xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision 8af44722)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 	  GEN8_CTX_STATUS_PREEMPTED | \
162 	  GEN8_CTX_STATUS_ELEMENT_SWITCH)
163 
164 #define CTX_LRI_HEADER_0		0x01
165 #define CTX_CONTEXT_CONTROL		0x02
166 #define CTX_RING_HEAD			0x04
167 #define CTX_RING_TAIL			0x06
168 #define CTX_RING_BUFFER_START		0x08
169 #define CTX_RING_BUFFER_CONTROL		0x0a
170 #define CTX_BB_HEAD_U			0x0c
171 #define CTX_BB_HEAD_L			0x0e
172 #define CTX_BB_STATE			0x10
173 #define CTX_SECOND_BB_HEAD_U		0x12
174 #define CTX_SECOND_BB_HEAD_L		0x14
175 #define CTX_SECOND_BB_STATE		0x16
176 #define CTX_BB_PER_CTX_PTR		0x18
177 #define CTX_RCS_INDIRECT_CTX		0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
179 #define CTX_LRI_HEADER_1		0x21
180 #define CTX_CTX_TIMESTAMP		0x22
181 #define CTX_PDP3_UDW			0x24
182 #define CTX_PDP3_LDW			0x26
183 #define CTX_PDP2_UDW			0x28
184 #define CTX_PDP2_LDW			0x2a
185 #define CTX_PDP1_UDW			0x2c
186 #define CTX_PDP1_LDW			0x2e
187 #define CTX_PDP0_UDW			0x30
188 #define CTX_PDP0_LDW			0x32
189 #define CTX_LRI_HEADER_2		0x41
190 #define CTX_R_PWR_CLK_STATE		0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
192 
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198 
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 	(reg_state)[(pos)+1] = (val); \
202 } while (0)
203 
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209 
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214 
215 enum {
216 	FAULT_AND_HANG = 0,
217 	FAULT_AND_HALT, /* Debug only */
218 	FAULT_AND_STREAM,
219 	FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225 
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228 
229 #define WA_TAIL_DWORDS 2
230 
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232 					    struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234 				struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236 				     struct i915_gem_context *ctx,
237 				     struct intel_engine_cs *engine,
238 				     struct intel_ring *ring);
239 
240 /**
241  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242  * @dev_priv: i915 device private
243  * @enable_execlists: value of i915.enable_execlists module parameter.
244  *
245  * Only certain platforms support Execlists (the prerequisites being
246  * support for Logical Ring Contexts and Aliasing PPGTT or better).
247  *
248  * Return: 1 if Execlists is supported and has to be enabled.
249  */
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251 {
252 	/* On platforms with execlist available, vGPU will only
253 	 * support execlist mode, no ring buffer mode.
254 	 */
255 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 		return 1;
257 
258 	if (INTEL_GEN(dev_priv) >= 9)
259 		return 1;
260 
261 	if (enable_execlists == 0)
262 		return 0;
263 
264 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 	    USES_PPGTT(dev_priv) &&
266 	    i915.use_mmio_flip >= 0)
267 		return 1;
268 
269 	return 0;
270 }
271 
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275 	struct drm_i915_private *dev_priv = engine->i915;
276 
277 	engine->disable_lite_restore_wa =
278 		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279 		(engine->id == VCS || engine->id == VCS2);
280 
281 	engine->ctx_desc_template = GEN8_CTX_VALID;
282 	if (IS_GEN8(dev_priv))
283 		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 
286 	/* TODO: WaDisableLiteRestore when we start using semaphore
287 	 * signalling between Command Streamers */
288 	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289 
290 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 	if (engine->disable_lite_restore_wa)
293 		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 }
295 
296 /**
297  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298  * 					  descriptor for a pinned context
299  * @ctx: Context to work on
300  * @engine: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB::
308  *
309  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
310  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
311  *      bits 32-52:    ctx ID, a globally unique tag
312  *      bits 53-54:    mbz, reserved for use by hardware
313  *      bits 55-63:    group ID, currently unused and set to 0
314  */
315 static void
316 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317 				   struct intel_engine_cs *engine)
318 {
319 	struct intel_context *ce = &ctx->engine[engine->id];
320 	u64 desc;
321 
322 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323 
324 	desc = ctx->desc_template;				/* bits  3-4  */
325 	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326 	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327 								/* bits 12-31 */
328 	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329 
330 	ce->lrc_desc = desc;
331 }
332 
333 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334 				     struct intel_engine_cs *engine)
335 {
336 	return ctx->engine[engine->id].lrc_desc;
337 }
338 
339 static inline void
340 execlists_context_status_change(struct drm_i915_gem_request *rq,
341 				unsigned long status)
342 {
343 	/*
344 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 	 * The compiler should eliminate this function as dead-code.
346 	 */
347 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 		return;
349 
350 	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 }
352 
353 static void
354 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355 {
356 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360 }
361 
362 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364 	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365 	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 	u32 *reg_state = ce->lrc_reg_state;
367 
368 	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
369 
370 	/* True 32b PPGTT with dynamic page allocation: update PDP
371 	 * registers and point the unallocated PDPs to scratch page.
372 	 * PML4 is allocated during ppgtt init, so this is not needed
373 	 * in 48-bit mode.
374 	 */
375 	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376 		execlists_update_context_pdps(ppgtt, reg_state);
377 
378 	return ce->lrc_desc;
379 }
380 
381 static void execlists_submit_ports(struct intel_engine_cs *engine)
382 {
383 	struct drm_i915_private *dev_priv = engine->i915;
384 	struct execlist_port *port = engine->execlist_port;
385 	u32 __iomem *elsp =
386 		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387 	u64 desc[2];
388 
389 	if (!port[0].count)
390 		execlists_context_status_change(port[0].request,
391 						INTEL_CONTEXT_SCHEDULE_IN);
392 	desc[0] = execlists_update_context(port[0].request);
393 	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394 
395 	if (port[1].request) {
396 		GEM_BUG_ON(port[1].count);
397 		execlists_context_status_change(port[1].request,
398 						INTEL_CONTEXT_SCHEDULE_IN);
399 		desc[1] = execlists_update_context(port[1].request);
400 		port[1].count = 1;
401 	} else {
402 		desc[1] = 0;
403 	}
404 	GEM_BUG_ON(desc[0] == desc[1]);
405 
406 	/* You must always write both descriptors in the order below. */
407 	writel(upper_32_bits(desc[1]), elsp);
408 	writel(lower_32_bits(desc[1]), elsp);
409 
410 	writel(upper_32_bits(desc[0]), elsp);
411 	/* The context is automatically loaded after the following */
412 	writel(lower_32_bits(desc[0]), elsp);
413 }
414 
415 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416 {
417 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418 		ctx->execlists_force_single_submission);
419 }
420 
421 static bool can_merge_ctx(const struct i915_gem_context *prev,
422 			  const struct i915_gem_context *next)
423 {
424 	if (prev != next)
425 		return false;
426 
427 	if (ctx_single_port_submission(prev))
428 		return false;
429 
430 	return true;
431 }
432 
433 static void execlists_dequeue(struct intel_engine_cs *engine)
434 {
435 	struct drm_i915_gem_request *cursor, *last;
436 	struct execlist_port *port = engine->execlist_port;
437 	bool submit = false;
438 
439 	last = port->request;
440 	if (last)
441 		/* WaIdleLiteRestore:bdw,skl
442 		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443 		 * as we resubmit the request. See gen8_emit_request()
444 		 * for where we prepare the padding after the end of the
445 		 * request.
