xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 7c47e3df)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 	  GEN8_CTX_STATUS_PREEMPTED | \
162 	  GEN8_CTX_STATUS_ELEMENT_SWITCH)
163 
164 #define CTX_LRI_HEADER_0		0x01
165 #define CTX_CONTEXT_CONTROL		0x02
166 #define CTX_RING_HEAD			0x04
167 #define CTX_RING_TAIL			0x06
168 #define CTX_RING_BUFFER_START		0x08
169 #define CTX_RING_BUFFER_CONTROL		0x0a
170 #define CTX_BB_HEAD_U			0x0c
171 #define CTX_BB_HEAD_L			0x0e
172 #define CTX_BB_STATE			0x10
173 #define CTX_SECOND_BB_HEAD_U		0x12
174 #define CTX_SECOND_BB_HEAD_L		0x14
175 #define CTX_SECOND_BB_STATE		0x16
176 #define CTX_BB_PER_CTX_PTR		0x18
177 #define CTX_RCS_INDIRECT_CTX		0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
179 #define CTX_LRI_HEADER_1		0x21
180 #define CTX_CTX_TIMESTAMP		0x22
181 #define CTX_PDP3_UDW			0x24
182 #define CTX_PDP3_LDW			0x26
183 #define CTX_PDP2_UDW			0x28
184 #define CTX_PDP2_LDW			0x2a
185 #define CTX_PDP1_UDW			0x2c
186 #define CTX_PDP1_LDW			0x2e
187 #define CTX_PDP0_UDW			0x30
188 #define CTX_PDP0_LDW			0x32
189 #define CTX_LRI_HEADER_2		0x41
190 #define CTX_R_PWR_CLK_STATE		0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
192 
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198 
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 	(reg_state)[(pos)+1] = (val); \
202 } while (0)
203 
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209 
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214 
215 enum {
216 	FAULT_AND_HANG = 0,
217 	FAULT_AND_HALT, /* Debug only */
218 	FAULT_AND_STREAM,
219 	FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225 
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228 
229 #define WA_TAIL_DWORDS 2
230 
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232 					    struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234 				struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236 				     struct i915_gem_context *ctx,
237 				     struct intel_engine_cs *engine,
238 				     struct intel_ring *ring);
239 
240 /**
241  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242  * @dev_priv: i915 device private
243  * @enable_execlists: value of i915.enable_execlists module parameter.
244  *
245  * Only certain platforms support Execlists (the prerequisites being
246  * support for Logical Ring Contexts and Aliasing PPGTT or better).
247  *
248  * Return: 1 if Execlists is supported and has to be enabled.
249  */
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251 {
252 	/* On platforms with execlist available, vGPU will only
253 	 * support execlist mode, no ring buffer mode.
254 	 */
255 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 		return 1;
257 
258 	if (INTEL_GEN(dev_priv) >= 9)
259 		return 1;
260 
261 	if (enable_execlists == 0)
262 		return 0;
263 
264 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 	    USES_PPGTT(dev_priv) &&
266 	    i915.use_mmio_flip >= 0)
267 		return 1;
268 
269 	return 0;
270 }
271 
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275 	struct drm_i915_private *dev_priv = engine->i915;
276 
277 	engine->disable_lite_restore_wa =
278 		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279 		(engine->id == VCS || engine->id == VCS2);
280 
281 	engine->ctx_desc_template = GEN8_CTX_VALID;
282 	if (IS_GEN8(dev_priv))
283 		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 
286 	/* TODO: WaDisableLiteRestore when we start using semaphore
287 	 * signalling between Command Streamers */
288 	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289 
290 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 	if (engine->disable_lite_restore_wa)
293 		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 }
295 
296 /**
297  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298  * 					  descriptor for a pinned context
299  * @ctx: Context to work on
300  * @engine: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB::
308  *
309  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
310  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
311  *      bits 32-52:    ctx ID, a globally unique tag
312  *      bits 53-54:    mbz, reserved for use by hardware
313  *      bits 55-63:    group ID, currently unused and set to 0
314  */
315 static void
316 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317 				   struct intel_engine_cs *engine)
318 {
319 	struct intel_context *ce = &ctx->engine[engine->id];
320 	u64 desc;
321 
322 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323 
324 	desc = ctx->desc_template;				/* bits  3-4  */
325 	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326 	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327 								/* bits 12-31 */
328 	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329 
330 	ce->lrc_desc = desc;
331 }
332 
333 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334 				     struct intel_engine_cs *engine)
335 {
336 	return ctx->engine[engine->id].lrc_desc;
337 }
338 
339 static inline void
340 execlists_context_status_change(struct drm_i915_gem_request *rq,
341 				unsigned long status)
342 {
343 	/*
344 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 	 * The compiler should eliminate this function as dead-code.
346 	 */
347 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 		return;
349 
350 	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 }
352 
353 static void
354 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355 {
356 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360 }
361 
362 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364 	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365 	struct i915_hw_ppgtt *ppgtt =
366 		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
367 	u32 *reg_state = ce->lrc_reg_state;
368 
369 	reg_state[CTX_RING_TAIL+1] = rq->tail;
370 
371 	/* True 32b PPGTT with dynamic page allocation: update PDP
372 	 * registers and point the unallocated PDPs to scratch page.
373 	 * PML4 is allocated during ppgtt init, so this is not needed
374 	 * in 48-bit mode.
375 	 */
376 	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
377 		execlists_update_context_pdps(ppgtt, reg_state);
378 
379 	return ce->lrc_desc;
380 }
381 
382 static void execlists_submit_ports(struct intel_engine_cs *engine)
383 {
384 	struct drm_i915_private *dev_priv = engine->i915;
385 	struct execlist_port *port = engine->execlist_port;
386 	u32 __iomem *elsp =
387 		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
388 	u64 desc[2];
389 
390 	if (!port[0].count)
391 		execlists_context_status_change(port[0].request,
392 						INTEL_CONTEXT_SCHEDULE_IN);
393 	desc[0] = execlists_update_context(port[0].request);
394 	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
395 
396 	if (port[1].request) {
397 		GEM_BUG_ON(port[1].count);
398 		execlists_context_status_change(port[1].request,
399 						INTEL_CONTEXT_SCHEDULE_IN);
400 		desc[1] = execlists_update_context(port[1].request);
401 		port[1].count = 1;
402 	} else {
403 		desc[1] = 0;
404 	}
405 	GEM_BUG_ON(desc[0] == desc[1]);
406 
407 	/* You must always write both descriptors in the order below. */
408 	writel(upper_32_bits(desc[1]), elsp);
409 	writel(lower_32_bits(desc[1]), elsp);
410 
411 	writel(upper_32_bits(desc[0]), elsp);
412 	/* The context is automatically loaded after the following */
413 	writel(lower_32_bits(desc[0]), elsp);
414 }
415 
416 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
417 {
418 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
419 		ctx->execlists_force_single_submission);
420 }
421 
422 static bool can_merge_ctx(const struct i915_gem_context *prev,
423 			  const struct i915_gem_context *next)
424 {
425 	if (prev != next)
426 		return false;
427 
428 	if (ctx_single_port_submission(prev))
429 		return false;
430 
431 	return true;
432 }
433 
434 static void execlists_dequeue(struct intel_engine_cs *engine)
435 {
436 	struct drm_i915_gem_request *last;
437 	struct execlist_port *port = engine->execlist_port;
438 	unsigned long flags;
439 	struct rb_node *rb;
440 	bool submit = false;
441 
442 	last = port->request;
443 	if (last)
444 		/* WaIdleLiteRestore:bdw,skl
445 		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
446 		 * as we resubmit the request. See gen8_emit_breadcrumb()
447 		 * for where we prepare the padding after the end of the
448 		 * request.
