xref: /dragonfly/sys/dev/drm/i915/intel_lrc.c (revision a4fe36f1)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139 #include "intel_mocs.h"
140 
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define CTX_LRI_HEADER_0		0x01
160 #define CTX_CONTEXT_CONTROL		0x02
161 #define CTX_RING_HEAD			0x04
162 #define CTX_RING_TAIL			0x06
163 #define CTX_RING_BUFFER_START		0x08
164 #define CTX_RING_BUFFER_CONTROL		0x0a
165 #define CTX_BB_HEAD_U			0x0c
166 #define CTX_BB_HEAD_L			0x0e
167 #define CTX_BB_STATE			0x10
168 #define CTX_SECOND_BB_HEAD_U		0x12
169 #define CTX_SECOND_BB_HEAD_L		0x14
170 #define CTX_SECOND_BB_STATE		0x16
171 #define CTX_BB_PER_CTX_PTR		0x18
172 #define CTX_RCS_INDIRECT_CTX		0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
174 #define CTX_LRI_HEADER_1		0x21
175 #define CTX_CTX_TIMESTAMP		0x22
176 #define CTX_PDP3_UDW			0x24
177 #define CTX_PDP3_LDW			0x26
178 #define CTX_PDP2_UDW			0x28
179 #define CTX_PDP2_LDW			0x2a
180 #define CTX_PDP1_UDW			0x2c
181 #define CTX_PDP1_LDW			0x2e
182 #define CTX_PDP0_UDW			0x30
183 #define CTX_PDP0_LDW			0x32
184 #define CTX_LRI_HEADER_2		0x41
185 #define CTX_R_PWR_CLK_STATE		0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
187 
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
195 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199 
200 enum {
201 	ADVANCED_CONTEXT = 0,
202 	LEGACY_CONTEXT,
203 	ADVANCED_AD_CONTEXT,
204 	LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 	FAULT_AND_HANG = 0,
209 	FAULT_AND_HALT, /* Debug only */
210 	FAULT_AND_STREAM,
211 	FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
215 
216 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
217 
218 /**
219  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220  * @dev: DRM device.
221  * @enable_execlists: value of i915.enable_execlists module parameter.
222  *
223  * Only certain platforms support Execlists (the prerequisites being
224  * support for Logical Ring Contexts and Aliasing PPGTT or better).
225  *
226  * Return: 1 if Execlists is supported and has to be enabled.
227  */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230 	WARN_ON(i915.enable_ppgtt == -1);
231 
232 	if (INTEL_INFO(dev)->gen >= 9)
233 		return 1;
234 
235 	if (enable_execlists == 0)
236 		return 0;
237 
238 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 	    i915.use_mmio_flip >= 0)
240 		return 1;
241 
242 	return 0;
243 }
244 
245 /**
246  * intel_execlists_ctx_id() - get the Execlists Context ID
247  * @ctx_obj: Logical Ring Context backing object.
248  *
249  * Do not confuse with ctx->id! Unfortunately we have a name overload
250  * here: the old context ID we pass to userspace as a handler so that
251  * they can refer to a context, and the new context ID we pass to the
252  * ELSP so that the GPU can inform us of the context status via
253  * interrupts.
254  *
255  * Return: 20-bits globally unique context ID.
256  */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259 	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260 
261 	/* LRCA is required to be 4K aligned so the more significant 20 bits
262 	 * are globally unique */
263 	return lrca >> 12;
264 }
265 
266 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_request *rq)
267 {
268 	struct intel_engine_cs *ring = rq->ring;
269 	struct drm_device *dev = ring->dev;
270 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
271 	uint64_t desc;
272 	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273 
274 	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275 
276 	desc = GEN8_CTX_VALID;
277 	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278 	if (IS_GEN8(ctx_obj->base.dev))
279 		desc |= GEN8_CTX_L3LLC_COHERENT;
280 	desc |= GEN8_CTX_PRIVILEGE;
281 	desc |= lrca;
282 	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283 
284 	/* TODO: WaDisableLiteRestore when we start using semaphore
285 	 * signalling between Command Streamers */
286 	/* desc |= GEN8_CTX_FORCE_RESTORE; */
287 
288 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 	if (IS_GEN9(dev) &&
290 	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
291 	    (ring->id == BCS || ring->id == VCS ||
292 	    ring->id == VECS || ring->id == VCS2))
293 		desc |= GEN8_CTX_FORCE_RESTORE;
294 
295 	return desc;
296 }
297 
298 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
299 				 struct drm_i915_gem_request *rq1)
300 {
301 
302 	struct intel_engine_cs *ring = rq0->ring;
303 	struct drm_device *dev = ring->dev;
304 	struct drm_i915_private *dev_priv = dev->dev_private;
305 	uint64_t desc[2];
306 
307 	if (rq1) {
308 		desc[1] = execlists_ctx_descriptor(rq1);
309 		rq1->elsp_submitted++;
310 	} else {
311 		desc[1] = 0;
312 	}
313 
314 	desc[0] = execlists_ctx_descriptor(rq0);
315 	rq0->elsp_submitted++;
316 
317 	/* You must always write both descriptors in the order below. */
318 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
319 	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
321 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
322 
323 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
324 	/* The context is automatically loaded after the following */
325 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
326 
327 	/* ELSP is a wo register, use another nearby reg for posting */
328 	POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329 	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
331 }
332 
333 static int execlists_update_context(struct drm_i915_gem_request *rq)
334 {
335 	struct intel_engine_cs *ring = rq->ring;
336 	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
337 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
338 	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
339 	struct vm_page *page;
340 	uint32_t *reg_state;
341 
342 	BUG_ON(!ctx_obj);
343 	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
344 	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
345 
346 	page = i915_gem_object_get_page(ctx_obj, 1);
347 	reg_state = kmap_atomic(page);
348 
349 	reg_state[CTX_RING_TAIL+1] = rq->tail;
350 	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
351 
352 	/* True PPGTT with dynamic page allocation: update PDP registers and
353 	 * point the unallocated PDPs to the scratch page
354 	 */
355 	if (ppgtt) {
356 		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360 	}
361 
362 	kunmap_atomic(reg_state);
363 
364 	return 0;
365 }
366 
367 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
368 				      struct drm_i915_gem_request *rq1)
369 {
370 	execlists_update_context(rq0);
371 
372 	if (rq1)
373 		execlists_update_context(rq1);
374 
375 	execlists_elsp_write(rq0, rq1);
376 }
377 
378 static void execlists_context_unqueue(struct intel_engine_cs *ring)
379 {
380 	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
381 	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
382 
383 	assert_spin_locked(&ring->execlist_lock);
384 
385 	/*
386 	 * If irqs are not active generate a warning as batches that finish
387 	 * without the irqs may get lost and a GPU Hang may occur.
388 	 */
389 	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
390 
391 	if (list_empty(&ring->execlist_queue))
392 		return;
393 
394 	/* Try to read in pairs */
395 	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
396 				 execlist_link) {
397 		if (!req0) {
398 			req0 = cursor;
399 		} else if (req0->ctx == cursor->ctx) {
400 			/* Same ctx: ignore first request, as second request
401 			 * will update tail past first request's workload */
402 			cursor->elsp_submitted = req0->elsp_submitted;
403 			list_del(&req0->execlist_link);
404 			list_add_tail(&req0->execlist_link,
405 				&ring->execlist_retired_req_list);
406 			req0 = cursor;
407 		} else {
408 			req1 = cursor;
409 			break;
410 		}
411 	}
412 
413 	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
414 		/*
415 		 * WaIdleLiteRestore: make sure we never cause a lite
416 		 * restore with HEAD==TAIL
417 		 */
418 		if (req0->elsp_submitted) {
419 			/*
420 			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
421 			 * as we resubmit the request. See gen8_emit_request()
422 			 * for where we prepare the padding after the end of the
423 			 * request.
424 			 */
425 			struct intel_ringbuffer *ringbuf;
426 
427 			ringbuf = req0->ctx->engine[ring->id].ringbuf;
428 			req0->tail += 8;
429 			req0->tail &= ringbuf->size - 1;
430 		}
431 	}
432 
433 	WARN_ON(req1 && req1->elsp_submitted);
434 
435 	execlists_submit_requests(req0, req1);
436 }
437 
438 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
439 					   u32 request_id)
440 {
441 	struct drm_i915_gem_request *head_req;
442 
443 	assert_spin_locked(&ring->execlist_lock);
444 
445 	head_req = list_first_entry_or_null(&ring->execlist_queue,
446 					    struct drm_i915_gem_request,
447 					    execlist_link);
448 
449 	if (head_req != NULL) {
450 		struct drm_i915_gem_object *ctx_obj =
451 				head_req->ctx->engine[ring->id].state;
452 		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
453 			WARN(head_req->elsp_submitted == 0,
454 			     "Never submitted head request\n");
455 
456 			if (--head_req->elsp_submitted <= 0) {
457 				list_del(&head_req->execlist_link);
458 				list_add_tail(&head_req->execlist_link,
459 					&ring->execlist_retired_req_list);
460 				return true;
461 			}
462 		}
463 	}
464 
465 	return false;
466 }
467 
468 /**
469  * intel_lrc_irq_handler() - handle Context Switch interrupts
470  * @ring: Engine Command Streamer to handle.
