	*cs++ = 0;
1840 	*cs++ = request->global_seqno;
1841 	/* We're thrashing one dword of HWS. */
1842 	*cs++ = 0;
1843 	*cs++ = MI_USER_INTERRUPT;
1844 	*cs++ = MI_NOOP;
1845 	request->tail = intel_ring_offset(request, cs);
1846 	assert_ring_tail_valid(request->ring, request->tail);
1847 
1848 	gen8_emit_wa_tail(request, cs);
1849 }
1850 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1851 
1852 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1853 {
1854 	int ret;
1855 
1856 	ret = intel_ring_workarounds_emit(req);
1857 	if (ret)
1858 		return ret;
1859 
1860 	ret = intel_rcs_context_init_mocs(req);
1861 	/*
1862 	 * Failing to program the MOCS is non-fatal.The system will not
1863 	 * run at peak performance. So generate an error and carry on.
1864 	 */
1865 	if (ret)
1866 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1867 
1868 	return i915_gem_render_state_emit(req);
1869 }
1870 
1871 /**
1872  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1873  * @engine: Engine Command Streamer.
1874  */
1875 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1876 {
1877 	struct drm_i915_private *dev_priv;
1878 
1879 	/*
1880 	 * Tasklet cannot be active at this point due intel_mark_active/idle
1881 	 * so this is just for documentation.
1882 	 */
1883 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
1884 		tasklet_kill(&engine->execlists.irq_tasklet);
1885 
1886 	dev_priv = engine->i915;
1887 
1888 	if (engine->buffer) {
1889 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1890 	}
1891 
1892 	if (engine->cleanup)
1893 		engine->cleanup(engine);
1894 
1895 	intel_engine_cleanup_common(engine);
1896 
1897 	lrc_destroy_wa_ctx(engine);
1898 	engine->i915 = NULL;
1899 	dev_priv->engine[engine->id] = NULL;
1900 	kfree(engine);
1901 }
1902 
1903 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1904 {
1905 	engine->submit_request = execlists_submit_request;
1906 	engine->cancel_requests = execlists_cancel_requests;
1907 	engine->schedule = execlists_schedule;
1908 	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1909 }
1910 
1911 static void
1912 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1913 {
1914 	/* Default vfuncs which can be overriden by each engine. */
1915 	engine->init_hw = gen8_init_common_ring;
1916 	engine->reset_hw = reset_common_ring;
1917 
1918 	engine->context_pin = execlists_context_pin;
1919 	engine->context_unpin = execlists_context_unpin;
1920 
1921 	engine->request_alloc = execlists_request_alloc;
1922 
1923 	engine->emit_flush = gen8_emit_flush;
1924 	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1925 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1926 
1927 	engine->set_default_submission = execlists_set_default_submission;
1928 
1929 	engine->irq_enable = gen8_logical_ring_enable_irq;
1930 	engine->irq_disable = gen8_logical_ring_disable_irq;
1931 	engine->emit_bb_start = gen8_emit_bb_start;
1932 }
1933 
1934 static inline void
1935 logical_ring_default_irqs(struct intel_engine_cs *engine)
1936 {
1937 	unsigned shift = engine->irq_shift;
1938 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1939 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1940 }
1941 
1942 static void
1943 logical_ring_setup(struct intel_engine_cs *engine)
1944 {
1945 	struct drm_i915_private *dev_priv = engine->i915;
1946 	enum forcewake_domains fw_domains;
1947 
1948 	intel_engine_setup_common(engine);
1949 
1950 	/* Intentionally left blank. */
1951 	engine->buffer = NULL;
1952 
1953 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1954 						    RING_ELSP(engine),
1955 						    FW_REG_WRITE);
1956 
1957 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1958 						     RING_CONTEXT_STATUS_PTR(engine),
1959 						     FW_REG_READ | FW_REG_WRITE);
1960 
1961 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1962 						     RING_CONTEXT_STATUS_BUF_BASE(engine),
1963 						     FW_REG_READ);
1964 
1965 	engine->execlists.fw_domains = fw_domains;
1966 
1967 	tasklet_init(&engine->execlists.irq_tasklet,
1968 		     intel_lrc_irq_handler, (unsigned long)engine);
1969 
1970 	logical_ring_default_vfuncs(engine);
1971 	logical_ring_default_irqs(engine);
1972 }
1973 
1974 static int logical_ring_init(struct intel_engine_cs *engine)
1975 {
1976 	int ret;
1977 
1978 	ret = intel_engine_init_common(engine);
1979 	if (ret)
1980 		goto error;
1981 
1982 	return 0;
1983 
1984 error:
1985 	intel_logical_ring_cleanup(engine);
1986 	return ret;
1987 }
1988 
1989 int logical_render_ring_init(struct intel_engine_cs *engine)
1990 {
1991 	struct drm_i915_private *dev_priv = engine->i915;
1992 	int ret;
1993 
1994 	logical_ring_setup(engine);
1995 
1996 	if (HAS_L3_DPF(dev_priv))
1997 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1998 
1999 	/* Override some for render ring. */
2000 	if (INTEL_GEN(dev_priv) >= 9)
2001 		engine->init_hw = gen9_init_render_ring;
2002 	else
2003 		engine->init_hw = gen8_init_render_ring;
2004 	engine->init_context = gen8_init_rcs_context;
2005 	engine->emit_flush = gen8_emit_flush_render;
2006 	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
2007 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
2008 
2009 	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2010 	if (ret)
2011 		return ret;
2012 
2013 	ret = intel_init_workaround_bb(engine);
2014 	if (ret) {
2015 		/*
2016 		 * We continue even if we fail to initialize WA batch
2017 		 * because we only expect rare glitches but nothing
2018 		 * critical to prevent us from using GPU
2019 		 */
2020 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2021 			  ret);
2022 	}
2023 
2024 	return logical_ring_init(engine);