446 		 */
447 		last->tail = last->wa_tail;
448 
449 	GEM_BUG_ON(port[1].request);
450 
451 	/* Hardware submission is through 2 ports. Conceptually each port
452 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
453 	 * static for a context, and unique to each, so we only execute
454 	 * requests belonging to a single context from each ring. RING_HEAD
455 	 * is maintained by the CS in the context image, it marks the place
456 	 * where it got up to last time, and through RING_TAIL we tell the CS
457 	 * where we want to execute up to this time.
458 	 *
459 	 * In this list the requests are in order of execution. Consecutive
460 	 * requests from the same context are adjacent in the ringbuffer. We
461 	 * can combine these requests into a single RING_TAIL update:
462 	 *
463 	 *              RING_HEAD...req1...req2
464 	 *                                    ^- RING_TAIL
465 	 * since to execute req2 the CS must first execute req1.
466 	 *
467 	 * Our goal then is to point each port to the end of a consecutive
468 	 * sequence of requests as being the most optimal (fewest wake ups
469 	 * and context switches) submission.
470 	 */
471 
472 	lockmgr(&engine->execlist_lock, LK_EXCLUSIVE);
473 	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
474 		/* Can we combine this request with the current port? It has to
475 		 * be the same context/ringbuffer and not have any exceptions
476 		 * (e.g. GVT saying never to combine contexts).
477 		 *
478 		 * If we can combine the requests, we can execute both by
479 		 * updating the RING_TAIL to point to the end of the second
480 		 * request, and so we never need to tell the hardware about
481 		 * the first.
482 		 */
483 		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
484 			/* If we are on the second port and cannot combine
485 			 * this request with the last, then we are done.
486 			 */
487 			if (port != engine->execlist_port)
488 				break;
489 
490 			/* If GVT overrides us we only ever submit port[0],
491 			 * leaving port[1] empty. Note that we also have
492 			 * to be careful that we don't queue the same
493 			 * context (even though a different request) to
494 			 * the second port.
495 			 */
496 			if (ctx_single_port_submission(cursor->ctx))
497 				break;
498 
499 			GEM_BUG_ON(last->ctx == cursor->ctx);
500 
501 			i915_gem_request_assign(&port->request, last);
502 			port++;
503 		}
504 		last = cursor;
505 		submit = true;
506 	}
507 	if (submit) {
508 		/* Decouple all the requests submitted from the queue */
509 		engine->execlist_queue.next = &cursor->execlist_link;
510 		cursor->execlist_link.prev = &engine->execlist_queue;
511 
512 		i915_gem_request_assign(&port->request, last);
513 	}
514 	lockmgr(&engine->execlist_lock, LK_RELEASE);
515 
516 	if (submit)
517 		execlists_submit_ports(engine);
518 }
519 
520 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
521 {
522 	return !engine->execlist_port[0].request;
523 }
524 
525 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
526 {
527 	int port;
528 
529 	port = 1; /* wait for a free slot */
530 	if (engine->disable_lite_restore_wa || engine->preempt_wa)
531 		port = 0; /* wait for GPU to be idle before continuing */
532 
533 	return !engine->execlist_port[port].request;
534 }
535 
536 /*
537  * Check the unread Context Status Buffers and manage the submission of new
538  * contexts to the ELSP accordingly.
539  */
540 static void intel_lrc_irq_handler(unsigned long data)
541 {
542 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
543 	struct execlist_port *port = engine->execlist_port;
544 	struct drm_i915_private *dev_priv = engine->i915;
545 
546 	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
547 
548 	if (!execlists_elsp_idle(engine)) {
549 		u32 __iomem *csb_mmio =
550 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
551 		u32 __iomem *buf =
552 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
553 		unsigned int csb, head, tail;
554 
555 		csb = readl(csb_mmio);
556 		head = GEN8_CSB_READ_PTR(csb);
557 		tail = GEN8_CSB_WRITE_PTR(csb);
558 		if (tail < head)
559 			tail += GEN8_CSB_ENTRIES;
560 		while (head < tail) {
561 			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
562 			unsigned int status = readl(buf + 2 * idx);
563 
564 			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
565 				continue;
566 
567 			GEM_BUG_ON(port[0].count == 0);
568 			if (--port[0].count == 0) {
569 				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
570 				execlists_context_status_change(port[0].request,
571 								INTEL_CONTEXT_SCHEDULE_OUT);
572 
573 				i915_gem_request_put(port[0].request);
574 				port[0] = port[1];
575 				memset(&port[1], 0, sizeof(port[1]));
576 
577 				engine->preempt_wa = false;
578 			}
579 
580 			GEM_BUG_ON(port[0].count == 0 &&
581 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
582 		}
583 
584 		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
585 				     GEN8_CSB_WRITE_PTR(csb) << 8),
586 		       csb_mmio);
587 	}
588 
589 	if (execlists_elsp_ready(engine))
590 		execlists_dequeue(engine);
591 
592 	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
593 }
594 
595 static void execlists_submit_request(struct drm_i915_gem_request *request)
596 {
597 	struct intel_engine_cs *engine = request->engine;
598 	unsigned long flags;
599 
600 	spin_lock_irqsave(&engine->execlist_lock, flags);
601 
602 	list_add_tail(&request->execlist_link, &engine->execlist_queue);
603 	if (execlists_elsp_idle(engine))
604 		tasklet_hi_schedule(&engine->irq_tasklet);
605 
606 	spin_unlock_irqrestore(&engine->execlist_lock, flags);
607 }
608 
609 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
610 {
611 	struct intel_engine_cs *engine = request->engine;
612 	struct intel_context *ce = &request->ctx->engine[engine->id];
613 	int ret;
614 
615 	/* Flush enough space to reduce the likelihood of waiting after
616 	 * we start building the request - in which case we will just
617 	 * have to repeat work.
618 	 */
619 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
620 
621 	if (!ce->state) {
622 		ret = execlists_context_deferred_alloc(request->ctx, engine);
623 		if (ret)
624 			return ret;
625 	}
626 
627 	request->ring = ce->ring;
628 
629 	ret = intel_lr_context_pin(request->ctx, engine);
630 	if (ret)
631 		return ret;
632 
633 	if (i915.enable_guc_submission) {
634 		/*
635 		 * Check that the GuC has space for the request before
636 		 * going any further, as the i915_add_request() call
637 		 * later on mustn't fail ...
638 		 */
639 		ret = i915_guc_wq_reserve(request);
640 		if (ret)
641 			goto err_unpin;
642 	}
643 
644 	ret = intel_ring_begin(request, 0);
645 	if (ret)
646 		goto err_unreserve;
647 
648 	if (!ce->initialised) {
649 		ret = engine->init_context(request);
650 		if (ret)
651 			goto err_unreserve;
652 
653 		ce->initialised = true;
654 	}
655 
656 	/* Note that after this point, we have committed to using
657 	 * this request as it is being used to both track the
658 	 * state of engine initialisation and liveness of the
659 	 * golden renderstate above. Think twice before you try
660 	 * to cancel/unwind this request now.
661 	 */
662 
663 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
664 	return 0;
665 
666 err_unreserve:
667 	if (i915.enable_guc_submission)
668 		i915_guc_wq_unreserve(request);
669 err_unpin:
670 	intel_lr_context_unpin(request->ctx, engine);
671 	return ret;
672 }
673 
674 /*
675  * intel_logical_ring_advance() - advance the tail and prepare for submission
676  * @request: Request to advance the logical ringbuffer of.
