xref: /dragonfly/sys/dev/drm/i915/intel_pm.c (revision 0de090e1)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 
33 /**
34  * RC6 is a special power stage which allows the GPU to enter an very
35  * low-voltage mode when idle, using down to 0V while at this stage.  This
36  * stage is entered automatically when the GPU is idle when RC6 support is
37  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
38  *
39  * There are different RC6 modes available in Intel GPU, which differentiate
40  * among each other with the latency required to enter and leave RC6 and
41  * voltage consumed by the GPU in different states.
42  *
43  * The combination of the following flags define which states GPU is allowed
44  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
45  * RC6pp is deepest RC6. Their support by hardware varies according to the
46  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
47  * which brings the most power savings; deeper states save more power, but
48  * require higher latency to switch to and wake up.
49  */
50 #define INTEL_RC6_ENABLE			(1<<0)
51 #define INTEL_RC6p_ENABLE			(1<<1)
52 #define INTEL_RC6pp_ENABLE			(1<<2)
53 
54 static void bxt_init_clock_gating(struct drm_device *dev)
55 {
56 	struct drm_i915_private *dev_priv = dev->dev_private;
57 
58 	/* WaDisableSDEUnitClockGating:bxt */
59 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
60 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
61 
62 	/*
63 	 * FIXME:
64 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
65 	 */
66 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
67 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
68 }
69 
70 static void i915_pineview_get_mem_freq(struct drm_device *dev)
71 {
72 	struct drm_i915_private *dev_priv = dev->dev_private;
73 	u32 tmp;
74 
75 	tmp = I915_READ(CLKCFG);
76 
77 	switch (tmp & CLKCFG_FSB_MASK) {
78 	case CLKCFG_FSB_533:
79 		dev_priv->fsb_freq = 533; /* 133*4 */
80 		break;
81 	case CLKCFG_FSB_800:
82 		dev_priv->fsb_freq = 800; /* 200*4 */
83 		break;
84 	case CLKCFG_FSB_667:
85 		dev_priv->fsb_freq =  667; /* 167*4 */
86 		break;
87 	case CLKCFG_FSB_400:
88 		dev_priv->fsb_freq = 400; /* 100*4 */
89 		break;
90 	}
91 
92 	switch (tmp & CLKCFG_MEM_MASK) {
93 	case CLKCFG_MEM_533:
94 		dev_priv->mem_freq = 533;
95 		break;
96 	case CLKCFG_MEM_667:
97 		dev_priv->mem_freq = 667;
98 		break;
99 	case CLKCFG_MEM_800:
100 		dev_priv->mem_freq = 800;
101 		break;
102 	}
103 
104 	/* detect pineview DDR3 setting */
105 	tmp = I915_READ(CSHRDDR3CTL);
106 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
107 }
108 
109 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
110 {
111 	struct drm_i915_private *dev_priv = dev->dev_private;
112 	u16 ddrpll, csipll;
113 
114 	ddrpll = I915_READ16(DDRMPLL1);
115 	csipll = I915_READ16(CSIPLL0);
116 
117 	switch (ddrpll & 0xff) {
118 	case 0xc:
119 		dev_priv->mem_freq = 800;
120 		break;
121 	case 0x10:
122 		dev_priv->mem_freq = 1066;
123 		break;
124 	case 0x14:
125 		dev_priv->mem_freq = 1333;
126 		break;
127 	case 0x18:
128 		dev_priv->mem_freq = 1600;
129 		break;
130 	default:
131 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
132 				 ddrpll & 0xff);
133 		dev_priv->mem_freq = 0;
134 		break;
135 	}
136 
137 	dev_priv->ips.r_t = dev_priv->mem_freq;
138 
139 	switch (csipll & 0x3ff) {
140 	case 0x00c:
141 		dev_priv->fsb_freq = 3200;
142 		break;
143 	case 0x00e:
144 		dev_priv->fsb_freq = 3733;
145 		break;
146 	case 0x010:
147 		dev_priv->fsb_freq = 4266;
148 		break;
149 	case 0x012:
150 		dev_priv->fsb_freq = 4800;
151 		break;
152 	case 0x014:
153 		dev_priv->fsb_freq = 5333;
154 		break;
155 	case 0x016:
156 		dev_priv->fsb_freq = 5866;
157 		break;
158 	case 0x018:
159 		dev_priv->fsb_freq = 6400;
160 		break;
161 	default:
162 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
163 				 csipll & 0x3ff);
164 		dev_priv->fsb_freq = 0;
165 		break;
166 	}
167 
168 	if (dev_priv->fsb_freq == 3200) {
169 		dev_priv->ips.c_m = 0;
170 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
171 		dev_priv->ips.c_m = 1;
172 	} else {
173 		dev_priv->ips.c_m = 2;
174 	}
175 }
176 
177 static const struct cxsr_latency cxsr_latency_table[] = {
178 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
179 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
180 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
181 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
182 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
183 
184 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
185 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
186 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
187 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
188 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
189 
190 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
191 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
192 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
193 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
194 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
195 
196 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
197 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
198 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
199 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
200 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
201 
202 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
203 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
204 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
205 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
206 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
207 
208 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
209 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
210 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
211 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
212 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
213 };
214 
215 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
216 							 int is_ddr3,
217 							 int fsb,
218 							 int mem)
219 {
220 	const struct cxsr_latency *latency;
221 	int i;
222 
223 	if (fsb == 0 || mem == 0)
224 		return NULL;
225 
226 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
227 		latency = &cxsr_latency_table[i];
228 		if (is_desktop == latency->is_desktop &&
229 		    is_ddr3 == latency->is_ddr3 &&
230 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
231 			return latency;
232 	}
233 
234 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
235 
236 	return NULL;
237 }
238 
239 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
240 {
241 	u32 val;
242 
243 	mutex_lock(&dev_priv->rps.hw_lock);
244 
245 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
246 	if (enable)
247 		val &= ~FORCE_DDR_HIGH_FREQ;
248 	else
249 		val |= FORCE_DDR_HIGH_FREQ;
250 	val &= ~FORCE_DDR_LOW_FREQ;
251 	val |= FORCE_DDR_FREQ_REQ_ACK;
252 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
253 
254 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
255 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
256 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
257 
258 	mutex_unlock(&dev_priv->rps.hw_lock);
259 }
260 
261 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
262 {
263 	u32 val;
264 
265 	mutex_lock(&dev_priv->rps.hw_lock);
266 
267 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
268 	if (enable)
269 		val |= DSP_MAXFIFO_PM5_ENABLE;
270 	else
271 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
272 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
273 
274 	mutex_unlock(&dev_priv->rps.hw_lock);
275 }
276 
277 #define FW_WM(value, plane) \
278 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
279 
280 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
281 {
282 	struct drm_device *dev = dev_priv->dev;
283 	u32 val;
284 
285 	if (IS_VALLEYVIEW(dev)) {
286 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
287 		POSTING_READ(FW_BLC_SELF_VLV);
288 		dev_priv->wm.vlv.cxsr = enable;
289 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
290 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
291 		POSTING_READ(FW_BLC_SELF);
292 	} else if (IS_PINEVIEW(dev)) {
293 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
294 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
295 		I915_WRITE(DSPFW3, val);
296 		POSTING_READ(DSPFW3);
297 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
298 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
299 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
300 		I915_WRITE(FW_BLC_SELF, val);
301 		POSTING_READ(FW_BLC_SELF);
302 	} else if (IS_I915GM(dev)) {
303 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
304 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
305 		I915_WRITE(INSTPM, val);
306 		POSTING_READ(INSTPM);
307 	} else {
308 		return;
309 	}
310 
311 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
312 		      enable ? "enabled" : "disabled");
313 }
314 
315 
316 /*
317  * Latency for FIFO fetches is dependent on several factors:
318  *   - memory configuration (speed, channels)
319  *   - chipset
320  *   - current MCH state
321  * It can be fairly high in some situations, so here we assume a fairly
322  * pessimal value.  It's a tradeoff between extra memory fetches (if we
323  * set this value too high, the FIFO will fetch frequently to stay full)
324  * and power consumption (set it too low to save power and we might see
325  * FIFO underruns and display "flicker").
326  *
327  * A value of 5us seems to be a good balance; safe for very low end
328  * platforms but not overly aggressive on lower latency configs.
329  */
330 static const int pessimal_latency_ns = 5000;
331 
332 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
333 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
334 
335 static int vlv_get_fifo_size(struct drm_device *dev,
336 			      enum i915_pipe pipe, int plane)
337 {
338 	struct drm_i915_private *dev_priv = dev->dev_private;
339 	int sprite0_start, sprite1_start, size;
340 
341 	switch (pipe) {
342 		uint32_t dsparb, dsparb2, dsparb3;
343 	case PIPE_A:
344 		dsparb = I915_READ(DSPARB);
345 		dsparb2 = I915_READ(DSPARB2);
346 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
347 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
348 		break;
349 	case PIPE_B:
350 		dsparb = I915_READ(DSPARB);
351 		dsparb2 = I915_READ(DSPARB2);
352 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
353 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
354 		break;
355 	case PIPE_C:
356 		dsparb2 = I915_READ(DSPARB2);
357 		dsparb3 = I915_READ(DSPARB3);
358 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
359 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
360 		break;
361 	default:
362 		return 0;
363 	}
364 
365 	switch (plane) {
366 	case 0:
367 		size = sprite0_start;
368 		break;
369 	case 1:
370 		size = sprite1_start - sprite0_start;
371 		break;
372 	case 2:
373 		size = 512 - 1 - sprite1_start;
374 		break;
375 	default:
376 		return 0;
377 	}
378 
379 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
380 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
381 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
382 		      size);
383 
384 	return size;
385 }
386 
387 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
388 {
389 	struct drm_i915_private *dev_priv = dev->dev_private;
390 	uint32_t dsparb = I915_READ(DSPARB);
391 	int size;
392 
393 	size = dsparb & 0x7f;
394 	if (plane)
395 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
396 
397 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
398 		      plane ? "B" : "A", size);
399 
400 	return size;
401 }
402 
403 static int i830_get_fifo_size(struct drm_device *dev, int plane)
404 {
405 	struct drm_i915_private *dev_priv = dev->dev_private;
406 	uint32_t dsparb = I915_READ(DSPARB);
407 	int size;
408 
409 	size = dsparb & 0x1ff;
410 	if (plane)
411 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
412 	size >>= 1; /* Convert to cachelines */
413 
414 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
415 		      plane ? "B" : "A", size);
416 
417 	return size;
418 }
419 
420 static int i845_get_fifo_size(struct drm_device *dev, int plane)
421 {
422 	struct drm_i915_private *dev_priv = dev->dev_private;
423 	uint32_t dsparb = I915_READ(DSPARB);
424 	int size;
425 
426 	size = dsparb & 0x7f;
427 	size >>= 2; /* Convert to cachelines */
428 
429 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
430 		      plane ? "B" : "A",
431 		      size);
432 
433 	return size;
434 }
435 
436 /* Pineview has different values for various configs */
437 static const struct intel_watermark_params pineview_display_wm = {
438 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
439 	.max_wm = PINEVIEW_MAX_WM,
440 	.default_wm = PINEVIEW_DFT_WM,
441 	.guard_size = PINEVIEW_GUARD_WM,
442 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
443 };
444 static const struct intel_watermark_params pineview_display_hplloff_wm = {
445 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
446 	.max_wm = PINEVIEW_MAX_WM,
447 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
448 	.guard_size = PINEVIEW_GUARD_WM,
449 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
450 };
451 static const struct intel_watermark_params pineview_cursor_wm = {
452 	.fifo_size = PINEVIEW_CURSOR_FIFO,
453 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
454 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
455 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
456 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
457 };
458 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
459 	.fifo_size = PINEVIEW_CURSOR_FIFO,
460 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
461 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
462 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
463 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
464 };
465 static const struct intel_watermark_params g4x_wm_info = {
466 	.fifo_size = G4X_FIFO_SIZE,
467 	.max_wm = G4X_MAX_WM,
468 	.default_wm = G4X_MAX_WM,
469 	.guard_size = 2,
470 	.cacheline_size = G4X_FIFO_LINE_SIZE,
471 };
472 static const struct intel_watermark_params g4x_cursor_wm_info = {
473 	.fifo_size = I965_CURSOR_FIFO,
474 	.max_wm = I965_CURSOR_MAX_WM,
475 	.default_wm = I965_CURSOR_DFT_WM,
476 	.guard_size = 2,
477 	.cacheline_size = G4X_FIFO_LINE_SIZE,
478 };
479 static const struct intel_watermark_params valleyview_wm_info = {
480 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
481 	.max_wm = VALLEYVIEW_MAX_WM,
482 	.default_wm = VALLEYVIEW_MAX_WM,
483 	.guard_size = 2,
484 	.cacheline_size = G4X_FIFO_LINE_SIZE,
485 };
486 static const struct intel_watermark_params valleyview_cursor_wm_info = {
487 	.fifo_size = I965_CURSOR_FIFO,
488 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
489 	.default_wm = I965_CURSOR_DFT_WM,
490 	.guard_size = 2,
491 	.cacheline_size = G4X_FIFO_LINE_SIZE,
492 };
493 static const struct intel_watermark_params i965_cursor_wm_info = {
494 	.fifo_size = I965_CURSOR_FIFO,
495 	.max_wm = I965_CURSOR_MAX_WM,
496 	.default_wm = I965_CURSOR_DFT_WM,
497 	.guard_size = 2,
498 	.cacheline_size = I915_FIFO_LINE_SIZE,
499 };
500 static const struct intel_watermark_params i945_wm_info = {
501 	.fifo_size = I945_FIFO_SIZE,
502 	.max_wm = I915_MAX_WM,
503 	.default_wm = 1,
504 	.guard_size = 2,
505 	.cacheline_size = I915_FIFO_LINE_SIZE,
506 };
507 static const struct intel_watermark_params i915_wm_info = {
508 	.fifo_size = I915_FIFO_SIZE,
509 	.max_wm = I915_MAX_WM,
510 	.default_wm = 1,
511 	.guard_size = 2,
512 	.cacheline_size = I915_FIFO_LINE_SIZE,
513 };
514 static const struct intel_watermark_params i830_a_wm_info = {
515 	.fifo_size = I855GM_FIFO_SIZE,
516 	.max_wm = I915_MAX_WM,
517 	.default_wm = 1,
518 	.guard_size = 2,
519 	.cacheline_size = I830_FIFO_LINE_SIZE,
520 };
521 static const struct intel_watermark_params i830_bc_wm_info = {
522 	.fifo_size = I855GM_FIFO_SIZE,
523 	.max_wm = I915_MAX_WM/2,
524 	.default_wm = 1,
525 	.guard_size = 2,
526 	.cacheline_size = I830_FIFO_LINE_SIZE,
527 };
528 static const struct intel_watermark_params i845_wm_info = {
529 	.fifo_size = I830_FIFO_SIZE,
530 	.max_wm = I915_MAX_WM,
531 	.default_wm = 1,
532 	.guard_size = 2,
533 	.cacheline_size = I830_FIFO_LINE_SIZE,
534 };
535 
536 /**
537  * intel_calculate_wm - calculate watermark level
538  * @clock_in_khz: pixel clock
539  * @wm: chip FIFO params
540  * @pixel_size: display pixel size
541  * @latency_ns: memory latency for the platform
542  *
543  * Calculate the watermark level (the level at which the display plane will
544  * start fetching from memory again).  Each chip has a different display
545  * FIFO size and allocation, so the caller needs to figure that out and pass
546  * in the correct intel_watermark_params structure.
547  *
548  * As the pixel clock runs, the FIFO will be drained at a rate that depends
549  * on the pixel size.  When it reaches the watermark level, it'll start
550  * fetching FIFO line sized based chunks from memory until the FIFO fills
551  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
552  * will occur, and a display engine hang could result.
553  */
554 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
555 					const struct intel_watermark_params *wm,
556 					int fifo_size,
557 					int pixel_size,
558 					unsigned long latency_ns)
559 {
560 	long entries_required, wm_size;
561 
562 	/*
563 	 * Note: we need to make sure we don't overflow for various clock &
564 	 * latency values.
565 	 * clocks go from a few thousand to several hundred thousand.
566 	 * latency is usually a few thousand
567 	 */
568 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
569 		1000;
570 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
571 
572 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
573 
574 	wm_size = fifo_size - (entries_required + wm->guard_size);
575 
576 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
577 
578 	/* Don't promote wm_size to unsigned... */
579 	if (wm_size > (long)wm->max_wm)
580 		wm_size = wm->max_wm;
581 	if (wm_size <= 0)
582 		wm_size = wm->default_wm;
583 
584 	/*
585 	 * Bspec seems to indicate that the value shouldn't be lower than
586 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
587 	 * Lets go for 8 which is the burst size since certain platforms
588 	 * already use a hardcoded 8 (which is what the spec says should be
589 	 * done).
590 	 */
591 	if (wm_size <= 8)
592 		wm_size = 8;
593 
594 	return wm_size;
595 }
596 
597 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
598 {
599 	struct drm_crtc *crtc, *enabled = NULL;
600 
601 	for_each_crtc(dev, crtc) {
602 		if (intel_crtc_active(crtc)) {
603 			if (enabled)
604 				return NULL;
605 			enabled = crtc;
606 		}
607 	}
608 
609 	return enabled;
610 }
611 
612 static void pineview_update_wm(struct drm_crtc *unused_crtc)
613 {
614 	struct drm_device *dev = unused_crtc->dev;
615 	struct drm_i915_private *dev_priv = dev->dev_private;
616 	struct drm_crtc *crtc;
617 	const struct cxsr_latency *latency;
618 	u32 reg;
619 	unsigned long wm;
620 
621 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
622 					 dev_priv->fsb_freq, dev_priv->mem_freq);
623 	if (!latency) {
624 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
625 		intel_set_memory_cxsr(dev_priv, false);
626 		return;
627 	}
628 
629 	crtc = single_enabled_crtc(dev);
630 	if (crtc) {
631 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
632 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
633 		int clock = adjusted_mode->crtc_clock;
634 
635 		/* Display SR */
636 		wm = intel_calculate_wm(clock, &pineview_display_wm,
637 					pineview_display_wm.fifo_size,
638 					pixel_size, latency->display_sr);
639 		reg = I915_READ(DSPFW1);
640 		reg &= ~DSPFW_SR_MASK;
641 		reg |= FW_WM(wm, SR);
642 		I915_WRITE(DSPFW1, reg);
643 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
644 
645 		/* cursor SR */
646 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
647 					pineview_display_wm.fifo_size,
648 					pixel_size, latency->cursor_sr);
649 		reg = I915_READ(DSPFW3);
650 		reg &= ~DSPFW_CURSOR_SR_MASK;
651 		reg |= FW_WM(wm, CURSOR_SR);
652 		I915_WRITE(DSPFW3, reg);
653 
654 		/* Display HPLL off SR */
655 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
656 					pineview_display_hplloff_wm.fifo_size,
657 					pixel_size, latency->display_hpll_disable);
658 		reg = I915_READ(DSPFW3);
659 		reg &= ~DSPFW_HPLL_SR_MASK;
660 		reg |= FW_WM(wm, HPLL_SR);
661 		I915_WRITE(DSPFW3, reg);
662 
663 		/* cursor HPLL off SR */
664 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
665 					pineview_display_hplloff_wm.fifo_size,
666 					pixel_size, latency->cursor_hpll_disable);
667 		reg = I915_READ(DSPFW3);
668 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
669 		reg |= FW_WM(wm, HPLL_CURSOR);
670 		I915_WRITE(DSPFW3, reg);
671 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
672 
673 		intel_set_memory_cxsr(dev_priv, true);
674 	} else {
675 		intel_set_memory_cxsr(dev_priv, false);
676 	}
677 }
678 
679 static bool g4x_compute_wm0(struct drm_device *dev,
680 			    int plane,
681 			    const struct intel_watermark_params *display,
682 			    int display_latency_ns,
683 			    const struct intel_watermark_params *cursor,
684 			    int cursor_latency_ns,
685 			    int *plane_wm,
686 			    int *cursor_wm)
687 {
688 	struct drm_crtc *crtc;
689 	const struct drm_display_mode *adjusted_mode;
690 	int htotal, hdisplay, clock, pixel_size;
691 	int line_time_us, line_count;
692 	int entries, tlb_miss;
693 
694 	crtc = intel_get_crtc_for_plane(dev, plane);
695 	if (!intel_crtc_active(crtc)) {
696 		*cursor_wm = cursor->guard_size;
697 		*plane_wm = display->guard_size;
698 		return false;
699 	}
700 
701 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
702 	clock = adjusted_mode->crtc_clock;
703 	htotal = adjusted_mode->crtc_htotal;
704 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
705 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
706 
707 	/* Use the small buffer method to calculate plane watermark */
708 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
709 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
710 	if (tlb_miss > 0)
711 		entries += tlb_miss;
712 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
713 	*plane_wm = entries + display->guard_size;
714 	if (*plane_wm > (int)display->max_wm)
715 		*plane_wm = display->max_wm;
716 
717 	/* Use the large buffer method to calculate cursor watermark */
718 	line_time_us = max(htotal * 1000 / clock, 1);
719 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
720 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
721 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
722 	if (tlb_miss > 0)
723 		entries += tlb_miss;
724 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
725 	*cursor_wm = entries + cursor->guard_size;
726 	if (*cursor_wm > (int)cursor->max_wm)
727 		*cursor_wm = (int)cursor->max_wm;
728 
729 	return true;
730 }
731 
732 /*
733  * Check the wm result.
