xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 7b1120e5)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define CTX_LRI_HEADER_0		0x01
160 #define CTX_CONTEXT_CONTROL		0x02
161 #define CTX_RING_HEAD			0x04
162 #define CTX_RING_TAIL			0x06
163 #define CTX_RING_BUFFER_START		0x08
164 #define CTX_RING_BUFFER_CONTROL		0x0a
165 #define CTX_BB_HEAD_U			0x0c
166 #define CTX_BB_HEAD_L			0x0e
167 #define CTX_BB_STATE			0x10
168 #define CTX_SECOND_BB_HEAD_U		0x12
169 #define CTX_SECOND_BB_HEAD_L		0x14
170 #define CTX_SECOND_BB_STATE		0x16
171 #define CTX_BB_PER_CTX_PTR		0x18
172 #define CTX_RCS_INDIRECT_CTX		0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
174 #define CTX_LRI_HEADER_1		0x21
175 #define CTX_CTX_TIMESTAMP		0x22
176 #define CTX_PDP3_UDW			0x24
177 #define CTX_PDP3_LDW			0x26
178 #define CTX_PDP2_UDW			0x28
179 #define CTX_PDP2_LDW			0x2a
180 #define CTX_PDP1_UDW			0x2c
181 #define CTX_PDP1_LDW			0x2e
182 #define CTX_PDP0_UDW			0x30
183 #define CTX_PDP0_LDW			0x32
184 #define CTX_LRI_HEADER_2		0x41
185 #define CTX_R_PWR_CLK_STATE		0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
187 
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 	(reg_state)[(pos)+1] = (val); \
197 } while (0)
198 
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204 
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209 
210 enum {
211 	ADVANCED_CONTEXT = 0,
212 	LEGACY_32B_CONTEXT,
213 	ADVANCED_AD_CONTEXT,
214 	LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218 		LEGACY_64B_CONTEXT :\
219 		LEGACY_32B_CONTEXT)
220 enum {
221 	FAULT_AND_HANG = 0,
222 	FAULT_AND_HALT, /* Debug only */
223 	FAULT_AND_STREAM,
224 	FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
229 
230 static int intel_lr_context_pin(struct intel_context *ctx,
231 				struct intel_engine_cs *engine);
232 
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 	WARN_ON(i915.enable_ppgtt == -1);
246 
247 	/* On platforms with execlist available, vGPU will only
248 	 * support execlist mode, no ring buffer mode.
249 	 */
250 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 		return 1;
252 
253 	if (INTEL_INFO(dev)->gen >= 9)
254 		return 1;
255 
256 	if (enable_execlists == 0)
257 		return 0;
258 
259 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 	    i915.use_mmio_flip >= 0)
261 		return 1;
262 
263 	return 0;
264 }
265 
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 	struct drm_device *dev = engine->dev;
270 
271 	if (IS_GEN8(dev) || IS_GEN9(dev))
272 		engine->idle_lite_restore_wa = ~0;
273 
274 	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275 					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276 					(engine->id == VCS || engine->id == VCS2);
277 
278 	engine->ctx_desc_template = GEN8_CTX_VALID;
279 	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 	if (IS_GEN8(dev))
282 		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284 
285 	/* TODO: WaDisableLiteRestore when we start using semaphore
286 	 * signalling between Command Streamers */
287 	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288 
289 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 	if (engine->disable_lite_restore_wa)
292 		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294 
295 /**
296  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297  * 					  descriptor for a pinned context
298  *
299  * @ctx: Context to work on
300  * @ring: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB:
308  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
309  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
310  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
311  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
312  */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315 				   struct intel_engine_cs *engine)
316 {
317 	uint64_t lrca, desc;
318 
319 	lrca = ctx->engine[engine->id].lrc_vma->node.start +
320 	       LRC_PPHWSP_PN * PAGE_SIZE;
321 
322 	desc = engine->ctx_desc_template;			   /* bits  0-11 */
323 	desc |= lrca;					   /* bits 12-31 */
324 	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325 
326 	ctx->engine[engine->id].lrc_desc = desc;
327 }
328 
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330 				     struct intel_engine_cs *engine)
331 {
332 	return ctx->engine[engine->id].lrc_desc;
333 }
334 
335 /**
336  * intel_execlists_ctx_id() - get the Execlists Context ID
337  * @ctx: Context to get the ID for
338  * @ring: Engine to get the ID for
339  *
340  * Do not confuse with ctx->id! Unfortunately we have a name overload
341  * here: the old context ID we pass to userspace as a handler so that
342  * they can refer to a context, and the new context ID we pass to the
343  * ELSP so that the GPU can inform us of the context status via
344  * interrupts.
345  *
346  * The context ID is a portion of the context descriptor, so we can
347  * just extract the required part from the cached descriptor.
348  *
349  * Return: 20-bits globally unique context ID.
350  */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352 			   struct intel_engine_cs *engine)
353 {
354 	return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356 
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 				 struct drm_i915_gem_request *rq1)
359 {
360 
361 	struct intel_engine_cs *engine = rq0->engine;
362 	struct drm_device *dev = engine->dev;
363 	struct drm_i915_private *dev_priv = dev->dev_private;
364 	uint64_t desc[2];
365 
366 	if (rq1) {
367 		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 		rq1->elsp_submitted++;
369 	} else {
370 		desc[1] = 0;
371 	}
372 
373 	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374 	rq0->elsp_submitted++;
375 
376 	/* You must always write both descriptors in the order below. */
377 	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379 
380 	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381 	/* The context is automatically loaded after the following */
382 	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383 
384 	/* ELSP is a wo register, use another nearby reg for posting */
385 	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387 
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396 
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399 	struct intel_engine_cs *engine = rq->engine;
400 	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401 	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402 
403 	reg_state[CTX_RING_TAIL+1] = rq->tail;
404 
405 	/* True 32b PPGTT with dynamic page allocation: update PDP
406 	 * registers and point the unallocated PDPs to scratch page.
407 	 * PML4 is allocated during ppgtt init, so this is not needed
408 	 * in 48-bit mode.
409 	 */
410 	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 		execlists_update_context_pdps(ppgtt, reg_state);
412 }
413 
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 				      struct drm_i915_gem_request *rq1)
416 {
417 	struct drm_i915_private *dev_priv = rq0->i915;
418 	unsigned int fw_domains = rq0->engine->fw_domains;
419 
420 	execlists_update_context(rq0);
421 
422 	if (rq1)
423 		execlists_update_context(rq1);
424 
425 	spin_lock_irq(&dev_priv->uncore.lock);
426 	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427 
428 	execlists_elsp_write(rq0, rq1);
429 
430 	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431 	spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433 
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436 	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437 	struct drm_i915_gem_request *cursor, *tmp;
438 
439 	assert_spin_locked(&engine->execlist_lock);
440 
441 	/*
442 	 * If irqs are not active generate a warning as batches that finish
443 	 * without the irqs may get lost and a GPU Hang may occur.
444 	 */
445 	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446 
447 	/* Try to read in pairs */
448 	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 				 execlist_link) {
450 		if (!req0) {
451 			req0 = cursor;
452 		} else if (req0->ctx == cursor->ctx) {
453 			/* Same ctx: ignore first request, as second request
454 			 * will update tail past first request's workload */
455 			cursor->elsp_submitted = req0->elsp_submitted;
456 			list_move_tail(&req0->execlist_link,
457 				       &engine->execlist_retired_req_list);
458 			req0 = cursor;
459 		} else {
460 			req1 = cursor;
461 			WARN_ON(req1->elsp_submitted);
462 			break;
463 		}
464 	}
465 
466 	if (unlikely(!req0))
467 		return;
468 
469 	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470 		/*
471 		 * WaIdleLiteRestore: make sure we never cause a lite restore
472 		 * with HEAD==TAIL.
473 		 *
474 		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 		 * resubmit the request. See gen8_emit_request() for where we
476 		 * prepare the padding after the end of the request.
477 		 */
478 		struct intel_ringbuffer *ringbuf;
479 
480 		ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 		req0->tail += 8;
482 		req0->tail &= ringbuf->size - 1;
483 	}
484 
485 	execlists_submit_requests(req0, req1);
486 }
487 
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491 	struct drm_i915_gem_request *head_req;
492 
493 	assert_spin_locked(&engine->execlist_lock);
494 
495 	head_req = list_first_entry_or_null(&engine->execlist_queue,
496 					    struct drm_i915_gem_request,
497 					    execlist_link);
498 
499 	if (!head_req)
500 		return 0;
501 
502 	if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 		return 0;
504 
505 	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506 
507 	if (--head_req->elsp_submitted > 0)
508 		return 0;
509 
510 	list_move_tail(&head_req->execlist_link,
511 		       &engine->execlist_retired_req_list);
512 
513 	return 1;
514 }
515 
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518 		   u32 *context_id)
519 {
520 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
521 	u32 status;
522 
523 	read_pointer %= GEN8_CSB_ENTRIES;
524 
525 	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526 
527 	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 		return 0;
529 
530 	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 							      read_pointer));
532 
533 	return status;
534 }
535 
536 /**
537  * intel_lrc_irq_handler() - handle Context Switch interrupts
538  * @engine: Engine Command Streamer to handle.