677  *
678  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
679  * really happens during submission is that the context and current tail will be placed
680  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
681  * point, the tail *inside* the context is updated and the ELSP written to.
682  */
683 static int
684 intel_logical_ring_advance(struct drm_i915_gem_request *request)
685 {
686 	struct intel_ring *ring = request->ring;
687 	struct intel_engine_cs *engine = request->engine;
688 
689 	intel_ring_advance(ring);
690 	request->tail = ring->tail;
691 
692 	/*
693 	 * Here we add two extra NOOPs as padding to avoid
694 	 * lite restore of a context with HEAD==TAIL.
695 	 *
696 	 * Caller must reserve WA_TAIL_DWORDS for us!
697 	 */
698 	intel_ring_emit(ring, MI_NOOP);
699 	intel_ring_emit(ring, MI_NOOP);
700 	intel_ring_advance(ring);
701 	request->wa_tail = ring->tail;
702 
703 	/* We keep the previous context alive until we retire the following
704 	 * request. This ensures that any the context object is still pinned
705 	 * for any residual writes the HW makes into it on the context switch
706 	 * into the next object following the breadcrumb. Otherwise, we may
707 	 * retire the context too early.
708 	 */
709 	request->previous_context = engine->last_context;
710 	engine->last_context = request->ctx;
711 	return 0;
712 }
713 
714 static int intel_lr_context_pin(struct i915_gem_context *ctx,
715 				struct intel_engine_cs *engine)
716 {
717 	struct intel_context *ce = &ctx->engine[engine->id];
718 	void *vaddr;
719 	int ret;
720 
721 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
722 
723 	if (ce->pin_count++)
724 		return 0;
725 
726 	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
727 			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
728 	if (ret)
729 		goto err;
730 
731 	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
732 	if (IS_ERR(vaddr)) {
733 		ret = PTR_ERR(vaddr);
734 		goto unpin_vma;
735 	}
736 
737 	ret = intel_ring_pin(ce->ring);
738 	if (ret)
739 		goto unpin_map;
740 
741 	intel_lr_context_descriptor_update(ctx, engine);
742 
743 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
744 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
745 		i915_ggtt_offset(ce->ring->vma);
746 
747 	ce->state->obj->dirty = true;
748 
749 	/* Invalidate GuC TLB. */
750 	if (i915.enable_guc_submission) {
751 		struct drm_i915_private *dev_priv = ctx->i915;
752 		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
753 	}
754 
755 	i915_gem_context_get(ctx);
756 	return 0;
757 
758 unpin_map:
759 	i915_gem_object_unpin_map(ce->state->obj);
760 unpin_vma:
761 	__i915_vma_unpin(ce->state);
762 err:
763 	ce->pin_count = 0;
764 	return ret;
765 }
766 
767 void intel_lr_context_unpin(struct i915_gem_context *ctx,
768 			    struct intel_engine_cs *engine)
769 {
770 	struct intel_context *ce = &ctx->engine[engine->id];
771 
772 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
773 	GEM_BUG_ON(ce->pin_count == 0);
774 
775 	if (--ce->pin_count)
776 		return;
777 
778 	intel_ring_unpin(ce->ring);
779 
780 	i915_gem_object_unpin_map(ce->state->obj);
781 	i915_vma_unpin(ce->state);
782 
783 	i915_gem_context_put(ctx);
784 }
785 
786 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
787 {
788 	int ret, i;
789 	struct intel_ring *ring = req->ring;
790 	struct i915_workarounds *w = &req->i915->workarounds;
791 
792 	if (w->count == 0)
793 		return 0;
794 
795 	ret = req->engine->emit_flush(req, EMIT_BARRIER);
796 	if (ret)
797 		return ret;
798 
799 	ret = intel_ring_begin(req, w->count * 2 + 2);
800 	if (ret)
801 		return ret;
802 
803 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
804 	for (i = 0; i < w->count; i++) {
805 		intel_ring_emit_reg(ring, w->reg[i].addr);
806 		intel_ring_emit(ring, w->reg[i].value);
807 	}
808 	intel_ring_emit(ring, MI_NOOP);
809 
810 	intel_ring_advance(ring);
811 
812 	ret = req->engine->emit_flush(req, EMIT_BARRIER);
813 	if (ret)
814 		return ret;
815 
816 	return 0;
817 }
818 
819 #define wa_ctx_emit(batch, index, cmd)					\
820 	do {								\
821 		int __index = (index)++;				\
822 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
823 			return -ENOSPC;					\
824 		}							\
825 		batch[__index] = (cmd);					\
826 	} while (0)
827 
828 #define wa_ctx_emit_reg(batch, index, reg) \
829 	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
830 
831 /*
832  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
833  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
834  * but there is a slight complication as this is applied in WA batch where the
835  * values are only initialized once so we cannot take register value at the
836  * beginning and reuse it further; hence we save its value to memory, upload a
837  * constant value with bit21 set and then we restore it back with the saved value.
838  * To simplify the WA, a constant value is formed by using the default value
839  * of this register. This shouldn't be a problem because we are only modifying
840  * it for a short period and this batch in non-premptible. We can ofcourse
841  * use additional instructions that read the actual value of the register
842  * at that time and set our bit of interest but it makes the WA complicated.
843  *
844  * This WA is also required for Gen9 so extracting as a function avoids
845  * code duplication.
846  */
847 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
848 						uint32_t *batch,
849 						uint32_t index)
850 {
851 	struct drm_i915_private *dev_priv = engine->i915;
852 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
853 
854 	/*
855 	 * WaDisableLSQCROPERFforOCL:kbl
856 	 * This WA is implemented in skl_init_clock_gating() but since
857 	 * this batch updates GEN8_L3SQCREG4 with default value we need to
858 	 * set this bit here to retain the WA during flush.
859 	 */
860 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
861 		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
862 
863 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
864 				   MI_SRM_LRM_GLOBAL_GTT));
865 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
866 	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
867 	wa_ctx_emit(batch, index, 0);
868 
869 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
870 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
871 	wa_ctx_emit(batch, index, l3sqc4_flush);
872 
873 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
874 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
875 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
876 	wa_ctx_emit(batch, index, 0);
877 	wa_ctx_emit(batch, index, 0);
878 	wa_ctx_emit(batch, index, 0);
879 	wa_ctx_emit(batch, index, 0);
880 
881 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
882 				   MI_SRM_LRM_GLOBAL_GTT));
883 	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
884 	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
885 	wa_ctx_emit(batch, index, 0);
886 
887 	return index;
888 }
889 
890 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
891 				    uint32_t offset,
892 				    uint32_t start_alignment)
893 {
894 	return wa_ctx->offset = ALIGN(offset, start_alignment);
895 }
896 
897 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
898 			     uint32_t offset,
899 			     uint32_t size_alignment)
900 {
901 	wa_ctx->size = offset - wa_ctx->offset;
902 
903 	WARN(wa_ctx->size % size_alignment,
904 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
905 	     wa_ctx->size, size_alignment);
906 	return 0;
907 }
908 
909 /*
910  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
911  * initialized at the beginning and shared across all contexts but this field
912  * helps us to have multiple batches at different offsets and select them based
913  * on a criteria. At the moment this batch always start at the beginning of the page
914  * and at this point we don't have multiple wa_ctx batch buffers.
915  *
916  * The number of WA applied are not known at the beginning; we use this field
917  * to return the no of DWORDS written.
918  *
919  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
920  * so it adds NOOPs as padding to make it cacheline aligned.
921  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
922  * makes a complete batch buffer.