2025 }
2026 
2027 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2028 {
2029 	logical_ring_setup(engine);
2030 
2031 	return logical_ring_init(engine);
2032 }
2033 
2034 static u32
2035 make_rpcs(struct drm_i915_private *dev_priv)
2036 {
2037 	u32 rpcs = 0;
2038 
2039 	/*
2040 	 * No explicit RPCS request is needed to ensure full
2041 	 * slice/subslice/EU enablement prior to Gen9.
2042 	*/
2043 	if (INTEL_GEN(dev_priv) < 9)
2044 		return 0;
2045 
2046 	/*
2047 	 * Starting in Gen9, render power gating can leave
2048 	 * slice/subslice/EU in a partially enabled state. We
2049 	 * must make an explicit request through RPCS for full
2050 	 * enablement.
2051 	*/
2052 	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2053 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2054 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2055 			GEN8_RPCS_S_CNT_SHIFT;
2056 		rpcs |= GEN8_RPCS_ENABLE;
2057 	}
2058 
2059 	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2060 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2061 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2062 			GEN8_RPCS_SS_CNT_SHIFT;
2063 		rpcs |= GEN8_RPCS_ENABLE;
2064 	}
2065 
2066 	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2067 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2068 			GEN8_RPCS_EU_MIN_SHIFT;
2069 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2070 			GEN8_RPCS_EU_MAX_SHIFT;
2071 		rpcs |= GEN8_RPCS_ENABLE;
2072 	}
2073 
2074 	return rpcs;
2075 }
2076 
2077 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2078 {
2079 	u32 indirect_ctx_offset;
2080 
2081 	switch (INTEL_GEN(engine->i915)) {
2082 	default:
2083 		MISSING_CASE(INTEL_GEN(engine->i915));
2084 		/* fall through */
2085 	case 10:
2086 		indirect_ctx_offset =
2087 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2088 		break;
2089 	case 9:
2090 		indirect_ctx_offset =
2091 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2092 		break;
2093 	case 8:
2094 		indirect_ctx_offset =
2095 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2096 		break;
2097 	}
2098 
2099 	return indirect_ctx_offset;
2100 }
2101 
2102 static void execlists_init_reg_state(u32 *regs,
2103 				     struct i915_gem_context *ctx,
2104 				     struct intel_engine_cs *engine,
2105 				     struct intel_ring *ring)
2106 {
2107 	struct drm_i915_private *dev_priv = engine->i915;
2108 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2109 	u32 base = engine->mmio_base;
2110 	bool rcs = engine->id == RCS;
2111 
2112 	/* A context is actually a big batch buffer with several
2113 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2114 	 * values we are setting here are only for the first context restore:
2115 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
2116 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2117 	 * we are not initializing here).
2118 	 */
2119 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2120 				 MI_LRI_FORCE_POSTED;
2121 
2122 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2123 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2124 				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2125 				   (HAS_RESOURCE_STREAMER(dev_priv) ?
2126 				   CTX_CTRL_RS_CTX_ENABLE : 0)));
2127 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2128 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2129 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2130 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2131 		RING_CTL_SIZE(ring->size) | RING_VALID);
2132 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2133 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2134 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2135 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2136 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2137 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2138 	if (rcs) {
2139 		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2140 
2141 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2142 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2143 			RING_INDIRECT_CTX_OFFSET(base), 0);
2144 		if (wa_ctx->indirect_ctx.size) {
2145 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2146 
2147 			regs[CTX_RCS_INDIRECT_CTX + 1] =
2148 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
2149 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2150 
2151 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2152 				intel_lr_indirect_ctx_offset(engine) << 6;
2153 		}
2154 
2155 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2156 		if (wa_ctx->per_ctx.size) {
2157 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2158 
2159 			regs[CTX_BB_PER_CTX_PTR + 1] =
2160 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2161 		}
2162 	}
2163 
2164 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2165 
2166 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2167 	/* PDP values well be assigned later if needed */
2168 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2169 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2170 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2171 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2172 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2173 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2174 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2175 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2176 
2177 	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2178 		/* 64b PPGTT (48bit canonical)
2179 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2180 		 * other PDP Descriptors are ignored.