449 		 */
450 		last->tail = last->wa_tail;
451 
452 	GEM_BUG_ON(port[1].request);
453 
454 	/* Hardware submission is through 2 ports. Conceptually each port
455 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
456 	 * static for a context, and unique to each, so we only execute
457 	 * requests belonging to a single context from each ring. RING_HEAD
458 	 * is maintained by the CS in the context image, it marks the place
459 	 * where it got up to last time, and through RING_TAIL we tell the CS
460 	 * where we want to execute up to this time.
461 	 *
462 	 * In this list the requests are in order of execution. Consecutive
463 	 * requests from the same context are adjacent in the ringbuffer. We
464 	 * can combine these requests into a single RING_TAIL update:
465 	 *
466 	 *              RING_HEAD...req1...req2
467 	 *                                    ^- RING_TAIL
468 	 * since to execute req2 the CS must first execute req1.
469 	 *
470 	 * Our goal then is to point each port to the end of a consecutive
471 	 * sequence of requests as being the most optimal (fewest wake ups
472 	 * and context switches) submission.
473 	 */
474 
475 	spin_lock_irqsave(&engine->timeline->lock, flags);
476 	rb = engine->execlist_first;
477 	while (rb) {
478 		struct drm_i915_gem_request *cursor =
479 			rb_entry(rb, typeof(*cursor), priotree.node);
480 
481 		/* Can we combine this request with the current port? It has to
482 		 * be the same context/ringbuffer and not have any exceptions
483 		 * (e.g. GVT saying never to combine contexts).
484 		 *
485 		 * If we can combine the requests, we can execute both by
486 		 * updating the RING_TAIL to point to the end of the second
487 		 * request, and so we never need to tell the hardware about
488 		 * the first.
489 		 */
490 		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
491 			/* If we are on the second port and cannot combine
492 			 * this request with the last, then we are done.
493 			 */
494 			if (port != engine->execlist_port)
495 				break;
496 
497 			/* If GVT overrides us we only ever submit port[0],
498 			 * leaving port[1] empty. Note that we also have
499 			 * to be careful that we don't queue the same
500 			 * context (even though a different request) to
501 			 * the second port.
502 			 */
503 			if (ctx_single_port_submission(last->ctx) ||
504 			    ctx_single_port_submission(cursor->ctx))
505 				break;
506 
507 			GEM_BUG_ON(last->ctx == cursor->ctx);
508 
509 			i915_gem_request_assign(&port->request, last);
510 			port++;
511 		}
512 
513 		rb = rb_next(rb);
514 		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
515 		RB_CLEAR_NODE(&cursor->priotree.node);
516 		cursor->priotree.priority = INT_MAX;
517 
518 		/* We keep the previous context alive until we retire the
519 		 * following request. This ensures that any the context object
520 		 * is still pinned for any residual writes the HW makes into it
521 		 * on the context switch into the next object following the
522 		 * breadcrumb. Otherwise, we may retire the context too early.
523 		 */
524 		cursor->previous_context = engine->last_context;
525 		engine->last_context = cursor->ctx;
526 
527 		__i915_gem_request_submit(cursor);
528 		last = cursor;
529 		submit = true;
530 	}
531 	if (submit) {
532 		i915_gem_request_assign(&port->request, last);
533 		engine->execlist_first = rb;
534 	}
535 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
536 
537 	if (submit)
538 		execlists_submit_ports(engine);
539 }
540 
541 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
542 {
543 	return !engine->execlist_port[0].request;
544 }
545 
546 /**
547  * intel_execlists_idle() - Determine if all engine submission ports are idle
548  * @dev_priv: i915 device private
549  *
550  * Return true if there are no requests pending on any of the submission ports
551  * of any engines.
552  */
553 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
554 {
555 	struct intel_engine_cs *engine;
556 	enum intel_engine_id id;
557 
558 	if (!i915.enable_execlists)
559 		return true;
560 
561 	for_each_engine(engine, dev_priv, id)
562 		if (!execlists_elsp_idle(engine))
563 			return false;
564 
565 	return true;
566 }
567 
568 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
569 {
570 	int port;
571 
572 	port = 1; /* wait for a free slot */
573 	if (engine->disable_lite_restore_wa || engine->preempt_wa)
574 		port = 0; /* wait for GPU to be idle before continuing */
575 
576 	return !engine->execlist_port[port].request;
577 }
578 
579 /*
580  * Check the unread Context Status Buffers and manage the submission of new
581  * contexts to the ELSP accordingly.
582  */
583 static void intel_lrc_irq_handler(unsigned long data)
584 {
585 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
586 	struct execlist_port *port = engine->execlist_port;
587 	struct drm_i915_private *dev_priv = engine->i915;
588 
589 	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
590 
591 	if (!execlists_elsp_idle(engine)) {
592 		u32 __iomem *csb_mmio =
593 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
594 		u32 __iomem *buf =
595 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
596 		unsigned int csb, head, tail;
597 
598 		csb = readl(csb_mmio);
599 		head = GEN8_CSB_READ_PTR(csb);
600 		tail = GEN8_CSB_WRITE_PTR(csb);
601 		if (tail < head)
602 			tail += GEN8_CSB_ENTRIES;
603 		while (head < tail) {
604 			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
605 			unsigned int status = readl(buf + 2 * idx);
606 
607 			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
608 				continue;
609 
610 			GEM_BUG_ON(port[0].count == 0);
611 			if (--port[0].count == 0) {
612 				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
613 				execlists_context_status_change(port[0].request,
614 								INTEL_CONTEXT_SCHEDULE_OUT);
615 
616 				i915_gem_request_put(port[0].request);
617 				port[0] = port[1];
618 				memset(&port[1], 0, sizeof(port[1]));
619 
620 				engine->preempt_wa = false;
621 			}
622 
623 			GEM_BUG_ON(port[0].count == 0 &&
624 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
625 		}
626 
627 		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
628 				     GEN8_CSB_WRITE_PTR(csb) << 8),
629 		       csb_mmio);
630 	}
631 
632 	if (execlists_elsp_ready(engine))
633 		execlists_dequeue(engine);
634 
635 	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
636 }
637 
638 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
639 {
640 	struct rb_node **p, *rb;
641 	bool first = true;
642 
643 	/* most positive priority is scheduled first, equal priorities fifo */
644 	rb = NULL;
645 	p = &root->rb_node;
646 	while (*p) {
647 		struct i915_priotree *pos;
648 
649 		rb = *p;
650 		pos = rb_entry(rb, typeof(*pos), node);
651 		if (pt->priority > pos->priority) {
652 			p = &rb->rb_left;
653 		} else {
654 			p = &rb->rb_right;
655 			first = false;
656 		}
657 	}
658 	rb_link_node(&pt->node, rb, p);
659 	rb_insert_color(&pt->node, root);
660 
661 	return first;
662 }
663 
664 static void execlists_submit_request(struct drm_i915_gem_request *request)
665 {
666 	struct intel_engine_cs *engine = request->engine;
667 	unsigned long flags;
668 
669 	/* Will be called from irq-context when using foreign fences. */
670 	spin_lock_irqsave(&engine->timeline->lock, flags);
671 
672 	if (insert_request(&request->priotree, &engine->execlist_queue))
673 		engine->execlist_first = &request->priotree.node;
674 	if (execlists_elsp_idle(engine))
675 		tasklet_hi_schedule(&engine->irq_tasklet);
676 
677 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
678 }
679 
680 static struct intel_engine_cs *
681 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
682 {
683 	struct intel_engine_cs *engine;
684 
685 	engine = container_of(pt,
686 			      struct drm_i915_gem_request,
687 			      priotree)->engine;
688 	if (engine != locked) {
689 		if (locked)
690 			spin_unlock_irq(&locked->timeline->lock);
691 		spin_lock_irq(&engine->timeline->lock);
692 	}
693 
694 	return engine;
695 }
696 
697 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
698 {
699 	static DEFINE_MUTEX(lock);
700 	struct intel_engine_cs *engine = NULL;
701 	struct i915_dependency *dep, *p;
702 	struct i915_dependency stack;
703 	LINUX_LIST_HEAD(dfs);
704 
705 	if (prio <= READ_ONCE(request->priotree.priority))
706 		return;
707 
708 	/* Need global lock to use the temporary link inside i915_dependency */
709 	mutex_lock(&lock);
710 
711 	stack.signaler = &request->priotree;
712 	list_add(&stack.dfs_link, &dfs);
713 
714 	/* Recursively bump all dependent priorities to match the new request.