471  *
472  * Check the unread Context Status Buffers and manage the submission of new
473  * contexts to the ELSP accordingly.
474  */
475 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
476 {
477 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
478 	u32 status_pointer;
479 	u8 read_pointer;
480 	u8 write_pointer;
481 	u32 status;
482 	u32 status_id;
483 	u32 submit_contexts = 0;
484 
485 	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
486 
487 	read_pointer = ring->next_context_status_buffer;
488 	write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
489 	if (read_pointer > write_pointer)
490 		write_pointer += GEN8_CSB_ENTRIES;
491 
492 	lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
493 
494 	while (read_pointer < write_pointer) {
495 		read_pointer++;
496 		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
497 				(read_pointer % GEN8_CSB_ENTRIES) * 8);
498 		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
499 				(read_pointer % GEN8_CSB_ENTRIES) * 8 + 4);
500 
501 		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
502 			continue;
503 
504 		if (status & GEN8_CTX_STATUS_PREEMPTED) {
505 			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
506 				if (execlists_check_remove_request(ring, status_id))
507 					WARN(1, "Lite Restored request removed from queue\n");
508 			} else
509 				WARN(1, "Preemption without Lite Restore\n");
510 		}
511 
512 		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
513 		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
514 			if (execlists_check_remove_request(ring, status_id))
515 				submit_contexts++;
516 		}
517 	}
518 
519 	if (submit_contexts != 0)
520 		execlists_context_unqueue(ring);
521 
522 	lockmgr(&ring->execlist_lock, LK_RELEASE);
523 
524 	WARN(submit_contexts > 2, "More than two context complete events?\n");
525 	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
526 
527 	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
528 		   _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
529 				 ((u32)ring->next_context_status_buffer &
530 				  GEN8_CSB_PTR_MASK) << 8));
531 }
532 
533 static int execlists_context_queue(struct drm_i915_gem_request *request)
534 {
535 	struct intel_engine_cs *ring = request->ring;
536 	struct drm_i915_gem_request *cursor;
537 	int num_elements = 0;
538 
539 	if (request->ctx != ring->default_context)
540 		intel_lr_context_pin(request);
541 
542 	i915_gem_request_reference(request);
543 
544 	request->tail = request->ringbuf->tail;
545 
546 	lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
547 
548 	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
549 		if (++num_elements > 2)
550 			break;
551 
552 	if (num_elements > 2) {
553 		struct drm_i915_gem_request *tail_req;
554 
555 		tail_req = list_last_entry(&ring->execlist_queue,
556 					   struct drm_i915_gem_request,
557 					   execlist_link);
558 
559 		if (request->ctx == tail_req->ctx) {
560 			WARN(tail_req->elsp_submitted != 0,
561 				"More than 2 already-submitted reqs queued\n");
562 			list_del(&tail_req->execlist_link);
563 			list_add_tail(&tail_req->execlist_link,
564 				&ring->execlist_retired_req_list);
565 		}
566 	}
567 
568 	list_add_tail(&request->execlist_link, &ring->execlist_queue);
569 	if (num_elements == 0)
570 		execlists_context_unqueue(ring);
571 
572 	lockmgr(&ring->execlist_lock, LK_RELEASE);
573 
574 	return 0;
575 }
576 
577 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
578 {
579 	struct intel_engine_cs *ring = req->ring;
580 	uint32_t flush_domains;
581 	int ret;
582 
583 	flush_domains = 0;
584 	if (ring->gpu_caches_dirty)
585 		flush_domains = I915_GEM_GPU_DOMAINS;
586 
587 	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
588 	if (ret)
589 		return ret;
590 
591 	ring->gpu_caches_dirty = false;
592 	return 0;
593 }
594 
595 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
596 				 struct list_head *vmas)
597 {
598 	const unsigned other_rings = ~intel_ring_flag(req->ring);
599 	struct i915_vma *vma;
600 	uint32_t flush_domains = 0;
601 	bool flush_chipset = false;
602 	int ret;
603 
604 	list_for_each_entry(vma, vmas, exec_list) {
605 		struct drm_i915_gem_object *obj = vma->obj;
606 
607 		if (obj->active & other_rings) {
608 			ret = i915_gem_object_sync(obj, req->ring, &req);
609 			if (ret)
610 				return ret;
611 		}
612 
613 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
614 			flush_chipset |= i915_gem_clflush_object(obj, false);
615 
616 		flush_domains |= obj->base.write_domain;
617 	}
618 
619 	if (flush_domains & I915_GEM_DOMAIN_GTT)
620 		wmb();
621 
622 	/* Unconditionally invalidate gpu caches and ensure that we do flush
623 	 * any residual writes from the previous batch.
624 	 */
625 	return logical_ring_invalidate_all_caches(req);
626 }
627 
628 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
629 {
630 	int ret;
631 
632 	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
633 
634 	if (request->ctx != request->ring->default_context) {
635 		ret = intel_lr_context_pin(request);
636 		if (ret)
637 			return ret;
638 	}
639 
640 	return 0;
641 }
642 
643 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
644 				       int bytes)
645 {
646 	struct intel_ringbuffer *ringbuf = req->ringbuf;
647 	struct intel_engine_cs *ring = req->ring;
648 	struct drm_i915_gem_request *target;
649 	unsigned space;
650 	int ret;
651 
652 	if (intel_ring_space(ringbuf) >= bytes)
653 		return 0;
654 
655 	/* The whole point of reserving space is to not wait! */
656 	WARN_ON(ringbuf->reserved_in_use);
657 
658 	list_for_each_entry(target, &ring->request_list, list) {
659 		/*
660 		 * The request queue is per-engine, so can contain requests
661 		 * from multiple ringbuffers. Here, we must ignore any that
662 		 * aren't from the ringbuffer we're considering.
663 		 */
664 		if (target->ringbuf != ringbuf)
665 			continue;
666 
667 		/* Would completion of this request free enough space? */
668 		space = __intel_ring_space(target->postfix, ringbuf->tail,
669 					   ringbuf->size);
670 		if (space >= bytes)
671 			break;
672 	}
673 
674 	if (WARN_ON(&target->list == &ring->request_list))
675 		return -ENOSPC;
676 
677 	ret = i915_wait_request(target);
678 	if (ret)
679 		return ret;
680 
681 	ringbuf->space = space;
682 	return 0;
683 }
684 
685 /*
686  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
687  * @request: Request to advance the logical ringbuffer of.
688  *
689  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
690  * really happens during submission is that the context and current tail will be placed
691  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
692  * point, the tail *inside* the context is updated and the ELSP written to.
693  */
694 static void
695 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
696 {
697 	struct intel_engine_cs *ring = request->ring;
698 
699 	intel_logical_ring_advance(request->ringbuf);
700 
701 	if (intel_ring_stopped(ring))
702 		return;
703 
704 	execlists_context_queue(request);
705 }
706 
707 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
708 {
709 	uint32_t __iomem *virt;
710 	int rem = ringbuf->size - ringbuf->tail;
711 
712 	virt = (uint32_t *)(ringbuf->virtual_start + ringbuf->tail);
713 	rem /= 4;
714 	while (rem--)
715 		iowrite32(MI_NOOP, virt++);
716 
717 	ringbuf->tail = 0;
718 	intel_ring_update_space(ringbuf);
719 }
720 
721 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
722 {
723 	struct intel_ringbuffer *ringbuf = req->ringbuf;
724 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
725 	int remain_actual = ringbuf->size - ringbuf->tail;
726 	int ret, total_bytes, wait_bytes = 0;
727 	bool need_wrap = false;
728 
729 	if (ringbuf->reserved_in_use)
730 		total_bytes = bytes;
731 	else
732 		total_bytes = bytes + ringbuf->reserved_size;
733 
734 	if (unlikely(bytes > remain_usable)) {
735 		/*
736 		 * Not enough space for the basic request. So need to flush
737 		 * out the remainder and then wait for base + reserved.
