xref: /dragonfly/sys/dev/drm/i915/intel_pm.c (revision 092c2dd1)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 
33 /**
34  * DOC: RC6
35  *
36  * RC6 is a special power stage which allows the GPU to enter an very
37  * low-voltage mode when idle, using down to 0V while at this stage.  This
38  * stage is entered automatically when the GPU is idle when RC6 support is
39  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40  *
41  * There are different RC6 modes available in Intel GPU, which differentiate
42  * among each other with the latency required to enter and leave RC6 and
43  * voltage consumed by the GPU in different states.
44  *
45  * The combination of the following flags define which states GPU is allowed
46  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
47  * RC6pp is deepest RC6. Their support by hardware varies according to the
48  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
49  * which brings the most power savings; deeper states save more power, but
50  * require higher latency to switch to and wake up.
51  */
52 #define INTEL_RC6_ENABLE			(1<<0)
53 #define INTEL_RC6p_ENABLE			(1<<1)
54 #define INTEL_RC6pp_ENABLE			(1<<2)
55 
56 static void gen9_init_clock_gating(struct drm_device *dev)
57 {
58 	struct drm_i915_private *dev_priv = dev->dev_private;
59 
60 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
61 	I915_WRITE(CHICKEN_PAR1_1,
62 		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
63 
64 	I915_WRITE(GEN8_CONFIG0,
65 		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
66 
67 	/* WaEnableChickenDCPR:skl,bxt,kbl */
68 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
69 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
70 
71 	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
72 	/* WaFbcWakeMemOn:skl,bxt,kbl */
73 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
74 		   DISP_FBC_WM_DIS |
75 		   DISP_FBC_MEMORY_WAKE);
76 
77 	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
78 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
79 		   ILK_DPFC_DISABLE_DUMMY0);
80 }
81 
82 static void bxt_init_clock_gating(struct drm_device *dev)
83 {
84 	struct drm_i915_private *dev_priv = dev->dev_private;
85 
86 	gen9_init_clock_gating(dev);
87 
88 	/* WaDisableSDEUnitClockGating:bxt */
89 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
90 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
91 
92 	/*
93 	 * FIXME:
94 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
95 	 */
96 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
97 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
98 
99 	/*
100 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
101 	 * to stay fully on.
102 	 */
103 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
104 		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
105 			   PWM1_GATING_DIS | PWM2_GATING_DIS);
106 }
107 
108 static void i915_pineview_get_mem_freq(struct drm_device *dev)
109 {
110 	struct drm_i915_private *dev_priv = dev->dev_private;
111 	u32 tmp;
112 
113 	tmp = I915_READ(CLKCFG);
114 
115 	switch (tmp & CLKCFG_FSB_MASK) {
116 	case CLKCFG_FSB_533:
117 		dev_priv->fsb_freq = 533; /* 133*4 */
118 		break;
119 	case CLKCFG_FSB_800:
120 		dev_priv->fsb_freq = 800; /* 200*4 */
121 		break;
122 	case CLKCFG_FSB_667:
123 		dev_priv->fsb_freq =  667; /* 167*4 */
124 		break;
125 	case CLKCFG_FSB_400:
126 		dev_priv->fsb_freq = 400; /* 100*4 */
127 		break;
128 	}
129 
130 	switch (tmp & CLKCFG_MEM_MASK) {
131 	case CLKCFG_MEM_533:
132 		dev_priv->mem_freq = 533;
133 		break;
134 	case CLKCFG_MEM_667:
135 		dev_priv->mem_freq = 667;
136 		break;
137 	case CLKCFG_MEM_800:
138 		dev_priv->mem_freq = 800;
139 		break;
140 	}
141 
142 	/* detect pineview DDR3 setting */
143 	tmp = I915_READ(CSHRDDR3CTL);
144 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
145 }
146 
147 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
148 {
149 	struct drm_i915_private *dev_priv = dev->dev_private;
150 	u16 ddrpll, csipll;
151 
152 	ddrpll = I915_READ16(DDRMPLL1);
153 	csipll = I915_READ16(CSIPLL0);
154 
155 	switch (ddrpll & 0xff) {
156 	case 0xc:
157 		dev_priv->mem_freq = 800;
158 		break;
159 	case 0x10:
160 		dev_priv->mem_freq = 1066;
161 		break;
162 	case 0x14:
163 		dev_priv->mem_freq = 1333;
164 		break;
165 	case 0x18:
166 		dev_priv->mem_freq = 1600;
167 		break;
168 	default:
169 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
170 				 ddrpll & 0xff);
171 		dev_priv->mem_freq = 0;
172 		break;
173 	}
174 
175 	dev_priv->ips.r_t = dev_priv->mem_freq;
176 
177 	switch (csipll & 0x3ff) {
178 	case 0x00c:
179 		dev_priv->fsb_freq = 3200;
180 		break;
181 	case 0x00e:
182 		dev_priv->fsb_freq = 3733;
183 		break;
184 	case 0x010:
185 		dev_priv->fsb_freq = 4266;
186 		break;
187 	case 0x012:
188 		dev_priv->fsb_freq = 4800;
189 		break;
190 	case 0x014:
191 		dev_priv->fsb_freq = 5333;
192 		break;
193 	case 0x016:
194 		dev_priv->fsb_freq = 5866;
195 		break;
196 	case 0x018:
197 		dev_priv->fsb_freq = 6400;
198 		break;
199 	default:
200 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
201 				 csipll & 0x3ff);
202 		dev_priv->fsb_freq = 0;
203 		break;
204 	}
205 
206 	if (dev_priv->fsb_freq == 3200) {
207 		dev_priv->ips.c_m = 0;
208 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
209 		dev_priv->ips.c_m = 1;
210 	} else {
211 		dev_priv->ips.c_m = 2;
212 	}
213 }
214 
215 static const struct cxsr_latency cxsr_latency_table[] = {
216 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
217 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
218 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
219 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
220 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
221 
222 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
223 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
224 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
225 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
226 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
227 
228 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
229 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
230 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
231 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
232 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
233 
234 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
235 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
236 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
237 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
238 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
239 
240 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
241 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
242 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
243 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
244 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
245 
246 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
247 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
248 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
249 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
250 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
251 };
252 
253 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
254 							 int is_ddr3,
255 							 int fsb,
256 							 int mem)
257 {
258 	const struct cxsr_latency *latency;
259 	int i;
260 
261 	if (fsb == 0 || mem == 0)
262 		return NULL;
263 
264 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
265 		latency = &cxsr_latency_table[i];
266 		if (is_desktop == latency->is_desktop &&
267 		    is_ddr3 == latency->is_ddr3 &&
268 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
269 			return latency;
270 	}
271 
272 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
273 
274 	return NULL;
275 }
276 
277 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
278 {
279 	u32 val;
280 
281 	mutex_lock(&dev_priv->rps.hw_lock);
282 
283 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
284 	if (enable)
285 		val &= ~FORCE_DDR_HIGH_FREQ;
286 	else
287 		val |= FORCE_DDR_HIGH_FREQ;
288 	val &= ~FORCE_DDR_LOW_FREQ;
289 	val |= FORCE_DDR_FREQ_REQ_ACK;
290 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
291 
292 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
293 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
294 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
295 
296 	mutex_unlock(&dev_priv->rps.hw_lock);
297 }
298 
299 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
300 {
301 	u32 val;
302 
303 	mutex_lock(&dev_priv->rps.hw_lock);
304 
305 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
306 	if (enable)
307 		val |= DSP_MAXFIFO_PM5_ENABLE;
308 	else
309 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
310 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
311 
312 	mutex_unlock(&dev_priv->rps.hw_lock);
313 }
314 
315 #define FW_WM(value, plane) \
316 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
317 
318 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
319 {
320 	struct drm_device *dev = dev_priv->dev;
321 	u32 val;
322 
323 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
324 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
325 		POSTING_READ(FW_BLC_SELF_VLV);
326 		dev_priv->wm.vlv.cxsr = enable;
327 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
328 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
329 		POSTING_READ(FW_BLC_SELF);
330 	} else if (IS_PINEVIEW(dev)) {
331 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
332 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
333 		I915_WRITE(DSPFW3, val);
334 		POSTING_READ(DSPFW3);
335 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
336 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
337 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
338 		I915_WRITE(FW_BLC_SELF, val);
339 		POSTING_READ(FW_BLC_SELF);
340 	} else if (IS_I915GM(dev)) {
341 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
342 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
343 		I915_WRITE(INSTPM, val);
344 		POSTING_READ(INSTPM);
345 	} else {
346 		return;
347 	}
348 
349 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
350 		      enable ? "enabled" : "disabled");
351 }
352 
353 
354 /*
355  * Latency for FIFO fetches is dependent on several factors:
356  *   - memory configuration (speed, channels)
357  *   - chipset
358  *   - current MCH state
359  * It can be fairly high in some situations, so here we assume a fairly
360  * pessimal value.  It's a tradeoff between extra memory fetches (if we
361  * set this value too high, the FIFO will fetch frequently to stay full)
362  * and power consumption (set it too low to save power and we might see
363  * FIFO underruns and display "flicker").
364  *
365  * A value of 5us seems to be a good balance; safe for very low end
366  * platforms but not overly aggressive on lower latency configs.
367  */
368 static const int pessimal_latency_ns = 5000;
369 
370 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
371 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
372 
373 static int vlv_get_fifo_size(struct drm_device *dev,
374 			      enum i915_pipe pipe, int plane)
375 {
376 	struct drm_i915_private *dev_priv = dev->dev_private;
377 	int sprite0_start, sprite1_start, size;
378 
379 	switch (pipe) {
380 		uint32_t dsparb, dsparb2, dsparb3;
381 	case PIPE_A:
382 		dsparb = I915_READ(DSPARB);
383 		dsparb2 = I915_READ(DSPARB2);
384 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
385 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
386 		break;
387 	case PIPE_B:
388 		dsparb = I915_READ(DSPARB);
389 		dsparb2 = I915_READ(DSPARB2);
390 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
391 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
392 		break;
393 	case PIPE_C:
394 		dsparb2 = I915_READ(DSPARB2);
395 		dsparb3 = I915_READ(DSPARB3);
396 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
397 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
398 		break;
399 	default:
400 		return 0;
401 	}
402 
403 	switch (plane) {
404 	case 0:
405 		size = sprite0_start;
406 		break;
407 	case 1:
408 		size = sprite1_start - sprite0_start;
409 		break;
410 	case 2:
411 		size = 512 - 1 - sprite1_start;
412 		break;
413 	default:
414 		return 0;
415 	}
416 
417 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
418 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
419 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
420 		      size);
421 
422 	return size;
423 }
424 
425 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
426 {
427 	struct drm_i915_private *dev_priv = dev->dev_private;
428 	uint32_t dsparb = I915_READ(DSPARB);
429 	int size;
430 
431 	size = dsparb & 0x7f;
432 	if (plane)
433 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
434 
435 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
436 		      plane ? "B" : "A", size);
437 
438 	return size;
439 }
440 
441 static int i830_get_fifo_size(struct drm_device *dev, int plane)
442 {
443 	struct drm_i915_private *dev_priv = dev->dev_private;
444 	uint32_t dsparb = I915_READ(DSPARB);
445 	int size;
446 
447 	size = dsparb & 0x1ff;
448 	if (plane)
449 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
450 	size >>= 1; /* Convert to cachelines */
451 
452 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
453 		      plane ? "B" : "A", size);
454 
455 	return size;
456 }
457 
458 static int i845_get_fifo_size(struct drm_device *dev, int plane)
459 {
460 	struct drm_i915_private *dev_priv = dev->dev_private;
461 	uint32_t dsparb = I915_READ(DSPARB);
462 	int size;
463 
464 	size = dsparb & 0x7f;
465 	size >>= 2; /* Convert to cachelines */
466 
467 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
468 		      plane ? "B" : "A",
469 		      size);
470 
471 	return size;
472 }
473 
474 /* Pineview has different values for various configs */
475 static const struct intel_watermark_params pineview_display_wm = {
476 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
477 	.max_wm = PINEVIEW_MAX_WM,
478 	.default_wm = PINEVIEW_DFT_WM,
479 	.guard_size = PINEVIEW_GUARD_WM,
480 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
481 };
482 static const struct intel_watermark_params pineview_display_hplloff_wm = {
483 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
484 	.max_wm = PINEVIEW_MAX_WM,
485 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
486 	.guard_size = PINEVIEW_GUARD_WM,
487 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 };
489 static const struct intel_watermark_params pineview_cursor_wm = {
490 	.fifo_size = PINEVIEW_CURSOR_FIFO,
491 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
492 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
493 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
494 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 };
496 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
497 	.fifo_size = PINEVIEW_CURSOR_FIFO,
498 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
499 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
500 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
501 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 };
503 static const struct intel_watermark_params g4x_wm_info = {
504 	.fifo_size = G4X_FIFO_SIZE,
505 	.max_wm = G4X_MAX_WM,
506 	.default_wm = G4X_MAX_WM,
507 	.guard_size = 2,
508 	.cacheline_size = G4X_FIFO_LINE_SIZE,
509 };
510 static const struct intel_watermark_params g4x_cursor_wm_info = {
511 	.fifo_size = I965_CURSOR_FIFO,
512 	.max_wm = I965_CURSOR_MAX_WM,
513 	.default_wm = I965_CURSOR_DFT_WM,
514 	.guard_size = 2,
515 	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 };
517 static const struct intel_watermark_params i965_cursor_wm_info = {
518 	.fifo_size = I965_CURSOR_FIFO,
519 	.max_wm = I965_CURSOR_MAX_WM,
520 	.default_wm = I965_CURSOR_DFT_WM,
521 	.guard_size = 2,
522 	.cacheline_size = I915_FIFO_LINE_SIZE,
523 };
524 static const struct intel_watermark_params i945_wm_info = {
525 	.fifo_size = I945_FIFO_SIZE,
526 	.max_wm = I915_MAX_WM,
527 	.default_wm = 1,
528 	.guard_size = 2,
529 	.cacheline_size = I915_FIFO_LINE_SIZE,
530 };
531 static const struct intel_watermark_params i915_wm_info = {
532 	.fifo_size = I915_FIFO_SIZE,
533 	.max_wm = I915_MAX_WM,
534 	.default_wm = 1,
535 	.guard_size = 2,
536 	.cacheline_size = I915_FIFO_LINE_SIZE,
537 };
538 static const struct intel_watermark_params i830_a_wm_info = {
539 	.fifo_size = I855GM_FIFO_SIZE,
540 	.max_wm = I915_MAX_WM,
541 	.default_wm = 1,
542 	.guard_size = 2,
543 	.cacheline_size = I830_FIFO_LINE_SIZE,
544 };
545 static const struct intel_watermark_params i830_bc_wm_info = {
546 	.fifo_size = I855GM_FIFO_SIZE,
547 	.max_wm = I915_MAX_WM/2,
548 	.default_wm = 1,
549 	.guard_size = 2,
550 	.cacheline_size = I830_FIFO_LINE_SIZE,
551 };
552 static const struct intel_watermark_params i845_wm_info = {
553 	.fifo_size = I830_FIFO_SIZE,
554 	.max_wm = I915_MAX_WM,
555 	.default_wm = 1,
556 	.guard_size = 2,
557 	.cacheline_size = I830_FIFO_LINE_SIZE,
558 };
559 
560 /**
561  * intel_calculate_wm - calculate watermark level
562  * @clock_in_khz: pixel clock
563  * @wm: chip FIFO params
564  * @cpp: bytes per pixel
565  * @latency_ns: memory latency for the platform
566  *
567  * Calculate the watermark level (the level at which the display plane will
568  * start fetching from memory again).  Each chip has a different display
569  * FIFO size and allocation, so the caller needs to figure that out and pass
570  * in the correct intel_watermark_params structure.
571  *
572  * As the pixel clock runs, the FIFO will be drained at a rate that depends
573  * on the pixel size.  When it reaches the watermark level, it'll start
574  * fetching FIFO line sized based chunks from memory until the FIFO fills
575  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
576  * will occur, and a display engine hang could result.
577  */
578 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
579 					const struct intel_watermark_params *wm,
580 					int fifo_size, int cpp,
581 					unsigned long latency_ns)
582 {
583 	long entries_required, wm_size;
584 
585 	/*
586 	 * Note: we need to make sure we don't overflow for various clock &
587 	 * latency values.
588 	 * clocks go from a few thousand to several hundred thousand.
589 	 * latency is usually a few thousand
590 	 */
591 	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
592 		1000;
593 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
594 
595 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
596 
597 	wm_size = fifo_size - (entries_required + wm->guard_size);
598 
599 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
600 
601 	/* Don't promote wm_size to unsigned... */
602 	if (wm_size > (long)wm->max_wm)
603 		wm_size = wm->max_wm;
604 	if (wm_size <= 0)
605 		wm_size = wm->default_wm;
606 
607 	/*
608 	 * Bspec seems to indicate that the value shouldn't be lower than
609 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
610 	 * Lets go for 8 which is the burst size since certain platforms
611 	 * already use a hardcoded 8 (which is what the spec says should be
612 	 * done).
613 	 */
614 	if (wm_size <= 8)
615 		wm_size = 8;
616 
617 	return wm_size;
618 }
619 
620 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
621 {
622 	struct drm_crtc *crtc, *enabled = NULL;
623 
624 	for_each_crtc(dev, crtc) {
625 		if (intel_crtc_active(crtc)) {
626 			if (enabled)
627 				return NULL;
628 			enabled = crtc;
629 		}
630 	}
631 
632 	return enabled;
633 }
634 
635 static void pineview_update_wm(struct drm_crtc *unused_crtc)
636 {
637 	struct drm_device *dev = unused_crtc->dev;
638 	struct drm_i915_private *dev_priv = dev->dev_private;
639 	struct drm_crtc *crtc;
640 	const struct cxsr_latency *latency;
641 	u32 reg;
642 	unsigned long wm;
643 
644 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
645 					 dev_priv->fsb_freq, dev_priv->mem_freq);
646 	if (!latency) {
647 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648 		intel_set_memory_cxsr(dev_priv, false);
649 		return;
650 	}
651 
652 	crtc = single_enabled_crtc(dev);
653 	if (crtc) {
654 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
655 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
656 		int clock = adjusted_mode->crtc_clock;
657 
658 		/* Display SR */
659 		wm = intel_calculate_wm(clock, &pineview_display_wm,
660 					pineview_display_wm.fifo_size,
661 					cpp, latency->display_sr);
662 		reg = I915_READ(DSPFW1);
663 		reg &= ~DSPFW_SR_MASK;
664 		reg |= FW_WM(wm, SR);
665 		I915_WRITE(DSPFW1, reg);
666 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
667 
668 		/* cursor SR */
669 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
670 					pineview_display_wm.fifo_size,
671 					cpp, latency->cursor_sr);
672 		reg = I915_READ(DSPFW3);
673 		reg &= ~DSPFW_CURSOR_SR_MASK;
674 		reg |= FW_WM(wm, CURSOR_SR);
675 		I915_WRITE(DSPFW3, reg);
676 
677 		/* Display HPLL off SR */
678 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
679 					pineview_display_hplloff_wm.fifo_size,
680 					cpp, latency->display_hpll_disable);
681 		reg = I915_READ(DSPFW3);
682 		reg &= ~DSPFW_HPLL_SR_MASK;
683 		reg |= FW_WM(wm, HPLL_SR);
684 		I915_WRITE(DSPFW3, reg);
685 
686 		/* cursor HPLL off SR */
687 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
688 					pineview_display_hplloff_wm.fifo_size,
689 					cpp, latency->cursor_hpll_disable);
690 		reg = I915_READ(DSPFW3);
691 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
692 		reg |= FW_WM(wm, HPLL_CURSOR);
693 		I915_WRITE(DSPFW3, reg);
694 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
695 
696 		intel_set_memory_cxsr(dev_priv, true);
697 	} else {
698 		intel_set_memory_cxsr(dev_priv, false);
699 	}
700 }
701 
702 static bool g4x_compute_wm0(struct drm_device *dev,
703 			    int plane,
704 			    const struct intel_watermark_params *display,
705 			    int display_latency_ns,
706 			    const struct intel_watermark_params *cursor,
707 			    int cursor_latency_ns,
708 			    int *plane_wm,
709 			    int *cursor_wm)
710 {
711 	struct drm_crtc *crtc;
712 	const struct drm_display_mode *adjusted_mode;
713 	int htotal, hdisplay, clock, cpp;
714 	int line_time_us, line_count;
715 	int entries, tlb_miss;
716 
717 	crtc = intel_get_crtc_for_plane(dev, plane);
718 	if (!intel_crtc_active(crtc)) {
719 		*cursor_wm = cursor->guard_size;
720 		*plane_wm = display->guard_size;
721 		return false;
722 	}
723 
724 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
725 	clock = adjusted_mode->crtc_clock;
726 	htotal = adjusted_mode->crtc_htotal;
727 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
728 	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
729 
730 	/* Use the small buffer method to calculate plane watermark */
731 	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
732 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
733 	if (tlb_miss > 0)
734 		entries += tlb_miss;
735 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
736 	*plane_wm = entries + display->guard_size;
737 	if (*plane_wm > (int)display->max_wm)
738 		*plane_wm = display->max_wm;
739 
740 	/* Use the large buffer method to calculate cursor watermark */
741 	line_time_us = max(htotal * 1000 / clock, 1);
742 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
743 	entries = line_count * crtc->cursor->state->crtc_w * cpp;
744 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
745 	if (tlb_miss > 0)
746 		entries += tlb_miss;
747 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
748 	*cursor_wm = entries + cursor->guard_size;
749 	if (*cursor_wm > (int)cursor->max_wm)
750 		*cursor_wm = (int)cursor->max_wm;
751 
752 	return true;
753 }
754 
755 /*
756  * Check the wm result.
757  *
758  * If any calculated watermark values is larger than the maximum value that
759  * can be programmed into the associated watermark register, that watermark
760  * must be disabled.
761  */
762 static bool g4x_check_srwm(struct drm_device *dev,
763 			   int display_wm, int cursor_wm,
764 			   const struct intel_watermark_params *display,
765 			   const struct intel_watermark_params *cursor)
766 {
767 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
768 		      display_wm, cursor_wm);
769 
770 	if (display_wm > display->max_wm) {
771 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
772 			      display_wm, display->max_wm);
773 		return false;
774 	}
775 
776 	if (cursor_wm > cursor->max_wm) {
777 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
778 			      cursor_wm, cursor->max_wm);
779 		return false;
780 	}
781 
782 	if (!(display_wm || cursor_wm)) {
783 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
784 		return false;
785 	}
786 
787 	return true;
788 }
789 
790 static bool g4x_compute_srwm(struct drm_device *dev,
791 			     int plane,
792 			     int latency_ns,
793 			     const struct intel_watermark_params *display,
794 			     const struct intel_watermark_params *cursor,
795 			     int *display_wm, int *cursor_wm)
796 {
797 	struct drm_crtc *crtc;
798 	const struct drm_display_mode *adjusted_mode;
799 	int hdisplay, htotal, cpp, clock;
800 	unsigned long line_time_us;
801 	int line_count, line_size;
802 	int small, large;
803 	int entries;
804 
805 	if (!latency_ns) {
806 		*display_wm = *cursor_wm = 0;
807 		return false;
808 	}
809 
810 	crtc = intel_get_crtc_for_plane(dev, plane);
811 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
812 	clock = adjusted_mode->crtc_clock;
813 	htotal = adjusted_mode->crtc_htotal;
814 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
815 	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
816 
817 	line_time_us = max(htotal * 1000 / clock, 1);
818 	line_count = (latency_ns / line_time_us + 1000) / 1000;
819 	line_size = hdisplay * cpp;
820 
821 	/* Use the minimum of the small and large buffer method for primary */
822 	small = ((clock * cpp / 1000) * latency_ns) / 1000;
823 	large = line_count * line_size;
824 
825 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
826 	*display_wm = entries + display->guard_size;
827 
828 	/* calculate the self-refresh watermark for display cursor */
829 	entries = line_count * cpp * crtc->cursor->state->crtc_w;
830 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
831 	*cursor_wm = entries + cursor->guard_size;
832 
833 	return g4x_check_srwm(dev,
834 			      *display_wm, *cursor_wm,
835 			      display, cursor);
836 }
837 
838 #define FW_WM_VLV(value, plane) \
839 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
840 
841 static void vlv_write_wm_values(struct intel_crtc *crtc,
842 				const struct vlv_wm_values *wm)
843 {
844 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
845 	enum i915_pipe pipe = crtc->pipe;
846 
847 	I915_WRITE(VLV_DDL(pipe),
848 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
849 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
850 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
851 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
852 
853 	I915_WRITE(DSPFW1,
854 		   FW_WM(wm->sr.plane, SR) |
855 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
856 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
857 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
858 	I915_WRITE(DSPFW2,
859 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
860 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
861 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
862 	I915_WRITE(DSPFW3,
863 		   FW_WM(wm->sr.cursor, CURSOR_SR));
864 
865 	if (IS_CHERRYVIEW(dev_priv)) {
866 		I915_WRITE(DSPFW7_CHV,
867 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
868 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
869 		I915_WRITE(DSPFW8_CHV,
870 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
871 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
872 		I915_WRITE(DSPFW9_CHV,
873 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
874 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
875 		I915_WRITE(DSPHOWM,
876 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
877 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
878 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
879 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
880 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
881 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
882 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
883 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
884 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
885 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
886 	} else {
887 		I915_WRITE(DSPFW7,
888 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
889 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
890 		I915_WRITE(DSPHOWM,
891 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
892 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
893 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
894 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
895 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
896 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
897 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
898 	}
899 
900 	/* zero (unused) WM1 watermarks */
901 	I915_WRITE(DSPFW4, 0);
902 	I915_WRITE(DSPFW5, 0);
903 	I915_WRITE(DSPFW6, 0);
904 	I915_WRITE(DSPHOWM1, 0);
905 
906 	POSTING_READ(DSPFW1);
907 }
908 
909 #undef FW_WM_VLV
910 
911 enum vlv_wm_level {
912 	VLV_WM_LEVEL_PM2,
913 	VLV_WM_LEVEL_PM5,
914 	VLV_WM_LEVEL_DDR_DVFS,
915 };
916 
917 /* latency must be in 0.1us units. */
918 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
919 				   unsigned int pipe_htotal,
920 				   unsigned int horiz_pixels,
921 				   unsigned int cpp,
922 				   unsigned int latency)
923 {
924 	unsigned int ret;
925 
926 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
927 	ret = (ret + 1) * horiz_pixels * cpp;
928 	ret = DIV_ROUND_UP(ret, 64);
929 
930 	return ret;
931 }
932 
933 static void vlv_setup_wm_latency(struct drm_device *dev)
934 {
935 	struct drm_i915_private *dev_priv = dev->dev_private;
936 
937 	/* all latencies in usec */
938 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
939 
940 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
941 
942 	if (IS_CHERRYVIEW(dev_priv)) {
943 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
944 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
945 
946 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
947 	}
948 }
949 
950 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
951 				     struct intel_crtc *crtc,
952 				     const struct intel_plane_state *state,
953 				     int level)
954 {
955 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
956 	int clock, htotal, cpp, width, wm;
957 
958 	if (dev_priv->wm.pri_latency[level] == 0)
959 		return USHRT_MAX;
960 
961 	if (!state->visible)
962 		return 0;
963 
964 	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
965 	clock = crtc->config->base.adjusted_mode.crtc_clock;
966 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
967 	width = crtc->config->pipe_src_w;
968 	if (WARN_ON(htotal == 0))
969 		htotal = 1;
970 
971 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
972 		/*
973 		 * FIXME the formula gives values that are
974 		 * too big for the cursor FIFO, and hence we
975 		 * would never be able to use cursors. For
976 		 * now just hardcode the watermark.
