xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 820c5b08)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139 
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142 
143 #define GEN8_LR_CONTEXT_ALIGN 4096
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define CTX_LRI_HEADER_0		0x01
160 #define CTX_CONTEXT_CONTROL		0x02
161 #define CTX_RING_HEAD			0x04
162 #define CTX_RING_TAIL			0x06
163 #define CTX_RING_BUFFER_START		0x08
164 #define CTX_RING_BUFFER_CONTROL		0x0a
165 #define CTX_BB_HEAD_U			0x0c
166 #define CTX_BB_HEAD_L			0x0e
167 #define CTX_BB_STATE			0x10
168 #define CTX_SECOND_BB_HEAD_U		0x12
169 #define CTX_SECOND_BB_HEAD_L		0x14
170 #define CTX_SECOND_BB_STATE		0x16
171 #define CTX_BB_PER_CTX_PTR		0x18
172 #define CTX_RCS_INDIRECT_CTX		0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
174 #define CTX_LRI_HEADER_1		0x21
175 #define CTX_CTX_TIMESTAMP		0x22
176 #define CTX_PDP3_UDW			0x24
177 #define CTX_PDP3_LDW			0x26
178 #define CTX_PDP2_UDW			0x28
179 #define CTX_PDP2_LDW			0x2a
180 #define CTX_PDP1_UDW			0x2c
181 #define CTX_PDP1_LDW			0x2e
182 #define CTX_PDP0_UDW			0x30
183 #define CTX_PDP0_LDW			0x32
184 #define CTX_LRI_HEADER_2		0x41
185 #define CTX_R_PWR_CLK_STATE		0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
187 
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 enum {
194 	ADVANCED_CONTEXT = 0,
195 	LEGACY_CONTEXT,
196 	ADVANCED_AD_CONTEXT,
197 	LEGACY_64B_CONTEXT
198 };
199 #define GEN8_CTX_MODE_SHIFT 3
200 enum {
201 	FAULT_AND_HANG = 0,
202 	FAULT_AND_HALT, /* Debug only */
203 	FAULT_AND_STREAM,
204 	FAULT_AND_CONTINUE /* Unsupported */
205 };
206 #define GEN8_CTX_ID_SHIFT 32
207 
208 /**
209  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
210  * @dev: DRM device.
211  * @enable_execlists: value of i915.enable_execlists module parameter.
212  *
213  * Only certain platforms support Execlists (the prerequisites being
214  * support for Logical Ring Contexts and Aliasing PPGTT or better),
215  * and only when enabled via module parameter.
216  *
217  * Return: 1 if Execlists is supported and has to be enabled.
218  */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221 	WARN_ON(i915.enable_ppgtt == -1);
222 
223 	if (enable_execlists == 0)
224 		return 0;
225 
226 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
227 	    i915.use_mmio_flip >= 0)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 /**
234  * intel_execlists_ctx_id() - get the Execlists Context ID
235  * @ctx_obj: Logical Ring Context backing object.
236  *
237  * Do not confuse with ctx->id! Unfortunately we have a name overload
238  * here: the old context ID we pass to userspace as a handler so that
239  * they can refer to a context, and the new context ID we pass to the
240  * ELSP so that the GPU can inform us of the context status via
241  * interrupts.
242  *
243  * Return: 20-bits globally unique context ID.
244  */
245 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
246 {
247 	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
248 
249 	/* LRCA is required to be 4K aligned so the more significant 20 bits
250 	 * are globally unique */
251 	return lrca >> 12;
252 }
253 
254 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
255 {
256 	uint64_t desc;
257 	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
258 
259 	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
260 
261 	desc = GEN8_CTX_VALID;
262 	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
263 	desc |= GEN8_CTX_L3LLC_COHERENT;
264 	desc |= GEN8_CTX_PRIVILEGE;
265 	desc |= lrca;
266 	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
267 
268 	/* TODO: WaDisableLiteRestore when we start using semaphore
269 	 * signalling between Command Streamers */
270 	/* desc |= GEN8_CTX_FORCE_RESTORE; */
271 
272 	return desc;
273 }
274 
275 static void execlists_elsp_write(struct intel_engine_cs *ring,
276 				 struct drm_i915_gem_object *ctx_obj0,
277 				 struct drm_i915_gem_object *ctx_obj1)
278 {
279 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
280 	uint64_t temp = 0;
281 	uint32_t desc[4];
282 
283 	/* XXX: You must always write both descriptors in the order below. */
284 	if (ctx_obj1)
285 		temp = execlists_ctx_descriptor(ctx_obj1);
286 	else
287 		temp = 0;
288 	desc[1] = (u32)(temp >> 32);
289 	desc[0] = (u32)temp;
290 
291 	temp = execlists_ctx_descriptor(ctx_obj0);
292 	desc[3] = (u32)(temp >> 32);
293 	desc[2] = (u32)temp;
294 
295 	/* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296 	 * are in progress.
297 	 *
298 	 * The other problem is that we can't just call gen6_gt_force_wake_get()
299 	 * because that function calls intel_runtime_pm_get(), which might sleep.