539  *
540  * Check the unread Context Status Buffers and manage the submission of new
541  * contexts to the ELSP accordingly.
542  */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
547 	u32 status_pointer;
548 	unsigned int read_pointer, write_pointer;
549 	u32 csb[GEN8_CSB_ENTRIES][2];
550 	unsigned int csb_read = 0, i;
551 	unsigned int submit_contexts = 0;
552 
553 	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554 
555 	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556 
557 	read_pointer = engine->next_context_status_buffer;
558 	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559 	if (read_pointer > write_pointer)
560 		write_pointer += GEN8_CSB_ENTRIES;
561 
562 	while (read_pointer < write_pointer) {
563 		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 			break;
565 		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 						      &csb[csb_read][1]);
567 		csb_read++;
568 	}
569 
570 	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571 
572 	/* Update the read pointer to the old write pointer. Manual ringbuffer
573 	 * management ftw </sarcasm> */
574 	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 				    engine->next_context_status_buffer << 8));
577 
578 	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 
580 	lockmgr(&engine->execlist_lock, LK_EXCLUSIVE);
581 
582 	for (i = 0; i < csb_read; i++) {
583 		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 				if (execlists_check_remove_request(engine, csb[i][1]))
586 					WARN(1, "Lite Restored request removed from queue\n");
587 			} else
588 				WARN(1, "Preemption without Lite Restore\n");
589 		}
590 
591 		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 			submit_contexts +=
594 				execlists_check_remove_request(engine, csb[i][1]);
595 	}
596 
597 	if (submit_contexts) {
598 		if (!engine->disable_lite_restore_wa ||
599 		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 			execlists_context_unqueue(engine);
601 	}
602 
603 	lockmgr(&engine->execlist_lock, LK_RELEASE);
604 
605 	if (unlikely(submit_contexts > 2))
606 		DRM_ERROR("More than two context complete events?\n");
607 }
608 
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611 	struct intel_engine_cs *engine = request->engine;
612 	struct drm_i915_gem_request *cursor;
613 	int num_elements = 0;
614 
615 	if (request->ctx != request->i915->kernel_context)
616 		intel_lr_context_pin(request->ctx, engine);
617 
618 	i915_gem_request_reference(request);
619 
620 	spin_lock_bh(&engine->execlist_lock);
621 
622 	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 		if (++num_elements > 2)
624 			break;
625 
626 	if (num_elements > 2) {
627 		struct drm_i915_gem_request *tail_req;
628 
629 		tail_req = list_last_entry(&engine->execlist_queue,
630 					   struct drm_i915_gem_request,
631 					   execlist_link);
632 
633 		if (request->ctx == tail_req->ctx) {
634 			WARN(tail_req->elsp_submitted != 0,
635 				"More than 2 already-submitted reqs queued\n");
636 			list_move_tail(&tail_req->execlist_link,
637 				       &engine->execlist_retired_req_list);
638 		}
639 	}
640 
641 	list_add_tail(&request->execlist_link, &engine->execlist_queue);
642 	if (num_elements == 0)
643 		execlists_context_unqueue(engine);
644 
645 	spin_unlock_bh(&engine->execlist_lock);
646 }
647 
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650 	struct intel_engine_cs *engine = req->engine;
651 	uint32_t flush_domains;
652 	int ret;
653 
654 	flush_domains = 0;
655 	if (engine->gpu_caches_dirty)
656 		flush_domains = I915_GEM_GPU_DOMAINS;
657 
658 	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 	if (ret)
660 		return ret;
661 
662 	engine->gpu_caches_dirty = false;
663 	return 0;
664 }
665 
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 				 struct list_head *vmas)
668 {
669 	const unsigned other_rings = ~intel_engine_flag(req->engine);
670 	struct i915_vma *vma;
671 	uint32_t flush_domains = 0;
672 	bool flush_chipset = false;
673 	int ret;
674 
675 	list_for_each_entry(vma, vmas, exec_list) {
676 		struct drm_i915_gem_object *obj = vma->obj;
677 
678 		if (obj->active & other_rings) {
679 			ret = i915_gem_object_sync(obj, req->engine, &req);
680 			if (ret)
681 				return ret;
682 		}
683 
684 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 			flush_chipset |= i915_gem_clflush_object(obj, false);
686 
687 		flush_domains |= obj->base.write_domain;
688 	}
689 
690 	if (flush_domains & I915_GEM_DOMAIN_GTT)
691 		wmb();
692 
693 	/* Unconditionally invalidate gpu caches and ensure that we do flush
694 	 * any residual writes from the previous batch.
695 	 */
696 	return logical_ring_invalidate_all_caches(req);
697 }
698 
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701 	int ret = 0;
702 
703 	request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704 
705 	if (i915.enable_guc_submission) {
706 		/*
707 		 * Check that the GuC has space for the request before
708 		 * going any further, as the i915_add_request() call
709 		 * later on mustn't fail ...
710 		 */
711 		struct intel_guc *guc = &request->i915->guc;
712 
713 		ret = i915_guc_wq_check_space(guc->execbuf_client);
714 		if (ret)
715 			return ret;
716 	}
717 
718 	if (request->ctx != request->i915->kernel_context)
719 		ret = intel_lr_context_pin(request->ctx, request->engine);
720 
721 	return ret;
722 }
723 
724 /*
725  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
726  * @request: Request to advance the logical ringbuffer of.
727  *
728  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
729  * really happens during submission is that the context and current tail will be placed
730  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
731  * point, the tail *inside* the context is updated and the ELSP written to.
732  */
733 static int
734 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
735 {
736 	struct intel_ringbuffer *ringbuf = request->ringbuf;
737 	struct drm_i915_private *dev_priv = request->i915;
738 	struct intel_engine_cs *engine = request->engine;
739 
740 	intel_logical_ring_advance(ringbuf);
741 	request->tail = ringbuf->tail;
742 
743 	/*
744 	 * Here we add two extra NOOPs as padding to avoid
745 	 * lite restore of a context with HEAD==TAIL.
746 	 *
747 	 * Caller must reserve WA_TAIL_DWORDS for us!
748 	 */
749 	intel_logical_ring_emit(ringbuf, MI_NOOP);
750 	intel_logical_ring_emit(ringbuf, MI_NOOP);
751 	intel_logical_ring_advance(ringbuf);
752 
753 	if (intel_engine_stopped(engine))
754 		return 0;
755 
756 	if (engine->last_context != request->ctx) {
757 		if (engine->last_context)
758 			intel_lr_context_unpin(engine->last_context, engine);
759 		if (request->ctx != request->i915->kernel_context) {
760 			intel_lr_context_pin(request->ctx, engine);
761 			engine->last_context = request->ctx;
762 		} else {
763 			engine->last_context = NULL;
764 		}
765 	}
766 
767 	if (dev_priv->guc.execbuf_client)
768 		i915_guc_submit(dev_priv->guc.execbuf_client, request);
769 	else
770 		execlists_context_queue(request);
771 
772 	return 0;
773 }
774 
775 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
776 {
777 	/*
778 	 * The first call merely notes the reserve request and is common for
779 	 * all back ends. The subsequent localised _begin() call actually
780 	 * ensures that the reservation is available. Without the begin, if
781 	 * the request creator immediately submitted the request without
782 	 * adding any commands to it then there might not actually be
783 	 * sufficient room for the submission commands.
784 	 */
785 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
786 
787 	return intel_ring_begin(request, 0);
788 }
789 
790 /**
791  * execlists_submission() - submit a batchbuffer for execution, Execlists style
792  * @dev: DRM device.
793  * @file: DRM file.
794  * @ring: Engine Command Streamer to submit to.
795  * @ctx: Context to employ for this submission.
796  * @args: execbuffer call arguments.
797  * @vmas: list of vmas.
798  * @batch_obj: the batchbuffer to submit.
799  * @exec_start: batchbuffer start virtual address pointer.
800  * @dispatch_flags: translated execbuffer call flags.
801  *
802  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
803  * away the submission details of the execbuffer ioctl call.
804  *
805  * Return: non-zero if the submission fails.