715 	 *
716 	 * A naive approach would be to use recursion:
717 	 * static void update_priorities(struct i915_priotree *pt, prio) {
718 	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
719 	 *		update_priorities(dep->signal, prio)
720 	 *	insert_request(pt);
721 	 * }
722 	 * but that may have unlimited recursion depth and so runs a very
723 	 * real risk of overunning the kernel stack. Instead, we build
724 	 * a flat list of all dependencies starting with the current request.
725 	 * As we walk the list of dependencies, we add all of its dependencies
726 	 * to the end of the list (this may include an already visited
727 	 * request) and continue to walk onwards onto the new dependencies. The
728 	 * end result is a topological list of requests in reverse order, the
729 	 * last element in the list is the request we must execute first.
730 	 */
731 	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
732 		struct i915_priotree *pt = dep->signaler;
733 
734 		list_for_each_entry(p, &pt->signalers_list, signal_link)
735 			if (prio > READ_ONCE(p->signaler->priority))
736 				list_move_tail(&p->dfs_link, &dfs);
737 
738 		p = list_next_entry(dep, dfs_link);
739 		if (!RB_EMPTY_NODE(&pt->node))
740 			continue;
741 
742 		engine = pt_lock_engine(pt, engine);
743 
744 		/* If it is not already in the rbtree, we can update the
745 		 * priority inplace and skip over it (and its dependencies)
746 		 * if it is referenced *again* as we descend the dfs.
747 		 */
748 		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
749 			pt->priority = prio;
750 			list_del_init(&dep->dfs_link);
751 		}
752 	}
753 
754 	/* Fifo and depth-first replacement ensure our deps execute before us */
755 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
756 		struct i915_priotree *pt = dep->signaler;
757 
758 		INIT_LIST_HEAD(&dep->dfs_link);
759 
760 		engine = pt_lock_engine(pt, engine);
761 
762 		if (prio <= pt->priority)
763 			continue;
764 
765 		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
766 
767 		pt->priority = prio;
768 		rb_erase(&pt->node, &engine->execlist_queue);
769 		if (insert_request(pt, &engine->execlist_queue))
770 			engine->execlist_first = &pt->node;
771 	}
772 
773 	if (engine)
774 		spin_unlock_irq(&engine->timeline->lock);
775 
776 	mutex_unlock(&lock);
777 
778 	/* XXX Do we need to preempt to make room for us and our deps? */
779 }
780 
781 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
782 {
783 	struct intel_engine_cs *engine = request->engine;
784 	struct intel_context *ce = &request->ctx->engine[engine->id];
785 	int ret;
786 
787 	/* Flush enough space to reduce the likelihood of waiting after
788 	 * we start building the request - in which case we will just
789 	 * have to repeat work.
790 	 */
791 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
792 
793 	if (!ce->state) {
794 		ret = execlists_context_deferred_alloc(request->ctx, engine);
795 		if (ret)
796 			return ret;
797 	}
798 
799 	request->ring = ce->ring;
800 
801 	ret = intel_lr_context_pin(request->ctx, engine);
802 	if (ret)
803 		return ret;
804 
805 	if (i915.enable_guc_submission) {
806 		/*
807 		 * Check that the GuC has space for the request before
808 		 * going any further, as the i915_add_request() call
809 		 * later on mustn't fail ...
810 		 */
811 		ret = i915_guc_wq_reserve(request);
812 		if (ret)
813 			goto err_unpin;
814 	}
815 
816 	ret = intel_ring_begin(request, 0);
817 	if (ret)
818 		goto err_unreserve;
819 
820 	if (!ce->initialised) {
821 		ret = engine->init_context(request);
822 		if (ret)
823 			goto err_unreserve;
824 
825 		ce->initialised = true;
826 	}
827 
828 	/* Note that after this point, we have committed to using
829 	 * this request as it is being used to both track the
830 	 * state of engine initialisation and liveness of the
831 	 * golden renderstate above. Think twice before you try
832 	 * to cancel/unwind this request now.
833 	 */
834 
835 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
836 	return 0;
837 
838 err_unreserve:
839 	if (i915.enable_guc_submission)
840 		i915_guc_wq_unreserve(request);
841 err_unpin:
842 	intel_lr_context_unpin(request->ctx, engine);
843 	return ret;
844 }
845 
846 static int intel_lr_context_pin(struct i915_gem_context *ctx,
847 				struct intel_engine_cs *engine)
848 {
849 	struct intel_context *ce = &ctx->engine[engine->id];
850 	void *vaddr;
851 	int ret;
852 
853 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
854 
855 	if (ce->pin_count++)
856 		return 0;
857 
858 	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
859 			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
860 	if (ret)
861 		goto err;
862 
863 	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
864 	if (IS_ERR(vaddr)) {
865 		ret = PTR_ERR(vaddr);
866 		goto unpin_vma;
867 	}
868 
869 	ret = intel_ring_pin(ce->ring);
870 	if (ret)
871 		goto unpin_map;
872 
873 	intel_lr_context_descriptor_update(ctx, engine);
874 
875 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
876 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
877 		i915_ggtt_offset(ce->ring->vma);
878 
879 	ce->state->obj->mm.dirty = true;
880 
881 	/* Invalidate GuC TLB. */
882 	if (i915.enable_guc_submission) {
883 		struct drm_i915_private *dev_priv = ctx->i915;
884 		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
885 	}
886 
887 	i915_gem_context_get(ctx);
888 	return 0;
889 
890 unpin_map:
891 	i915_gem_object_unpin_map(ce->state->obj);
892 unpin_vma:
893 	__i915_vma_unpin(ce->state);
894 err:
895 	ce->pin_count = 0;
896 	return ret;
897 }
898 
899 void intel_lr_context_unpin(struct i915_gem_context *ctx,
900 			    struct intel_engine_cs *engine)
901 {
902 	struct intel_context *ce = &ctx->engine[engine->id];
903 
904 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
905 	GEM_BUG_ON(ce->pin_count == 0);
906 
907 	if (--ce->pin_count)
908 		return;
909 
910 	intel_ring_unpin(ce->ring);
911 
912 	i915_gem_object_unpin_map(ce->state->obj);
913 	i915_vma_unpin(ce->state);
914 
915 	i915_gem_context_put(ctx);
916 }
917 
918 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
919 {
920 	int ret, i;
921 	struct intel_ring *ring = req->ring;
922 	struct i915_workarounds *w = &req->i915->workarounds;
923 
924 	if (w->count == 0)
925 		return 0;
926 
927 	ret = req->engine->emit_flush(req, EMIT_BARRIER);
928 	if (ret)
929 		return ret;
930 
931 	ret = intel_ring_begin(req, w->count * 2 + 2);
932 	if (ret)
933 		return ret;
934 
935 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
936 	for (i = 0; i < w->count; i++) {
937 		intel_ring_emit_reg(ring, w->reg[i].addr);
938 		intel_ring_emit(ring, w->reg[i].value);
939 	}
940 	intel_ring_emit(ring, MI_NOOP);
941 
942 	intel_ring_advance(ring);
943 
944 	ret = req->engine->emit_flush(req, EMIT_BARRIER);
945 	if (ret)
946 		return ret;
947 
948 	return 0;
949 }
950 
951 #define wa_ctx_emit(batch, index, cmd)					\
952 	do {								\
953 		int __index = (index)++;				\
954 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
955 			return -ENOSPC;					\
956 		}							\
957 		batch[__index] = (cmd);					\
958 	} while (0)
959 
960 #define wa_ctx_emit_reg(batch, index, reg) \
961 	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
962 
963 /*
964  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
965  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
966  * but there is a slight complication as this is applied in WA batch where the
967  * values are only initialized once so we cannot take register value at the
968  * beginning and reuse it further; hence we save its value to memory, upload a
969  * constant value with bit21 set and then we restore it back with the saved value.