300 	 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301 	 */
302 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
303 	if (IS_CHERRYVIEW(dev_priv->dev)) {
304 		if (dev_priv->uncore.fw_rendercount++ == 0)
305 			dev_priv->uncore.funcs.force_wake_get(dev_priv,
306 							      FORCEWAKE_RENDER);
307 		if (dev_priv->uncore.fw_mediacount++ == 0)
308 			dev_priv->uncore.funcs.force_wake_get(dev_priv,
309 							      FORCEWAKE_MEDIA);
310 	} else {
311 		if (dev_priv->uncore.forcewake_count++ == 0)
312 			dev_priv->uncore.funcs.force_wake_get(dev_priv,
313 							      FORCEWAKE_ALL);
314 	}
315 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
316 
317 	I915_WRITE(RING_ELSP(ring), desc[1]);
318 	I915_WRITE(RING_ELSP(ring), desc[0]);
319 	I915_WRITE(RING_ELSP(ring), desc[3]);
320 	/* The context is automatically loaded after the following */
321 	I915_WRITE(RING_ELSP(ring), desc[2]);
322 
323 	/* ELSP is a wo register, so use another nearby reg for posting instead */
324 	POSTING_READ(RING_EXECLIST_STATUS(ring));
325 
326 	/* Release Force Wakeup (see the big comment above). */
327 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
328 	if (IS_CHERRYVIEW(dev_priv->dev)) {
329 		if (--dev_priv->uncore.fw_rendercount == 0)
330 			dev_priv->uncore.funcs.force_wake_put(dev_priv,
331 							      FORCEWAKE_RENDER);
332 		if (--dev_priv->uncore.fw_mediacount == 0)
333 			dev_priv->uncore.funcs.force_wake_put(dev_priv,
334 							      FORCEWAKE_MEDIA);
335 	} else {
336 		if (--dev_priv->uncore.forcewake_count == 0)
337 			dev_priv->uncore.funcs.force_wake_put(dev_priv,
338 							      FORCEWAKE_ALL);
339 	}
340 
341 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
342 }
343 
344 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345 {
346 	struct vm_page *page;
347 	uint32_t *reg_state;
348 
349 	page = i915_gem_object_get_page(ctx_obj, 1);
350 	reg_state = kmap_atomic(page);
351 
352 	reg_state[CTX_RING_TAIL+1] = tail;
353 
354 	kunmap_atomic(reg_state);
355 
356 	return 0;
357 }
358 
359 static int execlists_submit_context(struct intel_engine_cs *ring,
360 				    struct intel_context *to0, u32 tail0,
361 				    struct intel_context *to1, u32 tail1)
362 {
363 	struct drm_i915_gem_object *ctx_obj0;
364 	struct drm_i915_gem_object *ctx_obj1 = NULL;
365 
366 	ctx_obj0 = to0->engine[ring->id].state;
367 	BUG_ON(!ctx_obj0);
368 	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
369 
370 	execlists_ctx_write_tail(ctx_obj0, tail0);
371 
372 	if (to1) {
373 		ctx_obj1 = to1->engine[ring->id].state;
374 		BUG_ON(!ctx_obj1);
375 		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
376 
377 		execlists_ctx_write_tail(ctx_obj1, tail1);
378 	}
379 
380 	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381 
382 	return 0;
383 }
384 
385 static void execlists_context_unqueue(struct intel_engine_cs *ring)
386 {
387 	struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388 	struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
389 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
390 
391 	assert_spin_locked(&ring->execlist_lock);
392 
393 	if (list_empty(&ring->execlist_queue))
394 		return;
395 
396 	/* Try to read in pairs */
397 	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398 				 execlist_link) {
399 		if (!req0) {
400 			req0 = cursor;
401 		} else if (req0->ctx == cursor->ctx) {
402 			/* Same ctx: ignore first request, as second request
403 			 * will update tail past first request's workload */
404 			cursor->elsp_submitted = req0->elsp_submitted;
405 			list_del(&req0->execlist_link);
406 			queue_work(dev_priv->wq, &req0->work);
407 			req0 = cursor;
408 		} else {
409 			req1 = cursor;
410 			break;
411 		}
412 	}
413 
414 	WARN_ON(req1 && req1->elsp_submitted);
415 
416 	WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417 					 req1 ? req1->ctx : NULL,
418 					 req1 ? req1->tail : 0));
419 
420 	req0->elsp_submitted++;
421 	if (req1)
422 		req1->elsp_submitted++;
423 }
424 
425 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426 					   u32 request_id)
427 {
428 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
429 	struct intel_ctx_submit_request *head_req;
430 
431 	assert_spin_locked(&ring->execlist_lock);
432 
433 	head_req = list_first_entry_or_null(&ring->execlist_queue,
434 					    struct intel_ctx_submit_request,
435 					    execlist_link);
436 
437 	if (head_req != NULL) {
438 		struct drm_i915_gem_object *ctx_obj =
439 				head_req->ctx->engine[ring->id].state;
440 		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
441 			WARN(head_req->elsp_submitted == 0,
442 			     "Never submitted head request\n");
443 
444 			if (--head_req->elsp_submitted <= 0) {
445 				list_del(&head_req->execlist_link);
446 				queue_work(dev_priv->wq, &head_req->work);
447 				return true;
448 			}
449 		}
450 	}
451 
452 	return false;
453 }
454 
455 /**
456  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457  * @ring: Engine Command Streamer to handle.
458  *
459  * Check the unread Context Status Buffers and manage the submission of new
460  * contexts to the ELSP accordingly.
461  */
462 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463 {
464 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
465 	u32 status_pointer;
466 	u8 read_pointer;
467 	u8 write_pointer;
468 	u32 status;
469 	u32 status_id;
470 	u32 submit_contexts = 0;
471 
472 	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473 
474 	read_pointer = ring->next_context_status_buffer;
475 	write_pointer = status_pointer & 0x07;
476 	if (read_pointer > write_pointer)
477 		write_pointer += 6;
478 
479 	lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
480 
481 	while (read_pointer < write_pointer) {
482 		read_pointer++;
483 		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484 				(read_pointer % 6) * 8);
485 		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486 				(read_pointer % 6) * 8 + 4);
487 
488 		if (status & GEN8_CTX_STATUS_PREEMPTED) {
489 			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490 				if (execlists_check_remove_request(ring, status_id))
491 					WARN(1, "Lite Restored request removed from queue\n");
492 			} else
493 				WARN(1, "Preemption without Lite Restore\n");
494 		}
495 
496 		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497 		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
498 			if (execlists_check_remove_request(ring, status_id))
499 				submit_contexts++;
500 		}
501 	}
502 
503 	if (submit_contexts != 0)
504 		execlists_context_unqueue(ring);
505 
506 	lockmgr(&ring->execlist_lock, LK_RELEASE);
507 
508 	WARN(submit_contexts > 2, "More than two context complete events?\n");
509 	ring->next_context_status_buffer = write_pointer % 6;
510 
511 	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512 		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
513 }
514 
515 static void execlists_free_request_task(struct work_struct *work)
516 {
517 	struct intel_ctx_submit_request *req =
518 		container_of(work, struct intel_ctx_submit_request, work);
519 	struct drm_device *dev = req->ring->dev;
520 	struct drm_i915_private *dev_priv = dev->dev_private;
521 
522 	intel_runtime_pm_put(dev_priv);
523 
524 	mutex_lock(&dev->struct_mutex);
525 	i915_gem_context_unreference(req->ctx);
526 	mutex_unlock(&dev->struct_mutex);
527 
528 	kfree(req);
529 }
530 