734  *
735  * If any calculated watermark values is larger than the maximum value that
736  * can be programmed into the associated watermark register, that watermark
737  * must be disabled.
738  */
739 static bool g4x_check_srwm(struct drm_device *dev,
740 			   int display_wm, int cursor_wm,
741 			   const struct intel_watermark_params *display,
742 			   const struct intel_watermark_params *cursor)
743 {
744 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
745 		      display_wm, cursor_wm);
746 
747 	if (display_wm > display->max_wm) {
748 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
749 			      display_wm, display->max_wm);
750 		return false;
751 	}
752 
753 	if (cursor_wm > cursor->max_wm) {
754 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
755 			      cursor_wm, cursor->max_wm);
756 		return false;
757 	}
758 
759 	if (!(display_wm || cursor_wm)) {
760 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
761 		return false;
762 	}
763 
764 	return true;
765 }
766 
767 static bool g4x_compute_srwm(struct drm_device *dev,
768 			     int plane,
769 			     int latency_ns,
770 			     const struct intel_watermark_params *display,
771 			     const struct intel_watermark_params *cursor,
772 			     int *display_wm, int *cursor_wm)
773 {
774 	struct drm_crtc *crtc;
775 	const struct drm_display_mode *adjusted_mode;
776 	int hdisplay, htotal, pixel_size, clock;
777 	unsigned long line_time_us;
778 	int line_count, line_size;
779 	int small, large;
780 	int entries;
781 
782 	if (!latency_ns) {
783 		*display_wm = *cursor_wm = 0;
784 		return false;
785 	}
786 
787 	crtc = intel_get_crtc_for_plane(dev, plane);
788 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
789 	clock = adjusted_mode->crtc_clock;
790 	htotal = adjusted_mode->crtc_htotal;
791 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
792 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
793 
794 	line_time_us = max(htotal * 1000 / clock, 1);
795 	line_count = (latency_ns / line_time_us + 1000) / 1000;
796 	line_size = hdisplay * pixel_size;
797 
798 	/* Use the minimum of the small and large buffer method for primary */
799 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
800 	large = line_count * line_size;
801 
802 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
803 	*display_wm = entries + display->guard_size;
804 
805 	/* calculate the self-refresh watermark for display cursor */
806 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
807 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
808 	*cursor_wm = entries + cursor->guard_size;
809 
810 	return g4x_check_srwm(dev,
811 			      *display_wm, *cursor_wm,
812 			      display, cursor);
813 }
814 
815 #define FW_WM_VLV(value, plane) \
816 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
817 
818 static void vlv_write_wm_values(struct intel_crtc *crtc,
819 				const struct vlv_wm_values *wm)
820 {
821 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
822 	enum i915_pipe pipe = crtc->pipe;
823 
824 	I915_WRITE(VLV_DDL(pipe),
825 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
826 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
827 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
828 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
829 
830 	I915_WRITE(DSPFW1,
831 		   FW_WM(wm->sr.plane, SR) |
832 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
833 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
834 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
835 	I915_WRITE(DSPFW2,
836 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
837 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
838 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
839 	I915_WRITE(DSPFW3,
840 		   FW_WM(wm->sr.cursor, CURSOR_SR));
841 
842 	if (IS_CHERRYVIEW(dev_priv)) {
843 		I915_WRITE(DSPFW7_CHV,
844 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
845 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
846 		I915_WRITE(DSPFW8_CHV,
847 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
848 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
849 		I915_WRITE(DSPFW9_CHV,
850 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
851 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
852 		I915_WRITE(DSPHOWM,
853 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
854 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
855 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
856 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
857 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
858 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
859 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
860 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
861 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
862 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
863 	} else {
864 		I915_WRITE(DSPFW7,
865 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
866 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
867 		I915_WRITE(DSPHOWM,
868 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
869 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
870 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
871 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
872 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
873 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
874 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
875 	}
876 
877 	/* zero (unused) WM1 watermarks */
878 	I915_WRITE(DSPFW4, 0);
879 	I915_WRITE(DSPFW5, 0);
880 	I915_WRITE(DSPFW6, 0);
881 	I915_WRITE(DSPHOWM1, 0);
882 
883 	POSTING_READ(DSPFW1);
884 }
885 
886 #undef FW_WM_VLV
887 
888 enum vlv_wm_level {
889 	VLV_WM_LEVEL_PM2,
890 	VLV_WM_LEVEL_PM5,
891 	VLV_WM_LEVEL_DDR_DVFS,
892 };
893 
894 /* latency must be in 0.1us units. */
895 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
896 				   unsigned int pipe_htotal,
897 				   unsigned int horiz_pixels,
898 				   unsigned int bytes_per_pixel,
899 				   unsigned int latency)
900 {
901 	unsigned int ret;
902 
903 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
904 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
905 	ret = DIV_ROUND_UP(ret, 64);
906 
907 	return ret;
908 }
909 
910 static void vlv_setup_wm_latency(struct drm_device *dev)
911 {
912 	struct drm_i915_private *dev_priv = dev->dev_private;
913 
914 	/* all latencies in usec */
915 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
916 
917 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
918 
919 	if (IS_CHERRYVIEW(dev_priv)) {
920 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
921 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
922 
923 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
924 	}
925 }
926 
927 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
928 				     struct intel_crtc *crtc,
929 				     const struct intel_plane_state *state,
930 				     int level)
931 {
932 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
933 	int clock, htotal, pixel_size, width, wm;
934 
935 	if (dev_priv->wm.pri_latency[level] == 0)
936 		return USHRT_MAX;
937 
938 	if (!state->visible)
939 		return 0;
940 
941 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
942 	clock = crtc->config->base.adjusted_mode.crtc_clock;
943 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
944 	width = crtc->config->pipe_src_w;
945 	if (WARN_ON(htotal == 0))
946 		htotal = 1;
947 
948 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
949 		/*
950 		 * FIXME the formula gives values that are
951 		 * too big for the cursor FIFO, and hence we
952 		 * would never be able to use cursors. For
953 		 * now just hardcode the watermark.
954 		 */
955 		wm = 63;
956 	} else {
957 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
958 				    dev_priv->wm.pri_latency[level] * 10);
959 	}
960 
961 	return min_t(int, wm, USHRT_MAX);
962 }
963 
964 static void vlv_compute_fifo(struct intel_crtc *crtc)
965 {
966 	struct drm_device *dev = crtc->base.dev;
967 	struct vlv_wm_state *wm_state = &crtc->wm_state;
968 	struct intel_plane *plane;
969 	unsigned int total_rate = 0;
970 	const int fifo_size = 512 - 1;
971 	int fifo_extra, fifo_left = fifo_size;
972 
973 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
974 		struct intel_plane_state *state =
975 			to_intel_plane_state(plane->base.state);
976 
977 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
978 			continue;
979 
980 		if (state->visible) {
981 			wm_state->num_active_planes++;
982 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
983 		}
984 	}
985 
986 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
987 		struct intel_plane_state *state =
988 			to_intel_plane_state(plane->base.state);
989 		unsigned int rate;
990 
991 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
992 			plane->wm.fifo_size = 63;
993 			continue;
994 		}
995 
996 		if (!state->visible) {
997 			plane->wm.fifo_size = 0;
998 			continue;
999 		}
1000 
1001 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1002 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1003 		fifo_left -= plane->wm.fifo_size;
1004 	}
1005 
1006 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1007 
1008 	/* spread the remainder evenly */
1009 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1010 		int plane_extra;
1011 
1012 		if (fifo_left == 0)
1013 			break;
1014 
1015 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1016 			continue;
1017 
1018 		/* give it all to the first plane if none are active */
1019 		if (plane->wm.fifo_size == 0 &&
1020 		    wm_state->num_active_planes)
1021 			continue;
1022 
1023 		plane_extra = min(fifo_extra, fifo_left);
1024 		plane->wm.fifo_size += plane_extra;
1025 		fifo_left -= plane_extra;
1026 	}
1027 
1028 	WARN_ON(fifo_left != 0);
1029 }
1030 
1031 static void vlv_invert_wms(struct intel_crtc *crtc)
1032 {
1033 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1034 	int level;
1035 
1036 	for (level = 0; level < wm_state->num_levels; level++) {
1037 		struct drm_device *dev = crtc->base.dev;
1038 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1039 		struct intel_plane *plane;
1040 
1041 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1042 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1043 
1044 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1045 			switch (plane->base.type) {
1046 				int sprite;
1047 			case DRM_PLANE_TYPE_CURSOR:
1048 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1049 					wm_state->wm[level].cursor;
1050 				break;
1051 			case DRM_PLANE_TYPE_PRIMARY:
1052 				wm_state->wm[level].primary = plane->wm.fifo_size -
1053 					wm_state->wm[level].primary;
1054 				break;
1055 			case DRM_PLANE_TYPE_OVERLAY:
1056 				sprite = plane->plane;
1057 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1058 					wm_state->wm[level].sprite[sprite];
1059 				break;
1060 			}
1061 		}
1062 	}
1063 }
1064 
1065 static void vlv_compute_wm(struct intel_crtc *crtc)
1066 {
1067 	struct drm_device *dev = crtc->base.dev;
1068 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1069 	struct intel_plane *plane;
1070 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1071 	int level;
1072 
1073 	memset(wm_state, 0, sizeof(*wm_state));
1074 
1075 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1076 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1077 
1078 	wm_state->num_active_planes = 0;
1079 
1080 	vlv_compute_fifo(crtc);
1081 
1082 	if (wm_state->num_active_planes != 1)
1083 		wm_state->cxsr = false;
1084 
1085 	if (wm_state->cxsr) {
1086 		for (level = 0; level < wm_state->num_levels; level++) {
1087 			wm_state->sr[level].plane = sr_fifo_size;
1088 			wm_state->sr[level].cursor = 63;
1089 		}
1090 	}
1091 
1092 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1093 		struct intel_plane_state *state =
1094 			to_intel_plane_state(plane->base.state);
1095 
1096 		if (!state->visible)
1097 			continue;
1098 
1099 		/* normal watermarks */
1100 		for (level = 0; level < wm_state->num_levels; level++) {
1101 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1102 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1103 
1104 			/* hack */
1105 			if (WARN_ON(level == 0 && wm > max_wm))
1106 				wm = max_wm;
1107 
1108 			if (wm > plane->wm.fifo_size)
1109 				break;
1110 
1111 			switch (plane->base.type) {
1112 				int sprite;
1113 			case DRM_PLANE_TYPE_CURSOR:
1114 				wm_state->wm[level].cursor = wm;
1115 				break;
1116 			case DRM_PLANE_TYPE_PRIMARY:
1117 				wm_state->wm[level].primary = wm;
1118 				break;
1119 			case DRM_PLANE_TYPE_OVERLAY:
1120 				sprite = plane->plane;
1121 				wm_state->wm[level].sprite[sprite] = wm;
1122 				break;
1123 			}
1124 		}
1125 
1126 		wm_state->num_levels = level;
1127 
1128 		if (!wm_state->cxsr)
1129 			continue;
1130 
1131 		/* maxfifo watermarks */
1132 		switch (plane->base.type) {
1133 			int sprite, level;
1134 		case DRM_PLANE_TYPE_CURSOR:
1135 			for (level = 0; level < wm_state->num_levels; level++)
1136 				wm_state->sr[level].cursor =
1137 					wm_state->wm[level].cursor;
1138 			break;
1139 		case DRM_PLANE_TYPE_PRIMARY:
1140 			for (level = 0; level < wm_state->num_levels; level++)
1141 				wm_state->sr[level].plane =
1142 					min(wm_state->sr[level].plane,
1143 					    wm_state->wm[level].primary);
1144 			break;
1145 		case DRM_PLANE_TYPE_OVERLAY:
1146 			sprite = plane->plane;
1147 			for (level = 0; level < wm_state->num_levels; level++)
1148 				wm_state->sr[level].plane =
1149 					min(wm_state->sr[level].plane,
1150 					    wm_state->wm[level].sprite[sprite]);
1151 			break;
1152 		}
1153 	}
1154 
1155 	/* clear any (partially) filled invalid levels */
1156 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1157 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1158 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1159 	}
1160 
1161 	vlv_invert_wms(crtc);
1162 }
1163 
1164 #define VLV_FIFO(plane, value) \
1165 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1166 
1167 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1168 {
1169 	struct drm_device *dev = crtc->base.dev;
1170 	struct drm_i915_private *dev_priv = to_i915(dev);
1171 	struct intel_plane *plane;
1172 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1173 
1174 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1175 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1176 			WARN_ON(plane->wm.fifo_size != 63);
1177 			continue;
1178 		}
1179 
1180 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1181 			sprite0_start = plane->wm.fifo_size;
1182 		else if (plane->plane == 0)
1183 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1184 		else
1185 			fifo_size = sprite1_start + plane->wm.fifo_size;
1186 	}
1187 
1188 	WARN_ON(fifo_size != 512 - 1);
1189 
1190 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1191 		      pipe_name(crtc->pipe), sprite0_start,
1192 		      sprite1_start, fifo_size);
1193 
1194 	switch (crtc->pipe) {
1195 		uint32_t dsparb, dsparb2, dsparb3;
1196 	case PIPE_A:
1197 		dsparb = I915_READ(DSPARB);
1198 		dsparb2 = I915_READ(DSPARB2);
1199 
1200 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1201 			    VLV_FIFO(SPRITEB, 0xff));
1202 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1203 			   VLV_FIFO(SPRITEB, sprite1_start));
1204 
1205 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1206 			     VLV_FIFO(SPRITEB_HI, 0x1));
1207 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1208 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1209 
1210 		I915_WRITE(DSPARB, dsparb);
1211 		I915_WRITE(DSPARB2, dsparb2);
1212 		break;
1213 	case PIPE_B:
1214 		dsparb = I915_READ(DSPARB);
1215 		dsparb2 = I915_READ(DSPARB2);
1216 
1217 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1218 			    VLV_FIFO(SPRITED, 0xff));
1219 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1220 			   VLV_FIFO(SPRITED, sprite1_start));
1221 
1222 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1223 			     VLV_FIFO(SPRITED_HI, 0xff));
1224 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1225 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1226 
1227 		I915_WRITE(DSPARB, dsparb);
1228 		I915_WRITE(DSPARB2, dsparb2);
1229 		break;
1230 	case PIPE_C:
1231 		dsparb3 = I915_READ(DSPARB3);
1232 		dsparb2 = I915_READ(DSPARB2);
1233 
1234 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1235 			     VLV_FIFO(SPRITEF, 0xff));
1236 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1237 			    VLV_FIFO(SPRITEF, sprite1_start));
1238 
1239 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1240 			     VLV_FIFO(SPRITEF_HI, 0xff));
1241 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1242 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1243 
1244 		I915_WRITE(DSPARB3, dsparb3);
1245 		I915_WRITE(DSPARB2, dsparb2);
1246 		break;
1247 	default:
1248 		break;
1249 	}
1250 }
1251 
1252 #undef VLV_FIFO
1253 
1254 static void vlv_merge_wm(struct drm_device *dev,
1255 			 struct vlv_wm_values *wm)
1256 {
1257 	struct intel_crtc *crtc;
1258 	int num_active_crtcs = 0;
1259 
1260 	wm->level = to_i915(dev)->wm.max_level;
1261 	wm->cxsr = true;
1262 
1263 	for_each_intel_crtc(dev, crtc) {
1264 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1265 
1266 		if (!crtc->active)
1267 			continue;
1268 
1269 		if (!wm_state->cxsr)
1270 			wm->cxsr = false;
1271 
1272 		num_active_crtcs++;
1273 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1274 	}
1275 
1276 	if (num_active_crtcs != 1)
1277 		wm->cxsr = false;
1278 
1279 	if (num_active_crtcs > 1)
1280 		wm->level = VLV_WM_LEVEL_PM2;
1281 
1282 	for_each_intel_crtc(dev, crtc) {
1283 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1284 		enum i915_pipe pipe = crtc->pipe;
1285 
1286 		if (!crtc->active)
1287 			continue;
1288 
1289 		wm->pipe[pipe] = wm_state->wm[wm->level];
1290 		if (wm->cxsr)
1291 			wm->sr = wm_state->sr[wm->level];
1292 
1293 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1294 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1295 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1296 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1297 	}
1298 }
1299 
1300 static void vlv_update_wm(struct drm_crtc *crtc)
1301 {
1302 	struct drm_device *dev = crtc->dev;
1303 	struct drm_i915_private *dev_priv = dev->dev_private;
1304 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1305 	enum i915_pipe pipe = intel_crtc->pipe;
1306 	struct vlv_wm_values wm = {};
1307 
1308 	vlv_compute_wm(intel_crtc);
1309 	vlv_merge_wm(dev, &wm);
1310 
1311 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1312 		/* FIXME should be part of crtc atomic commit */
1313 		vlv_pipe_set_fifo_size(intel_crtc);
1314 		return;
1315 	}
1316 
1317 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1318 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1319 		chv_set_memory_dvfs(dev_priv, false);
1320 
1321 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1322 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1323 		chv_set_memory_pm5(dev_priv, false);
1324 
1325 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1326 		intel_set_memory_cxsr(dev_priv, false);
1327 
1328 	/* FIXME should be part of crtc atomic commit */
1329 	vlv_pipe_set_fifo_size(intel_crtc);
1330 
1331 	vlv_write_wm_values(intel_crtc, &wm);
1332 
1333 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1334 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1335 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1336 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1337 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1338 
1339 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1340 		intel_set_memory_cxsr(dev_priv, true);
1341 
1342 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1343 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1344 		chv_set_memory_pm5(dev_priv, true);
1345 
1346 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1347 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1348 		chv_set_memory_dvfs(dev_priv, true);
1349 
1350 	dev_priv->wm.vlv = wm;
1351 }
1352 
1353 #define single_plane_enabled(mask) is_power_of_2(mask)
1354 
1355 static void g4x_update_wm(struct drm_crtc *crtc)
1356 {
1357 	struct drm_device *dev = crtc->dev;
1358 	static const int sr_latency_ns = 12000;
1359 	struct drm_i915_private *dev_priv = dev->dev_private;
1360 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1361 	int plane_sr, cursor_sr;
1362 	unsigned int enabled = 0;
1363 	bool cxsr_enabled;
1364 
1365 	if (g4x_compute_wm0(dev, PIPE_A,
1366 			    &g4x_wm_info, pessimal_latency_ns,
1367 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1368 			    &planea_wm, &cursora_wm))
1369 		enabled |= 1 << PIPE_A;
1370 
1371 	if (g4x_compute_wm0(dev, PIPE_B,
1372 			    &g4x_wm_info, pessimal_latency_ns,
1373 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1374 			    &planeb_wm, &cursorb_wm))
1375 		enabled |= 1 << PIPE_B;
1376 
1377 	if (single_plane_enabled(enabled) &&
1378 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1379 			     sr_latency_ns,
1380 			     &g4x_wm_info,
1381 			     &g4x_cursor_wm_info,
1382 			     &plane_sr, &cursor_sr)) {
1383 		cxsr_enabled = true;
1384 	} else {
1385 		cxsr_enabled = false;
1386 		intel_set_memory_cxsr(dev_priv, false);
1387 		plane_sr = cursor_sr = 0;
1388 	}
1389 
1390 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1391 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1392 		      planea_wm, cursora_wm,
1393 		      planeb_wm, cursorb_wm,
1394 		      plane_sr, cursor_sr);
1395 
1396 	I915_WRITE(DSPFW1,
1397 		   FW_WM(plane_sr, SR) |
1398 		   FW_WM(cursorb_wm, CURSORB) |
1399 		   FW_WM(planeb_wm, PLANEB) |
1400 		   FW_WM(planea_wm, PLANEA));
1401 	I915_WRITE(DSPFW2,
1402 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1403 		   FW_WM(cursora_wm, CURSORA));
1404 	/* HPLL off in SR has some issues on G4x... disable it */
1405 	I915_WRITE(DSPFW3,
1406 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1407 		   FW_WM(cursor_sr, CURSOR_SR));
1408 
1409 	if (cxsr_enabled)
1410 		intel_set_memory_cxsr(dev_priv, true);
1411 }
1412 
1413 static void i965_update_wm(struct drm_crtc *unused_crtc)
1414 {
1415 	struct drm_device *dev = unused_crtc->dev;
1416 	struct drm_i915_private *dev_priv = dev->dev_private;
1417 	struct drm_crtc *crtc;
1418 	int srwm = 1;
1419 	int cursor_sr = 16;
1420 	bool cxsr_enabled;
1421 
1422 	/* Calc sr entries for one plane configs */
1423 	crtc = single_enabled_crtc(dev);
1424 	if (crtc) {
1425 		/* self-refresh has much higher latency */
1426 		static const int sr_latency_ns = 12000;
1427 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1428 		int clock = adjusted_mode->crtc_clock;
1429 		int htotal = adjusted_mode->crtc_htotal;
1430 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1431 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1432 		unsigned long line_time_us;
1433 		int entries;
1434 
1435 		line_time_us = max(htotal * 1000 / clock, 1);
1436 
1437 		/* Use ns/us then divide to preserve precision */
1438 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1439 			pixel_size * hdisplay;
1440 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1441 		srwm = I965_FIFO_SIZE - entries;
1442 		if (srwm < 0)
1443 			srwm = 1;
1444 		srwm &= 0x1ff;
1445 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1446 			      entries, srwm);
1447 
1448 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449 			pixel_size * crtc->cursor->state->crtc_w;
1450 		entries = DIV_ROUND_UP(entries,
1451 					  i965_cursor_wm_info.cacheline_size);
1452 		cursor_sr = i965_cursor_wm_info.fifo_size -
1453 			(entries + i965_cursor_wm_info.guard_size);
1454 
1455 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1456 			cursor_sr = i965_cursor_wm_info.max_wm;
1457 
1458 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1459 			      "cursor %d\n", srwm, cursor_sr);
1460 
1461 		cxsr_enabled = true;
1462 	} else {
1463 		cxsr_enabled = false;
1464 		/* Turn off self refresh if both pipes are enabled */
1465 		intel_set_memory_cxsr(dev_priv, false);
1466 	}
1467 
1468 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1469 		      srwm);
1470 
1471 	/* 965 has limitations... */
1472 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1473 		   FW_WM(8, CURSORB) |
1474 		   FW_WM(8, PLANEB) |
1475 		   FW_WM(8, PLANEA));
1476 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1477 		   FW_WM(8, PLANEC_OLD));
1478 	/* update cursor SR watermark */
1479 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1480 
1481 	if (cxsr_enabled)
1482 		intel_set_memory_cxsr(dev_priv, true);
1483 }
1484 
1485 #undef FW_WM
1486 
1487 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1488 {
1489 	struct drm_device *dev = unused_crtc->dev;
1490 	struct drm_i915_private *dev_priv = dev->dev_private;
1491 	const struct intel_watermark_params *wm_info;
1492 	uint32_t fwater_lo;
1493 	uint32_t fwater_hi;
1494 	int cwm, srwm = 1;
1495 	int fifo_size;
1496 	int planea_wm, planeb_wm;
1497 	struct drm_crtc *crtc, *enabled = NULL;
1498 
1499 	if (IS_I945GM(dev))
1500 		wm_info = &i945_wm_info;
1501 	else if (!IS_GEN2(dev))
1502 		wm_info = &i915_wm_info;
1503 	else
1504 		wm_info = &i830_a_wm_info;
1505 
1506 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1507 	crtc = intel_get_crtc_for_plane(dev, 0);
1508 	if (intel_crtc_active(crtc)) {
1509 		const struct drm_display_mode *adjusted_mode;
1510 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1511 		if (IS_GEN2(dev))
1512 			cpp = 4;
1513 
1514 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1515 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1516 					       wm_info, fifo_size, cpp,
1517 					       pessimal_latency_ns);
1518 		enabled = crtc;
1519 	} else {
1520 		planea_wm = fifo_size - wm_info->guard_size;
1521 		if (planea_wm > (long)wm_info->max_wm)
1522 			planea_wm = wm_info->max_wm;
1523 	}
1524 
1525 	if (IS_GEN2(dev))
1526 		wm_info = &i830_bc_wm_info;
1527 
1528 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1529 	crtc = intel_get_crtc_for_plane(dev, 1);
1530 	if (intel_crtc_active(crtc)) {
1531 		const struct drm_display_mode *adjusted_mode;
1532 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1533 		if (IS_GEN2(dev))
1534 			cpp = 4;
1535 
1536 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1537 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1538 					       wm_info, fifo_size, cpp,
1539 					       pessimal_latency_ns);
1540 		if (enabled == NULL)
1541 			enabled = crtc;
1542 		else
1543 			enabled = NULL;
1544 	} else {
1545 		planeb_wm = fifo_size - wm_info->guard_size;
1546 		if (planeb_wm > (long)wm_info->max_wm)
1547 			planeb_wm = wm_info->max_wm;
1548 	}
1549 
1550 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1551 
1552 	if (IS_I915GM(dev) && enabled) {
1553 		struct drm_i915_gem_object *obj;
1554 
1555 		obj = intel_fb_obj(enabled->primary->state->fb);
1556 
1557 		/* self-refresh seems busted with untiled */
1558 		if (obj->tiling_mode == I915_TILING_NONE)
1559 			enabled = NULL;
1560 	}
1561 
1562 	/*
1563 	 * Overlay gets an aggressive default since video jitter is bad.