923  */
924 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
925 				    struct i915_wa_ctx_bb *wa_ctx,
926 				    uint32_t *batch,
927 				    uint32_t *offset)
928 {
929 	uint32_t scratch_addr;
930 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
931 
932 	/* WaDisableCtxRestoreArbitration:bdw,chv */
933 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
934 
935 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
936 	if (IS_BROADWELL(engine->i915)) {
937 		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
938 		if (rc < 0)
939 			return rc;
940 		index = rc;
941 	}
942 
943 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
944 	/* Actual scratch location is at 128 bytes offset */
945 	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
946 
947 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
948 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
949 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
950 				   PIPE_CONTROL_CS_STALL |
951 				   PIPE_CONTROL_QW_WRITE));
952 	wa_ctx_emit(batch, index, scratch_addr);
953 	wa_ctx_emit(batch, index, 0);
954 	wa_ctx_emit(batch, index, 0);
955 	wa_ctx_emit(batch, index, 0);
956 
957 	/* Pad to end of cacheline */
958 	while (index % CACHELINE_DWORDS)
959 		wa_ctx_emit(batch, index, MI_NOOP);
960 
961 	/*
962 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
963 	 * execution depends on the length specified in terms of cache lines
964 	 * in the register CTX_RCS_INDIRECT_CTX
965 	 */
966 
967 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
968 }
969 
970 /*
971  *  This batch is started immediately after indirect_ctx batch. Since we ensure
972  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
973  *
974  *  The number of DWORDS written are returned using this field.
975  *
976  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
977  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
978  */
979 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
980 			       struct i915_wa_ctx_bb *wa_ctx,
981 			       uint32_t *batch,
982 			       uint32_t *offset)
983 {
984 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
985 
986 	/* WaDisableCtxRestoreArbitration:bdw,chv */
987 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
988 
989 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
990 
991 	return wa_ctx_end(wa_ctx, *offset = index, 1);
992 }
993 
994 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
995 				    struct i915_wa_ctx_bb *wa_ctx,
996 				    uint32_t *batch,
997 				    uint32_t *offset)
998 {
999 	int ret;
1000 	struct drm_i915_private *dev_priv = engine->i915;
1001 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1002 
1003 	/* WaDisableCtxRestoreArbitration:bxt */
1004 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1005 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1006 
1007 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1008 	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1009 	if (ret < 0)
1010 		return ret;
1011 	index = ret;
1012 
1013 	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1014 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1015 	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1016 	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1017 			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1018 	wa_ctx_emit(batch, index, MI_NOOP);
1019 
1020 	/* WaClearSlmSpaceAtContextSwitch:kbl */
1021 	/* Actual scratch location is at 128 bytes offset */
1022 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1023 		u32 scratch_addr =
1024 			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1025 
1026 		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1027 		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1028 					   PIPE_CONTROL_GLOBAL_GTT_IVB |
1029 					   PIPE_CONTROL_CS_STALL |
1030 					   PIPE_CONTROL_QW_WRITE));
1031 		wa_ctx_emit(batch, index, scratch_addr);
1032 		wa_ctx_emit(batch, index, 0);
1033 		wa_ctx_emit(batch, index, 0);
1034 		wa_ctx_emit(batch, index, 0);
1035 	}
1036 
1037 	/* WaMediaPoolStateCmdInWABB:bxt */
1038 	if (HAS_POOLED_EU(engine->i915)) {
1039 		/*
1040 		 * EU pool configuration is setup along with golden context
1041 		 * during context initialization. This value depends on
1042 		 * device type (2x6 or 3x6) and needs to be updated based
1043 		 * on which subslice is disabled especially for 2x6
1044 		 * devices, however it is safe to load default
1045 		 * configuration of 3x6 device instead of masking off
1046 		 * corresponding bits because HW ignores bits of a disabled
1047 		 * subslice and drops down to appropriate config. Please
1048 		 * see render_state_setup() in i915_gem_render_state.c for
1049 		 * possible configurations, to avoid duplication they are
1050 		 * not shown here again.
1051 		 */
1052 		u32 eu_pool_config = 0x00777000;
1053 		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1054 		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1055 		wa_ctx_emit(batch, index, eu_pool_config);
1056 		wa_ctx_emit(batch, index, 0);
1057 		wa_ctx_emit(batch, index, 0);
1058 		wa_ctx_emit(batch, index, 0);
1059 	}
1060 
1061 	/* Pad to end of cacheline */
1062 	while (index % CACHELINE_DWORDS)
1063 		wa_ctx_emit(batch, index, MI_NOOP);
1064 
1065 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1066 }
1067 
1068 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1069 			       struct i915_wa_ctx_bb *wa_ctx,
1070 			       uint32_t *batch,
1071 			       uint32_t *offset)
1072 {
1073 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1074 
1075 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1076 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1077 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1078 		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1079 		wa_ctx_emit(batch, index,
1080 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1081 		wa_ctx_emit(batch, index, MI_NOOP);
1082 	}
1083 
1084 	/* WaClearTdlStateAckDirtyBits:bxt */
1085 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1086 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1087 
1088 		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1089 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1090 
1091 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1092 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1093 
1094 		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1095 		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1096 
1097 		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1098 		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1099 		wa_ctx_emit(batch, index, 0x0);
1100 		wa_ctx_emit(batch, index, MI_NOOP);
1101 	}
1102 
1103 	/* WaDisableCtxRestoreArbitration:bxt */
1104 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1105 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1106 
1107 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1108 
1109 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1110 }
1111 
1112 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1113 {
1114 	struct drm_i915_gem_object *obj;
1115 	struct i915_vma *vma;
1116 	int err;
1117 
1118 	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1119 	if (IS_ERR(obj))
1120 		return PTR_ERR(obj);
1121 
1122 	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1123 	if (IS_ERR(vma)) {
1124 		err = PTR_ERR(vma);
1125 		goto err;
1126 	}
1127 
1128 	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1129 	if (err)
1130 		goto err;
1131 
1132 	engine->wa_ctx.vma = vma;
1133 	return 0;
1134 
1135 err:
1136 	i915_gem_object_put(obj);
1137 	return err;
1138 }
1139 
1140 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1141 {
1142 	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1143 }
1144 
1145 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1146 {
1147 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1148 	uint32_t *batch;
1149 	uint32_t offset;
1150 	struct page *page;
1151 	int ret;
1152 
1153 	WARN_ON(engine->id != RCS);
1154 
1155 	/* update this when WA for higher Gen are added */
1156 	if (INTEL_GEN(engine->i915) > 9) {
1157 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1158 			  INTEL_GEN(engine->i915));
1159 		return 0;
1160 	}
1161 
1162 	/* some WA perform writes to scratch page, ensure it is valid */
1163 	if (!engine->scratch) {
1164 		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1165 		return -EINVAL;
1166 	}
1167 
1168 	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1169 	if (ret) {
1170 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1171 		return ret;
1172 	}
1173 
1174 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1175 	batch = kmap_atomic(page);
1176 	offset = 0;
1177 
1178 	if (IS_GEN8(engine->i915)) {
1179 		ret = gen8_init_indirectctx_bb(engine,
1180 					       &wa_ctx->indirect_ctx,
1181 					       batch,
1182 					       &offset);
1183 		if (ret)
1184 			goto out;
1185 
1186 		ret = gen8_init_perctx_bb(engine,
1187 					  &wa_ctx->per_ctx,
1188 					  batch,
1189 					  &offset);
1190 		if (ret)
1191 			goto out;
1192 	} else if (IS_GEN9(engine->i915)) {
1193 		ret = gen9_init_indirectctx_bb(engine,
1194 					       &wa_ctx->indirect_ctx,
1195 					       batch,
1196 					       &offset);
1197 		if (ret)
1198 			goto out;
1199 
1200 		ret = gen9_init_perctx_bb(engine,
1201 					  &wa_ctx->per_ctx,
1202 					  batch,
1203 					  &offset);
1204 		if (ret)
1205 			goto out;
1206 	}
1207 
1208 out:
1209 	kunmap_atomic(batch);
1210 	if (ret)
1211 		lrc_destroy_wa_ctx_obj(engine);
1212 
1213 	return ret;
1214 }
1215 
1216 static void lrc_init_hws(struct intel_engine_cs *engine)
1217 {
1218 	struct drm_i915_private *dev_priv = engine->i915;
1219 
1220 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1221 		   engine->status_page.ggtt_offset);
1222 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1223 }
1224 
1225 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1226 {
1227 	struct drm_i915_private *dev_priv = engine->i915;
1228 	int ret;
1229 
1230 	ret = intel_mocs_init_engine(engine);
1231 	if (ret)
1232 		return ret;
1233 
1234 	lrc_init_hws(engine);
1235 
1236 	intel_engine_reset_breadcrumbs(engine);
1237 
1238 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1239 
1240 	I915_WRITE(RING_MODE_GEN7(engine),
1241 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1242 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1243 
1244 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1245 
1246 	intel_engine_init_hangcheck(engine);
1247 
1248 	/* After a GPU reset, we may have requests to replay */
1249 	if (!execlists_elsp_idle(engine)) {
1250 		engine->execlist_port[0].count = 0;
1251 		engine->execlist_port[1].count = 0;
1252 		execlists_submit_ports(engine);
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1259 {
1260 	struct drm_i915_private *dev_priv = engine->i915;
1261 	int ret;
1262 
1263 	ret = gen8_init_common_ring(engine);
1264 	if (ret)
1265 		return ret;
1266 
1267 	/* We need to disable the AsyncFlip performance optimisations in order
1268 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1269 	 * programmed to '1' on all products.