531 static int execlists_context_queue(struct intel_engine_cs *ring,
532 				   struct intel_context *to,
533 				   u32 tail)
534 {
535 	struct intel_ctx_submit_request *req = NULL, *cursor;
536 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
537 	int num_elements = 0;
538 
539 	req = kzalloc(sizeof(*req), GFP_KERNEL);
540 	if (req == NULL)
541 		return -ENOMEM;
542 	req->ctx = to;
543 	i915_gem_context_reference(req->ctx);
544 	req->ring = ring;
545 	req->tail = tail;
546 	INIT_WORK(&req->work, execlists_free_request_task);
547 
548 	intel_runtime_pm_get(dev_priv);
549 
550 	lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
551 
552 	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
553 		if (++num_elements > 2)
554 			break;
555 
556 	if (num_elements > 2) {
557 		struct intel_ctx_submit_request *tail_req;
558 
559 		tail_req = list_last_entry(&ring->execlist_queue,
560 					   struct intel_ctx_submit_request,
561 					   execlist_link);
562 
563 		if (to == tail_req->ctx) {
564 			WARN(tail_req->elsp_submitted != 0,
565 			     "More than 2 already-submitted reqs queued\n");
566 			list_del(&tail_req->execlist_link);
567 			queue_work(dev_priv->wq, &tail_req->work);
568 		}
569 	}
570 
571 	list_add_tail(&req->execlist_link, &ring->execlist_queue);
572 	if (num_elements == 0)
573 		execlists_context_unqueue(ring);
574 
575 	lockmgr(&ring->execlist_lock, LK_RELEASE);
576 
577 	return 0;
578 }
579 
580 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
581 {
582 	struct intel_engine_cs *ring = ringbuf->ring;
583 	uint32_t flush_domains;
584 	int ret;
585 
586 	flush_domains = 0;
587 	if (ring->gpu_caches_dirty)
588 		flush_domains = I915_GEM_GPU_DOMAINS;
589 
590 	ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
591 	if (ret)
592 		return ret;
593 
594 	ring->gpu_caches_dirty = false;
595 	return 0;
596 }
597 
598 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
599 				 struct list_head *vmas)
600 {
601 	struct intel_engine_cs *ring = ringbuf->ring;
602 	struct i915_vma *vma;
603 	uint32_t flush_domains = 0;
604 	bool flush_chipset = false;
605 	int ret;
606 
607 	list_for_each_entry(vma, vmas, exec_list) {
608 		struct drm_i915_gem_object *obj = vma->obj;
609 
610 		ret = i915_gem_object_sync(obj, ring);
611 		if (ret)
612 			return ret;
613 
614 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
615 			flush_chipset |= i915_gem_clflush_object(obj, false);
616 
617 		flush_domains |= obj->base.write_domain;
618 	}
619 
620 	if (flush_domains & I915_GEM_DOMAIN_GTT)
621 		wmb();
622 
623 	/* Unconditionally invalidate gpu caches and ensure that we do flush
624 	 * any residual writes from the previous batch.
625 	 */
626 	return logical_ring_invalidate_all_caches(ringbuf);
627 }
628 
629 /**
630  * execlists_submission() - submit a batchbuffer for execution, Execlists style
631  * @dev: DRM device.
632  * @file: DRM file.
633  * @ring: Engine Command Streamer to submit to.
634  * @ctx: Context to employ for this submission.
635  * @args: execbuffer call arguments.
636  * @vmas: list of vmas.
637  * @batch_obj: the batchbuffer to submit.
638  * @exec_start: batchbuffer start virtual address pointer.
639  * @flags: translated execbuffer call flags.
640  *
641  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
642  * away the submission details of the execbuffer ioctl call.
643  *
644  * Return: non-zero if the submission fails.
645  */
646 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
647 			       struct intel_engine_cs *ring,
648 			       struct intel_context *ctx,
649 			       struct drm_i915_gem_execbuffer2 *args,
650 			       struct list_head *vmas,
651 			       struct drm_i915_gem_object *batch_obj,
652 			       u64 exec_start, u32 flags)
653 {
654 	struct drm_i915_private *dev_priv = dev->dev_private;
655 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
656 	int instp_mode;
657 	u32 instp_mask;
658 	int ret;
659 
660 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
661 	instp_mask = I915_EXEC_CONSTANTS_MASK;
662 	switch (instp_mode) {
663 	case I915_EXEC_CONSTANTS_REL_GENERAL:
664 	case I915_EXEC_CONSTANTS_ABSOLUTE:
665 	case I915_EXEC_CONSTANTS_REL_SURFACE:
666 		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
667 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
668 			return -EINVAL;
669 		}
670 
671 		if (instp_mode != dev_priv->relative_constants_mode) {
672 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
673 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
674 				return -EINVAL;
675 			}
676 
677 			/* The HW changed the meaning on this bit on gen6 */
678 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
679 		}
680 		break;
681 	default:
682 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
683 		return -EINVAL;
684 	}
685 
686 	if (args->num_cliprects != 0) {
687 		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
688 		return -EINVAL;
689 	} else {
690 		if (args->DR4 == 0xffffffff) {
691 			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
692 			args->DR4 = 0;
693 		}
694 
695 		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
696 			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
697 			return -EINVAL;
698 		}
699 	}
700 
701 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
702 		DRM_DEBUG("sol reset is gen7 only\n");
703 		return -EINVAL;
704 	}
705 
706 	ret = execlists_move_to_gpu(ringbuf, vmas);
707 	if (ret)
708 		return ret;
709 
710 	if (ring == &dev_priv->ring[RCS] &&
711 	    instp_mode != dev_priv->relative_constants_mode) {
712 		ret = intel_logical_ring_begin(ringbuf, 4);
713 		if (ret)
714 			return ret;
715 
716 		intel_logical_ring_emit(ringbuf, MI_NOOP);
717 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
718 		intel_logical_ring_emit(ringbuf, INSTPM);
719 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
720 		intel_logical_ring_advance(ringbuf);
721 
722 		dev_priv->relative_constants_mode = instp_mode;
723 	}
724 
725 	ret = ring->emit_bb_start(ringbuf, exec_start, flags);
726 	if (ret)
727 		return ret;
728 
729 	i915_gem_execbuffer_move_to_active(vmas, ring);
730 	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
731 
732 	return 0;
733 }
734 
735 void intel_logical_ring_stop(struct intel_engine_cs *ring)
736 {
737 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
738 	int ret;
739 
740 	if (!intel_ring_initialized(ring))
741 		return;
742 
743 	ret = intel_ring_idle(ring);
744 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
745 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
746 			  ring->name, ret);
747 
748 	/* TODO: Is this correct with Execlists enabled? */
749 	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
750 	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
751 		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
752 		return;
753 	}
754 	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
755 }
756 
757 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
758 {
759 	struct intel_engine_cs *ring = ringbuf->ring;
760 	int ret;
761 
762 	if (!ring->gpu_caches_dirty)
763 		return 0;
764 
765 	ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
766 	if (ret)
767 		return ret;
768 
769 	ring->gpu_caches_dirty = false;
770 	return 0;
771 }
772 
773 /**
774  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
775  * @ringbuf: Logical Ringbuffer to advance.