1564 	 */
1565 	cwm = 2;
1566 
1567 	/* Play safe and disable self-refresh before adjusting watermarks. */
1568 	intel_set_memory_cxsr(dev_priv, false);
1569 
1570 	/* Calc sr entries for one plane configs */
1571 	if (HAS_FW_BLC(dev) && enabled) {
1572 		/* self-refresh has much higher latency */
1573 		static const int sr_latency_ns = 6000;
1574 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1575 		int clock = adjusted_mode->crtc_clock;
1576 		int htotal = adjusted_mode->crtc_htotal;
1577 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1578 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1579 		unsigned long line_time_us;
1580 		int entries;
1581 
1582 		line_time_us = max(htotal * 1000 / clock, 1);
1583 
1584 		/* Use ns/us then divide to preserve precision */
1585 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586 			pixel_size * hdisplay;
1587 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589 		srwm = wm_info->fifo_size - entries;
1590 		if (srwm < 0)
1591 			srwm = 1;
1592 
1593 		if (IS_I945G(dev) || IS_I945GM(dev))
1594 			I915_WRITE(FW_BLC_SELF,
1595 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596 		else if (IS_I915GM(dev))
1597 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598 	}
1599 
1600 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601 		      planea_wm, planeb_wm, cwm, srwm);
1602 
1603 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604 	fwater_hi = (cwm & 0x1f);
1605 
1606 	/* Set request length to 8 cachelines per fetch */
1607 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608 	fwater_hi = fwater_hi | (1 << 8);
1609 
1610 	I915_WRITE(FW_BLC, fwater_lo);
1611 	I915_WRITE(FW_BLC2, fwater_hi);
1612 
1613 	if (enabled)
1614 		intel_set_memory_cxsr(dev_priv, true);
1615 }
1616 
1617 static void i845_update_wm(struct drm_crtc *unused_crtc)
1618 {
1619 	struct drm_device *dev = unused_crtc->dev;
1620 	struct drm_i915_private *dev_priv = dev->dev_private;
1621 	struct drm_crtc *crtc;
1622 	const struct drm_display_mode *adjusted_mode;
1623 	uint32_t fwater_lo;
1624 	int planea_wm;
1625 
1626 	crtc = single_enabled_crtc(dev);
1627 	if (crtc == NULL)
1628 		return;
1629 
1630 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1631 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1632 				       &i845_wm_info,
1633 				       dev_priv->display.get_fifo_size(dev, 0),
1634 				       4, pessimal_latency_ns);
1635 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1636 	fwater_lo |= (3<<8) | planea_wm;
1637 
1638 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1639 
1640 	I915_WRITE(FW_BLC, fwater_lo);
1641 }
1642 
1643 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1644 {
1645 	uint32_t pixel_rate;
1646 
1647 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1648 
1649 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1650 	 * adjust the pixel_rate here. */
1651 
1652 	if (pipe_config->pch_pfit.enabled) {
1653 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1654 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1655 
1656 		pipe_w = pipe_config->pipe_src_w;
1657 		pipe_h = pipe_config->pipe_src_h;
1658 
1659 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1660 		pfit_h = pfit_size & 0xFFFF;
1661 		if (pipe_w < pfit_w)
1662 			pipe_w = pfit_w;
1663 		if (pipe_h < pfit_h)
1664 			pipe_h = pfit_h;
1665 
1666 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1667 				     pfit_w * pfit_h);
1668 	}
1669 
1670 	return pixel_rate;
1671 }
1672 
1673 /* latency must be in 0.1us units. */
1674 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1675 			       uint32_t latency)
1676 {
1677 	uint64_t ret;
1678 
1679 	if (WARN(latency == 0, "Latency value missing\n"))
1680 		return UINT_MAX;
1681 
1682 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1683 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1684 
1685 	return ret;
1686 }
1687 
1688 /* latency must be in 0.1us units. */
1689 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1690 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1691 			       uint32_t latency)
1692 {
1693 	uint32_t ret;
1694 
1695 	if (WARN(latency == 0, "Latency value missing\n"))
1696 		return UINT_MAX;
1697 
1698 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1699 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1700 	ret = DIV_ROUND_UP(ret, 64) + 2;
1701 	return ret;
1702 }
1703 
1704 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1705 			   uint8_t bytes_per_pixel)
1706 {
1707 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1708 }
1709 
1710 struct skl_pipe_wm_parameters {
1711 	bool active;
1712 	uint32_t pipe_htotal;
1713 	uint32_t pixel_rate; /* in KHz */
1714 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1715 };
1716 
1717 struct ilk_wm_maximums {
1718 	uint16_t pri;
1719 	uint16_t spr;
1720 	uint16_t cur;
1721 	uint16_t fbc;
1722 };
1723 
1724 /* used in computing the new watermarks state */
1725 struct intel_wm_config {
1726 	unsigned int num_pipes_active;
1727 	bool sprites_enabled;
1728 	bool sprites_scaled;
1729 };
1730 
1731 /*
1732  * For both WM_PIPE and WM_LP.
1733  * mem_value must be in 0.1us units.
1734  */
1735 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1736 				   const struct intel_plane_state *pstate,
1737 				   uint32_t mem_value,
1738 				   bool is_lp)
1739 {
1740 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1741 	uint32_t method1, method2;
1742 
1743 	if (!cstate->base.active || !pstate->visible)
1744 		return 0;
1745 
1746 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1747 
1748 	if (!is_lp)
1749 		return method1;
1750 
1751 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1752 				 cstate->base.adjusted_mode.crtc_htotal,
1753 				 drm_rect_width(&pstate->dst),
1754 				 bpp,
1755 				 mem_value);
1756 
1757 	return min(method1, method2);
1758 }
1759 
1760 /*
1761  * For both WM_PIPE and WM_LP.
1762  * mem_value must be in 0.1us units.
1763  */
1764 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1765 				   const struct intel_plane_state *pstate,
1766 				   uint32_t mem_value)
1767 {
1768 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1769 	uint32_t method1, method2;
1770 
1771 	if (!cstate->base.active || !pstate->visible)
1772 		return 0;
1773 
1774 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1775 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1776 				 cstate->base.adjusted_mode.crtc_htotal,
1777 				 drm_rect_width(&pstate->dst),
1778 				 bpp,
1779 				 mem_value);
1780 	return min(method1, method2);
1781 }
1782 
1783 /*
1784  * For both WM_PIPE and WM_LP.
1785  * mem_value must be in 0.1us units.
1786  */
1787 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1788 				   const struct intel_plane_state *pstate,
1789 				   uint32_t mem_value)
1790 {
1791 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1792 
1793 	if (!cstate->base.active || !pstate->visible)
1794 		return 0;
1795 
1796 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1797 			      cstate->base.adjusted_mode.crtc_htotal,
1798 			      drm_rect_width(&pstate->dst),
1799 			      bpp,
1800 			      mem_value);
1801 }
1802 
1803 /* Only for WM_LP. */
1804 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1805 				   const struct intel_plane_state *pstate,
1806 				   uint32_t pri_val)
1807 {
1808 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1809 
1810 	if (!cstate->base.active || !pstate->visible)
1811 		return 0;
1812 
1813 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1814 }
1815 
1816 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1817 {
1818 	if (INTEL_INFO(dev)->gen >= 8)
1819 		return 3072;
1820 	else if (INTEL_INFO(dev)->gen >= 7)
1821 		return 768;
1822 	else
1823 		return 512;
1824 }
1825 
1826 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1827 					 int level, bool is_sprite)
1828 {
1829 	if (INTEL_INFO(dev)->gen >= 8)
1830 		/* BDW primary/sprite plane watermarks */
1831 		return level == 0 ? 255 : 2047;
1832 	else if (INTEL_INFO(dev)->gen >= 7)
1833 		/* IVB/HSW primary/sprite plane watermarks */
1834 		return level == 0 ? 127 : 1023;
1835 	else if (!is_sprite)
1836 		/* ILK/SNB primary plane watermarks */
1837 		return level == 0 ? 127 : 511;
1838 	else
1839 		/* ILK/SNB sprite plane watermarks */
1840 		return level == 0 ? 63 : 255;
1841 }
1842 
1843 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1844 					  int level)
1845 {
1846 	if (INTEL_INFO(dev)->gen >= 7)
1847 		return level == 0 ? 63 : 255;
1848 	else
1849 		return level == 0 ? 31 : 63;
1850 }
1851 
1852 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1853 {
1854 	if (INTEL_INFO(dev)->gen >= 8)
1855 		return 31;
1856 	else
1857 		return 15;
1858 }
1859 
1860 /* Calculate the maximum primary/sprite plane watermark */
1861 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1862 				     int level,
1863 				     const struct intel_wm_config *config,
1864 				     enum intel_ddb_partitioning ddb_partitioning,
1865 				     bool is_sprite)
1866 {
1867 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1868 
1869 	/* if sprites aren't enabled, sprites get nothing */
1870 	if (is_sprite && !config->sprites_enabled)
1871 		return 0;
1872 
1873 	/* HSW allows LP1+ watermarks even with multiple pipes */
1874 	if (level == 0 || config->num_pipes_active > 1) {
1875 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1876 
1877 		/*
1878 		 * For some reason the non self refresh
1879 		 * FIFO size is only half of the self
1880 		 * refresh FIFO size on ILK/SNB.
1881 		 */
1882 		if (INTEL_INFO(dev)->gen <= 6)
1883 			fifo_size /= 2;
1884 	}
1885 
1886 	if (config->sprites_enabled) {
1887 		/* level 0 is always calculated with 1:1 split */
1888 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1889 			if (is_sprite)
1890 				fifo_size *= 5;
1891 			fifo_size /= 6;
1892 		} else {
1893 			fifo_size /= 2;
1894 		}
1895 	}
1896 
1897 	/* clamp to max that the registers can hold */
1898 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1899 }
1900 
1901 /* Calculate the maximum cursor plane watermark */
1902 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1903 				      int level,
1904 				      const struct intel_wm_config *config)
1905 {
1906 	/* HSW LP1+ watermarks w/ multiple pipes */
1907 	if (level > 0 && config->num_pipes_active > 1)
1908 		return 64;
1909 
1910 	/* otherwise just report max that registers can hold */
1911 	return ilk_cursor_wm_reg_max(dev, level);
1912 }
1913 
1914 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1915 				    int level,
1916 				    const struct intel_wm_config *config,
1917 				    enum intel_ddb_partitioning ddb_partitioning,
1918 				    struct ilk_wm_maximums *max)
1919 {
1920 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1921 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1922 	max->cur = ilk_cursor_wm_max(dev, level, config);
1923 	max->fbc = ilk_fbc_wm_reg_max(dev);
1924 }
1925 
1926 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1927 					int level,
1928 					struct ilk_wm_maximums *max)
1929 {
1930 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1931 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1932 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1933 	max->fbc = ilk_fbc_wm_reg_max(dev);
1934 }
1935 
1936 static bool ilk_validate_wm_level(int level,
1937 				  const struct ilk_wm_maximums *max,
1938 				  struct intel_wm_level *result)
1939 {
1940 	bool ret;
1941 
1942 	/* already determined to be invalid? */
1943 	if (!result->enable)
1944 		return false;
1945 
1946 	result->enable = result->pri_val <= max->pri &&
1947 			 result->spr_val <= max->spr &&
1948 			 result->cur_val <= max->cur;
1949 
1950 	ret = result->enable;
1951 
1952 	/*
1953 	 * HACK until we can pre-compute everything,
1954 	 * and thus fail gracefully if LP0 watermarks
1955 	 * are exceeded...
1956 	 */
1957 	if (level == 0 && !result->enable) {
1958 		if (result->pri_val > max->pri)
1959 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1960 				      level, result->pri_val, max->pri);
1961 		if (result->spr_val > max->spr)
1962 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1963 				      level, result->spr_val, max->spr);
1964 		if (result->cur_val > max->cur)
1965 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1966 				      level, result->cur_val, max->cur);
1967 
1968 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1969 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1970 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1971 		result->enable = true;
1972 	}
1973 
1974 	return ret;
1975 }
1976 
1977 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1978 				 const struct intel_crtc *intel_crtc,
1979 				 int level,
1980 				 struct intel_crtc_state *cstate,
1981 				 struct intel_wm_level *result)
1982 {
1983 	struct intel_plane *intel_plane;
1984 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1985 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1986 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1987 
1988 	/* WM1+ latency values stored in 0.5us units */
1989 	if (level > 0) {
1990 		pri_latency *= 5;
1991 		spr_latency *= 5;
1992 		cur_latency *= 5;
1993 	}
1994 
1995 	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
1996 		struct intel_plane_state *pstate =
1997 			to_intel_plane_state(intel_plane->base.state);
1998 
1999 		switch (intel_plane->base.type) {
2000 		case DRM_PLANE_TYPE_PRIMARY:
2001 			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2002 							     pri_latency,
2003 							     level);
2004 			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2005 							     result->pri_val);
2006 			break;
2007 		case DRM_PLANE_TYPE_OVERLAY:
2008 			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2009 							     spr_latency);
2010 			break;
2011 		case DRM_PLANE_TYPE_CURSOR:
2012 			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2013 							     cur_latency);
2014 			break;
2015 		}
2016 	}
2017 
2018 	result->enable = true;
2019 }
2020 
2021 static uint32_t
2022 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2023 {
2024 	struct drm_i915_private *dev_priv = dev->dev_private;
2025 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2026 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2027 	u32 linetime, ips_linetime;
2028 
2029 	if (!intel_crtc->active)
2030 		return 0;
2031 
2032 	/* The WM are computed with base on how long it takes to fill a single
2033 	 * row at the given clock rate, multiplied by 8.
2034 	 * */
2035 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2036 				     adjusted_mode->crtc_clock);
2037 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2038 					 dev_priv->cdclk_freq);
2039 
2040 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2041 	       PIPE_WM_LINETIME_TIME(linetime);
2042 }
2043 
2044 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2045 {
2046 	struct drm_i915_private *dev_priv = dev->dev_private;
2047 
2048 	if (IS_GEN9(dev)) {
2049 		uint32_t val;
2050 		int ret, i;
2051 		int level, max_level = ilk_wm_max_level(dev);
2052 
2053 		/* read the first set of memory latencies[0:3] */
2054 		val = 0; /* data0 to be programmed to 0 for first set */
2055 		mutex_lock(&dev_priv->rps.hw_lock);
2056 		ret = sandybridge_pcode_read(dev_priv,
2057 					     GEN9_PCODE_READ_MEM_LATENCY,
2058 					     &val);
2059 		mutex_unlock(&dev_priv->rps.hw_lock);
2060 
2061 		if (ret) {
2062 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2063 			return;
2064 		}
2065 
2066 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2067 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2068 				GEN9_MEM_LATENCY_LEVEL_MASK;
2069 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2070 				GEN9_MEM_LATENCY_LEVEL_MASK;
2071 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2072 				GEN9_MEM_LATENCY_LEVEL_MASK;
2073 
2074 		/* read the second set of memory latencies[4:7] */
2075 		val = 1; /* data0 to be programmed to 1 for second set */
2076 		mutex_lock(&dev_priv->rps.hw_lock);
2077 		ret = sandybridge_pcode_read(dev_priv,
2078 					     GEN9_PCODE_READ_MEM_LATENCY,
2079 					     &val);
2080 		mutex_unlock(&dev_priv->rps.hw_lock);
2081 		if (ret) {
2082 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2083 			return;
2084 		}
2085 
2086 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2087 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2088 				GEN9_MEM_LATENCY_LEVEL_MASK;
2089 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2090 				GEN9_MEM_LATENCY_LEVEL_MASK;
2091 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2092 				GEN9_MEM_LATENCY_LEVEL_MASK;
2093 
2094 		/*
2095 		 * WaWmMemoryReadLatency:skl
2096 		 *
2097 		 * punit doesn't take into account the read latency so we need
2098 		 * to add 2us to the various latency levels we retrieve from
2099 		 * the punit.
2100 		 *   - W0 is a bit special in that it's the only level that
2101 		 *   can't be disabled if we want to have display working, so
2102 		 *   we always add 2us there.
2103 		 *   - For levels >=1, punit returns 0us latency when they are
2104 		 *   disabled, so we respect that and don't add 2us then
2105 		 *
2106 		 * Additionally, if a level n (n > 1) has a 0us latency, all
2107 		 * levels m (m >= n) need to be disabled. We make sure to
2108 		 * sanitize the values out of the punit to satisfy this
2109 		 * requirement.