970  * To simplify the WA, a constant value is formed by using the default value
971  * of this register. This shouldn't be a problem because we are only modifying
972  * it for a short period and this batch in non-premptible. We can ofcourse
973  * use additional instructions that read the actual value of the register
974  * at that time and set our bit of interest but it makes the WA complicated.
975  *
976  * This WA is also required for Gen9 so extracting as a function avoids
977  * code duplication.
978  */
979 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
980 						uint32_t *batch,
981 						uint32_t index)
982 {
983 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
984 
985 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
986 				   MI_SRM_LRM_GLOBAL_GTT));
987 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
988 	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
989 	wa_ctx_emit(batch, index, 0);
990 
991 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
992 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
993 	wa_ctx_emit(batch, index, l3sqc4_flush);
994 
995 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
996 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
997 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
998 	wa_ctx_emit(batch, index, 0);
999 	wa_ctx_emit(batch, index, 0);
1000 	wa_ctx_emit(batch, index, 0);
1001 	wa_ctx_emit(batch, index, 0);
1002 
1003 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1004 				   MI_SRM_LRM_GLOBAL_GTT));
1005 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1006 	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1007 	wa_ctx_emit(batch, index, 0);
1008 
1009 	return index;
1010 }
1011 
1012 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1013 				    uint32_t offset,
1014 				    uint32_t start_alignment)
1015 {
1016 	return wa_ctx->offset = ALIGN(offset, start_alignment);
1017 }
1018 
1019 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1020 			     uint32_t offset,
1021 			     uint32_t size_alignment)
1022 {
1023 	wa_ctx->size = offset - wa_ctx->offset;
1024 
1025 	WARN(wa_ctx->size % size_alignment,
1026 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1027 	     wa_ctx->size, size_alignment);
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1033  * initialized at the beginning and shared across all contexts but this field
1034  * helps us to have multiple batches at different offsets and select them based
1035  * on a criteria. At the moment this batch always start at the beginning of the page
1036  * and at this point we don't have multiple wa_ctx batch buffers.
1037  *
1038  * The number of WA applied are not known at the beginning; we use this field
1039  * to return the no of DWORDS written.
1040  *
1041  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1042  * so it adds NOOPs as padding to make it cacheline aligned.
1043  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1044  * makes a complete batch buffer.
1045  */
1046 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1047 				    struct i915_wa_ctx_bb *wa_ctx,
1048 				    uint32_t *batch,
1049 				    uint32_t *offset)
1050 {
1051 	uint32_t scratch_addr;
1052 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1053 
1054 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1055 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1056 
1057 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1058 	if (IS_BROADWELL(engine->i915)) {
1059 		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1060 		if (rc < 0)
1061 			return rc;
1062 		index = rc;
1063 	}
1064 
1065 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1066 	/* Actual scratch location is at 128 bytes offset */
1067 	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1068 
1069 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1070 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1071 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1072 				   PIPE_CONTROL_CS_STALL |
1073 				   PIPE_CONTROL_QW_WRITE));
1074 	wa_ctx_emit(batch, index, scratch_addr);
1075 	wa_ctx_emit(batch, index, 0);
1076 	wa_ctx_emit(batch, index, 0);
1077 	wa_ctx_emit(batch, index, 0);
1078 
1079 	/* Pad to end of cacheline */
1080 	while (index % CACHELINE_DWORDS)
1081 		wa_ctx_emit(batch, index, MI_NOOP);
1082 
1083 	/*
1084 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1085 	 * execution depends on the length specified in terms of cache lines
1086 	 * in the register CTX_RCS_INDIRECT_CTX
1087 	 */
1088 
1089 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1090 }
1091 
1092 /*
1093  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1094  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1095  *
1096  *  The number of DWORDS written are returned using this field.
1097  *
1098  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1099  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1100  */
1101 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1102 			       struct i915_wa_ctx_bb *wa_ctx,
1103 			       uint32_t *batch,
1104 			       uint32_t *offset)
1105 {
1106 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1107 
1108 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1109 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1110 
1111 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1112 
1113 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1114 }
1115 
1116 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1117 				    struct i915_wa_ctx_bb *wa_ctx,
1118 				    uint32_t *batch,
1119 				    uint32_t *offset)
1120 {
1121 	int ret;
1122 	struct drm_i915_private *dev_priv = engine->i915;
1123 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1124 
1125 	/* WaDisableCtxRestoreArbitration:bxt */
1126 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1127 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1128 
1129 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1130 	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1131 	if (ret < 0)
1132 		return ret;
1133 	index = ret;
1134 
1135 	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1136 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1137 	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1138 	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1139 			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1140 	wa_ctx_emit(batch, index, MI_NOOP);
1141 
1142 	/* WaClearSlmSpaceAtContextSwitch:kbl */
1143 	/* Actual scratch location is at 128 bytes offset */
1144 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1145 		u32 scratch_addr =
1146 			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1147 
1148 		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1149 		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1150 					   PIPE_CONTROL_GLOBAL_GTT_IVB |
1151 					   PIPE_CONTROL_CS_STALL |
1152 					   PIPE_CONTROL_QW_WRITE));
1153 		wa_ctx_emit(batch, index, scratch_addr);
1154 		wa_ctx_emit(batch, index, 0);
1155 		wa_ctx_emit(batch, index, 0);
1156 		wa_ctx_emit(batch, index, 0);
1157 	}
1158 
1159 	/* WaMediaPoolStateCmdInWABB:bxt */
1160 	if (HAS_POOLED_EU(engine->i915)) {
1161 		/*
1162 		 * EU pool configuration is setup along with golden context
1163 		 * during context initialization. This value depends on
1164 		 * device type (2x6 or 3x6) and needs to be updated based
1165 		 * on which subslice is disabled especially for 2x6
1166 		 * devices, however it is safe to load default
1167 		 * configuration of 3x6 device instead of masking off
1168 		 * corresponding bits because HW ignores bits of a disabled
1169 		 * subslice and drops down to appropriate config. Please
1170 		 * see render_state_setup() in i915_gem_render_state.c for
1171 		 * possible configurations, to avoid duplication they are
1172 		 * not shown here again.