977 		 */
978 		wm = 63;
979 	} else {
980 		wm = vlv_wm_method2(clock, htotal, width, cpp,
981 				    dev_priv->wm.pri_latency[level] * 10);
982 	}
983 
984 	return min_t(int, wm, USHRT_MAX);
985 }
986 
987 static void vlv_compute_fifo(struct intel_crtc *crtc)
988 {
989 	struct drm_device *dev = crtc->base.dev;
990 	struct vlv_wm_state *wm_state = &crtc->wm_state;
991 	struct intel_plane *plane;
992 	unsigned int total_rate = 0;
993 	const int fifo_size = 512 - 1;
994 	int fifo_extra, fifo_left = fifo_size;
995 
996 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
997 		struct intel_plane_state *state =
998 			to_intel_plane_state(plane->base.state);
999 
1000 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1001 			continue;
1002 
1003 		if (state->visible) {
1004 			wm_state->num_active_planes++;
1005 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1006 		}
1007 	}
1008 
1009 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1010 		struct intel_plane_state *state =
1011 			to_intel_plane_state(plane->base.state);
1012 		unsigned int rate;
1013 
1014 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1015 			plane->wm.fifo_size = 63;
1016 			continue;
1017 		}
1018 
1019 		if (!state->visible) {
1020 			plane->wm.fifo_size = 0;
1021 			continue;
1022 		}
1023 
1024 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1025 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1026 		fifo_left -= plane->wm.fifo_size;
1027 	}
1028 
1029 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1030 
1031 	/* spread the remainder evenly */
1032 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1033 		int plane_extra;
1034 
1035 		if (fifo_left == 0)
1036 			break;
1037 
1038 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1039 			continue;
1040 
1041 		/* give it all to the first plane if none are active */
1042 		if (plane->wm.fifo_size == 0 &&
1043 		    wm_state->num_active_planes)
1044 			continue;
1045 
1046 		plane_extra = min(fifo_extra, fifo_left);
1047 		plane->wm.fifo_size += plane_extra;
1048 		fifo_left -= plane_extra;
1049 	}
1050 
1051 	WARN_ON(fifo_left != 0);
1052 }
1053 
1054 static void vlv_invert_wms(struct intel_crtc *crtc)
1055 {
1056 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1057 	int level;
1058 
1059 	for (level = 0; level < wm_state->num_levels; level++) {
1060 		struct drm_device *dev = crtc->base.dev;
1061 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1062 		struct intel_plane *plane;
1063 
1064 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1065 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1066 
1067 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1068 			switch (plane->base.type) {
1069 				int sprite;
1070 			case DRM_PLANE_TYPE_CURSOR:
1071 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1072 					wm_state->wm[level].cursor;
1073 				break;
1074 			case DRM_PLANE_TYPE_PRIMARY:
1075 				wm_state->wm[level].primary = plane->wm.fifo_size -
1076 					wm_state->wm[level].primary;
1077 				break;
1078 			case DRM_PLANE_TYPE_OVERLAY:
1079 				sprite = plane->plane;
1080 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1081 					wm_state->wm[level].sprite[sprite];
1082 				break;
1083 			}
1084 		}
1085 	}
1086 }
1087 
1088 static void vlv_compute_wm(struct intel_crtc *crtc)
1089 {
1090 	struct drm_device *dev = crtc->base.dev;
1091 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1092 	struct intel_plane *plane;
1093 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1094 	int level;
1095 
1096 	memset(wm_state, 0, sizeof(*wm_state));
1097 
1098 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1099 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1100 
1101 	wm_state->num_active_planes = 0;
1102 
1103 	vlv_compute_fifo(crtc);
1104 
1105 	if (wm_state->num_active_planes != 1)
1106 		wm_state->cxsr = false;
1107 
1108 	if (wm_state->cxsr) {
1109 		for (level = 0; level < wm_state->num_levels; level++) {
1110 			wm_state->sr[level].plane = sr_fifo_size;
1111 			wm_state->sr[level].cursor = 63;
1112 		}
1113 	}
1114 
1115 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1116 		struct intel_plane_state *state =
1117 			to_intel_plane_state(plane->base.state);
1118 
1119 		if (!state->visible)
1120 			continue;
1121 
1122 		/* normal watermarks */
1123 		for (level = 0; level < wm_state->num_levels; level++) {
1124 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1125 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1126 
1127 			/* hack */
1128 			if (WARN_ON(level == 0 && wm > max_wm))
1129 				wm = max_wm;
1130 
1131 			if (wm > plane->wm.fifo_size)
1132 				break;
1133 
1134 			switch (plane->base.type) {
1135 				int sprite;
1136 			case DRM_PLANE_TYPE_CURSOR:
1137 				wm_state->wm[level].cursor = wm;
1138 				break;
1139 			case DRM_PLANE_TYPE_PRIMARY:
1140 				wm_state->wm[level].primary = wm;
1141 				break;
1142 			case DRM_PLANE_TYPE_OVERLAY:
1143 				sprite = plane->plane;
1144 				wm_state->wm[level].sprite[sprite] = wm;
1145 				break;
1146 			}
1147 		}
1148 
1149 		wm_state->num_levels = level;
1150 
1151 		if (!wm_state->cxsr)
1152 			continue;
1153 
1154 		/* maxfifo watermarks */
1155 		switch (plane->base.type) {
1156 			int sprite, level;
1157 		case DRM_PLANE_TYPE_CURSOR:
1158 			for (level = 0; level < wm_state->num_levels; level++)
1159 				wm_state->sr[level].cursor =
1160 					wm_state->wm[level].cursor;
1161 			break;
1162 		case DRM_PLANE_TYPE_PRIMARY:
1163 			for (level = 0; level < wm_state->num_levels; level++)
1164 				wm_state->sr[level].plane =
1165 					min(wm_state->sr[level].plane,
1166 					    wm_state->wm[level].primary);
1167 			break;
1168 		case DRM_PLANE_TYPE_OVERLAY:
1169 			sprite = plane->plane;
1170 			for (level = 0; level < wm_state->num_levels; level++)
1171 				wm_state->sr[level].plane =
1172 					min(wm_state->sr[level].plane,
1173 					    wm_state->wm[level].sprite[sprite]);
1174 			break;
1175 		}
1176 	}
1177 
1178 	/* clear any (partially) filled invalid levels */
1179 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1180 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1181 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1182 	}
1183 
1184 	vlv_invert_wms(crtc);
1185 }
1186 
1187 #define VLV_FIFO(plane, value) \
1188 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1189 
1190 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1191 {
1192 	struct drm_device *dev = crtc->base.dev;
1193 	struct drm_i915_private *dev_priv = to_i915(dev);
1194 	struct intel_plane *plane;
1195 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1196 
1197 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1198 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1199 			WARN_ON(plane->wm.fifo_size != 63);
1200 			continue;
1201 		}
1202 
1203 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1204 			sprite0_start = plane->wm.fifo_size;
1205 		else if (plane->plane == 0)
1206 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1207 		else
1208 			fifo_size = sprite1_start + plane->wm.fifo_size;
1209 	}
1210 
1211 	WARN_ON(fifo_size != 512 - 1);
1212 
1213 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1214 		      pipe_name(crtc->pipe), sprite0_start,
1215 		      sprite1_start, fifo_size);
1216 
1217 	switch (crtc->pipe) {
1218 		uint32_t dsparb, dsparb2, dsparb3;
1219 	case PIPE_A:
1220 		dsparb = I915_READ(DSPARB);
1221 		dsparb2 = I915_READ(DSPARB2);
1222 
1223 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1224 			    VLV_FIFO(SPRITEB, 0xff));
1225 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1226 			   VLV_FIFO(SPRITEB, sprite1_start));
1227 
1228 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1229 			     VLV_FIFO(SPRITEB_HI, 0x1));
1230 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1231 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1232 
1233 		I915_WRITE(DSPARB, dsparb);
1234 		I915_WRITE(DSPARB2, dsparb2);
1235 		break;
1236 	case PIPE_B:
1237 		dsparb = I915_READ(DSPARB);
1238 		dsparb2 = I915_READ(DSPARB2);
1239 
1240 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1241 			    VLV_FIFO(SPRITED, 0xff));
1242 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1243 			   VLV_FIFO(SPRITED, sprite1_start));
1244 
1245 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1246 			     VLV_FIFO(SPRITED_HI, 0xff));
1247 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1248 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1249 
1250 		I915_WRITE(DSPARB, dsparb);
1251 		I915_WRITE(DSPARB2, dsparb2);
1252 		break;
1253 	case PIPE_C:
1254 		dsparb3 = I915_READ(DSPARB3);
1255 		dsparb2 = I915_READ(DSPARB2);
1256 
1257 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1258 			     VLV_FIFO(SPRITEF, 0xff));
1259 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1260 			    VLV_FIFO(SPRITEF, sprite1_start));
1261 
1262 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1263 			     VLV_FIFO(SPRITEF_HI, 0xff));
1264 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1265 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1266 
1267 		I915_WRITE(DSPARB3, dsparb3);
1268 		I915_WRITE(DSPARB2, dsparb2);
1269 		break;
1270 	default:
1271 		break;
1272 	}
1273 }
1274 
1275 #undef VLV_FIFO
1276 
1277 static void vlv_merge_wm(struct drm_device *dev,
1278 			 struct vlv_wm_values *wm)
1279 {
1280 	struct intel_crtc *crtc;
1281 	int num_active_crtcs = 0;
1282 
1283 	wm->level = to_i915(dev)->wm.max_level;
1284 	wm->cxsr = true;
1285 
1286 	for_each_intel_crtc(dev, crtc) {
1287 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1288 
1289 		if (!crtc->active)
1290 			continue;
1291 
1292 		if (!wm_state->cxsr)
1293 			wm->cxsr = false;
1294 
1295 		num_active_crtcs++;
1296 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1297 	}
1298 
1299 	if (num_active_crtcs != 1)
1300 		wm->cxsr = false;
1301 
1302 	if (num_active_crtcs > 1)
1303 		wm->level = VLV_WM_LEVEL_PM2;
1304 
1305 	for_each_intel_crtc(dev, crtc) {
1306 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1307 		enum i915_pipe pipe = crtc->pipe;
1308 
1309 		if (!crtc->active)
1310 			continue;
1311 
1312 		wm->pipe[pipe] = wm_state->wm[wm->level];
1313 		if (wm->cxsr)
1314 			wm->sr = wm_state->sr[wm->level];
1315 
1316 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1317 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1318 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1319 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1320 	}
1321 }
1322 
1323 static void vlv_update_wm(struct drm_crtc *crtc)
1324 {
1325 	struct drm_device *dev = crtc->dev;
1326 	struct drm_i915_private *dev_priv = dev->dev_private;
1327 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1328 	enum i915_pipe pipe = intel_crtc->pipe;
1329 	struct vlv_wm_values wm = {};
1330 
1331 	vlv_compute_wm(intel_crtc);
1332 	vlv_merge_wm(dev, &wm);
1333 
1334 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1335 		/* FIXME should be part of crtc atomic commit */
1336 		vlv_pipe_set_fifo_size(intel_crtc);
1337 		return;
1338 	}
1339 
1340 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1341 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1342 		chv_set_memory_dvfs(dev_priv, false);
1343 
1344 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1345 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1346 		chv_set_memory_pm5(dev_priv, false);
1347 
1348 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1349 		intel_set_memory_cxsr(dev_priv, false);
1350 
1351 	/* FIXME should be part of crtc atomic commit */
1352 	vlv_pipe_set_fifo_size(intel_crtc);
1353 
1354 	vlv_write_wm_values(intel_crtc, &wm);
1355 
1356 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1357 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1358 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1359 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1360 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1361 
1362 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1363 		intel_set_memory_cxsr(dev_priv, true);
1364 
1365 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1366 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1367 		chv_set_memory_pm5(dev_priv, true);
1368 
1369 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1370 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1371 		chv_set_memory_dvfs(dev_priv, true);
1372 
1373 	dev_priv->wm.vlv = wm;
1374 }
1375 
1376 #define single_plane_enabled(mask) is_power_of_2(mask)
1377 
1378 static void g4x_update_wm(struct drm_crtc *crtc)
1379 {
1380 	struct drm_device *dev = crtc->dev;
1381 	static const int sr_latency_ns = 12000;
1382 	struct drm_i915_private *dev_priv = dev->dev_private;
1383 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1384 	int plane_sr, cursor_sr;
1385 	unsigned int enabled = 0;
1386 	bool cxsr_enabled;
1387 
1388 	if (g4x_compute_wm0(dev, PIPE_A,
1389 			    &g4x_wm_info, pessimal_latency_ns,
1390 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1391 			    &planea_wm, &cursora_wm))
1392 		enabled |= 1 << PIPE_A;
1393 
1394 	if (g4x_compute_wm0(dev, PIPE_B,
1395 			    &g4x_wm_info, pessimal_latency_ns,
1396 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1397 			    &planeb_wm, &cursorb_wm))
1398 		enabled |= 1 << PIPE_B;
1399 
1400 	if (single_plane_enabled(enabled) &&
1401 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1402 			     sr_latency_ns,
1403 			     &g4x_wm_info,
1404 			     &g4x_cursor_wm_info,
1405 			     &plane_sr, &cursor_sr)) {
1406 		cxsr_enabled = true;
1407 	} else {
1408 		cxsr_enabled = false;
1409 		intel_set_memory_cxsr(dev_priv, false);
1410 		plane_sr = cursor_sr = 0;
1411 	}
1412 
1413 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1414 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1415 		      planea_wm, cursora_wm,
1416 		      planeb_wm, cursorb_wm,
1417 		      plane_sr, cursor_sr);
1418 
1419 	I915_WRITE(DSPFW1,
1420 		   FW_WM(plane_sr, SR) |
1421 		   FW_WM(cursorb_wm, CURSORB) |
1422 		   FW_WM(planeb_wm, PLANEB) |
1423 		   FW_WM(planea_wm, PLANEA));
1424 	I915_WRITE(DSPFW2,
1425 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1426 		   FW_WM(cursora_wm, CURSORA));
1427 	/* HPLL off in SR has some issues on G4x... disable it */
1428 	I915_WRITE(DSPFW3,
1429 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1430 		   FW_WM(cursor_sr, CURSOR_SR));
1431 
1432 	if (cxsr_enabled)
1433 		intel_set_memory_cxsr(dev_priv, true);
1434 }
1435 
1436 static void i965_update_wm(struct drm_crtc *unused_crtc)
1437 {
1438 	struct drm_device *dev = unused_crtc->dev;
1439 	struct drm_i915_private *dev_priv = dev->dev_private;
1440 	struct drm_crtc *crtc;
1441 	int srwm = 1;
1442 	int cursor_sr = 16;
1443 	bool cxsr_enabled;
1444 
1445 	/* Calc sr entries for one plane configs */
1446 	crtc = single_enabled_crtc(dev);
1447 	if (crtc) {
1448 		/* self-refresh has much higher latency */
1449 		static const int sr_latency_ns = 12000;
1450 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1451 		int clock = adjusted_mode->crtc_clock;
1452 		int htotal = adjusted_mode->crtc_htotal;
1453 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1454 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1455 		unsigned long line_time_us;
1456 		int entries;
1457 
1458 		line_time_us = max(htotal * 1000 / clock, 1);
1459 
1460 		/* Use ns/us then divide to preserve precision */
1461 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1462 			cpp * hdisplay;
1463 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1464 		srwm = I965_FIFO_SIZE - entries;
1465 		if (srwm < 0)
1466 			srwm = 1;
1467 		srwm &= 0x1ff;
1468 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1469 			      entries, srwm);
1470 
1471 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1472 			cpp * crtc->cursor->state->crtc_w;
1473 		entries = DIV_ROUND_UP(entries,
1474 					  i965_cursor_wm_info.cacheline_size);
1475 		cursor_sr = i965_cursor_wm_info.fifo_size -
1476 			(entries + i965_cursor_wm_info.guard_size);
1477 
1478 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1479 			cursor_sr = i965_cursor_wm_info.max_wm;
1480 
1481 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1482 			      "cursor %d\n", srwm, cursor_sr);
1483 
1484 		cxsr_enabled = true;
1485 	} else {
1486 		cxsr_enabled = false;
1487 		/* Turn off self refresh if both pipes are enabled */
1488 		intel_set_memory_cxsr(dev_priv, false);
1489 	}
1490 
1491 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1492 		      srwm);
1493 
1494 	/* 965 has limitations... */
1495 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1496 		   FW_WM(8, CURSORB) |
1497 		   FW_WM(8, PLANEB) |
1498 		   FW_WM(8, PLANEA));
1499 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1500 		   FW_WM(8, PLANEC_OLD));
1501 	/* update cursor SR watermark */
1502 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1503 
1504 	if (cxsr_enabled)
1505 		intel_set_memory_cxsr(dev_priv, true);
1506 }
1507 
1508 #undef FW_WM
1509 
1510 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1511 {
1512 	struct drm_device *dev = unused_crtc->dev;
1513 	struct drm_i915_private *dev_priv = dev->dev_private;
1514 	const struct intel_watermark_params *wm_info;
1515 	uint32_t fwater_lo;
1516 	uint32_t fwater_hi;
1517 	int cwm, srwm = 1;
1518 	int fifo_size;
1519 	int planea_wm, planeb_wm;
1520 	struct drm_crtc *crtc, *enabled = NULL;
1521 
1522 	if (IS_I945GM(dev))
1523 		wm_info = &i945_wm_info;
1524 	else if (!IS_GEN2(dev))
1525 		wm_info = &i915_wm_info;
1526 	else
1527 		wm_info = &i830_a_wm_info;
1528 
1529 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1530 	crtc = intel_get_crtc_for_plane(dev, 0);
1531 	if (intel_crtc_active(crtc)) {
1532 		const struct drm_display_mode *adjusted_mode;
1533 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1534 		if (IS_GEN2(dev))
1535 			cpp = 4;
1536 
1537 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539 					       wm_info, fifo_size, cpp,
1540 					       pessimal_latency_ns);
1541 		enabled = crtc;
1542 	} else {
1543 		planea_wm = fifo_size - wm_info->guard_size;
1544 		if (planea_wm > (long)wm_info->max_wm)
1545 			planea_wm = wm_info->max_wm;
1546 	}
1547 
1548 	if (IS_GEN2(dev))
1549 		wm_info = &i830_bc_wm_info;
1550 
1551 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1552 	crtc = intel_get_crtc_for_plane(dev, 1);
1553 	if (intel_crtc_active(crtc)) {
1554 		const struct drm_display_mode *adjusted_mode;
1555 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1556 		if (IS_GEN2(dev))
1557 			cpp = 4;
1558 
1559 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1560 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1561 					       wm_info, fifo_size, cpp,
1562 					       pessimal_latency_ns);
1563 		if (enabled == NULL)
1564 			enabled = crtc;
1565 		else
1566 			enabled = NULL;
1567 	} else {
1568 		planeb_wm = fifo_size - wm_info->guard_size;
1569 		if (planeb_wm > (long)wm_info->max_wm)
1570 			planeb_wm = wm_info->max_wm;
1571 	}
1572 
1573 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1574 
1575 	if (IS_I915GM(dev) && enabled) {
1576 		struct drm_i915_gem_object *obj;
1577 
1578 		obj = intel_fb_obj(enabled->primary->state->fb);
1579 
1580 		/* self-refresh seems busted with untiled */
1581 		if (obj->tiling_mode == I915_TILING_NONE)
1582 			enabled = NULL;
1583 	}
1584 
1585 	/*
1586 	 * Overlay gets an aggressive default since video jitter is bad.
1587 	 */
1588 	cwm = 2;
1589 
1590 	/* Play safe and disable self-refresh before adjusting watermarks. */
1591 	intel_set_memory_cxsr(dev_priv, false);
1592 
1593 	/* Calc sr entries for one plane configs */
1594 	if (HAS_FW_BLC(dev) && enabled) {
1595 		/* self-refresh has much higher latency */
1596 		static const int sr_latency_ns = 6000;
1597 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1598 		int clock = adjusted_mode->crtc_clock;
1599 		int htotal = adjusted_mode->crtc_htotal;
1600 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1601 		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1602 		unsigned long line_time_us;
1603 		int entries;
1604 
1605 		line_time_us = max(htotal * 1000 / clock, 1);
1606 
1607 		/* Use ns/us then divide to preserve precision */
1608 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1609 			cpp * hdisplay;
1610 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1611 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1612 		srwm = wm_info->fifo_size - entries;
1613 		if (srwm < 0)
1614 			srwm = 1;
1615 
1616 		if (IS_I945G(dev) || IS_I945GM(dev))
1617 			I915_WRITE(FW_BLC_SELF,
1618 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1619 		else if (IS_I915GM(dev))
1620 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1621 	}
1622 
1623 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1624 		      planea_wm, planeb_wm, cwm, srwm);
1625 
1626 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1627 	fwater_hi = (cwm & 0x1f);
1628 
1629 	/* Set request length to 8 cachelines per fetch */
1630 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1631 	fwater_hi = fwater_hi | (1 << 8);
1632 
1633 	I915_WRITE(FW_BLC, fwater_lo);
1634 	I915_WRITE(FW_BLC2, fwater_hi);
1635 
1636 	if (enabled)
1637 		intel_set_memory_cxsr(dev_priv, true);
1638 }
1639 
1640 static void i845_update_wm(struct drm_crtc *unused_crtc)
1641 {
1642 	struct drm_device *dev = unused_crtc->dev;
1643 	struct drm_i915_private *dev_priv = dev->dev_private;
1644 	struct drm_crtc *crtc;
1645 	const struct drm_display_mode *adjusted_mode;
1646 	uint32_t fwater_lo;
1647 	int planea_wm;
1648 
1649 	crtc = single_enabled_crtc(dev);
1650 	if (crtc == NULL)
1651 		return;
1652 
1653 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1654 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1655 				       &i845_wm_info,
1656 				       dev_priv->display.get_fifo_size(dev, 0),
1657 				       4, pessimal_latency_ns);
1658 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1659 	fwater_lo |= (3<<8) | planea_wm;
1660 
1661 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1662 
1663 	I915_WRITE(FW_BLC, fwater_lo);
1664 }
1665 
1666 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1667 {
1668 	uint32_t pixel_rate;
1669 
1670 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1671 
1672 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1673 	 * adjust the pixel_rate here. */
1674 
1675 	if (pipe_config->pch_pfit.enabled) {
1676 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1677 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1678 
1679 		pipe_w = pipe_config->pipe_src_w;
1680 		pipe_h = pipe_config->pipe_src_h;
1681 
1682 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1683 		pfit_h = pfit_size & 0xFFFF;
1684 		if (pipe_w < pfit_w)
1685 			pipe_w = pfit_w;
1686 		if (pipe_h < pfit_h)
1687 			pipe_h = pfit_h;
1688 
1689 		if (WARN_ON(!pfit_w || !pfit_h))
1690 			return pixel_rate;
1691 
1692 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1693 				     pfit_w * pfit_h);
1694 	}
1695 
1696 	return pixel_rate;
1697 }
1698 
1699 /* latency must be in 0.1us units. */
1700 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1701 {
1702 	uint64_t ret;
1703 
1704 	if (WARN(latency == 0, "Latency value missing\n"))
1705 		return UINT_MAX;
1706 
1707 	ret = (uint64_t) pixel_rate * cpp * latency;
1708 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1709 
1710 	return ret;
1711 }
1712 
1713 /* latency must be in 0.1us units. */
1714 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1715 			       uint32_t horiz_pixels, uint8_t cpp,
1716 			       uint32_t latency)
1717 {
1718 	uint32_t ret;
1719 
1720 	if (WARN(latency == 0, "Latency value missing\n"))
1721 		return UINT_MAX;
1722 	if (WARN_ON(!pipe_htotal))
1723 		return UINT_MAX;
1724 
1725 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1726 	ret = (ret + 1) * horiz_pixels * cpp;
1727 	ret = DIV_ROUND_UP(ret, 64) + 2;
1728 	return ret;
1729 }
1730 
1731 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1732 			   uint8_t cpp)
1733 {
1734 	/*
1735 	 * Neither of these should be possible since this function shouldn't be
1736 	 * called if the CRTC is off or the plane is invisible.  But let's be
1737 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1738 	 * elsewhere in the driver.
1739 	 */
1740 	if (WARN_ON(!cpp))
1741 		return 0;
1742 	if (WARN_ON(!horiz_pixels))
1743 		return 0;
1744 
1745 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1746 }
1747 
1748 struct ilk_wm_maximums {
1749 	uint16_t pri;
1750 	uint16_t spr;
1751 	uint16_t cur;
1752 	uint16_t fbc;
1753 };
1754 
1755 /*
1756  * For both WM_PIPE and WM_LP.
1757  * mem_value must be in 0.1us units.
1758  */
1759 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1760 				   const struct intel_plane_state *pstate,
1761 				   uint32_t mem_value,
1762 				   bool is_lp)
1763 {
1764 	int cpp = pstate->base.fb ?
1765 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1766 	uint32_t method1, method2;
1767 
1768 	if (!cstate->base.active || !pstate->visible)
1769 		return 0;
1770 
1771 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1772 
1773 	if (!is_lp)
1774 		return method1;
1775 
1776 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1777 				 cstate->base.adjusted_mode.crtc_htotal,
1778 				 drm_rect_width(&pstate->dst),
1779 				 cpp, mem_value);
1780 
1781 	return min(method1, method2);
1782 }
1783 
1784 /*
1785  * For both WM_PIPE and WM_LP.
1786  * mem_value must be in 0.1us units.
1787  */
1788 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1789 				   const struct intel_plane_state *pstate,
1790 				   uint32_t mem_value)
1791 {
1792 	int cpp = pstate->base.fb ?
1793 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1794 	uint32_t method1, method2;
1795 
1796 	if (!cstate->base.active || !pstate->visible)
1797 		return 0;
1798 
1799 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1800 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1801 				 cstate->base.adjusted_mode.crtc_htotal,
1802 				 drm_rect_width(&pstate->dst),
1803 				 cpp, mem_value);
1804 	return min(method1, method2);
1805 }
1806 
1807 /*
1808  * For both WM_PIPE and WM_LP.
1809  * mem_value must be in 0.1us units.
1810  */
1811 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1812 				   const struct intel_plane_state *pstate,
1813 				   uint32_t mem_value)
1814 {
1815 	/*
1816 	 * We treat the cursor plane as always-on for the purposes of watermark
1817 	 * calculation.  Until we have two-stage watermark programming merged,
1818 	 * this is necessary to avoid flickering.
1819 	 */
1820 	int cpp = 4;
1821 	int width = pstate->visible ? pstate->base.crtc_w : 64;
1822 
1823 	if (!cstate->base.active)
1824 		return 0;
1825 
1826 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1827 			      cstate->base.adjusted_mode.crtc_htotal,
1828 			      width, cpp, mem_value);
1829 }
1830 
1831 /* Only for WM_LP. */
1832 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1833 				   const struct intel_plane_state *pstate,
1834 				   uint32_t pri_val)
1835 {
1836 	int cpp = pstate->base.fb ?
1837 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1838 
1839 	if (!cstate->base.active || !pstate->visible)
1840 		return 0;
1841 
1842 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1843 }
1844 
1845 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1846 {
1847 	if (INTEL_INFO(dev)->gen >= 8)
1848 		return 3072;
1849 	else if (INTEL_INFO(dev)->gen >= 7)
1850 		return 768;
1851 	else
1852 		return 512;
1853 }
1854 
1855 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1856 					 int level, bool is_sprite)
1857 {
1858 	if (INTEL_INFO(dev)->gen >= 8)
1859 		/* BDW primary/sprite plane watermarks */
1860 		return level == 0 ? 255 : 2047;
1861 	else if (INTEL_INFO(dev)->gen >= 7)
1862 		/* IVB/HSW primary/sprite plane watermarks */
1863 		return level == 0 ? 127 : 1023;
1864 	else if (!is_sprite)
1865 		/* ILK/SNB primary plane watermarks */
1866 		return level == 0 ? 127 : 511;
1867 	else
1868 		/* ILK/SNB sprite plane watermarks */
1869 		return level == 0 ? 63 : 255;
1870 }
1871 
1872 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1873 					  int level)
1874 {
1875 	if (INTEL_INFO(dev)->gen >= 7)
1876 		return level == 0 ? 63 : 255;
1877 	else
1878 		return level == 0 ? 31 : 63;
1879 }
1880 
1881 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1882 {
1883 	if (INTEL_INFO(dev)->gen >= 8)
1884 		return 31;
1885 	else
1886 		return 15;
1887 }
1888 
1889 /* Calculate the maximum primary/sprite plane watermark */
1890 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1891 				     int level,
1892 				     const struct intel_wm_config *config,
1893 				     enum intel_ddb_partitioning ddb_partitioning,
1894 				     bool is_sprite)
1895 {
1896 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1897 
1898 	/* if sprites aren't enabled, sprites get nothing */
1899 	if (is_sprite && !config->sprites_enabled)
1900 		return 0;
1901 
1902 	/* HSW allows LP1+ watermarks even with multiple pipes */
1903 	if (level == 0 || config->num_pipes_active > 1) {
1904 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1905 
1906 		/*
1907 		 * For some reason the non self refresh
1908 		 * FIFO size is only half of the self
1909 		 * refresh FIFO size on ILK/SNB.