2110 		 */
2111 		wm[0] += 2;
2112 		for (level = 1; level <= max_level; level++)
2113 			if (wm[level] != 0)
2114 				wm[level] += 2;
2115 			else {
2116 				for (i = level + 1; i <= max_level; i++)
2117 					wm[i] = 0;
2118 
2119 				break;
2120 			}
2121 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2122 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2123 
2124 		wm[0] = (sskpd >> 56) & 0xFF;
2125 		if (wm[0] == 0)
2126 			wm[0] = sskpd & 0xF;
2127 		wm[1] = (sskpd >> 4) & 0xFF;
2128 		wm[2] = (sskpd >> 12) & 0xFF;
2129 		wm[3] = (sskpd >> 20) & 0x1FF;
2130 		wm[4] = (sskpd >> 32) & 0x1FF;
2131 	} else if (INTEL_INFO(dev)->gen >= 6) {
2132 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2133 
2134 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2135 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2136 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2137 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2138 	} else if (INTEL_INFO(dev)->gen >= 5) {
2139 		uint32_t mltr = I915_READ(MLTR_ILK);
2140 
2141 		/* ILK primary LP0 latency is 700 ns */
2142 		wm[0] = 7;
2143 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2144 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2145 	}
2146 }
2147 
2148 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2149 {
2150 	/* ILK sprite LP0 latency is 1300 ns */
2151 	if (INTEL_INFO(dev)->gen == 5)
2152 		wm[0] = 13;
2153 }
2154 
2155 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2156 {
2157 	/* ILK cursor LP0 latency is 1300 ns */
2158 	if (INTEL_INFO(dev)->gen == 5)
2159 		wm[0] = 13;
2160 
2161 	/* WaDoubleCursorLP3Latency:ivb */
2162 	if (IS_IVYBRIDGE(dev))
2163 		wm[3] *= 2;
2164 }
2165 
2166 int ilk_wm_max_level(const struct drm_device *dev)
2167 {
2168 	/* how many WM levels are we expecting */
2169 	if (INTEL_INFO(dev)->gen >= 9)
2170 		return 7;
2171 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2172 		return 4;
2173 	else if (INTEL_INFO(dev)->gen >= 6)
2174 		return 3;
2175 	else
2176 		return 2;
2177 }
2178 
2179 static void intel_print_wm_latency(struct drm_device *dev,
2180 				   const char *name,
2181 				   const uint16_t wm[8])
2182 {
2183 	int level, max_level = ilk_wm_max_level(dev);
2184 
2185 	for (level = 0; level <= max_level; level++) {
2186 		unsigned int latency = wm[level];
2187 
2188 		if (latency == 0) {
2189 			DRM_ERROR("%s WM%d latency not provided\n",
2190 				  name, level);
2191 			continue;
2192 		}
2193 
2194 		/*
2195 		 * - latencies are in us on gen9.
2196 		 * - before then, WM1+ latency values are in 0.5us units
2197 		 */
2198 		if (IS_GEN9(dev))
2199 			latency *= 10;
2200 		else if (level > 0)
2201 			latency *= 5;
2202 
2203 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2204 			      name, level, wm[level],
2205 			      latency / 10, latency % 10);
2206 	}
2207 }
2208 
2209 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2210 				    uint16_t wm[5], uint16_t min)
2211 {
2212 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2213 
2214 	if (wm[0] >= min)
2215 		return false;
2216 
2217 	wm[0] = max(wm[0], min);
2218 	for (level = 1; level <= max_level; level++)
2219 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2220 
2221 	return true;
2222 }
2223 
2224 static void snb_wm_latency_quirk(struct drm_device *dev)
2225 {
2226 	struct drm_i915_private *dev_priv = dev->dev_private;
2227 	bool changed;
2228 
2229 	/*
2230 	 * The BIOS provided WM memory latency values are often
2231 	 * inadequate for high resolution displays. Adjust them.
2232 	 */
2233 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2234 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2235 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2236 
2237 	if (!changed)
2238 		return;
2239 
2240 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2241 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2242 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2243 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2244 }
2245 
2246 static void ilk_setup_wm_latency(struct drm_device *dev)
2247 {
2248 	struct drm_i915_private *dev_priv = dev->dev_private;
2249 
2250 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2251 
2252 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2253 	       sizeof(dev_priv->wm.pri_latency));
2254 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2255 	       sizeof(dev_priv->wm.pri_latency));
2256 
2257 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2258 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2259 
2260 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2261 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2262 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2263 
2264 	if (IS_GEN6(dev))
2265 		snb_wm_latency_quirk(dev);
2266 }
2267 
2268 static void skl_setup_wm_latency(struct drm_device *dev)
2269 {
2270 	struct drm_i915_private *dev_priv = dev->dev_private;
2271 
2272 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2273 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2274 }
2275 
2276 static void ilk_compute_wm_config(struct drm_device *dev,
2277 				  struct intel_wm_config *config)
2278 {
2279 	struct intel_crtc *intel_crtc;
2280 
2281 	/* Compute the currently _active_ config */
2282 	for_each_intel_crtc(dev, intel_crtc) {
2283 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2284 
2285 		if (!wm->pipe_enabled)
2286 			continue;
2287 
2288 		config->sprites_enabled |= wm->sprites_enabled;
2289 		config->sprites_scaled |= wm->sprites_scaled;
2290 		config->num_pipes_active++;
2291 	}
2292 }
2293 
2294 /* Compute new watermarks for the pipe */
2295 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2296 				  struct intel_pipe_wm *pipe_wm)
2297 {
2298 	struct drm_crtc *crtc = cstate->base.crtc;
2299 	struct drm_device *dev = crtc->dev;
2300 	const struct drm_i915_private *dev_priv = dev->dev_private;
2301 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2302 	struct intel_plane *intel_plane;
2303 	struct intel_plane_state *sprstate = NULL;
2304 	int level, max_level = ilk_wm_max_level(dev);
2305 	/* LP0 watermark maximums depend on this pipe alone */
2306 	struct intel_wm_config config = {
2307 		.num_pipes_active = 1,
2308 	};
2309 	struct ilk_wm_maximums max;
2310 
2311 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2312 		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2313 			sprstate = to_intel_plane_state(intel_plane->base.state);
2314 			break;
2315 		}
2316 	}
2317 
2318 	config.sprites_enabled = sprstate->visible;
2319 	config.sprites_scaled = sprstate->visible &&
2320 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2321 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2322 
2323 	pipe_wm->pipe_enabled = cstate->base.active;
2324 	pipe_wm->sprites_enabled = sprstate->visible;
2325 	pipe_wm->sprites_scaled = config.sprites_scaled;
2326 
2327 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2328 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2329 		max_level = 1;
2330 
2331 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2332 	if (config.sprites_scaled)
2333 		max_level = 0;
2334 
2335 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2336 
2337 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2338 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2339 
2340 	/* LP0 watermarks always use 1/2 DDB partitioning */
2341 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2342 
2343 	/* At least LP0 must be valid */
2344 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2345 		return false;
2346 
2347 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2348 
2349 	for (level = 1; level <= max_level; level++) {
2350 		struct intel_wm_level wm = {};
2351 
2352 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2353 
2354 		/*
2355 		 * Disable any watermark level that exceeds the
2356 		 * register maximums since such watermarks are
2357 		 * always invalid.
2358 		 */
2359 		if (!ilk_validate_wm_level(level, &max, &wm))
2360 			break;
2361 
2362 		pipe_wm->wm[level] = wm;
2363 	}
2364 
2365 	return true;
2366 }
2367 
2368 /*
2369  * Merge the watermarks from all active pipes for a specific level.
2370  */
2371 static void ilk_merge_wm_level(struct drm_device *dev,
2372 			       int level,
2373 			       struct intel_wm_level *ret_wm)
2374 {
2375 	struct intel_crtc *intel_crtc;
2376 
2377 	ret_wm->enable = true;
2378 
2379 	for_each_intel_crtc(dev, intel_crtc) {
2380 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2381 		const struct intel_wm_level *wm = &active->wm[level];
2382 
2383 		if (!active->pipe_enabled)
2384 			continue;
2385 
2386 		/*
2387 		 * The watermark values may have been used in the past,
2388 		 * so we must maintain them in the registers for some
2389 		 * time even if the level is now disabled.
2390 		 */
2391 		if (!wm->enable)
2392 			ret_wm->enable = false;
2393 
2394 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2395 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2396 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2397 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2398 	}
2399 }
2400 
2401 /*
2402  * Merge all low power watermarks for all active pipes.
2403  */
2404 static void ilk_wm_merge(struct drm_device *dev,
2405 			 const struct intel_wm_config *config,
2406 			 const struct ilk_wm_maximums *max,
2407 			 struct intel_pipe_wm *merged)
2408 {
2409 	struct drm_i915_private *dev_priv = dev->dev_private;
2410 	int level, max_level = ilk_wm_max_level(dev);
2411 	int last_enabled_level = max_level;
2412 
2413 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2414 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2415 	    config->num_pipes_active > 1)
2416 		return;
2417 
2418 	/* ILK: FBC WM must be disabled always */
2419 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2420 
2421 	/* merge each WM1+ level */
2422 	for (level = 1; level <= max_level; level++) {
2423 		struct intel_wm_level *wm = &merged->wm[level];
2424 
2425 		ilk_merge_wm_level(dev, level, wm);
2426 
2427 		if (level > last_enabled_level)
2428 			wm->enable = false;
2429 		else if (!ilk_validate_wm_level(level, max, wm))
2430 			/* make sure all following levels get disabled */
2431 			last_enabled_level = level - 1;
2432 
2433 		/*
2434 		 * The spec says it is preferred to disable
2435 		 * FBC WMs instead of disabling a WM level.
2436 		 */
2437 		if (wm->fbc_val > max->fbc) {
2438 			if (wm->enable)
2439 				merged->fbc_wm_enabled = false;
2440 			wm->fbc_val = 0;
2441 		}
2442 	}
2443 
2444 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2445 	/*
2446 	 * FIXME this is racy. FBC might get enabled later.
2447 	 * What we should check here is whether FBC can be
2448 	 * enabled sometime later.
2449 	 */
2450 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2451 	    intel_fbc_enabled(dev_priv)) {
2452 		for (level = 2; level <= max_level; level++) {
2453 			struct intel_wm_level *wm = &merged->wm[level];
2454 
2455 			wm->enable = false;
2456 		}
2457 	}
2458 }
2459 
2460 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2461 {
2462 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2463 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2464 }
2465 
2466 /* The value we need to program into the WM_LPx latency field */
2467 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2468 {
2469 	struct drm_i915_private *dev_priv = dev->dev_private;
2470 
2471 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2472 		return 2 * level;
2473 	else
2474 		return dev_priv->wm.pri_latency[level];
2475 }
2476 
2477 static void ilk_compute_wm_results(struct drm_device *dev,
2478 				   const struct intel_pipe_wm *merged,
2479 				   enum intel_ddb_partitioning partitioning,
2480 				   struct ilk_wm_values *results)
2481 {
2482 	struct intel_crtc *intel_crtc;
2483 	int level, wm_lp;
2484 
2485 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2486 	results->partitioning = partitioning;
2487 
2488 	/* LP1+ register values */
2489 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2490 		const struct intel_wm_level *r;
2491 
2492 		level = ilk_wm_lp_to_level(wm_lp, merged);
2493 
2494 		r = &merged->wm[level];
2495 
2496 		/*
2497 		 * Maintain the watermark values even if the level is
2498 		 * disabled. Doing otherwise could cause underruns.
2499 		 */
2500 		results->wm_lp[wm_lp - 1] =
2501 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2502 			(r->pri_val << WM1_LP_SR_SHIFT) |
2503 			r->cur_val;
2504 
2505 		if (r->enable)
2506 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2507 
2508 		if (INTEL_INFO(dev)->gen >= 8)
2509 			results->wm_lp[wm_lp - 1] |=
2510 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2511 		else
2512 			results->wm_lp[wm_lp - 1] |=
2513 				r->fbc_val << WM1_LP_FBC_SHIFT;
2514 
2515 		/*
2516 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2517 		 * level is disabled. Doing otherwise could cause underruns.
2518 		 */
2519 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2520 			WARN_ON(wm_lp != 1);
2521 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2522 		} else
2523 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2524 	}
2525 
2526 	/* LP0 register values */
2527 	for_each_intel_crtc(dev, intel_crtc) {
2528 		enum i915_pipe pipe = intel_crtc->pipe;
2529 		const struct intel_wm_level *r =
2530 			&intel_crtc->wm.active.wm[0];
2531 
2532 		if (WARN_ON(!r->enable))
2533 			continue;
2534 
2535 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2536 
2537 		results->wm_pipe[pipe] =
2538 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2539 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2540 			r->cur_val;
2541 	}
2542 }
2543 
2544 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2545  * case both are at the same level. Prefer r1 in case they're the same. */
2546 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2547 						  struct intel_pipe_wm *r1,
2548 						  struct intel_pipe_wm *r2)
2549 {
2550 	int level, max_level = ilk_wm_max_level(dev);
2551 	int level1 = 0, level2 = 0;
2552 
2553 	for (level = 1; level <= max_level; level++) {
2554 		if (r1->wm[level].enable)
2555 			level1 = level;
2556 		if (r2->wm[level].enable)
2557 			level2 = level;
2558 	}
2559 
2560 	if (level1 == level2) {
2561 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2562 			return r2;
2563 		else
2564 			return r1;
2565 	} else if (level1 > level2) {
2566 		return r1;
2567 	} else {
2568 		return r2;
2569 	}
2570 }
2571 
2572 /* dirty bits used to track which watermarks need changes */
2573 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2574 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2575 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2576 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2577 #define WM_DIRTY_FBC (1 << 24)
2578 #define WM_DIRTY_DDB (1 << 25)
2579 
2580 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2581 					 const struct ilk_wm_values *old,
2582 					 const struct ilk_wm_values *new)
2583 {
2584 	unsigned int dirty = 0;
2585 	enum i915_pipe pipe;
2586 	int wm_lp;
2587 
2588 	for_each_pipe(dev_priv, pipe) {
2589 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2590 			dirty |= WM_DIRTY_LINETIME(pipe);
2591 			/* Must disable LP1+ watermarks too */
2592 			dirty |= WM_DIRTY_LP_ALL;
2593 		}
2594 
2595 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2596 			dirty |= WM_DIRTY_PIPE(pipe);
2597 			/* Must disable LP1+ watermarks too */
2598 			dirty |= WM_DIRTY_LP_ALL;
2599 		}
2600 	}
2601 
2602 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2603 		dirty |= WM_DIRTY_FBC;
2604 		/* Must disable LP1+ watermarks too */
2605 		dirty |= WM_DIRTY_LP_ALL;
2606 	}
2607 
2608 	if (old->partitioning != new->partitioning) {
2609 		dirty |= WM_DIRTY_DDB;
2610 		/* Must disable LP1+ watermarks too */
2611 		dirty |= WM_DIRTY_LP_ALL;
2612 	}
2613 
2614 	/* LP1+ watermarks already deemed dirty, no need to continue */
2615 	if (dirty & WM_DIRTY_LP_ALL)
2616 		return dirty;
2617 
2618 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2619 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2620 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2621 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2622 			break;
2623 	}
2624 
2625 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2626 	for (; wm_lp <= 3; wm_lp++)
2627 		dirty |= WM_DIRTY_LP(wm_lp);
2628 
2629 	return dirty;
2630 }
2631 
2632 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2633 			       unsigned int dirty)
2634 {
2635 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2636 	bool changed = false;
2637 
2638 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2639 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2640 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2641 		changed = true;
2642 	}
2643 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2644 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2645 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2646 		changed = true;
2647 	}
2648 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2649 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2650 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2651 		changed = true;
2652 	}
2653 
2654 	/*
2655 	 * Don't touch WM1S_LP_EN here.
2656 	 * Doing so could cause underruns.
2657 	 */
2658 
2659 	return changed;
2660 }
2661 
2662 /*
2663  * The spec says we shouldn't write when we don't need, because every write
2664  * causes WMs to be re-evaluated, expending some power.
2665  */
2666 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2667 				struct ilk_wm_values *results)
2668 {
2669 	struct drm_device *dev = dev_priv->dev;
2670 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2671 	unsigned int dirty;
2672 	uint32_t val;
2673 
2674 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2675 	if (!dirty)
2676 		return;
2677 
2678 	_ilk_disable_lp_wm(dev_priv, dirty);
2679 
2680 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2681 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2682 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2683 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2684 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2685 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2686 
2687 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2688 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2689 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2690 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2691 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2692 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2693 
2694 	if (dirty & WM_DIRTY_DDB) {
2695 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2696 			val = I915_READ(WM_MISC);
2697 			if (results->partitioning == INTEL_DDB_PART_1_2)
2698 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2699 			else
2700 				val |= WM_MISC_DATA_PARTITION_5_6;
2701 			I915_WRITE(WM_MISC, val);
2702 		} else {
2703 			val = I915_READ(DISP_ARB_CTL2);
2704 			if (results->partitioning == INTEL_DDB_PART_1_2)
2705 				val &= ~DISP_DATA_PARTITION_5_6;
2706 			else
2707 				val |= DISP_DATA_PARTITION_5_6;
2708 			I915_WRITE(DISP_ARB_CTL2, val);
2709 		}
2710 	}
2711 
2712 	if (dirty & WM_DIRTY_FBC) {
2713 		val = I915_READ(DISP_ARB_CTL);
2714 		if (results->enable_fbc_wm)
2715 			val &= ~DISP_FBC_WM_DIS;
2716 		else
2717 			val |= DISP_FBC_WM_DIS;
2718 		I915_WRITE(DISP_ARB_CTL, val);
2719 	}
2720 
2721 	if (dirty & WM_DIRTY_LP(1) &&
2722 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2723 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2724 
2725 	if (INTEL_INFO(dev)->gen >= 7) {
2726 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2727 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2728 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2729 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2730 	}
2731 
2732 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2733 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2734 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2735 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2736 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2737 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2738 
2739 	dev_priv->wm.hw = *results;
2740 }
2741 
2742 static bool ilk_disable_lp_wm(struct drm_device *dev)
2743 {
2744 	struct drm_i915_private *dev_priv = dev->dev_private;
2745 
2746 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2747 }
2748 
2749 /*
2750  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2751  * different active planes.
2752  */
2753 
2754 #define SKL_DDB_SIZE		896	/* in blocks */
2755 #define BXT_DDB_SIZE		512
2756 
2757 static void
2758 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2759 				   struct drm_crtc *for_crtc,
2760 				   const struct intel_wm_config *config,
2761 				   const struct skl_pipe_wm_parameters *params,
2762 				   struct skl_ddb_entry *alloc /* out */)
2763 {
2764 	struct drm_crtc *crtc;
2765 	unsigned int pipe_size, ddb_size;
2766 	int nth_active_pipe;
2767 
2768 	if (!params->active) {
2769 		alloc->start = 0;
2770 		alloc->end = 0;
2771 		return;
2772 	}
2773 
2774 	if (IS_BROXTON(dev))
2775 		ddb_size = BXT_DDB_SIZE;
2776 	else
2777 		ddb_size = SKL_DDB_SIZE;
2778 
2779 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2780 
2781 	nth_active_pipe = 0;
2782 	for_each_crtc(dev, crtc) {
2783 		if (!to_intel_crtc(crtc)->active)
2784 			continue;
2785 
2786 		if (crtc == for_crtc)
2787 			break;
2788 
2789 		nth_active_pipe++;
2790 	}
2791 
2792 	pipe_size = ddb_size / config->num_pipes_active;
2793 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2794 	alloc->end = alloc->start + pipe_size;
2795 }
2796 
2797 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2798 {
2799 	if (config->num_pipes_active == 1)
2800 		return 32;
2801 
2802 	return 8;
2803 }
2804 
2805 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2806 {
2807 	entry->start = reg & 0x3ff;
2808 	entry->end = (reg >> 16) & 0x3ff;
2809 	if (entry->end)
2810 		entry->end += 1;
2811 }
2812 
2813 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2814 			  struct skl_ddb_allocation *ddb /* out */)
2815 {
2816 	enum i915_pipe pipe;
2817 	int plane;
2818 	u32 val;
2819 
2820 	memset(ddb, 0, sizeof(*ddb));
2821 
2822 	for_each_pipe(dev_priv, pipe) {
2823 		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2824 			continue;
2825 
2826 		for_each_plane(dev_priv, pipe, plane) {
2827 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2828 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2829 						   val);
2830 		}
2831 
2832 		val = I915_READ(CUR_BUF_CFG(pipe));
2833 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2834 					   val);
2835 	}
2836 }
2837 
2838 static unsigned int
2839 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2840 {
2841 
2842 	/* for planar format */
2843 	if (p->y_bytes_per_pixel) {
2844 		if (y)  /* y-plane data rate */
2845 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2846 		else    /* uv-plane data rate */
2847 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2848 	}
2849 
2850 	/* for packed formats */
2851 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2852 }
2853 
2854 /*
2855  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2856  * a 8192x4096@32bpp framebuffer:
2857  *   3 * 4096 * 8192  * 4 < 2^32
2858  */
2859 static unsigned int
2860 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2861 				 const struct skl_pipe_wm_parameters *params)
2862 {
2863 	unsigned int total_data_rate = 0;
2864 	int plane;
2865 
2866 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2867 		const struct intel_plane_wm_parameters *p;
2868 
2869 		p = &params->plane[plane];
2870 		if (!p->enabled)
2871 			continue;
2872 
2873 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2874 		if (p->y_bytes_per_pixel) {
2875 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2876 		}
2877 	}
2878 
2879 	return total_data_rate;
2880 }
2881 
2882 static void
2883 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2884 		      const struct intel_wm_config *config,
2885 		      const struct skl_pipe_wm_parameters *params,
2886 		      struct skl_ddb_allocation *ddb /* out */)
2887 {
2888 	struct drm_device *dev = crtc->dev;
2889 	struct drm_i915_private *dev_priv = dev->dev_private;
2890 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2891 	enum i915_pipe pipe = intel_crtc->pipe;
2892 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2893 	uint16_t alloc_size, start, cursor_blocks;
2894 	uint16_t minimum[I915_MAX_PLANES];
2895 	uint16_t y_minimum[I915_MAX_PLANES];
2896 	unsigned int total_data_rate;
2897 	int plane;
2898 
2899 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2900 	alloc_size = skl_ddb_entry_size(alloc);
2901 	if (alloc_size == 0) {
2902 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2903 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2904 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2905 		return;
2906 	}
2907 
2908 	cursor_blocks = skl_cursor_allocation(config);
2909 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2910 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2911 
2912 	alloc_size -= cursor_blocks;
2913 	alloc->end -= cursor_blocks;
2914 
2915 	/* 1. Allocate the mininum required blocks for each active plane */
2916 	for_each_plane(dev_priv, pipe, plane) {
2917 		const struct intel_plane_wm_parameters *p;
2918 
2919 		p = &params->plane[plane];
2920 		if (!p->enabled)
2921 			continue;
2922 
2923 		minimum[plane] = 8;
2924 		alloc_size -= minimum[plane];
2925 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2926 		alloc_size -= y_minimum[plane];
2927 	}
2928 
2929 	/*
2930 	 * 2. Distribute the remaining space in proportion to the amount of
2931 	 * data each plane needs to fetch from memory.