776  *
777  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
778  * really happens during submission is that the context and current tail will be placed
779  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
780  * point, the tail *inside* the context is updated and the ELSP written to.
781  */
782 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
783 {
784 	struct intel_engine_cs *ring = ringbuf->ring;
785 	struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
786 
787 	intel_logical_ring_advance(ringbuf);
788 
789 	if (intel_ring_stopped(ring))
790 		return;
791 
792 	execlists_context_queue(ring, ctx, ringbuf->tail);
793 }
794 
795 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
796 				    struct intel_context *ctx)
797 {
798 	if (ring->outstanding_lazy_seqno)
799 		return 0;
800 
801 	if (ring->preallocated_lazy_request == NULL) {
802 		struct drm_i915_gem_request *request;
803 
804 		request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
805 		if (request == NULL)
806 			return -ENOMEM;
807 
808 		/* Hold a reference to the context this request belongs to
809 		 * (we will need it when the time comes to emit/retire the
810 		 * request).
811 		 */
812 		request->ctx = ctx;
813 		i915_gem_context_reference(request->ctx);
814 
815 		ring->preallocated_lazy_request = request;
816 	}
817 
818 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
819 }
820 
821 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
822 				     int bytes)
823 {
824 	struct intel_engine_cs *ring = ringbuf->ring;
825 	struct drm_i915_gem_request *request;
826 	u32 seqno = 0;
827 	int ret;
828 
829 	if (ringbuf->last_retired_head != -1) {
830 		ringbuf->head = ringbuf->last_retired_head;
831 		ringbuf->last_retired_head = -1;
832 
833 		ringbuf->space = intel_ring_space(ringbuf);
834 		if (ringbuf->space >= bytes)
835 			return 0;
836 	}
837 
838 	list_for_each_entry(request, &ring->request_list, list) {
839 		if (__intel_ring_space(request->tail, ringbuf->tail,
840 				       ringbuf->size) >= bytes) {
841 			seqno = request->seqno;
842 			break;
843 		}
844 	}
845 
846 	if (seqno == 0)
847 		return -ENOSPC;
848 
849 	ret = i915_wait_seqno(ring, seqno);
850 	if (ret)
851 		return ret;
852 
853 	i915_gem_retire_requests_ring(ring);
854 	ringbuf->head = ringbuf->last_retired_head;
855 	ringbuf->last_retired_head = -1;
856 
857 	ringbuf->space = intel_ring_space(ringbuf);
858 	return 0;
859 }
860 
861 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
862 				       int bytes)
863 {
864 	struct intel_engine_cs *ring = ringbuf->ring;
865 	struct drm_device *dev = ring->dev;
866 	struct drm_i915_private *dev_priv = dev->dev_private;
867 	unsigned long end;
868 	int ret;
869 
870 	ret = logical_ring_wait_request(ringbuf, bytes);
871 	if (ret != -ENOSPC)
872 		return ret;
873 
874 	/* Force the context submission in case we have been skipping it */
875 	intel_logical_ring_advance_and_submit(ringbuf);
876 
877 	/* With GEM the hangcheck timer should kick us out of the loop,
878 	 * leaving it early runs the risk of corrupting GEM state (due
879 	 * to running on almost untested codepaths). But on resume
880 	 * timers don't work yet, so prevent a complete hang in that
881 	 * case by choosing an insanely large timeout. */
882 	end = jiffies + 60 * HZ;
883 
884 	do {
885 		ringbuf->head = I915_READ_HEAD(ring);
886 		ringbuf->space = intel_ring_space(ringbuf);
887 		if (ringbuf->space >= bytes) {
888 			ret = 0;
889 			break;
890 		}
891 
892 		msleep(1);
893 
894 		if (dev_priv->mm.interruptible && signal_pending(curthread->td_lwp)) {
895 			ret = -ERESTARTSYS;
896 			break;
897 		}
898 
899 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
900 					   dev_priv->mm.interruptible);
901 		if (ret)
902 			break;
903 
904 		if (time_after(jiffies, end)) {
905 			ret = -EBUSY;
906 			break;
907 		}
908 	} while (1);
909 
910 	return ret;
911 }
912 
913 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
914 {
915 	uint32_t __iomem *virt;
916 	int rem = ringbuf->size - ringbuf->tail;
917 
918 	if (ringbuf->space < rem) {
919 		int ret = logical_ring_wait_for_space(ringbuf, rem);
920 
921 		if (ret)
922 			return ret;
923 	}
924 
925 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
926 	rem /= 4;
927 	while (rem--)
928 		iowrite32(MI_NOOP, virt++);
929 
930 	ringbuf->tail = 0;
931 	ringbuf->space = intel_ring_space(ringbuf);
932 
933 	return 0;
934 }
935 
936 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
937 {
938 	int ret;
939 
940 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
941 		ret = logical_ring_wrap_buffer(ringbuf);
942 		if (unlikely(ret))
943 			return ret;
944 	}
945 
946 	if (unlikely(ringbuf->space < bytes)) {
947 		ret = logical_ring_wait_for_space(ringbuf, bytes);
948 		if (unlikely(ret))
949 			return ret;
950 	}
951 
952 	return 0;
953 }
954 
955 /**
956  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
957  *
958  * @ringbuf: Logical ringbuffer.