1910 		 */
1911 		if (INTEL_INFO(dev)->gen <= 6)
1912 			fifo_size /= 2;
1913 	}
1914 
1915 	if (config->sprites_enabled) {
1916 		/* level 0 is always calculated with 1:1 split */
1917 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1918 			if (is_sprite)
1919 				fifo_size *= 5;
1920 			fifo_size /= 6;
1921 		} else {
1922 			fifo_size /= 2;
1923 		}
1924 	}
1925 
1926 	/* clamp to max that the registers can hold */
1927 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1928 }
1929 
1930 /* Calculate the maximum cursor plane watermark */
1931 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1932 				      int level,
1933 				      const struct intel_wm_config *config)
1934 {
1935 	/* HSW LP1+ watermarks w/ multiple pipes */
1936 	if (level > 0 && config->num_pipes_active > 1)
1937 		return 64;
1938 
1939 	/* otherwise just report max that registers can hold */
1940 	return ilk_cursor_wm_reg_max(dev, level);
1941 }
1942 
1943 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1944 				    int level,
1945 				    const struct intel_wm_config *config,
1946 				    enum intel_ddb_partitioning ddb_partitioning,
1947 				    struct ilk_wm_maximums *max)
1948 {
1949 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1950 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1951 	max->cur = ilk_cursor_wm_max(dev, level, config);
1952 	max->fbc = ilk_fbc_wm_reg_max(dev);
1953 }
1954 
1955 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1956 					int level,
1957 					struct ilk_wm_maximums *max)
1958 {
1959 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1960 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1961 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1962 	max->fbc = ilk_fbc_wm_reg_max(dev);
1963 }
1964 
1965 static bool ilk_validate_wm_level(int level,
1966 				  const struct ilk_wm_maximums *max,
1967 				  struct intel_wm_level *result)
1968 {
1969 	bool ret;
1970 
1971 	/* already determined to be invalid? */
1972 	if (!result->enable)
1973 		return false;
1974 
1975 	result->enable = result->pri_val <= max->pri &&
1976 			 result->spr_val <= max->spr &&
1977 			 result->cur_val <= max->cur;
1978 
1979 	ret = result->enable;
1980 
1981 	/*
1982 	 * HACK until we can pre-compute everything,
1983 	 * and thus fail gracefully if LP0 watermarks
1984 	 * are exceeded...
1985 	 */
1986 	if (level == 0 && !result->enable) {
1987 		if (result->pri_val > max->pri)
1988 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1989 				      level, result->pri_val, max->pri);
1990 		if (result->spr_val > max->spr)
1991 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1992 				      level, result->spr_val, max->spr);
1993 		if (result->cur_val > max->cur)
1994 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1995 				      level, result->cur_val, max->cur);
1996 
1997 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1998 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1999 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2000 		result->enable = true;
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2007 				 const struct intel_crtc *intel_crtc,
2008 				 int level,
2009 				 struct intel_crtc_state *cstate,
2010 				 struct intel_plane_state *pristate,
2011 				 struct intel_plane_state *sprstate,
2012 				 struct intel_plane_state *curstate,
2013 				 struct intel_wm_level *result)
2014 {
2015 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2016 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2017 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2018 
2019 	/* WM1+ latency values stored in 0.5us units */
2020 	if (level > 0) {
2021 		pri_latency *= 5;
2022 		spr_latency *= 5;
2023 		cur_latency *= 5;
2024 	}
2025 
2026 	if (pristate) {
2027 		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2028 						     pri_latency, level);
2029 		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2030 	}
2031 
2032 	if (sprstate)
2033 		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2034 
2035 	if (curstate)
2036 		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2037 
2038 	result->enable = true;
2039 }
2040 
2041 static uint32_t
2042 hsw_compute_linetime_wm(struct drm_device *dev,
2043 			struct intel_crtc_state *cstate)
2044 {
2045 	struct drm_i915_private *dev_priv = dev->dev_private;
2046 	const struct drm_display_mode *adjusted_mode =
2047 		&cstate->base.adjusted_mode;
2048 	u32 linetime, ips_linetime;
2049 
2050 	if (!cstate->base.active)
2051 		return 0;
2052 	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2053 		return 0;
2054 	if (WARN_ON(dev_priv->cdclk_freq == 0))
2055 		return 0;
2056 
2057 	/* The WM are computed with base on how long it takes to fill a single
2058 	 * row at the given clock rate, multiplied by 8.
2059 	 * */
2060 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2061 				     adjusted_mode->crtc_clock);
2062 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2063 					 dev_priv->cdclk_freq);
2064 
2065 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2066 	       PIPE_WM_LINETIME_TIME(linetime);
2067 }
2068 
2069 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2070 {
2071 	struct drm_i915_private *dev_priv = dev->dev_private;
2072 
2073 	if (IS_GEN9(dev)) {
2074 		uint32_t val;
2075 		int ret, i;
2076 		int level, max_level = ilk_wm_max_level(dev);
2077 
2078 		/* read the first set of memory latencies[0:3] */
2079 		val = 0; /* data0 to be programmed to 0 for first set */
2080 		mutex_lock(&dev_priv->rps.hw_lock);
2081 		ret = sandybridge_pcode_read(dev_priv,
2082 					     GEN9_PCODE_READ_MEM_LATENCY,
2083 					     &val);
2084 		mutex_unlock(&dev_priv->rps.hw_lock);
2085 
2086 		if (ret) {
2087 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088 			return;
2089 		}
2090 
2091 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093 				GEN9_MEM_LATENCY_LEVEL_MASK;
2094 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095 				GEN9_MEM_LATENCY_LEVEL_MASK;
2096 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097 				GEN9_MEM_LATENCY_LEVEL_MASK;
2098 
2099 		/* read the second set of memory latencies[4:7] */
2100 		val = 1; /* data0 to be programmed to 1 for second set */
2101 		mutex_lock(&dev_priv->rps.hw_lock);
2102 		ret = sandybridge_pcode_read(dev_priv,
2103 					     GEN9_PCODE_READ_MEM_LATENCY,
2104 					     &val);
2105 		mutex_unlock(&dev_priv->rps.hw_lock);
2106 		if (ret) {
2107 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2108 			return;
2109 		}
2110 
2111 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2112 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2113 				GEN9_MEM_LATENCY_LEVEL_MASK;
2114 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2115 				GEN9_MEM_LATENCY_LEVEL_MASK;
2116 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2117 				GEN9_MEM_LATENCY_LEVEL_MASK;
2118 
2119 		/*
2120 		 * WaWmMemoryReadLatency:skl
2121 		 *
2122 		 * punit doesn't take into account the read latency so we need
2123 		 * to add 2us to the various latency levels we retrieve from
2124 		 * the punit.
2125 		 *   - W0 is a bit special in that it's the only level that
2126 		 *   can't be disabled if we want to have display working, so
2127 		 *   we always add 2us there.
2128 		 *   - For levels >=1, punit returns 0us latency when they are
2129 		 *   disabled, so we respect that and don't add 2us then
2130 		 *
2131 		 * Additionally, if a level n (n > 1) has a 0us latency, all
2132 		 * levels m (m >= n) need to be disabled. We make sure to
2133 		 * sanitize the values out of the punit to satisfy this
2134 		 * requirement.
2135 		 */
2136 		wm[0] += 2;
2137 		for (level = 1; level <= max_level; level++)
2138 			if (wm[level] != 0)
2139 				wm[level] += 2;
2140 			else {
2141 				for (i = level + 1; i <= max_level; i++)
2142 					wm[i] = 0;
2143 
2144 				break;
2145 			}
2146 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2147 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2148 
2149 		wm[0] = (sskpd >> 56) & 0xFF;
2150 		if (wm[0] == 0)
2151 			wm[0] = sskpd & 0xF;
2152 		wm[1] = (sskpd >> 4) & 0xFF;
2153 		wm[2] = (sskpd >> 12) & 0xFF;
2154 		wm[3] = (sskpd >> 20) & 0x1FF;
2155 		wm[4] = (sskpd >> 32) & 0x1FF;
2156 	} else if (INTEL_INFO(dev)->gen >= 6) {
2157 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2158 
2159 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2160 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2161 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2162 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2163 	} else if (INTEL_INFO(dev)->gen >= 5) {
2164 		uint32_t mltr = I915_READ(MLTR_ILK);
2165 
2166 		/* ILK primary LP0 latency is 700 ns */
2167 		wm[0] = 7;
2168 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2169 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2170 	}
2171 }
2172 
2173 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2174 {
2175 	/* ILK sprite LP0 latency is 1300 ns */
2176 	if (INTEL_INFO(dev)->gen == 5)
2177 		wm[0] = 13;
2178 }
2179 
2180 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2181 {
2182 	/* ILK cursor LP0 latency is 1300 ns */
2183 	if (INTEL_INFO(dev)->gen == 5)
2184 		wm[0] = 13;
2185 
2186 	/* WaDoubleCursorLP3Latency:ivb */
2187 	if (IS_IVYBRIDGE(dev))
2188 		wm[3] *= 2;
2189 }
2190 
2191 int ilk_wm_max_level(const struct drm_device *dev)
2192 {
2193 	/* how many WM levels are we expecting */
2194 	if (INTEL_INFO(dev)->gen >= 9)
2195 		return 7;
2196 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2197 		return 4;
2198 	else if (INTEL_INFO(dev)->gen >= 6)
2199 		return 3;
2200 	else
2201 		return 2;
2202 }
2203 
2204 static void intel_print_wm_latency(struct drm_device *dev,
2205 				   const char *name,
2206 				   const uint16_t wm[8])
2207 {
2208 	int level, max_level = ilk_wm_max_level(dev);
2209 
2210 	for (level = 0; level <= max_level; level++) {
2211 		unsigned int latency = wm[level];
2212 
2213 		if (latency == 0) {
2214 			DRM_ERROR("%s WM%d latency not provided\n",
2215 				  name, level);
2216 			continue;
2217 		}
2218 
2219 		/*
2220 		 * - latencies are in us on gen9.
2221 		 * - before then, WM1+ latency values are in 0.5us units
2222 		 */
2223 		if (IS_GEN9(dev))
2224 			latency *= 10;
2225 		else if (level > 0)
2226 			latency *= 5;
2227 
2228 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2229 			      name, level, wm[level],
2230 			      latency / 10, latency % 10);
2231 	}
2232 }
2233 
2234 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2235 				    uint16_t wm[5], uint16_t min)
2236 {
2237 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2238 
2239 	if (wm[0] >= min)
2240 		return false;
2241 
2242 	wm[0] = max(wm[0], min);
2243 	for (level = 1; level <= max_level; level++)
2244 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2245 
2246 	return true;
2247 }
2248 
2249 static void snb_wm_latency_quirk(struct drm_device *dev)
2250 {
2251 	struct drm_i915_private *dev_priv = dev->dev_private;
2252 	bool changed;
2253 
2254 	/*
2255 	 * The BIOS provided WM memory latency values are often
2256 	 * inadequate for high resolution displays. Adjust them.
2257 	 */
2258 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2259 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2260 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2261 
2262 	if (!changed)
2263 		return;
2264 
2265 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2266 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2267 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2268 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2269 }
2270 
2271 static void ilk_setup_wm_latency(struct drm_device *dev)
2272 {
2273 	struct drm_i915_private *dev_priv = dev->dev_private;
2274 
2275 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2276 
2277 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2278 	       sizeof(dev_priv->wm.pri_latency));
2279 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2280 	       sizeof(dev_priv->wm.pri_latency));
2281 
2282 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2283 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2284 
2285 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2286 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2287 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2288 
2289 	if (IS_GEN6(dev))
2290 		snb_wm_latency_quirk(dev);
2291 }
2292 
2293 static void skl_setup_wm_latency(struct drm_device *dev)
2294 {
2295 	struct drm_i915_private *dev_priv = dev->dev_private;
2296 
2297 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2298 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2299 }
2300 
2301 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2302 				 struct intel_pipe_wm *pipe_wm)
2303 {
2304 	/* LP0 watermark maximums depend on this pipe alone */
2305 	const struct intel_wm_config config = {
2306 		.num_pipes_active = 1,
2307 		.sprites_enabled = pipe_wm->sprites_enabled,
2308 		.sprites_scaled = pipe_wm->sprites_scaled,
2309 	};
2310 	struct ilk_wm_maximums max;
2311 
2312 	/* LP0 watermarks always use 1/2 DDB partitioning */
2313 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2314 
2315 	/* At least LP0 must be valid */
2316 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2317 		DRM_DEBUG_KMS("LP0 watermark invalid\n");
2318 		return false;
2319 	}
2320 
2321 	return true;
2322 }
2323 
2324 /* Compute new watermarks for the pipe */
2325 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2326 {
2327 	struct drm_atomic_state *state = cstate->base.state;
2328 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2329 	struct intel_pipe_wm *pipe_wm;
2330 	struct drm_device *dev = state->dev;
2331 	const struct drm_i915_private *dev_priv = dev->dev_private;
2332 	struct intel_plane *intel_plane;
2333 	struct intel_plane_state *pristate = NULL;
2334 	struct intel_plane_state *sprstate = NULL;
2335 	struct intel_plane_state *curstate = NULL;
2336 	int level, max_level = ilk_wm_max_level(dev), usable_level;
2337 	struct ilk_wm_maximums max;
2338 
2339 	pipe_wm = &cstate->wm.optimal.ilk;
2340 
2341 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2342 		struct intel_plane_state *ps;
2343 
2344 		ps = intel_atomic_get_existing_plane_state(state,
2345 							   intel_plane);
2346 		if (!ps)
2347 			continue;
2348 
2349 		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2350 			pristate = ps;
2351 		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2352 			sprstate = ps;
2353 		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2354 			curstate = ps;
2355 	}
2356 
2357 	pipe_wm->pipe_enabled = cstate->base.active;
2358 	if (sprstate) {
2359 		pipe_wm->sprites_enabled = sprstate->visible;
2360 		pipe_wm->sprites_scaled = sprstate->visible &&
2361 			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2362 			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2363 	}
2364 
2365 	usable_level = max_level;
2366 
2367 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2368 	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2369 		usable_level = 1;
2370 
2371 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2372 	if (pipe_wm->sprites_scaled)
2373 		usable_level = 0;
2374 
2375 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2376 			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2377 
2378 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2379 	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2380 
2381 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2382 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2383 
2384 	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2385 		return -EINVAL;
2386 
2387 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2388 
2389 	for (level = 1; level <= max_level; level++) {
2390 		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2391 
2392 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2393 				     pristate, sprstate, curstate, wm);
2394 
2395 		/*
2396 		 * Disable any watermark level that exceeds the
2397 		 * register maximums since such watermarks are
2398 		 * always invalid.
2399 		 */
2400 		if (level > usable_level)
2401 			continue;
2402 
2403 		if (ilk_validate_wm_level(level, &max, wm))
2404 			pipe_wm->wm[level] = *wm;
2405 		else
2406 			usable_level = level;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 /*
2413  * Build a set of 'intermediate' watermark values that satisfy both the old
2414  * state and the new state.  These can be programmed to the hardware
2415  * immediately.
2416  */
2417 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2418 				       struct intel_crtc *intel_crtc,
2419 				       struct intel_crtc_state *newstate)
2420 {
2421 	struct intel_pipe_wm *a = &newstate->wm.intermediate;
2422 	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2423 	int level, max_level = ilk_wm_max_level(dev);
2424 
2425 	/*
2426 	 * Start with the final, target watermarks, then combine with the
2427 	 * currently active watermarks to get values that are safe both before
2428 	 * and after the vblank.
2429 	 */
2430 	*a = newstate->wm.optimal.ilk;
2431 	a->pipe_enabled |= b->pipe_enabled;
2432 	a->sprites_enabled |= b->sprites_enabled;
2433 	a->sprites_scaled |= b->sprites_scaled;
2434 
2435 	for (level = 0; level <= max_level; level++) {
2436 		struct intel_wm_level *a_wm = &a->wm[level];
2437 		const struct intel_wm_level *b_wm = &b->wm[level];
2438 
2439 		a_wm->enable &= b_wm->enable;
2440 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2441 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2442 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2443 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2444 	}
2445 
2446 	/*
2447 	 * We need to make sure that these merged watermark values are
2448 	 * actually a valid configuration themselves.  If they're not,
2449 	 * there's no safe way to transition from the old state to
2450 	 * the new state, so we need to fail the atomic transaction.
2451 	 */
2452 	if (!ilk_validate_pipe_wm(dev, a))
2453 		return -EINVAL;
2454 
2455 	/*
2456 	 * If our intermediate WM are identical to the final WM, then we can
2457 	 * omit the post-vblank programming; only update if it's different.
2458 	 */
2459 	if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
2460 		newstate->wm.need_postvbl_update = false;
2461 
2462 	return 0;
2463 }
2464 
2465 /*
2466  * Merge the watermarks from all active pipes for a specific level.
2467  */
2468 static void ilk_merge_wm_level(struct drm_device *dev,
2469 			       int level,
2470 			       struct intel_wm_level *ret_wm)
2471 {
2472 	struct intel_crtc *intel_crtc;
2473 
2474 	ret_wm->enable = true;
2475 
2476 	for_each_intel_crtc(dev, intel_crtc) {
2477 		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2478 		const struct intel_wm_level *wm = &active->wm[level];
2479 
2480 		if (!active->pipe_enabled)
2481 			continue;
2482 
2483 		/*
2484 		 * The watermark values may have been used in the past,
2485 		 * so we must maintain them in the registers for some
2486 		 * time even if the level is now disabled.
2487 		 */
2488 		if (!wm->enable)
2489 			ret_wm->enable = false;
2490 
2491 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2492 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2493 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2494 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2495 	}
2496 }
2497 
2498 /*
2499  * Merge all low power watermarks for all active pipes.
2500  */
2501 static void ilk_wm_merge(struct drm_device *dev,
2502 			 const struct intel_wm_config *config,
2503 			 const struct ilk_wm_maximums *max,
2504 			 struct intel_pipe_wm *merged)
2505 {
2506 	struct drm_i915_private *dev_priv = dev->dev_private;
2507 	int level, max_level = ilk_wm_max_level(dev);
2508 	int last_enabled_level = max_level;
2509 
2510 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2511 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2512 	    config->num_pipes_active > 1)
2513 		last_enabled_level = 0;
2514 
2515 	/* ILK: FBC WM must be disabled always */
2516 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2517 
2518 	/* merge each WM1+ level */
2519 	for (level = 1; level <= max_level; level++) {
2520 		struct intel_wm_level *wm = &merged->wm[level];
2521 
2522 		ilk_merge_wm_level(dev, level, wm);
2523 
2524 		if (level > last_enabled_level)
2525 			wm->enable = false;
2526 		else if (!ilk_validate_wm_level(level, max, wm))
2527 			/* make sure all following levels get disabled */
2528 			last_enabled_level = level - 1;
2529 
2530 		/*
2531 		 * The spec says it is preferred to disable
2532 		 * FBC WMs instead of disabling a WM level.
2533 		 */
2534 		if (wm->fbc_val > max->fbc) {
2535 			if (wm->enable)
2536 				merged->fbc_wm_enabled = false;
2537 			wm->fbc_val = 0;
2538 		}
2539 	}
2540 
2541 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2542 	/*
2543 	 * FIXME this is racy. FBC might get enabled later.
2544 	 * What we should check here is whether FBC can be
2545 	 * enabled sometime later.
2546 	 */
2547 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2548 	    intel_fbc_is_active(dev_priv)) {
2549 		for (level = 2; level <= max_level; level++) {
2550 			struct intel_wm_level *wm = &merged->wm[level];
2551 
2552 			wm->enable = false;
2553 		}
2554 	}
2555 }
2556 
2557 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2558 {
2559 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2560 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2561 }
2562 
2563 /* The value we need to program into the WM_LPx latency field */
2564 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2565 {
2566 	struct drm_i915_private *dev_priv = dev->dev_private;
2567 
2568 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2569 		return 2 * level;
2570 	else
2571 		return dev_priv->wm.pri_latency[level];
2572 }
2573 
2574 static void ilk_compute_wm_results(struct drm_device *dev,
2575 				   const struct intel_pipe_wm *merged,
2576 				   enum intel_ddb_partitioning partitioning,
2577 				   struct ilk_wm_values *results)
2578 {
2579 	struct intel_crtc *intel_crtc;
2580 	int level, wm_lp;
2581 
2582 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2583 	results->partitioning = partitioning;
2584 
2585 	/* LP1+ register values */
2586 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2587 		const struct intel_wm_level *r;
2588 
2589 		level = ilk_wm_lp_to_level(wm_lp, merged);
2590 
2591 		r = &merged->wm[level];
2592 
2593 		/*
2594 		 * Maintain the watermark values even if the level is
2595 		 * disabled. Doing otherwise could cause underruns.
2596 		 */
2597 		results->wm_lp[wm_lp - 1] =
2598 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2599 			(r->pri_val << WM1_LP_SR_SHIFT) |
2600 			r->cur_val;
2601 
2602 		if (r->enable)
2603 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2604 
2605 		if (INTEL_INFO(dev)->gen >= 8)
2606 			results->wm_lp[wm_lp - 1] |=
2607 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2608 		else
2609 			results->wm_lp[wm_lp - 1] |=
2610 				r->fbc_val << WM1_LP_FBC_SHIFT;
2611 
2612 		/*
2613 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2614 		 * level is disabled. Doing otherwise could cause underruns.
2615 		 */
2616 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2617 			WARN_ON(wm_lp != 1);
2618 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2619 		} else
2620 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2621 	}
2622 
2623 	/* LP0 register values */
2624 	for_each_intel_crtc(dev, intel_crtc) {
2625 		enum i915_pipe pipe = intel_crtc->pipe;
2626 		const struct intel_wm_level *r =
2627 			&intel_crtc->wm.active.ilk.wm[0];
2628 
2629 		if (WARN_ON(!r->enable))
2630 			continue;
2631 
2632 		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2633 
2634 		results->wm_pipe[pipe] =
2635 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2636 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2637 			r->cur_val;
2638 	}
2639 }
2640 
2641 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2642  * case both are at the same level. Prefer r1 in case they're the same. */
2643 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2644 						  struct intel_pipe_wm *r1,
2645 						  struct intel_pipe_wm *r2)
2646 {
2647 	int level, max_level = ilk_wm_max_level(dev);
2648 	int level1 = 0, level2 = 0;
2649 
2650 	for (level = 1; level <= max_level; level++) {
2651 		if (r1->wm[level].enable)
2652 			level1 = level;
2653 		if (r2->wm[level].enable)
2654 			level2 = level;
2655 	}
2656 
2657 	if (level1 == level2) {
2658 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2659 			return r2;
2660 		else
2661 			return r1;
2662 	} else if (level1 > level2) {
2663 		return r1;
2664 	} else {
2665 		return r2;
2666 	}
2667 }
2668 
2669 /* dirty bits used to track which watermarks need changes */
2670 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2671 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2672 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2673 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2674 #define WM_DIRTY_FBC (1 << 24)
2675 #define WM_DIRTY_DDB (1 << 25)
2676 
2677 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2678 					 const struct ilk_wm_values *old,
2679 					 const struct ilk_wm_values *new)
2680 {
2681 	unsigned int dirty = 0;
2682 	enum i915_pipe pipe;
2683 	int wm_lp;
2684 
2685 	for_each_pipe(dev_priv, pipe) {
2686 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2687 			dirty |= WM_DIRTY_LINETIME(pipe);
2688 			/* Must disable LP1+ watermarks too */
2689 			dirty |= WM_DIRTY_LP_ALL;
2690 		}
2691 
2692 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2693 			dirty |= WM_DIRTY_PIPE(pipe);
2694 			/* Must disable LP1+ watermarks too */
2695 			dirty |= WM_DIRTY_LP_ALL;
2696 		}
2697 	}
2698 
2699 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2700 		dirty |= WM_DIRTY_FBC;
2701 		/* Must disable LP1+ watermarks too */
2702 		dirty |= WM_DIRTY_LP_ALL;
2703 	}
2704 
2705 	if (old->partitioning != new->partitioning) {
2706 		dirty |= WM_DIRTY_DDB;
2707 		/* Must disable LP1+ watermarks too */
2708 		dirty |= WM_DIRTY_LP_ALL;
2709 	}
2710 
2711 	/* LP1+ watermarks already deemed dirty, no need to continue */
2712 	if (dirty & WM_DIRTY_LP_ALL)
2713 		return dirty;
2714 
2715 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2716 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2717 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2718 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2719 			break;
2720 	}
2721 
2722 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2723 	for (; wm_lp <= 3; wm_lp++)
2724 		dirty |= WM_DIRTY_LP(wm_lp);
2725 
2726 	return dirty;
2727 }
2728 
2729 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2730 			       unsigned int dirty)
2731 {
2732 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2733 	bool changed = false;
2734 
2735 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2736 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2737 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2738 		changed = true;
2739 	}
2740 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2741 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2742 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2743 		changed = true;
2744 	}
2745 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2746 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2747 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2748 		changed = true;
2749 	}
2750 
2751 	/*
2752 	 * Don't touch WM1S_LP_EN here.
2753 	 * Doing so could cause underruns.
2754 	 */
2755 
2756 	return changed;
2757 }
2758 
2759 /*
2760  * The spec says we shouldn't write when we don't need, because every write
2761  * causes WMs to be re-evaluated, expending some power.
2762  */
2763 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2764 				struct ilk_wm_values *results)
2765 {
2766 	struct drm_device *dev = dev_priv->dev;
2767 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2768 	unsigned int dirty;
2769 	uint32_t val;
2770 
2771 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2772 	if (!dirty)
2773 		return;
2774 
2775 	_ilk_disable_lp_wm(dev_priv, dirty);
2776 
2777 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2778 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2779 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2780 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2781 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2782 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2783 
2784 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2785 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2786 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2787 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2788 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2789 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2790 
2791 	if (dirty & WM_DIRTY_DDB) {
2792 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2793 			val = I915_READ(WM_MISC);
2794 			if (results->partitioning == INTEL_DDB_PART_1_2)
2795 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2796 			else
2797 				val |= WM_MISC_DATA_PARTITION_5_6;
2798 			I915_WRITE(WM_MISC, val);
2799 		} else {
2800 			val = I915_READ(DISP_ARB_CTL2);
2801 			if (results->partitioning == INTEL_DDB_PART_1_2)
2802 				val &= ~DISP_DATA_PARTITION_5_6;
2803 			else
2804 				val |= DISP_DATA_PARTITION_5_6;
2805 			I915_WRITE(DISP_ARB_CTL2, val);
2806 		}
2807 	}
2808 
2809 	if (dirty & WM_DIRTY_FBC) {
2810 		val = I915_READ(DISP_ARB_CTL);
2811 		if (results->enable_fbc_wm)
2812 			val &= ~DISP_FBC_WM_DIS;
2813 		else
2814 			val |= DISP_FBC_WM_DIS;
2815 		I915_WRITE(DISP_ARB_CTL, val);
2816 	}
2817 
2818 	if (dirty & WM_DIRTY_LP(1) &&
2819 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2820 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2821 
2822 	if (INTEL_INFO(dev)->gen >= 7) {
2823 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2824 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2825 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2826 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2827 	}
2828 
2829 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2830 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2831 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2832 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2833 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2834 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2835 
2836 	dev_priv->wm.hw = *results;
2837 }
2838 
2839 bool ilk_disable_lp_wm(struct drm_device *dev)
2840 {
2841 	struct drm_i915_private *dev_priv = dev->dev_private;
2842 
2843 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2844 }
2845 
2846 /*
2847  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2848  * different active planes.