2932 	 *
2933 	 * FIXME: we may not allocate every single block here.
2934 	 */
2935 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2936 
2937 	start = alloc->start;
2938 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2939 		const struct intel_plane_wm_parameters *p;
2940 		unsigned int data_rate, y_data_rate;
2941 		uint16_t plane_blocks, y_plane_blocks = 0;
2942 
2943 		p = &params->plane[plane];
2944 		if (!p->enabled)
2945 			continue;
2946 
2947 		data_rate = skl_plane_relative_data_rate(p, 0);
2948 
2949 		/*
2950 		 * allocation for (packed formats) or (uv-plane part of planar format):
2951 		 * promote the expression to 64 bits to avoid overflowing, the
2952 		 * result is < available as data_rate / total_data_rate < 1
2953 		 */
2954 		plane_blocks = minimum[plane];
2955 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2956 					total_data_rate);
2957 
2958 		ddb->plane[pipe][plane].start = start;
2959 		ddb->plane[pipe][plane].end = start + plane_blocks;
2960 
2961 		start += plane_blocks;
2962 
2963 		/*
2964 		 * allocation for y_plane part of planar format:
2965 		 */
2966 		if (p->y_bytes_per_pixel) {
2967 			y_data_rate = skl_plane_relative_data_rate(p, 1);
2968 			y_plane_blocks = y_minimum[plane];
2969 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2970 						total_data_rate);
2971 
2972 			ddb->y_plane[pipe][plane].start = start;
2973 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2974 
2975 			start += y_plane_blocks;
2976 		}
2977 
2978 	}
2979 
2980 }
2981 
2982 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2983 {
2984 	/* TODO: Take into account the scalers once we support them */
2985 	return config->base.adjusted_mode.crtc_clock;
2986 }
2987 
2988 /*
2989  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2990  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2991  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2992  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2993 */
2994 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2995 			       uint32_t latency)
2996 {
2997 	uint32_t wm_intermediate_val, ret;
2998 
2999 	if (latency == 0)
3000 		return UINT_MAX;
3001 
3002 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3003 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3004 
3005 	return ret;
3006 }
3007 
3008 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3009 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3010 			       uint64_t tiling, uint32_t latency)
3011 {
3012 	uint32_t ret;
3013 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3014 	uint32_t wm_intermediate_val;
3015 
3016 	if (latency == 0)
3017 		return UINT_MAX;
3018 
3019 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3020 
3021 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3022 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3023 		plane_bytes_per_line *= 4;
3024 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3025 		plane_blocks_per_line /= 4;
3026 	} else {
3027 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3028 	}
3029 
3030 	wm_intermediate_val = latency * pixel_rate;
3031 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3032 				plane_blocks_per_line;
3033 
3034 	return ret;
3035 }
3036 
3037 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3038 				       const struct intel_crtc *intel_crtc)
3039 {
3040 	struct drm_device *dev = intel_crtc->base.dev;
3041 	struct drm_i915_private *dev_priv = dev->dev_private;
3042 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3043 	enum i915_pipe pipe = intel_crtc->pipe;
3044 
3045 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3046 		   sizeof(new_ddb->plane[pipe])))
3047 		return true;
3048 
3049 	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3050 		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3051 		return true;
3052 
3053 	return false;
3054 }
3055 
3056 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3057 					     struct intel_wm_config *config)
3058 {
3059 	struct drm_crtc *crtc;
3060 	struct drm_plane *plane;
3061 
3062 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3063 		config->num_pipes_active += to_intel_crtc(crtc)->active;
3064 
3065 	/* FIXME: I don't think we need those two global parameters on SKL */
3066 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3067 		struct intel_plane *intel_plane = to_intel_plane(plane);
3068 
3069 		config->sprites_enabled |= intel_plane->wm.enabled;
3070 		config->sprites_scaled |= intel_plane->wm.scaled;
3071 	}
3072 }
3073 
3074 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3075 					   struct skl_pipe_wm_parameters *p)
3076 {
3077 	struct drm_device *dev = crtc->dev;
3078 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3079 	enum i915_pipe pipe = intel_crtc->pipe;
3080 	struct drm_plane *plane;
3081 	struct drm_framebuffer *fb;
3082 	int i = 1; /* Index for sprite planes start */
3083 
3084 	p->active = intel_crtc->active;
3085 	if (p->active) {
3086 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3087 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3088 
3089 		fb = crtc->primary->state->fb;
3090 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3091 		if (fb) {
3092 			p->plane[0].enabled = true;
3093 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3094 				drm_format_plane_cpp(fb->pixel_format, 1) :
3095 				drm_format_plane_cpp(fb->pixel_format, 0);
3096 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3097 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3098 			p->plane[0].tiling = fb->modifier[0];
3099 		} else {
3100 			p->plane[0].enabled = false;
3101 			p->plane[0].bytes_per_pixel = 0;
3102 			p->plane[0].y_bytes_per_pixel = 0;
3103 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3104 		}
3105 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3106 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3107 		p->plane[0].rotation = crtc->primary->state->rotation;
3108 
3109 		fb = crtc->cursor->state->fb;
3110 		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3111 		if (fb) {
3112 			p->plane[PLANE_CURSOR].enabled = true;
3113 			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3114 			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3115 			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3116 		} else {
3117 			p->plane[PLANE_CURSOR].enabled = false;
3118 			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3119 			p->plane[PLANE_CURSOR].horiz_pixels = 64;
3120 			p->plane[PLANE_CURSOR].vert_pixels = 64;
3121 		}
3122 	}
3123 
3124 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3125 		struct intel_plane *intel_plane = to_intel_plane(plane);
3126 
3127 		if (intel_plane->pipe == pipe &&
3128 			plane->type == DRM_PLANE_TYPE_OVERLAY)
3129 			p->plane[i++] = intel_plane->wm;
3130 	}
3131 }
3132 
3133 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3134 				 struct skl_pipe_wm_parameters *p,
3135 				 struct intel_plane_wm_parameters *p_params,
3136 				 uint16_t ddb_allocation,
3137 				 int level,
3138 				 uint16_t *out_blocks, /* out */
3139 				 uint8_t *out_lines /* out */)
3140 {
3141 	uint32_t latency = dev_priv->wm.skl_latency[level];
3142 	uint32_t method1, method2;
3143 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3144 	uint32_t res_blocks, res_lines;
3145 	uint32_t selected_result;
3146 	uint8_t bytes_per_pixel;
3147 
3148 	if (latency == 0 || !p->active || !p_params->enabled)
3149 		return false;
3150 
3151 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
3152 		p_params->y_bytes_per_pixel :
3153 		p_params->bytes_per_pixel;
3154 	method1 = skl_wm_method1(p->pixel_rate,
3155 				 bytes_per_pixel,
3156 				 latency);
3157 	method2 = skl_wm_method2(p->pixel_rate,
3158 				 p->pipe_htotal,
3159 				 p_params->horiz_pixels,
3160 				 bytes_per_pixel,
3161 				 p_params->tiling,
3162 				 latency);
3163 
3164 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3165 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3166 
3167 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3168 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3169 		uint32_t min_scanlines = 4;
3170 		uint32_t y_tile_minimum;
3171 		if (intel_rotation_90_or_270(p_params->rotation)) {
3172 			switch (p_params->bytes_per_pixel) {
3173 			case 1:
3174 				min_scanlines = 16;
3175 				break;
3176 			case 2:
3177 				min_scanlines = 8;
3178 				break;
3179 			case 8:
3180 				WARN(1, "Unsupported pixel depth for rotation");
3181 			}
3182 		}
3183 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3184 		selected_result = max(method2, y_tile_minimum);
3185 	} else {
3186 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3187 			selected_result = min(method1, method2);
3188 		else
3189 			selected_result = method1;
3190 	}
3191 
3192 	res_blocks = selected_result + 1;
3193 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3194 
3195 	if (level >= 1 && level <= 7) {
3196 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3197 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3198 			res_lines += 4;
3199 		else
3200 			res_blocks++;
3201 	}
3202 
3203 	if (res_blocks >= ddb_allocation || res_lines > 31)
3204 		return false;
3205 
3206 	*out_blocks = res_blocks;
3207 	*out_lines = res_lines;
3208 
3209 	return true;
3210 }
3211 
3212 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3213 				 struct skl_ddb_allocation *ddb,
3214 				 struct skl_pipe_wm_parameters *p,
3215 				 enum i915_pipe pipe,
3216 				 int level,
3217 				 int num_planes,
3218 				 struct skl_wm_level *result)
3219 {
3220 	uint16_t ddb_blocks;
3221 	int i;
3222 
3223 	for (i = 0; i < num_planes; i++) {
3224 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3225 
3226 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3227 						p, &p->plane[i],
3228 						ddb_blocks,
3229 						level,
3230 						&result->plane_res_b[i],
3231 						&result->plane_res_l[i]);
3232 	}
3233 
3234 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3235 	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3236 						 &p->plane[PLANE_CURSOR],
3237 						 ddb_blocks, level,
3238 						 &result->plane_res_b[PLANE_CURSOR],
3239 						 &result->plane_res_l[PLANE_CURSOR]);
3240 }
3241 
3242 static uint32_t
3243 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3244 {
3245 	if (!to_intel_crtc(crtc)->active)
3246 		return 0;
3247 
3248 	if (WARN_ON(p->pixel_rate == 0))
3249 		return 0;
3250 
3251 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3252 }
3253 
3254 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3255 				      struct skl_pipe_wm_parameters *params,
3256 				      struct skl_wm_level *trans_wm /* out */)
3257 {
3258 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3259 	int i;
3260 
3261 	if (!params->active)
3262 		return;
3263 
3264 	/* Until we know more, just disable transition WMs */
3265 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3266 		trans_wm->plane_en[i] = false;
3267 	trans_wm->plane_en[PLANE_CURSOR] = false;
3268 }
3269 
3270 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3271 				struct skl_ddb_allocation *ddb,
3272 				struct skl_pipe_wm_parameters *params,
3273 				struct skl_pipe_wm *pipe_wm)
3274 {
3275 	struct drm_device *dev = crtc->dev;
3276 	const struct drm_i915_private *dev_priv = dev->dev_private;
3277 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3278 	int level, max_level = ilk_wm_max_level(dev);
3279 
3280 	for (level = 0; level <= max_level; level++) {
3281 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3282 				     level, intel_num_planes(intel_crtc),
3283 				     &pipe_wm->wm[level]);
3284 	}
3285 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3286 
3287 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3288 }
3289 
3290 static void skl_compute_wm_results(struct drm_device *dev,
3291 				   struct skl_pipe_wm_parameters *p,
3292 				   struct skl_pipe_wm *p_wm,
3293 				   struct skl_wm_values *r,
3294 				   struct intel_crtc *intel_crtc)
3295 {
3296 	int level, max_level = ilk_wm_max_level(dev);
3297 	enum i915_pipe pipe = intel_crtc->pipe;
3298 	uint32_t temp;
3299 	int i;
3300 
3301 	for (level = 0; level <= max_level; level++) {
3302 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3303 			temp = 0;
3304 
3305 			temp |= p_wm->wm[level].plane_res_l[i] <<
3306 					PLANE_WM_LINES_SHIFT;
3307 			temp |= p_wm->wm[level].plane_res_b[i];
3308 			if (p_wm->wm[level].plane_en[i])
3309 				temp |= PLANE_WM_EN;
3310 
3311 			r->plane[pipe][i][level] = temp;
3312 		}
3313 
3314 		temp = 0;
3315 
3316 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3317 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3318 
3319 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3320 			temp |= PLANE_WM_EN;
3321 
3322 		r->plane[pipe][PLANE_CURSOR][level] = temp;
3323 
3324 	}
3325 
3326 	/* transition WMs */
3327 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3328 		temp = 0;
3329 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3330 		temp |= p_wm->trans_wm.plane_res_b[i];
3331 		if (p_wm->trans_wm.plane_en[i])
3332 			temp |= PLANE_WM_EN;
3333 
3334 		r->plane_trans[pipe][i] = temp;
3335 	}
3336 
3337 	temp = 0;
3338 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3339 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3340 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3341 		temp |= PLANE_WM_EN;
3342 
3343 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3344 
3345 	r->wm_linetime[pipe] = p_wm->linetime;
3346 }
3347 
3348 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3349 				const struct skl_ddb_entry *entry)
3350 {
3351 	if (entry->end)
3352 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3353 	else
3354 		I915_WRITE(reg, 0);
3355 }
3356 
3357 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3358 				const struct skl_wm_values *new)
3359 {
3360 	struct drm_device *dev = dev_priv->dev;
3361 	struct intel_crtc *crtc;
3362 
3363 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3364 		int i, level, max_level = ilk_wm_max_level(dev);
3365 		enum i915_pipe pipe = crtc->pipe;
3366 
3367 		if (!new->dirty[pipe])
3368 			continue;
3369 
3370 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3371 
3372 		for (level = 0; level <= max_level; level++) {
3373 			for (i = 0; i < intel_num_planes(crtc); i++)
3374 				I915_WRITE(PLANE_WM(pipe, i, level),
3375 					   new->plane[pipe][i][level]);
3376 			I915_WRITE(CUR_WM(pipe, level),
3377 				   new->plane[pipe][PLANE_CURSOR][level]);
3378 		}
3379 		for (i = 0; i < intel_num_planes(crtc); i++)
3380 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3381 				   new->plane_trans[pipe][i]);
3382 		I915_WRITE(CUR_WM_TRANS(pipe),
3383 			   new->plane_trans[pipe][PLANE_CURSOR]);
3384 
3385 		for (i = 0; i < intel_num_planes(crtc); i++) {
3386 			skl_ddb_entry_write(dev_priv,
3387 					    PLANE_BUF_CFG(pipe, i),
3388 					    &new->ddb.plane[pipe][i]);
3389 			skl_ddb_entry_write(dev_priv,
3390 					    PLANE_NV12_BUF_CFG(pipe, i),
3391 					    &new->ddb.y_plane[pipe][i]);
3392 		}
3393 
3394 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3395 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3396 	}
3397 }
3398 
3399 /*
3400  * When setting up a new DDB allocation arrangement, we need to correctly
3401  * sequence the times at which the new allocations for the pipes are taken into
3402  * account or we'll have pipes fetching from space previously allocated to
3403  * another pipe.
3404  *
3405  * Roughly the sequence looks like:
3406  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3407  *     overlapping with a previous light-up pipe (another way to put it is:
3408  *     pipes with their new allocation strickly included into their old ones).
3409  *  2. re-allocate the other pipes that get their allocation reduced
3410  *  3. allocate the pipes having their allocation increased
3411  *
3412  * Steps 1. and 2. are here to take care of the following case:
3413  * - Initially DDB looks like this:
3414  *     |   B    |   C    |
3415  * - enable pipe A.
3416  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3417  *   allocation
3418  *     |  A  |  B  |  C  |
3419  *
3420  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3421  */
3422 
3423 static void
3424 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
3425 {
3426 	int plane;
3427 
3428 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3429 
3430 	for_each_plane(dev_priv, pipe, plane) {
3431 		I915_WRITE(PLANE_SURF(pipe, plane),
3432 			   I915_READ(PLANE_SURF(pipe, plane)));
3433 	}
3434 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3435 }
3436 
3437 static bool
3438 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3439 			    const struct skl_ddb_allocation *new,
3440 			    enum i915_pipe pipe)
3441 {
3442 	uint16_t old_size, new_size;
3443 
3444 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3445 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3446 
3447 	return old_size != new_size &&
3448 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3449 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3450 }
3451 
3452 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3453 				struct skl_wm_values *new_values)
3454 {
3455 	struct drm_device *dev = dev_priv->dev;
3456 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3457 	bool reallocated[I915_MAX_PIPES] = {};
3458 	struct intel_crtc *crtc;
3459 	enum i915_pipe pipe;
3460 
3461 	new_ddb = &new_values->ddb;
3462 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3463 
3464 	/*
3465 	 * First pass: flush the pipes with the new allocation contained into
3466 	 * the old space.
3467 	 *
3468 	 * We'll wait for the vblank on those pipes to ensure we can safely
3469 	 * re-allocate the freed space without this pipe fetching from it.
3470 	 */
3471 	for_each_intel_crtc(dev, crtc) {
3472 		if (!crtc->active)
3473 			continue;
3474 
3475 		pipe = crtc->pipe;
3476 
3477 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3478 			continue;
3479 
3480 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3481 		intel_wait_for_vblank(dev, pipe);
3482 
3483 		reallocated[pipe] = true;
3484 	}
3485 
3486 
3487 	/*
3488 	 * Second pass: flush the pipes that are having their allocation
3489 	 * reduced, but overlapping with a previous allocation.
3490 	 *
3491 	 * Here as well we need to wait for the vblank to make sure the freed
3492 	 * space is not used anymore.
3493 	 */
3494 	for_each_intel_crtc(dev, crtc) {
3495 		if (!crtc->active)
3496 			continue;
3497 
3498 		pipe = crtc->pipe;
3499 
3500 		if (reallocated[pipe])
3501 			continue;
3502 
3503 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3504 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3505 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3506 			intel_wait_for_vblank(dev, pipe);
3507 			reallocated[pipe] = true;
3508 		}
3509 	}
3510 
3511 	/*
3512 	 * Third pass: flush the pipes that got more space allocated.
3513 	 *
3514 	 * We don't need to actively wait for the update here, next vblank
3515 	 * will just get more DDB space with the correct WM values.
3516 	 */
3517 	for_each_intel_crtc(dev, crtc) {
3518 		if (!crtc->active)
3519 			continue;
3520 
3521 		pipe = crtc->pipe;
3522 
3523 		/*
3524 		 * At this point, only the pipes more space than before are
3525 		 * left to re-allocate.
3526 		 */
3527 		if (reallocated[pipe])
3528 			continue;
3529 
3530 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3531 	}
3532 }
3533 
3534 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3535 			       struct skl_pipe_wm_parameters *params,
3536 			       struct intel_wm_config *config,
3537 			       struct skl_ddb_allocation *ddb, /* out */
3538 			       struct skl_pipe_wm *pipe_wm /* out */)
3539 {
3540 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3541 
3542 	skl_compute_wm_pipe_parameters(crtc, params);
3543 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3544 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3545 
3546 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3547 		return false;
3548 
3549 	intel_crtc->wm.skl_active = *pipe_wm;
3550 
3551 	return true;
3552 }
3553 
3554 static void skl_update_other_pipe_wm(struct drm_device *dev,
3555 				     struct drm_crtc *crtc,
3556 				     struct intel_wm_config *config,
3557 				     struct skl_wm_values *r)
3558 {
3559 	struct intel_crtc *intel_crtc;
3560 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3561 
3562 	/*
3563 	 * If the WM update hasn't changed the allocation for this_crtc (the
3564 	 * crtc we are currently computing the new WM values for), other
3565 	 * enabled crtcs will keep the same allocation and we don't need to
3566 	 * recompute anything for them.
3567 	 */
3568 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3569 		return;
3570 
3571 	/*
3572 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3573 	 * other active pipes need new DDB allocation and WM values.
3574 	 */
3575 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3576 				base.head) {
3577 		struct skl_pipe_wm_parameters params = {};
3578 		struct skl_pipe_wm pipe_wm = {};
3579 		bool wm_changed;
3580 
3581 		if (this_crtc->pipe == intel_crtc->pipe)
3582 			continue;
3583 
3584 		if (!intel_crtc->active)
3585 			continue;
3586 
3587 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3588 						&params, config,
3589 						&r->ddb, &pipe_wm);
3590 
3591 		/*
3592 		 * If we end up re-computing the other pipe WM values, it's
3593 		 * because it was really needed, so we expect the WM values to
3594 		 * be different.