1270 	 *
1271 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1272 	 */
1273 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1274 
1275 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1276 
1277 	return init_workarounds_ring(engine);
1278 }
1279 
1280 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1281 {
1282 	int ret;
1283 
1284 	ret = gen8_init_common_ring(engine);
1285 	if (ret)
1286 		return ret;
1287 
1288 	return init_workarounds_ring(engine);
1289 }
1290 
1291 static void reset_common_ring(struct intel_engine_cs *engine,
1292 			      struct drm_i915_gem_request *request)
1293 {
1294 	struct drm_i915_private *dev_priv = engine->i915;
1295 	struct execlist_port *port = engine->execlist_port;
1296 	struct intel_context *ce = &request->ctx->engine[engine->id];
1297 
1298 	/* We want a simple context + ring to execute the breadcrumb update.
1299 	 * We cannot rely on the context being intact across the GPU hang,
1300 	 * so clear it and rebuild just what we need for the breadcrumb.
1301 	 * All pending requests for this context will be zapped, and any
1302 	 * future request will be after userspace has had the opportunity
1303 	 * to recreate its own state.
1304 	 */
1305 	execlists_init_reg_state(ce->lrc_reg_state,
1306 				 request->ctx, engine, ce->ring);
1307 
1308 	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1309 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1310 		i915_ggtt_offset(ce->ring->vma);
1311 	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1312 
1313 	request->ring->head = request->postfix;
1314 	request->ring->last_retired_head = -1;
1315 	intel_ring_update_space(request->ring);
1316 
1317 	if (i915.enable_guc_submission)
1318 		return;
1319 
1320 	/* Catch up with any missed context-switch interrupts */
1321 	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1322 	if (request->ctx != port[0].request->ctx) {
1323 		i915_gem_request_put(port[0].request);
1324 		port[0] = port[1];
1325 		memset(&port[1], 0, sizeof(port[1]));
1326 	}
1327 
1328 	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1329 
1330 	/* Reset WaIdleLiteRestore:bdw,skl as well */
1331 	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1332 }
1333 
1334 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1335 {
1336 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1337 	struct intel_ring *ring = req->ring;
1338 	struct intel_engine_cs *engine = req->engine;
1339 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1340 	int i, ret;
1341 
1342 	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1343 	if (ret)
1344 		return ret;
1345 
1346 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1347 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1348 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1349 
1350 		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1351 		intel_ring_emit(ring, upper_32_bits(pd_daddr));
1352 		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1353 		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1354 	}
1355 
1356 	intel_ring_emit(ring, MI_NOOP);
1357 	intel_ring_advance(ring);
1358 
1359 	return 0;
1360 }
1361 
1362 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1363 			      u64 offset, u32 len,
1364 			      unsigned int dispatch_flags)
1365 {
1366 	struct intel_ring *ring = req->ring;
1367 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1368 	int ret;
1369 
1370 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1371 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1372 	 * but we can't. Force Restore would be a second option, but
1373 	 * it is unsafe in case of lite-restore (because the ctx is
1374 	 * not idle). PML4 is allocated during ppgtt init so this is
1375 	 * not needed in 48-bit.*/
1376 	if (req->ctx->ppgtt &&
1377 	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1378 		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1379 		    !intel_vgpu_active(req->i915)) {
1380 			ret = intel_logical_ring_emit_pdps(req);
1381 			if (ret)
1382 				return ret;
1383 		}
1384 
1385 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1386 	}
1387 
1388 	ret = intel_ring_begin(req, 4);
1389 	if (ret)
1390 		return ret;
1391 
1392 	/* FIXME(BDW): Address space and security selectors. */
1393 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1394 			(ppgtt<<8) |
1395 			(dispatch_flags & I915_DISPATCH_RS ?
1396 			 MI_BATCH_RESOURCE_STREAMER : 0));
1397 	intel_ring_emit(ring, lower_32_bits(offset));
1398 	intel_ring_emit(ring, upper_32_bits(offset));
1399 	intel_ring_emit(ring, MI_NOOP);
1400 	intel_ring_advance(ring);
1401 
1402 	return 0;
1403 }
1404 
1405 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1406 {
1407 	struct drm_i915_private *dev_priv = engine->i915;
1408 	I915_WRITE_IMR(engine,
1409 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1410 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1411 }
1412 
1413 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1414 {
1415 	struct drm_i915_private *dev_priv = engine->i915;
1416 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1417 }
1418 
1419 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1420 {
1421 	struct intel_ring *ring = request->ring;
1422 	u32 cmd;
1423 	int ret;
1424 
1425 	ret = intel_ring_begin(request, 4);
1426 	if (ret)
1427 		return ret;
1428 
1429 	cmd = MI_FLUSH_DW + 1;
1430 
1431 	/* We always require a command barrier so that subsequent
1432 	 * commands, such as breadcrumb interrupts, are strictly ordered
1433 	 * wrt the contents of the write cache being flushed to memory
1434 	 * (and thus being coherent from the CPU).