1173 		 */
1174 		u32 eu_pool_config = 0x00777000;
1175 		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1176 		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1177 		wa_ctx_emit(batch, index, eu_pool_config);
1178 		wa_ctx_emit(batch, index, 0);
1179 		wa_ctx_emit(batch, index, 0);
1180 		wa_ctx_emit(batch, index, 0);
1181 	}
1182 
1183 	/* Pad to end of cacheline */
1184 	while (index % CACHELINE_DWORDS)
1185 		wa_ctx_emit(batch, index, MI_NOOP);
1186 
1187 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1188 }
1189 
1190 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1191 			       struct i915_wa_ctx_bb *wa_ctx,
1192 			       uint32_t *batch,
1193 			       uint32_t *offset)
1194 {
1195 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1196 
1197 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1198 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1199 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1200 		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1201 		wa_ctx_emit(batch, index,
1202 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1203 		wa_ctx_emit(batch, index, MI_NOOP);
1204 	}
1205 
1206 	/* WaClearTdlStateAckDirtyBits:bxt */
1207 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1208 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1209 
1210 		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1211 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1212 
1213 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1214 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1215 
1216 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1217 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1218 
1219 		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1220 		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1221 		wa_ctx_emit(batch, index, 0x0);
1222 		wa_ctx_emit(batch, index, MI_NOOP);
1223 	}
1224 
1225 	/* WaDisableCtxRestoreArbitration:bxt */
1226 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1227 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1228 
1229 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1230 
1231 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1232 }
1233 
1234 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1235 {
1236 	struct drm_i915_gem_object *obj;
1237 	struct i915_vma *vma;
1238 	int err;
1239 
1240 	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1241 	if (IS_ERR(obj))
1242 		return PTR_ERR(obj);
1243 
1244 	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1245 	if (IS_ERR(vma)) {
1246 		err = PTR_ERR(vma);
1247 		goto err;
1248 	}
1249 
1250 	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1251 	if (err)
1252 		goto err;
1253 
1254 	engine->wa_ctx.vma = vma;
1255 	return 0;
1256 
1257 err:
1258 	i915_gem_object_put(obj);
1259 	return err;
1260 }
1261 
1262 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1263 {
1264 	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1265 }
1266 
1267 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1268 {
1269 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1270 	uint32_t *batch;
1271 	uint32_t offset;
1272 	struct page *page;
1273 	int ret;
1274 
1275 	WARN_ON(engine->id != RCS);
1276 
1277 	/* update this when WA for higher Gen are added */
1278 	if (INTEL_GEN(engine->i915) > 9) {
1279 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1280 			  INTEL_GEN(engine->i915));
1281 		return 0;
1282 	}
1283 
1284 	/* some WA perform writes to scratch page, ensure it is valid */
1285 	if (!engine->scratch) {
1286 		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1287 		return -EINVAL;
1288 	}
1289 
1290 	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1291 	if (ret) {
1292 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1293 		return ret;
1294 	}
1295 
1296 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1297 	batch = kmap_atomic(page);
1298 	offset = 0;
1299 
1300 	if (IS_GEN8(engine->i915)) {
1301 		ret = gen8_init_indirectctx_bb(engine,
1302 					       &wa_ctx->indirect_ctx,
1303 					       batch,
1304 					       &offset);
1305 		if (ret)
1306 			goto out;
1307 
1308 		ret = gen8_init_perctx_bb(engine,
1309 					  &wa_ctx->per_ctx,
1310 					  batch,
1311 					  &offset);
1312 		if (ret)
1313 			goto out;
1314 	} else if (IS_GEN9(engine->i915)) {
1315 		ret = gen9_init_indirectctx_bb(engine,
1316 					       &wa_ctx->indirect_ctx,
1317 					       batch,
1318 					       &offset);
1319 		if (ret)
1320 			goto out;
1321 
1322 		ret = gen9_init_perctx_bb(engine,
1323 					  &wa_ctx->per_ctx,
1324 					  batch,
1325 					  &offset);
1326 		if (ret)
1327 			goto out;
1328 	}
1329 
1330 out:
1331 	kunmap_atomic(batch);
1332 	if (ret)
1333 		lrc_destroy_wa_ctx_obj(engine);
1334 
1335 	return ret;
1336 }
1337 
1338 static void lrc_init_hws(struct intel_engine_cs *engine)
1339 {
1340 	struct drm_i915_private *dev_priv = engine->i915;
1341 
1342 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1343 		   engine->status_page.ggtt_offset);
1344 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1345 }
1346 
1347 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1348 {
1349 	struct drm_i915_private *dev_priv = engine->i915;
1350 	int ret;
1351 
1352 	ret = intel_mocs_init_engine(engine);
1353 	if (ret)
1354 		return ret;
1355 
1356 	lrc_init_hws(engine);
1357 
1358 	intel_engine_reset_breadcrumbs(engine);
1359 
1360 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1361 
1362 	I915_WRITE(RING_MODE_GEN7(engine),
1363 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1364 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1365 
1366 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1367 
1368 	intel_engine_init_hangcheck(engine);
1369 
1370 	/* After a GPU reset, we may have requests to replay */
1371 	if (!execlists_elsp_idle(engine)) {
1372 		engine->execlist_port[0].count = 0;
1373 		engine->execlist_port[1].count = 0;
1374 		execlists_submit_ports(engine);
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1381 {
1382 	struct drm_i915_private *dev_priv = engine->i915;
1383 	int ret;
1384 
1385 	ret = gen8_init_common_ring(engine);
1386 	if (ret)
1387 		return ret;
1388 
1389 	/* We need to disable the AsyncFlip performance optimisations in order
1390 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1391 	 * programmed to '1' on all products.
1392 	 *
1393 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1394 	 */
1395 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1396 
1397 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1398 
1399 	return init_workarounds_ring(engine);
1400 }
1401 
1402 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1403 {
1404 	int ret;
1405 
1406 	ret = gen8_init_common_ring(engine);
1407 	if (ret)
1408 		return ret;
1409 
1410 	return init_workarounds_ring(engine);
1411 }
1412 
1413 static void reset_common_ring(struct intel_engine_cs *engine,
1414 			      struct drm_i915_gem_request *request)
1415 {
1416 	struct drm_i915_private *dev_priv = engine->i915;
1417 	struct execlist_port *port = engine->execlist_port;
1418 	struct intel_context *ce = &request->ctx->engine[engine->id];
1419 
1420 	/* We want a simple context + ring to execute the breadcrumb update.
1421 	 * We cannot rely on the context being intact across the GPU hang,
1422 	 * so clear it and rebuild just what we need for the breadcrumb.
1423 	 * All pending requests for this context will be zapped, and any
1424 	 * future request will be after userspace has had the opportunity
1425 	 * to recreate its own state.
1426 	 */
1427 	execlists_init_reg_state(ce->lrc_reg_state,
1428 				 request->ctx, engine, ce->ring);
1429 
1430 	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1431 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1432 		i915_ggtt_offset(ce->ring->vma);
1433 	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1434 
1435 	request->ring->head = request->postfix;
1436 	request->ring->last_retired_head = -1;
1437 	intel_ring_update_space(request->ring);
1438 
1439 	if (i915.enable_guc_submission)
1440 		return;
1441 
1442 	/* Catch up with any missed context-switch interrupts */
1443 	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1444 	if (request->ctx != port[0].request->ctx) {
1445 		i915_gem_request_put(port[0].request);
1446 		port[0] = port[1];
1447 		memset(&port[1], 0, sizeof(port[1]));
1448 	}
1449 
1450 	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1451 
1452 	/* Reset WaIdleLiteRestore:bdw,skl as well */
1453 	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1454 }
1455 
1456 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1457 {
1458 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1459 	struct intel_ring *ring = req->ring;
1460 	struct intel_engine_cs *engine = req->engine;
1461 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1462 	int i, ret;
1463 
1464 	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1465 	if (ret)
1466 		return ret;
1467 
1468 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1469 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1470 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1471 
1472 		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1473 		intel_ring_emit(ring, upper_32_bits(pd_daddr));
1474 		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1475 		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1476 	}
1477 
1478 	intel_ring_emit(ring, MI_NOOP);
1479 	intel_ring_advance(ring);
1480 
1481 	return 0;
1482 }
1483 
1484 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1485 			      u64 offset, u32 len,
1486 			      unsigned int dispatch_flags)
1487 {
1488 	struct intel_ring *ring = req->ring;
1489 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1490 	int ret;
1491 
1492 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1493 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1494 	 * but we can't. Force Restore would be a second option, but
1495 	 * it is unsafe in case of lite-restore (because the ctx is
1496 	 * not idle). PML4 is allocated during ppgtt init so this is
1497 	 * not needed in 48-bit.*/
1498 	if (req->ctx->ppgtt &&
1499 	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1500 		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1501 		    !intel_vgpu_active(req->i915)) {
1502 			ret = intel_logical_ring_emit_pdps(req);
1503 			if (ret)
1504 				return ret;
1505 		}
1506 
1507 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1508 	}
1509 
1510 	ret = intel_ring_begin(req, 4);
1511 	if (ret)
1512 		return ret;
1513 
1514 	/* FIXME(BDW): Address space and security selectors. */
1515 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1516 			(ppgtt<<8) |
1517 			(dispatch_flags & I915_DISPATCH_RS ?