2849  */
2850 
2851 #define SKL_DDB_SIZE		896	/* in blocks */
2852 #define BXT_DDB_SIZE		512
2853 
2854 /*
2855  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2856  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2857  * other universal planes are in indices 1..n.  Note that this may leave unused
2858  * indices between the top "sprite" plane and the cursor.
2859  */
2860 static int
2861 skl_wm_plane_id(const struct intel_plane *plane)
2862 {
2863 	switch (plane->base.type) {
2864 	case DRM_PLANE_TYPE_PRIMARY:
2865 		return 0;
2866 	case DRM_PLANE_TYPE_CURSOR:
2867 		return PLANE_CURSOR;
2868 	case DRM_PLANE_TYPE_OVERLAY:
2869 		return plane->plane + 1;
2870 	default:
2871 		MISSING_CASE(plane->base.type);
2872 		return plane->plane;
2873 	}
2874 }
2875 
2876 static void
2877 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2878 				   const struct intel_crtc_state *cstate,
2879 				   const struct intel_wm_config *config,
2880 				   struct skl_ddb_entry *alloc /* out */)
2881 {
2882 	struct drm_crtc *for_crtc = cstate->base.crtc;
2883 	struct drm_crtc *crtc;
2884 	unsigned int pipe_size, ddb_size;
2885 	int nth_active_pipe;
2886 
2887 	if (!cstate->base.active) {
2888 		alloc->start = 0;
2889 		alloc->end = 0;
2890 		return;
2891 	}
2892 
2893 	if (IS_BROXTON(dev))
2894 		ddb_size = BXT_DDB_SIZE;
2895 	else
2896 		ddb_size = SKL_DDB_SIZE;
2897 
2898 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2899 
2900 	nth_active_pipe = 0;
2901 	for_each_crtc(dev, crtc) {
2902 		if (!to_intel_crtc(crtc)->active)
2903 			continue;
2904 
2905 		if (crtc == for_crtc)
2906 			break;
2907 
2908 		nth_active_pipe++;
2909 	}
2910 
2911 	pipe_size = ddb_size / config->num_pipes_active;
2912 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2913 	alloc->end = alloc->start + pipe_size;
2914 }
2915 
2916 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2917 {
2918 	if (config->num_pipes_active == 1)
2919 		return 32;
2920 
2921 	return 8;
2922 }
2923 
2924 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2925 {
2926 	entry->start = reg & 0x3ff;
2927 	entry->end = (reg >> 16) & 0x3ff;
2928 	if (entry->end)
2929 		entry->end += 1;
2930 }
2931 
2932 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2933 			  struct skl_ddb_allocation *ddb /* out */)
2934 {
2935 	enum i915_pipe pipe;
2936 	int plane;
2937 	u32 val;
2938 
2939 	memset(ddb, 0, sizeof(*ddb));
2940 
2941 	for_each_pipe(dev_priv, pipe) {
2942 		enum intel_display_power_domain power_domain;
2943 
2944 		power_domain = POWER_DOMAIN_PIPE(pipe);
2945 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2946 			continue;
2947 
2948 		for_each_plane(dev_priv, pipe, plane) {
2949 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2950 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2951 						   val);
2952 		}
2953 
2954 		val = I915_READ(CUR_BUF_CFG(pipe));
2955 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2956 					   val);
2957 
2958 		intel_display_power_put(dev_priv, power_domain);
2959 	}
2960 }
2961 
2962 static unsigned int
2963 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2964 			     struct drm_plane_state *pstate,
2965 			     int y)
2966 {
2967 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2968 	struct drm_framebuffer *fb = pstate->fb;
2969 	uint32_t width = 0, height = 0;
2970 
2971 	width = drm_rect_width(&intel_pstate->src) >> 16;
2972 	height = drm_rect_height(&intel_pstate->src) >> 16;
2973 
2974 	if (intel_rotation_90_or_270(pstate->rotation))
2975 		swap(width, height);
2976 
2977 	/* for planar format */
2978 	if (fb->pixel_format == DRM_FORMAT_NV12) {
2979 		if (y)  /* y-plane data rate */
2980 			return width * height *
2981 				drm_format_plane_cpp(fb->pixel_format, 0);
2982 		else    /* uv-plane data rate */
2983 			return (width / 2) * (height / 2) *
2984 				drm_format_plane_cpp(fb->pixel_format, 1);
2985 	}
2986 
2987 	/* for packed formats */
2988 	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2989 }
2990 
2991 /*
2992  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2993  * a 8192x4096@32bpp framebuffer:
2994  *   3 * 4096 * 8192  * 4 < 2^32
2995  */
2996 static unsigned int
2997 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2998 {
2999 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3000 	struct drm_device *dev = intel_crtc->base.dev;
3001 	struct intel_plane *intel_plane;
3002 	unsigned int total_data_rate = 0;
3003 
3004 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3005 		struct drm_plane_state *pstate = intel_plane->base.state;
3006 
3007 		if (pstate->fb == NULL)
3008 			continue;
3009 
3010 		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3011 			continue;
3012 
3013 		/* packed/uv */
3014 		total_data_rate += skl_plane_relative_data_rate(cstate,
3015 								pstate,
3016 								0);
3017 
3018 		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
3019 			/* y-plane */
3020 			total_data_rate += skl_plane_relative_data_rate(cstate,
3021 									pstate,
3022 									1);
3023 	}
3024 
3025 	return total_data_rate;
3026 }
3027 
3028 static void
3029 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3030 		      struct skl_ddb_allocation *ddb /* out */)
3031 {
3032 	struct drm_crtc *crtc = cstate->base.crtc;
3033 	struct drm_device *dev = crtc->dev;
3034 	struct drm_i915_private *dev_priv = to_i915(dev);
3035 	struct intel_wm_config *config = &dev_priv->wm.config;
3036 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037 	struct intel_plane *intel_plane;
3038 	enum i915_pipe pipe = intel_crtc->pipe;
3039 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3040 	uint16_t alloc_size, start, cursor_blocks;
3041 	uint16_t minimum[I915_MAX_PLANES];
3042 	uint16_t y_minimum[I915_MAX_PLANES];
3043 	unsigned int total_data_rate;
3044 
3045 	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
3046 	alloc_size = skl_ddb_entry_size(alloc);
3047 	if (alloc_size == 0) {
3048 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3049 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
3050 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
3051 		return;
3052 	}
3053 
3054 	cursor_blocks = skl_cursor_allocation(config);
3055 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3056 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3057 
3058 	alloc_size -= cursor_blocks;
3059 	alloc->end -= cursor_blocks;
3060 
3061 	/* 1. Allocate the mininum required blocks for each active plane */
3062 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3063 		struct drm_plane *plane = &intel_plane->base;
3064 		struct drm_framebuffer *fb = plane->state->fb;
3065 		int id = skl_wm_plane_id(intel_plane);
3066 
3067 		if (!to_intel_plane_state(plane->state)->visible)
3068 			continue;
3069 
3070 		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3071 			continue;
3072 
3073 		minimum[id] = 8;
3074 		alloc_size -= minimum[id];
3075 		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
3076 		alloc_size -= y_minimum[id];
3077 	}
3078 
3079 	/*
3080 	 * 2. Distribute the remaining space in proportion to the amount of
3081 	 * data each plane needs to fetch from memory.
3082 	 *
3083 	 * FIXME: we may not allocate every single block here.
3084 	 */
3085 	total_data_rate = skl_get_total_relative_data_rate(cstate);
3086 
3087 	start = alloc->start;
3088 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3089 		struct drm_plane *plane = &intel_plane->base;
3090 		struct drm_plane_state *pstate = intel_plane->base.state;
3091 		unsigned int data_rate, y_data_rate;
3092 		uint16_t plane_blocks, y_plane_blocks = 0;
3093 		int id = skl_wm_plane_id(intel_plane);
3094 
3095 		if (!to_intel_plane_state(pstate)->visible)
3096 			continue;
3097 		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3098 			continue;
3099 
3100 		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3101 
3102 		/*
3103 		 * allocation for (packed formats) or (uv-plane part of planar format):
3104 		 * promote the expression to 64 bits to avoid overflowing, the
3105 		 * result is < available as data_rate / total_data_rate < 1
3106 		 */
3107 		plane_blocks = minimum[id];
3108 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3109 					total_data_rate);
3110 
3111 		ddb->plane[pipe][id].start = start;
3112 		ddb->plane[pipe][id].end = start + plane_blocks;
3113 
3114 		start += plane_blocks;
3115 
3116 		/*
3117 		 * allocation for y_plane part of planar format:
3118 		 */
3119 		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3120 			y_data_rate = skl_plane_relative_data_rate(cstate,
3121 								   pstate,
3122 								   1);
3123 			y_plane_blocks = y_minimum[id];
3124 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3125 						total_data_rate);
3126 
3127 			ddb->y_plane[pipe][id].start = start;
3128 			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3129 
3130 			start += y_plane_blocks;
3131 		}
3132 
3133 	}
3134 
3135 }
3136 
3137 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3138 {
3139 	/* TODO: Take into account the scalers once we support them */
3140 	return config->base.adjusted_mode.crtc_clock;
3141 }
3142 
3143 /*
3144  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3145  * for the read latency) and cpp should always be <= 8, so that
3146  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3147  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3148 */
3149 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3150 {
3151 	uint32_t wm_intermediate_val, ret;
3152 
3153 	if (latency == 0)
3154 		return UINT_MAX;
3155 
3156 	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3157 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3158 
3159 	return ret;
3160 }
3161 
3162 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3163 			       uint32_t horiz_pixels, uint8_t cpp,
3164 			       uint64_t tiling, uint32_t latency)
3165 {
3166 	uint32_t ret;
3167 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3168 	uint32_t wm_intermediate_val;
3169 
3170 	if (latency == 0)
3171 		return UINT_MAX;
3172 
3173 	plane_bytes_per_line = horiz_pixels * cpp;
3174 
3175 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3176 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3177 		plane_bytes_per_line *= 4;
3178 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3179 		plane_blocks_per_line /= 4;
3180 	} else {
3181 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3182 	}
3183 
3184 	wm_intermediate_val = latency * pixel_rate;
3185 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3186 				plane_blocks_per_line;
3187 
3188 	return ret;
3189 }
3190 
3191 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3192 				       const struct intel_crtc *intel_crtc)
3193 {
3194 	struct drm_device *dev = intel_crtc->base.dev;
3195 	struct drm_i915_private *dev_priv = dev->dev_private;
3196 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3197 
3198 	/*
3199 	 * If ddb allocation of pipes changed, it may require recalculation of
3200 	 * watermarks
3201 	 */
3202 	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3203 		return true;
3204 
3205 	return false;
3206 }
3207 
3208 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3209 				 struct intel_crtc_state *cstate,
3210 				 struct intel_plane *intel_plane,
3211 				 uint16_t ddb_allocation,
3212 				 int level,
3213 				 uint16_t *out_blocks, /* out */
3214 				 uint8_t *out_lines /* out */)
3215 {
3216 	struct drm_plane *plane = &intel_plane->base;
3217 	struct drm_framebuffer *fb = plane->state->fb;
3218 	struct intel_plane_state *intel_pstate =
3219 					to_intel_plane_state(plane->state);
3220 	uint32_t latency = dev_priv->wm.skl_latency[level];
3221 	uint32_t method1, method2;
3222 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3223 	uint32_t res_blocks, res_lines;
3224 	uint32_t selected_result;
3225 	uint8_t cpp;
3226 	uint32_t width = 0, height = 0;
3227 
3228 	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3229 		return false;
3230 
3231 	width = drm_rect_width(&intel_pstate->src) >> 16;
3232 	height = drm_rect_height(&intel_pstate->src) >> 16;
3233 
3234 	if (intel_rotation_90_or_270(plane->state->rotation))
3235 		swap(width, height);
3236 
3237 	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3238 	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3239 				 cpp, latency);
3240 	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3241 				 cstate->base.adjusted_mode.crtc_htotal,
3242 				 width,
3243 				 cpp,
3244 				 fb->modifier[0],
3245 				 latency);
3246 
3247 	plane_bytes_per_line = width * cpp;
3248 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3249 
3250 	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3251 	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3252 		uint32_t min_scanlines = 4;
3253 		uint32_t y_tile_minimum;
3254 		if (intel_rotation_90_or_270(plane->state->rotation)) {
3255 			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3256 				drm_format_plane_cpp(fb->pixel_format, 1) :
3257 				drm_format_plane_cpp(fb->pixel_format, 0);
3258 
3259 			switch (cpp) {
3260 			case 1:
3261 				min_scanlines = 16;
3262 				break;
3263 			case 2:
3264 				min_scanlines = 8;
3265 				break;
3266 			case 8:
3267 				WARN(1, "Unsupported pixel depth for rotation");
3268 			}
3269 		}
3270 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3271 		selected_result = max(method2, y_tile_minimum);
3272 	} else {
3273 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3274 			selected_result = min(method1, method2);
3275 		else
3276 			selected_result = method1;
3277 	}
3278 
3279 	res_blocks = selected_result + 1;
3280 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3281 
3282 	if (level >= 1 && level <= 7) {
3283 		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3284 		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3285 			res_lines += 4;
3286 		else
3287 			res_blocks++;
3288 	}
3289 
3290 	if (res_blocks >= ddb_allocation || res_lines > 31)
3291 		return false;
3292 
3293 	*out_blocks = res_blocks;
3294 	*out_lines = res_lines;
3295 
3296 	return true;
3297 }
3298 
3299 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3300 				 struct skl_ddb_allocation *ddb,
3301 				 struct intel_crtc_state *cstate,
3302 				 int level,
3303 				 struct skl_wm_level *result)
3304 {
3305 	struct drm_device *dev = dev_priv->dev;
3306 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3307 	struct intel_plane *intel_plane;
3308 	uint16_t ddb_blocks;
3309 	enum i915_pipe pipe = intel_crtc->pipe;
3310 
3311 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3312 		int i = skl_wm_plane_id(intel_plane);
3313 
3314 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3315 
3316 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3317 						cstate,
3318 						intel_plane,
3319 						ddb_blocks,
3320 						level,
3321 						&result->plane_res_b[i],
3322 						&result->plane_res_l[i]);
3323 	}
3324 }
3325 
3326 static uint32_t
3327 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3328 {
3329 	if (!cstate->base.active)
3330 		return 0;
3331 
3332 	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3333 		return 0;
3334 
3335 	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3336 			    skl_pipe_pixel_rate(cstate));
3337 }
3338 
3339 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3340 				      struct skl_wm_level *trans_wm /* out */)
3341 {
3342 	struct drm_crtc *crtc = cstate->base.crtc;
3343 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3344 	struct intel_plane *intel_plane;
3345 
3346 	if (!cstate->base.active)
3347 		return;
3348 
3349 	/* Until we know more, just disable transition WMs */
3350 	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3351 		int i = skl_wm_plane_id(intel_plane);
3352 
3353 		trans_wm->plane_en[i] = false;
3354 	}
3355 }
3356 
3357 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3358 				struct skl_ddb_allocation *ddb,
3359 				struct skl_pipe_wm *pipe_wm)
3360 {
3361 	struct drm_device *dev = cstate->base.crtc->dev;
3362 	const struct drm_i915_private *dev_priv = dev->dev_private;
3363 	int level, max_level = ilk_wm_max_level(dev);
3364 
3365 	for (level = 0; level <= max_level; level++) {
3366 		skl_compute_wm_level(dev_priv, ddb, cstate,
3367 				     level, &pipe_wm->wm[level]);
3368 	}
3369 	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3370 
3371 	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3372 }
3373 
3374 static void skl_compute_wm_results(struct drm_device *dev,
3375 				   struct skl_pipe_wm *p_wm,
3376 				   struct skl_wm_values *r,
3377 				   struct intel_crtc *intel_crtc)
3378 {
3379 	int level, max_level = ilk_wm_max_level(dev);
3380 	enum i915_pipe pipe = intel_crtc->pipe;
3381 	uint32_t temp;
3382 	int i;
3383 
3384 	for (level = 0; level <= max_level; level++) {
3385 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3386 			temp = 0;
3387 
3388 			temp |= p_wm->wm[level].plane_res_l[i] <<
3389 					PLANE_WM_LINES_SHIFT;
3390 			temp |= p_wm->wm[level].plane_res_b[i];
3391 			if (p_wm->wm[level].plane_en[i])
3392 				temp |= PLANE_WM_EN;
3393 
3394 			r->plane[pipe][i][level] = temp;
3395 		}
3396 
3397 		temp = 0;
3398 
3399 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3400 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3401 
3402 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3403 			temp |= PLANE_WM_EN;
3404 
3405 		r->plane[pipe][PLANE_CURSOR][level] = temp;
3406 
3407 	}
3408 
3409 	/* transition WMs */
3410 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3411 		temp = 0;
3412 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3413 		temp |= p_wm->trans_wm.plane_res_b[i];
3414 		if (p_wm->trans_wm.plane_en[i])
3415 			temp |= PLANE_WM_EN;
3416 
3417 		r->plane_trans[pipe][i] = temp;
3418 	}
3419 
3420 	temp = 0;
3421 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3422 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3423 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3424 		temp |= PLANE_WM_EN;
3425 
3426 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3427 
3428 	r->wm_linetime[pipe] = p_wm->linetime;
3429 }
3430 
3431 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3432 				i915_reg_t reg,
3433 				const struct skl_ddb_entry *entry)
3434 {
3435 	if (entry->end)
3436 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3437 	else
3438 		I915_WRITE(reg, 0);
3439 }
3440 
3441 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3442 				const struct skl_wm_values *new)
3443 {
3444 	struct drm_device *dev = dev_priv->dev;
3445 	struct intel_crtc *crtc;
3446 
3447 	for_each_intel_crtc(dev, crtc) {
3448 		int i, level, max_level = ilk_wm_max_level(dev);
3449 		enum i915_pipe pipe = crtc->pipe;
3450 
3451 		if (!new->dirty[pipe])
3452 			continue;
3453 
3454 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3455 
3456 		for (level = 0; level <= max_level; level++) {
3457 			for (i = 0; i < intel_num_planes(crtc); i++)
3458 				I915_WRITE(PLANE_WM(pipe, i, level),
3459 					   new->plane[pipe][i][level]);
3460 			I915_WRITE(CUR_WM(pipe, level),
3461 				   new->plane[pipe][PLANE_CURSOR][level]);
3462 		}
3463 		for (i = 0; i < intel_num_planes(crtc); i++)
3464 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3465 				   new->plane_trans[pipe][i]);
3466 		I915_WRITE(CUR_WM_TRANS(pipe),
3467 			   new->plane_trans[pipe][PLANE_CURSOR]);
3468 
3469 		for (i = 0; i < intel_num_planes(crtc); i++) {
3470 			skl_ddb_entry_write(dev_priv,
3471 					    PLANE_BUF_CFG(pipe, i),
3472 					    &new->ddb.plane[pipe][i]);
3473 			skl_ddb_entry_write(dev_priv,
3474 					    PLANE_NV12_BUF_CFG(pipe, i),
3475 					    &new->ddb.y_plane[pipe][i]);
3476 		}
3477 
3478 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3479 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3480 	}
3481 }
3482 
3483 /*
3484  * When setting up a new DDB allocation arrangement, we need to correctly
3485  * sequence the times at which the new allocations for the pipes are taken into
3486  * account or we'll have pipes fetching from space previously allocated to
3487  * another pipe.
3488  *
3489  * Roughly the sequence looks like:
3490  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3491  *     overlapping with a previous light-up pipe (another way to put it is:
3492  *     pipes with their new allocation strickly included into their old ones).
3493  *  2. re-allocate the other pipes that get their allocation reduced
3494  *  3. allocate the pipes having their allocation increased
3495  *
3496  * Steps 1. and 2. are here to take care of the following case:
3497  * - Initially DDB looks like this:
3498  *     |   B    |   C    |
3499  * - enable pipe A.
3500  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3501  *   allocation
3502  *     |  A  |  B  |  C  |
3503  *
3504  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3505  */
3506 
3507 static void
3508 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
3509 {
3510 	int plane;
3511 
3512 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3513 
3514 	for_each_plane(dev_priv, pipe, plane) {
3515 		I915_WRITE(PLANE_SURF(pipe, plane),
3516 			   I915_READ(PLANE_SURF(pipe, plane)));
3517 	}
3518 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3519 }
3520 
3521 static bool
3522 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3523 			    const struct skl_ddb_allocation *new,
3524 			    enum i915_pipe pipe)
3525 {
3526 	uint16_t old_size, new_size;
3527 
3528 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3529 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3530 
3531 	return old_size != new_size &&
3532 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3533 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3534 }
3535 
3536 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3537 				struct skl_wm_values *new_values)
3538 {
3539 	struct drm_device *dev = dev_priv->dev;
3540 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3541 	bool reallocated[I915_MAX_PIPES] = {};
3542 	struct intel_crtc *crtc;
3543 	enum i915_pipe pipe;
3544 
3545 	new_ddb = &new_values->ddb;
3546 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3547 
3548 	/*
3549 	 * First pass: flush the pipes with the new allocation contained into
3550 	 * the old space.
3551 	 *
3552 	 * We'll wait for the vblank on those pipes to ensure we can safely
3553 	 * re-allocate the freed space without this pipe fetching from it.
3554 	 */
3555 	for_each_intel_crtc(dev, crtc) {
3556 		if (!crtc->active)
3557 			continue;
3558 
3559 		pipe = crtc->pipe;
3560 
3561 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3562 			continue;
3563 
3564 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3565 		intel_wait_for_vblank(dev, pipe);
3566 
3567 		reallocated[pipe] = true;
3568 	}
3569 
3570 
3571 	/*
3572 	 * Second pass: flush the pipes that are having their allocation
3573 	 * reduced, but overlapping with a previous allocation.
3574 	 *
3575 	 * Here as well we need to wait for the vblank to make sure the freed
3576 	 * space is not used anymore.
3577 	 */
3578 	for_each_intel_crtc(dev, crtc) {
3579 		if (!crtc->active)
3580 			continue;
3581 
3582 		pipe = crtc->pipe;
3583 
3584 		if (reallocated[pipe])
3585 			continue;
3586 
3587 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3588 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3589 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3590 			intel_wait_for_vblank(dev, pipe);
3591 			reallocated[pipe] = true;
3592 		}
3593 	}
3594 
3595 	/*
3596 	 * Third pass: flush the pipes that got more space allocated.
3597 	 *
3598 	 * We don't need to actively wait for the update here, next vblank
3599 	 * will just get more DDB space with the correct WM values.
3600 	 */
3601 	for_each_intel_crtc(dev, crtc) {
3602 		if (!crtc->active)
3603 			continue;
3604 
3605 		pipe = crtc->pipe;
3606 
3607 		/*
3608 		 * At this point, only the pipes more space than before are
3609 		 * left to re-allocate.
3610 		 */
3611 		if (reallocated[pipe])
3612 			continue;
3613 
3614 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3615 	}
3616 }
3617 
3618 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3619 			       struct skl_ddb_allocation *ddb, /* out */
3620 			       struct skl_pipe_wm *pipe_wm /* out */)
3621 {
3622 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3624 
3625 	skl_allocate_pipe_ddb(cstate, ddb);
3626 	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3627 
3628 	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3629 		return false;
3630 
3631 	intel_crtc->wm.active.skl = *pipe_wm;
3632 
3633 	return true;
3634 }
3635 
3636 static void skl_update_other_pipe_wm(struct drm_device *dev,
3637 				     struct drm_crtc *crtc,
3638 				     struct skl_wm_values *r)
3639 {
3640 	struct intel_crtc *intel_crtc;
3641 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3642 
3643 	/*
3644 	 * If the WM update hasn't changed the allocation for this_crtc (the
3645 	 * crtc we are currently computing the new WM values for), other
3646 	 * enabled crtcs will keep the same allocation and we don't need to
3647 	 * recompute anything for them.
3648 	 */
3649 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3650 		return;
3651 
3652 	/*
3653 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3654 	 * other active pipes need new DDB allocation and WM values.
3655 	 */
3656 	for_each_intel_crtc(dev, intel_crtc) {
3657 		struct skl_pipe_wm pipe_wm = {};
3658 		bool wm_changed;
3659 
3660 		if (this_crtc->pipe == intel_crtc->pipe)
3661 			continue;
3662 
3663 		if (!intel_crtc->active)
3664 			continue;
3665 
3666 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3667 						&r->ddb, &pipe_wm);
3668 
3669 		/*
3670 		 * If we end up re-computing the other pipe WM values, it's
3671 		 * because it was really needed, so we expect the WM values to
3672 		 * be different.