959  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
960  *
961  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
962  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
963  * and also preallocates a request (every workload submission is still mediated through
964  * requests, same as it did with legacy ringbuffer submission).
965  *
966  * Return: non-zero if the ringbuffer is not ready to be written to.
967  */
968 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
969 {
970 	struct intel_engine_cs *ring = ringbuf->ring;
971 	struct drm_device *dev = ring->dev;
972 	struct drm_i915_private *dev_priv = dev->dev_private;
973 	int ret;
974 
975 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
976 				   dev_priv->mm.interruptible);
977 	if (ret)
978 		return ret;
979 
980 	ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
981 	if (ret)
982 		return ret;
983 
984 	/* Preallocate the olr before touching the ring */
985 	ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
986 	if (ret)
987 		return ret;
988 
989 	ringbuf->space -= num_dwords * sizeof(uint32_t);
990 	return 0;
991 }
992 
993 static int gen8_init_common_ring(struct intel_engine_cs *ring)
994 {
995 	struct drm_device *dev = ring->dev;
996 	struct drm_i915_private *dev_priv = dev->dev_private;
997 
998 	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
999 	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1000 
1001 	I915_WRITE(RING_MODE_GEN7(ring),
1002 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1003 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1004 	POSTING_READ(RING_MODE_GEN7(ring));
1005 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1006 
1007 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1008 
1009 	return 0;
1010 }
1011 
1012 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1013 {
1014 	struct drm_device *dev = ring->dev;
1015 	struct drm_i915_private *dev_priv = dev->dev_private;
1016 	int ret;
1017 
1018 	ret = gen8_init_common_ring(ring);
1019 	if (ret)
1020 		return ret;
1021 
1022 	/* We need to disable the AsyncFlip performance optimisations in order
1023 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1024 	 * programmed to '1' on all products.
1025 	 *
1026 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1027 	 */
1028 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1029 
1030 	ret = intel_init_pipe_control(ring);
1031 	if (ret)
1032 		return ret;
1033 
1034 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1035 
1036 	return ret;
1037 }
1038 
1039 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1040 			      u64 offset, unsigned flags)
1041 {
1042 	bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1043 	int ret;
1044 
1045 	ret = intel_logical_ring_begin(ringbuf, 4);
1046 	if (ret)
1047 		return ret;
1048 
1049 	/* FIXME(BDW): Address space and security selectors. */
1050 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1051 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1052 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1053 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1054 	intel_logical_ring_advance(ringbuf);
1055 
1056 	return 0;
1057 }
1058 
1059 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1060 {
1061 	struct drm_device *dev = ring->dev;
1062 	struct drm_i915_private *dev_priv = dev->dev_private;
1063 
1064 	if (!dev->irq_enabled)
1065 		return false;
1066 
1067 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1068 	if (ring->irq_refcount++ == 0) {
1069 		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1070 		POSTING_READ(RING_IMR(ring->mmio_base));
1071 	}
1072 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1073 
1074 	return true;
1075 }
1076 
1077 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1078 {
1079 	struct drm_device *dev = ring->dev;
1080 	struct drm_i915_private *dev_priv = dev->dev_private;
1081 
1082 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1083 	if (--ring->irq_refcount == 0) {
1084 		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1085 		POSTING_READ(RING_IMR(ring->mmio_base));
1086 	}
1087 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1088 }
1089 
1090 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1091 			   u32 invalidate_domains,
1092 			   u32 unused)
1093 {
1094 	struct intel_engine_cs *ring = ringbuf->ring;
1095 	struct drm_device *dev = ring->dev;
1096 	struct drm_i915_private *dev_priv = dev->dev_private;
1097 	uint32_t cmd;
1098 	int ret;
1099 
1100 	ret = intel_logical_ring_begin(ringbuf, 4);
1101 	if (ret)
1102 		return ret;
1103 
1104 	cmd = MI_FLUSH_DW + 1;
1105 
1106 	if (ring == &dev_priv->ring[VCS]) {
1107 		if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1108 			cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1109 				MI_FLUSH_DW_STORE_INDEX |
1110 				MI_FLUSH_DW_OP_STOREDW;
1111 	} else {
1112 		if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1113 			cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1114 				MI_FLUSH_DW_OP_STOREDW;
1115 	}
1116 
1117 	intel_logical_ring_emit(ringbuf, cmd);
1118 	intel_logical_ring_emit(ringbuf,
1119 				I915_GEM_HWS_SCRATCH_ADDR |
1120 				MI_FLUSH_DW_USE_GTT);
1121 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1122 	intel_logical_ring_emit(ringbuf, 0); /* value */
1123 	intel_logical_ring_advance(ringbuf);
1124 
1125 	return 0;
1126 }
1127 
1128 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1129 				  u32 invalidate_domains,
1130 				  u32 flush_domains)
1131 {
1132 	struct intel_engine_cs *ring = ringbuf->ring;
1133 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1134 	u32 flags = 0;
1135 	int ret;
1136 
1137 	flags |= PIPE_CONTROL_CS_STALL;
1138 
1139 	if (flush_domains) {
1140 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1141 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1142 	}
1143 
1144 	if (invalidate_domains) {
1145 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1146 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1147 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1148 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1149 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1150 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1151 		flags |= PIPE_CONTROL_QW_WRITE;
1152 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1153 	}
1154 
1155 	ret = intel_logical_ring_begin(ringbuf, 6);
1156 	if (ret)
1157 		return ret;
1158 
1159 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1160 	intel_logical_ring_emit(ringbuf, flags);
1161 	intel_logical_ring_emit(ringbuf, scratch_addr);
1162 	intel_logical_ring_emit(ringbuf, 0);
1163 	intel_logical_ring_emit(ringbuf, 0);
1164 	intel_logical_ring_emit(ringbuf, 0);
1165 	intel_logical_ring_advance(ringbuf);
1166 
1167 	return 0;
1168 }
1169 
1170 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1171 {
1172 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1173 }
1174 
1175 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1176 {
1177 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1178 }
1179 
1180 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1181 {
1182 	struct intel_engine_cs *ring = ringbuf->ring;
1183 	u32 cmd;
1184 	int ret;
1185 
1186 	ret = intel_logical_ring_begin(ringbuf, 6);
1187 	if (ret)
1188 		return ret;
1189 
1190 	cmd = MI_STORE_DWORD_IMM_GEN8;
1191 	cmd |= MI_GLOBAL_GTT;
1192 
1193 	intel_logical_ring_emit(ringbuf, cmd);
1194 	intel_logical_ring_emit(ringbuf,
1195 				(ring->status_page.gfx_addr +
1196 				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1197 	intel_logical_ring_emit(ringbuf, 0);
1198 	intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1199 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1200 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1201 	intel_logical_ring_advance_and_submit(ringbuf);
1202 
1203 	return 0;
1204 }
1205 
1206 /**
1207  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1208  *
1209  * @ring: Engine Command Streamer.