738 		 */
739 		wait_bytes = remain_actual + total_bytes;
740 		need_wrap = true;
741 	} else {
742 		if (unlikely(total_bytes > remain_usable)) {
743 			/*
744 			 * The base request will fit but the reserved space
745 			 * falls off the end. So only need to to wait for the
746 			 * reserved size after flushing out the remainder.
747 			 */
748 			wait_bytes = remain_actual + ringbuf->reserved_size;
749 			need_wrap = true;
750 		} else if (total_bytes > ringbuf->space) {
751 			/* No wrapping required, just waiting. */
752 			wait_bytes = total_bytes;
753 		}
754 	}
755 
756 	if (wait_bytes) {
757 		ret = logical_ring_wait_for_space(req, wait_bytes);
758 		if (unlikely(ret))
759 			return ret;
760 
761 		if (need_wrap)
762 			__wrap_ring_buffer(ringbuf);
763 	}
764 
765 	return 0;
766 }
767 
768 /**
769  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
770  *
771  * @request: The request to start some new work for
772  * @ctx: Logical ring context whose ringbuffer is being prepared.
773  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
774  *
775  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
776  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
777  * and also preallocates a request (every workload submission is still mediated through
778  * requests, same as it did with legacy ringbuffer submission).
779  *
780  * Return: non-zero if the ringbuffer is not ready to be written to.
781  */
782 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
783 {
784 	struct drm_i915_private *dev_priv;
785 	int ret;
786 
787 	WARN_ON(req == NULL);
788 	dev_priv = req->ring->dev->dev_private;
789 
790 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
791 				   dev_priv->mm.interruptible);
792 	if (ret)
793 		return ret;
794 
795 	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
796 	if (ret)
797 		return ret;
798 
799 	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
800 	return 0;
801 }
802 
803 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
804 {
805 	/*
806 	 * The first call merely notes the reserve request and is common for
807 	 * all back ends. The subsequent localised _begin() call actually
808 	 * ensures that the reservation is available. Without the begin, if
809 	 * the request creator immediately submitted the request without
810 	 * adding any commands to it then there might not actually be
811 	 * sufficient room for the submission commands.
812 	 */
813 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
814 
815 	return intel_logical_ring_begin(request, 0);
816 }
817 
818 /**
819  * execlists_submission() - submit a batchbuffer for execution, Execlists style
820  * @dev: DRM device.
821  * @file: DRM file.
822  * @ring: Engine Command Streamer to submit to.
823  * @ctx: Context to employ for this submission.
824  * @args: execbuffer call arguments.
825  * @vmas: list of vmas.
826  * @batch_obj: the batchbuffer to submit.
827  * @exec_start: batchbuffer start virtual address pointer.
828  * @dispatch_flags: translated execbuffer call flags.
829  *
830  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
831  * away the submission details of the execbuffer ioctl call.
832  *
833  * Return: non-zero if the submission fails.
834  */
835 int intel_execlists_submission(struct i915_execbuffer_params *params,
836 			       struct drm_i915_gem_execbuffer2 *args,
837 			       struct list_head *vmas)
838 {
839 	struct drm_device       *dev = params->dev;
840 	struct intel_engine_cs  *ring = params->ring;
841 	struct drm_i915_private *dev_priv = dev->dev_private;
842 	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
843 	u64 exec_start;
844 	int instp_mode;
845 	u32 instp_mask;
846 	int ret;
847 
848 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
849 	instp_mask = I915_EXEC_CONSTANTS_MASK;
850 	switch (instp_mode) {
851 	case I915_EXEC_CONSTANTS_REL_GENERAL:
852 	case I915_EXEC_CONSTANTS_ABSOLUTE:
853 	case I915_EXEC_CONSTANTS_REL_SURFACE:
854 		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
855 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
856 			return -EINVAL;
857 		}
858 
859 		if (instp_mode != dev_priv->relative_constants_mode) {
860 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
861 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
862 				return -EINVAL;
863 			}
864 
865 			/* The HW changed the meaning on this bit on gen6 */
866 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
867 		}
868 		break;
869 	default:
870 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
871 		return -EINVAL;
872 	}
873 
874 	if (args->num_cliprects != 0) {
875 		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
876 		return -EINVAL;
877 	} else {
878 		if (args->DR4 == 0xffffffff) {
879 			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
880 			args->DR4 = 0;
881 		}
882 
883 		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
884 			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
885 			return -EINVAL;
886 		}
887 	}
888 
889 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
890 		DRM_DEBUG("sol reset is gen7 only\n");
891 		return -EINVAL;
892 	}
893 
894 	ret = execlists_move_to_gpu(params->request, vmas);
895 	if (ret)
896 		return ret;
897 
898 	if (ring == &dev_priv->ring[RCS] &&
899 	    instp_mode != dev_priv->relative_constants_mode) {
900 		ret = intel_logical_ring_begin(params->request, 4);
901 		if (ret)
902 			return ret;
903 
904 		intel_logical_ring_emit(ringbuf, MI_NOOP);
905 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
906 		intel_logical_ring_emit(ringbuf, INSTPM);
907 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
908 		intel_logical_ring_advance(ringbuf);
909 
910 		dev_priv->relative_constants_mode = instp_mode;
911 	}
912 
913 	exec_start = params->batch_obj_vm_offset +
914 		     args->batch_start_offset;
915 
916 	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
917 	if (ret)
918 		return ret;
919 
920 	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
921 
922 	i915_gem_execbuffer_move_to_active(vmas, params->request);
923 	i915_gem_execbuffer_retire_commands(params);
924 
925 	return 0;
926 }
927 
928 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
929 {
930 	struct drm_i915_gem_request *req, *tmp;
931 	struct list_head retired_list;
932 
933 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
934 	if (list_empty(&ring->execlist_retired_req_list))
935 		return;
936 
937 	INIT_LIST_HEAD(&retired_list);
938 	lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
939 	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
940 	lockmgr(&ring->execlist_lock, LK_RELEASE);
941 
942 	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
943 		struct intel_context *ctx = req->ctx;
944 		struct drm_i915_gem_object *ctx_obj =
945 				ctx->engine[ring->id].state;
946 
947 		if (ctx_obj && (ctx != ring->default_context))
948 			intel_lr_context_unpin(req);
949 		list_del(&req->execlist_link);
950 		i915_gem_request_unreference(req);
951 	}
952 }
953 
954 void intel_logical_ring_stop(struct intel_engine_cs *ring)
955 {
956 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
957 	int ret;
958 
959 	if (!intel_ring_initialized(ring))
960 		return;
961 
962 	ret = intel_ring_idle(ring);
963 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
964 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
965 			  ring->name, ret);
966 
967 	/* TODO: Is this correct with Execlists enabled? */
968 	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
969 	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
970 		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
971 		return;
972 	}
973 	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
974 }
975 
976 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
977 {
978 	struct intel_engine_cs *ring = req->ring;
979 	int ret;
980 
981 	if (!ring->gpu_caches_dirty)
982 		return 0;
983 
984 	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
985 	if (ret)
986 		return ret;
987 
988 	ring->gpu_caches_dirty = false;
989 	return 0;
990 }
991 
992 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
993 {
994 	struct intel_engine_cs *ring = rq->ring;
995 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
996 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
997 	int ret = 0;
998 
999 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1000 	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1001 		ret = i915_gem_obj_ggtt_pin(ctx_obj,
1002 				GEN8_LR_CONTEXT_ALIGN, 0);
1003 		if (ret)
1004 			goto reset_pin_count;
1005 
1006 		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1007 		if (ret)
1008 			goto unpin_ctx_obj;
1009 
1010 		ctx_obj->dirty = true;
1011 	}
1012 
1013 	return ret;
1014 
1015 unpin_ctx_obj:
1016 	i915_gem_object_ggtt_unpin(ctx_obj);
1017 reset_pin_count:
1018 	rq->ctx->engine[ring->id].pin_count = 0;
1019 
1020 	return ret;
1021 }
1022 
1023 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1024 {
1025 	struct intel_engine_cs *ring = rq->ring;
1026 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1027 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1028 
1029 	if (ctx_obj) {
1030 		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1031 		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1032 			intel_unpin_ringbuffer_obj(ringbuf);
1033 			i915_gem_object_ggtt_unpin(ctx_obj);
1034 		}
1035 	}
1036 }
1037 
1038 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1039 {
1040 	int ret, i;
1041 	struct intel_engine_cs *ring = req->ring;
1042 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1043 	struct drm_device *dev = ring->dev;
1044 	struct drm_i915_private *dev_priv = dev->dev_private;
1045 	struct i915_workarounds *w = &dev_priv->workarounds;
1046 
1047 	if (WARN_ON_ONCE(w->count == 0))
1048 		return 0;
1049 
1050 	ring->gpu_caches_dirty = true;
1051 	ret = logical_ring_flush_all_caches(req);
1052 	if (ret)
1053 		return ret;
1054 
1055 	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1056 	if (ret)
1057 		return ret;
1058 
1059 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1060 	for (i = 0; i < w->count; i++) {
1061 		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1062 		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1063 	}
1064 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1065 
1066 	intel_logical_ring_advance(ringbuf);
1067 
1068 	ring->gpu_caches_dirty = true;
1069 	ret = logical_ring_flush_all_caches(req);
1070 	if (ret)
1071 		return ret;
1072 
1073 	return 0;
1074 }
1075 
1076 #define wa_ctx_emit(batch, index, cmd)					\
1077 	do {								\
1078 		int __index = (index)++;				\
1079 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1080 			return -ENOSPC;					\
1081 		}							\
1082 		batch[__index] = (cmd);					\
1083 	} while (0)
1084 
1085 
1086 /*
1087  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1088  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1089  * but there is a slight complication as this is applied in WA batch where the
1090  * values are only initialized once so we cannot take register value at the
1091  * beginning and reuse it further; hence we save its value to memory, upload a
1092  * constant value with bit21 set and then we restore it back with the saved value.