3673 		 */
3674 		WARN_ON(!wm_changed);
3675 
3676 		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3677 		r->dirty[intel_crtc->pipe] = true;
3678 	}
3679 }
3680 
3681 static void skl_clear_wm(struct skl_wm_values *watermarks, enum i915_pipe pipe)
3682 {
3683 	watermarks->wm_linetime[pipe] = 0;
3684 	memset(watermarks->plane[pipe], 0,
3685 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3686 	memset(watermarks->plane_trans[pipe],
3687 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3688 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3689 
3690 	/* Clear ddb entries for pipe */
3691 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3692 	memset(&watermarks->ddb.plane[pipe], 0,
3693 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3694 	memset(&watermarks->ddb.y_plane[pipe], 0,
3695 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3696 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3697 	       sizeof(struct skl_ddb_entry));
3698 
3699 }
3700 
3701 static void skl_update_wm(struct drm_crtc *crtc)
3702 {
3703 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3704 	struct drm_device *dev = crtc->dev;
3705 	struct drm_i915_private *dev_priv = dev->dev_private;
3706 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3707 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3708 	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3709 
3710 
3711 	/* Clear all dirty flags */
3712 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3713 
3714 	skl_clear_wm(results, intel_crtc->pipe);
3715 
3716 	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3717 		return;
3718 
3719 	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3720 	results->dirty[intel_crtc->pipe] = true;
3721 
3722 	skl_update_other_pipe_wm(dev, crtc, results);
3723 	skl_write_wm_values(dev_priv, results);
3724 	skl_flush_wm_values(dev_priv, results);
3725 
3726 	/* store the new configuration */
3727 	dev_priv->wm.skl_hw = *results;
3728 }
3729 
3730 static void ilk_compute_wm_config(struct drm_device *dev,
3731 				  struct intel_wm_config *config)
3732 {
3733 	struct intel_crtc *crtc;
3734 
3735 	/* Compute the currently _active_ config */
3736 	for_each_intel_crtc(dev, crtc) {
3737 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3738 
3739 		if (!wm->pipe_enabled)
3740 			continue;
3741 
3742 		config->sprites_enabled |= wm->sprites_enabled;
3743 		config->sprites_scaled |= wm->sprites_scaled;
3744 		config->num_pipes_active++;
3745 	}
3746 }
3747 
3748 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3749 {
3750 	struct drm_device *dev = dev_priv->dev;
3751 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3752 	struct ilk_wm_maximums max;
3753 	struct intel_wm_config config = {};
3754 	struct ilk_wm_values results = {};
3755 	enum intel_ddb_partitioning partitioning;
3756 
3757 	ilk_compute_wm_config(dev, &config);
3758 
3759 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3760 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3761 
3762 	/* 5/6 split only in single pipe config on IVB+ */
3763 	if (INTEL_INFO(dev)->gen >= 7 &&
3764 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3765 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3766 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3767 
3768 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3769 	} else {
3770 		best_lp_wm = &lp_wm_1_2;
3771 	}
3772 
3773 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3774 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3775 
3776 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3777 
3778 	ilk_write_wm_values(dev_priv, &results);
3779 }
3780 
3781 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3782 {
3783 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3784 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3785 
3786 	mutex_lock(&dev_priv->wm.wm_mutex);
3787 	intel_crtc->wm.active.ilk = cstate->wm.intermediate;
3788 	ilk_program_watermarks(dev_priv);
3789 	mutex_unlock(&dev_priv->wm.wm_mutex);
3790 }
3791 
3792 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
3793 {
3794 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3795 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3796 
3797 	mutex_lock(&dev_priv->wm.wm_mutex);
3798 	if (cstate->wm.need_postvbl_update) {
3799 		intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3800 		ilk_program_watermarks(dev_priv);
3801 	}
3802 	mutex_unlock(&dev_priv->wm.wm_mutex);
3803 }
3804 
3805 static void skl_pipe_wm_active_state(uint32_t val,
3806 				     struct skl_pipe_wm *active,
3807 				     bool is_transwm,
3808 				     bool is_cursor,
3809 				     int i,
3810 				     int level)
3811 {
3812 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3813 
3814 	if (!is_transwm) {
3815 		if (!is_cursor) {
3816 			active->wm[level].plane_en[i] = is_enabled;
3817 			active->wm[level].plane_res_b[i] =
3818 					val & PLANE_WM_BLOCKS_MASK;
3819 			active->wm[level].plane_res_l[i] =
3820 					(val >> PLANE_WM_LINES_SHIFT) &
3821 						PLANE_WM_LINES_MASK;
3822 		} else {
3823 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3824 			active->wm[level].plane_res_b[PLANE_CURSOR] =
3825 					val & PLANE_WM_BLOCKS_MASK;
3826 			active->wm[level].plane_res_l[PLANE_CURSOR] =
3827 					(val >> PLANE_WM_LINES_SHIFT) &
3828 						PLANE_WM_LINES_MASK;
3829 		}
3830 	} else {
3831 		if (!is_cursor) {
3832 			active->trans_wm.plane_en[i] = is_enabled;
3833 			active->trans_wm.plane_res_b[i] =
3834 					val & PLANE_WM_BLOCKS_MASK;
3835 			active->trans_wm.plane_res_l[i] =
3836 					(val >> PLANE_WM_LINES_SHIFT) &
3837 						PLANE_WM_LINES_MASK;
3838 		} else {
3839 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3840 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3841 					val & PLANE_WM_BLOCKS_MASK;
3842 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3843 					(val >> PLANE_WM_LINES_SHIFT) &
3844 						PLANE_WM_LINES_MASK;
3845 		}
3846 	}
3847 }
3848 
3849 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3850 {
3851 	struct drm_device *dev = crtc->dev;
3852 	struct drm_i915_private *dev_priv = dev->dev_private;
3853 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3854 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3855 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3856 	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3857 	enum i915_pipe pipe = intel_crtc->pipe;
3858 	int level, i, max_level;
3859 	uint32_t temp;
3860 
3861 	max_level = ilk_wm_max_level(dev);
3862 
3863 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3864 
3865 	for (level = 0; level <= max_level; level++) {
3866 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3867 			hw->plane[pipe][i][level] =
3868 					I915_READ(PLANE_WM(pipe, i, level));
3869 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3870 	}
3871 
3872 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3873 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3874 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3875 
3876 	if (!intel_crtc->active)
3877 		return;
3878 
3879 	hw->dirty[pipe] = true;
3880 
3881 	active->linetime = hw->wm_linetime[pipe];
3882 
3883 	for (level = 0; level <= max_level; level++) {
3884 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3885 			temp = hw->plane[pipe][i][level];
3886 			skl_pipe_wm_active_state(temp, active, false,
3887 						false, i, level);
3888 		}
3889 		temp = hw->plane[pipe][PLANE_CURSOR][level];
3890 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3891 	}
3892 
3893 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3894 		temp = hw->plane_trans[pipe][i];
3895 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3896 	}
3897 
3898 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3899 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3900 
3901 	intel_crtc->wm.active.skl = *active;
3902 }
3903 
3904 void skl_wm_get_hw_state(struct drm_device *dev)
3905 {
3906 	struct drm_i915_private *dev_priv = dev->dev_private;
3907 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3908 	struct drm_crtc *crtc;
3909 
3910 	skl_ddb_get_hw_state(dev_priv, ddb);
3911 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3912 		skl_pipe_wm_get_hw_state(crtc);
3913 }
3914 
3915 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3916 {
3917 	struct drm_device *dev = crtc->dev;
3918 	struct drm_i915_private *dev_priv = dev->dev_private;
3919 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3920 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3921 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3922 	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3923 	enum i915_pipe pipe = intel_crtc->pipe;
3924 	static const i915_reg_t wm0_pipe_reg[] = {
3925 		[PIPE_A] = WM0_PIPEA_ILK,
3926 		[PIPE_B] = WM0_PIPEB_ILK,
3927 		[PIPE_C] = WM0_PIPEC_IVB,
3928 	};
3929 
3930 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3931 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3932 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3933 
3934 	memset(active, 0, sizeof(*active));
3935 
3936 	active->pipe_enabled = intel_crtc->active;
3937 
3938 	if (active->pipe_enabled) {
3939 		u32 tmp = hw->wm_pipe[pipe];
3940 
3941 		/*
3942 		 * For active pipes LP0 watermark is marked as
3943 		 * enabled, and LP1+ watermaks as disabled since
3944 		 * we can't really reverse compute them in case
3945 		 * multiple pipes are active.
3946 		 */
3947 		active->wm[0].enable = true;
3948 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3949 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3950 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3951 		active->linetime = hw->wm_linetime[pipe];
3952 	} else {
3953 		int level, max_level = ilk_wm_max_level(dev);
3954 
3955 		/*
3956 		 * For inactive pipes, all watermark levels
3957 		 * should be marked as enabled but zeroed,
3958 		 * which is what we'd compute them to.
3959 		 */
3960 		for (level = 0; level <= max_level; level++)
3961 			active->wm[level].enable = true;
3962 	}
3963 
3964 	intel_crtc->wm.active.ilk = *active;
3965 }
3966 
3967 #define _FW_WM(value, plane) \
3968 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3969 #define _FW_WM_VLV(value, plane) \
3970 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3971 
3972 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3973 			       struct vlv_wm_values *wm)
3974 {
3975 	enum i915_pipe pipe;
3976 	uint32_t tmp;
3977 
3978 	for_each_pipe(dev_priv, pipe) {
3979 		tmp = I915_READ(VLV_DDL(pipe));
3980 
3981 		wm->ddl[pipe].primary =
3982 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3983 		wm->ddl[pipe].cursor =
3984 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3985 		wm->ddl[pipe].sprite[0] =
3986 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3987 		wm->ddl[pipe].sprite[1] =
3988 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3989 	}
3990 
3991 	tmp = I915_READ(DSPFW1);
3992 	wm->sr.plane = _FW_WM(tmp, SR);
3993 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3994 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3995 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3996 
3997 	tmp = I915_READ(DSPFW2);
3998 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3999 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4000 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4001 
4002 	tmp = I915_READ(DSPFW3);
4003 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4004 
4005 	if (IS_CHERRYVIEW(dev_priv)) {
4006 		tmp = I915_READ(DSPFW7_CHV);
4007 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4008 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4009 
4010 		tmp = I915_READ(DSPFW8_CHV);
4011 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4012 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4013 
4014 		tmp = I915_READ(DSPFW9_CHV);
4015 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4016 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4017 
4018 		tmp = I915_READ(DSPHOWM);
4019 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4020 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4021 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4022 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4023 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4024 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4025 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4026 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4027 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4028 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4029 	} else {
4030 		tmp = I915_READ(DSPFW7);
4031 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4032 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4033 
4034 		tmp = I915_READ(DSPHOWM);
4035 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4036 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4037 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4038 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4039 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4040 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4041 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4042 	}
4043 }
4044 
4045 #undef _FW_WM
4046 #undef _FW_WM_VLV
4047 
4048 void vlv_wm_get_hw_state(struct drm_device *dev)
4049 {
4050 	struct drm_i915_private *dev_priv = to_i915(dev);
4051 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4052 	struct intel_plane *plane;
4053 	enum i915_pipe pipe;
4054 	u32 val;
4055 
4056 	vlv_read_wm_values(dev_priv, wm);
4057 
4058 	for_each_intel_plane(dev, plane) {
4059 		switch (plane->base.type) {
4060 			int sprite;
4061 		case DRM_PLANE_TYPE_CURSOR:
4062 			plane->wm.fifo_size = 63;
4063 			break;
4064 		case DRM_PLANE_TYPE_PRIMARY:
4065 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4066 			break;
4067 		case DRM_PLANE_TYPE_OVERLAY:
4068 			sprite = plane->plane;
4069 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4070 			break;
4071 		}
4072 	}
4073 
4074 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4075 	wm->level = VLV_WM_LEVEL_PM2;
4076 
4077 	if (IS_CHERRYVIEW(dev_priv)) {
4078 		mutex_lock(&dev_priv->rps.hw_lock);
4079 
4080 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4081 		if (val & DSP_MAXFIFO_PM5_ENABLE)
4082 			wm->level = VLV_WM_LEVEL_PM5;
4083 
4084 		/*
4085 		 * If DDR DVFS is disabled in the BIOS, Punit
4086 		 * will never ack the request. So if that happens
4087 		 * assume we don't have to enable/disable DDR DVFS
4088 		 * dynamically. To test that just set the REQ_ACK
4089 		 * bit to poke the Punit, but don't change the
4090 		 * HIGH/LOW bits so that we don't actually change
4091 		 * the current state.
4092 		 */
4093 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4094 		val |= FORCE_DDR_FREQ_REQ_ACK;
4095 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4096 
4097 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4098 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4099 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4100 				      "assuming DDR DVFS is disabled\n");
4101 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4102 		} else {
4103 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4104 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4105 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4106 		}
4107 
4108 		mutex_unlock(&dev_priv->rps.hw_lock);
4109 	}
4110 
4111 	for_each_pipe(dev_priv, pipe)
4112 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4113 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4114 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4115 
4116 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4117 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4118 }
4119 
4120 void ilk_wm_get_hw_state(struct drm_device *dev)
4121 {
4122 	struct drm_i915_private *dev_priv = dev->dev_private;
4123 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4124 	struct drm_crtc *crtc;
4125 
4126 	for_each_crtc(dev, crtc)
4127 		ilk_pipe_wm_get_hw_state(crtc);
4128 
4129 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4130 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4131 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4132 
4133 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4134 	if (INTEL_INFO(dev)->gen >= 7) {
4135 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4136 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4137 	}
4138 
4139 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4140 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4141 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4142 	else if (IS_IVYBRIDGE(dev))
4143 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4144 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4145 
4146 	hw->enable_fbc_wm =
4147 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4148 }
4149 
4150 /**
4151  * intel_update_watermarks - update FIFO watermark values based on current modes
4152  *
4153  * Calculate watermark values for the various WM regs based on current mode
4154  * and plane configuration.
4155  *
4156  * There are several cases to deal with here:
4157  *   - normal (i.e. non-self-refresh)
4158  *   - self-refresh (SR) mode
4159  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4160  *   - lines are small relative to FIFO size (buffer can hold more than 2
4161  *     lines), so need to account for TLB latency
4162  *
4163  *   The normal calculation is:
4164  *     watermark = dotclock * bytes per pixel * latency
4165  *   where latency is platform & configuration dependent (we assume pessimal
4166  *   values here).
4167  *
4168  *   The SR calculation is:
4169  *     watermark = (trunc(latency/line time)+1) * surface width *
4170  *       bytes per pixel
4171  *   where
4172  *     line time = htotal / dotclock
4173  *     surface width = hdisplay for normal plane and 64 for cursor
4174  *   and latency is assumed to be high, as above.
4175  *
4176  * The final value programmed to the register should always be rounded up,
4177  * and include an extra 2 entries to account for clock crossings.
4178  *
4179  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4180  * to set the non-SR watermarks to 8.
4181  */
4182 void intel_update_watermarks(struct drm_crtc *crtc)
4183 {
4184 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4185 
4186 	if (dev_priv->display.update_wm)
4187 		dev_priv->display.update_wm(crtc);
4188 }
4189 
4190 /*
4191  * Lock protecting IPS related data structures
4192  */
4193 struct lock mchdev_lock;
4194 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
4195 
4196 /* Global for IPS driver to get at the current i915 device. Protected by
4197  * mchdev_lock. */
4198 static struct drm_i915_private *i915_mch_dev;
4199 
4200 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4201 {
4202 	struct drm_i915_private *dev_priv = dev->dev_private;
4203 	u16 rgvswctl;
4204 
4205 	assert_spin_locked(&mchdev_lock);
4206 
4207 	rgvswctl = I915_READ16(MEMSWCTL);
4208 	if (rgvswctl & MEMCTL_CMD_STS) {
4209 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4210 		return false; /* still busy with another command */
4211 	}
4212 
4213 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4214 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4215 	I915_WRITE16(MEMSWCTL, rgvswctl);
4216 	POSTING_READ16(MEMSWCTL);
4217 
4218 	rgvswctl |= MEMCTL_CMD_STS;
4219 	I915_WRITE16(MEMSWCTL, rgvswctl);
4220 
4221 	return true;
4222 }
4223 
4224 static void ironlake_enable_drps(struct drm_device *dev)
4225 {
4226 	struct drm_i915_private *dev_priv = dev->dev_private;
4227 	u32 rgvmodectl;
4228 	u8 fmax, fmin, fstart, vstart;
4229 
4230 	spin_lock_irq(&mchdev_lock);
4231 
4232 	rgvmodectl = I915_READ(MEMMODECTL);
4233 
4234 	/* Enable temp reporting */
4235 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4236 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4237 
4238 	/* 100ms RC evaluation intervals */
4239 	I915_WRITE(RCUPEI, 100000);
4240 	I915_WRITE(RCDNEI, 100000);
4241 
4242 	/* Set max/min thresholds to 90ms and 80ms respectively */
4243 	I915_WRITE(RCBMAXAVG, 90000);
4244 	I915_WRITE(RCBMINAVG, 80000);
4245 
4246 	I915_WRITE(MEMIHYST, 1);
4247 
4248 	/* Set up min, max, and cur for interrupt handling */
4249 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4250 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4251 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4252 		MEMMODE_FSTART_SHIFT;
4253 
4254 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4255 		PXVFREQ_PX_SHIFT;
4256 
4257 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4258 	dev_priv->ips.fstart = fstart;
4259 
4260 	dev_priv->ips.max_delay = fstart;
4261 	dev_priv->ips.min_delay = fmin;
4262 	dev_priv->ips.cur_delay = fstart;
4263 
4264 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4265 			 fmax, fmin, fstart);
4266 
4267 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4268 
4269 	/*
4270 	 * Interrupts will be enabled in ironlake_irq_postinstall
4271 	 */
4272 
4273 	I915_WRITE(VIDSTART, vstart);
4274 	POSTING_READ(VIDSTART);
4275 
4276 	rgvmodectl |= MEMMODE_SWMODE_EN;
4277 	I915_WRITE(MEMMODECTL, rgvmodectl);
4278 
4279 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4280 		DRM_ERROR("stuck trying to change perf mode\n");
4281 	mdelay(1);
4282 
4283 	ironlake_set_drps(dev, fstart);
4284 
4285 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4286 		I915_READ(DDREC) + I915_READ(CSIEC);
4287 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4288 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4289 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4290 
4291 	spin_unlock_irq(&mchdev_lock);
4292 }
4293 
4294 static void ironlake_disable_drps(struct drm_device *dev)
4295 {
4296 	struct drm_i915_private *dev_priv = dev->dev_private;
4297 	u16 rgvswctl;
4298 
4299 	spin_lock_irq(&mchdev_lock);
4300 
4301 	rgvswctl = I915_READ16(MEMSWCTL);
4302 
4303 	/* Ack interrupts, disable EFC interrupt */
4304 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4305 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4306 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4307 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4308 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4309 
4310 	/* Go back to the starting frequency */
4311 	ironlake_set_drps(dev, dev_priv->ips.fstart);
4312 	mdelay(1);
4313 	rgvswctl |= MEMCTL_CMD_STS;
4314 	I915_WRITE(MEMSWCTL, rgvswctl);
4315 	mdelay(1);
4316 
4317 	spin_unlock_irq(&mchdev_lock);
4318 }
4319 
4320 /* There's a funny hw issue where the hw returns all 0 when reading from
4321  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4322  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4323  * all limits and the gpu stuck at whatever frequency it is at atm).
4324  */
4325 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4326 {
4327 	u32 limits;
4328 
4329 	/* Only set the down limit when we've reached the lowest level to avoid
4330 	 * getting more interrupts, otherwise leave this clear. This prevents a
4331 	 * race in the hw when coming out of rc6: There's a tiny window where
4332 	 * the hw runs at the minimal clock before selecting the desired
4333 	 * frequency, if the down threshold expires in that window we will not
4334 	 * receive a down interrupt. */
4335 	if (IS_GEN9(dev_priv)) {
4336 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4337 		if (val <= dev_priv->rps.min_freq_softlimit)
4338 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4339 	} else {
4340 		limits = dev_priv->rps.max_freq_softlimit << 24;
4341 		if (val <= dev_priv->rps.min_freq_softlimit)
4342 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4343 	}
4344 
4345 	return limits;
4346 }
4347 
4348 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4349 {
4350 	int new_power;
4351 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4352 	u32 ei_up = 0, ei_down = 0;
4353 
4354 	new_power = dev_priv->rps.power;
4355 	switch (dev_priv->rps.power) {
4356 	case LOW_POWER:
4357 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4358 			new_power = BETWEEN;
4359 		break;
4360 
4361 	case BETWEEN:
4362 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4363 			new_power = LOW_POWER;
4364 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4365 			new_power = HIGH_POWER;
4366 		break;
4367 
4368 	case HIGH_POWER:
4369 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4370 			new_power = BETWEEN;
4371 		break;
4372 	}
4373 	/* Max/min bins are special */
4374 	if (val <= dev_priv->rps.min_freq_softlimit)
4375 		new_power = LOW_POWER;
4376 	if (val >= dev_priv->rps.max_freq_softlimit)
4377 		new_power = HIGH_POWER;
4378 	if (new_power == dev_priv->rps.power)
4379 		return;
4380 
4381 	/* Note the units here are not exactly 1us, but 1280ns. */
4382 	switch (new_power) {
4383 	case LOW_POWER:
4384 		/* Upclock if more than 95% busy over 16ms */
4385 		ei_up = 16000;
4386 		threshold_up = 95;
4387 
4388 		/* Downclock if less than 85% busy over 32ms */
4389 		ei_down = 32000;
4390 		threshold_down = 85;
4391 		break;
4392 
4393 	case BETWEEN:
4394 		/* Upclock if more than 90% busy over 13ms */
4395 		ei_up = 13000;
4396 		threshold_up = 90;
4397 
4398 		/* Downclock if less than 75% busy over 32ms */
4399 		ei_down = 32000;
4400 		threshold_down = 75;
4401 		break;
4402 
4403 	case HIGH_POWER:
4404 		/* Upclock if more than 85% busy over 10ms */
4405 		ei_up = 10000;
4406 		threshold_up = 85;
4407 
4408 		/* Downclock if less than 60% busy over 32ms */
4409 		ei_down = 32000;
4410 		threshold_down = 60;
4411 		break;
4412 	}
4413 
4414 	I915_WRITE(GEN6_RP_UP_EI,
4415 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4416 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4417 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4418 
4419 	I915_WRITE(GEN6_RP_DOWN_EI,
4420 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4421 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4422 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4423 
4424 	 I915_WRITE(GEN6_RP_CONTROL,
4425 		    GEN6_RP_MEDIA_TURBO |
4426 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4427 		    GEN6_RP_MEDIA_IS_GFX |
4428 		    GEN6_RP_ENABLE |
4429 		    GEN6_RP_UP_BUSY_AVG |
4430 		    GEN6_RP_DOWN_IDLE_AVG);
4431 
4432 	dev_priv->rps.power = new_power;
4433 	dev_priv->rps.up_threshold = threshold_up;
4434 	dev_priv->rps.down_threshold = threshold_down;
4435 	dev_priv->rps.last_adj = 0;
4436 }
4437 
4438 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4439 {
4440 	u32 mask = 0;
4441 
4442 	if (val > dev_priv->rps.min_freq_softlimit)
4443 		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4444 	if (val < dev_priv->rps.max_freq_softlimit)
4445 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4446 
4447 	mask &= dev_priv->pm_rps_events;
4448 
4449 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4450 }
4451 
4452 /* gen6_set_rps is called to update the frequency request, but should also be
4453  * called when the range (min_delay and max_delay) is modified so that we can
4454  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4455 static void gen6_set_rps(struct drm_device *dev, u8 val)
4456 {
4457 	struct drm_i915_private *dev_priv = dev->dev_private;
4458 
4459 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4460 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4461 		return;
4462 
4463 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4464 	WARN_ON(val > dev_priv->rps.max_freq);
4465 	WARN_ON(val < dev_priv->rps.min_freq);
4466 
4467 	/* min/max delay may still have been modified so be sure to
4468 	 * write the limits value.
4469 	 */
4470 	if (val != dev_priv->rps.cur_freq) {
4471 		gen6_set_rps_thresholds(dev_priv, val);
4472 
4473 		if (IS_GEN9(dev))
4474 			I915_WRITE(GEN6_RPNSWREQ,
4475 				   GEN9_FREQUENCY(val));
4476 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4477 			I915_WRITE(GEN6_RPNSWREQ,
4478 				   HSW_FREQUENCY(val));
4479 		else
4480 			I915_WRITE(GEN6_RPNSWREQ,
4481 				   GEN6_FREQUENCY(val) |
4482 				   GEN6_OFFSET(0) |
4483 				   GEN6_AGGRESSIVE_TURBO);
4484 	}
4485 
4486 	/* Make sure we continue to get interrupts
4487 	 * until we hit the minimum or maximum frequencies.
4488 	 */
4489 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4490 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4491 
4492 	POSTING_READ(GEN6_RPNSWREQ);
4493 
4494 	dev_priv->rps.cur_freq = val;
4495 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4496 }
4497 
4498 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4499 {
4500 	struct drm_i915_private *dev_priv = dev->dev_private;
4501 
4502 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4503 	WARN_ON(val > dev_priv->rps.max_freq);
4504 	WARN_ON(val < dev_priv->rps.min_freq);
4505 
4506 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4507 		      "Odd GPU freq value\n"))
4508 		val &= ~1;
4509 
4510 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4511 
4512 	if (val != dev_priv->rps.cur_freq) {
4513 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4514 		if (!IS_CHERRYVIEW(dev_priv))
4515 			gen6_set_rps_thresholds(dev_priv, val);
4516 	}
4517 
4518 	dev_priv->rps.cur_freq = val;
4519 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4520 }
4521 
4522 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4523  *
4524  * * If Gfx is Idle, then
4525  * 1. Forcewake Media well.
4526  * 2. Request idle freq.
4527  * 3. Release Forcewake of Media well.
4528 */
4529 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4530 {
4531 	u32 val = dev_priv->rps.idle_freq;
4532 
4533 	if (dev_priv->rps.cur_freq <= val)
4534 		return;
4535 
4536 	/* Wake up the media well, as that takes a lot less
4537 	 * power than the Render well. */
4538 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4539 	valleyview_set_rps(dev_priv->dev, val);
4540 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4541 }
4542 
4543 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4544 {
4545 	mutex_lock(&dev_priv->rps.hw_lock);
4546 	if (dev_priv->rps.enabled) {
4547 		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4548 			gen6_rps_reset_ei(dev_priv);
4549 		I915_WRITE(GEN6_PMINTRMSK,
4550 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4551 	}
4552 	mutex_unlock(&dev_priv->rps.hw_lock);
4553 }
4554 
4555 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4556 {
4557 	struct drm_device *dev = dev_priv->dev;
4558 
4559 	mutex_lock(&dev_priv->rps.hw_lock);
4560 	if (dev_priv->rps.enabled) {
4561 		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4562 			vlv_set_rps_idle(dev_priv);
4563 		else
4564 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4565 		dev_priv->rps.last_adj = 0;
4566 		I915_WRITE(GEN6_PMINTRMSK,
4567 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4568 	}
4569 	mutex_unlock(&dev_priv->rps.hw_lock);
4570 
4571 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4572 	while (!list_empty(&dev_priv->rps.clients))
4573 		list_del_init(dev_priv->rps.clients.next);
4574 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4575 }
4576 
4577 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4578 		    struct intel_rps_client *rps,
4579 		    unsigned long submitted)
4580 {
4581 	/* This is intentionally racy! We peek at the state here, then
4582 	 * validate inside the RPS worker.
4583 	 */
4584 	if (!(dev_priv->mm.busy &&
4585 	      dev_priv->rps.enabled &&
4586 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4587 		return;
4588 
4589 	/* Force a RPS boost (and don't count it against the client) if
4590 	 * the GPU is severely congested.
4591 	 */
4592 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4593 		rps = NULL;
4594 
4595 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4596 	if (rps == NULL || list_empty(&rps->link)) {
4597 		spin_lock_irq(&dev_priv->irq_lock);
4598 		if (dev_priv->rps.interrupts_enabled) {
4599 			dev_priv->rps.client_boost = true;
4600 			queue_work(dev_priv->wq, &dev_priv->rps.work);
4601 		}
4602 		spin_unlock_irq(&dev_priv->irq_lock);
4603 
4604 		if (rps != NULL) {
4605 			list_add(&rps->link, &dev_priv->rps.clients);
4606 			rps->boosts++;
4607 		} else
4608 			dev_priv->rps.boosts++;
4609 	}
4610 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4611 }
4612 
4613 void intel_set_rps(struct drm_device *dev, u8 val)
4614 {
4615 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4616 		valleyview_set_rps(dev, val);
4617 	else
4618 		gen6_set_rps(dev, val);
4619 }
4620 
4621 static void gen9_disable_rc6(struct drm_device *dev)
4622 {
4623 	struct drm_i915_private *dev_priv = dev->dev_private;
4624 
4625 	I915_WRITE(GEN6_RC_CONTROL, 0);
4626 	I915_WRITE(GEN9_PG_ENABLE, 0);
4627 }
4628 
4629 static void gen9_disable_rps(struct drm_device *dev)
4630 {
4631 	struct drm_i915_private *dev_priv = dev->dev_private;
4632 
4633 	I915_WRITE(GEN6_RP_CONTROL, 0);
4634 }
4635 
4636 static void gen6_disable_rps(struct drm_device *dev)
4637 {
4638 	struct drm_i915_private *dev_priv = dev->dev_private;
4639 
4640 	I915_WRITE(GEN6_RC_CONTROL, 0);
4641 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4642 	I915_WRITE(GEN6_RP_CONTROL, 0);
4643 }
4644 
4645 static void cherryview_disable_rps(struct drm_device *dev)
4646 {
4647 	struct drm_i915_private *dev_priv = dev->dev_private;
4648 
4649 	I915_WRITE(GEN6_RC_CONTROL, 0);
4650 }
4651 
4652 static void valleyview_disable_rps(struct drm_device *dev)
4653 {
4654 	struct drm_i915_private *dev_priv = dev->dev_private;
4655 
4656 	/* we're doing forcewake before Disabling RC6,
4657 	 * This what the BIOS expects when going into suspend */
4658 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4659 
4660 	I915_WRITE(GEN6_RC_CONTROL, 0);
4661 
4662 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4663 }
4664 
4665 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4666 {
4667 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4668 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4669 			mode = GEN6_RC_CTL_RC6_ENABLE;
4670 		else
4671 			mode = 0;
4672 	}
4673 	if (HAS_RC6p(dev))
4674 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4675 			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4676 			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4677 			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4678 
4679 	else
4680 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4681 			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4682 }
4683 
4684 static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4685 {
4686 	struct drm_i915_private *dev_priv = to_i915(dev);
4687 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4688 	bool enable_rc6 = true;
4689 	unsigned long rc6_ctx_base;
4690 
4691 	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4692 		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4693 		enable_rc6 = false;
4694 	}
4695 
4696 	/*
4697 	 * The exact context size is not known for BXT, so assume a page size
4698 	 * for this check.