806  */
807 int intel_execlists_submission(struct i915_execbuffer_params *params,
808 			       struct drm_i915_gem_execbuffer2 *args,
809 			       struct list_head *vmas)
810 {
811 	struct drm_device       *dev = params->dev;
812 	struct intel_engine_cs *engine = params->engine;
813 	struct drm_i915_private *dev_priv = dev->dev_private;
814 	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
815 	u64 exec_start;
816 	int instp_mode;
817 	u32 instp_mask;
818 	int ret;
819 
820 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
821 	instp_mask = I915_EXEC_CONSTANTS_MASK;
822 	switch (instp_mode) {
823 	case I915_EXEC_CONSTANTS_REL_GENERAL:
824 	case I915_EXEC_CONSTANTS_ABSOLUTE:
825 	case I915_EXEC_CONSTANTS_REL_SURFACE:
826 		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
827 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
828 			return -EINVAL;
829 		}
830 
831 		if (instp_mode != dev_priv->relative_constants_mode) {
832 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
833 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
834 				return -EINVAL;
835 			}
836 
837 			/* The HW changed the meaning on this bit on gen6 */
838 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
839 		}
840 		break;
841 	default:
842 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
843 		return -EINVAL;
844 	}
845 
846 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
847 		DRM_DEBUG("sol reset is gen7 only\n");
848 		return -EINVAL;
849 	}
850 
851 	ret = execlists_move_to_gpu(params->request, vmas);
852 	if (ret)
853 		return ret;
854 
855 	if (engine == &dev_priv->engine[RCS] &&
856 	    instp_mode != dev_priv->relative_constants_mode) {
857 		ret = intel_ring_begin(params->request, 4);
858 		if (ret)
859 			return ret;
860 
861 		intel_logical_ring_emit(ringbuf, MI_NOOP);
862 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
863 		intel_logical_ring_emit_reg(ringbuf, INSTPM);
864 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
865 		intel_logical_ring_advance(ringbuf);
866 
867 		dev_priv->relative_constants_mode = instp_mode;
868 	}
869 
870 	exec_start = params->batch_obj_vm_offset +
871 		     args->batch_start_offset;
872 
873 	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
874 	if (ret)
875 		return ret;
876 
877 	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
878 
879 	i915_gem_execbuffer_move_to_active(vmas, params->request);
880 
881 	return 0;
882 }
883 
884 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
885 {
886 	struct drm_i915_gem_request *req, *tmp;
887 	struct list_head retired_list;
888 
889 	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
890 	if (list_empty(&engine->execlist_retired_req_list))
891 		return;
892 
893 	INIT_LIST_HEAD(&retired_list);
894 	spin_lock_bh(&engine->execlist_lock);
895 	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
896 	spin_unlock_bh(&engine->execlist_lock);
897 
898 	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
899 		struct intel_context *ctx = req->ctx;
900 		struct drm_i915_gem_object *ctx_obj =
901 				ctx->engine[engine->id].state;
902 
903 		if (ctx_obj && (ctx != req->i915->kernel_context))
904 			intel_lr_context_unpin(ctx, engine);
905 
906 		list_del(&req->execlist_link);
907 		i915_gem_request_unreference(req);
908 	}
909 }
910 
911 void intel_logical_ring_stop(struct intel_engine_cs *engine)
912 {
913 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
914 	int ret;
915 
916 	if (!intel_engine_initialized(engine))
917 		return;
918 
919 	ret = intel_engine_idle(engine);
920 	if (ret)
921 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
922 			  engine->name, ret);
923 
924 	/* TODO: Is this correct with Execlists enabled? */
925 	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
926 	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
927 		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
928 		return;
929 	}
930 	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
931 }
932 
933 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
934 {
935 	struct intel_engine_cs *engine = req->engine;
936 	int ret;
937 
938 	if (!engine->gpu_caches_dirty)
939 		return 0;
940 
941 	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
942 	if (ret)
943 		return ret;
944 
945 	engine->gpu_caches_dirty = false;
946 	return 0;
947 }
948 
949 static int intel_lr_context_do_pin(struct intel_context *ctx,
950 				   struct intel_engine_cs *engine)
951 {
952 	struct drm_device *dev = engine->dev;
953 	struct drm_i915_private *dev_priv = dev->dev_private;
954 	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
955 	struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
956 	char *vaddr;
957 	u32 *lrc_reg_state;
958 	int ret;
959 
960 	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
961 
962 	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
963 			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
964 	if (ret)
965 		return ret;
966 
967 	vaddr = i915_gem_object_pin_map(ctx_obj);
968 	if (IS_ERR(vaddr)) {
969 		ret = PTR_ERR(vaddr);
970 		goto unpin_ctx_obj;
971 	}
972 
973 	lrc_reg_state = (u32 *)(vaddr + LRC_STATE_PN * PAGE_SIZE);
974 
975 	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
976 	if (ret)
977 		goto unpin_map;
978 
979 	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
980 	intel_lr_context_descriptor_update(ctx, engine);
981 	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
982 	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
983 	ctx_obj->dirty = true;
984 
985 	/* Invalidate GuC TLB. */
986 	if (i915.enable_guc_submission)
987 		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
988 
989 	return ret;
990 
991 unpin_map:
992 	i915_gem_object_unpin_map(ctx_obj);
993 unpin_ctx_obj:
994 	i915_gem_object_ggtt_unpin(ctx_obj);
995 
996 	return ret;
997 }
998 
999 static int intel_lr_context_pin(struct intel_context *ctx,
1000 				struct intel_engine_cs *engine)
1001 {
1002 	int ret = 0;
1003 
1004 	if (ctx->engine[engine->id].pin_count++ == 0) {
1005 		ret = intel_lr_context_do_pin(ctx, engine);
1006 		if (ret)
1007 			goto reset_pin_count;
1008 
1009 		i915_gem_context_reference(ctx);
1010 	}
1011 	return ret;
1012 
1013 reset_pin_count:
1014 	ctx->engine[engine->id].pin_count = 0;
1015 	return ret;
1016 }
1017 
1018 void intel_lr_context_unpin(struct intel_context *ctx,
1019 			    struct intel_engine_cs *engine)
1020 {
1021 	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1022 
1023 	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1024 	if (--ctx->engine[engine->id].pin_count == 0) {
1025 		i915_gem_object_unpin_map(ctx_obj);
1026 		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1027 		i915_gem_object_ggtt_unpin(ctx_obj);
1028 		ctx->engine[engine->id].lrc_vma = NULL;
1029 		ctx->engine[engine->id].lrc_desc = 0;
1030 		ctx->engine[engine->id].lrc_reg_state = NULL;
1031 
1032 		i915_gem_context_unreference(ctx);
1033 	}
1034 }
1035 
1036 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1037 {
1038 	int ret, i;
1039 	struct intel_engine_cs *engine = req->engine;
1040 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1041 	struct drm_device *dev = engine->dev;
1042 	struct drm_i915_private *dev_priv = dev->dev_private;
1043 	struct i915_workarounds *w = &dev_priv->workarounds;
1044 
1045 	if (w->count == 0)
1046 		return 0;
1047 
1048 	engine->gpu_caches_dirty = true;
1049 	ret = logical_ring_flush_all_caches(req);
1050 	if (ret)
1051 		return ret;
1052 
1053 	ret = intel_ring_begin(req, w->count * 2 + 2);
1054 	if (ret)
1055 		return ret;
1056 
1057 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1058 	for (i = 0; i < w->count; i++) {
1059 		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1060 		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1061 	}
1062 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1063 
1064 	intel_logical_ring_advance(ringbuf);
1065 
1066 	engine->gpu_caches_dirty = true;
1067 	ret = logical_ring_flush_all_caches(req);
1068 	if (ret)
1069 		return ret;
1070 
1071 	return 0;
1072 }
1073 
1074 #define wa_ctx_emit(batch, index, cmd)					\
1075 	do {								\
1076 		int __index = (index)++;				\
1077 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1078 			return -ENOSPC;					\
1079 		}							\
1080 		batch[__index] = (cmd);					\
1081 	} while (0)
1082 
1083 #define wa_ctx_emit_reg(batch, index, reg) \
1084 	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1085 
1086 /*
1087  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1088  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1089  * but there is a slight complication as this is applied in WA batch where the
1090  * values are only initialized once so we cannot take register value at the
1091  * beginning and reuse it further; hence we save its value to memory, upload a
1092  * constant value with bit21 set and then we restore it back with the saved value.
1093  * To simplify the WA, a constant value is formed by using the default value
1094  * of this register. This shouldn't be a problem because we are only modifying
1095  * it for a short period and this batch in non-premptible. We can ofcourse
1096  * use additional instructions that read the actual value of the register
1097  * at that time and set our bit of interest but it makes the WA complicated.
1098  *
1099  * This WA is also required for Gen9 so extracting as a function avoids
1100  * code duplication.
1101  */
1102 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1103 						uint32_t *const batch,
1104 						uint32_t index)
1105 {
1106 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1107 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1108 
1109 	/*
1110 	 * WaDisableLSQCROPERFforOCL:skl,kbl
1111 	 * This WA is implemented in skl_init_clock_gating() but since
1112 	 * this batch updates GEN8_L3SQCREG4 with default value we need to
1113 	 * set this bit here to retain the WA during flush.
1114 	 */
1115 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
1116 	    IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1117 		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1118 
1119 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1120 				   MI_SRM_LRM_GLOBAL_GTT));
1121 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1122 	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1123 	wa_ctx_emit(batch, index, 0);
1124 
1125 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1126 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1127 	wa_ctx_emit(batch, index, l3sqc4_flush);
1128 
1129 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1130 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1131 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
1132 	wa_ctx_emit(batch, index, 0);
1133 	wa_ctx_emit(batch, index, 0);
1134 	wa_ctx_emit(batch, index, 0);
1135 	wa_ctx_emit(batch, index, 0);
1136 
1137 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1138 				   MI_SRM_LRM_GLOBAL_GTT));
1139 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1140 	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1141 	wa_ctx_emit(batch, index, 0);
1142 
1143 	return index;
1144 }
1145 
1146 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1147 				    uint32_t offset,
1148 				    uint32_t start_alignment)
1149 {
1150 	return wa_ctx->offset = ALIGN(offset, start_alignment);
1151 }
1152 
1153 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1154 			     uint32_t offset,
1155 			     uint32_t size_alignment)
1156 {
1157 	wa_ctx->size = offset - wa_ctx->offset;
1158 
1159 	WARN(wa_ctx->size % size_alignment,
1160 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1161 	     wa_ctx->size, size_alignment);
1162 	return 0;
1163 }
1164 
1165 /**
1166  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1167  *
1168  * @ring: only applicable for RCS
1169  * @wa_ctx: structure representing wa_ctx
1170  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1171  *    with the offset value received as input.