1435 	 */
1436 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1437 
1438 	if (mode & EMIT_INVALIDATE) {
1439 		cmd |= MI_INVALIDATE_TLB;
1440 		if (request->engine->id == VCS)
1441 			cmd |= MI_INVALIDATE_BSD;
1442 	}
1443 
1444 	intel_ring_emit(ring, cmd);
1445 	intel_ring_emit(ring,
1446 			I915_GEM_HWS_SCRATCH_ADDR |
1447 			MI_FLUSH_DW_USE_GTT);
1448 	intel_ring_emit(ring, 0); /* upper addr */
1449 	intel_ring_emit(ring, 0); /* value */
1450 	intel_ring_advance(ring);
1451 
1452 	return 0;
1453 }
1454 
1455 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1456 				  u32 mode)
1457 {
1458 	struct intel_ring *ring = request->ring;
1459 	struct intel_engine_cs *engine = request->engine;
1460 	u32 scratch_addr =
1461 		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1462 	bool vf_flush_wa = false, dc_flush_wa = false;
1463 	u32 flags = 0;
1464 	int ret;
1465 	int len;
1466 
1467 	flags |= PIPE_CONTROL_CS_STALL;
1468 
1469 	if (mode & EMIT_FLUSH) {
1470 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1471 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1472 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1473 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1474 	}
1475 
1476 	if (mode & EMIT_INVALIDATE) {
1477 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1478 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1479 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1480 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1481 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1482 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1483 		flags |= PIPE_CONTROL_QW_WRITE;
1484 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1485 
1486 		/*
1487 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1488 		 * pipe control.
1489 		 */
1490 		if (IS_GEN9(request->i915))
1491 			vf_flush_wa = true;
1492 
1493 		/* WaForGAMHang:kbl */
1494 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1495 			dc_flush_wa = true;
1496 	}
1497 
1498 	len = 6;
1499 
1500 	if (vf_flush_wa)
1501 		len += 6;
1502 
1503 	if (dc_flush_wa)
1504 		len += 12;
1505 
1506 	ret = intel_ring_begin(request, len);
1507 	if (ret)
1508 		return ret;
1509 
1510 	if (vf_flush_wa) {
1511 		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1512 		intel_ring_emit(ring, 0);
1513 		intel_ring_emit(ring, 0);
1514 		intel_ring_emit(ring, 0);
1515 		intel_ring_emit(ring, 0);
1516 		intel_ring_emit(ring, 0);
1517 	}
1518 
1519 	if (dc_flush_wa) {
1520 		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1521 		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1522 		intel_ring_emit(ring, 0);
1523 		intel_ring_emit(ring, 0);
1524 		intel_ring_emit(ring, 0);
1525 		intel_ring_emit(ring, 0);
1526 	}
1527 
1528 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1529 	intel_ring_emit(ring, flags);
1530 	intel_ring_emit(ring, scratch_addr);
1531 	intel_ring_emit(ring, 0);
1532 	intel_ring_emit(ring, 0);
1533 	intel_ring_emit(ring, 0);
1534 
1535 	if (dc_flush_wa) {
1536 		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1537 		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1538 		intel_ring_emit(ring, 0);
1539 		intel_ring_emit(ring, 0);
1540 		intel_ring_emit(ring, 0);
1541 		intel_ring_emit(ring, 0);
1542 	}
1543 
1544 	intel_ring_advance(ring);
1545 
1546 	return 0;
1547 }
1548 
1549 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1550 {
1551 	/*
1552 	 * On BXT A steppings there is a HW coherency issue whereby the
1553 	 * MI_STORE_DATA_IMM storing the completed request's seqno
1554 	 * occasionally doesn't invalidate the CPU cache. Work around this by
1555 	 * clflushing the corresponding cacheline whenever the caller wants
1556 	 * the coherency to be guaranteed. Note that this cacheline is known
1557 	 * to be clean at this point, since we only write it in
1558 	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1559 	 * this clflush in practice becomes an invalidate operation.
1560 	 */
1561 	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1562 }
1563 
1564 /*
1565  * Reserve space for 2 NOOPs at the end of each request to be
1566  * used as a workaround for not being allowed to do lite
1567  * restore with HEAD==TAIL (WaIdleLiteRestore).
1568  */
1569 
1570 static int gen8_emit_request(struct drm_i915_gem_request *request)
1571 {
1572 	struct intel_ring *ring = request->ring;
1573 	int ret;
1574 
1575 	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1576 	if (ret)
1577 		return ret;
1578 
1579 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1580 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1581 
1582 	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1583 	intel_ring_emit(ring,
1584 			intel_hws_seqno_address(request->engine) |
1585 			MI_FLUSH_DW_USE_GTT);
1586 	intel_ring_emit(ring, 0);
1587 	intel_ring_emit(ring, request->fence.seqno);
1588 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1589 	intel_ring_emit(ring, MI_NOOP);
1590 	return intel_logical_ring_advance(request);
1591 }
1592 
1593 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1594 {
1595 	struct intel_ring *ring = request->ring;
1596 	int ret;
1597 
1598 	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1599 	if (ret)
1600 		return ret;
1601 
1602 	/* We're using qword write, seqno should be aligned to 8 bytes. */
1603 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1604 
1605 	/* w/a for post sync ops following a GPGPU operation we
1606 	 * need a prior CS_STALL, which is emitted by the flush
1607 	 * following the batch.
1608 	 */
1609 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1610 	intel_ring_emit(ring,
1611 			(PIPE_CONTROL_GLOBAL_GTT_IVB |
1612 			 PIPE_CONTROL_CS_STALL |
1613 			 PIPE_CONTROL_QW_WRITE));
1614 	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1615 	intel_ring_emit(ring, 0);
1616 	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1617 	/* We're thrashing one dword of HWS. */
1618 	intel_ring_emit(ring, 0);
1619 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1620 	intel_ring_emit(ring, MI_NOOP);
1621 	return intel_logical_ring_advance(request);
1622 }
1623 
1624 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1625 {
1626 	int ret;
1627 
1628 	ret = intel_logical_ring_workarounds_emit(req);
1629 	if (ret)
1630 		return ret;
1631 
1632 	ret = intel_rcs_context_init_mocs(req);
1633 	/*
1634 	 * Failing to program the MOCS is non-fatal.The system will not
1635 	 * run at peak performance. So generate an error and carry on.
1636 	 */
1637 	if (ret)
1638 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1639 
1640 	return i915_gem_render_state_init(req);
1641 }
1642 
1643 /**
1644  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1645  * @engine: Engine Command Streamer.
1646  */
1647 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1648 {
1649 	struct drm_i915_private *dev_priv;
1650 
1651 	/*
1652 	 * Tasklet cannot be active at this point due intel_mark_active/idle
1653 	 * so this is just for documentation.