1210  *
1211  */
1212 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1213 {
1214 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1215 
1216 	if (!intel_ring_initialized(ring))
1217 		return;
1218 
1219 	intel_logical_ring_stop(ring);
1220 	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1221 	ring->preallocated_lazy_request = NULL;
1222 	ring->outstanding_lazy_seqno = 0;
1223 
1224 	if (ring->cleanup)
1225 		ring->cleanup(ring);
1226 
1227 	i915_cmd_parser_fini_ring(ring);
1228 
1229 	if (ring->status_page.obj) {
1230 		kunmap(ring->status_page.obj->pages[0]);
1231 		ring->status_page.obj = NULL;
1232 	}
1233 }
1234 
1235 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1236 {
1237 	int ret;
1238 
1239 	/* Intentionally left blank. */
1240 	ring->buffer = NULL;
1241 
1242 	ring->dev = dev;
1243 	INIT_LIST_HEAD(&ring->active_list);
1244 	INIT_LIST_HEAD(&ring->request_list);
1245 	init_waitqueue_head(&ring->irq_queue);
1246 
1247 	INIT_LIST_HEAD(&ring->execlist_queue);
1248 	lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1249 	ring->next_context_status_buffer = 0;
1250 
1251 	ret = i915_cmd_parser_init_ring(ring);
1252 	if (ret)
1253 		return ret;
1254 
1255 	if (ring->init) {
1256 		ret = ring->init(ring);
1257 		if (ret)
1258 			return ret;
1259 	}
1260 
1261 	ret = intel_lr_context_deferred_create(ring->default_context, ring);
1262 
1263 	return ret;
1264 }
1265 
1266 static int logical_render_ring_init(struct drm_device *dev)
1267 {
1268 	struct drm_i915_private *dev_priv = dev->dev_private;
1269 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1270 
1271 	ring->name = "render ring";
1272 	ring->id = RCS;
1273 	ring->mmio_base = RENDER_RING_BASE;
1274 	ring->irq_enable_mask =
1275 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1276 	ring->irq_keep_mask =
1277 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1278 	if (HAS_L3_DPF(dev))
1279 		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1280 
1281 	ring->init = gen8_init_render_ring;
1282 	ring->cleanup = intel_fini_pipe_control;
1283 	ring->get_seqno = gen8_get_seqno;
1284 	ring->set_seqno = gen8_set_seqno;
1285 	ring->emit_request = gen8_emit_request;
1286 	ring->emit_flush = gen8_emit_flush_render;
1287 	ring->irq_get = gen8_logical_ring_get_irq;
1288 	ring->irq_put = gen8_logical_ring_put_irq;
1289 	ring->emit_bb_start = gen8_emit_bb_start;
1290 
1291 	return logical_ring_init(dev, ring);
1292 }
1293 
1294 static int logical_bsd_ring_init(struct drm_device *dev)
1295 {
1296 	struct drm_i915_private *dev_priv = dev->dev_private;
1297 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1298 
1299 	ring->name = "bsd ring";
1300 	ring->id = VCS;
1301 	ring->mmio_base = GEN6_BSD_RING_BASE;
1302 	ring->irq_enable_mask =
1303 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1304 	ring->irq_keep_mask =
1305 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1306 
1307 	ring->init = gen8_init_common_ring;
1308 	ring->get_seqno = gen8_get_seqno;
1309 	ring->set_seqno = gen8_set_seqno;
1310 	ring->emit_request = gen8_emit_request;
1311 	ring->emit_flush = gen8_emit_flush;
1312 	ring->irq_get = gen8_logical_ring_get_irq;
1313 	ring->irq_put = gen8_logical_ring_put_irq;
1314 	ring->emit_bb_start = gen8_emit_bb_start;
1315 
1316 	return logical_ring_init(dev, ring);
1317 }
1318 
1319 static int logical_bsd2_ring_init(struct drm_device *dev)
1320 {
1321 	struct drm_i915_private *dev_priv = dev->dev_private;
1322 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1323 
1324 	ring->name = "bds2 ring";
1325 	ring->id = VCS2;
1326 	ring->mmio_base = GEN8_BSD2_RING_BASE;
1327 	ring->irq_enable_mask =
1328 		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1329 	ring->irq_keep_mask =
1330 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1331 
1332 	ring->init = gen8_init_common_ring;
1333 	ring->get_seqno = gen8_get_seqno;
1334 	ring->set_seqno = gen8_set_seqno;
1335 	ring->emit_request = gen8_emit_request;
1336 	ring->emit_flush = gen8_emit_flush;
1337 	ring->irq_get = gen8_logical_ring_get_irq;
1338 	ring->irq_put = gen8_logical_ring_put_irq;
1339 	ring->emit_bb_start = gen8_emit_bb_start;
1340 
1341 	return logical_ring_init(dev, ring);
1342 }
1343 
1344 static int logical_blt_ring_init(struct drm_device *dev)
1345 {
1346 	struct drm_i915_private *dev_priv = dev->dev_private;
1347 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1348 
1349 	ring->name = "blitter ring";
1350 	ring->id = BCS;
1351 	ring->mmio_base = BLT_RING_BASE;
1352 	ring->irq_enable_mask =
1353 		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1354 	ring->irq_keep_mask =
1355 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1356 
1357 	ring->init = gen8_init_common_ring;
1358 	ring->get_seqno = gen8_get_seqno;
1359 	ring->set_seqno = gen8_set_seqno;
1360 	ring->emit_request = gen8_emit_request;
1361 	ring->emit_flush = gen8_emit_flush;
1362 	ring->irq_get = gen8_logical_ring_get_irq;
1363 	ring->irq_put = gen8_logical_ring_put_irq;
1364 	ring->emit_bb_start = gen8_emit_bb_start;
1365 
1366 	return logical_ring_init(dev, ring);
1367 }
1368 
1369 static int logical_vebox_ring_init(struct drm_device *dev)
1370 {
1371 	struct drm_i915_private *dev_priv = dev->dev_private;
1372 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1373 
1374 	ring->name = "video enhancement ring";
1375 	ring->id = VECS;
1376 	ring->mmio_base = VEBOX_RING_BASE;
1377 	ring->irq_enable_mask =
1378 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1379 	ring->irq_keep_mask =
1380 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1381 
1382 	ring->init = gen8_init_common_ring;
1383 	ring->get_seqno = gen8_get_seqno;
1384 	ring->set_seqno = gen8_set_seqno;
1385 	ring->emit_request = gen8_emit_request;
1386 	ring->emit_flush = gen8_emit_flush;
1387 	ring->irq_get = gen8_logical_ring_get_irq;
1388 	ring->irq_put = gen8_logical_ring_put_irq;
1389 	ring->emit_bb_start = gen8_emit_bb_start;
1390 
1391 	return logical_ring_init(dev, ring);
1392 }
1393 
1394 /**
1395  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1396  * @dev: DRM device.