1172  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1173  * @batch: page in which WA are loaded
1174  * @offset: This field specifies the start of the batch, it should be
1175  *  cache-aligned otherwise it is adjusted accordingly.
1176  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1177  *  initialized at the beginning and shared across all contexts but this field
1178  *  helps us to have multiple batches at different offsets and select them based
1179  *  on a criteria. At the moment this batch always start at the beginning of the page
1180  *  and at this point we don't have multiple wa_ctx batch buffers.
1181  *
1182  *  The number of WA applied are not known at the beginning; we use this field
1183  *  to return the no of DWORDS written.
1184  *
1185  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1186  *  so it adds NOOPs as padding to make it cacheline aligned.
1187  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1188  *  makes a complete batch buffer.
1189  *
1190  * Return: non-zero if we exceed the PAGE_SIZE limit.
1191  */
1192 
1193 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1194 				    struct i915_wa_ctx_bb *wa_ctx,
1195 				    uint32_t *const batch,
1196 				    uint32_t *offset)
1197 {
1198 	uint32_t scratch_addr;
1199 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1200 
1201 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1202 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1203 
1204 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1205 	if (IS_BROADWELL(engine->dev)) {
1206 		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1207 		if (rc < 0)
1208 			return rc;
1209 		index = rc;
1210 	}
1211 
1212 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1213 	/* Actual scratch location is at 128 bytes offset */
1214 	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1215 
1216 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1217 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1218 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1219 				   PIPE_CONTROL_CS_STALL |
1220 				   PIPE_CONTROL_QW_WRITE));
1221 	wa_ctx_emit(batch, index, scratch_addr);
1222 	wa_ctx_emit(batch, index, 0);
1223 	wa_ctx_emit(batch, index, 0);
1224 	wa_ctx_emit(batch, index, 0);
1225 
1226 	/* Pad to end of cacheline */
1227 	while (index % CACHELINE_DWORDS)
1228 		wa_ctx_emit(batch, index, MI_NOOP);
1229 
1230 	/*
1231 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1232 	 * execution depends on the length specified in terms of cache lines
1233 	 * in the register CTX_RCS_INDIRECT_CTX
1234 	 */
1235 
1236 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1237 }
1238 
1239 /**
1240  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1241  *
1242  * @ring: only applicable for RCS
1243  * @wa_ctx: structure representing wa_ctx
1244  *  offset: specifies start of the batch, should be cache-aligned.
1245  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1246  * @batch: page in which WA are loaded
1247  * @offset: This field specifies the start of this batch.
1248  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1249  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1250  *
1251  *   The number of DWORDS written are returned using this field.
1252  *
1253  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1254  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1255  */
1256 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1257 			       struct i915_wa_ctx_bb *wa_ctx,
1258 			       uint32_t *const batch,
1259 			       uint32_t *offset)
1260 {
1261 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1262 
1263 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1264 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1265 
1266 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1267 
1268 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1269 }
1270 
1271 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1272 				    struct i915_wa_ctx_bb *wa_ctx,
1273 				    uint32_t *const batch,
1274 				    uint32_t *offset)
1275 {
1276 	int ret;
1277 	struct drm_device *dev = engine->dev;
1278 	struct drm_i915_private *dev_priv = dev->dev_private;
1279 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1280 
1281 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1282 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1283 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1284 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1285 
1286 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1287 	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1288 	if (ret < 0)
1289 		return ret;
1290 	index = ret;
1291 
1292 	/* WaClearSlmSpaceAtContextSwitch:kbl */
1293 	/* Actual scratch location is at 128 bytes offset */
1294 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1295 		uint32_t scratch_addr
1296 			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1297 
1298 		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1299 		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1300 					   PIPE_CONTROL_GLOBAL_GTT_IVB |
1301 					   PIPE_CONTROL_CS_STALL |
1302 					   PIPE_CONTROL_QW_WRITE));
1303 		wa_ctx_emit(batch, index, scratch_addr);
1304 		wa_ctx_emit(batch, index, 0);
1305 		wa_ctx_emit(batch, index, 0);
1306 		wa_ctx_emit(batch, index, 0);
1307 	}
1308 	/* Pad to end of cacheline */
1309 	while (index % CACHELINE_DWORDS)
1310 		wa_ctx_emit(batch, index, MI_NOOP);
1311 
1312 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1313 }
1314 
1315 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1316 			       struct i915_wa_ctx_bb *wa_ctx,
1317 			       uint32_t *const batch,
1318 			       uint32_t *offset)
1319 {
1320 	struct drm_device *dev = engine->dev;
1321 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1322 
1323 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1324 	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1325 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1326 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1327 		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1328 		wa_ctx_emit(batch, index,
1329 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1330 		wa_ctx_emit(batch, index, MI_NOOP);
1331 	}
1332 
1333 	/* WaClearTdlStateAckDirtyBits:bxt */
1334 	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1335 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1336 
1337 		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1338 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1339 
1340 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1341 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1342 
1343 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1344 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1345 
1346 		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1347 		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1348 		wa_ctx_emit(batch, index, 0x0);
1349 		wa_ctx_emit(batch, index, MI_NOOP);
1350 	}
1351 
1352 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1353 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1354 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1355 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1356 
1357 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1358 
1359 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1360 }
1361 
1362 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1363 {
1364 	int ret;
1365 
1366 	engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1367 						   PAGE_ALIGN(size));
1368 	if (!engine->wa_ctx.obj) {
1369 		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1370 		return -ENOMEM;
1371 	}
1372 
1373 	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1374 	if (ret) {
1375 		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1376 				 ret);
1377 		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1378 		return ret;
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1385 {
1386 	if (engine->wa_ctx.obj) {
1387 		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1388 		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1389 		engine->wa_ctx.obj = NULL;
1390 	}
1391 }
1392 
1393 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1394 {
1395 	int ret;
1396 	uint32_t *batch;
1397 	uint32_t offset;
1398 	struct page *page;
1399 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1400 
1401 	WARN_ON(engine->id != RCS);
1402 
1403 	/* update this when WA for higher Gen are added */
1404 	if (INTEL_INFO(engine->dev)->gen > 9) {
1405 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1406 			  INTEL_INFO(engine->dev)->gen);
1407 		return 0;
1408 	}
1409 
1410 	/* some WA perform writes to scratch page, ensure it is valid */
1411 	if (engine->scratch.obj == NULL) {
1412 		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1413 		return -EINVAL;
1414 	}
1415 
1416 	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1417 	if (ret) {
1418 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1419 		return ret;
1420 	}
1421 
1422 	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1423 	batch = kmap_atomic(page);
1424 	offset = 0;
1425 
1426 	if (INTEL_INFO(engine->dev)->gen == 8) {
1427 		ret = gen8_init_indirectctx_bb(engine,
1428 					       &wa_ctx->indirect_ctx,
1429 					       batch,
1430 					       &offset);
1431 		if (ret)
1432 			goto out;
1433 
1434 		ret = gen8_init_perctx_bb(engine,
1435 					  &wa_ctx->per_ctx,
1436 					  batch,
1437 					  &offset);
1438 		if (ret)
1439 			goto out;
1440 	} else if (INTEL_INFO(engine->dev)->gen == 9) {
1441 		ret = gen9_init_indirectctx_bb(engine,
1442 					       &wa_ctx->indirect_ctx,
1443 					       batch,
1444 					       &offset);
1445 		if (ret)
1446 			goto out;
1447 
1448 		ret = gen9_init_perctx_bb(engine,
1449 					  &wa_ctx->per_ctx,
1450 					  batch,
1451 					  &offset);
1452 		if (ret)
1453 			goto out;
1454 	}
1455 
1456 out:
1457 	kunmap_atomic(batch);
1458 	if (ret)
1459 		lrc_destroy_wa_ctx_obj(engine);
1460 
1461 	return ret;
1462 }
1463 
1464 static void lrc_init_hws(struct intel_engine_cs *engine)
1465 {
1466 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1467 
1468 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1469 		   (u32)engine->status_page.gfx_addr);
1470 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1471 }
1472 
1473 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1474 {
1475 	struct drm_device *dev = engine->dev;
1476 	struct drm_i915_private *dev_priv = dev->dev_private;
1477 	unsigned int next_context_status_buffer_hw;
1478 
1479 	lrc_init_hws(engine);
1480 
1481 	I915_WRITE_IMR(engine,
1482 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1483 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1484 
1485 	I915_WRITE(RING_MODE_GEN7(engine),
1486 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1487 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1488 	POSTING_READ(RING_MODE_GEN7(engine));
1489 
1490 	/*
1491 	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1492 	 * zero, we need to read the write pointer from hardware and use its
1493 	 * value because "this register is power context save restored".