1093  * To simplify the WA, a constant value is formed by using the default value
1094  * of this register. This shouldn't be a problem because we are only modifying
1095  * it for a short period and this batch in non-premptible. We can ofcourse
1096  * use additional instructions that read the actual value of the register
1097  * at that time and set our bit of interest but it makes the WA complicated.
1098  *
1099  * This WA is also required for Gen9 so extracting as a function avoids
1100  * code duplication.
1101  */
1102 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1103 						uint32_t *const batch,
1104 						uint32_t index)
1105 {
1106 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1107 
1108 	/*
1109 	 * WaDisableLSQCROPERFforOCL:skl
1110 	 * This WA is implemented in skl_init_clock_gating() but since
1111 	 * this batch updates GEN8_L3SQCREG4 with default value we need to
1112 	 * set this bit here to retain the WA during flush.
1113 	 */
1114 	if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1115 		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1116 
1117 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1118 				   MI_SRM_LRM_GLOBAL_GTT));
1119 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1120 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1121 	wa_ctx_emit(batch, index, 0);
1122 
1123 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1124 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1125 	wa_ctx_emit(batch, index, l3sqc4_flush);
1126 
1127 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1128 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1129 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
1130 	wa_ctx_emit(batch, index, 0);
1131 	wa_ctx_emit(batch, index, 0);
1132 	wa_ctx_emit(batch, index, 0);
1133 	wa_ctx_emit(batch, index, 0);
1134 
1135 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1136 				   MI_SRM_LRM_GLOBAL_GTT));
1137 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1138 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1139 	wa_ctx_emit(batch, index, 0);
1140 
1141 	return index;
1142 }
1143 
1144 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1145 				    uint32_t offset,
1146 				    uint32_t start_alignment)
1147 {
1148 	return wa_ctx->offset = ALIGN(offset, start_alignment);
1149 }
1150 
1151 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1152 			     uint32_t offset,
1153 			     uint32_t size_alignment)
1154 {
1155 	wa_ctx->size = offset - wa_ctx->offset;
1156 
1157 	WARN(wa_ctx->size % size_alignment,
1158 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1159 	     wa_ctx->size, size_alignment);
1160 	return 0;
1161 }
1162 
1163 /**
1164  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1165  *
1166  * @ring: only applicable for RCS
1167  * @wa_ctx: structure representing wa_ctx
1168  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1169  *    with the offset value received as input.
1170  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1171  * @batch: page in which WA are loaded
1172  * @offset: This field specifies the start of the batch, it should be
1173  *  cache-aligned otherwise it is adjusted accordingly.
1174  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1175  *  initialized at the beginning and shared across all contexts but this field
1176  *  helps us to have multiple batches at different offsets and select them based
1177  *  on a criteria. At the moment this batch always start at the beginning of the page
1178  *  and at this point we don't have multiple wa_ctx batch buffers.
1179  *
1180  *  The number of WA applied are not known at the beginning; we use this field
1181  *  to return the no of DWORDS written.
1182  *
1183  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1184  *  so it adds NOOPs as padding to make it cacheline aligned.
1185  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1186  *  makes a complete batch buffer.
1187  *
1188  * Return: non-zero if we exceed the PAGE_SIZE limit.
1189  */
1190 
1191 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1192 				    struct i915_wa_ctx_bb *wa_ctx,
1193 				    uint32_t *const batch,
1194 				    uint32_t *offset)
1195 {
1196 	uint32_t scratch_addr;
1197 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1198 
1199 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1200 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1201 
1202 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1203 	if (IS_BROADWELL(ring->dev)) {
1204 		index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1205 		if (index < 0)
1206 			return index;
1207 	}
1208 
1209 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1210 	/* Actual scratch location is at 128 bytes offset */
1211 	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1212 
1213 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1214 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1215 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1216 				   PIPE_CONTROL_CS_STALL |
1217 				   PIPE_CONTROL_QW_WRITE));
1218 	wa_ctx_emit(batch, index, scratch_addr);
1219 	wa_ctx_emit(batch, index, 0);
1220 	wa_ctx_emit(batch, index, 0);
1221 	wa_ctx_emit(batch, index, 0);
1222 
1223 	/* Pad to end of cacheline */
1224 	while (index % CACHELINE_DWORDS)
1225 		wa_ctx_emit(batch, index, MI_NOOP);
1226 
1227 	/*
1228 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1229 	 * execution depends on the length specified in terms of cache lines
1230 	 * in the register CTX_RCS_INDIRECT_CTX
1231 	 */
1232 
1233 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1234 }
1235 
1236 /**
1237  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1238  *
1239  * @ring: only applicable for RCS
1240  * @wa_ctx: structure representing wa_ctx
1241  *  offset: specifies start of the batch, should be cache-aligned.
1242  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1243  * @batch: page in which WA are loaded
1244  * @offset: This field specifies the start of this batch.
1245  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1246  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1247  *
1248  *   The number of DWORDS written are returned using this field.
1249  *
1250  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1251  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1252  */
1253 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1254 			       struct i915_wa_ctx_bb *wa_ctx,
1255 			       uint32_t *const batch,
1256 			       uint32_t *offset)
1257 {
1258 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1259 
1260 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1261 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1262 
1263 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1264 
1265 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1266 }
1267 
1268 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1269 				    struct i915_wa_ctx_bb *wa_ctx,
1270 				    uint32_t *const batch,
1271 				    uint32_t *offset)
1272 {
1273 	int ret;
1274 	struct drm_device *dev = ring->dev;
1275 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1276 
1277 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1278 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1279 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1280 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1281 
1282 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1283 	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1284 	if (ret < 0)
1285 		return ret;
1286 	index = ret;
1287 
1288 	/* Pad to end of cacheline */
1289 	while (index % CACHELINE_DWORDS)
1290 		wa_ctx_emit(batch, index, MI_NOOP);
1291 
1292 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1293 }
1294 
1295 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1296 			       struct i915_wa_ctx_bb *wa_ctx,
1297 			       uint32_t *const batch,
1298 			       uint32_t *offset)
1299 {
1300 	struct drm_device *dev = ring->dev;
1301 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1302 
1303 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1304 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1305 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1306 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1307 		wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1308 		wa_ctx_emit(batch, index,
1309 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1310 		wa_ctx_emit(batch, index, MI_NOOP);
1311 	}
1312 
1313 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1314 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1315 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1316 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1317 
1318 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1319 
1320 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1321 }
1322 
1323 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1324 {
1325 	int ret;
1326 
1327 	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1328 	if (!ring->wa_ctx.obj) {
1329 		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1330 		return -ENOMEM;
1331 	}
1332 
1333 	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1334 	if (ret) {
1335 		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1336 				 ret);
1337 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1338 		return ret;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1345 {
1346 	if (ring->wa_ctx.obj) {
1347 		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1348 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1349 		ring->wa_ctx.obj = NULL;
1350 	}
1351 }
1352 
1353 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1354 {
1355 	int ret;
1356 	uint32_t *batch;
1357 	uint32_t offset;
1358 	struct vm_page *page;
1359 	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1360 
1361 	WARN_ON(ring->id != RCS);
1362 
1363 	/* update this when WA for higher Gen are added */
1364 	if (INTEL_INFO(ring->dev)->gen > 9) {
1365 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1366 			  INTEL_INFO(ring->dev)->gen);
1367 		return 0;
1368 	}
1369 
1370 	/* some WA perform writes to scratch page, ensure it is valid */
1371 	if (ring->scratch.obj == NULL) {
1372 		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1373 		return -EINVAL;
1374 	}
1375 
1376 	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1377 	if (ret) {
1378 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1379 		return ret;
1380 	}
1381 
1382 	page = i915_gem_object_get_page(wa_ctx->obj, 0);
1383 	batch = kmap_atomic(page);
1384 	offset = 0;
1385 
1386 	if (INTEL_INFO(ring->dev)->gen == 8) {
1387 		ret = gen8_init_indirectctx_bb(ring,
1388 					       &wa_ctx->indirect_ctx,
1389 					       batch,
1390 					       &offset);
1391 		if (ret)
1392 			goto out;
1393 
1394 		ret = gen8_init_perctx_bb(ring,
1395 					  &wa_ctx->per_ctx,
1396 					  batch,
1397 					  &offset);
1398 		if (ret)
1399 			goto out;
1400 	} else if (INTEL_INFO(ring->dev)->gen == 9) {
1401 		ret = gen9_init_indirectctx_bb(ring,
1402 					       &wa_ctx->indirect_ctx,
1403 					       batch,
1404 					       &offset);
1405 		if (ret)
1406 			goto out;
1407 
1408 		ret = gen9_init_perctx_bb(ring,
1409 					  &wa_ctx->per_ctx,
1410 					  batch,
1411 					  &offset);
1412 		if (ret)
1413 			goto out;
1414 	}
1415 
1416 out:
1417 	kunmap_atomic(batch);
1418 	if (ret)
1419 		lrc_destroy_wa_ctx_obj(ring);
1420 
1421 	return ret;
1422 }
1423 
1424 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1425 {
1426 	struct drm_device *dev = ring->dev;
1427 	struct drm_i915_private *dev_priv = dev->dev_private;
1428 	u8 next_context_status_buffer_hw;
1429 
1430 	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1431 	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1432 
1433 	if (ring->status_page.obj) {
1434 		I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1435 			   (u32)ring->status_page.gfx_addr);
1436 		POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1437 	}
1438 
1439 	I915_WRITE(RING_MODE_GEN7(ring),
1440 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1441 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1442 	POSTING_READ(RING_MODE_GEN7(ring));
1443 
1444 	/*
1445 	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1446 	 * zero, we need to read the write pointer from hardware and use its
1447 	 * value because "this register is power context save restored".