1654 	 */
1655 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1656 		tasklet_kill(&engine->irq_tasklet);
1657 
1658 	dev_priv = engine->i915;
1659 
1660 	if (engine->buffer) {
1661 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1662 	}
1663 
1664 	if (engine->cleanup)
1665 		engine->cleanup(engine);
1666 
1667 	intel_engine_cleanup_common(engine);
1668 
1669 	if (engine->status_page.vma) {
1670 		i915_gem_object_unpin_map(engine->status_page.vma->obj);
1671 		engine->status_page.vma = NULL;
1672 	}
1673 	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1674 
1675 	lrc_destroy_wa_ctx_obj(engine);
1676 	engine->i915 = NULL;
1677 	dev_priv->engine[engine->id] = NULL;
1678 	kfree(engine);
1679 }
1680 
1681 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1682 {
1683 	struct intel_engine_cs *engine;
1684 	enum intel_engine_id id;
1685 
1686 	for_each_engine(engine, dev_priv, id)
1687 		engine->submit_request = execlists_submit_request;
1688 }
1689 
1690 static void
1691 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1692 {
1693 	/* Default vfuncs which can be overriden by each engine. */
1694 	engine->init_hw = gen8_init_common_ring;
1695 	engine->reset_hw = reset_common_ring;
1696 	engine->emit_flush = gen8_emit_flush;
1697 	engine->emit_request = gen8_emit_request;
1698 	engine->submit_request = execlists_submit_request;
1699 
1700 	engine->irq_enable = gen8_logical_ring_enable_irq;
1701 	engine->irq_disable = gen8_logical_ring_disable_irq;
1702 	engine->emit_bb_start = gen8_emit_bb_start;
1703 	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1704 		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1705 }
1706 
1707 static inline void
1708 logical_ring_default_irqs(struct intel_engine_cs *engine)
1709 {
1710 	unsigned shift = engine->irq_shift;
1711 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1712 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1713 }
1714 
1715 static int
1716 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1717 {
1718 	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1719 	void *hws;
1720 
1721 	/* The HWSP is part of the default context object in LRC mode. */
1722 	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1723 	if (IS_ERR(hws))
1724 		return PTR_ERR(hws);
1725 
1726 	engine->status_page.page_addr = hws + hws_offset;
1727 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1728 	engine->status_page.vma = vma;
1729 
1730 	return 0;
1731 }
1732 
1733 static void
1734 logical_ring_setup(struct intel_engine_cs *engine)
1735 {
1736 	struct drm_i915_private *dev_priv = engine->i915;
1737 	enum forcewake_domains fw_domains;
1738 
1739 	intel_engine_setup_common(engine);
1740 
1741 	/* Intentionally left blank. */
1742 	engine->buffer = NULL;
1743 
1744 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1745 						    RING_ELSP(engine),
1746 						    FW_REG_WRITE);
1747 
1748 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1749 						     RING_CONTEXT_STATUS_PTR(engine),
1750 						     FW_REG_READ | FW_REG_WRITE);
1751 
1752 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1753 						     RING_CONTEXT_STATUS_BUF_BASE(engine),
1754 						     FW_REG_READ);
1755 
1756 	engine->fw_domains = fw_domains;
1757 
1758 	tasklet_init(&engine->irq_tasklet,
1759 		     intel_lrc_irq_handler, (unsigned long)engine);
1760 
1761 	logical_ring_init_platform_invariants(engine);
1762 	logical_ring_default_vfuncs(engine);
1763 	logical_ring_default_irqs(engine);
1764 }
1765 
1766 static int
1767 logical_ring_init(struct intel_engine_cs *engine)
1768 {
1769 	struct i915_gem_context *dctx = engine->i915->kernel_context;
1770 	int ret;
1771 
1772 	ret = intel_engine_init_common(engine);
1773 	if (ret)
1774 		goto error;
1775 
1776 	ret = execlists_context_deferred_alloc(dctx, engine);
1777 	if (ret)
1778 		goto error;
1779 
1780 	/* As this is the default context, always pin it */
1781 	ret = intel_lr_context_pin(dctx, engine);
1782 	if (ret) {
1783 		DRM_ERROR("Failed to pin context for %s: %d\n",
1784 			  engine->name, ret);
1785 		goto error;
1786 	}
1787 
1788 	/* And setup the hardware status page. */
1789 	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1790 	if (ret) {
1791 		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1792 		goto error;
1793 	}
1794 
1795 	return 0;
1796 
1797 error:
1798 	intel_logical_ring_cleanup(engine);
1799 	return ret;
1800 }
1801 
1802 int logical_render_ring_init(struct intel_engine_cs *engine)
1803 {
1804 	struct drm_i915_private *dev_priv = engine->i915;
1805 	int ret;
1806 
1807 	logical_ring_setup(engine);
1808 
1809 	if (HAS_L3_DPF(dev_priv))
1810 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1811 
1812 	/* Override some for render ring. */
1813 	if (INTEL_GEN(dev_priv) >= 9)
1814 		engine->init_hw = gen9_init_render_ring;
1815 	else
1816 		engine->init_hw = gen8_init_render_ring;
1817 	engine->init_context = gen8_init_rcs_context;
1818 	engine->emit_flush = gen8_emit_flush_render;
1819 	engine->emit_request = gen8_emit_request_render;
1820 
1821 	ret = intel_engine_create_scratch(engine, 4096);
1822 	if (ret)
1823 		return ret;
1824 
1825 	ret = intel_init_workaround_bb(engine);
1826 	if (ret) {
1827 		/*
1828 		 * We continue even if we fail to initialize WA batch
1829 		 * because we only expect rare glitches but nothing
1830 		 * critical to prevent us from using GPU
1831 		 */
1832 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
1833 			  ret);
1834 	}
1835 
1836 	ret = logical_ring_init(engine);
1837 	if (ret) {
1838 		lrc_destroy_wa_ctx_obj(engine);
1839 	}
1840 
1841 	return ret;
1842 }
1843 
1844 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1845 {
1846 	logical_ring_setup(engine);
1847 
1848 	return logical_ring_init(engine);
1849 }
1850 
1851 static u32
1852 make_rpcs(struct drm_i915_private *dev_priv)
1853 {
1854 	u32 rpcs = 0;
1855 
1856 	/*
1857 	 * No explicit RPCS request is needed to ensure full
1858 	 * slice/subslice/EU enablement prior to Gen9.
1859 	*/
1860 	if (INTEL_GEN(dev_priv) < 9)
1861 		return 0;
1862 
1863 	/*
1864 	 * Starting in Gen9, render power gating can leave
1865 	 * slice/subslice/EU in a partially enabled state. We
1866 	 * must make an explicit request through RPCS for full
1867 	 * enablement.
1868 	*/
1869 	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1870 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1871 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1872 			GEN8_RPCS_S_CNT_SHIFT;
1873 		rpcs |= GEN8_RPCS_ENABLE;
1874 	}
1875 
1876 	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1877 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1878 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1879 			GEN8_RPCS_SS_CNT_SHIFT;
1880 		rpcs |= GEN8_RPCS_ENABLE;
1881 	}
1882 
1883 	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1884 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1885 			GEN8_RPCS_EU_MIN_SHIFT;
1886 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1887 			GEN8_RPCS_EU_MAX_SHIFT;
1888 		rpcs |= GEN8_RPCS_ENABLE;
1889 	}
1890 
1891 	return rpcs;
1892 }
1893 
1894 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1895 {
1896 	u32 indirect_ctx_offset;
1897 
1898 	switch (INTEL_GEN(engine->i915)) {
1899 	default:
1900 		MISSING_CASE(INTEL_GEN(engine->i915));
1901 		/* fall through */
1902 	case 9:
1903 		indirect_ctx_offset =
1904 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1905 		break;
1906 	case 8:
1907 		indirect_ctx_offset =
1908 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1909 		break;
1910 	}
1911 
1912 	return indirect_ctx_offset;
1913 }
1914 
1915 static void execlists_init_reg_state(u32 *reg_state,
1916 				     struct i915_gem_context *ctx,
1917 				     struct intel_engine_cs *engine,
1918 				     struct intel_ring *ring)
1919 {
1920 	struct drm_i915_private *dev_priv = engine->i915;
1921 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1922 
1923 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1924 	 * commands followed by (reg, value) pairs. The values we are setting here are
1925 	 * only for the first context restore: on a subsequent save, the GPU will
1926 	 * recreate this batchbuffer with new values (including all the missing
1927 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1928 	reg_state[CTX_LRI_HEADER_0] =
1929 		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1930 	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1931 		       RING_CONTEXT_CONTROL(engine),
1932 		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1933 					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1934 					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1935 					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1936 	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1937 		       0);
1938 	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1939 		       0);
1940 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1941 		       RING_START(engine->mmio_base), 0);
1942 	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1943 		       RING_CTL(engine->mmio_base),
1944 		       RING_CTL_SIZE(ring->size) | RING_VALID);
1945 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1946 		       RING_BBADDR_UDW(engine->mmio_base), 0);
1947 	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1948 		       RING_BBADDR(engine->mmio_base), 0);
1949 	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1950 		       RING_BBSTATE(engine->mmio_base),
1951 		       RING_BB_PPGTT);
1952 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1953 		       RING_SBBADDR_UDW(engine->mmio_base), 0);
1954 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1955 		       RING_SBBADDR(engine->mmio_base), 0);
1956 	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1957 		       RING_SBBSTATE(engine->mmio_base), 0);
1958 	if (engine->id == RCS) {
1959 		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1960 			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1961 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1962 			       RING_INDIRECT_CTX(engine->mmio_base), 0);
1963 		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1964 			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1965 		if (engine->wa_ctx.vma) {
1966 			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1967 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1968 
1969 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
1970 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1971 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1972 
1973 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1974 				intel_lr_indirect_ctx_offset(engine) << 6;
1975 
1976 			reg_state[CTX_BB_PER_CTX_PTR+1] =
1977 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1978 				0x01;
1979 		}
1980 	}
1981 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1982 	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1983 		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1984 	/* PDP values well be assigned later if needed */
1985 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1986 		       0);
1987 	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1988 		       0);
1989 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1990 		       0);
1991 	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1992 		       0);
1993 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1994 		       0);
1995 	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
1996 		       0);
1997 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
1998 		       0);
1999 	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2000 		       0);
2001 
2002 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2003 		/* 64b PPGTT (48bit canonical)
2004 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2005 		 * other PDP Descriptors are ignored.