3595 		 */
3596 		WARN_ON(!wm_changed);
3597 
3598 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3599 		r->dirty[intel_crtc->pipe] = true;
3600 	}
3601 }
3602 
3603 static void skl_clear_wm(struct skl_wm_values *watermarks, enum i915_pipe pipe)
3604 {
3605 	watermarks->wm_linetime[pipe] = 0;
3606 	memset(watermarks->plane[pipe], 0,
3607 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3608 	memset(watermarks->plane_trans[pipe],
3609 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3610 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3611 
3612 	/* Clear ddb entries for pipe */
3613 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3614 	memset(&watermarks->ddb.plane[pipe], 0,
3615 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3616 	memset(&watermarks->ddb.y_plane[pipe], 0,
3617 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3618 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3619 	       sizeof(struct skl_ddb_entry));
3620 
3621 }
3622 
3623 static void skl_update_wm(struct drm_crtc *crtc)
3624 {
3625 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3626 	struct drm_device *dev = crtc->dev;
3627 	struct drm_i915_private *dev_priv = dev->dev_private;
3628 	struct skl_pipe_wm_parameters params = {};
3629 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3630 	struct skl_pipe_wm pipe_wm = {};
3631 	struct intel_wm_config config = {};
3632 
3633 
3634 	/* Clear all dirty flags */
3635 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3636 
3637 	skl_clear_wm(results, intel_crtc->pipe);
3638 
3639 	skl_compute_wm_global_parameters(dev, &config);
3640 
3641 	if (!skl_update_pipe_wm(crtc, &params, &config,
3642 				&results->ddb, &pipe_wm))
3643 		return;
3644 
3645 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3646 	results->dirty[intel_crtc->pipe] = true;
3647 
3648 	skl_update_other_pipe_wm(dev, crtc, &config, results);
3649 	skl_write_wm_values(dev_priv, results);
3650 	skl_flush_wm_values(dev_priv, results);
3651 
3652 	/* store the new configuration */
3653 	dev_priv->wm.skl_hw = *results;
3654 }
3655 
3656 static void
3657 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3658 		     uint32_t sprite_width, uint32_t sprite_height,
3659 		     int pixel_size, bool enabled, bool scaled)
3660 {
3661 	struct intel_plane *intel_plane = to_intel_plane(plane);
3662 	struct drm_framebuffer *fb = plane->state->fb;
3663 
3664 	intel_plane->wm.enabled = enabled;
3665 	intel_plane->wm.scaled = scaled;
3666 	intel_plane->wm.horiz_pixels = sprite_width;
3667 	intel_plane->wm.vert_pixels = sprite_height;
3668 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3669 
3670 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3671 	intel_plane->wm.bytes_per_pixel =
3672 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3673 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3674 	intel_plane->wm.y_bytes_per_pixel =
3675 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3676 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3677 
3678 	/*
3679 	 * Framebuffer can be NULL on plane disable, but it does not
3680 	 * matter for watermarks if we assume no tiling in that case.
3681 	 */
3682 	if (fb)
3683 		intel_plane->wm.tiling = fb->modifier[0];
3684 	intel_plane->wm.rotation = plane->state->rotation;
3685 
3686 	skl_update_wm(crtc);
3687 }
3688 
3689 static void ilk_update_wm(struct drm_crtc *crtc)
3690 {
3691 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3692 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3693 	struct drm_device *dev = crtc->dev;
3694 	struct drm_i915_private *dev_priv = dev->dev_private;
3695 	struct ilk_wm_maximums max;
3696 	struct ilk_wm_values results = {};
3697 	enum intel_ddb_partitioning partitioning;
3698 	struct intel_pipe_wm pipe_wm = {};
3699 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3700 	struct intel_wm_config config = {};
3701 
3702 	WARN_ON(cstate->base.active != intel_crtc->active);
3703 
3704 	intel_compute_pipe_wm(cstate, &pipe_wm);
3705 
3706 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3707 		return;
3708 
3709 	intel_crtc->wm.active = pipe_wm;
3710 
3711 	ilk_compute_wm_config(dev, &config);
3712 
3713 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3714 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3715 
3716 	/* 5/6 split only in single pipe config on IVB+ */
3717 	if (INTEL_INFO(dev)->gen >= 7 &&
3718 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3719 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3720 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3721 
3722 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3723 	} else {
3724 		best_lp_wm = &lp_wm_1_2;
3725 	}
3726 
3727 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3728 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3729 
3730 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3731 
3732 	ilk_write_wm_values(dev_priv, &results);
3733 }
3734 
3735 static void
3736 ilk_update_sprite_wm(struct drm_plane *plane,
3737 		     struct drm_crtc *crtc,
3738 		     uint32_t sprite_width, uint32_t sprite_height,
3739 		     int pixel_size, bool enabled, bool scaled)
3740 {
3741 	struct drm_device *dev = plane->dev;
3742 	struct intel_plane *intel_plane = to_intel_plane(plane);
3743 
3744 	/*
3745 	 * IVB workaround: must disable low power watermarks for at least
3746 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3747 	 * when scaling is disabled.
3748 	 *
3749 	 * WaCxSRDisabledForSpriteScaling:ivb
3750 	 */
3751 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3752 		intel_wait_for_vblank(dev, intel_plane->pipe);
3753 
3754 	ilk_update_wm(crtc);
3755 }
3756 
3757 static void skl_pipe_wm_active_state(uint32_t val,
3758 				     struct skl_pipe_wm *active,
3759 				     bool is_transwm,
3760 				     bool is_cursor,
3761 				     int i,
3762 				     int level)
3763 {
3764 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3765 
3766 	if (!is_transwm) {
3767 		if (!is_cursor) {
3768 			active->wm[level].plane_en[i] = is_enabled;
3769 			active->wm[level].plane_res_b[i] =
3770 					val & PLANE_WM_BLOCKS_MASK;
3771 			active->wm[level].plane_res_l[i] =
3772 					(val >> PLANE_WM_LINES_SHIFT) &
3773 						PLANE_WM_LINES_MASK;
3774 		} else {
3775 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3776 			active->wm[level].plane_res_b[PLANE_CURSOR] =
3777 					val & PLANE_WM_BLOCKS_MASK;
3778 			active->wm[level].plane_res_l[PLANE_CURSOR] =
3779 					(val >> PLANE_WM_LINES_SHIFT) &
3780 						PLANE_WM_LINES_MASK;
3781 		}
3782 	} else {
3783 		if (!is_cursor) {
3784 			active->trans_wm.plane_en[i] = is_enabled;
3785 			active->trans_wm.plane_res_b[i] =
3786 					val & PLANE_WM_BLOCKS_MASK;
3787 			active->trans_wm.plane_res_l[i] =
3788 					(val >> PLANE_WM_LINES_SHIFT) &
3789 						PLANE_WM_LINES_MASK;
3790 		} else {
3791 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3792 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3793 					val & PLANE_WM_BLOCKS_MASK;
3794 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3795 					(val >> PLANE_WM_LINES_SHIFT) &
3796 						PLANE_WM_LINES_MASK;
3797 		}
3798 	}
3799 }
3800 
3801 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3802 {
3803 	struct drm_device *dev = crtc->dev;
3804 	struct drm_i915_private *dev_priv = dev->dev_private;
3805 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3806 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3807 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3808 	enum i915_pipe pipe = intel_crtc->pipe;
3809 	int level, i, max_level;
3810 	uint32_t temp;
3811 
3812 	max_level = ilk_wm_max_level(dev);
3813 
3814 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3815 
3816 	for (level = 0; level <= max_level; level++) {
3817 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3818 			hw->plane[pipe][i][level] =
3819 					I915_READ(PLANE_WM(pipe, i, level));
3820 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3821 	}
3822 
3823 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3824 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3825 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3826 
3827 	if (!intel_crtc->active)
3828 		return;
3829 
3830 	hw->dirty[pipe] = true;
3831 
3832 	active->linetime = hw->wm_linetime[pipe];
3833 
3834 	for (level = 0; level <= max_level; level++) {
3835 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3836 			temp = hw->plane[pipe][i][level];
3837 			skl_pipe_wm_active_state(temp, active, false,
3838 						false, i, level);
3839 		}
3840 		temp = hw->plane[pipe][PLANE_CURSOR][level];
3841 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3842 	}
3843 
3844 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3845 		temp = hw->plane_trans[pipe][i];
3846 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3847 	}
3848 
3849 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3850 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3851 }
3852 
3853 void skl_wm_get_hw_state(struct drm_device *dev)
3854 {
3855 	struct drm_i915_private *dev_priv = dev->dev_private;
3856 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3857 	struct drm_crtc *crtc;
3858 
3859 	skl_ddb_get_hw_state(dev_priv, ddb);
3860 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3861 		skl_pipe_wm_get_hw_state(crtc);
3862 }
3863 
3864 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3865 {
3866 	struct drm_device *dev = crtc->dev;
3867 	struct drm_i915_private *dev_priv = dev->dev_private;
3868 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3869 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3870 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3871 	enum i915_pipe pipe = intel_crtc->pipe;
3872 	static const unsigned int wm0_pipe_reg[] = {
3873 		[PIPE_A] = WM0_PIPEA_ILK,
3874 		[PIPE_B] = WM0_PIPEB_ILK,
3875 		[PIPE_C] = WM0_PIPEC_IVB,
3876 	};
3877 
3878 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3879 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3880 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3881 
3882 	active->pipe_enabled = intel_crtc->active;
3883 
3884 	if (active->pipe_enabled) {
3885 		u32 tmp = hw->wm_pipe[pipe];
3886 
3887 		/*
3888 		 * For active pipes LP0 watermark is marked as
3889 		 * enabled, and LP1+ watermaks as disabled since
3890 		 * we can't really reverse compute them in case
3891 		 * multiple pipes are active.
3892 		 */
3893 		active->wm[0].enable = true;
3894 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3895 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3896 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3897 		active->linetime = hw->wm_linetime[pipe];
3898 	} else {
3899 		int level, max_level = ilk_wm_max_level(dev);
3900 
3901 		/*
3902 		 * For inactive pipes, all watermark levels
3903 		 * should be marked as enabled but zeroed,
3904 		 * which is what we'd compute them to.
3905 		 */
3906 		for (level = 0; level <= max_level; level++)
3907 			active->wm[level].enable = true;
3908 	}
3909 }
3910 
3911 #define _FW_WM(value, plane) \
3912 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3913 #define _FW_WM_VLV(value, plane) \
3914 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3915 
3916 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3917 			       struct vlv_wm_values *wm)
3918 {
3919 	enum i915_pipe pipe;
3920 	uint32_t tmp;
3921 
3922 	for_each_pipe(dev_priv, pipe) {
3923 		tmp = I915_READ(VLV_DDL(pipe));
3924 
3925 		wm->ddl[pipe].primary =
3926 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3927 		wm->ddl[pipe].cursor =
3928 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3929 		wm->ddl[pipe].sprite[0] =
3930 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3931 		wm->ddl[pipe].sprite[1] =
3932 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3933 	}
3934 
3935 	tmp = I915_READ(DSPFW1);
3936 	wm->sr.plane = _FW_WM(tmp, SR);
3937 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3938 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3939 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3940 
3941 	tmp = I915_READ(DSPFW2);
3942 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3943 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3944 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3945 
3946 	tmp = I915_READ(DSPFW3);
3947 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3948 
3949 	if (IS_CHERRYVIEW(dev_priv)) {
3950 		tmp = I915_READ(DSPFW7_CHV);
3951 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3952 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3953 
3954 		tmp = I915_READ(DSPFW8_CHV);
3955 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3956 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3957 
3958 		tmp = I915_READ(DSPFW9_CHV);
3959 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3960 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3961 
3962 		tmp = I915_READ(DSPHOWM);
3963 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3964 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3965 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3966 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3967 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3968 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3969 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3970 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3971 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3972 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3973 	} else {
3974 		tmp = I915_READ(DSPFW7);
3975 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3976 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3977 
3978 		tmp = I915_READ(DSPHOWM);
3979 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3980 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3981 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3982 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3983 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3984 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3985 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3986 	}
3987 }
3988 
3989 #undef _FW_WM
3990 #undef _FW_WM_VLV
3991 
3992 void vlv_wm_get_hw_state(struct drm_device *dev)
3993 {
3994 	struct drm_i915_private *dev_priv = to_i915(dev);
3995 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3996 	struct intel_plane *plane;
3997 	enum i915_pipe pipe;
3998 	u32 val;
3999 
4000 	vlv_read_wm_values(dev_priv, wm);
4001 
4002 	for_each_intel_plane(dev, plane) {
4003 		switch (plane->base.type) {
4004 			int sprite;
4005 		case DRM_PLANE_TYPE_CURSOR:
4006 			plane->wm.fifo_size = 63;
4007 			break;
4008 		case DRM_PLANE_TYPE_PRIMARY:
4009 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4010 			break;
4011 		case DRM_PLANE_TYPE_OVERLAY:
4012 			sprite = plane->plane;
4013 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4014 			break;
4015 		}
4016 	}
4017 
4018 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4019 	wm->level = VLV_WM_LEVEL_PM2;
4020 
4021 	if (IS_CHERRYVIEW(dev_priv)) {
4022 		mutex_lock(&dev_priv->rps.hw_lock);
4023 
4024 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4025 		if (val & DSP_MAXFIFO_PM5_ENABLE)
4026 			wm->level = VLV_WM_LEVEL_PM5;
4027 
4028 		/*
4029 		 * If DDR DVFS is disabled in the BIOS, Punit
4030 		 * will never ack the request. So if that happens
4031 		 * assume we don't have to enable/disable DDR DVFS
4032 		 * dynamically. To test that just set the REQ_ACK
4033 		 * bit to poke the Punit, but don't change the
4034 		 * HIGH/LOW bits so that we don't actually change
4035 		 * the current state.
4036 		 */
4037 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4038 		val |= FORCE_DDR_FREQ_REQ_ACK;
4039 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4040 
4041 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4042 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4043 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4044 				      "assuming DDR DVFS is disabled\n");
4045 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4046 		} else {
4047 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4048 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4049 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4050 		}
4051 
4052 		mutex_unlock(&dev_priv->rps.hw_lock);
4053 	}
4054 
4055 	for_each_pipe(dev_priv, pipe)
4056 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4057 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4058 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4059 
4060 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4061 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4062 }
4063 
4064 void ilk_wm_get_hw_state(struct drm_device *dev)
4065 {
4066 	struct drm_i915_private *dev_priv = dev->dev_private;
4067 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4068 	struct drm_crtc *crtc;
4069 
4070 	for_each_crtc(dev, crtc)
4071 		ilk_pipe_wm_get_hw_state(crtc);
4072 
4073 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4074 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4075 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4076 
4077 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4078 	if (INTEL_INFO(dev)->gen >= 7) {
4079 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4080 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4081 	}
4082 
4083 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4084 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4085 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4086 	else if (IS_IVYBRIDGE(dev))
4087 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4088 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4089 
4090 	hw->enable_fbc_wm =
4091 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4092 }
4093 
4094 /**
4095  * intel_update_watermarks - update FIFO watermark values based on current modes
4096  *
4097  * Calculate watermark values for the various WM regs based on current mode
4098  * and plane configuration.
4099  *
4100  * There are several cases to deal with here:
4101  *   - normal (i.e. non-self-refresh)
4102  *   - self-refresh (SR) mode
4103  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4104  *   - lines are small relative to FIFO size (buffer can hold more than 2
4105  *     lines), so need to account for TLB latency
4106  *
4107  *   The normal calculation is:
4108  *     watermark = dotclock * bytes per pixel * latency
4109  *   where latency is platform & configuration dependent (we assume pessimal
4110  *   values here).
4111  *
4112  *   The SR calculation is:
4113  *     watermark = (trunc(latency/line time)+1) * surface width *
4114  *       bytes per pixel
4115  *   where
4116  *     line time = htotal / dotclock
4117  *     surface width = hdisplay for normal plane and 64 for cursor
4118  *   and latency is assumed to be high, as above.
4119  *
4120  * The final value programmed to the register should always be rounded up,
4121  * and include an extra 2 entries to account for clock crossings.
4122  *
4123  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4124  * to set the non-SR watermarks to 8.
4125  */
4126 void intel_update_watermarks(struct drm_crtc *crtc)
4127 {
4128 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4129 
4130 	if (dev_priv->display.update_wm)
4131 		dev_priv->display.update_wm(crtc);
4132 }
4133 
4134 void intel_update_sprite_watermarks(struct drm_plane *plane,
4135 				    struct drm_crtc *crtc,
4136 				    uint32_t sprite_width,
4137 				    uint32_t sprite_height,
4138 				    int pixel_size,
4139 				    bool enabled, bool scaled)
4140 {
4141 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
4142 
4143 	if (dev_priv->display.update_sprite_wm)
4144 		dev_priv->display.update_sprite_wm(plane, crtc,
4145 						   sprite_width, sprite_height,
4146 						   pixel_size, enabled, scaled);
4147 }
4148 
4149 /**
4150  * Lock protecting IPS related data structures
4151  */
4152 struct lock mchdev_lock;
4153 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
4154 
4155 /* Global for IPS driver to get at the current i915 device. Protected by
4156  * mchdev_lock. */
4157 static struct drm_i915_private *i915_mch_dev;
4158 
4159 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4160 {
4161 	struct drm_i915_private *dev_priv = dev->dev_private;
4162 	u16 rgvswctl;
4163 
4164 	assert_spin_locked(&mchdev_lock);
4165 
4166 	rgvswctl = I915_READ16(MEMSWCTL);
4167 	if (rgvswctl & MEMCTL_CMD_STS) {
4168 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4169 		return false; /* still busy with another command */
4170 	}
4171 
4172 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4173 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4174 	I915_WRITE16(MEMSWCTL, rgvswctl);
4175 	POSTING_READ16(MEMSWCTL);
4176 
4177 	rgvswctl |= MEMCTL_CMD_STS;
4178 	I915_WRITE16(MEMSWCTL, rgvswctl);
4179 
4180 	return true;
4181 }
4182 
4183 static void ironlake_enable_drps(struct drm_device *dev)
4184 {
4185 	struct drm_i915_private *dev_priv = dev->dev_private;
4186 	u32 rgvmodectl = I915_READ(MEMMODECTL);
4187 	u8 fmax, fmin, fstart, vstart;
4188 
4189 	spin_lock_irq(&mchdev_lock);
4190 
4191 	/* Enable temp reporting */
4192 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4193 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4194 
4195 	/* 100ms RC evaluation intervals */
4196 	I915_WRITE(RCUPEI, 100000);
4197 	I915_WRITE(RCDNEI, 100000);
4198 
4199 	/* Set max/min thresholds to 90ms and 80ms respectively */
4200 	I915_WRITE(RCBMAXAVG, 90000);
4201 	I915_WRITE(RCBMINAVG, 80000);
4202 
4203 	I915_WRITE(MEMIHYST, 1);
4204 
4205 	/* Set up min, max, and cur for interrupt handling */
4206 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4207 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4208 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4209 		MEMMODE_FSTART_SHIFT;
4210 
4211 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4212 		PXVFREQ_PX_SHIFT;
4213 
4214 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4215 	dev_priv->ips.fstart = fstart;
4216 
4217 	dev_priv->ips.max_delay = fstart;
4218 	dev_priv->ips.min_delay = fmin;
4219 	dev_priv->ips.cur_delay = fstart;
4220 
4221 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4222 			 fmax, fmin, fstart);
4223 
4224 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4225 
4226 	/*
4227 	 * Interrupts will be enabled in ironlake_irq_postinstall
4228 	 */
4229 
4230 	I915_WRITE(VIDSTART, vstart);
4231 	POSTING_READ(VIDSTART);
4232 
4233 	rgvmodectl |= MEMMODE_SWMODE_EN;
4234 	I915_WRITE(MEMMODECTL, rgvmodectl);
4235 
4236 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4237 		DRM_ERROR("stuck trying to change perf mode\n");
4238 	mdelay(1);
4239 
4240 	ironlake_set_drps(dev, fstart);
4241 
4242 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4243 		I915_READ(DDREC) + I915_READ(CSIEC);
4244 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4245 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4246 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4247 
4248 	spin_unlock_irq(&mchdev_lock);
4249 }
4250 
4251 static void ironlake_disable_drps(struct drm_device *dev)
4252 {
4253 	struct drm_i915_private *dev_priv = dev->dev_private;
4254 	u16 rgvswctl;
4255 
4256 	spin_lock_irq(&mchdev_lock);
4257 
4258 	rgvswctl = I915_READ16(MEMSWCTL);
4259 
4260 	/* Ack interrupts, disable EFC interrupt */
4261 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4262 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4263 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4264 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4265 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4266 
4267 	/* Go back to the starting frequency */
4268 	ironlake_set_drps(dev, dev_priv->ips.fstart);
4269 	mdelay(1);
4270 	rgvswctl |= MEMCTL_CMD_STS;
4271 	I915_WRITE(MEMSWCTL, rgvswctl);
4272 	mdelay(1);
4273 
4274 	spin_unlock_irq(&mchdev_lock);
4275 }
4276 
4277 /* There's a funny hw issue where the hw returns all 0 when reading from
4278  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4279  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4280  * all limits and the gpu stuck at whatever frequency it is at atm).