1448 	 * Effectively, these states have been observed:
1449 	 *
1450 	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1451 	 * BDW  | CSB regs not reset       | CSB regs reset       |
1452 	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1453 	 */
1454 	next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1455 						   & GEN8_CSB_PTR_MASK);
1456 
1457 	/*
1458 	 * When the CSB registers are reset (also after power-up / gpu reset),
1459 	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1460 	 * this special case, so the first element read is CSB[0].
1461 	 */
1462 	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1463 		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1464 
1465 	ring->next_context_status_buffer = next_context_status_buffer_hw;
1466 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1467 
1468 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1469 
1470 	return 0;
1471 }
1472 
1473 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1474 {
1475 	struct drm_device *dev = ring->dev;
1476 	struct drm_i915_private *dev_priv = dev->dev_private;
1477 	int ret;
1478 
1479 	ret = gen8_init_common_ring(ring);
1480 	if (ret)
1481 		return ret;
1482 
1483 	/* We need to disable the AsyncFlip performance optimisations in order
1484 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1485 	 * programmed to '1' on all products.
1486 	 *
1487 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1488 	 */
1489 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1490 
1491 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1492 
1493 	return init_workarounds_ring(ring);
1494 }
1495 
1496 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1497 {
1498 	int ret;
1499 
1500 	ret = gen8_init_common_ring(ring);
1501 	if (ret)
1502 		return ret;
1503 
1504 	return init_workarounds_ring(ring);
1505 }
1506 
1507 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1508 {
1509 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1510 	struct intel_engine_cs *ring = req->ring;
1511 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1512 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1513 	int i, ret;
1514 
1515 	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1516 	if (ret)
1517 		return ret;
1518 
1519 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1520 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1521 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1522 
1523 		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1524 		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1525 		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1526 		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1527 	}
1528 
1529 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1530 	intel_logical_ring_advance(ringbuf);
1531 
1532 	return 0;
1533 }
1534 
1535 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1536 			      u64 offset, unsigned dispatch_flags)
1537 {
1538 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1539 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1540 	int ret;
1541 
1542 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1543 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1544 	 * but we can't. Force Restore would be a second option, but
1545 	 * it is unsafe in case of lite-restore (because the ctx is
1546 	 * not idle). */
1547 	if (req->ctx->ppgtt &&
1548 	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1549 		ret = intel_logical_ring_emit_pdps(req);
1550 		if (ret)
1551 			return ret;
1552 
1553 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1554 	}
1555 
1556 	ret = intel_logical_ring_begin(req, 4);
1557 	if (ret)
1558 		return ret;
1559 
1560 	/* FIXME(BDW): Address space and security selectors. */
1561 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1562 				(ppgtt<<8) |
1563 				(dispatch_flags & I915_DISPATCH_RS ?
1564 				 MI_BATCH_RESOURCE_STREAMER : 0));
1565 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1566 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1567 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1568 	intel_logical_ring_advance(ringbuf);
1569 
1570 	return 0;
1571 }
1572 
1573 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1574 {
1575 	struct drm_device *dev = ring->dev;
1576 	struct drm_i915_private *dev_priv = dev->dev_private;
1577 
1578 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1579 		return false;
1580 
1581 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1582 	if (ring->irq_refcount++ == 0) {
1583 		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1584 		POSTING_READ(RING_IMR(ring->mmio_base));
1585 	}
1586 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1587 
1588 	return true;
1589 }
1590 
1591 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1592 {
1593 	struct drm_device *dev = ring->dev;
1594 	struct drm_i915_private *dev_priv = dev->dev_private;
1595 
1596 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1597 	if (--ring->irq_refcount == 0) {
1598 		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1599 		POSTING_READ(RING_IMR(ring->mmio_base));
1600 	}
1601 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1602 }
1603 
1604 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1605 			   u32 invalidate_domains,
1606 			   u32 unused)
1607 {
1608 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1609 	struct intel_engine_cs *ring = ringbuf->ring;
1610 	struct drm_device *dev = ring->dev;
1611 	struct drm_i915_private *dev_priv = dev->dev_private;
1612 	uint32_t cmd;
1613 	int ret;
1614 
1615 	ret = intel_logical_ring_begin(request, 4);
1616 	if (ret)
1617 		return ret;
1618 
1619 	cmd = MI_FLUSH_DW + 1;
1620 
1621 	/* We always require a command barrier so that subsequent
1622 	 * commands, such as breadcrumb interrupts, are strictly ordered
1623 	 * wrt the contents of the write cache being flushed to memory
1624 	 * (and thus being coherent from the CPU).
1625 	 */
1626 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1627 
1628 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1629 		cmd |= MI_INVALIDATE_TLB;
1630 		if (ring == &dev_priv->ring[VCS])
1631 			cmd |= MI_INVALIDATE_BSD;
1632 	}
1633 
1634 	intel_logical_ring_emit(ringbuf, cmd);
1635 	intel_logical_ring_emit(ringbuf,
1636 				I915_GEM_HWS_SCRATCH_ADDR |
1637 				MI_FLUSH_DW_USE_GTT);
1638 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1639 	intel_logical_ring_emit(ringbuf, 0); /* value */
1640 	intel_logical_ring_advance(ringbuf);
1641 
1642 	return 0;
1643 }
1644 
1645 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1646 				  u32 invalidate_domains,
1647 				  u32 flush_domains)
1648 {
1649 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1650 	struct intel_engine_cs *ring = ringbuf->ring;
1651 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1652 	bool vf_flush_wa;
1653 	u32 flags = 0;
1654 	int ret;
1655 
1656 	flags |= PIPE_CONTROL_CS_STALL;
1657 
1658 	if (flush_domains) {
1659 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1660 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1661 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1662 	}
1663 
1664 	if (invalidate_domains) {
1665 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1666 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1667 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1668 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1669 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1670 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1671 		flags |= PIPE_CONTROL_QW_WRITE;
1672 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1673 	}
1674 
1675 	/*
1676 	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1677 	 * control.