4699 	 */
4700 	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4701 	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4702 	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4703 					ggtt->stolen_reserved_size))) {
4704 		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4705 		enable_rc6 = false;
4706 	}
4707 
4708 	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4709 	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4710 	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4711 	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4712 		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4713 		enable_rc6 = false;
4714 	}
4715 
4716 	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4717 					    GEN6_RC_CTL_HW_ENABLE)) &&
4718 	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4719 	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4720 		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4721 		enable_rc6 = false;
4722 	}
4723 
4724 	return enable_rc6;
4725 }
4726 
4727 int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4728 {
4729 	/* No RC6 before Ironlake and code is gone for ilk. */
4730 	if (INTEL_INFO(dev)->gen < 6)
4731 		return 0;
4732 
4733 	if (!enable_rc6)
4734 		return 0;
4735 
4736 	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4737 		DRM_INFO("RC6 disabled by BIOS\n");
4738 		return 0;
4739 	}
4740 
4741 	/* Respect the kernel parameter if it is set */
4742 	if (enable_rc6 >= 0) {
4743 		int mask;
4744 
4745 		if (HAS_RC6p(dev))
4746 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4747 			       INTEL_RC6pp_ENABLE;
4748 		else
4749 			mask = INTEL_RC6_ENABLE;
4750 
4751 		if ((enable_rc6 & mask) != enable_rc6)
4752 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4753 				      enable_rc6 & mask, enable_rc6, mask);
4754 
4755 		return enable_rc6 & mask;
4756 	}
4757 
4758 	if (IS_IVYBRIDGE(dev))
4759 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4760 
4761 	return INTEL_RC6_ENABLE;
4762 }
4763 
4764 int intel_enable_rc6(const struct drm_device *dev)
4765 {
4766 	return i915.enable_rc6;
4767 }
4768 
4769 static void gen6_init_rps_frequencies(struct drm_device *dev)
4770 {
4771 	struct drm_i915_private *dev_priv = dev->dev_private;
4772 	uint32_t rp_state_cap;
4773 	u32 ddcc_status = 0;
4774 	int ret;
4775 
4776 	/* All of these values are in units of 50MHz */
4777 	dev_priv->rps.cur_freq		= 0;
4778 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4779 	if (IS_BROXTON(dev)) {
4780 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4781 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4782 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4783 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4784 	} else {
4785 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4786 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4787 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4788 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4789 	}
4790 
4791 	/* hw_max = RP0 until we check for overclocking */
4792 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4793 
4794 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4795 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4796 	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4797 		ret = sandybridge_pcode_read(dev_priv,
4798 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4799 					&ddcc_status);
4800 		if (0 == ret)
4801 			dev_priv->rps.efficient_freq =
4802 				clamp_t(u8,
4803 					((ddcc_status >> 8) & 0xff),
4804 					dev_priv->rps.min_freq,
4805 					dev_priv->rps.max_freq);
4806 	}
4807 
4808 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4809 		/* Store the frequency values in 16.66 MHZ units, which is
4810 		   the natural hardware unit for SKL */
4811 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4812 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4813 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4814 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4815 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4816 	}
4817 
4818 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4819 
4820 	/* Preserve min/max settings in case of re-init */
4821 	if (dev_priv->rps.max_freq_softlimit == 0)
4822 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4823 
4824 	if (dev_priv->rps.min_freq_softlimit == 0) {
4825 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4826 			dev_priv->rps.min_freq_softlimit =
4827 				max_t(int, dev_priv->rps.efficient_freq,
4828 				      intel_freq_opcode(dev_priv, 450));
4829 		else
4830 			dev_priv->rps.min_freq_softlimit =
4831 				dev_priv->rps.min_freq;
4832 	}
4833 }
4834 
4835 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4836 static void gen9_enable_rps(struct drm_device *dev)
4837 {
4838 	struct drm_i915_private *dev_priv = dev->dev_private;
4839 
4840 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4841 
4842 	gen6_init_rps_frequencies(dev);
4843 
4844 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4845 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4846 		/*
4847 		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
4848 		 * clear out the Control register just to avoid inconsitency
4849 		 * with debugfs interface, which will show  Turbo as enabled
4850 		 * only and that is not expected by the User after adding the
4851 		 * WaGsvDisableTurbo. Apart from this there is no problem even
4852 		 * if the Turbo is left enabled in the Control register, as the
4853 		 * Up/Down interrupts would remain masked.
4854 		 */
4855 		gen9_disable_rps(dev);
4856 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4857 		return;
4858 	}
4859 
4860 	/* Program defaults and thresholds for RPS*/
4861 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4862 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4863 
4864 	/* 1 second timeout*/
4865 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4866 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4867 
4868 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4869 
4870 	/* Leaning on the below call to gen6_set_rps to program/setup the
4871 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4872 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4873 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4874 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4875 
4876 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4877 }
4878 
4879 static void gen9_enable_rc6(struct drm_device *dev)
4880 {
4881 	struct drm_i915_private *dev_priv = dev->dev_private;
4882 	struct intel_engine_cs *engine;
4883 	uint32_t rc6_mask = 0;
4884 
4885 	/* 1a: Software RC state - RC0 */
4886 	I915_WRITE(GEN6_RC_STATE, 0);
4887 
4888 	/* 1b: Get forcewake during program sequence. Although the driver
4889 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4890 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4891 
4892 	/* 2a: Disable RC states. */
4893 	I915_WRITE(GEN6_RC_CONTROL, 0);
4894 
4895 	/* 2b: Program RC6 thresholds.*/
4896 
4897 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4898 	if (IS_SKYLAKE(dev))
4899 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4900 	else
4901 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4902 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4903 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4904 	for_each_engine(engine, dev_priv)
4905 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4906 
4907 	if (HAS_GUC_UCODE(dev))
4908 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4909 
4910 	I915_WRITE(GEN6_RC_SLEEP, 0);
4911 
4912 	/* 2c: Program Coarse Power Gating Policies. */
4913 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4914 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4915 
4916 	/* 3a: Enable RC6 */
4917 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4918 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4919 	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4920 	/* WaRsUseTimeoutMode */
4921 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4922 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4923 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4924 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4925 			   GEN7_RC_CTL_TO_MODE |
4926 			   rc6_mask);
4927 	} else {
4928 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4929 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4930 			   GEN6_RC_CTL_EI_MODE(1) |
4931 			   rc6_mask);
4932 	}
4933 
4934 	/*
4935 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4936 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4937 	 */
4938 	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4939 		I915_WRITE(GEN9_PG_ENABLE, 0);
4940 	else
4941 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4942 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4943 
4944 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945 
4946 }
4947 
4948 static void gen8_enable_rps(struct drm_device *dev)
4949 {
4950 	struct drm_i915_private *dev_priv = dev->dev_private;
4951 	struct intel_engine_cs *engine;
4952 	uint32_t rc6_mask = 0;
4953 
4954 	/* 1a: Software RC state - RC0 */
4955 	I915_WRITE(GEN6_RC_STATE, 0);
4956 
4957 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4958 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4959 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4960 
4961 	/* 2a: Disable RC states. */
4962 	I915_WRITE(GEN6_RC_CONTROL, 0);
4963 
4964 	/* Initialize rps frequencies */
4965 	gen6_init_rps_frequencies(dev);
4966 
4967 	/* 2b: Program RC6 thresholds.*/
4968 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4969 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4970 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4971 	for_each_engine(engine, dev_priv)
4972 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4973 	I915_WRITE(GEN6_RC_SLEEP, 0);
4974 	if (IS_BROADWELL(dev))
4975 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4976 	else
4977 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4978 
4979 	/* 3: Enable RC6 */
4980 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4981 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4982 	intel_print_rc6_info(dev, rc6_mask);
4983 	if (IS_BROADWELL(dev))
4984 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4985 				GEN7_RC_CTL_TO_MODE |
4986 				rc6_mask);
4987 	else
4988 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4989 				GEN6_RC_CTL_EI_MODE(1) |
4990 				rc6_mask);
4991 
4992 	/* 4 Program defaults and thresholds for RPS*/
4993 	I915_WRITE(GEN6_RPNSWREQ,
4994 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4995 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4996 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4997 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4998 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4999 
5000 	/* Docs recommend 900MHz, and 300 MHz respectively */
5001 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5002 		   dev_priv->rps.max_freq_softlimit << 24 |
5003 		   dev_priv->rps.min_freq_softlimit << 16);
5004 
5005 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5006 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5007 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5008 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5009 
5010 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5011 
5012 	/* 5: Enable RPS */
5013 	I915_WRITE(GEN6_RP_CONTROL,
5014 		   GEN6_RP_MEDIA_TURBO |
5015 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5016 		   GEN6_RP_MEDIA_IS_GFX |
5017 		   GEN6_RP_ENABLE |
5018 		   GEN6_RP_UP_BUSY_AVG |
5019 		   GEN6_RP_DOWN_IDLE_AVG);
5020 
5021 	/* 6: Ring frequency + overclocking (our driver does this later */
5022 
5023 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5024 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5025 
5026 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5027 }
5028 
5029 static void gen6_enable_rps(struct drm_device *dev)
5030 {
5031 	struct drm_i915_private *dev_priv = dev->dev_private;
5032 	struct intel_engine_cs *engine;
5033 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5034 	u32 gtfifodbg;
5035 	int rc6_mode;
5036 	int ret;
5037 
5038 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5039 
5040 	/* Here begins a magic sequence of register writes to enable
5041 	 * auto-downclocking.
5042 	 *
5043 	 * Perhaps there might be some value in exposing these to
5044 	 * userspace...
5045 	 */
5046 	I915_WRITE(GEN6_RC_STATE, 0);
5047 
5048 	/* Clear the DBG now so we don't confuse earlier errors */
5049 	gtfifodbg = I915_READ(GTFIFODBG);
5050 	if (gtfifodbg) {
5051 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5052 		I915_WRITE(GTFIFODBG, gtfifodbg);
5053 	}
5054 
5055 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5056 
5057 	/* Initialize rps frequencies */
5058 	gen6_init_rps_frequencies(dev);
5059 
5060 	/* disable the counters and set deterministic thresholds */
5061 	I915_WRITE(GEN6_RC_CONTROL, 0);
5062 
5063 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5064 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5065 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5066 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5067 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5068 
5069 	for_each_engine(engine, dev_priv)
5070 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5071 
5072 	I915_WRITE(GEN6_RC_SLEEP, 0);
5073 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5074 	if (IS_IVYBRIDGE(dev))
5075 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5076 	else
5077 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5078 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5079 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5080 
5081 	/* Check if we are enabling RC6 */
5082 	rc6_mode = intel_enable_rc6(dev_priv->dev);
5083 	if (rc6_mode & INTEL_RC6_ENABLE)
5084 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5085 
5086 	/* We don't use those on Haswell */
5087 	if (!IS_HASWELL(dev)) {
5088 		if (rc6_mode & INTEL_RC6p_ENABLE)
5089 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5090 
5091 		if (rc6_mode & INTEL_RC6pp_ENABLE)
5092 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5093 	}
5094 
5095 	intel_print_rc6_info(dev, rc6_mask);
5096 
5097 	I915_WRITE(GEN6_RC_CONTROL,
5098 		   rc6_mask |
5099 		   GEN6_RC_CTL_EI_MODE(1) |
5100 		   GEN6_RC_CTL_HW_ENABLE);
5101 
5102 	/* Power down if completely idle for over 50ms */
5103 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5104 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5105 
5106 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5107 	if (ret)
5108 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5109 
5110 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5111 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5112 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5113 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5114 				 (pcu_mbox & 0xff) * 50);
5115 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5116 	}
5117 
5118 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5119 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5120 
5121 	rc6vids = 0;
5122 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5123 	if (IS_GEN6(dev) && ret) {
5124 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5125 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5126 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5127 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5128 		rc6vids &= 0xffff00;
5129 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5130 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5131 		if (ret)
5132 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5133 	}
5134 
5135 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5136 }
5137 
5138 static void __gen6_update_ring_freq(struct drm_device *dev)
5139 {
5140 	struct drm_i915_private *dev_priv = dev->dev_private;
5141 	int min_freq = 15;
5142 	unsigned int gpu_freq;
5143 	unsigned int max_ia_freq, min_ring_freq;
5144 	unsigned int max_gpu_freq, min_gpu_freq;
5145 	int scaling_factor = 180;
5146 
5147 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5148 
5149 #if 0
5150 	policy = cpufreq_cpu_get(0);
5151 	if (policy) {
5152 		max_ia_freq = policy->cpuinfo.max_freq;
5153 		cpufreq_cpu_put(policy);
5154 	} else {
5155 		/*
5156 		 * Default to measured freq if none found, PCU will ensure we
5157 		 * don't go over
5158 		 */
5159 		max_ia_freq = tsc_khz;
5160 	}
5161 #else
5162 	max_ia_freq = tsc_frequency / 1000;
5163 #endif
5164 
5165 	/* Convert from kHz to MHz */
5166 	max_ia_freq /= 1000;
5167 
5168 	min_ring_freq = I915_READ(DCLK) & 0xf;
5169 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5170 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5171 
5172 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5173 		/* Convert GT frequency to 50 HZ units */
5174 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5175 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5176 	} else {
5177 		min_gpu_freq = dev_priv->rps.min_freq;
5178 		max_gpu_freq = dev_priv->rps.max_freq;
5179 	}
5180 
5181 	/*
5182 	 * For each potential GPU frequency, load a ring frequency we'd like
5183 	 * to use for memory access.  We do this by specifying the IA frequency
5184 	 * the PCU should use as a reference to determine the ring frequency.
5185 	 */
5186 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5187 		int diff = max_gpu_freq - gpu_freq;
5188 		unsigned int ia_freq = 0, ring_freq = 0;
5189 
5190 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5191 			/*
5192 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5193 			 * No floor required for ring frequency on SKL.
5194 			 */
5195 			ring_freq = gpu_freq;
5196 		} else if (INTEL_INFO(dev)->gen >= 8) {
5197 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5198 			ring_freq = max(min_ring_freq, gpu_freq);
5199 		} else if (IS_HASWELL(dev)) {
5200 			ring_freq = mult_frac(gpu_freq, 5, 4);
5201 			ring_freq = max(min_ring_freq, ring_freq);
5202 			/* leave ia_freq as the default, chosen by cpufreq */
5203 		} else {
5204 			/* On older processors, there is no separate ring
5205 			 * clock domain, so in order to boost the bandwidth
5206 			 * of the ring, we need to upclock the CPU (ia_freq).
5207 			 *
5208 			 * For GPU frequencies less than 750MHz,
5209 			 * just use the lowest ring freq.
5210 			 */
5211 			if (gpu_freq < min_freq)
5212 				ia_freq = 800;
5213 			else
5214 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5215 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5216 		}
5217 
5218 		sandybridge_pcode_write(dev_priv,
5219 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5220 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5221 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5222 					gpu_freq);
5223 	}
5224 }
5225 
5226 void gen6_update_ring_freq(struct drm_device *dev)
5227 {
5228 	struct drm_i915_private *dev_priv = dev->dev_private;
5229 
5230 	if (!HAS_CORE_RING_FREQ(dev))
5231 		return;
5232 
5233 	mutex_lock(&dev_priv->rps.hw_lock);
5234 	__gen6_update_ring_freq(dev);
5235 	mutex_unlock(&dev_priv->rps.hw_lock);
5236 }
5237 
5238 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5239 {
5240 	struct drm_device *dev = dev_priv->dev;
5241 	u32 val, rp0;
5242 
5243 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5244 
5245 	switch (INTEL_INFO(dev)->eu_total) {
5246 	case 8:
5247 		/* (2 * 4) config */
5248 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5249 		break;
5250 	case 12:
5251 		/* (2 * 6) config */
5252 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5253 		break;
5254 	case 16:
5255 		/* (2 * 8) config */
5256 	default:
5257 		/* Setting (2 * 8) Min RP0 for any other combination */
5258 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5259 		break;
5260 	}
5261 
5262 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5263 
5264 	return rp0;
5265 }
5266 
5267 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5268 {
5269 	u32 val, rpe;
5270 
5271 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5272 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5273 
5274 	return rpe;
5275 }
5276 
5277 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5278 {
5279 	u32 val, rp1;
5280 
5281 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5282 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5283 
5284 	return rp1;
5285 }
5286 
5287 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5288 {
5289 	u32 val, rp1;
5290 
5291 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5292 
5293 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5294 
5295 	return rp1;
5296 }
5297 
5298 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5299 {
5300 	u32 val, rp0;
5301 
5302 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5303 
5304 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5305 	/* Clamp to max */
5306 	rp0 = min_t(u32, rp0, 0xea);
5307 
5308 	return rp0;
5309 }
5310 
5311 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5312 {
5313 	u32 val, rpe;
5314 
5315 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5316 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5317 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5318 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5319 
5320 	return rpe;
5321 }
5322 
5323 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5324 {
5325 	u32 val;
5326 
5327 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5328 	/*
5329 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5330 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5331 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5332 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5333 	 * to make sure it matches what Punit accepts.
5334 	 */
5335 	return max_t(u32, val, 0xc0);
5336 }
5337 
5338 /* Check that the pctx buffer wasn't move under us. */
5339 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5340 {
5341 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5342 
5343 	/* DragonFly - if EDID fails vlv_pctx can wind up NULL */
5344 	if (WARN_ON(!dev_priv->vlv_pctx))
5345 		return;
5346 
5347 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5348 			     dev_priv->vlv_pctx->stolen->start);
5349 }
5350 
5351 
5352 /* Check that the pcbr address is not empty. */
5353 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5354 {
5355 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5356 
5357 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5358 }
5359 
5360 static void cherryview_setup_pctx(struct drm_device *dev)
5361 {
5362 	struct drm_i915_private *dev_priv = to_i915(dev);
5363 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5364 	unsigned long pctx_paddr, paddr;
5365 	u32 pcbr;
5366 	int pctx_size = 32*1024;
5367 
5368 	pcbr = I915_READ(VLV_PCBR);
5369 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5370 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5371 		paddr = (dev_priv->mm.stolen_base +
5372 			 (ggtt->stolen_size - pctx_size));
5373 
5374 		pctx_paddr = (paddr & (~4095));
5375 		I915_WRITE(VLV_PCBR, pctx_paddr);
5376 	}
5377 
5378 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5379 }
5380 
5381 static void valleyview_setup_pctx(struct drm_device *dev)
5382 {
5383 	struct drm_i915_private *dev_priv = dev->dev_private;
5384 	struct drm_i915_gem_object *pctx;
5385 	unsigned long pctx_paddr;
5386 	u32 pcbr;
5387 	int pctx_size = 24*1024;
5388 
5389 	mutex_lock(&dev->struct_mutex);
5390 
5391 	pcbr = I915_READ(VLV_PCBR);
5392 	if (pcbr) {
5393 		/* BIOS set it up already, grab the pre-alloc'd space */
5394 		int pcbr_offset;
5395 
5396 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5397 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5398 								      pcbr_offset,
5399 								      I915_GTT_OFFSET_NONE,
5400 								      pctx_size);
5401 		goto out;
5402 	}
5403 
5404 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5405 
5406 	/*
5407 	 * From the Gunit register HAS:
5408 	 * The Gfx driver is expected to program this register and ensure
5409 	 * proper allocation within Gfx stolen memory.  For example, this
5410 	 * register should be programmed such than the PCBR range does not
5411 	 * overlap with other ranges, such as the frame buffer, protected
5412 	 * memory, or any other relevant ranges.
5413 	 */
5414 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5415 	if (!pctx) {
5416 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5417 		goto out;
5418 	}
5419 
5420 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5421 	I915_WRITE(VLV_PCBR, pctx_paddr);
5422 
5423 out:
5424 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5425 	dev_priv->vlv_pctx = pctx;
5426 	mutex_unlock(&dev->struct_mutex);
5427 }
5428 
5429 static void valleyview_cleanup_pctx(struct drm_device *dev)
5430 {
5431 	struct drm_i915_private *dev_priv = dev->dev_private;
5432 
5433 	if (WARN_ON(!dev_priv->vlv_pctx))
5434 		return;
5435 
5436 	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5437 	dev_priv->vlv_pctx = NULL;
5438 }
5439 
5440 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5441 {
5442 	dev_priv->rps.gpll_ref_freq =
5443 		vlv_get_cck_clock(dev_priv, "GPLL ref",
5444 				  CCK_GPLL_CLOCK_CONTROL,
5445 				  dev_priv->czclk_freq);
5446 
5447 	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5448 			 dev_priv->rps.gpll_ref_freq);
5449 }
5450 
5451 static void valleyview_init_gt_powersave(struct drm_device *dev)
5452 {
5453 	struct drm_i915_private *dev_priv = dev->dev_private;
5454 	u32 val;
5455 
5456 	valleyview_setup_pctx(dev);
5457 
5458 	vlv_init_gpll_ref_freq(dev_priv);
5459 
5460 	mutex_lock(&dev_priv->rps.hw_lock);
5461 
5462 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5463 	switch ((val >> 6) & 3) {
5464 	case 0:
5465 	case 1:
5466 		dev_priv->mem_freq = 800;
5467 		break;
5468 	case 2:
5469 		dev_priv->mem_freq = 1066;
5470 		break;
5471 	case 3:
5472 		dev_priv->mem_freq = 1333;
5473 		break;
5474 	}
5475 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5476 
5477 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5478 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5479 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5480 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5481 			 dev_priv->rps.max_freq);
5482 
5483 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5484 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5485 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5486 			 dev_priv->rps.efficient_freq);
5487 
5488 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5489 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5490 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5491 			 dev_priv->rps.rp1_freq);
5492 
5493 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5494 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5495 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5496 			 dev_priv->rps.min_freq);
5497 
5498 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5499 
5500 	/* Preserve min/max settings in case of re-init */
5501 	if (dev_priv->rps.max_freq_softlimit == 0)
5502 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5503 
5504 	if (dev_priv->rps.min_freq_softlimit == 0)
5505 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5506 
5507 	mutex_unlock(&dev_priv->rps.hw_lock);
5508 }
5509 
5510 static void cherryview_init_gt_powersave(struct drm_device *dev)
5511 {
5512 	struct drm_i915_private *dev_priv = dev->dev_private;
5513 	u32 val;
5514 
5515 	cherryview_setup_pctx(dev);
5516 
5517 	vlv_init_gpll_ref_freq(dev_priv);
5518 
5519 	mutex_lock(&dev_priv->rps.hw_lock);
5520 
5521 	mutex_lock(&dev_priv->sb_lock);
5522 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5523 	mutex_unlock(&dev_priv->sb_lock);
5524 
5525 	switch ((val >> 2) & 0x7) {
5526 	case 3:
5527 		dev_priv->mem_freq = 2000;
5528 		break;
5529 	default:
5530 		dev_priv->mem_freq = 1600;
5531 		break;
5532 	}
5533 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5534 
5535 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5536 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5537 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5538 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5539 			 dev_priv->rps.max_freq);
5540 
5541 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5542 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5543 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5544 			 dev_priv->rps.efficient_freq);
5545 
5546 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5547 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5548 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5549 			 dev_priv->rps.rp1_freq);
5550 
5551 	/* PUnit validated range is only [RPe, RP0] */
5552 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5553 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5554 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5555 			 dev_priv->rps.min_freq);
5556 
5557 	WARN_ONCE((dev_priv->rps.max_freq |
5558 		   dev_priv->rps.efficient_freq |
5559 		   dev_priv->rps.rp1_freq |
5560 		   dev_priv->rps.min_freq) & 1,
5561 		  "Odd GPU freq values\n");
5562 
5563 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5564 
5565 	/* Preserve min/max settings in case of re-init */
5566 	if (dev_priv->rps.max_freq_softlimit == 0)
5567 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5568 
5569 	if (dev_priv->rps.min_freq_softlimit == 0)
5570 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5571 
5572 	mutex_unlock(&dev_priv->rps.hw_lock);
5573 }
5574 
5575 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5576 {
5577 	valleyview_cleanup_pctx(dev);
5578 }
5579 
5580 static void cherryview_enable_rps(struct drm_device *dev)
5581 {
5582 	struct drm_i915_private *dev_priv = dev->dev_private;
5583 	struct intel_engine_cs *engine;
5584 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5585 
5586 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5587 
5588 	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5589 					     GT_FIFO_FREE_ENTRIES_CHV);
5590 	if (gtfifodbg) {
5591 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5592 				 gtfifodbg);
5593 		I915_WRITE(GTFIFODBG, gtfifodbg);
5594 	}
5595 
5596 	cherryview_check_pctx(dev_priv);
5597 
5598 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5599 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5600 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5601 
5602 	/*  Disable RC states. */
5603 	I915_WRITE(GEN6_RC_CONTROL, 0);
5604 
5605 	/* 2a: Program RC6 thresholds.*/
5606 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5607 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5608 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5609 
5610 	for_each_engine(engine, dev_priv)
5611 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5612 	I915_WRITE(GEN6_RC_SLEEP, 0);
5613 
5614 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5615 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5616 
5617 	/* allows RC6 residency counter to work */
5618 	I915_WRITE(VLV_COUNTER_CONTROL,
5619 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5620 				      VLV_MEDIA_RC6_COUNT_EN |
5621 				      VLV_RENDER_RC6_COUNT_EN));
5622 
5623 	/* For now we assume BIOS is allocating and populating the PCBR  */
5624 	pcbr = I915_READ(VLV_PCBR);
5625 
5626 	/* 3: Enable RC6 */
5627 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5628 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5629 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5630 
5631 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5632 
5633 	/* 4 Program defaults and thresholds for RPS*/
5634 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5635 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5636 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5637 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5638 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5639 
5640 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5641 
5642 	/* 5: Enable RPS */
5643 	I915_WRITE(GEN6_RP_CONTROL,
5644 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5645 		   GEN6_RP_MEDIA_IS_GFX |
5646 		   GEN6_RP_ENABLE |
5647 		   GEN6_RP_UP_BUSY_AVG |
5648 		   GEN6_RP_DOWN_IDLE_AVG);
5649 
5650 	/* Setting Fixed Bias */
5651 	val = VLV_OVERRIDE_EN |
5652 		  VLV_SOC_TDP_EN |
5653 		  CHV_BIAS_CPU_50_SOC_50;
5654 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5655 
5656 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5657 
5658 	/* RPS code assumes GPLL is used */
5659 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5660 
5661 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5662 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5663 
5664 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5665 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5666 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5667 			 dev_priv->rps.cur_freq);
5668 
5669 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5670 			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5671 			 dev_priv->rps.idle_freq);
5672 
5673 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5674 
5675 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5676 }
5677 
5678 static void valleyview_enable_rps(struct drm_device *dev)
5679 {
5680 	struct drm_i915_private *dev_priv = dev->dev_private;
5681 	struct intel_engine_cs *engine;
5682 	u32 gtfifodbg, val, rc6_mode = 0;
5683 
5684 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5685 
5686 	valleyview_check_pctx(dev_priv);
5687 
5688 	gtfifodbg = I915_READ(GTFIFODBG);
5689 	if (gtfifodbg) {
5690 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5691 				 gtfifodbg);
5692 		I915_WRITE(GTFIFODBG, gtfifodbg);
5693 	}
5694 
5695 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5696 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5697 
5698 	/*  Disable RC states. */
5699 	I915_WRITE(GEN6_RC_CONTROL, 0);
5700 
5701 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5702 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5703 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5704 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5705 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5706 
5707 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5708 
5709 	I915_WRITE(GEN6_RP_CONTROL,
5710 		   GEN6_RP_MEDIA_TURBO |
5711 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5712 		   GEN6_RP_MEDIA_IS_GFX |
5713 		   GEN6_RP_ENABLE |
5714 		   GEN6_RP_UP_BUSY_AVG |
5715 		   GEN6_RP_DOWN_IDLE_CONT);
5716 
5717 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5718 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5719 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5720 
5721 	for_each_engine(engine, dev_priv)
5722 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5723 
5724 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5725 
5726 	/* allows RC6 residency counter to work */
5727 	I915_WRITE(VLV_COUNTER_CONTROL,
5728 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5729 				      VLV_RENDER_RC0_COUNT_EN |
5730 				      VLV_MEDIA_RC6_COUNT_EN |
5731 				      VLV_RENDER_RC6_COUNT_EN));
5732 
5733 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5734 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5735 
5736 	intel_print_rc6_info(dev, rc6_mode);
5737 
5738 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5739 
5740 	/* Setting Fixed Bias */
5741 	val = VLV_OVERRIDE_EN |
5742 		  VLV_SOC_TDP_EN |
5743 		  VLV_BIAS_CPU_125_SOC_875;
5744 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5745 
5746 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5747 
5748 	/* RPS code assumes GPLL is used */
5749 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5750 
5751 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5752 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5753 
5754 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5755 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5756 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5757 			 dev_priv->rps.cur_freq);
5758 
5759 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5760 			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5761 			 dev_priv->rps.idle_freq);
5762 
5763 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5764 
5765 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5766 }
5767 
5768 static unsigned long intel_pxfreq(u32 vidfreq)
5769 {
5770 	unsigned long freq;
5771 	int div = (vidfreq & 0x3f0000) >> 16;
5772 	int post = (vidfreq & 0x3000) >> 12;
5773 	int pre = (vidfreq & 0x7);
5774 
5775 	if (!pre)
5776 		return 0;
5777 
5778 	freq = ((div * 133333) / ((1<<post) * pre));
5779 
5780 	return freq;
5781 }
5782 
5783 static const struct cparams {
5784 	u16 i;
5785 	u16 t;
5786 	u16 m;
5787 	u16 c;
5788 } cparams[] = {
5789 	{ 1, 1333, 301, 28664 },
5790 	{ 1, 1066, 294, 24460 },
5791 	{ 1, 800, 294, 25192 },
5792 	{ 0, 1333, 276, 27605 },
5793 	{ 0, 1066, 276, 27605 },
5794 	{ 0, 800, 231, 23784 },
5795 };
5796 
5797 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5798 {
5799 	u64 total_count, diff, ret;
5800 	u32 count1, count2, count3, m = 0, c = 0;
5801 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5802 	int i;
5803 
5804 	assert_spin_locked(&mchdev_lock);
5805 
5806 	diff1 = now - dev_priv->ips.last_time1;
5807 
5808 	/* Prevent division-by-zero if we are asking too fast.