1518 			 MI_BATCH_RESOURCE_STREAMER : 0));
1519 	intel_ring_emit(ring, lower_32_bits(offset));
1520 	intel_ring_emit(ring, upper_32_bits(offset));
1521 	intel_ring_emit(ring, MI_NOOP);
1522 	intel_ring_advance(ring);
1523 
1524 	return 0;
1525 }
1526 
1527 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1528 {
1529 	struct drm_i915_private *dev_priv = engine->i915;
1530 	I915_WRITE_IMR(engine,
1531 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1532 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1533 }
1534 
1535 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1536 {
1537 	struct drm_i915_private *dev_priv = engine->i915;
1538 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1539 }
1540 
1541 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1542 {
1543 	struct intel_ring *ring = request->ring;
1544 	u32 cmd;
1545 	int ret;
1546 
1547 	ret = intel_ring_begin(request, 4);
1548 	if (ret)
1549 		return ret;
1550 
1551 	cmd = MI_FLUSH_DW + 1;
1552 
1553 	/* We always require a command barrier so that subsequent
1554 	 * commands, such as breadcrumb interrupts, are strictly ordered
1555 	 * wrt the contents of the write cache being flushed to memory
1556 	 * (and thus being coherent from the CPU).
1557 	 */
1558 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1559 
1560 	if (mode & EMIT_INVALIDATE) {
1561 		cmd |= MI_INVALIDATE_TLB;
1562 		if (request->engine->id == VCS)
1563 			cmd |= MI_INVALIDATE_BSD;
1564 	}
1565 
1566 	intel_ring_emit(ring, cmd);
1567 	intel_ring_emit(ring,
1568 			I915_GEM_HWS_SCRATCH_ADDR |
1569 			MI_FLUSH_DW_USE_GTT);
1570 	intel_ring_emit(ring, 0); /* upper addr */
1571 	intel_ring_emit(ring, 0); /* value */
1572 	intel_ring_advance(ring);
1573 
1574 	return 0;
1575 }
1576 
1577 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1578 				  u32 mode)
1579 {
1580 	struct intel_ring *ring = request->ring;
1581 	struct intel_engine_cs *engine = request->engine;
1582 	u32 scratch_addr =
1583 		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1584 	bool vf_flush_wa = false, dc_flush_wa = false;
1585 	u32 flags = 0;
1586 	int ret;
1587 	int len;
1588 
1589 	flags |= PIPE_CONTROL_CS_STALL;
1590 
1591 	if (mode & EMIT_FLUSH) {
1592 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1593 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1594 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1595 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1596 	}
1597 
1598 	if (mode & EMIT_INVALIDATE) {
1599 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1600 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1601 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1602 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1603 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1604 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1605 		flags |= PIPE_CONTROL_QW_WRITE;
1606 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1607 
1608 		/*
1609 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1610 		 * pipe control.
1611 		 */
1612 		if (IS_GEN9(request->i915))
1613 			vf_flush_wa = true;
1614 
1615 		/* WaForGAMHang:kbl */
1616 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1617 			dc_flush_wa = true;
1618 	}
1619 
1620 	len = 6;
1621 
1622 	if (vf_flush_wa)
1623 		len += 6;
1624 
1625 	if (dc_flush_wa)
1626 		len += 12;
1627 
1628 	ret = intel_ring_begin(request, len);
1629 	if (ret)
1630 		return ret;
1631 
1632 	if (vf_flush_wa) {
1633 		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1634 		intel_ring_emit(ring, 0);
1635 		intel_ring_emit(ring, 0);
1636 		intel_ring_emit(ring, 0);
1637 		intel_ring_emit(ring, 0);
1638 		intel_ring_emit(ring, 0);
1639 	}
1640 
1641 	if (dc_flush_wa) {
1642 		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1643 		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1644 		intel_ring_emit(ring, 0);
1645 		intel_ring_emit(ring, 0);
1646 		intel_ring_emit(ring, 0);
1647 		intel_ring_emit(ring, 0);
1648 	}
1649 
1650 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1651 	intel_ring_emit(ring, flags);
1652 	intel_ring_emit(ring, scratch_addr);
1653 	intel_ring_emit(ring, 0);
1654 	intel_ring_emit(ring, 0);
1655 	intel_ring_emit(ring, 0);
1656 
1657 	if (dc_flush_wa) {
1658 		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1659 		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1660 		intel_ring_emit(ring, 0);
1661 		intel_ring_emit(ring, 0);
1662 		intel_ring_emit(ring, 0);
1663 		intel_ring_emit(ring, 0);
1664 	}
1665 
1666 	intel_ring_advance(ring);
1667 
1668 	return 0;
1669 }
1670 
1671 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1672 {
1673 	/*
1674 	 * On BXT A steppings there is a HW coherency issue whereby the
1675 	 * MI_STORE_DATA_IMM storing the completed request's seqno
1676 	 * occasionally doesn't invalidate the CPU cache. Work around this by
1677 	 * clflushing the corresponding cacheline whenever the caller wants
1678 	 * the coherency to be guaranteed. Note that this cacheline is known
1679 	 * to be clean at this point, since we only write it in
1680 	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1681 	 * this clflush in practice becomes an invalidate operation.
1682 	 */
1683 	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1684 }
1685 
1686 /*
1687  * Reserve space for 2 NOOPs at the end of each request to be
1688  * used as a workaround for not being allowed to do lite
1689  * restore with HEAD==TAIL (WaIdleLiteRestore).
1690  */
1691 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1692 {
1693 	*out++ = MI_NOOP;
1694 	*out++ = MI_NOOP;
1695 	request->wa_tail = intel_ring_offset(request->ring, out);
1696 }
1697 
1698 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1699 				 u32 *out)
1700 {
1701 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1702 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1703 
1704 	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1705 	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1706 	*out++ = 0;
1707 	*out++ = request->global_seqno;
1708 	*out++ = MI_USER_INTERRUPT;
1709 	*out++ = MI_NOOP;
1710 	request->tail = intel_ring_offset(request->ring, out);
1711 
1712 	gen8_emit_wa_tail(request, out);
1713 }
1714 
1715 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1716 
1717 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1718 					u32 *out)
1719 {
1720 	/* We're using qword write, seqno should be aligned to 8 bytes. */
1721 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1722 
1723 	/* w/a for post sync ops following a GPGPU operation we
1724 	 * need a prior CS_STALL, which is emitted by the flush
1725 	 * following the batch.
1726 	 */
1727 	*out++ = GFX_OP_PIPE_CONTROL(6);
1728 	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1729 		  PIPE_CONTROL_CS_STALL |
1730 		  PIPE_CONTROL_QW_WRITE);
1731 	*out++ = intel_hws_seqno_address(request->engine);
1732 	*out++ = 0;
1733 	*out++ = request->global_seqno;
1734 	/* We're thrashing one dword of HWS. */
1735 	*out++ = 0;
1736 	*out++ = MI_USER_INTERRUPT;
1737 	*out++ = MI_NOOP;
1738 	request->tail = intel_ring_offset(request->ring, out);
1739 
1740 	gen8_emit_wa_tail(request, out);
1741 }
1742 
1743 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1744 
1745 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1746 {
1747 	int ret;
1748 
1749 	ret = intel_logical_ring_workarounds_emit(req);
1750 	if (ret)
1751 		return ret;
1752 
1753 	ret = intel_rcs_context_init_mocs(req);
1754 	/*
1755 	 * Failing to program the MOCS is non-fatal.The system will not
1756 	 * run at peak performance. So generate an error and carry on.
1757 	 */
1758 	if (ret)
1759 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1760 
1761 	return i915_gem_render_state_emit(req);
1762 }
1763 
1764 /**
1765  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1766  * @engine: Engine Command Streamer.
1767  */
1768 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1769 {
1770 	struct drm_i915_private *dev_priv;
1771 
1772 	/*
1773 	 * Tasklet cannot be active at this point due intel_mark_active/idle
1774 	 * so this is just for documentation.