1678 	 */
1679 	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1680 		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1681 
1682 	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1683 	if (ret)
1684 		return ret;
1685 
1686 	if (vf_flush_wa) {
1687 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1688 		intel_logical_ring_emit(ringbuf, 0);
1689 		intel_logical_ring_emit(ringbuf, 0);
1690 		intel_logical_ring_emit(ringbuf, 0);
1691 		intel_logical_ring_emit(ringbuf, 0);
1692 		intel_logical_ring_emit(ringbuf, 0);
1693 	}
1694 
1695 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1696 	intel_logical_ring_emit(ringbuf, flags);
1697 	intel_logical_ring_emit(ringbuf, scratch_addr);
1698 	intel_logical_ring_emit(ringbuf, 0);
1699 	intel_logical_ring_emit(ringbuf, 0);
1700 	intel_logical_ring_emit(ringbuf, 0);
1701 	intel_logical_ring_advance(ringbuf);
1702 
1703 	return 0;
1704 }
1705 
1706 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1707 {
1708 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1709 }
1710 
1711 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1712 {
1713 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1714 }
1715 
1716 static int gen8_emit_request(struct drm_i915_gem_request *request)
1717 {
1718 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1719 	struct intel_engine_cs *ring = ringbuf->ring;
1720 	u32 cmd;
1721 	int ret;
1722 
1723 	/*
1724 	 * Reserve space for 2 NOOPs at the end of each request to be
1725 	 * used as a workaround for not being allowed to do lite
1726 	 * restore with HEAD==TAIL (WaIdleLiteRestore).
1727 	 */
1728 	ret = intel_logical_ring_begin(request, 8);
1729 	if (ret)
1730 		return ret;
1731 
1732 	cmd = MI_STORE_DWORD_IMM_GEN4;
1733 	cmd |= MI_GLOBAL_GTT;
1734 
1735 	intel_logical_ring_emit(ringbuf, cmd);
1736 	intel_logical_ring_emit(ringbuf,
1737 				(ring->status_page.gfx_addr +
1738 				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1739 	intel_logical_ring_emit(ringbuf, 0);
1740 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1741 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1742 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1743 	intel_logical_ring_advance_and_submit(request);
1744 
1745 	/*
1746 	 * Here we add two extra NOOPs as padding to avoid
1747 	 * lite restore of a context with HEAD==TAIL.
1748 	 */
1749 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1750 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1751 	intel_logical_ring_advance(ringbuf);
1752 
1753 	return 0;
1754 }
1755 
1756 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1757 {
1758 	struct render_state so;
1759 	int ret;
1760 
1761 	ret = i915_gem_render_state_prepare(req->ring, &so);
1762 	if (ret)
1763 		return ret;
1764 
1765 	if (so.rodata == NULL)
1766 		return 0;
1767 
1768 	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1769 				       I915_DISPATCH_SECURE);
1770 	if (ret)
1771 		goto out;
1772 
1773 	ret = req->ring->emit_bb_start(req,
1774 				       (so.ggtt_offset + so.aux_batch_offset),
1775 				       I915_DISPATCH_SECURE);
1776 	if (ret)
1777 		goto out;
1778 
1779 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1780 
1781 out:
1782 	i915_gem_render_state_fini(&so);
1783 	return ret;
1784 }
1785 
1786 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1787 {
1788 	int ret;
1789 
1790 	ret = intel_logical_ring_workarounds_emit(req);
1791 	if (ret)
1792 		return ret;
1793 
1794 	ret = intel_rcs_context_init_mocs(req);
1795 	/*
1796 	 * Failing to program the MOCS is non-fatal.The system will not
1797 	 * run at peak performance. So generate an error and carry on.
1798 	 */
1799 	if (ret)
1800 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1801 
1802 	return intel_lr_context_render_state_init(req);
1803 }
1804 
1805 /**
1806  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1807  *
1808  * @ring: Engine Command Streamer.
1809  *
1810  */
1811 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1812 {
1813 	struct drm_i915_private *dev_priv;
1814 
1815 	if (!intel_ring_initialized(ring))
1816 		return;
1817 
1818 	dev_priv = ring->dev->dev_private;
1819 
1820 	intel_logical_ring_stop(ring);
1821 	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1822 
1823 	if (ring->cleanup)
1824 		ring->cleanup(ring);
1825 
1826 	i915_cmd_parser_fini_ring(ring);
1827 	i915_gem_batch_pool_fini(&ring->batch_pool);
1828 
1829 	if (ring->status_page.obj) {
1830 		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1831 		ring->status_page.obj = NULL;
1832 	}
1833 
1834 	lrc_destroy_wa_ctx_obj(ring);
1835 }
1836 
1837 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1838 {
1839 	int ret;
1840 
1841 	/* Intentionally left blank. */
1842 	ring->buffer = NULL;
1843 
1844 	ring->dev = dev;
1845 	INIT_LIST_HEAD(&ring->active_list);
1846 	INIT_LIST_HEAD(&ring->request_list);
1847 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1848 	init_waitqueue_head(&ring->irq_queue);
1849 
1850 	INIT_LIST_HEAD(&ring->execlist_queue);
1851 	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1852 	lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1853 
1854 	ret = i915_cmd_parser_init_ring(ring);
1855 	if (ret)
1856 		return ret;
1857 
1858 	ret = intel_lr_context_deferred_create(ring->default_context, ring);
1859 
1860 	return ret;
1861 }
1862 
1863 static int logical_render_ring_init(struct drm_device *dev)
1864 {
1865 	struct drm_i915_private *dev_priv = dev->dev_private;
1866 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1867 	int ret;
1868 
1869 	ring->name = "render ring";
1870 	ring->id = RCS;
1871 	ring->mmio_base = RENDER_RING_BASE;
1872 	ring->irq_enable_mask =
1873 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1874 	ring->irq_keep_mask =
1875 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1876 	if (HAS_L3_DPF(dev))
1877 		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1878 
1879 	if (INTEL_INFO(dev)->gen >= 9)
1880 		ring->init_hw = gen9_init_render_ring;
1881 	else
1882 		ring->init_hw = gen8_init_render_ring;
1883 	ring->init_context = gen8_init_rcs_context;
1884 	ring->cleanup = intel_fini_pipe_control;
1885 	ring->get_seqno = gen8_get_seqno;
1886 	ring->set_seqno = gen8_set_seqno;
1887 	ring->emit_request = gen8_emit_request;
1888 	ring->emit_flush = gen8_emit_flush_render;
1889 	ring->irq_get = gen8_logical_ring_get_irq;
1890 	ring->irq_put = gen8_logical_ring_put_irq;
1891 	ring->emit_bb_start = gen8_emit_bb_start;
1892 
1893 	ring->dev = dev;
1894 
1895 	ret = intel_init_pipe_control(ring);
1896 	if (ret)
1897 		return ret;
1898 
1899 	ret = intel_init_workaround_bb(ring);
1900 	if (ret) {
1901 		/*
1902 		 * We continue even if we fail to initialize WA batch
1903 		 * because we only expect rare glitches but nothing
1904 		 * critical to prevent us from using GPU
1905 		 */
1906 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
1907 			  ret);
1908 	}
1909 
1910 	ret = logical_ring_init(dev, ring);
1911 	if (ret) {
1912 		lrc_destroy_wa_ctx_obj(ring);
1913 	}
1914 
1915 	return ret;
1916 }
1917 
1918 static int logical_bsd_ring_init(struct drm_device *dev)
1919 {
1920 	struct drm_i915_private *dev_priv = dev->dev_private;
1921 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1922 
1923 	ring->name = "bsd ring";
1924 	ring->id = VCS;
1925 	ring->mmio_base = GEN6_BSD_RING_BASE;
1926 	ring->irq_enable_mask =
1927 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1928 	ring->irq_keep_mask =
1929 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1930 
1931 	ring->init_hw = gen8_init_common_ring;
1932 	ring->get_seqno = gen8_get_seqno;
1933 	ring->set_seqno = gen8_set_seqno;
1934 	ring->emit_request = gen8_emit_request;
1935 	ring->emit_flush = gen8_emit_flush;
1936 	ring->irq_get = gen8_logical_ring_get_irq;
1937 	ring->irq_put = gen8_logical_ring_put_irq;
1938 	ring->emit_bb_start = gen8_emit_bb_start;
1939 
1940 	return logical_ring_init(dev, ring);
1941 }
1942 
1943 static int logical_bsd2_ring_init(struct drm_device *dev)
1944 {
1945 	struct drm_i915_private *dev_priv = dev->dev_private;
1946 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1947 
1948 	ring->name = "bds2 ring";
1949 	ring->id = VCS2;
1950 	ring->mmio_base = GEN8_BSD2_RING_BASE;
1951 	ring->irq_enable_mask =
1952 		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1953 	ring->irq_keep_mask =
1954 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1955 
1956 	ring->init_hw = gen8_init_common_ring;
1957 	ring->get_seqno = gen8_get_seqno;
1958 	ring->set_seqno = gen8_set_seqno;
1959 	ring->emit_request = gen8_emit_request;
1960 	ring->emit_flush = gen8_emit_flush;
1961 	ring->irq_get = gen8_logical_ring_get_irq;
1962 	ring->irq_put = gen8_logical_ring_put_irq;
1963 	ring->emit_bb_start = gen8_emit_bb_start;
1964 
1965 	return logical_ring_init(dev, ring);
1966 }
1967 
1968 static int logical_blt_ring_init(struct drm_device *dev)
1969 {
1970 	struct drm_i915_private *dev_priv = dev->dev_private;
1971 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1972 
1973 	ring->name = "blitter ring";
1974 	ring->id = BCS;
1975 	ring->mmio_base = BLT_RING_BASE;
1976 	ring->irq_enable_mask =
1977 		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1978 	ring->irq_keep_mask =
1979 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1980 
1981 	ring->init_hw = gen8_init_common_ring;
1982 	ring->get_seqno = gen8_get_seqno;
1983 	ring->set_seqno = gen8_set_seqno;
1984 	ring->emit_request = gen8_emit_request;
1985 	ring->emit_flush = gen8_emit_flush;
1986 	ring->irq_get = gen8_logical_ring_get_irq;
1987 	ring->irq_put = gen8_logical_ring_put_irq;
1988 	ring->emit_bb_start = gen8_emit_bb_start;
1989 
1990 	return logical_ring_init(dev, ring);
1991 }
1992 
1993 static int logical_vebox_ring_init(struct drm_device *dev)
1994 {
1995 	struct drm_i915_private *dev_priv = dev->dev_private;
1996 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1997 
1998 	ring->name = "video enhancement ring";
1999 	ring->id = VECS;
2000 	ring->mmio_base = VEBOX_RING_BASE;
2001 	ring->irq_enable_mask =
2002 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2003 	ring->irq_keep_mask =
2004 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2005 
2006 	ring->init_hw = gen8_init_common_ring;
2007 	ring->get_seqno = gen8_get_seqno;
2008 	ring->set_seqno = gen8_set_seqno;
2009 	ring->emit_request = gen8_emit_request;
2010 	ring->emit_flush = gen8_emit_flush;
2011 	ring->irq_get = gen8_logical_ring_get_irq;
2012 	ring->irq_put = gen8_logical_ring_put_irq;
2013 	ring->emit_bb_start = gen8_emit_bb_start;
2014 
2015 	return logical_ring_init(dev, ring);
2016 }
2017 
2018 /**
2019  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2020  * @dev: DRM device.