1494 	 * Effectively, these states have been observed:
1495 	 *
1496 	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1497 	 * BDW  | CSB regs not reset       | CSB regs reset       |
1498 	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1499 	 * SKL  |         ?                |         ?            |
1500 	 * BXT  |         ?                |         ?            |
1501 	 */
1502 	next_context_status_buffer_hw =
1503 		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1504 
1505 	/*
1506 	 * When the CSB registers are reset (also after power-up / gpu reset),
1507 	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1508 	 * this special case, so the first element read is CSB[0].
1509 	 */
1510 	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1511 		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1512 
1513 	engine->next_context_status_buffer = next_context_status_buffer_hw;
1514 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1515 
1516 	intel_engine_init_hangcheck(engine);
1517 
1518 	return intel_mocs_init_engine(engine);
1519 }
1520 
1521 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1522 {
1523 	struct drm_device *dev = engine->dev;
1524 	struct drm_i915_private *dev_priv = dev->dev_private;
1525 	int ret;
1526 
1527 	ret = gen8_init_common_ring(engine);
1528 	if (ret)
1529 		return ret;
1530 
1531 	/* We need to disable the AsyncFlip performance optimisations in order
1532 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1533 	 * programmed to '1' on all products.
1534 	 *
1535 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1536 	 */
1537 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1538 
1539 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1540 
1541 	return init_workarounds_ring(engine);
1542 }
1543 
1544 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1545 {
1546 	int ret;
1547 
1548 	ret = gen8_init_common_ring(engine);
1549 	if (ret)
1550 		return ret;
1551 
1552 	return init_workarounds_ring(engine);
1553 }
1554 
1555 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1556 {
1557 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1558 	struct intel_engine_cs *engine = req->engine;
1559 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1560 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1561 	int i, ret;
1562 
1563 	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1564 	if (ret)
1565 		return ret;
1566 
1567 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1568 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1569 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1570 
1571 		intel_logical_ring_emit_reg(ringbuf,
1572 					    GEN8_RING_PDP_UDW(engine, i));
1573 		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1574 		intel_logical_ring_emit_reg(ringbuf,
1575 					    GEN8_RING_PDP_LDW(engine, i));
1576 		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1577 	}
1578 
1579 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1580 	intel_logical_ring_advance(ringbuf);
1581 
1582 	return 0;
1583 }
1584 
1585 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1586 			      u64 offset, unsigned dispatch_flags)
1587 {
1588 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1589 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1590 	int ret;
1591 
1592 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1593 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1594 	 * but we can't. Force Restore would be a second option, but
1595 	 * it is unsafe in case of lite-restore (because the ctx is
1596 	 * not idle). PML4 is allocated during ppgtt init so this is
1597 	 * not needed in 48-bit.*/
1598 	if (req->ctx->ppgtt &&
1599 	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1600 		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1601 		    !intel_vgpu_active(req->i915->dev)) {
1602 			ret = intel_logical_ring_emit_pdps(req);
1603 			if (ret)
1604 				return ret;
1605 		}
1606 
1607 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1608 	}
1609 
1610 	ret = intel_ring_begin(req, 4);
1611 	if (ret)
1612 		return ret;
1613 
1614 	/* FIXME(BDW): Address space and security selectors. */
1615 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1616 				(ppgtt<<8) |
1617 				(dispatch_flags & I915_DISPATCH_RS ?
1618 				 MI_BATCH_RESOURCE_STREAMER : 0));
1619 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1620 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1621 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1622 	intel_logical_ring_advance(ringbuf);
1623 
1624 	return 0;
1625 }
1626 
1627 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1628 {
1629 	struct drm_device *dev = engine->dev;
1630 	struct drm_i915_private *dev_priv = dev->dev_private;
1631 	unsigned long flags;
1632 
1633 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1634 		return false;
1635 
1636 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1637 	if (engine->irq_refcount++ == 0) {
1638 		I915_WRITE_IMR(engine,
1639 			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1640 		POSTING_READ(RING_IMR(engine->mmio_base));
1641 	}
1642 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1643 
1644 	return true;
1645 }
1646 
1647 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1648 {
1649 	struct drm_device *dev = engine->dev;
1650 	struct drm_i915_private *dev_priv = dev->dev_private;
1651 	unsigned long flags;
1652 
1653 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1654 	if (--engine->irq_refcount == 0) {
1655 		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1656 		POSTING_READ(RING_IMR(engine->mmio_base));
1657 	}
1658 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1659 }
1660 
1661 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1662 			   u32 invalidate_domains,
1663 			   u32 unused)
1664 {
1665 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1666 	struct intel_engine_cs *engine = ringbuf->engine;
1667 	struct drm_device *dev = engine->dev;
1668 	struct drm_i915_private *dev_priv = dev->dev_private;
1669 	uint32_t cmd;
1670 	int ret;
1671 
1672 	ret = intel_ring_begin(request, 4);
1673 	if (ret)
1674 		return ret;
1675 
1676 	cmd = MI_FLUSH_DW + 1;
1677 
1678 	/* We always require a command barrier so that subsequent
1679 	 * commands, such as breadcrumb interrupts, are strictly ordered
1680 	 * wrt the contents of the write cache being flushed to memory
1681 	 * (and thus being coherent from the CPU).
1682 	 */
1683 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1684 
1685 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1686 		cmd |= MI_INVALIDATE_TLB;
1687 		if (engine == &dev_priv->engine[VCS])
1688 			cmd |= MI_INVALIDATE_BSD;
1689 	}
1690 
1691 	intel_logical_ring_emit(ringbuf, cmd);
1692 	intel_logical_ring_emit(ringbuf,
1693 				I915_GEM_HWS_SCRATCH_ADDR |
1694 				MI_FLUSH_DW_USE_GTT);
1695 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1696 	intel_logical_ring_emit(ringbuf, 0); /* value */
1697 	intel_logical_ring_advance(ringbuf);
1698 
1699 	return 0;
1700 }
1701 
1702 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1703 				  u32 invalidate_domains,
1704 				  u32 flush_domains)
1705 {
1706 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1707 	struct intel_engine_cs *engine = ringbuf->engine;
1708 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1709 	bool vf_flush_wa = false, dc_flush_wa = false;
1710 	u32 flags = 0;
1711 	int ret;
1712 	int len;
1713 
1714 	flags |= PIPE_CONTROL_CS_STALL;
1715 
1716 	if (flush_domains) {
1717 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1718 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1719 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1720 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1721 	}
1722 
1723 	if (invalidate_domains) {
1724 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1725 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1726 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1727 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1728 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1729 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1730 		flags |= PIPE_CONTROL_QW_WRITE;
1731 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1732 
1733 		/*
1734 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1735 		 * pipe control.
1736 		 */
1737 		if (IS_GEN9(engine->dev))
1738 			vf_flush_wa = true;
1739 
1740 		/* WaForGAMHang:kbl */
1741 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1742 			dc_flush_wa = true;
1743 	}
1744 
1745 	len = 6;
1746 
1747 	if (vf_flush_wa)
1748 		len += 6;
1749 
1750 	if (dc_flush_wa)
1751 		len += 12;
1752 
1753 	ret = intel_ring_begin(request, len);
1754 	if (ret)
1755 		return ret;
1756 
1757 	if (vf_flush_wa) {
1758 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1759 		intel_logical_ring_emit(ringbuf, 0);
1760 		intel_logical_ring_emit(ringbuf, 0);
1761 		intel_logical_ring_emit(ringbuf, 0);
1762 		intel_logical_ring_emit(ringbuf, 0);
1763 		intel_logical_ring_emit(ringbuf, 0);
1764 	}
1765 
1766 	if (dc_flush_wa) {
1767 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1768 		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1769 		intel_logical_ring_emit(ringbuf, 0);
1770 		intel_logical_ring_emit(ringbuf, 0);
1771 		intel_logical_ring_emit(ringbuf, 0);
1772 		intel_logical_ring_emit(ringbuf, 0);
1773 	}
1774 
1775 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1776 	intel_logical_ring_emit(ringbuf, flags);
1777 	intel_logical_ring_emit(ringbuf, scratch_addr);
1778 	intel_logical_ring_emit(ringbuf, 0);
1779 	intel_logical_ring_emit(ringbuf, 0);
1780 	intel_logical_ring_emit(ringbuf, 0);
1781 
1782 	if (dc_flush_wa) {
1783 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1784 		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1785 		intel_logical_ring_emit(ringbuf, 0);
1786 		intel_logical_ring_emit(ringbuf, 0);
1787 		intel_logical_ring_emit(ringbuf, 0);
1788 		intel_logical_ring_emit(ringbuf, 0);
1789 	}
1790 
1791 	intel_logical_ring_advance(ringbuf);
1792 
1793 	return 0;
1794 }
1795 
1796 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1797 {
1798 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1799 }
1800 
1801 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1802 {
1803 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1804 }
1805 
1806 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1807 {
1808 	/*
1809 	 * On BXT A steppings there is a HW coherency issue whereby the
1810 	 * MI_STORE_DATA_IMM storing the completed request's seqno
1811 	 * occasionally doesn't invalidate the CPU cache. Work around this by
1812 	 * clflushing the corresponding cacheline whenever the caller wants
1813 	 * the coherency to be guaranteed. Note that this cacheline is known
1814 	 * to be clean at this point, since we only write it in
1815 	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1816 	 * this clflush in practice becomes an invalidate operation.