2181 		 */
2182 		ASSIGN_CTX_PML4(ppgtt, regs);
2183 	}
2184 
2185 	if (rcs) {
2186 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2187 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2188 			make_rpcs(dev_priv));
2189 
2190 		i915_oa_init_reg_state(engine, ctx, regs);
2191 	}
2192 }
2193 
2194 static int
2195 populate_lr_context(struct i915_gem_context *ctx,
2196 		    struct drm_i915_gem_object *ctx_obj,
2197 		    struct intel_engine_cs *engine,
2198 		    struct intel_ring *ring)
2199 {
2200 	void *vaddr;
2201 	int ret;
2202 
2203 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2204 	if (ret) {
2205 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2206 		return ret;
2207 	}
2208 
2209 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2210 	if (IS_ERR(vaddr)) {
2211 		ret = PTR_ERR(vaddr);
2212 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2213 		return ret;
2214 	}
2215 	ctx_obj->mm.dirty = true;
2216 
2217 	/* The second page of the context object contains some fields which must
2218 	 * be set up prior to the first execution. */
2219 
2220 	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2221 				 ctx, engine, ring);
2222 
2223 	i915_gem_object_unpin_map(ctx_obj);
2224 
2225 	return 0;
2226 }
2227 
2228 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2229 					    struct intel_engine_cs *engine)
2230 {
2231 	struct drm_i915_gem_object *ctx_obj;
2232 	struct intel_context *ce = &ctx->engine[engine->id];
2233 	struct i915_vma *vma;
2234 	uint32_t context_size;
2235 	struct intel_ring *ring;
2236 	int ret;
2237 
2238 	WARN_ON(ce->state);
2239 
2240 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2241 
2242 	/*
2243 	 * Before the actual start of the context image, we insert a few pages
2244 	 * for our own use and for sharing with the GuC.
2245 	 */
2246 	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2247 
2248 	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2249 	if (IS_ERR(ctx_obj)) {
2250 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2251 		return PTR_ERR(ctx_obj);
2252 	}
2253 
2254 	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2255 	if (IS_ERR(vma)) {
2256 		ret = PTR_ERR(vma);
2257 		goto error_deref_obj;
2258 	}
2259 
2260 	ring = intel_engine_create_ring(engine, ctx->ring_size);
2261 	if (IS_ERR(ring)) {
2262 		ret = PTR_ERR(ring);
2263 		goto error_deref_obj;
2264 	}
2265 
2266 	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2267 	if (ret) {
2268 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2269 		goto error_ring_free;
2270 	}
2271 
2272 	ce->ring = ring;
2273 	ce->state = vma;
2274 	ce->initialised |= engine->init_context == NULL;
2275 
2276 	return 0;
2277 
2278 error_ring_free:
2279 	intel_ring_free(ring);
2280 error_deref_obj:
2281 	i915_gem_object_put(ctx_obj);
2282 	return ret;
2283 }
2284 
2285 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2286 {
2287 	struct intel_engine_cs *engine;
2288 	struct i915_gem_context *ctx;
2289 	enum intel_engine_id id;
2290 
2291 	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2292 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2293 	 * that stored in context. As we only write new commands from
2294 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2295 	 * starts reading from its RING_HEAD from the context, it may try to
2296 	 * execute that junk and die.
2297 	 *
2298 	 * So to avoid that we reset the context images upon resume. For
2299 	 * simplicity, we just zero everything out.
2300 	 */
2301 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2302 		for_each_engine(engine, dev_priv, id) {
2303 			struct intel_context *ce = &ctx->engine[engine->id];
2304 			u32 *reg;
2305 
2306 			if (!ce->state)
2307 				continue;
2308 
2309 			reg = i915_gem_object_pin_map(ce->state->obj,
2310 						      I915_MAP_WB);
2311 			if (WARN_ON(IS_ERR(reg)))
2312 				continue;
2313 
2314 			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2315 			reg[CTX_RING_HEAD+1] = 0;
2316 			reg[CTX_RING_TAIL+1] = 0;
2317 
2318 			ce->state->obj->mm.dirty = true;
2319 			i915_gem_object_unpin_map(ce->state->obj);
2320 
2321 			intel_ring_reset(ce->ring, 0);
2322 		}
2323 	}
2324 }
2325