2021  *
2022  * This function inits the engines for an Execlists submission style (the equivalent in the
2023  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2024  * those engines that are present in the hardware.
2025  *
2026  * Return: non-zero if the initialization failed.
2027  */
2028 int intel_logical_rings_init(struct drm_device *dev)
2029 {
2030 	struct drm_i915_private *dev_priv = dev->dev_private;
2031 	int ret;
2032 
2033 	ret = logical_render_ring_init(dev);
2034 	if (ret)
2035 		return ret;
2036 
2037 	if (HAS_BSD(dev)) {
2038 		ret = logical_bsd_ring_init(dev);
2039 		if (ret)
2040 			goto cleanup_render_ring;
2041 	}
2042 
2043 	if (HAS_BLT(dev)) {
2044 		ret = logical_blt_ring_init(dev);
2045 		if (ret)
2046 			goto cleanup_bsd_ring;
2047 	}
2048 
2049 	if (HAS_VEBOX(dev)) {
2050 		ret = logical_vebox_ring_init(dev);
2051 		if (ret)
2052 			goto cleanup_blt_ring;
2053 	}
2054 
2055 	if (HAS_BSD2(dev)) {
2056 		ret = logical_bsd2_ring_init(dev);
2057 		if (ret)
2058 			goto cleanup_vebox_ring;
2059 	}
2060 
2061 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2062 	if (ret)
2063 		goto cleanup_bsd2_ring;
2064 
2065 	return 0;
2066 
2067 cleanup_bsd2_ring:
2068 	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2069 cleanup_vebox_ring:
2070 	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2071 cleanup_blt_ring:
2072 	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2073 cleanup_bsd_ring:
2074 	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2075 cleanup_render_ring:
2076 	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2077 
2078 	return ret;
2079 }
2080 
2081 static u32
2082 make_rpcs(struct drm_device *dev)
2083 {
2084 	u32 rpcs = 0;
2085 
2086 	/*
2087 	 * No explicit RPCS request is needed to ensure full
2088 	 * slice/subslice/EU enablement prior to Gen9.
2089 	*/
2090 	if (INTEL_INFO(dev)->gen < 9)
2091 		return 0;
2092 
2093 	/*
2094 	 * Starting in Gen9, render power gating can leave
2095 	 * slice/subslice/EU in a partially enabled state. We
2096 	 * must make an explicit request through RPCS for full
2097 	 * enablement.
2098 	*/
2099 	if (INTEL_INFO(dev)->has_slice_pg) {
2100 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2101 		rpcs |= INTEL_INFO(dev)->slice_total <<
2102 			GEN8_RPCS_S_CNT_SHIFT;
2103 		rpcs |= GEN8_RPCS_ENABLE;
2104 	}
2105 
2106 	if (INTEL_INFO(dev)->has_subslice_pg) {
2107 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2108 		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2109 			GEN8_RPCS_SS_CNT_SHIFT;
2110 		rpcs |= GEN8_RPCS_ENABLE;
2111 	}
2112 
2113 	if (INTEL_INFO(dev)->has_eu_pg) {
2114 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2115 			GEN8_RPCS_EU_MIN_SHIFT;
2116 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2117 			GEN8_RPCS_EU_MAX_SHIFT;
2118 		rpcs |= GEN8_RPCS_ENABLE;
2119 	}
2120 
2121 	return rpcs;
2122 }
2123 
2124 static int
2125 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2126 		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2127 {
2128 	struct drm_device *dev = ring->dev;
2129 	struct drm_i915_private *dev_priv = dev->dev_private;
2130 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2131 	struct vm_page *page;
2132 	uint32_t *reg_state;
2133 	int ret;
2134 
2135 	if (!ppgtt)
2136 		ppgtt = dev_priv->mm.aliasing_ppgtt;
2137 
2138 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2139 	if (ret) {
2140 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2141 		return ret;
2142 	}
2143 
2144 	ret = i915_gem_object_get_pages(ctx_obj);
2145 	if (ret) {
2146 		DRM_DEBUG_DRIVER("Could not get object pages\n");
2147 		return ret;
2148 	}
2149 
2150 	i915_gem_object_pin_pages(ctx_obj);
2151 
2152 	/* The second page of the context object contains some fields which must
2153 	 * be set up prior to the first execution. */
2154 	page = i915_gem_object_get_page(ctx_obj, 1);
2155 	reg_state = kmap_atomic(page);
2156 
2157 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2158 	 * commands followed by (reg, value) pairs. The values we are setting here are
2159 	 * only for the first context restore: on a subsequent save, the GPU will
2160 	 * recreate this batchbuffer with new values (including all the missing
2161 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2162 	if (ring->id == RCS)
2163 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2164 	else
2165 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2166 	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2167 	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2168 	reg_state[CTX_CONTEXT_CONTROL+1] =
2169 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2170 				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2171 				   CTX_CTRL_RS_CTX_ENABLE);
2172 	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2173 	reg_state[CTX_RING_HEAD+1] = 0;
2174 	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2175 	reg_state[CTX_RING_TAIL+1] = 0;
2176 	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2177 	/* Ring buffer start address is not known until the buffer is pinned.
2178 	 * It is written to the context image in execlists_update_context()
2179 	 */
2180 	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2181 	reg_state[CTX_RING_BUFFER_CONTROL+1] =
2182 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2183 	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2184 	reg_state[CTX_BB_HEAD_U+1] = 0;
2185 	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2186 	reg_state[CTX_BB_HEAD_L+1] = 0;
2187 	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2188 	reg_state[CTX_BB_STATE+1] = (1<<5);
2189 	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2190 	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2191 	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2192 	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2193 	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2194 	reg_state[CTX_SECOND_BB_STATE+1] = 0;
2195 	if (ring->id == RCS) {
2196 		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2197 		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2198 		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2199 		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2200 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2201 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2202 		if (ring->wa_ctx.obj) {
2203 			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2204 			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2205 
2206 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2207 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2208 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2209 
2210 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2211 				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2212 
2213 			reg_state[CTX_BB_PER_CTX_PTR+1] =
2214 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2215 				0x01;
2216 		}
2217 	}
2218 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2219 	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2220 	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2221 	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2222 	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2223 	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2224 	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2225 	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2226 	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2227 	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2228 	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2229 	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2230 
2231 	/* With dynamic page allocation, PDPs may not be allocated at this point,
2232 	 * Point the unallocated PDPs to the scratch page
2233 	 */
2234 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2235 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2236 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2237 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2238 	if (ring->id == RCS) {
2239 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2240 		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2241 		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2242 	}
2243 
2244 	kunmap_atomic(reg_state);
2245 
2246 	ctx_obj->dirty = 1;
2247 	set_page_dirty(page);
2248 	i915_gem_object_unpin_pages(ctx_obj);
2249 
2250 	return 0;
2251 }
2252 
2253 /**
2254  * intel_lr_context_free() - free the LRC specific bits of a context
2255  * @ctx: the LR context to free.