1817 	 */
1818 	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1819 }
1820 
1821 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1822 {
1823 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1824 
1825 	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1826 	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1827 }
1828 
1829 /*
1830  * Reserve space for 2 NOOPs at the end of each request to be
1831  * used as a workaround for not being allowed to do lite
1832  * restore with HEAD==TAIL (WaIdleLiteRestore).
1833  */
1834 #define WA_TAIL_DWORDS 2
1835 
1836 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1837 {
1838 	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1839 }
1840 
1841 static int gen8_emit_request(struct drm_i915_gem_request *request)
1842 {
1843 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1844 	int ret;
1845 
1846 	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1847 	if (ret)
1848 		return ret;
1849 
1850 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1851 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1852 
1853 	intel_logical_ring_emit(ringbuf,
1854 				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1855 	intel_logical_ring_emit(ringbuf,
1856 				hws_seqno_address(request->engine) |
1857 				MI_FLUSH_DW_USE_GTT);
1858 	intel_logical_ring_emit(ringbuf, 0);
1859 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1860 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1861 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1862 	return intel_logical_ring_advance_and_submit(request);
1863 }
1864 
1865 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1866 {
1867 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1868 	int ret;
1869 
1870 	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1871 	if (ret)
1872 		return ret;
1873 
1874 	/* We're using qword write, seqno should be aligned to 8 bytes. */
1875 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1876 
1877 	/* w/a for post sync ops following a GPGPU operation we
1878 	 * need a prior CS_STALL, which is emitted by the flush
1879 	 * following the batch.
1880 	 */
1881 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1882 	intel_logical_ring_emit(ringbuf,
1883 				(PIPE_CONTROL_GLOBAL_GTT_IVB |
1884 				 PIPE_CONTROL_CS_STALL |
1885 				 PIPE_CONTROL_QW_WRITE));
1886 	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1887 	intel_logical_ring_emit(ringbuf, 0);
1888 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1889 	/* We're thrashing one dword of HWS. */
1890 	intel_logical_ring_emit(ringbuf, 0);
1891 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1892 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1893 	return intel_logical_ring_advance_and_submit(request);
1894 }
1895 
1896 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1897 {
1898 	struct render_state so;
1899 	int ret;
1900 
1901 	ret = i915_gem_render_state_prepare(req->engine, &so);
1902 	if (ret)
1903 		return ret;
1904 
1905 	if (so.rodata == NULL)
1906 		return 0;
1907 
1908 	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1909 				       I915_DISPATCH_SECURE);
1910 	if (ret)
1911 		goto out;
1912 
1913 	ret = req->engine->emit_bb_start(req,
1914 				       (so.ggtt_offset + so.aux_batch_offset),
1915 				       I915_DISPATCH_SECURE);
1916 	if (ret)
1917 		goto out;
1918 
1919 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1920 
1921 out:
1922 	i915_gem_render_state_fini(&so);
1923 	return ret;
1924 }
1925 
1926 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1927 {
1928 	int ret;
1929 
1930 	ret = intel_logical_ring_workarounds_emit(req);
1931 	if (ret)
1932 		return ret;
1933 
1934 	ret = intel_rcs_context_init_mocs(req);
1935 	/*
1936 	 * Failing to program the MOCS is non-fatal.The system will not
1937 	 * run at peak performance. So generate an error and carry on.
1938 	 */
1939 	if (ret)
1940 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1941 
1942 	return intel_lr_context_render_state_init(req);
1943 }
1944 
1945 /**
1946  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1947  *
1948  * @ring: Engine Command Streamer.
1949  *
1950  */
1951 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1952 {
1953 	struct drm_i915_private *dev_priv;
1954 
1955 	if (!intel_engine_initialized(engine))
1956 		return;
1957 
1958 	/*
1959 	 * Tasklet cannot be active at this point due intel_mark_active/idle
1960 	 * so this is just for documentation.
1961 	 */
1962 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1963 		tasklet_kill(&engine->irq_tasklet);
1964 
1965 	dev_priv = engine->dev->dev_private;
1966 
1967 	if (engine->buffer) {
1968 		intel_logical_ring_stop(engine);
1969 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1970 	}
1971 
1972 	if (engine->cleanup)
1973 		engine->cleanup(engine);
1974 
1975 	i915_cmd_parser_fini_ring(engine);
1976 	i915_gem_batch_pool_fini(&engine->batch_pool);
1977 
1978 	if (engine->status_page.obj) {
1979 		i915_gem_object_unpin_map(engine->status_page.obj);
1980 		engine->status_page.obj = NULL;
1981 	}
1982 
1983 	engine->idle_lite_restore_wa = 0;
1984 	engine->disable_lite_restore_wa = false;
1985 	engine->ctx_desc_template = 0;
1986 
1987 	lrc_destroy_wa_ctx_obj(engine);
1988 	engine->dev = NULL;
1989 }
1990 
1991 static void
1992 logical_ring_default_vfuncs(struct drm_device *dev,
1993 			    struct intel_engine_cs *engine)
1994 {
1995 	/* Default vfuncs which can be overriden by each engine. */
1996 	engine->init_hw = gen8_init_common_ring;
1997 	engine->emit_request = gen8_emit_request;
1998 	engine->emit_flush = gen8_emit_flush;
1999 	engine->irq_get = gen8_logical_ring_get_irq;
2000 	engine->irq_put = gen8_logical_ring_put_irq;
2001 	engine->emit_bb_start = gen8_emit_bb_start;
2002 	engine->get_seqno = gen8_get_seqno;
2003 	engine->set_seqno = gen8_set_seqno;
2004 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2005 		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2006 		engine->set_seqno = bxt_a_set_seqno;
2007 	}
2008 }
2009 
2010 static inline void
2011 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2012 {
2013 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2014 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2015 }
2016 
2017 static int
2018 lrc_setup_hws(struct intel_engine_cs *engine,
2019 	      struct drm_i915_gem_object *dctx_obj)
2020 {
2021 	char *hws;
2022 
2023 	/* The HWSP is part of the default context object in LRC mode. */
2024 	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2025 				       LRC_PPHWSP_PN * PAGE_SIZE;
2026 	hws = i915_gem_object_pin_map(dctx_obj);
2027 	if (IS_ERR(hws))
2028 		return PTR_ERR(hws);
2029 	engine->status_page.page_addr = (u32 *)(hws + LRC_PPHWSP_PN * PAGE_SIZE);
2030 	engine->status_page.obj = dctx_obj;
2031 
2032 	return 0;
2033 }
2034 
2035 static int
2036 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2037 {
2038 	struct drm_i915_private *dev_priv = to_i915(dev);
2039 	struct intel_context *dctx = dev_priv->kernel_context;
2040 	enum forcewake_domains fw_domains;
2041 	int ret;
2042 
2043 	/* Intentionally left blank. */
2044 	engine->buffer = NULL;
2045 
2046 	engine->dev = dev;
2047 	INIT_LIST_HEAD(&engine->active_list);
2048 	INIT_LIST_HEAD(&engine->request_list);
2049 	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2050 	init_waitqueue_head(&engine->irq_queue);
2051 
2052 	INIT_LIST_HEAD(&engine->buffers);
2053 	INIT_LIST_HEAD(&engine->execlist_queue);
2054 	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2055 	lockinit(&engine->execlist_lock, "i915el", 0, LK_CANRECURSE);
2056 
2057 	tasklet_init(&engine->irq_tasklet,
2058 		     intel_lrc_irq_handler, (unsigned long)engine);
2059 
2060 	logical_ring_init_platform_invariants(engine);
2061 
2062 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2063 						    RING_ELSP(engine),
2064 						    FW_REG_WRITE);
2065 
2066 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2067 						     RING_CONTEXT_STATUS_PTR(engine),
2068 						     FW_REG_READ | FW_REG_WRITE);
2069 
2070 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2071 						     RING_CONTEXT_STATUS_BUF_BASE(engine),
2072 						     FW_REG_READ);
2073 
2074 	engine->fw_domains = fw_domains;
2075 
2076 	ret = i915_cmd_parser_init_ring(engine);
2077 	if (ret)
2078 		goto error;
2079 
2080 	ret = intel_lr_context_deferred_alloc(dctx, engine);
2081 	if (ret)
2082 		goto error;
2083 
2084 	/* As this is the default context, always pin it */
2085 	ret = intel_lr_context_do_pin(dctx, engine);
2086 	if (ret) {
2087 		DRM_ERROR(
2088 			"Failed to pin and map ringbuffer %s: %d\n",
2089 			engine->name, ret);
2090 		goto error;
2091 	}
2092 
2093 	/* And setup the hardware status page. */
2094 	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2095 	if (ret) {
2096 		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2097 		goto error;
2098 	}
2099 
2100 	return 0;
2101 
2102 error:
2103 	intel_logical_ring_cleanup(engine);
2104 	return ret;