1397  *
1398  * This function inits the engines for an Execlists submission style (the equivalent in the
1399  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1400  * those engines that are present in the hardware.
1401  *
1402  * Return: non-zero if the initialization failed.
1403  */
1404 int intel_logical_rings_init(struct drm_device *dev)
1405 {
1406 	struct drm_i915_private *dev_priv = dev->dev_private;
1407 	int ret;
1408 
1409 	ret = logical_render_ring_init(dev);
1410 	if (ret)
1411 		return ret;
1412 
1413 	if (HAS_BSD(dev)) {
1414 		ret = logical_bsd_ring_init(dev);
1415 		if (ret)
1416 			goto cleanup_render_ring;
1417 	}
1418 
1419 	if (HAS_BLT(dev)) {
1420 		ret = logical_blt_ring_init(dev);
1421 		if (ret)
1422 			goto cleanup_bsd_ring;
1423 	}
1424 
1425 	if (HAS_VEBOX(dev)) {
1426 		ret = logical_vebox_ring_init(dev);
1427 		if (ret)
1428 			goto cleanup_blt_ring;
1429 	}
1430 
1431 	if (HAS_BSD2(dev)) {
1432 		ret = logical_bsd2_ring_init(dev);
1433 		if (ret)
1434 			goto cleanup_vebox_ring;
1435 	}
1436 
1437 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1438 	if (ret)
1439 		goto cleanup_bsd2_ring;
1440 
1441 	return 0;
1442 
1443 cleanup_bsd2_ring:
1444 	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1445 cleanup_vebox_ring:
1446 	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1447 cleanup_blt_ring:
1448 	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1449 cleanup_bsd_ring:
1450 	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1451 cleanup_render_ring:
1452 	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1453 
1454 	return ret;
1455 }
1456 
1457 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1458 				       struct intel_context *ctx)
1459 {
1460 	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1461 	struct render_state so;
1462 	struct drm_i915_file_private *file_priv = ctx->file_priv;
1463 	struct drm_file *file = file_priv ? file_priv->file : NULL;
1464 	int ret;
1465 
1466 	ret = i915_gem_render_state_prepare(ring, &so);
1467 	if (ret)
1468 		return ret;
1469 
1470 	if (so.rodata == NULL)
1471 		return 0;
1472 
1473 	ret = ring->emit_bb_start(ringbuf,
1474 			so.ggtt_offset,
1475 			I915_DISPATCH_SECURE);
1476 	if (ret)
1477 		goto out;
1478 
1479 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1480 
1481 	ret = __i915_add_request(ring, file, so.obj, NULL);
1482 	/* intel_logical_ring_add_request moves object to inactive if it
1483 	 * fails */
1484 out:
1485 	i915_gem_render_state_fini(&so);
1486 	return ret;
1487 }
1488 
1489 static int
1490 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1491 		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1492 {
1493 	struct drm_device *dev = ring->dev;
1494 	struct drm_i915_private *dev_priv = dev->dev_private;
1495 	struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1496 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1497 	struct vm_page *page;
1498 	uint32_t *reg_state;
1499 	int ret;
1500 
1501 	if (!ppgtt)
1502 		ppgtt = dev_priv->mm.aliasing_ppgtt;
1503 
1504 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1505 	if (ret) {
1506 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1507 		return ret;
1508 	}
1509 
1510 	ret = i915_gem_object_get_pages(ctx_obj);
1511 	if (ret) {
1512 		DRM_DEBUG_DRIVER("Could not get object pages\n");
1513 		return ret;
1514 	}
1515 
1516 	i915_gem_object_pin_pages(ctx_obj);
1517 
1518 	/* The second page of the context object contains some fields which must
1519 	 * be set up prior to the first execution. */
1520 	page = i915_gem_object_get_page(ctx_obj, 1);
1521 	reg_state = kmap_atomic(page);
1522 
1523 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1524 	 * commands followed by (reg, value) pairs. The values we are setting here are
1525 	 * only for the first context restore: on a subsequent save, the GPU will
1526 	 * recreate this batchbuffer with new values (including all the missing
1527 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1528 	if (ring->id == RCS)
1529 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1530 	else
1531 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1532 	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1533 	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1534 	reg_state[CTX_CONTEXT_CONTROL+1] =
1535 			_MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1536 	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1537 	reg_state[CTX_RING_HEAD+1] = 0;
1538 	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1539 	reg_state[CTX_RING_TAIL+1] = 0;
1540 	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1541 	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1542 	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1543 	reg_state[CTX_RING_BUFFER_CONTROL+1] =
1544 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1545 	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1546 	reg_state[CTX_BB_HEAD_U+1] = 0;
1547 	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1548 	reg_state[CTX_BB_HEAD_L+1] = 0;
1549 	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1550 	reg_state[CTX_BB_STATE+1] = (1<<5);
1551 	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1552 	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1553 	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1554 	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1555 	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1556 	reg_state[CTX_SECOND_BB_STATE+1] = 0;
1557 	if (ring->id == RCS) {
1558 		/* TODO: according to BSpec, the register state context
1559 		 * for CHV does not have these. OTOH, these registers do
1560 		 * exist in CHV. I'm waiting for a clarification */
1561 		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1562 		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1563 		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1564 		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1565 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1566 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1567 	}
1568 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1569 	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1570 	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1571 	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1572 	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1573 	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1574 	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1575 	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1576 	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1577 	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1578 	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1579 	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1580 	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1581 	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1582 	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1583 	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1584 	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1585 	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1586 	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1587 	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1588 	if (ring->id == RCS) {
1589 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1590 		reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1591 		reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1592 	}
1593 
1594 	kunmap_atomic(reg_state);
1595 
1596 	ctx_obj->dirty = 1;
1597 	set_page_dirty(page);
1598 	i915_gem_object_unpin_pages(ctx_obj);
1599 
1600 	return 0;
1601 }
1602 
1603 /**
1604  * intel_lr_context_free() - free the LRC specific bits of a context
1605  * @ctx: the LR context to free.