2256  *
2257  * The real context freeing is done in i915_gem_context_free: this only
2258  * takes care of the bits that are LRC related: the per-engine backing
2259  * objects and the logical ringbuffer.
2260  */
2261 void intel_lr_context_free(struct intel_context *ctx)
2262 {
2263 	int i;
2264 
2265 	for (i = 0; i < I915_NUM_RINGS; i++) {
2266 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2267 
2268 		if (ctx_obj) {
2269 			struct intel_ringbuffer *ringbuf =
2270 					ctx->engine[i].ringbuf;
2271 			struct intel_engine_cs *ring = ringbuf->ring;
2272 
2273 			if (ctx == ring->default_context) {
2274 				intel_unpin_ringbuffer_obj(ringbuf);
2275 				i915_gem_object_ggtt_unpin(ctx_obj);
2276 			}
2277 			WARN_ON(ctx->engine[ring->id].pin_count);
2278 			intel_destroy_ringbuffer_obj(ringbuf);
2279 			kfree(ringbuf);
2280 			drm_gem_object_unreference(&ctx_obj->base);
2281 		}
2282 	}
2283 }
2284 
2285 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2286 {
2287 	int ret = 0;
2288 
2289 	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2290 
2291 	switch (ring->id) {
2292 	case RCS:
2293 		if (INTEL_INFO(ring->dev)->gen >= 9)
2294 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2295 		else
2296 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2297 		break;
2298 	case VCS:
2299 	case BCS:
2300 	case VECS:
2301 	case VCS2:
2302 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2303 		break;
2304 	}
2305 
2306 	return ret;
2307 }
2308 
2309 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2310 		struct drm_i915_gem_object *default_ctx_obj)
2311 {
2312 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2313 
2314 	/* The status page is offset 0 from the default context object
2315 	 * in LRC mode. */
2316 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2317 	ring->status_page.page_addr =
2318 			kmap(sg_page(default_ctx_obj->pages->sgl));
2319 	ring->status_page.obj = default_ctx_obj;
2320 
2321 	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2322 			(u32)ring->status_page.gfx_addr);
2323 	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2324 }
2325 
2326 /**
2327  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2328  * @ctx: LR context to create.
2329  * @ring: engine to be used with the context.
2330  *
2331  * This function can be called more than once, with different engines, if we plan
2332  * to use the context with them. The context backing objects and the ringbuffers
2333  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2334  * the creation is a deferred call: it's better to make sure first that we need to use
2335  * a given ring with the context.
2336  *
2337  * Return: non-zero on error.
2338  */
2339 int intel_lr_context_deferred_create(struct intel_context *ctx,
2340 				     struct intel_engine_cs *ring)
2341 {
2342 	const bool is_global_default_ctx = (ctx == ring->default_context);
2343 	struct drm_device *dev = ring->dev;
2344 	struct drm_i915_gem_object *ctx_obj;
2345 	uint32_t context_size;
2346 	struct intel_ringbuffer *ringbuf;
2347 	int ret;
2348 
2349 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2350 	WARN_ON(ctx->engine[ring->id].state);
2351 
2352 	context_size = round_up(get_lr_context_size(ring), 4096);
2353 
2354 	ctx_obj = i915_gem_alloc_object(dev, context_size);
2355 	if (!ctx_obj) {
2356 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2357 		return -ENOMEM;
2358 	}
2359 
2360 	if (is_global_default_ctx) {
2361 		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2362 		if (ret) {
2363 			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2364 					ret);
2365 			drm_gem_object_unreference(&ctx_obj->base);
2366 			return ret;
2367 		}
2368 	}
2369 
2370 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2371 	if (!ringbuf) {
2372 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2373 				ring->name);
2374 		ret = -ENOMEM;
2375 		goto error_unpin_ctx;
2376 	}
2377 
2378 	ringbuf->ring = ring;
2379 
2380 	ringbuf->size = 32 * PAGE_SIZE;
2381 	ringbuf->effective_size = ringbuf->size;
2382 	ringbuf->head = 0;
2383 	ringbuf->tail = 0;
2384 	ringbuf->last_retired_head = -1;
2385 	intel_ring_update_space(ringbuf);
2386 
2387 	if (ringbuf->obj == NULL) {
2388 		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2389 		if (ret) {
2390 			DRM_DEBUG_DRIVER(
2391 				"Failed to allocate ringbuffer obj %s: %d\n",
2392 				ring->name, ret);
2393 			goto error_free_rbuf;
2394 		}
2395 
2396 		if (is_global_default_ctx) {
2397 			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2398 			if (ret) {
2399 				DRM_ERROR(
2400 					"Failed to pin and map ringbuffer %s: %d\n",
2401 					ring->name, ret);
2402 				goto error_destroy_rbuf;
2403 			}
2404 		}
2405 
2406 	}
2407 
2408 	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2409 	if (ret) {
2410 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2411 		goto error;
2412 	}
2413 
2414 	ctx->engine[ring->id].ringbuf = ringbuf;
2415 	ctx->engine[ring->id].state = ctx_obj;
2416 
2417 	if (ctx == ring->default_context)
2418 		lrc_setup_hardware_status_page(ring, ctx_obj);
2419 	else if (ring->id == RCS && !ctx->rcs_initialized) {
2420 		if (ring->init_context) {
2421 			struct drm_i915_gem_request *req;
2422 
2423 			ret = i915_gem_request_alloc(ring, ctx, &req);
2424 			if (ret)
2425 				return ret;
2426 
2427 			ret = ring->init_context(req);
2428 			if (ret) {
2429 				DRM_ERROR("ring init context: %d\n", ret);
2430 				i915_gem_request_cancel(req);
2431 				ctx->engine[ring->id].ringbuf = NULL;
2432 				ctx->engine[ring->id].state = NULL;
2433 				goto error;
2434 			}
2435 
2436 			i915_add_request_no_flush(req);
2437 		}
2438 
2439 		ctx->rcs_initialized = true;
2440 	}
2441 
2442 	return 0;
2443 
2444 error:
2445 	if (is_global_default_ctx)
2446 		intel_unpin_ringbuffer_obj(ringbuf);
2447 error_destroy_rbuf:
2448 	intel_destroy_ringbuffer_obj(ringbuf);
2449 error_free_rbuf:
2450 	kfree(ringbuf);
2451 error_unpin_ctx:
2452 	if (is_global_default_ctx)
2453 		i915_gem_object_ggtt_unpin(ctx_obj);
2454 	drm_gem_object_unreference(&ctx_obj->base);
2455 	return ret;
2456 }
2457 
2458 void intel_lr_context_reset(struct drm_device *dev,
2459 			struct intel_context *ctx)
2460 {
2461 	struct drm_i915_private *dev_priv = dev->dev_private;
2462 	struct intel_engine_cs *ring;
2463 	int i;
2464 
2465 	for_each_ring(ring, dev_priv, i) {
2466 		struct drm_i915_gem_object *ctx_obj =
2467 				ctx->engine[ring->id].state;
2468 		struct intel_ringbuffer *ringbuf =
2469 				ctx->engine[ring->id].ringbuf;
2470 		uint32_t *reg_state;
2471 		struct vm_page *page;
2472 
2473 		if (!ctx_obj)
2474 			continue;
2475 
2476 		if (i915_gem_object_get_pages(ctx_obj)) {
2477 			WARN(1, "Failed get_pages for context obj\n");
2478 			continue;
2479 		}
2480 		page = i915_gem_object_get_page(ctx_obj, 1);
2481 		reg_state = kmap_atomic(page);
2482 
2483 		reg_state[CTX_RING_HEAD+1] = 0;
2484 		reg_state[CTX_RING_TAIL+1] = 0;
2485 
2486 		kunmap_atomic(reg_state);
2487 
2488 		ringbuf->head = 0;
2489 		ringbuf->tail = 0;
2490 	}
2491 }
2492