2105 }
2106 
2107 static int logical_render_ring_init(struct drm_device *dev)
2108 {
2109 	struct drm_i915_private *dev_priv = dev->dev_private;
2110 	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2111 	int ret;
2112 
2113 	engine->name = "render ring";
2114 	engine->id = RCS;
2115 	engine->exec_id = I915_EXEC_RENDER;
2116 	engine->guc_id = GUC_RENDER_ENGINE;
2117 	engine->mmio_base = RENDER_RING_BASE;
2118 
2119 	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2120 	if (HAS_L3_DPF(dev))
2121 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2122 
2123 	logical_ring_default_vfuncs(dev, engine);
2124 
2125 	/* Override some for render ring. */
2126 	if (INTEL_INFO(dev)->gen >= 9)
2127 		engine->init_hw = gen9_init_render_ring;
2128 	else
2129 		engine->init_hw = gen8_init_render_ring;
2130 	engine->init_context = gen8_init_rcs_context;
2131 	engine->cleanup = intel_fini_pipe_control;
2132 	engine->emit_flush = gen8_emit_flush_render;
2133 	engine->emit_request = gen8_emit_request_render;
2134 
2135 	engine->dev = dev;
2136 
2137 	ret = intel_init_pipe_control(engine);
2138 	if (ret)
2139 		return ret;
2140 
2141 	ret = intel_init_workaround_bb(engine);
2142 	if (ret) {
2143 		/*
2144 		 * We continue even if we fail to initialize WA batch
2145 		 * because we only expect rare glitches but nothing
2146 		 * critical to prevent us from using GPU
2147 		 */
2148 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2149 			  ret);
2150 	}
2151 
2152 	ret = logical_ring_init(dev, engine);
2153 	if (ret) {
2154 		lrc_destroy_wa_ctx_obj(engine);
2155 	}
2156 
2157 	return ret;
2158 }
2159 
2160 static int logical_bsd_ring_init(struct drm_device *dev)
2161 {
2162 	struct drm_i915_private *dev_priv = dev->dev_private;
2163 	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2164 
2165 	engine->name = "bsd ring";
2166 	engine->id = VCS;
2167 	engine->exec_id = I915_EXEC_BSD;
2168 	engine->guc_id = GUC_VIDEO_ENGINE;
2169 	engine->mmio_base = GEN6_BSD_RING_BASE;
2170 
2171 	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2172 	logical_ring_default_vfuncs(dev, engine);
2173 
2174 	return logical_ring_init(dev, engine);
2175 }
2176 
2177 static int logical_bsd2_ring_init(struct drm_device *dev)
2178 {
2179 	struct drm_i915_private *dev_priv = dev->dev_private;
2180 	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2181 
2182 	engine->name = "bsd2 ring";
2183 	engine->id = VCS2;
2184 	engine->exec_id = I915_EXEC_BSD;
2185 	engine->guc_id = GUC_VIDEO_ENGINE2;
2186 	engine->mmio_base = GEN8_BSD2_RING_BASE;
2187 
2188 	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2189 	logical_ring_default_vfuncs(dev, engine);
2190 
2191 	return logical_ring_init(dev, engine);
2192 }
2193 
2194 static int logical_blt_ring_init(struct drm_device *dev)
2195 {
2196 	struct drm_i915_private *dev_priv = dev->dev_private;
2197 	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2198 
2199 	engine->name = "blitter ring";
2200 	engine->id = BCS;
2201 	engine->exec_id = I915_EXEC_BLT;
2202 	engine->guc_id = GUC_BLITTER_ENGINE;
2203 	engine->mmio_base = BLT_RING_BASE;
2204 
2205 	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2206 	logical_ring_default_vfuncs(dev, engine);
2207 
2208 	return logical_ring_init(dev, engine);
2209 }
2210 
2211 static int logical_vebox_ring_init(struct drm_device *dev)
2212 {
2213 	struct drm_i915_private *dev_priv = dev->dev_private;
2214 	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2215 
2216 	engine->name = "video enhancement ring";
2217 	engine->id = VECS;
2218 	engine->exec_id = I915_EXEC_VEBOX;
2219 	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2220 	engine->mmio_base = VEBOX_RING_BASE;
2221 
2222 	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2223 	logical_ring_default_vfuncs(dev, engine);
2224 
2225 	return logical_ring_init(dev, engine);
2226 }
2227 
2228 /**
2229  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2230  * @dev: DRM device.
2231  *
2232  * This function inits the engines for an Execlists submission style (the equivalent in the
2233  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2234  * those engines that are present in the hardware.
2235  *
2236  * Return: non-zero if the initialization failed.
2237  */
2238 int intel_logical_rings_init(struct drm_device *dev)
2239 {
2240 	struct drm_i915_private *dev_priv = dev->dev_private;
2241 	int ret;
2242 
2243 	ret = logical_render_ring_init(dev);
2244 	if (ret)
2245 		return ret;
2246 
2247 	if (HAS_BSD(dev)) {
2248 		ret = logical_bsd_ring_init(dev);
2249 		if (ret)
2250 			goto cleanup_render_ring;
2251 	}
2252 
2253 	if (HAS_BLT(dev)) {
2254 		ret = logical_blt_ring_init(dev);
2255 		if (ret)
2256 			goto cleanup_bsd_ring;
2257 	}
2258 
2259 	if (HAS_VEBOX(dev)) {
2260 		ret = logical_vebox_ring_init(dev);
2261 		if (ret)
2262 			goto cleanup_blt_ring;
2263 	}
2264 
2265 	if (HAS_BSD2(dev)) {
2266 		ret = logical_bsd2_ring_init(dev);
2267 		if (ret)
2268 			goto cleanup_vebox_ring;
2269 	}
2270 
2271 	return 0;
2272 
2273 cleanup_vebox_ring:
2274 	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2275 cleanup_blt_ring:
2276 	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2277 cleanup_bsd_ring:
2278 	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2279 cleanup_render_ring:
2280 	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2281 
2282 	return ret;
2283 }
2284 
2285 static u32
2286 make_rpcs(struct drm_device *dev)
2287 {
2288 	u32 rpcs = 0;
2289 
2290 	/*
2291 	 * No explicit RPCS request is needed to ensure full
2292 	 * slice/subslice/EU enablement prior to Gen9.
2293 	*/
2294 	if (INTEL_INFO(dev)->gen < 9)
2295 		return 0;
2296 
2297 	/*
2298 	 * Starting in Gen9, render power gating can leave
2299 	 * slice/subslice/EU in a partially enabled state. We
2300 	 * must make an explicit request through RPCS for full
2301 	 * enablement.
2302 	*/
2303 	if (INTEL_INFO(dev)->has_slice_pg) {
2304 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2305 		rpcs |= INTEL_INFO(dev)->slice_total <<
2306 			GEN8_RPCS_S_CNT_SHIFT;
2307 		rpcs |= GEN8_RPCS_ENABLE;
2308 	}
2309 
2310 	if (INTEL_INFO(dev)->has_subslice_pg) {
2311 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2312 		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2313 			GEN8_RPCS_SS_CNT_SHIFT;
2314 		rpcs |= GEN8_RPCS_ENABLE;
2315 	}
2316 
2317 	if (INTEL_INFO(dev)->has_eu_pg) {
2318 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2319 			GEN8_RPCS_EU_MIN_SHIFT;
2320 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2321 			GEN8_RPCS_EU_MAX_SHIFT;
2322 		rpcs |= GEN8_RPCS_ENABLE;
2323 	}
2324 
2325 	return rpcs;
2326 }
2327 
2328 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2329 {
2330 	u32 indirect_ctx_offset;
2331 
2332 	switch (INTEL_INFO(engine->dev)->gen) {
2333 	default:
2334 		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2335 		/* fall through */
2336 	case 9:
2337 		indirect_ctx_offset =
2338 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2339 		break;
2340 	case 8:
2341 		indirect_ctx_offset =
2342 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2343 		break;
2344 	}
2345 
2346 	return indirect_ctx_offset;
2347 }
2348 
2349 static int
2350 populate_lr_context(struct intel_context *ctx,
2351 		    struct drm_i915_gem_object *ctx_obj,
2352 		    struct intel_engine_cs *engine,
2353 		    struct intel_ringbuffer *ringbuf)
2354 {
2355 	struct drm_device *dev = engine->dev;
2356 	struct drm_i915_private *dev_priv = dev->dev_private;
2357 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2358 	char *vaddr;
2359 	u32 *reg_state;
2360 	int ret;
2361 
2362 	if (!ppgtt)
2363 		ppgtt = dev_priv->mm.aliasing_ppgtt;
2364 
2365 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2366 	if (ret) {
2367 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2368 		return ret;
2369 	}
2370 
2371 	vaddr = i915_gem_object_pin_map(ctx_obj);
2372 	if (IS_ERR(vaddr)) {
2373 		ret = PTR_ERR(vaddr);
2374 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2375 		return ret;
2376 	}
2377 	ctx_obj->dirty = true;
2378 
2379 	/* The second page of the context object contains some fields which must
2380 	 * be set up prior to the first execution. */
2381 	reg_state = (u32 *)(vaddr + LRC_STATE_PN * PAGE_SIZE);
2382 
2383 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2384 	 * commands followed by (reg, value) pairs. The values we are setting here are
2385 	 * only for the first context restore: on a subsequent save, the GPU will
2386 	 * recreate this batchbuffer with new values (including all the missing
2387 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2388 	reg_state[CTX_LRI_HEADER_0] =
2389 		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2390 	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2391 		       RING_CONTEXT_CONTROL(engine),
2392 		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2393 					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2394 					  (HAS_RESOURCE_STREAMER(dev) ?