1775 	 */
1776 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1777 		tasklet_kill(&engine->irq_tasklet);
1778 
1779 	dev_priv = engine->i915;
1780 
1781 	if (engine->buffer) {
1782 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1783 	}
1784 
1785 	if (engine->cleanup)
1786 		engine->cleanup(engine);
1787 
1788 	intel_engine_cleanup_common(engine);
1789 
1790 	if (engine->status_page.vma) {
1791 		i915_gem_object_unpin_map(engine->status_page.vma->obj);
1792 		engine->status_page.vma = NULL;
1793 	}
1794 	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1795 
1796 	lrc_destroy_wa_ctx_obj(engine);
1797 	engine->i915 = NULL;
1798 	dev_priv->engine[engine->id] = NULL;
1799 	kfree(engine);
1800 }
1801 
1802 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1803 {
1804 	struct intel_engine_cs *engine;
1805 	enum intel_engine_id id;
1806 
1807 	for_each_engine(engine, dev_priv, id) {
1808 		engine->submit_request = execlists_submit_request;
1809 		engine->schedule = execlists_schedule;
1810 	}
1811 }
1812 
1813 static void
1814 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1815 {
1816 	/* Default vfuncs which can be overriden by each engine. */
1817 	engine->init_hw = gen8_init_common_ring;
1818 	engine->reset_hw = reset_common_ring;
1819 	engine->emit_flush = gen8_emit_flush;
1820 	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1821 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1822 	engine->submit_request = execlists_submit_request;
1823 	engine->schedule = execlists_schedule;
1824 
1825 	engine->irq_enable = gen8_logical_ring_enable_irq;
1826 	engine->irq_disable = gen8_logical_ring_disable_irq;
1827 	engine->emit_bb_start = gen8_emit_bb_start;
1828 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1829 		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1830 }
1831 
1832 static inline void
1833 logical_ring_default_irqs(struct intel_engine_cs *engine)
1834 {
1835 	unsigned shift = engine->irq_shift;
1836 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1837 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1838 }
1839 
1840 static int
1841 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1842 {
1843 	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1844 	void *hws;
1845 
1846 	/* The HWSP is part of the default context object in LRC mode. */
1847 	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1848 	if (IS_ERR(hws))
1849 		return PTR_ERR(hws);
1850 
1851 	engine->status_page.page_addr = hws + hws_offset;
1852 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1853 	engine->status_page.vma = vma;
1854 
1855 	return 0;
1856 }
1857 
1858 static void
1859 logical_ring_setup(struct intel_engine_cs *engine)
1860 {
1861 	struct drm_i915_private *dev_priv = engine->i915;
1862 	enum forcewake_domains fw_domains;
1863 
1864 	intel_engine_setup_common(engine);
1865 
1866 	/* Intentionally left blank. */
1867 	engine->buffer = NULL;
1868 
1869 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1870 						    RING_ELSP(engine),
1871 						    FW_REG_WRITE);
1872 
1873 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1874 						     RING_CONTEXT_STATUS_PTR(engine),
1875 						     FW_REG_READ | FW_REG_WRITE);
1876 
1877 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1878 						     RING_CONTEXT_STATUS_BUF_BASE(engine),
1879 						     FW_REG_READ);
1880 
1881 	engine->fw_domains = fw_domains;
1882 
1883 	tasklet_init(&engine->irq_tasklet,
1884 		     intel_lrc_irq_handler, (unsigned long)engine);
1885 
1886 	logical_ring_init_platform_invariants(engine);
1887 	logical_ring_default_vfuncs(engine);
1888 	logical_ring_default_irqs(engine);
1889 }
1890 
1891 static int
1892 logical_ring_init(struct intel_engine_cs *engine)
1893 {
1894 	struct i915_gem_context *dctx = engine->i915->kernel_context;
1895 	int ret;
1896 
1897 	ret = intel_engine_init_common(engine);
1898 	if (ret)
1899 		goto error;
1900 
1901 	ret = execlists_context_deferred_alloc(dctx, engine);
1902 	if (ret)
1903 		goto error;
1904 
1905 	/* As this is the default context, always pin it */
1906 	ret = intel_lr_context_pin(dctx, engine);
1907 	if (ret) {
1908 		DRM_ERROR("Failed to pin context for %s: %d\n",
1909 			  engine->name, ret);
1910 		goto error;
1911 	}
1912 
1913 	/* And setup the hardware status page. */
1914 	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1915 	if (ret) {
1916 		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1917 		goto error;
1918 	}
1919 
1920 	return 0;
1921 
1922 error:
1923 	intel_logical_ring_cleanup(engine);
1924 	return ret;
1925 }
1926 
1927 int logical_render_ring_init(struct intel_engine_cs *engine)
1928 {
1929 	struct drm_i915_private *dev_priv = engine->i915;
1930 	int ret;
1931 
1932 	logical_ring_setup(engine);
1933 
1934 	if (HAS_L3_DPF(dev_priv))
1935 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1936 
1937 	/* Override some for render ring. */
1938 	if (INTEL_GEN(dev_priv) >= 9)
1939 		engine->init_hw = gen9_init_render_ring;
1940 	else
1941 		engine->init_hw = gen8_init_render_ring;
1942 	engine->init_context = gen8_init_rcs_context;
1943 	engine->emit_flush = gen8_emit_flush_render;
1944 	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1945 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1946 
1947 	ret = intel_engine_create_scratch(engine, 4096);
1948 	if (ret)
1949 		return ret;
1950 
1951 	ret = intel_init_workaround_bb(engine);
1952 	if (ret) {
1953 		/*
1954 		 * We continue even if we fail to initialize WA batch
1955 		 * because we only expect rare glitches but nothing
1956 		 * critical to prevent us from using GPU
1957 		 */
1958 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
1959 			  ret);
1960 	}
1961 
1962 	return logical_ring_init(engine);
1963 }
1964 
1965 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1966 {
1967 	logical_ring_setup(engine);
1968 
1969 	return logical_ring_init(engine);
1970 }
1971 
1972 static u32
1973 make_rpcs(struct drm_i915_private *dev_priv)
1974 {
1975 	u32 rpcs = 0;
1976 
1977 	/*
1978 	 * No explicit RPCS request is needed to ensure full
1979 	 * slice/subslice/EU enablement prior to Gen9.
1980 	*/
1981 	if (INTEL_GEN(dev_priv) < 9)
1982 		return 0;
1983 
1984 	/*
1985 	 * Starting in Gen9, render power gating can leave
1986 	 * slice/subslice/EU in a partially enabled state. We
1987 	 * must make an explicit request through RPCS for full
1988 	 * enablement.