4281  */
4282 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4283 {
4284 	u32 limits;
4285 
4286 	/* Only set the down limit when we've reached the lowest level to avoid
4287 	 * getting more interrupts, otherwise leave this clear. This prevents a
4288 	 * race in the hw when coming out of rc6: There's a tiny window where
4289 	 * the hw runs at the minimal clock before selecting the desired
4290 	 * frequency, if the down threshold expires in that window we will not
4291 	 * receive a down interrupt. */
4292 	if (IS_GEN9(dev_priv->dev)) {
4293 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4294 		if (val <= dev_priv->rps.min_freq_softlimit)
4295 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4296 	} else {
4297 		limits = dev_priv->rps.max_freq_softlimit << 24;
4298 		if (val <= dev_priv->rps.min_freq_softlimit)
4299 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4300 	}
4301 
4302 	return limits;
4303 }
4304 
4305 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4306 {
4307 	int new_power;
4308 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4309 	u32 ei_up = 0, ei_down = 0;
4310 
4311 	new_power = dev_priv->rps.power;
4312 	switch (dev_priv->rps.power) {
4313 	case LOW_POWER:
4314 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4315 			new_power = BETWEEN;
4316 		break;
4317 
4318 	case BETWEEN:
4319 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4320 			new_power = LOW_POWER;
4321 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4322 			new_power = HIGH_POWER;
4323 		break;
4324 
4325 	case HIGH_POWER:
4326 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4327 			new_power = BETWEEN;
4328 		break;
4329 	}
4330 	/* Max/min bins are special */
4331 	if (val <= dev_priv->rps.min_freq_softlimit)
4332 		new_power = LOW_POWER;
4333 	if (val >= dev_priv->rps.max_freq_softlimit)
4334 		new_power = HIGH_POWER;
4335 	if (new_power == dev_priv->rps.power)
4336 		return;
4337 
4338 	/* Note the units here are not exactly 1us, but 1280ns. */
4339 	switch (new_power) {
4340 	case LOW_POWER:
4341 		/* Upclock if more than 95% busy over 16ms */
4342 		ei_up = 16000;
4343 		threshold_up = 95;
4344 
4345 		/* Downclock if less than 85% busy over 32ms */
4346 		ei_down = 32000;
4347 		threshold_down = 85;
4348 		break;
4349 
4350 	case BETWEEN:
4351 		/* Upclock if more than 90% busy over 13ms */
4352 		ei_up = 13000;
4353 		threshold_up = 90;
4354 
4355 		/* Downclock if less than 75% busy over 32ms */
4356 		ei_down = 32000;
4357 		threshold_down = 75;
4358 		break;
4359 
4360 	case HIGH_POWER:
4361 		/* Upclock if more than 85% busy over 10ms */
4362 		ei_up = 10000;
4363 		threshold_up = 85;
4364 
4365 		/* Downclock if less than 60% busy over 32ms */
4366 		ei_down = 32000;
4367 		threshold_down = 60;
4368 		break;
4369 	}
4370 
4371 	I915_WRITE(GEN6_RP_UP_EI,
4372 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4373 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4374 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4375 
4376 	I915_WRITE(GEN6_RP_DOWN_EI,
4377 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4378 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4379 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4380 
4381 	 I915_WRITE(GEN6_RP_CONTROL,
4382 		    GEN6_RP_MEDIA_TURBO |
4383 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4384 		    GEN6_RP_MEDIA_IS_GFX |
4385 		    GEN6_RP_ENABLE |
4386 		    GEN6_RP_UP_BUSY_AVG |
4387 		    GEN6_RP_DOWN_IDLE_AVG);
4388 
4389 	dev_priv->rps.power = new_power;
4390 	dev_priv->rps.up_threshold = threshold_up;
4391 	dev_priv->rps.down_threshold = threshold_down;
4392 	dev_priv->rps.last_adj = 0;
4393 }
4394 
4395 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4396 {
4397 	u32 mask = 0;
4398 
4399 	if (val > dev_priv->rps.min_freq_softlimit)
4400 		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4401 	if (val < dev_priv->rps.max_freq_softlimit)
4402 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4403 
4404 	mask &= dev_priv->pm_rps_events;
4405 
4406 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4407 }
4408 
4409 /* gen6_set_rps is called to update the frequency request, but should also be
4410  * called when the range (min_delay and max_delay) is modified so that we can
4411  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4412 static void gen6_set_rps(struct drm_device *dev, u8 val)
4413 {
4414 	struct drm_i915_private *dev_priv = dev->dev_private;
4415 
4416 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4417 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4418 		return;
4419 
4420 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4421 	WARN_ON(val > dev_priv->rps.max_freq);
4422 	WARN_ON(val < dev_priv->rps.min_freq);
4423 
4424 	/* min/max delay may still have been modified so be sure to
4425 	 * write the limits value.
4426 	 */
4427 	if (val != dev_priv->rps.cur_freq) {
4428 		gen6_set_rps_thresholds(dev_priv, val);
4429 
4430 		if (IS_GEN9(dev))
4431 			I915_WRITE(GEN6_RPNSWREQ,
4432 				   GEN9_FREQUENCY(val));
4433 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4434 			I915_WRITE(GEN6_RPNSWREQ,
4435 				   HSW_FREQUENCY(val));
4436 		else
4437 			I915_WRITE(GEN6_RPNSWREQ,
4438 				   GEN6_FREQUENCY(val) |
4439 				   GEN6_OFFSET(0) |
4440 				   GEN6_AGGRESSIVE_TURBO);
4441 	}
4442 
4443 	/* Make sure we continue to get interrupts
4444 	 * until we hit the minimum or maximum frequencies.
4445 	 */
4446 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4447 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4448 
4449 	POSTING_READ(GEN6_RPNSWREQ);
4450 
4451 	dev_priv->rps.cur_freq = val;
4452 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4453 }
4454 
4455 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4456 {
4457 	struct drm_i915_private *dev_priv = dev->dev_private;
4458 
4459 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4460 	WARN_ON(val > dev_priv->rps.max_freq);
4461 	WARN_ON(val < dev_priv->rps.min_freq);
4462 
4463 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4464 		      "Odd GPU freq value\n"))
4465 		val &= ~1;
4466 
4467 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4468 
4469 	if (val != dev_priv->rps.cur_freq) {
4470 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4471 		if (!IS_CHERRYVIEW(dev_priv))
4472 			gen6_set_rps_thresholds(dev_priv, val);
4473 	}
4474 
4475 	dev_priv->rps.cur_freq = val;
4476 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4477 }
4478 
4479 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4480  *
4481  * * If Gfx is Idle, then
4482  * 1. Forcewake Media well.
4483  * 2. Request idle freq.
4484  * 3. Release Forcewake of Media well.
4485 */
4486 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4487 {
4488 	u32 val = dev_priv->rps.idle_freq;
4489 
4490 	if (dev_priv->rps.cur_freq <= val)
4491 		return;
4492 
4493 	/* Wake up the media well, as that takes a lot less
4494 	 * power than the Render well. */
4495 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4496 	valleyview_set_rps(dev_priv->dev, val);
4497 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4498 }
4499 
4500 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4501 {
4502 	mutex_lock(&dev_priv->rps.hw_lock);
4503 	if (dev_priv->rps.enabled) {
4504 		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4505 			gen6_rps_reset_ei(dev_priv);
4506 		I915_WRITE(GEN6_PMINTRMSK,
4507 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4508 	}
4509 	mutex_unlock(&dev_priv->rps.hw_lock);
4510 }
4511 
4512 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4513 {
4514 	struct drm_device *dev = dev_priv->dev;
4515 
4516 	mutex_lock(&dev_priv->rps.hw_lock);
4517 	if (dev_priv->rps.enabled) {
4518 		if (IS_VALLEYVIEW(dev))
4519 			vlv_set_rps_idle(dev_priv);
4520 		else
4521 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4522 		dev_priv->rps.last_adj = 0;
4523 		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4524 	}
4525 	mutex_unlock(&dev_priv->rps.hw_lock);
4526 
4527 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4528 	while (!list_empty(&dev_priv->rps.clients))
4529 		list_del_init(dev_priv->rps.clients.next);
4530 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4531 }
4532 
4533 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4534 		    struct intel_rps_client *rps,
4535 		    unsigned long submitted)
4536 {
4537 	/* This is intentionally racy! We peek at the state here, then
4538 	 * validate inside the RPS worker.
4539 	 */
4540 	if (!(dev_priv->mm.busy &&
4541 	      dev_priv->rps.enabled &&
4542 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4543 		return;
4544 
4545 	/* Force a RPS boost (and don't count it against the client) if
4546 	 * the GPU is severely congested.
4547 	 */
4548 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4549 		rps = NULL;
4550 
4551 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4552 	if (rps == NULL || list_empty(&rps->link)) {
4553 		spin_lock_irq(&dev_priv->irq_lock);
4554 		if (dev_priv->rps.interrupts_enabled) {
4555 			dev_priv->rps.client_boost = true;
4556 			queue_work(dev_priv->wq, &dev_priv->rps.work);
4557 		}
4558 		spin_unlock_irq(&dev_priv->irq_lock);
4559 
4560 		if (rps != NULL) {
4561 			list_add(&rps->link, &dev_priv->rps.clients);
4562 			rps->boosts++;
4563 		} else
4564 			dev_priv->rps.boosts++;
4565 	}
4566 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4567 }
4568 
4569 void intel_set_rps(struct drm_device *dev, u8 val)
4570 {
4571 	if (IS_VALLEYVIEW(dev))
4572 		valleyview_set_rps(dev, val);
4573 	else
4574 		gen6_set_rps(dev, val);
4575 }
4576 
4577 static void gen9_disable_rps(struct drm_device *dev)
4578 {
4579 	struct drm_i915_private *dev_priv = dev->dev_private;
4580 
4581 	I915_WRITE(GEN6_RC_CONTROL, 0);
4582 	I915_WRITE(GEN9_PG_ENABLE, 0);
4583 }
4584 
4585 static void gen6_disable_rps(struct drm_device *dev)
4586 {
4587 	struct drm_i915_private *dev_priv = dev->dev_private;
4588 
4589 	I915_WRITE(GEN6_RC_CONTROL, 0);
4590 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4591 }
4592 
4593 static void cherryview_disable_rps(struct drm_device *dev)
4594 {
4595 	struct drm_i915_private *dev_priv = dev->dev_private;
4596 
4597 	I915_WRITE(GEN6_RC_CONTROL, 0);
4598 }
4599 
4600 static void valleyview_disable_rps(struct drm_device *dev)
4601 {
4602 	struct drm_i915_private *dev_priv = dev->dev_private;
4603 
4604 	/* we're doing forcewake before Disabling RC6,
4605 	 * This what the BIOS expects when going into suspend */
4606 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4607 
4608 	I915_WRITE(GEN6_RC_CONTROL, 0);
4609 
4610 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4611 }
4612 
4613 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4614 {
4615 	if (IS_VALLEYVIEW(dev)) {
4616 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4617 			mode = GEN6_RC_CTL_RC6_ENABLE;
4618 		else
4619 			mode = 0;
4620 	}
4621 	if (HAS_RC6p(dev))
4622 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4623 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4624 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4625 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4626 
4627 	else
4628 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4629 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4630 }
4631 
4632 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4633 {
4634 	/* No RC6 before Ironlake and code is gone for ilk. */
4635 	if (INTEL_INFO(dev)->gen < 6)
4636 		return 0;
4637 
4638 	/* Respect the kernel parameter if it is set */
4639 	if (enable_rc6 >= 0) {
4640 		int mask;
4641 
4642 		if (HAS_RC6p(dev))
4643 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4644 			       INTEL_RC6pp_ENABLE;
4645 		else
4646 			mask = INTEL_RC6_ENABLE;
4647 
4648 		if ((enable_rc6 & mask) != enable_rc6)
4649 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4650 				      enable_rc6 & mask, enable_rc6, mask);
4651 
4652 		return enable_rc6 & mask;
4653 	}
4654 
4655 	if (IS_IVYBRIDGE(dev))
4656 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4657 
4658 	return INTEL_RC6_ENABLE;
4659 }
4660 
4661 int intel_enable_rc6(const struct drm_device *dev)
4662 {
4663 	return i915.enable_rc6;
4664 }
4665 
4666 static void gen6_init_rps_frequencies(struct drm_device *dev)
4667 {
4668 	struct drm_i915_private *dev_priv = dev->dev_private;
4669 	uint32_t rp_state_cap;
4670 	u32 ddcc_status = 0;
4671 	int ret;
4672 
4673 	/* All of these values are in units of 50MHz */
4674 	dev_priv->rps.cur_freq		= 0;
4675 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4676 	if (IS_BROXTON(dev)) {
4677 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4678 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4679 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4680 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4681 	} else {
4682 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4683 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4684 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4685 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4686 	}
4687 
4688 	/* hw_max = RP0 until we check for overclocking */
4689 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4690 
4691 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4692 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4693 		ret = sandybridge_pcode_read(dev_priv,
4694 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4695 					&ddcc_status);
4696 		if (0 == ret)
4697 			dev_priv->rps.efficient_freq =
4698 				clamp_t(u8,
4699 					((ddcc_status >> 8) & 0xff),
4700 					dev_priv->rps.min_freq,
4701 					dev_priv->rps.max_freq);
4702 	}
4703 
4704 	if (IS_SKYLAKE(dev)) {
4705 		/* Store the frequency values in 16.66 MHZ units, which is
4706 		   the natural hardware unit for SKL */
4707 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4708 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4709 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4710 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4711 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4712 	}
4713 
4714 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4715 
4716 	/* Preserve min/max settings in case of re-init */
4717 	if (dev_priv->rps.max_freq_softlimit == 0)
4718 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4719 
4720 	if (dev_priv->rps.min_freq_softlimit == 0) {
4721 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4722 			dev_priv->rps.min_freq_softlimit =
4723 				max_t(int, dev_priv->rps.efficient_freq,
4724 				      intel_freq_opcode(dev_priv, 450));
4725 		else
4726 			dev_priv->rps.min_freq_softlimit =
4727 				dev_priv->rps.min_freq;
4728 	}
4729 }
4730 
4731 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4732 static void gen9_enable_rps(struct drm_device *dev)
4733 {
4734 	struct drm_i915_private *dev_priv = dev->dev_private;
4735 
4736 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4737 
4738 	gen6_init_rps_frequencies(dev);
4739 
4740 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4741 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4742 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4743 		return;
4744 	}
4745 
4746 	/* Program defaults and thresholds for RPS*/
4747 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4748 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4749 
4750 	/* 1 second timeout*/
4751 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4752 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4753 
4754 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4755 
4756 	/* Leaning on the below call to gen6_set_rps to program/setup the
4757 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4758 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4759 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4760 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4761 
4762 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4763 }
4764 
4765 static void gen9_enable_rc6(struct drm_device *dev)
4766 {
4767 	struct drm_i915_private *dev_priv = dev->dev_private;
4768 	struct intel_engine_cs *ring;
4769 	uint32_t rc6_mask = 0;
4770 	int unused;
4771 
4772 	/* 1a: Software RC state - RC0 */
4773 	I915_WRITE(GEN6_RC_STATE, 0);
4774 
4775 	/* 1b: Get forcewake during program sequence. Although the driver
4776 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4777 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4778 
4779 	/* 2a: Disable RC states. */
4780 	I915_WRITE(GEN6_RC_CONTROL, 0);
4781 
4782 	/* 2b: Program RC6 thresholds.*/
4783 
4784 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4785 	if (IS_SKYLAKE(dev))
4786 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4787 	else
4788 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4789 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4790 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4791 	for_each_ring(ring, dev_priv, unused)
4792 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4793 
4794 	if (HAS_GUC_UCODE(dev))
4795 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4796 
4797 	I915_WRITE(GEN6_RC_SLEEP, 0);
4798 
4799 	/* 2c: Program Coarse Power Gating Policies. */
4800 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4801 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4802 
4803 	/* 3a: Enable RC6 */
4804 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4805 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4806 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4807 			"on" : "off");
4808 	/* WaRsUseTimeoutMode */
4809 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4810 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4811 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4812 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4813 			   GEN7_RC_CTL_TO_MODE |
4814 			   rc6_mask);
4815 	} else {
4816 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4817 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4818 			   GEN6_RC_CTL_EI_MODE(1) |
4819 			   rc6_mask);
4820 	}
4821 
4822 	/*
4823 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4824 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4825 	 */
4826 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4827 	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4828 		I915_WRITE(GEN9_PG_ENABLE, 0);
4829 	else
4830 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4831 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4832 
4833 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4834 
4835 }
4836 
4837 static void gen8_enable_rps(struct drm_device *dev)
4838 {
4839 	struct drm_i915_private *dev_priv = dev->dev_private;
4840 	struct intel_engine_cs *ring;
4841 	uint32_t rc6_mask = 0;
4842 	int unused;
4843 
4844 	/* 1a: Software RC state - RC0 */
4845 	I915_WRITE(GEN6_RC_STATE, 0);
4846 
4847 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4848 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4849 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4850 
4851 	/* 2a: Disable RC states. */
4852 	I915_WRITE(GEN6_RC_CONTROL, 0);
4853 
4854 	/* Initialize rps frequencies */
4855 	gen6_init_rps_frequencies(dev);
4856 
4857 	/* 2b: Program RC6 thresholds.*/
4858 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4859 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4860 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4861 	for_each_ring(ring, dev_priv, unused)
4862 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4863 	I915_WRITE(GEN6_RC_SLEEP, 0);
4864 	if (IS_BROADWELL(dev))
4865 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4866 	else
4867 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4868 
4869 	/* 3: Enable RC6 */
4870 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4871 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4872 	intel_print_rc6_info(dev, rc6_mask);
4873 	if (IS_BROADWELL(dev))
4874 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4875 				GEN7_RC_CTL_TO_MODE |
4876 				rc6_mask);
4877 	else
4878 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4879 				GEN6_RC_CTL_EI_MODE(1) |
4880 				rc6_mask);
4881 
4882 	/* 4 Program defaults and thresholds for RPS*/
4883 	I915_WRITE(GEN6_RPNSWREQ,
4884 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4885 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4886 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4887 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4888 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4889 
4890 	/* Docs recommend 900MHz, and 300 MHz respectively */
4891 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4892 		   dev_priv->rps.max_freq_softlimit << 24 |
4893 		   dev_priv->rps.min_freq_softlimit << 16);
4894 
4895 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4896 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4897 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4898 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4899 
4900 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4901 
4902 	/* 5: Enable RPS */
4903 	I915_WRITE(GEN6_RP_CONTROL,
4904 		   GEN6_RP_MEDIA_TURBO |
4905 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4906 		   GEN6_RP_MEDIA_IS_GFX |
4907 		   GEN6_RP_ENABLE |
4908 		   GEN6_RP_UP_BUSY_AVG |
4909 		   GEN6_RP_DOWN_IDLE_AVG);
4910 
4911 	/* 6: Ring frequency + overclocking (our driver does this later */
4912 
4913 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4914 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4915 
4916 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4917 }
4918 
4919 static void gen6_enable_rps(struct drm_device *dev)
4920 {
4921 	struct drm_i915_private *dev_priv = dev->dev_private;
4922 	struct intel_engine_cs *ring;
4923 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4924 	u32 gtfifodbg;
4925 	int rc6_mode;
4926 	int i, ret;
4927 
4928 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4929 
4930 	/* Here begins a magic sequence of register writes to enable
4931 	 * auto-downclocking.
4932 	 *
4933 	 * Perhaps there might be some value in exposing these to
4934 	 * userspace...
4935 	 */
4936 	I915_WRITE(GEN6_RC_STATE, 0);
4937 
4938 	/* Clear the DBG now so we don't confuse earlier errors */
4939 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4940 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4941 		I915_WRITE(GTFIFODBG, gtfifodbg);
4942 	}
4943 
4944 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4945 
4946 	/* Initialize rps frequencies */
4947 	gen6_init_rps_frequencies(dev);
4948 
4949 	/* disable the counters and set deterministic thresholds */
4950 	I915_WRITE(GEN6_RC_CONTROL, 0);
4951 
4952 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4953 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4954 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4955 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4956 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4957 
4958 	for_each_ring(ring, dev_priv, i)
4959 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4960 
4961 	I915_WRITE(GEN6_RC_SLEEP, 0);
4962 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4963 	if (IS_IVYBRIDGE(dev))
4964 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4965 	else
4966 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4967 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4968 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4969 
4970 	/* Check if we are enabling RC6 */
4971 	rc6_mode = intel_enable_rc6(dev_priv->dev);
4972 	if (rc6_mode & INTEL_RC6_ENABLE)
4973 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4974 
4975 	/* We don't use those on Haswell */
4976 	if (!IS_HASWELL(dev)) {
4977 		if (rc6_mode & INTEL_RC6p_ENABLE)
4978 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4979 
4980 		if (rc6_mode & INTEL_RC6pp_ENABLE)
4981 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4982 	}
4983 
4984 	intel_print_rc6_info(dev, rc6_mask);
4985 
4986 	I915_WRITE(GEN6_RC_CONTROL,
4987 		   rc6_mask |
4988 		   GEN6_RC_CTL_EI_MODE(1) |
4989 		   GEN6_RC_CTL_HW_ENABLE);
4990 
4991 	/* Power down if completely idle for over 50ms */
4992 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4993 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4994 
4995 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4996 	if (ret)
4997 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4998 
4999 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5000 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5001 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5002 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5003 				 (pcu_mbox & 0xff) * 50);
5004 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5005 	}
5006 
5007 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5008 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5009 
5010 	rc6vids = 0;
5011 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5012 	if (IS_GEN6(dev) && ret) {
5013 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5014 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5015 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5016 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5017 		rc6vids &= 0xffff00;
5018 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5019 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5020 		if (ret)
5021 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5022 	}
5023 
5024 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5025 }
5026 
5027 static void __gen6_update_ring_freq(struct drm_device *dev)
5028 {
5029 	struct drm_i915_private *dev_priv = dev->dev_private;
5030 	int min_freq = 15;
5031 	unsigned int gpu_freq;
5032 	unsigned int max_ia_freq, min_ring_freq;
5033 	unsigned int max_gpu_freq, min_gpu_freq;
5034 	int scaling_factor = 180;
5035 
5036 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5037 
5038 #if 0
5039 	policy = cpufreq_cpu_get(0);
5040 	if (policy) {
5041 		max_ia_freq = policy->cpuinfo.max_freq;
5042 		cpufreq_cpu_put(policy);
5043 	} else {
5044 		/*
5045 		 * Default to measured freq if none found, PCU will ensure we
5046 		 * don't go over
5047 		 */
5048 		max_ia_freq = tsc_khz;
5049 	}
5050 #else
5051 	max_ia_freq = tsc_frequency / 1000;
5052 #endif
5053 
5054 	/* Convert from kHz to MHz */
5055 	max_ia_freq /= 1000;
5056 
5057 	min_ring_freq = I915_READ(DCLK) & 0xf;
5058 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5059 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060 
5061 	if (IS_SKYLAKE(dev)) {
5062 		/* Convert GT frequency to 50 HZ units */
5063 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065 	} else {
5066 		min_gpu_freq = dev_priv->rps.min_freq;
5067 		max_gpu_freq = dev_priv->rps.max_freq;
5068 	}
5069 
5070 	/*
5071 	 * For each potential GPU frequency, load a ring frequency we'd like
5072 	 * to use for memory access.  We do this by specifying the IA frequency
5073 	 * the PCU should use as a reference to determine the ring frequency.