1606  *
1607  * The real context freeing is done in i915_gem_context_free: this only
1608  * takes care of the bits that are LRC related: the per-engine backing
1609  * objects and the logical ringbuffer.
1610  */
1611 void intel_lr_context_free(struct intel_context *ctx)
1612 {
1613 	int i;
1614 
1615 	for (i = 0; i < I915_NUM_RINGS; i++) {
1616 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1617 		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1618 
1619 		if (ctx_obj) {
1620 			intel_destroy_ringbuffer_obj(ringbuf);
1621 			kfree(ringbuf);
1622 			i915_gem_object_ggtt_unpin(ctx_obj);
1623 			drm_gem_object_unreference(&ctx_obj->base);
1624 		}
1625 	}
1626 }
1627 
1628 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1629 {
1630 	int ret = 0;
1631 
1632 	WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1633 
1634 	switch (ring->id) {
1635 	case RCS:
1636 		ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1637 		break;
1638 	case VCS:
1639 	case BCS:
1640 	case VECS:
1641 	case VCS2:
1642 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1643 		break;
1644 	}
1645 
1646 	return ret;
1647 }
1648 
1649 /**
1650  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1651  * @ctx: LR context to create.
1652  * @ring: engine to be used with the context.
1653  *
1654  * This function can be called more than once, with different engines, if we plan
1655  * to use the context with them. The context backing objects and the ringbuffers
1656  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1657  * the creation is a deferred call: it's better to make sure first that we need to use
1658  * a given ring with the context.
1659  *
1660  * Return: non-zero on eror.
1661  */
1662 int intel_lr_context_deferred_create(struct intel_context *ctx,
1663 				     struct intel_engine_cs *ring)
1664 {
1665 	struct drm_device *dev = ring->dev;
1666 	struct drm_i915_gem_object *ctx_obj;
1667 	uint32_t context_size;
1668 	struct intel_ringbuffer *ringbuf;
1669 	int ret;
1670 
1671 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1672 	if (ctx->engine[ring->id].state)
1673 		return 0;
1674 
1675 	context_size = round_up(get_lr_context_size(ring), 4096);
1676 
1677 	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1678 	if (IS_ERR(ctx_obj)) {
1679 		ret = PTR_ERR(ctx_obj);
1680 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1681 		return ret;
1682 	}
1683 
1684 	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1685 	if (ret) {
1686 		DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1687 		drm_gem_object_unreference(&ctx_obj->base);
1688 		return ret;
1689 	}
1690 
1691 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1692 	if (!ringbuf) {
1693 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1694 				ring->name);
1695 		i915_gem_object_ggtt_unpin(ctx_obj);
1696 		drm_gem_object_unreference(&ctx_obj->base);
1697 		ret = -ENOMEM;
1698 		return ret;
1699 	}
1700 
1701 	ringbuf->ring = ring;
1702 	ringbuf->FIXME_lrc_ctx = ctx;
1703 
1704 	ringbuf->size = 32 * PAGE_SIZE;
1705 	ringbuf->effective_size = ringbuf->size;
1706 	ringbuf->head = 0;
1707 	ringbuf->tail = 0;
1708 	ringbuf->space = ringbuf->size;
1709 	ringbuf->last_retired_head = -1;
1710 
1711 	/* TODO: For now we put this in the mappable region so that we can reuse
1712 	 * the existing ringbuffer code which ioremaps it. When we start
1713 	 * creating many contexts, this will no longer work and we must switch
1714 	 * to a kmapish interface.
1715 	 */
1716 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1717 	if (ret) {
1718 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1719 				ring->name, ret);
1720 		goto error;
1721 	}
1722 
1723 	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1724 	if (ret) {
1725 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1726 		intel_destroy_ringbuffer_obj(ringbuf);
1727 		goto error;
1728 	}
1729 
1730 	ctx->engine[ring->id].ringbuf = ringbuf;
1731 	ctx->engine[ring->id].state = ctx_obj;
1732 
1733 	if (ctx == ring->default_context) {
1734 		/* The status page is offset 0 from the default context object
1735 		 * in LRC mode. */
1736 		ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1737 		ring->status_page.page_addr =
1738 				kmap(ctx_obj->pages[0]);
1739 		if (ring->status_page.page_addr == NULL)
1740 			return -ENOMEM;
1741 		ring->status_page.obj = ctx_obj;
1742 	}
1743 
1744 	if (ring->id == RCS && !ctx->rcs_initialized) {
1745 		ret = intel_lr_context_render_state_init(ring, ctx);
1746 		if (ret) {
1747 			DRM_ERROR("Init render state failed: %d\n", ret);
1748 			ctx->engine[ring->id].ringbuf = NULL;
1749 			ctx->engine[ring->id].state = NULL;
1750 			intel_destroy_ringbuffer_obj(ringbuf);
1751 			goto error;
1752 		}
1753 		ctx->rcs_initialized = true;
1754 	}
1755 
1756 	return 0;
1757 
1758 error:
1759 	kfree(ringbuf);
1760 	i915_gem_object_ggtt_unpin(ctx_obj);
1761 	drm_gem_object_unreference(&ctx_obj->base);
1762 	return ret;
1763 }
1764