2006 		 */
2007 		ASSIGN_CTX_PML4(ppgtt, reg_state);
2008 	} else {
2009 		/* 32b PPGTT
2010 		 * PDP*_DESCRIPTOR contains the base address of space supported.
2011 		 * With dynamic page allocation, PDPs may not be allocated at
2012 		 * this point. Point the unallocated PDPs to the scratch page
2013 		 */
2014 		execlists_update_context_pdps(ppgtt, reg_state);
2015 	}
2016 
2017 	if (engine->id == RCS) {
2018 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2019 		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2020 			       make_rpcs(dev_priv));
2021 	}
2022 }
2023 
2024 static int
2025 populate_lr_context(struct i915_gem_context *ctx,
2026 		    struct drm_i915_gem_object *ctx_obj,
2027 		    struct intel_engine_cs *engine,
2028 		    struct intel_ring *ring)
2029 {
2030 	void *vaddr;
2031 	int ret;
2032 
2033 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2034 	if (ret) {
2035 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2036 		return ret;
2037 	}
2038 
2039 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2040 	if (IS_ERR(vaddr)) {
2041 		ret = PTR_ERR(vaddr);
2042 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2043 		return ret;
2044 	}
2045 	ctx_obj->dirty = true;
2046 
2047 	/* The second page of the context object contains some fields which must
2048 	 * be set up prior to the first execution. */
2049 
2050 	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2051 				 ctx, engine, ring);
2052 
2053 	i915_gem_object_unpin_map(ctx_obj);
2054 
2055 	return 0;
2056 }
2057 
2058 /**
2059  * intel_lr_context_size() - return the size of the context for an engine
2060  * @engine: which engine to find the context size for
2061  *
2062  * Each engine may require a different amount of space for a context image,
2063  * so when allocating (or copying) an image, this function can be used to
2064  * find the right size for the specific engine.
2065  *
2066  * Return: size (in bytes) of an engine-specific context image
2067  *
2068  * Note: this size includes the HWSP, which is part of the context image
2069  * in LRC mode, but does not include the "shared data page" used with
2070  * GuC submission. The caller should account for this if using the GuC.
2071  */
2072 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2073 {
2074 	int ret = 0;
2075 
2076 	WARN_ON(INTEL_GEN(engine->i915) < 8);
2077 
2078 	switch (engine->id) {
2079 	case RCS:
2080 		if (INTEL_GEN(engine->i915) >= 9)
2081 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2082 		else
2083 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2084 		break;
2085 	case VCS:
2086 	case BCS:
2087 	case VECS:
2088 	case VCS2:
2089 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2090 		break;
2091 	}
2092 
2093 	return ret;
2094 }
2095 
2096 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2097 					    struct intel_engine_cs *engine)
2098 {
2099 	struct drm_i915_gem_object *ctx_obj;
2100 	struct intel_context *ce = &ctx->engine[engine->id];
2101 	struct i915_vma *vma;
2102 	uint32_t context_size;
2103 	struct intel_ring *ring;
2104 	int ret;
2105 
2106 	WARN_ON(ce->state);
2107 
2108 	context_size = round_up(intel_lr_context_size(engine), 4096);
2109 
2110 	/* One extra page as the sharing data between driver and GuC */
2111 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2112 
2113 	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2114 	if (IS_ERR(ctx_obj)) {
2115 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2116 		return PTR_ERR(ctx_obj);
2117 	}
2118 
2119 	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2120 	if (IS_ERR(vma)) {
2121 		ret = PTR_ERR(vma);
2122 		goto error_deref_obj;
2123 	}
2124 
2125 	ring = intel_engine_create_ring(engine, ctx->ring_size);
2126 	if (IS_ERR(ring)) {
2127 		ret = PTR_ERR(ring);
2128 		goto error_deref_obj;
2129 	}
2130 
2131 	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2132 	if (ret) {
2133 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2134 		goto error_ring_free;
2135 	}
2136 
2137 	ce->ring = ring;
2138 	ce->state = vma;
2139 	ce->initialised = engine->init_context == NULL;
2140 
2141 	return 0;
2142 
2143 error_ring_free:
2144 	intel_ring_free(ring);
2145 error_deref_obj:
2146 	i915_gem_object_put(ctx_obj);
2147 	return ret;
2148 }
2149 
2150 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2151 {
2152 	struct intel_engine_cs *engine;
2153 	struct i915_gem_context *ctx;
2154 	enum intel_engine_id id;
2155 
2156 	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2157 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2158 	 * that stored in context. As we only write new commands from
2159 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2160 	 * starts reading from its RING_HEAD from the context, it may try to
2161 	 * execute that junk and die.
2162 	 *
2163 	 * So to avoid that we reset the context images upon resume. For
2164 	 * simplicity, we just zero everything out.
2165 	 */
2166 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2167 		for_each_engine(engine, dev_priv, id) {
2168 			struct intel_context *ce = &ctx->engine[engine->id];
2169 			u32 *reg;
2170 
2171 			if (!ce->state)
2172 				continue;
2173 
2174 			reg = i915_gem_object_pin_map(ce->state->obj,
2175 						      I915_MAP_WB);
2176 			if (WARN_ON(IS_ERR(reg)))
2177 				continue;
2178 
2179 			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2180 			reg[CTX_RING_HEAD+1] = 0;
2181 			reg[CTX_RING_TAIL+1] = 0;
2182 
2183 			ce->state->obj->dirty = true;
2184 			i915_gem_object_unpin_map(ce->state->obj);
2185 
2186 			ce->ring->head = ce->ring->tail = 0;
2187 			ce->ring->last_retired_head = -1;
2188 			intel_ring_update_space(ce->ring);
2189 		}
2190 	}
2191 }
2192