1989 	*/
1990 	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1991 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1992 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1993 			GEN8_RPCS_S_CNT_SHIFT;
1994 		rpcs |= GEN8_RPCS_ENABLE;
1995 	}
1996 
1997 	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1998 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1999 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2000 			GEN8_RPCS_SS_CNT_SHIFT;
2001 		rpcs |= GEN8_RPCS_ENABLE;
2002 	}
2003 
2004 	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2005 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2006 			GEN8_RPCS_EU_MIN_SHIFT;
2007 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2008 			GEN8_RPCS_EU_MAX_SHIFT;
2009 		rpcs |= GEN8_RPCS_ENABLE;
2010 	}
2011 
2012 	return rpcs;
2013 }
2014 
2015 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2016 {
2017 	u32 indirect_ctx_offset;
2018 
2019 	switch (INTEL_GEN(engine->i915)) {
2020 	default:
2021 		MISSING_CASE(INTEL_GEN(engine->i915));
2022 		/* fall through */
2023 	case 9:
2024 		indirect_ctx_offset =
2025 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2026 		break;
2027 	case 8:
2028 		indirect_ctx_offset =
2029 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2030 		break;
2031 	}
2032 
2033 	return indirect_ctx_offset;
2034 }
2035 
2036 static void execlists_init_reg_state(u32 *reg_state,
2037 				     struct i915_gem_context *ctx,
2038 				     struct intel_engine_cs *engine,
2039 				     struct intel_ring *ring)
2040 {
2041 	struct drm_i915_private *dev_priv = engine->i915;
2042 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2043 
2044 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2045 	 * commands followed by (reg, value) pairs. The values we are setting here are
2046 	 * only for the first context restore: on a subsequent save, the GPU will
2047 	 * recreate this batchbuffer with new values (including all the missing
2048 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2049 	reg_state[CTX_LRI_HEADER_0] =
2050 		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2051 	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2052 		       RING_CONTEXT_CONTROL(engine),
2053 		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2054 					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2055 					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2056 					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2057 	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2058 		       0);
2059 	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2060 		       0);
2061 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2062 		       RING_START(engine->mmio_base), 0);
2063 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2064 		       RING_CTL(engine->mmio_base),
2065 		       RING_CTL_SIZE(ring->size) | RING_VALID);
2066 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2067 		       RING_BBADDR_UDW(engine->mmio_base), 0);
2068 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2069 		       RING_BBADDR(engine->mmio_base), 0);
2070 	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2071 		       RING_BBSTATE(engine->mmio_base),
2072 		       RING_BB_PPGTT);
2073 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2074 		       RING_SBBADDR_UDW(engine->mmio_base), 0);
2075 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2076 		       RING_SBBADDR(engine->mmio_base), 0);
2077 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2078 		       RING_SBBSTATE(engine->mmio_base), 0);
2079 	if (engine->id == RCS) {
2080 		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2081 			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2082 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2083 			       RING_INDIRECT_CTX(engine->mmio_base), 0);
2084 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2085 			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2086 		if (engine->wa_ctx.vma) {
2087 			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2088 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2089 
2090 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2091 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2092 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2093 
2094 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2095 				intel_lr_indirect_ctx_offset(engine) << 6;
2096 
2097 			reg_state[CTX_BB_PER_CTX_PTR+1] =
2098 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2099 				0x01;
2100 		}
2101 	}
2102 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2103 	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2104 		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2105 	/* PDP values well be assigned later if needed */
2106 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2107 		       0);
2108 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2109 		       0);
2110 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2111 		       0);
2112 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2113 		       0);
2114 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2115 		       0);
2116 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2117 		       0);
2118 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2119 		       0);
2120 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2121 		       0);
2122 
2123 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2124 		/* 64b PPGTT (48bit canonical)
2125 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2126 		 * other PDP Descriptors are ignored.
2127 		 */
2128 		ASSIGN_CTX_PML4(ppgtt, reg_state);
2129 	} else {
2130 		/* 32b PPGTT
2131 		 * PDP*_DESCRIPTOR contains the base address of space supported.
2132 		 * With dynamic page allocation, PDPs may not be allocated at
2133 		 * this point. Point the unallocated PDPs to the scratch page
2134 		 */
2135 		execlists_update_context_pdps(ppgtt, reg_state);
2136 	}
2137 
2138 	if (engine->id == RCS) {
2139 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2140 		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2141 			       make_rpcs(dev_priv));
2142 	}
2143 }
2144 
2145 static int
2146 populate_lr_context(struct i915_gem_context *ctx,
2147 		    struct drm_i915_gem_object *ctx_obj,
2148 		    struct intel_engine_cs *engine,
2149 		    struct intel_ring *ring)
2150 {
2151 	void *vaddr;
2152 	int ret;
2153 
2154 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2155 	if (ret) {
2156 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2157 		return ret;
2158 	}
2159 
2160 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2161 	if (IS_ERR(vaddr)) {
2162 		ret = PTR_ERR(vaddr);
2163 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2164 		return ret;
2165 	}
2166 	ctx_obj->mm.dirty = true;
2167 
2168 	/* The second page of the context object contains some fields which must
2169 	 * be set up prior to the first execution. */
2170 
2171 	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2172 				 ctx, engine, ring);
2173 
2174 	i915_gem_object_unpin_map(ctx_obj);
2175 
2176 	return 0;
2177 }
2178 
2179 /**
2180  * intel_lr_context_size() - return the size of the context for an engine
2181  * @engine: which engine to find the context size for
2182  *
2183  * Each engine may require a different amount of space for a context image,
2184  * so when allocating (or copying) an image, this function can be used to
2185  * find the right size for the specific engine.
2186  *
2187  * Return: size (in bytes) of an engine-specific context image
2188  *
2189  * Note: this size includes the HWSP, which is part of the context image
2190  * in LRC mode, but does not include the "shared data page" used with
2191  * GuC submission. The caller should account for this if using the GuC.
2192  */
2193 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2194 {
2195 	int ret = 0;
2196 
2197 	WARN_ON(INTEL_GEN(engine->i915) < 8);
2198 
2199 	switch (engine->id) {
2200 	case RCS:
2201 		if (INTEL_GEN(engine->i915) >= 9)
2202 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2203 		else
2204 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2205 		break;
2206 	case VCS:
2207 	case BCS:
2208 	case VECS:
2209 	case VCS2:
2210 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2211 		break;
2212 	}
2213 
2214 	return ret;
2215 }
2216 
2217 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2218 					    struct intel_engine_cs *engine)
2219 {
2220 	struct drm_i915_gem_object *ctx_obj;
2221 	struct intel_context *ce = &ctx->engine[engine->id];
2222 	struct i915_vma *vma;
2223 	uint32_t context_size;
2224 	struct intel_ring *ring;
2225 	int ret;
2226 
2227 	WARN_ON(ce->state);
2228 
2229 	context_size = round_up(intel_lr_context_size(engine), 4096);
2230 
2231 	/* One extra page as the sharing data between driver and GuC */
2232 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2233 
2234 	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2235 	if (IS_ERR(ctx_obj)) {
2236 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2237 		return PTR_ERR(ctx_obj);
2238 	}
2239 
2240 	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2241 	if (IS_ERR(vma)) {
2242 		ret = PTR_ERR(vma);
2243 		goto error_deref_obj;
2244 	}
2245 
2246 	ring = intel_engine_create_ring(engine, ctx->ring_size);
2247 	if (IS_ERR(ring)) {
2248 		ret = PTR_ERR(ring);
2249 		goto error_deref_obj;
2250 	}
2251 
2252 	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2253 	if (ret) {
2254 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2255 		goto error_ring_free;
2256 	}
2257 
2258 	ce->ring = ring;
2259 	ce->state = vma;
2260 	ce->initialised = engine->init_context == NULL;
2261 
2262 	return 0;
2263 
2264 error_ring_free:
2265 	intel_ring_free(ring);
2266 error_deref_obj:
2267 	i915_gem_object_put(ctx_obj);
2268 	return ret;
2269 }
2270 
2271 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2272 {
2273 	struct intel_engine_cs *engine;
2274 	struct i915_gem_context *ctx;
2275 	enum intel_engine_id id;
2276 
2277 	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2278 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2279 	 * that stored in context. As we only write new commands from
2280 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2281 	 * starts reading from its RING_HEAD from the context, it may try to
2282 	 * execute that junk and die.
2283 	 *
2284 	 * So to avoid that we reset the context images upon resume. For
2285 	 * simplicity, we just zero everything out.
2286 	 */
2287 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2288 		for_each_engine(engine, dev_priv, id) {
2289 			struct intel_context *ce = &ctx->engine[engine->id];
2290 			u32 *reg;
2291 
2292 			if (!ce->state)
2293 				continue;
2294 
2295 			reg = i915_gem_object_pin_map(ce->state->obj,
2296 						      I915_MAP_WB);
2297 			if (WARN_ON(IS_ERR(reg)))
2298 				continue;
2299 
2300 			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2301 			reg[CTX_RING_HEAD+1] = 0;
2302 			reg[CTX_RING_TAIL+1] = 0;
2303 
2304 			ce->state->obj->mm.dirty = true;
2305 			i915_gem_object_unpin_map(ce->state->obj);
2306 
2307 			ce->ring->head = ce->ring->tail = 0;
2308 			ce->ring->last_retired_head = -1;
2309 			intel_ring_update_space(ce->ring);
2310 		}
2311 	}
2312 }
2313