5809 	 * Also, we don't get interesting results if we are polling
5810 	 * faster than once in 10ms, so just return the saved value
5811 	 * in such cases.
5812 	 */
5813 	if (diff1 <= 10)
5814 		return dev_priv->ips.chipset_power;
5815 
5816 	count1 = I915_READ(DMIEC);
5817 	count2 = I915_READ(DDREC);
5818 	count3 = I915_READ(CSIEC);
5819 
5820 	total_count = count1 + count2 + count3;
5821 
5822 	/* FIXME: handle per-counter overflow */
5823 	if (total_count < dev_priv->ips.last_count1) {
5824 		diff = ~0UL - dev_priv->ips.last_count1;
5825 		diff += total_count;
5826 	} else {
5827 		diff = total_count - dev_priv->ips.last_count1;
5828 	}
5829 
5830 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5831 		if (cparams[i].i == dev_priv->ips.c_m &&
5832 		    cparams[i].t == dev_priv->ips.r_t) {
5833 			m = cparams[i].m;
5834 			c = cparams[i].c;
5835 			break;
5836 		}
5837 	}
5838 
5839 	diff = div_u64(diff, diff1);
5840 	ret = ((m * diff) + c);
5841 	ret = div_u64(ret, 10);
5842 
5843 	dev_priv->ips.last_count1 = total_count;
5844 	dev_priv->ips.last_time1 = now;
5845 
5846 	dev_priv->ips.chipset_power = ret;
5847 
5848 	return ret;
5849 }
5850 
5851 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5852 {
5853 	struct drm_device *dev = dev_priv->dev;
5854 	unsigned long val;
5855 
5856 	if (INTEL_INFO(dev)->gen != 5)
5857 		return 0;
5858 
5859 	spin_lock_irq(&mchdev_lock);
5860 
5861 	val = __i915_chipset_val(dev_priv);
5862 
5863 	spin_unlock_irq(&mchdev_lock);
5864 
5865 	return val;
5866 }
5867 
5868 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5869 {
5870 	unsigned long m, x, b;
5871 	u32 tsfs;
5872 
5873 	tsfs = I915_READ(TSFS);
5874 
5875 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5876 	x = I915_READ8(TR1);
5877 
5878 	b = tsfs & TSFS_INTR_MASK;
5879 
5880 	return ((m * x) / 127) - b;
5881 }
5882 
5883 static int _pxvid_to_vd(u8 pxvid)
5884 {
5885 	if (pxvid == 0)
5886 		return 0;
5887 
5888 	if (pxvid >= 8 && pxvid < 31)
5889 		pxvid = 31;
5890 
5891 	return (pxvid + 2) * 125;
5892 }
5893 
5894 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5895 {
5896 	struct drm_device *dev = dev_priv->dev;
5897 	const int vd = _pxvid_to_vd(pxvid);
5898 	const int vm = vd - 1125;
5899 
5900 	if (INTEL_INFO(dev)->is_mobile)
5901 		return vm > 0 ? vm : 0;
5902 
5903 	return vd;
5904 }
5905 
5906 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5907 {
5908 	u64 now, diff, diffms;
5909 	u32 count;
5910 
5911 	assert_spin_locked(&mchdev_lock);
5912 
5913 	now = ktime_get_raw_ns();
5914 	diffms = now - dev_priv->ips.last_time2;
5915 	do_div(diffms, NSEC_PER_MSEC);
5916 
5917 	/* Don't divide by 0 */
5918 	if (!diffms)
5919 		return;
5920 
5921 	count = I915_READ(GFXEC);
5922 
5923 	if (count < dev_priv->ips.last_count2) {
5924 		diff = ~0UL - dev_priv->ips.last_count2;
5925 		diff += count;
5926 	} else {
5927 		diff = count - dev_priv->ips.last_count2;
5928 	}
5929 
5930 	dev_priv->ips.last_count2 = count;
5931 	dev_priv->ips.last_time2 = now;
5932 
5933 	/* More magic constants... */
5934 	diff = diff * 1181;
5935 	diff = div_u64(diff, diffms * 10);
5936 	dev_priv->ips.gfx_power = diff;
5937 }
5938 
5939 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5940 {
5941 	struct drm_device *dev = dev_priv->dev;
5942 
5943 	if (INTEL_INFO(dev)->gen != 5)
5944 		return;
5945 
5946 	spin_lock_irq(&mchdev_lock);
5947 
5948 	__i915_update_gfx_val(dev_priv);
5949 
5950 	spin_unlock_irq(&mchdev_lock);
5951 }
5952 
5953 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5954 {
5955 	unsigned long t, corr, state1, corr2, state2;
5956 	u32 pxvid, ext_v;
5957 
5958 	assert_spin_locked(&mchdev_lock);
5959 
5960 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5961 	pxvid = (pxvid >> 24) & 0x7f;
5962 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5963 
5964 	state1 = ext_v;
5965 
5966 	t = i915_mch_val(dev_priv);
5967 
5968 	/* Revel in the empirically derived constants */
5969 
5970 	/* Correction factor in 1/100000 units */
5971 	if (t > 80)
5972 		corr = ((t * 2349) + 135940);
5973 	else if (t >= 50)
5974 		corr = ((t * 964) + 29317);
5975 	else /* < 50 */
5976 		corr = ((t * 301) + 1004);
5977 
5978 	corr = corr * ((150142 * state1) / 10000 - 78642);
5979 	corr /= 100000;
5980 	corr2 = (corr * dev_priv->ips.corr);
5981 
5982 	state2 = (corr2 * state1) / 10000;
5983 	state2 /= 100; /* convert to mW */
5984 
5985 	__i915_update_gfx_val(dev_priv);
5986 
5987 	return dev_priv->ips.gfx_power + state2;
5988 }
5989 
5990 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5991 {
5992 	struct drm_device *dev = dev_priv->dev;
5993 	unsigned long val;
5994 
5995 	if (INTEL_INFO(dev)->gen != 5)
5996 		return 0;
5997 
5998 	spin_lock_irq(&mchdev_lock);
5999 
6000 	val = __i915_gfx_val(dev_priv);
6001 
6002 	spin_unlock_irq(&mchdev_lock);
6003 
6004 	return val;
6005 }
6006 
6007 /**
6008  * i915_read_mch_val - return value for IPS use
6009  *
6010  * Calculate and return a value for the IPS driver to use when deciding whether
6011  * we have thermal and power headroom to increase CPU or GPU power budget.
6012  */
6013 unsigned long i915_read_mch_val(void)
6014 {
6015 	struct drm_i915_private *dev_priv;
6016 	unsigned long chipset_val, graphics_val, ret = 0;
6017 
6018 	spin_lock_irq(&mchdev_lock);
6019 	if (!i915_mch_dev)
6020 		goto out_unlock;
6021 	dev_priv = i915_mch_dev;
6022 
6023 	chipset_val = __i915_chipset_val(dev_priv);
6024 	graphics_val = __i915_gfx_val(dev_priv);
6025 
6026 	ret = chipset_val + graphics_val;
6027 
6028 out_unlock:
6029 	spin_unlock_irq(&mchdev_lock);
6030 
6031 	return ret;
6032 }
6033 
6034 /**
6035  * i915_gpu_raise - raise GPU frequency limit
6036  *
6037  * Raise the limit; IPS indicates we have thermal headroom.
6038  */
6039 bool i915_gpu_raise(void)
6040 {
6041 	struct drm_i915_private *dev_priv;
6042 	bool ret = true;
6043 
6044 	spin_lock_irq(&mchdev_lock);
6045 	if (!i915_mch_dev) {
6046 		ret = false;
6047 		goto out_unlock;
6048 	}
6049 	dev_priv = i915_mch_dev;
6050 
6051 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6052 		dev_priv->ips.max_delay--;
6053 
6054 out_unlock:
6055 	spin_unlock_irq(&mchdev_lock);
6056 
6057 	return ret;
6058 }
6059 
6060 /**
6061  * i915_gpu_lower - lower GPU frequency limit
6062  *
6063  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6064  * frequency maximum.
6065  */
6066 bool i915_gpu_lower(void)
6067 {
6068 	struct drm_i915_private *dev_priv;
6069 	bool ret = true;
6070 
6071 	spin_lock_irq(&mchdev_lock);
6072 	if (!i915_mch_dev) {
6073 		ret = false;
6074 		goto out_unlock;
6075 	}
6076 	dev_priv = i915_mch_dev;
6077 
6078 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6079 		dev_priv->ips.max_delay++;
6080 
6081 out_unlock:
6082 	spin_unlock_irq(&mchdev_lock);
6083 
6084 	return ret;
6085 }
6086 
6087 /**
6088  * i915_gpu_busy - indicate GPU business to IPS
6089  *
6090  * Tell the IPS driver whether or not the GPU is busy.
6091  */
6092 bool i915_gpu_busy(void)
6093 {
6094 	struct drm_i915_private *dev_priv;
6095 	struct intel_engine_cs *engine;
6096 	bool ret = false;
6097 
6098 	spin_lock_irq(&mchdev_lock);
6099 	if (!i915_mch_dev)
6100 		goto out_unlock;
6101 	dev_priv = i915_mch_dev;
6102 
6103 	for_each_engine(engine, dev_priv)
6104 		ret |= !list_empty(&engine->request_list);
6105 
6106 out_unlock:
6107 	spin_unlock_irq(&mchdev_lock);
6108 
6109 	return ret;
6110 }
6111 
6112 /**
6113  * i915_gpu_turbo_disable - disable graphics turbo
6114  *
6115  * Disable graphics turbo by resetting the max frequency and setting the
6116  * current frequency to the default.
6117  */
6118 bool i915_gpu_turbo_disable(void)
6119 {
6120 	struct drm_i915_private *dev_priv;
6121 	bool ret = true;
6122 
6123 	spin_lock_irq(&mchdev_lock);
6124 	if (!i915_mch_dev) {
6125 		ret = false;
6126 		goto out_unlock;
6127 	}
6128 	dev_priv = i915_mch_dev;
6129 
6130 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6131 
6132 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6133 		ret = false;
6134 
6135 out_unlock:
6136 	spin_unlock_irq(&mchdev_lock);
6137 
6138 	return ret;
6139 }
6140 
6141 #if 0
6142 /**
6143  * Tells the intel_ips driver that the i915 driver is now loaded, if
6144  * IPS got loaded first.
6145  *
6146  * This awkward dance is so that neither module has to depend on the
6147  * other in order for IPS to do the appropriate communication of
6148  * GPU turbo limits to i915.
6149  */
6150 static void
6151 ips_ping_for_i915_load(void)
6152 {
6153 	void (*link)(void);
6154 
6155 	link = symbol_get(ips_link_to_i915_driver);
6156 	if (link) {
6157 		link();
6158 		symbol_put(ips_link_to_i915_driver);
6159 	}
6160 }
6161 #endif
6162 
6163 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6164 {
6165 	/* We only register the i915 ips part with intel-ips once everything is
6166 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6167 	spin_lock_irq(&mchdev_lock);
6168 	i915_mch_dev = dev_priv;
6169 	spin_unlock_irq(&mchdev_lock);
6170 
6171 }
6172 
6173 void intel_gpu_ips_teardown(void)
6174 {
6175 	spin_lock_irq(&mchdev_lock);
6176 	i915_mch_dev = NULL;
6177 	spin_unlock_irq(&mchdev_lock);
6178 }
6179 
6180 static void intel_init_emon(struct drm_device *dev)
6181 {
6182 	struct drm_i915_private *dev_priv = dev->dev_private;
6183 	u32 lcfuse;
6184 	u8 pxw[16];
6185 	int i;
6186 
6187 	/* Disable to program */
6188 	I915_WRITE(ECR, 0);
6189 	POSTING_READ(ECR);
6190 
6191 	/* Program energy weights for various events */
6192 	I915_WRITE(SDEW, 0x15040d00);
6193 	I915_WRITE(CSIEW0, 0x007f0000);
6194 	I915_WRITE(CSIEW1, 0x1e220004);
6195 	I915_WRITE(CSIEW2, 0x04000004);
6196 
6197 	for (i = 0; i < 5; i++)
6198 		I915_WRITE(PEW(i), 0);
6199 	for (i = 0; i < 3; i++)
6200 		I915_WRITE(DEW(i), 0);
6201 
6202 	/* Program P-state weights to account for frequency power adjustment */
6203 	for (i = 0; i < 16; i++) {
6204 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6205 		unsigned long freq = intel_pxfreq(pxvidfreq);
6206 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6207 			PXVFREQ_PX_SHIFT;
6208 		unsigned long val;
6209 
6210 		val = vid * vid;
6211 		val *= (freq / 1000);
6212 		val *= 255;
6213 		val /= (127*127*900);
6214 		if (val > 0xff)
6215 			DRM_ERROR("bad pxval: %ld\n", val);
6216 		pxw[i] = val;
6217 	}
6218 	/* Render standby states get 0 weight */
6219 	pxw[14] = 0;
6220 	pxw[15] = 0;
6221 
6222 	for (i = 0; i < 4; i++) {
6223 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6224 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6225 		I915_WRITE(PXW(i), val);
6226 	}
6227 
6228 	/* Adjust magic regs to magic values (more experimental results) */
6229 	I915_WRITE(OGW0, 0);
6230 	I915_WRITE(OGW1, 0);
6231 	I915_WRITE(EG0, 0x00007f00);
6232 	I915_WRITE(EG1, 0x0000000e);
6233 	I915_WRITE(EG2, 0x000e0000);
6234 	I915_WRITE(EG3, 0x68000300);
6235 	I915_WRITE(EG4, 0x42000000);
6236 	I915_WRITE(EG5, 0x00140031);
6237 	I915_WRITE(EG6, 0);
6238 	I915_WRITE(EG7, 0);
6239 
6240 	for (i = 0; i < 8; i++)
6241 		I915_WRITE(PXWL(i), 0);
6242 
6243 	/* Enable PMON + select events */
6244 	I915_WRITE(ECR, 0x80000019);
6245 
6246 	lcfuse = I915_READ(LCFUSE02);
6247 
6248 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6249 }
6250 
6251 void intel_init_gt_powersave(struct drm_device *dev)
6252 {
6253 	struct drm_i915_private *dev_priv = dev->dev_private;
6254 
6255 	/*
6256 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6257 	 * requirement.
6258 	 */
6259 	if (!i915.enable_rc6) {
6260 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6261 		intel_runtime_pm_get(dev_priv);
6262 	}
6263 
6264 	if (IS_CHERRYVIEW(dev))
6265 		cherryview_init_gt_powersave(dev);
6266 	else if (IS_VALLEYVIEW(dev))
6267 		valleyview_init_gt_powersave(dev);
6268 }
6269 
6270 void intel_cleanup_gt_powersave(struct drm_device *dev)
6271 {
6272 	struct drm_i915_private *dev_priv = dev->dev_private;
6273 
6274 	if (IS_CHERRYVIEW(dev))
6275 		return;
6276 	else if (IS_VALLEYVIEW(dev))
6277 		valleyview_cleanup_gt_powersave(dev);
6278 
6279 	if (!i915.enable_rc6)
6280 		intel_runtime_pm_put(dev_priv);
6281 }
6282 
6283 static void gen6_suspend_rps(struct drm_device *dev)
6284 {
6285 	struct drm_i915_private *dev_priv = dev->dev_private;
6286 
6287 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6288 
6289 	gen6_disable_rps_interrupts(dev);
6290 }
6291 
6292 /**
6293  * intel_suspend_gt_powersave - suspend PM work and helper threads
6294  * @dev: drm device
6295  *
6296  * We don't want to disable RC6 or other features here, we just want
6297  * to make sure any work we've queued has finished and won't bother
6298  * us while we're suspended.
6299  */
6300 void intel_suspend_gt_powersave(struct drm_device *dev)
6301 {
6302 	struct drm_i915_private *dev_priv = dev->dev_private;
6303 
6304 	if (INTEL_INFO(dev)->gen < 6)
6305 		return;
6306 
6307 	gen6_suspend_rps(dev);
6308 
6309 	/* Force GPU to min freq during suspend */
6310 	gen6_rps_idle(dev_priv);
6311 }
6312 
6313 void intel_disable_gt_powersave(struct drm_device *dev)
6314 {
6315 	struct drm_i915_private *dev_priv = dev->dev_private;
6316 
6317 	if (IS_IRONLAKE_M(dev)) {
6318 		ironlake_disable_drps(dev);
6319 	} else if (INTEL_INFO(dev)->gen >= 6) {
6320 		intel_suspend_gt_powersave(dev);
6321 
6322 		mutex_lock(&dev_priv->rps.hw_lock);
6323 		if (INTEL_INFO(dev)->gen >= 9) {
6324 			gen9_disable_rc6(dev);
6325 			gen9_disable_rps(dev);
6326 		} else if (IS_CHERRYVIEW(dev))
6327 			cherryview_disable_rps(dev);
6328 		else if (IS_VALLEYVIEW(dev))
6329 			valleyview_disable_rps(dev);
6330 		else
6331 			gen6_disable_rps(dev);
6332 
6333 		dev_priv->rps.enabled = false;
6334 		mutex_unlock(&dev_priv->rps.hw_lock);
6335 	}
6336 }
6337 
6338 static void intel_gen6_powersave_work(struct work_struct *work)
6339 {
6340 	struct drm_i915_private *dev_priv =
6341 		container_of(work, struct drm_i915_private,
6342 			     rps.delayed_resume_work.work);
6343 	struct drm_device *dev = dev_priv->dev;
6344 
6345 	mutex_lock(&dev_priv->rps.hw_lock);
6346 
6347 	gen6_reset_rps_interrupts(dev);
6348 
6349 	if (IS_CHERRYVIEW(dev)) {
6350 		cherryview_enable_rps(dev);
6351 	} else if (IS_VALLEYVIEW(dev)) {
6352 		valleyview_enable_rps(dev);
6353 	} else if (INTEL_INFO(dev)->gen >= 9) {
6354 		gen9_enable_rc6(dev);
6355 		gen9_enable_rps(dev);
6356 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6357 			__gen6_update_ring_freq(dev);
6358 	} else if (IS_BROADWELL(dev)) {
6359 		gen8_enable_rps(dev);
6360 		__gen6_update_ring_freq(dev);
6361 	} else {
6362 		gen6_enable_rps(dev);
6363 		__gen6_update_ring_freq(dev);
6364 	}
6365 
6366 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6367 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6368 
6369 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6370 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6371 
6372 	dev_priv->rps.enabled = true;
6373 
6374 	gen6_enable_rps_interrupts(dev);
6375 
6376 	mutex_unlock(&dev_priv->rps.hw_lock);
6377 
6378 	intel_runtime_pm_put(dev_priv);
6379 }
6380 
6381 void intel_enable_gt_powersave(struct drm_device *dev)
6382 {
6383 	struct drm_i915_private *dev_priv = dev->dev_private;
6384 
6385 	/* Powersaving is controlled by the host when inside a VM */
6386 	if (intel_vgpu_active(dev))
6387 		return;
6388 
6389 	if (IS_IRONLAKE_M(dev)) {
6390 		ironlake_enable_drps(dev);
6391 		mutex_lock(&dev->struct_mutex);
6392 		intel_init_emon(dev);
6393 		mutex_unlock(&dev->struct_mutex);
6394 	} else if (INTEL_INFO(dev)->gen >= 6) {
6395 		/*
6396 		 * PCU communication is slow and this doesn't need to be
6397 		 * done at any specific time, so do this out of our fast path
6398 		 * to make resume and init faster.
6399 		 *
6400 		 * We depend on the HW RC6 power context save/restore
6401 		 * mechanism when entering D3 through runtime PM suspend. So
6402 		 * disable RPM until RPS/RC6 is properly setup. We can only
6403 		 * get here via the driver load/system resume/runtime resume
6404 		 * paths, so the _noresume version is enough (and in case of
6405 		 * runtime resume it's necessary).
6406 		 */
6407 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6408 					   round_jiffies_up_relative(HZ)))
6409 			intel_runtime_pm_get_noresume(dev_priv);
6410 	}
6411 }
6412 
6413 void intel_reset_gt_powersave(struct drm_device *dev)
6414 {
6415 	struct drm_i915_private *dev_priv = dev->dev_private;
6416 
6417 	if (INTEL_INFO(dev)->gen < 6)
6418 		return;
6419 
6420 	gen6_suspend_rps(dev);
6421 	dev_priv->rps.enabled = false;
6422 }
6423 
6424 static void ibx_init_clock_gating(struct drm_device *dev)
6425 {
6426 	struct drm_i915_private *dev_priv = dev->dev_private;
6427 
6428 	/*
6429 	 * On Ibex Peak and Cougar Point, we need to disable clock
6430 	 * gating for the panel power sequencer or it will fail to
6431 	 * start up when no ports are active.
6432 	 */
6433 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6434 }
6435 
6436 static void g4x_disable_trickle_feed(struct drm_device *dev)
6437 {
6438 	struct drm_i915_private *dev_priv = dev->dev_private;
6439 	enum i915_pipe pipe;
6440 
6441 	for_each_pipe(dev_priv, pipe) {
6442 		I915_WRITE(DSPCNTR(pipe),
6443 			   I915_READ(DSPCNTR(pipe)) |
6444 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6445 
6446 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6447 		POSTING_READ(DSPSURF(pipe));
6448 	}
6449 }
6450 
6451 static void ilk_init_lp_watermarks(struct drm_device *dev)
6452 {
6453 	struct drm_i915_private *dev_priv = dev->dev_private;
6454 
6455 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6456 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6457 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6458 
6459 	/*
6460 	 * Don't touch WM1S_LP_EN here.
6461 	 * Doing so could cause underruns.
6462 	 */
6463 }
6464 
6465 static void ironlake_init_clock_gating(struct drm_device *dev)
6466 {
6467 	struct drm_i915_private *dev_priv = dev->dev_private;
6468 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6469 
6470 	/*
6471 	 * Required for FBC
6472 	 * WaFbcDisableDpfcClockGating:ilk
6473 	 */
6474 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6475 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6476 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6477 
6478 	I915_WRITE(PCH_3DCGDIS0,
6479 		   MARIUNIT_CLOCK_GATE_DISABLE |
6480 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6481 	I915_WRITE(PCH_3DCGDIS1,
6482 		   VFMUNIT_CLOCK_GATE_DISABLE);
6483 
6484 	/*
6485 	 * According to the spec the following bits should be set in
6486 	 * order to enable memory self-refresh
6487 	 * The bit 22/21 of 0x42004
6488 	 * The bit 5 of 0x42020
6489 	 * The bit 15 of 0x45000
6490 	 */
6491 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6492 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6493 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6494 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6495 	I915_WRITE(DISP_ARB_CTL,
6496 		   (I915_READ(DISP_ARB_CTL) |
6497 		    DISP_FBC_WM_DIS));
6498 
6499 	ilk_init_lp_watermarks(dev);
6500 
6501 	/*
6502 	 * Based on the document from hardware guys the following bits
6503 	 * should be set unconditionally in order to enable FBC.
6504 	 * The bit 22 of 0x42000
6505 	 * The bit 22 of 0x42004
6506 	 * The bit 7,8,9 of 0x42020.
6507 	 */
6508 	if (IS_IRONLAKE_M(dev)) {
6509 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6510 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6511 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6512 			   ILK_FBCQ_DIS);
6513 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6514 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6515 			   ILK_DPARB_GATE);
6516 	}
6517 
6518 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6519 
6520 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6521 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6522 		   ILK_ELPIN_409_SELECT);
6523 	I915_WRITE(_3D_CHICKEN2,
6524 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6525 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6526 
6527 	/* WaDisableRenderCachePipelinedFlush:ilk */
6528 	I915_WRITE(CACHE_MODE_0,
6529 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6530 
6531 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6532 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6533 
6534 	g4x_disable_trickle_feed(dev);
6535 
6536 	ibx_init_clock_gating(dev);
6537 }
6538 
6539 static void cpt_init_clock_gating(struct drm_device *dev)
6540 {
6541 	struct drm_i915_private *dev_priv = dev->dev_private;
6542 	int pipe;
6543 	uint32_t val;
6544 
6545 	/*
6546 	 * On Ibex Peak and Cougar Point, we need to disable clock
6547 	 * gating for the panel power sequencer or it will fail to
6548 	 * start up when no ports are active.
6549 	 */
6550 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6551 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6552 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6553 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6554 		   DPLS_EDP_PPS_FIX_DIS);
6555 	/* The below fixes the weird display corruption, a few pixels shifted
6556 	 * downward, on (only) LVDS of some HP laptops with IVY.
6557 	 */
6558 	for_each_pipe(dev_priv, pipe) {
6559 		val = I915_READ(TRANS_CHICKEN2(pipe));
6560 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6561 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6562 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6563 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6564 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6565 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6566 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6567 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6568 	}
6569 	/* WADP0ClockGatingDisable */
6570 	for_each_pipe(dev_priv, pipe) {
6571 		I915_WRITE(TRANS_CHICKEN1(pipe),
6572 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6573 	}
6574 }
6575 
6576 static void gen6_check_mch_setup(struct drm_device *dev)
6577 {
6578 	struct drm_i915_private *dev_priv = dev->dev_private;
6579 	uint32_t tmp;
6580 
6581 	tmp = I915_READ(MCH_SSKPD);
6582 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6583 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6584 			      tmp);
6585 }
6586 
6587 static void gen6_init_clock_gating(struct drm_device *dev)
6588 {
6589 	struct drm_i915_private *dev_priv = dev->dev_private;
6590 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6591 
6592 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6593 
6594 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6595 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6596 		   ILK_ELPIN_409_SELECT);
6597 
6598 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6599 	I915_WRITE(_3D_CHICKEN,
6600 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6601 
6602 	/* WaDisable_RenderCache_OperationalFlush:snb */
6603 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6604 
6605 	/*
6606 	 * BSpec recoomends 8x4 when MSAA is used,
6607 	 * however in practice 16x4 seems fastest.