2395 					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2396 	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2397 		       0);
2398 	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2399 		       0);
2400 	/* Ring buffer start address is not known until the buffer is pinned.
2401 	 * It is written to the context image in execlists_update_context()
2402 	 */
2403 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2404 		       RING_START(engine->mmio_base), 0);
2405 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2406 		       RING_CTL(engine->mmio_base),
2407 		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2408 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2409 		       RING_BBADDR_UDW(engine->mmio_base), 0);
2410 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2411 		       RING_BBADDR(engine->mmio_base), 0);
2412 	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2413 		       RING_BBSTATE(engine->mmio_base),
2414 		       RING_BB_PPGTT);
2415 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2416 		       RING_SBBADDR_UDW(engine->mmio_base), 0);
2417 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2418 		       RING_SBBADDR(engine->mmio_base), 0);
2419 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2420 		       RING_SBBSTATE(engine->mmio_base), 0);
2421 	if (engine->id == RCS) {
2422 		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2423 			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2424 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2425 			       RING_INDIRECT_CTX(engine->mmio_base), 0);
2426 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2427 			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2428 		if (engine->wa_ctx.obj) {
2429 			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2430 			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2431 
2432 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2433 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2434 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2435 
2436 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2437 				intel_lr_indirect_ctx_offset(engine) << 6;
2438 
2439 			reg_state[CTX_BB_PER_CTX_PTR+1] =
2440 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2441 				0x01;
2442 		}
2443 	}
2444 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2445 	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2446 		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2447 	/* PDP values well be assigned later if needed */
2448 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2449 		       0);
2450 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2451 		       0);
2452 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2453 		       0);
2454 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2455 		       0);
2456 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2457 		       0);
2458 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2459 		       0);
2460 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2461 		       0);
2462 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2463 		       0);
2464 
2465 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2466 		/* 64b PPGTT (48bit canonical)
2467 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2468 		 * other PDP Descriptors are ignored.
2469 		 */
2470 		ASSIGN_CTX_PML4(ppgtt, reg_state);
2471 	} else {
2472 		/* 32b PPGTT
2473 		 * PDP*_DESCRIPTOR contains the base address of space supported.
2474 		 * With dynamic page allocation, PDPs may not be allocated at
2475 		 * this point. Point the unallocated PDPs to the scratch page
2476 		 */
2477 		execlists_update_context_pdps(ppgtt, reg_state);
2478 	}
2479 
2480 	if (engine->id == RCS) {
2481 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2482 		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2483 			       make_rpcs(dev));
2484 	}
2485 
2486 	i915_gem_object_unpin_map(ctx_obj);
2487 
2488 	return 0;
2489 }
2490 
2491 /**
2492  * intel_lr_context_free() - free the LRC specific bits of a context
2493  * @ctx: the LR context to free.
2494  *
2495  * The real context freeing is done in i915_gem_context_free: this only
2496  * takes care of the bits that are LRC related: the per-engine backing
2497  * objects and the logical ringbuffer.
2498  */
2499 void intel_lr_context_free(struct intel_context *ctx)
2500 {
2501 	int i;
2502 
2503 	for (i = I915_NUM_ENGINES; --i >= 0; ) {
2504 		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2505 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2506 
2507 		if (!ctx_obj)
2508 			continue;
2509 
2510 		if (ctx == ctx->i915->kernel_context) {
2511 			intel_unpin_ringbuffer_obj(ringbuf);
2512 			i915_gem_object_ggtt_unpin(ctx_obj);
2513 			i915_gem_object_unpin_map(ctx_obj);
2514 		}
2515 
2516 		WARN_ON(ctx->engine[i].pin_count);
2517 		intel_ringbuffer_free(ringbuf);
2518 		drm_gem_object_unreference(&ctx_obj->base);
2519 	}
2520 }
2521 
2522 /**
2523  * intel_lr_context_size() - return the size of the context for an engine
2524  * @ring: which engine to find the context size for
2525  *
2526  * Each engine may require a different amount of space for a context image,
2527  * so when allocating (or copying) an image, this function can be used to
2528  * find the right size for the specific engine.
2529  *
2530  * Return: size (in bytes) of an engine-specific context image
2531  *
2532  * Note: this size includes the HWSP, which is part of the context image
2533  * in LRC mode, but does not include the "shared data page" used with
2534  * GuC submission. The caller should account for this if using the GuC.
2535  */
2536 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2537 {
2538 	int ret = 0;
2539 
2540 	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2541 
2542 	switch (engine->id) {
2543 	case RCS:
2544 		if (INTEL_INFO(engine->dev)->gen >= 9)
2545 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2546 		else
2547 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2548 		break;
2549 	case VCS:
2550 	case BCS:
2551 	case VECS:
2552 	case VCS2:
2553 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2554 		break;
2555 	}
2556 
2557 	return ret;
2558 }
2559 
2560 /**
2561  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2562  * @ctx: LR context to create.
2563  * @ring: engine to be used with the context.
2564  *
2565  * This function can be called more than once, with different engines, if we plan
2566  * to use the context with them. The context backing objects and the ringbuffers
2567  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2568  * the creation is a deferred call: it's better to make sure first that we need to use
2569  * a given ring with the context.
2570  *
2571  * Return: non-zero on error.
2572  */
2573 
2574 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2575 				    struct intel_engine_cs *engine)
2576 {
2577 	struct drm_device *dev = engine->dev;
2578 	struct drm_i915_gem_object *ctx_obj;
2579 	uint32_t context_size;
2580 	struct intel_ringbuffer *ringbuf;
2581 	int ret;
2582 
2583 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2584 	WARN_ON(ctx->engine[engine->id].state);
2585 
2586 	context_size = round_up(intel_lr_context_size(engine), 4096);
2587 
2588 	/* One extra page as the sharing data between driver and GuC */
2589 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2590 
2591 	ctx_obj = i915_gem_alloc_object(dev, context_size);
2592 	if (!ctx_obj) {
2593 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2594 		return -ENOMEM;
2595 	}
2596 
2597 	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2598 	if (IS_ERR(ringbuf)) {
2599 		ret = PTR_ERR(ringbuf);
2600 		goto error_deref_obj;
2601 	}
2602 
2603 	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2604 	if (ret) {
2605 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2606 		goto error_ringbuf;
2607 	}
2608 
2609 	ctx->engine[engine->id].ringbuf = ringbuf;
2610 	ctx->engine[engine->id].state = ctx_obj;
2611 
2612 	if (ctx != ctx->i915->kernel_context && engine->init_context) {
2613 		struct drm_i915_gem_request *req;
2614 
2615 		req = i915_gem_request_alloc(engine, ctx);
2616 		if (IS_ERR(req)) {
2617 			ret = PTR_ERR(req);
2618 			DRM_ERROR("ring create req: %d\n", ret);
2619 			goto error_ringbuf;
2620 		}
2621 
2622 		ret = engine->init_context(req);
2623 		i915_add_request_no_flush(req);
2624 		if (ret) {
2625 			DRM_ERROR("ring init context: %d\n",
2626 				ret);
2627 			goto error_ringbuf;
2628 		}
2629 	}
2630 	return 0;
2631 
2632 error_ringbuf:
2633 	intel_ringbuffer_free(ringbuf);
2634 error_deref_obj:
2635 	drm_gem_object_unreference(&ctx_obj->base);
2636 	ctx->engine[engine->id].ringbuf = NULL;
2637 	ctx->engine[engine->id].state = NULL;
2638 	return ret;
2639 }
2640 
2641 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2642 			    struct intel_context *ctx)
2643 {
2644 	struct intel_engine_cs *engine;
2645 
2646 	for_each_engine(engine, dev_priv) {
2647 		struct drm_i915_gem_object *ctx_obj =
2648 				ctx->engine[engine->id].state;
2649 		struct intel_ringbuffer *ringbuf =
2650 				ctx->engine[engine->id].ringbuf;
2651 		char *vaddr;
2652 		uint32_t *reg_state;
2653 
2654 		if (!ctx_obj)
2655 			continue;
2656 
2657 		vaddr = i915_gem_object_pin_map(ctx_obj);
2658 		if (WARN_ON(IS_ERR(vaddr)))
2659 			continue;
2660 
2661 		reg_state = (uint32_t *)(vaddr + LRC_STATE_PN * PAGE_SIZE);
2662 		ctx_obj->dirty = true;
2663 
2664 		reg_state[CTX_RING_HEAD+1] = 0;
2665 		reg_state[CTX_RING_TAIL+1] = 0;
2666 
2667 		i915_gem_object_unpin_map(ctx_obj);
2668 
2669 		ringbuf->head = 0;
2670 		ringbuf->tail = 0;
2671 	}
2672 }
2673