6608 	 *
6609 	 * Note that PS/WM thread counts depend on the WIZ hashing
6610 	 * disable bit, which we don't touch here, but it's good
6611 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6612 	 */
6613 	I915_WRITE(GEN6_GT_MODE,
6614 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6615 
6616 	ilk_init_lp_watermarks(dev);
6617 
6618 	I915_WRITE(CACHE_MODE_0,
6619 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6620 
6621 	I915_WRITE(GEN6_UCGCTL1,
6622 		   I915_READ(GEN6_UCGCTL1) |
6623 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6624 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6625 
6626 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6627 	 * gating disable must be set.  Failure to set it results in
6628 	 * flickering pixels due to Z write ordering failures after
6629 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6630 	 * Sanctuary and Tropics, and apparently anything else with
6631 	 * alpha test or pixel discard.
6632 	 *
6633 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6634 	 * but we didn't debug actual testcases to find it out.
6635 	 *
6636 	 * WaDisableRCCUnitClockGating:snb
6637 	 * WaDisableRCPBUnitClockGating:snb
6638 	 */
6639 	I915_WRITE(GEN6_UCGCTL2,
6640 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6641 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6642 
6643 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6644 	I915_WRITE(_3D_CHICKEN3,
6645 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6646 
6647 	/*
6648 	 * Bspec says:
6649 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6650 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6651 	 */
6652 	I915_WRITE(_3D_CHICKEN3,
6653 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6654 
6655 	/*
6656 	 * According to the spec the following bits should be
6657 	 * set in order to enable memory self-refresh and fbc:
6658 	 * The bit21 and bit22 of 0x42000
6659 	 * The bit21 and bit22 of 0x42004
6660 	 * The bit5 and bit7 of 0x42020
6661 	 * The bit14 of 0x70180
6662 	 * The bit14 of 0x71180
6663 	 *
6664 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6665 	 */
6666 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6667 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6668 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6669 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6670 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6671 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6672 	I915_WRITE(ILK_DSPCLK_GATE_D,
6673 		   I915_READ(ILK_DSPCLK_GATE_D) |
6674 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6675 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6676 
6677 	g4x_disable_trickle_feed(dev);
6678 
6679 	cpt_init_clock_gating(dev);
6680 
6681 	gen6_check_mch_setup(dev);
6682 }
6683 
6684 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6685 {
6686 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6687 
6688 	/*
6689 	 * WaVSThreadDispatchOverride:ivb,vlv
6690 	 *
6691 	 * This actually overrides the dispatch
6692 	 * mode for all thread types.
6693 	 */
6694 	reg &= ~GEN7_FF_SCHED_MASK;
6695 	reg |= GEN7_FF_TS_SCHED_HW;
6696 	reg |= GEN7_FF_VS_SCHED_HW;
6697 	reg |= GEN7_FF_DS_SCHED_HW;
6698 
6699 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6700 }
6701 
6702 static void lpt_init_clock_gating(struct drm_device *dev)
6703 {
6704 	struct drm_i915_private *dev_priv = dev->dev_private;
6705 
6706 	/*
6707 	 * TODO: this bit should only be enabled when really needed, then
6708 	 * disabled when not needed anymore in order to save power.
6709 	 */
6710 	if (HAS_PCH_LPT_LP(dev))
6711 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6712 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6713 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6714 
6715 	/* WADPOClockGatingDisable:hsw */
6716 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6717 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6718 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6719 }
6720 
6721 static void lpt_suspend_hw(struct drm_device *dev)
6722 {
6723 	struct drm_i915_private *dev_priv = dev->dev_private;
6724 
6725 	if (HAS_PCH_LPT_LP(dev)) {
6726 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6727 
6728 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6729 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6730 	}
6731 }
6732 
6733 static void kabylake_init_clock_gating(struct drm_device *dev)
6734 {
6735 	struct drm_i915_private *dev_priv = dev->dev_private;
6736 
6737 	gen9_init_clock_gating(dev);
6738 
6739 	/* WaDisableSDEUnitClockGating:kbl */
6740 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6741 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6742 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6743 
6744 	/* WaDisableGamClockGating:kbl */
6745 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6746 		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6747 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6748 
6749 	/* WaFbcNukeOnHostModify:kbl */
6750 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6751 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6752 }
6753 
6754 static void skylake_init_clock_gating(struct drm_device *dev)
6755 {
6756 	struct drm_i915_private *dev_priv = dev->dev_private;
6757 
6758 	gen9_init_clock_gating(dev);
6759 
6760 	/* WaFbcNukeOnHostModify:skl */
6761 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6762 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6763 }
6764 
6765 static void broadwell_init_clock_gating(struct drm_device *dev)
6766 {
6767 	struct drm_i915_private *dev_priv = dev->dev_private;
6768 	enum i915_pipe pipe;
6769 	uint32_t misccpctl;
6770 
6771 	ilk_init_lp_watermarks(dev);
6772 
6773 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6774 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6775 
6776 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6777 	I915_WRITE(CHICKEN_PAR1_1,
6778 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6779 
6780 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6781 	for_each_pipe(dev_priv, pipe) {
6782 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6783 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6784 			   BDW_DPRS_MASK_VBLANK_SRD);
6785 	}
6786 
6787 	/* WaVSRefCountFullforceMissDisable:bdw */
6788 	/* WaDSRefCountFullforceMissDisable:bdw */
6789 	I915_WRITE(GEN7_FF_THREAD_MODE,
6790 		   I915_READ(GEN7_FF_THREAD_MODE) &
6791 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6792 
6793 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6794 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6795 
6796 	/* WaDisableSDEUnitClockGating:bdw */
6797 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6798 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6799 
6800 	/*
6801 	 * WaProgramL3SqcReg1Default:bdw
6802 	 * WaTempDisableDOPClkGating:bdw
6803 	 */
6804 	misccpctl = I915_READ(GEN7_MISCCPCTL);
6805 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6806 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6807 	/*
6808 	 * Wait at least 100 clocks before re-enabling clock gating. See
6809 	 * the definition of L3SQCREG1 in BSpec.
6810 	 */
6811 	POSTING_READ(GEN8_L3SQCREG1);
6812 	udelay(1);
6813 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6814 
6815 	/*
6816 	 * WaGttCachingOffByDefault:bdw
6817 	 * GTT cache may not work with big pages, so if those
6818 	 * are ever enabled GTT cache may need to be disabled.
6819 	 */
6820 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6821 
6822 	lpt_init_clock_gating(dev);
6823 }
6824 
6825 static void haswell_init_clock_gating(struct drm_device *dev)
6826 {
6827 	struct drm_i915_private *dev_priv = dev->dev_private;
6828 
6829 	ilk_init_lp_watermarks(dev);
6830 
6831 	/* L3 caching of data atomics doesn't work -- disable it. */
6832 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6833 	I915_WRITE(HSW_ROW_CHICKEN3,
6834 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6835 
6836 	/* This is required by WaCatErrorRejectionIssue:hsw */
6837 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6838 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6839 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6840 
6841 	/* WaVSRefCountFullforceMissDisable:hsw */
6842 	I915_WRITE(GEN7_FF_THREAD_MODE,
6843 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6844 
6845 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6846 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6847 
6848 	/* enable HiZ Raw Stall Optimization */
6849 	I915_WRITE(CACHE_MODE_0_GEN7,
6850 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6851 
6852 	/* WaDisable4x2SubspanOptimization:hsw */
6853 	I915_WRITE(CACHE_MODE_1,
6854 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6855 
6856 	/*
6857 	 * BSpec recommends 8x4 when MSAA is used,
6858 	 * however in practice 16x4 seems fastest.
6859 	 *
6860 	 * Note that PS/WM thread counts depend on the WIZ hashing
6861 	 * disable bit, which we don't touch here, but it's good
6862 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6863 	 */
6864 	I915_WRITE(GEN7_GT_MODE,
6865 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6866 
6867 	/* WaSampleCChickenBitEnable:hsw */
6868 	I915_WRITE(HALF_SLICE_CHICKEN3,
6869 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6870 
6871 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6872 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6873 
6874 	/* WaRsPkgCStateDisplayPMReq:hsw */
6875 	I915_WRITE(CHICKEN_PAR1_1,
6876 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6877 
6878 	lpt_init_clock_gating(dev);
6879 }
6880 
6881 static void ivybridge_init_clock_gating(struct drm_device *dev)
6882 {
6883 	struct drm_i915_private *dev_priv = dev->dev_private;
6884 	uint32_t snpcr;
6885 
6886 	ilk_init_lp_watermarks(dev);
6887 
6888 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6889 
6890 	/* WaDisableEarlyCull:ivb */
6891 	I915_WRITE(_3D_CHICKEN3,
6892 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6893 
6894 	/* WaDisableBackToBackFlipFix:ivb */
6895 	I915_WRITE(IVB_CHICKEN3,
6896 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6897 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6898 
6899 	/* WaDisablePSDDualDispatchEnable:ivb */
6900 	if (IS_IVB_GT1(dev))
6901 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6902 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6903 
6904 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6905 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6906 
6907 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6908 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6909 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6910 
6911 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6912 	I915_WRITE(GEN7_L3CNTLREG1,
6913 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6914 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6915 		   GEN7_WA_L3_CHICKEN_MODE);
6916 	if (IS_IVB_GT1(dev))
6917 		I915_WRITE(GEN7_ROW_CHICKEN2,
6918 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6919 	else {
6920 		/* must write both registers */
6921 		I915_WRITE(GEN7_ROW_CHICKEN2,
6922 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6923 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6924 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6925 	}
6926 
6927 	/* WaForceL3Serialization:ivb */
6928 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6929 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6930 
6931 	/*
6932 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6933 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6934 	 */
6935 	I915_WRITE(GEN6_UCGCTL2,
6936 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6937 
6938 	/* This is required by WaCatErrorRejectionIssue:ivb */
6939 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6940 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6941 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6942 
6943 	g4x_disable_trickle_feed(dev);
6944 
6945 	gen7_setup_fixed_func_scheduler(dev_priv);
6946 
6947 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6948 		/* enable HiZ Raw Stall Optimization */
6949 		I915_WRITE(CACHE_MODE_0_GEN7,
6950 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6951 	}
6952 
6953 	/* WaDisable4x2SubspanOptimization:ivb */
6954 	I915_WRITE(CACHE_MODE_1,
6955 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6956 
6957 	/*
6958 	 * BSpec recommends 8x4 when MSAA is used,
6959 	 * however in practice 16x4 seems fastest.
6960 	 *
6961 	 * Note that PS/WM thread counts depend on the WIZ hashing
6962 	 * disable bit, which we don't touch here, but it's good
6963 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6964 	 */
6965 	I915_WRITE(GEN7_GT_MODE,
6966 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6967 
6968 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6969 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6970 	snpcr |= GEN6_MBC_SNPCR_MED;
6971 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6972 
6973 	if (!HAS_PCH_NOP(dev))
6974 		cpt_init_clock_gating(dev);
6975 
6976 	gen6_check_mch_setup(dev);
6977 }
6978 
6979 static void valleyview_init_clock_gating(struct drm_device *dev)
6980 {
6981 	struct drm_i915_private *dev_priv = dev->dev_private;
6982 
6983 	/* WaDisableEarlyCull:vlv */
6984 	I915_WRITE(_3D_CHICKEN3,
6985 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6986 
6987 	/* WaDisableBackToBackFlipFix:vlv */
6988 	I915_WRITE(IVB_CHICKEN3,
6989 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6990 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6991 
6992 	/* WaPsdDispatchEnable:vlv */
6993 	/* WaDisablePSDDualDispatchEnable:vlv */
6994 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6995 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6996 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6997 
6998 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6999 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7000 
7001 	/* WaForceL3Serialization:vlv */
7002 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7003 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7004 
7005 	/* WaDisableDopClockGating:vlv */
7006 	I915_WRITE(GEN7_ROW_CHICKEN2,
7007 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7008 
7009 	/* This is required by WaCatErrorRejectionIssue:vlv */
7010 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7011 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7012 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7013 
7014 	gen7_setup_fixed_func_scheduler(dev_priv);
7015 
7016 	/*
7017 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7018 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7019 	 */
7020 	I915_WRITE(GEN6_UCGCTL2,
7021 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7022 
7023 	/* WaDisableL3Bank2xClockGate:vlv
7024 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7025 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7026 	I915_WRITE(GEN7_UCGCTL4,
7027 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7028 
7029 	/*
7030 	 * BSpec says this must be set, even though
7031 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7032 	 */
7033 	I915_WRITE(CACHE_MODE_1,
7034 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7035 
7036 	/*
7037 	 * BSpec recommends 8x4 when MSAA is used,
7038 	 * however in practice 16x4 seems fastest.
7039 	 *
7040 	 * Note that PS/WM thread counts depend on the WIZ hashing
7041 	 * disable bit, which we don't touch here, but it's good
7042 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7043 	 */
7044 	I915_WRITE(GEN7_GT_MODE,
7045 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7046 
7047 	/*
7048 	 * WaIncreaseL3CreditsForVLVB0:vlv
7049 	 * This is the hardware default actually.
7050 	 */
7051 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7052 
7053 	/*
7054 	 * WaDisableVLVClockGating_VBIIssue:vlv
7055 	 * Disable clock gating on th GCFG unit to prevent a delay
7056 	 * in the reporting of vblank events.
7057 	 */
7058 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7059 }
7060 
7061 static void cherryview_init_clock_gating(struct drm_device *dev)
7062 {
7063 	struct drm_i915_private *dev_priv = dev->dev_private;
7064 
7065 	/* WaVSRefCountFullforceMissDisable:chv */
7066 	/* WaDSRefCountFullforceMissDisable:chv */
7067 	I915_WRITE(GEN7_FF_THREAD_MODE,
7068 		   I915_READ(GEN7_FF_THREAD_MODE) &
7069 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7070 
7071 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7072 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7073 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7074 
7075 	/* WaDisableCSUnitClockGating:chv */
7076 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7077 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7078 
7079 	/* WaDisableSDEUnitClockGating:chv */
7080 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7081 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7082 
7083 	/*
7084 	 * GTT cache may not work with big pages, so if those
7085 	 * are ever enabled GTT cache may need to be disabled.
7086 	 */
7087 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7088 }
7089 
7090 static void g4x_init_clock_gating(struct drm_device *dev)
7091 {
7092 	struct drm_i915_private *dev_priv = dev->dev_private;
7093 	uint32_t dspclk_gate;
7094 
7095 	I915_WRITE(RENCLK_GATE_D1, 0);
7096 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7097 		   GS_UNIT_CLOCK_GATE_DISABLE |
7098 		   CL_UNIT_CLOCK_GATE_DISABLE);
7099 	I915_WRITE(RAMCLK_GATE_D, 0);
7100 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7101 		OVRUNIT_CLOCK_GATE_DISABLE |
7102 		OVCUNIT_CLOCK_GATE_DISABLE;
7103 	if (IS_GM45(dev))
7104 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7105 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7106 
7107 	/* WaDisableRenderCachePipelinedFlush */
7108 	I915_WRITE(CACHE_MODE_0,
7109 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7110 
7111 	/* WaDisable_RenderCache_OperationalFlush:g4x */
7112 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7113 
7114 	g4x_disable_trickle_feed(dev);
7115 }
7116 
7117 static void crestline_init_clock_gating(struct drm_device *dev)
7118 {
7119 	struct drm_i915_private *dev_priv = dev->dev_private;
7120 
7121 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7122 	I915_WRITE(RENCLK_GATE_D2, 0);
7123 	I915_WRITE(DSPCLK_GATE_D, 0);
7124 	I915_WRITE(RAMCLK_GATE_D, 0);
7125 	I915_WRITE16(DEUC, 0);
7126 	I915_WRITE(MI_ARB_STATE,
7127 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7128 
7129 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7130 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7131 }
7132 
7133 static void broadwater_init_clock_gating(struct drm_device *dev)
7134 {
7135 	struct drm_i915_private *dev_priv = dev->dev_private;
7136 
7137 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7138 		   I965_RCC_CLOCK_GATE_DISABLE |
7139 		   I965_RCPB_CLOCK_GATE_DISABLE |
7140 		   I965_ISC_CLOCK_GATE_DISABLE |
7141 		   I965_FBC_CLOCK_GATE_DISABLE);
7142 	I915_WRITE(RENCLK_GATE_D2, 0);
7143 	I915_WRITE(MI_ARB_STATE,
7144 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7145 
7146 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7147 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7148 }
7149 
7150 static void gen3_init_clock_gating(struct drm_device *dev)
7151 {
7152 	struct drm_i915_private *dev_priv = dev->dev_private;
7153 	u32 dstate = I915_READ(D_STATE);
7154 
7155 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7156 		DSTATE_DOT_CLOCK_GATING;
7157 	I915_WRITE(D_STATE, dstate);
7158 
7159 	if (IS_PINEVIEW(dev))
7160 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7161 
7162 	/* IIR "flip pending" means done if this bit is set */
7163 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7164 
7165 	/* interrupts should cause a wake up from C3 */
7166 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7167 
7168 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7169 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7170 
7171 	I915_WRITE(MI_ARB_STATE,
7172 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7173 }
7174 
7175 static void i85x_init_clock_gating(struct drm_device *dev)
7176 {
7177 	struct drm_i915_private *dev_priv = dev->dev_private;
7178 
7179 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7180 
7181 	/* interrupts should cause a wake up from C3 */
7182 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7183 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7184 
7185 	I915_WRITE(MEM_MODE,
7186 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7187 }
7188 
7189 static void i830_init_clock_gating(struct drm_device *dev)
7190 {
7191 	struct drm_i915_private *dev_priv = dev->dev_private;
7192 
7193 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7194 
7195 	I915_WRITE(MEM_MODE,
7196 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7197 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7198 }
7199 
7200 void intel_init_clock_gating(struct drm_device *dev)
7201 {
7202 	struct drm_i915_private *dev_priv = dev->dev_private;
7203 
7204 	dev_priv->display.init_clock_gating(dev);
7205 }
7206 
7207 void intel_suspend_hw(struct drm_device *dev)
7208 {
7209 	if (HAS_PCH_LPT(dev))
7210 		lpt_suspend_hw(dev);
7211 }
7212 
7213 static void nop_init_clock_gating(struct drm_device *dev)
7214 {
7215 	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7216 }
7217 
7218 /**
7219  * intel_init_clock_gating_hooks - setup the clock gating hooks
7220  * @dev_priv: device private
7221  *
7222  * Setup the hooks that configure which clocks of a given platform can be
7223  * gated and also apply various GT and display specific workarounds for these
7224  * platforms. Note that some GT specific workarounds are applied separately
7225  * when GPU contexts or batchbuffers start their execution.
7226  */
7227 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7228 {
7229 	if (IS_SKYLAKE(dev_priv))
7230 		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7231 	else if (IS_KABYLAKE(dev_priv))
7232 		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7233 	else if (IS_BROXTON(dev_priv))
7234 		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7235 	else if (IS_BROADWELL(dev_priv))
7236 		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7237 	else if (IS_CHERRYVIEW(dev_priv))
7238 		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7239 	else if (IS_HASWELL(dev_priv))
7240 		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7241 	else if (IS_IVYBRIDGE(dev_priv))
7242 		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7243 	else if (IS_VALLEYVIEW(dev_priv))
7244 		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7245 	else if (IS_GEN6(dev_priv))
7246 		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7247 	else if (IS_GEN5(dev_priv))
7248 		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7249 	else if (IS_G4X(dev_priv))
7250 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7251 	else if (IS_CRESTLINE(dev_priv))
7252 		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7253 	else if (IS_BROADWATER(dev_priv))
7254 		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7255 	else if (IS_GEN3(dev_priv))
7256 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7257 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7258 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7259 	else if (IS_GEN2(dev_priv))
7260 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
7261 	else {
7262 		MISSING_CASE(INTEL_DEVID(dev_priv));
7263 		dev_priv->display.init_clock_gating = nop_init_clock_gating;
7264 	}
7265 }
7266 
7267 /* Set up chip specific power management-related functions */
7268 void intel_init_pm(struct drm_device *dev)
7269 {
7270 	struct drm_i915_private *dev_priv = dev->dev_private;
7271 
7272 	intel_fbc_init(dev_priv);
7273 
7274 	/* For cxsr */
7275 	if (IS_PINEVIEW(dev))
7276 		i915_pineview_get_mem_freq(dev);
7277 	else if (IS_GEN5(dev))
7278 		i915_ironlake_get_mem_freq(dev);
7279 
7280 	/* For FIFO watermark updates */
7281 	if (INTEL_INFO(dev)->gen >= 9) {
7282 		skl_setup_wm_latency(dev);
7283 		dev_priv->display.update_wm = skl_update_wm;
7284 	} else if (HAS_PCH_SPLIT(dev)) {
7285 		ilk_setup_wm_latency(dev);
7286 
7287 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7288 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7289 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7290 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7291 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7292 			dev_priv->display.compute_intermediate_wm =
7293 				ilk_compute_intermediate_wm;
7294 			dev_priv->display.initial_watermarks =
7295 				ilk_initial_watermarks;
7296 			dev_priv->display.optimize_watermarks =
7297 				ilk_optimize_watermarks;
7298 		} else {
7299 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7300 				      "Disable CxSR\n");
7301 		}
7302 	} else if (IS_CHERRYVIEW(dev)) {
7303 		vlv_setup_wm_latency(dev);
7304 		dev_priv->display.update_wm = vlv_update_wm;
7305 	} else if (IS_VALLEYVIEW(dev)) {
7306 		vlv_setup_wm_latency(dev);
7307 		dev_priv->display.update_wm = vlv_update_wm;
7308 	} else if (IS_PINEVIEW(dev)) {
7309 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7310 					    dev_priv->is_ddr3,
7311 					    dev_priv->fsb_freq,
7312 					    dev_priv->mem_freq)) {
7313 			DRM_INFO("failed to find known CxSR latency "
7314 				 "(found ddr%s fsb freq %d, mem freq %d), "
7315 				 "disabling CxSR\n",
7316 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7317 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7318 			/* Disable CxSR and never update its watermark again */
7319 			intel_set_memory_cxsr(dev_priv, false);
7320 			dev_priv->display.update_wm = NULL;
7321 		} else
7322 			dev_priv->display.update_wm = pineview_update_wm;
7323 	} else if (IS_G4X(dev)) {
7324 		dev_priv->display.update_wm = g4x_update_wm;
7325 	} else if (IS_GEN4(dev)) {
7326 		dev_priv->display.update_wm = i965_update_wm;
7327 	} else if (IS_GEN3(dev)) {
7328 		dev_priv->display.update_wm = i9xx_update_wm;
7329 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7330 	} else if (IS_GEN2(dev)) {
7331 		if (INTEL_INFO(dev)->num_pipes == 1) {
7332 			dev_priv->display.update_wm = i845_update_wm;
7333 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7334 		} else {
7335 			dev_priv->display.update_wm = i9xx_update_wm;
7336 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7337 		}
7338 	} else {
7339 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7340 	}
7341 }
7342 
7343 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7344 {
7345 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7346 
7347 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7348 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7349 		return -EAGAIN;
7350 	}
7351 
7352 	I915_WRITE(GEN6_PCODE_DATA, *val);
7353 	I915_WRITE(GEN6_PCODE_DATA1, 0);
7354 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7355 
7356 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7357 		     500)) {
7358 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7359 		return -ETIMEDOUT;
7360 	}
7361 
7362 	*val = I915_READ(GEN6_PCODE_DATA);
7363 	I915_WRITE(GEN6_PCODE_DATA, 0);
7364 
7365 	return 0;
7366 }
7367 
7368 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7369 {
7370 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7371 
7372 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7373 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7374 		return -EAGAIN;
7375 	}
7376 
7377 	I915_WRITE(GEN6_PCODE_DATA, val);
7378 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7379 
7380 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7381 		     500)) {
7382 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7383 		return -ETIMEDOUT;
7384 	}
7385 
7386 	I915_WRITE(GEN6_PCODE_DATA, 0);
7387 
7388 	return 0;
7389 }
7390 
7391 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7392 {
7393 	/*
7394 	 * N = val - 0xb7
7395 	 * Slow = Fast = GPLL ref * N
7396 	 */
7397 	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7398 }
7399 
7400 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7401 {
7402 	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7403 }
7404 
7405 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7406 {
7407 	/*
7408 	 * N = val / 2
7409 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7410 	 */
7411 	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7412 }
7413 
7414 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7415 {
7416 	/* CHV needs even values */
7417 	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7418 }
7419 
7420 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7421 {
7422 	if (IS_GEN9(dev_priv))
7423 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7424 					 GEN9_FREQ_SCALER);
7425 	else if (IS_CHERRYVIEW(dev_priv))
7426 		return chv_gpu_freq(dev_priv, val);
7427 	else if (IS_VALLEYVIEW(dev_priv))
7428 		return byt_gpu_freq(dev_priv, val);
7429 	else
7430 		return val * GT_FREQUENCY_MULTIPLIER;
7431 }
7432 
7433 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7434 {
7435 	if (IS_GEN9(dev_priv))
7436 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7437 					 GT_FREQUENCY_MULTIPLIER);
7438 	else if (IS_CHERRYVIEW(dev_priv))
7439 		return chv_freq_opcode(dev_priv, val);
7440 	else if (IS_VALLEYVIEW(dev_priv))
7441 		return byt_freq_opcode(dev_priv, val);
7442 	else
7443 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7444 }
7445 
7446 struct request_boost {
7447 	struct work_struct work;
7448 	struct drm_i915_gem_request *req;
7449 };
7450 
7451 static void __intel_rps_boost_work(struct work_struct *work)
7452 {
7453 	struct request_boost *boost = container_of(work, struct request_boost, work);
7454 	struct drm_i915_gem_request *req = boost->req;
7455 
7456 	if (!i915_gem_request_completed(req, true))
7457 		gen6_rps_boost(to_i915(req->engine->dev), NULL,
7458 			       req->emitted_jiffies);
7459 
7460 	i915_gem_request_unreference__unlocked(req);
7461 	kfree(boost);
7462 }
7463 
7464 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7465 				       struct drm_i915_gem_request *req)
7466 {
7467 	struct request_boost *boost;
7468 
7469 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7470 		return;
7471 
7472 	if (i915_gem_request_completed(req, true))
7473 		return;
7474 
7475 	boost = kmalloc(sizeof(*boost), M_DRM, M_NOWAIT);
7476 	if (boost == NULL)
7477 		return;
7478 
7479 	i915_gem_request_reference(req);
7480 	boost->req = req;
7481 
7482 	INIT_WORK(&boost->work, __intel_rps_boost_work);
7483 	queue_work(to_i915(dev)->wq, &boost->work);
7484 }
7485 
7486 void intel_pm_setup(struct drm_device *dev)
7487 {
7488 	struct drm_i915_private *dev_priv = dev->dev_private;
7489 
7490 	lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7491 	lockinit(&dev_priv->rps.client_lock, "i915rcl", 0, LK_CANRECURSE);
7492 
7493 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7494 			  intel_gen6_powersave_work);
7495 	INIT_LIST_HEAD(&dev_priv->rps.clients);
7496 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7497 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7498 
7499 	dev_priv->pm.suspended = false;
7500 	atomic_set(&dev_priv->pm.wakeref_count, 0);
7501 	atomic_set(&dev_priv->pm.atomic_seq, 0);
7502 }
7503