5074 	 */
5075 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076 		int diff = max_gpu_freq - gpu_freq;
5077 		unsigned int ia_freq = 0, ring_freq = 0;
5078 
5079 		if (IS_SKYLAKE(dev)) {
5080 			/*
5081 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082 			 * No floor required for ring frequency on SKL.
5083 			 */
5084 			ring_freq = gpu_freq;
5085 		} else if (INTEL_INFO(dev)->gen >= 8) {
5086 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5087 			ring_freq = max(min_ring_freq, gpu_freq);
5088 		} else if (IS_HASWELL(dev)) {
5089 			ring_freq = mult_frac(gpu_freq, 5, 4);
5090 			ring_freq = max(min_ring_freq, ring_freq);
5091 			/* leave ia_freq as the default, chosen by cpufreq */
5092 		} else {
5093 			/* On older processors, there is no separate ring
5094 			 * clock domain, so in order to boost the bandwidth
5095 			 * of the ring, we need to upclock the CPU (ia_freq).
5096 			 *
5097 			 * For GPU frequencies less than 750MHz,
5098 			 * just use the lowest ring freq.
5099 			 */
5100 			if (gpu_freq < min_freq)
5101 				ia_freq = 800;
5102 			else
5103 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105 		}
5106 
5107 		sandybridge_pcode_write(dev_priv,
5108 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111 					gpu_freq);
5112 	}
5113 }
5114 
5115 void gen6_update_ring_freq(struct drm_device *dev)
5116 {
5117 	struct drm_i915_private *dev_priv = dev->dev_private;
5118 
5119 	if (!HAS_CORE_RING_FREQ(dev))
5120 		return;
5121 
5122 	mutex_lock(&dev_priv->rps.hw_lock);
5123 	__gen6_update_ring_freq(dev);
5124 	mutex_unlock(&dev_priv->rps.hw_lock);
5125 }
5126 
5127 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5128 {
5129 	struct drm_device *dev = dev_priv->dev;
5130 	u32 val, rp0;
5131 
5132 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5133 
5134 	switch (INTEL_INFO(dev)->eu_total) {
5135 	case 8:
5136 		/* (2 * 4) config */
5137 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138 		break;
5139 	case 12:
5140 		/* (2 * 6) config */
5141 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142 		break;
5143 	case 16:
5144 		/* (2 * 8) config */
5145 	default:
5146 		/* Setting (2 * 8) Min RP0 for any other combination */
5147 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148 		break;
5149 	}
5150 
5151 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152 
5153 	return rp0;
5154 }
5155 
5156 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5157 {
5158 	u32 val, rpe;
5159 
5160 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162 
5163 	return rpe;
5164 }
5165 
5166 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5167 {
5168 	u32 val, rp1;
5169 
5170 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5172 
5173 	return rp1;
5174 }
5175 
5176 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5177 {
5178 	u32 val, rp1;
5179 
5180 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5181 
5182 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5183 
5184 	return rp1;
5185 }
5186 
5187 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5188 {
5189 	u32 val, rp0;
5190 
5191 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5192 
5193 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194 	/* Clamp to max */
5195 	rp0 = min_t(u32, rp0, 0xea);
5196 
5197 	return rp0;
5198 }
5199 
5200 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201 {
5202 	u32 val, rpe;
5203 
5204 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5208 
5209 	return rpe;
5210 }
5211 
5212 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5213 {
5214 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5215 }
5216 
5217 /* Check that the pctx buffer wasn't move under us. */
5218 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5219 {
5220 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5221 
5222 	/* DragonFly - if EDID fails vlv_pctx can wind up NULL */
5223 	if (WARN_ON(!dev_priv->vlv_pctx))
5224 		return;
5225 
5226 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5227 			     dev_priv->vlv_pctx->stolen->start);
5228 }
5229 
5230 
5231 /* Check that the pcbr address is not empty. */
5232 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5233 {
5234 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5235 
5236 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5237 }
5238 
5239 static void cherryview_setup_pctx(struct drm_device *dev)
5240 {
5241 	struct drm_i915_private *dev_priv = dev->dev_private;
5242 	unsigned long pctx_paddr, paddr;
5243 	struct i915_gtt *gtt = &dev_priv->gtt;
5244 	u32 pcbr;
5245 	int pctx_size = 32*1024;
5246 
5247 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5248 
5249 	pcbr = I915_READ(VLV_PCBR);
5250 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5251 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5252 		paddr = (dev_priv->mm.stolen_base +
5253 			 (gtt->stolen_size - pctx_size));
5254 
5255 		pctx_paddr = (paddr & (~4095));
5256 		I915_WRITE(VLV_PCBR, pctx_paddr);
5257 	}
5258 
5259 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5260 }
5261 
5262 static void valleyview_setup_pctx(struct drm_device *dev)
5263 {
5264 	struct drm_i915_private *dev_priv = dev->dev_private;
5265 	struct drm_i915_gem_object *pctx;
5266 	unsigned long pctx_paddr;
5267 	u32 pcbr;
5268 	int pctx_size = 24*1024;
5269 
5270 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5271 
5272 	pcbr = I915_READ(VLV_PCBR);
5273 	if (pcbr) {
5274 		/* BIOS set it up already, grab the pre-alloc'd space */
5275 		int pcbr_offset;
5276 
5277 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5278 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5279 								      pcbr_offset,
5280 								      I915_GTT_OFFSET_NONE,
5281 								      pctx_size);
5282 		goto out;
5283 	}
5284 
5285 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5286 
5287 	/*
5288 	 * From the Gunit register HAS:
5289 	 * The Gfx driver is expected to program this register and ensure
5290 	 * proper allocation within Gfx stolen memory.  For example, this
5291 	 * register should be programmed such than the PCBR range does not
5292 	 * overlap with other ranges, such as the frame buffer, protected
5293 	 * memory, or any other relevant ranges.
5294 	 */
5295 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5296 	if (!pctx) {
5297 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5298 		return;
5299 	}
5300 
5301 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5302 	I915_WRITE(VLV_PCBR, pctx_paddr);
5303 
5304 out:
5305 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5306 	dev_priv->vlv_pctx = pctx;
5307 }
5308 
5309 static void valleyview_cleanup_pctx(struct drm_device *dev)
5310 {
5311 	struct drm_i915_private *dev_priv = dev->dev_private;
5312 
5313 	if (WARN_ON(!dev_priv->vlv_pctx))
5314 		return;
5315 
5316 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5317 	dev_priv->vlv_pctx = NULL;
5318 }
5319 
5320 static void valleyview_init_gt_powersave(struct drm_device *dev)
5321 {
5322 	struct drm_i915_private *dev_priv = dev->dev_private;
5323 	u32 val;
5324 
5325 	valleyview_setup_pctx(dev);
5326 
5327 	mutex_lock(&dev_priv->rps.hw_lock);
5328 
5329 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5330 	switch ((val >> 6) & 3) {
5331 	case 0:
5332 	case 1:
5333 		dev_priv->mem_freq = 800;
5334 		break;
5335 	case 2:
5336 		dev_priv->mem_freq = 1066;
5337 		break;
5338 	case 3:
5339 		dev_priv->mem_freq = 1333;
5340 		break;
5341 	}
5342 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5343 
5344 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5345 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5346 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5347 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5348 			 dev_priv->rps.max_freq);
5349 
5350 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5351 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5352 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5353 			 dev_priv->rps.efficient_freq);
5354 
5355 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5356 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5357 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5358 			 dev_priv->rps.rp1_freq);
5359 
5360 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5361 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5362 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5363 			 dev_priv->rps.min_freq);
5364 
5365 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5366 
5367 	/* Preserve min/max settings in case of re-init */
5368 	if (dev_priv->rps.max_freq_softlimit == 0)
5369 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5370 
5371 	if (dev_priv->rps.min_freq_softlimit == 0)
5372 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5373 
5374 	mutex_unlock(&dev_priv->rps.hw_lock);
5375 }
5376 
5377 static void cherryview_init_gt_powersave(struct drm_device *dev)
5378 {
5379 	struct drm_i915_private *dev_priv = dev->dev_private;
5380 	u32 val;
5381 
5382 	cherryview_setup_pctx(dev);
5383 
5384 	mutex_lock(&dev_priv->rps.hw_lock);
5385 
5386 	mutex_lock(&dev_priv->sb_lock);
5387 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5388 	mutex_unlock(&dev_priv->sb_lock);
5389 
5390 	switch ((val >> 2) & 0x7) {
5391 	case 3:
5392 		dev_priv->mem_freq = 2000;
5393 		break;
5394 	default:
5395 		dev_priv->mem_freq = 1600;
5396 		break;
5397 	}
5398 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5399 
5400 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5401 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5402 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5403 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5404 			 dev_priv->rps.max_freq);
5405 
5406 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5407 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5408 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5409 			 dev_priv->rps.efficient_freq);
5410 
5411 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5412 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5413 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5414 			 dev_priv->rps.rp1_freq);
5415 
5416 	/* PUnit validated range is only [RPe, RP0] */
5417 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5418 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5419 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5420 			 dev_priv->rps.min_freq);
5421 
5422 	WARN_ONCE((dev_priv->rps.max_freq |
5423 		   dev_priv->rps.efficient_freq |
5424 		   dev_priv->rps.rp1_freq |
5425 		   dev_priv->rps.min_freq) & 1,
5426 		  "Odd GPU freq values\n");
5427 
5428 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5429 
5430 	/* Preserve min/max settings in case of re-init */
5431 	if (dev_priv->rps.max_freq_softlimit == 0)
5432 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5433 
5434 	if (dev_priv->rps.min_freq_softlimit == 0)
5435 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5436 
5437 	mutex_unlock(&dev_priv->rps.hw_lock);
5438 }
5439 
5440 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5441 {
5442 	valleyview_cleanup_pctx(dev);
5443 }
5444 
5445 static void cherryview_enable_rps(struct drm_device *dev)
5446 {
5447 	struct drm_i915_private *dev_priv = dev->dev_private;
5448 	struct intel_engine_cs *ring;
5449 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5450 	int i;
5451 
5452 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5453 
5454 	gtfifodbg = I915_READ(GTFIFODBG);
5455 	if (gtfifodbg) {
5456 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5457 				 gtfifodbg);
5458 		I915_WRITE(GTFIFODBG, gtfifodbg);
5459 	}
5460 
5461 	cherryview_check_pctx(dev_priv);
5462 
5463 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5464 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5465 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5466 
5467 	/*  Disable RC states. */
5468 	I915_WRITE(GEN6_RC_CONTROL, 0);
5469 
5470 	/* 2a: Program RC6 thresholds.*/
5471 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5472 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5473 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5474 
5475 	for_each_ring(ring, dev_priv, i)
5476 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5477 	I915_WRITE(GEN6_RC_SLEEP, 0);
5478 
5479 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5480 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5481 
5482 	/* allows RC6 residency counter to work */
5483 	I915_WRITE(VLV_COUNTER_CONTROL,
5484 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5485 				      VLV_MEDIA_RC6_COUNT_EN |
5486 				      VLV_RENDER_RC6_COUNT_EN));
5487 
5488 	/* For now we assume BIOS is allocating and populating the PCBR  */
5489 	pcbr = I915_READ(VLV_PCBR);
5490 
5491 	/* 3: Enable RC6 */
5492 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5493 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5494 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5495 
5496 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5497 
5498 	/* 4 Program defaults and thresholds for RPS*/
5499 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5500 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5501 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5502 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5503 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5504 
5505 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5506 
5507 	/* 5: Enable RPS */
5508 	I915_WRITE(GEN6_RP_CONTROL,
5509 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5510 		   GEN6_RP_MEDIA_IS_GFX |
5511 		   GEN6_RP_ENABLE |
5512 		   GEN6_RP_UP_BUSY_AVG |
5513 		   GEN6_RP_DOWN_IDLE_AVG);
5514 
5515 	/* Setting Fixed Bias */
5516 	val = VLV_OVERRIDE_EN |
5517 		  VLV_SOC_TDP_EN |
5518 		  CHV_BIAS_CPU_50_SOC_50;
5519 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5520 
5521 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5522 
5523 	/* RPS code assumes GPLL is used */
5524 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5525 
5526 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5527 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5528 
5529 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5530 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5531 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5532 			 dev_priv->rps.cur_freq);
5533 
5534 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5535 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5536 			 dev_priv->rps.efficient_freq);
5537 
5538 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5539 
5540 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5541 }
5542 
5543 static void valleyview_enable_rps(struct drm_device *dev)
5544 {
5545 	struct drm_i915_private *dev_priv = dev->dev_private;
5546 	struct intel_engine_cs *ring;
5547 	u32 gtfifodbg, val, rc6_mode = 0;
5548 	int i;
5549 
5550 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5551 
5552 	valleyview_check_pctx(dev_priv);
5553 
5554 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5555 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5556 				 gtfifodbg);
5557 		I915_WRITE(GTFIFODBG, gtfifodbg);
5558 	}
5559 
5560 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5561 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5562 
5563 	/*  Disable RC states. */
5564 	I915_WRITE(GEN6_RC_CONTROL, 0);
5565 
5566 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5567 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5568 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5569 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5570 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5571 
5572 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5573 
5574 	I915_WRITE(GEN6_RP_CONTROL,
5575 		   GEN6_RP_MEDIA_TURBO |
5576 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5577 		   GEN6_RP_MEDIA_IS_GFX |
5578 		   GEN6_RP_ENABLE |
5579 		   GEN6_RP_UP_BUSY_AVG |
5580 		   GEN6_RP_DOWN_IDLE_CONT);
5581 
5582 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5583 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5584 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5585 
5586 	for_each_ring(ring, dev_priv, i)
5587 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5588 
5589 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5590 
5591 	/* allows RC6 residency counter to work */
5592 	I915_WRITE(VLV_COUNTER_CONTROL,
5593 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5594 				      VLV_RENDER_RC0_COUNT_EN |
5595 				      VLV_MEDIA_RC6_COUNT_EN |
5596 				      VLV_RENDER_RC6_COUNT_EN));
5597 
5598 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5599 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5600 
5601 	intel_print_rc6_info(dev, rc6_mode);
5602 
5603 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5604 
5605 	/* Setting Fixed Bias */
5606 	val = VLV_OVERRIDE_EN |
5607 		  VLV_SOC_TDP_EN |
5608 		  VLV_BIAS_CPU_125_SOC_875;
5609 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5610 
5611 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5612 
5613 	/* RPS code assumes GPLL is used */
5614 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5615 
5616 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5617 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5618 
5619 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5620 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5621 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5622 			 dev_priv->rps.cur_freq);
5623 
5624 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5625 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5626 			 dev_priv->rps.efficient_freq);
5627 
5628 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5629 
5630 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5631 }
5632 
5633 static unsigned long intel_pxfreq(u32 vidfreq)
5634 {
5635 	unsigned long freq;
5636 	int div = (vidfreq & 0x3f0000) >> 16;
5637 	int post = (vidfreq & 0x3000) >> 12;
5638 	int pre = (vidfreq & 0x7);
5639 
5640 	if (!pre)
5641 		return 0;
5642 
5643 	freq = ((div * 133333) / ((1<<post) * pre));
5644 
5645 	return freq;
5646 }
5647 
5648 static const struct cparams {
5649 	u16 i;
5650 	u16 t;
5651 	u16 m;
5652 	u16 c;
5653 } cparams[] = {
5654 	{ 1, 1333, 301, 28664 },
5655 	{ 1, 1066, 294, 24460 },
5656 	{ 1, 800, 294, 25192 },
5657 	{ 0, 1333, 276, 27605 },
5658 	{ 0, 1066, 276, 27605 },
5659 	{ 0, 800, 231, 23784 },
5660 };
5661 
5662 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5663 {
5664 	u64 total_count, diff, ret;
5665 	u32 count1, count2, count3, m = 0, c = 0;
5666 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5667 	int i;
5668 
5669 	assert_spin_locked(&mchdev_lock);
5670 
5671 	diff1 = now - dev_priv->ips.last_time1;
5672 
5673 	/* Prevent division-by-zero if we are asking too fast.
5674 	 * Also, we don't get interesting results if we are polling
5675 	 * faster than once in 10ms, so just return the saved value
5676 	 * in such cases.
5677 	 */
5678 	if (diff1 <= 10)
5679 		return dev_priv->ips.chipset_power;
5680 
5681 	count1 = I915_READ(DMIEC);
5682 	count2 = I915_READ(DDREC);
5683 	count3 = I915_READ(CSIEC);
5684 
5685 	total_count = count1 + count2 + count3;
5686 
5687 	/* FIXME: handle per-counter overflow */
5688 	if (total_count < dev_priv->ips.last_count1) {
5689 		diff = ~0UL - dev_priv->ips.last_count1;
5690 		diff += total_count;
5691 	} else {
5692 		diff = total_count - dev_priv->ips.last_count1;
5693 	}
5694 
5695 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5696 		if (cparams[i].i == dev_priv->ips.c_m &&
5697 		    cparams[i].t == dev_priv->ips.r_t) {
5698 			m = cparams[i].m;
5699 			c = cparams[i].c;
5700 			break;
5701 		}
5702 	}
5703 
5704 	diff = div_u64(diff, diff1);
5705 	ret = ((m * diff) + c);
5706 	ret = div_u64(ret, 10);
5707 
5708 	dev_priv->ips.last_count1 = total_count;
5709 	dev_priv->ips.last_time1 = now;
5710 
5711 	dev_priv->ips.chipset_power = ret;
5712 
5713 	return ret;
5714 }
5715 
5716 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5717 {
5718 	struct drm_device *dev = dev_priv->dev;
5719 	unsigned long val;
5720 
5721 	if (INTEL_INFO(dev)->gen != 5)
5722 		return 0;
5723 
5724 	spin_lock_irq(&mchdev_lock);
5725 
5726 	val = __i915_chipset_val(dev_priv);
5727 
5728 	spin_unlock_irq(&mchdev_lock);
5729 
5730 	return val;
5731 }
5732 
5733 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5734 {
5735 	unsigned long m, x, b;
5736 	u32 tsfs;
5737 
5738 	tsfs = I915_READ(TSFS);
5739 
5740 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5741 	x = I915_READ8(TR1);
5742 
5743 	b = tsfs & TSFS_INTR_MASK;
5744 
5745 	return ((m * x) / 127) - b;
5746 }
5747 
5748 static int _pxvid_to_vd(u8 pxvid)
5749 {
5750 	if (pxvid == 0)
5751 		return 0;
5752 
5753 	if (pxvid >= 8 && pxvid < 31)
5754 		pxvid = 31;
5755 
5756 	return (pxvid + 2) * 125;
5757 }
5758 
5759 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5760 {
5761 	struct drm_device *dev = dev_priv->dev;
5762 	const int vd = _pxvid_to_vd(pxvid);
5763 	const int vm = vd - 1125;
5764 
5765 	if (INTEL_INFO(dev)->is_mobile)
5766 		return vm > 0 ? vm : 0;
5767 
5768 	return vd;
5769 }
5770 
5771 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5772 {
5773 	u64 now, diff, diffms;
5774 	u32 count;
5775 
5776 	assert_spin_locked(&mchdev_lock);
5777 
5778 	now = ktime_get_raw_ns();
5779 	diffms = now - dev_priv->ips.last_time2;
5780 	do_div(diffms, NSEC_PER_MSEC);
5781 
5782 	/* Don't divide by 0 */
5783 	if (!diffms)
5784 		return;
5785 
5786 	count = I915_READ(GFXEC);
5787 
5788 	if (count < dev_priv->ips.last_count2) {
5789 		diff = ~0UL - dev_priv->ips.last_count2;
5790 		diff += count;
5791 	} else {
5792 		diff = count - dev_priv->ips.last_count2;
5793 	}
5794 
5795 	dev_priv->ips.last_count2 = count;
5796 	dev_priv->ips.last_time2 = now;
5797 
5798 	/* More magic constants... */
5799 	diff = diff * 1181;
5800 	diff = div_u64(diff, diffms * 10);
5801 	dev_priv->ips.gfx_power = diff;
5802 }
5803 
5804 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5805 {
5806 	struct drm_device *dev = dev_priv->dev;
5807 
5808 	if (INTEL_INFO(dev)->gen != 5)
5809 		return;
5810 
5811 	spin_lock_irq(&mchdev_lock);
5812 
5813 	__i915_update_gfx_val(dev_priv);
5814 
5815 	spin_unlock_irq(&mchdev_lock);
5816 }
5817 
5818 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5819 {
5820 	unsigned long t, corr, state1, corr2, state2;
5821 	u32 pxvid, ext_v;
5822 
5823 	assert_spin_locked(&mchdev_lock);
5824 
5825 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5826 	pxvid = (pxvid >> 24) & 0x7f;
5827 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5828 
5829 	state1 = ext_v;
5830 
5831 	t = i915_mch_val(dev_priv);
5832 
5833 	/* Revel in the empirically derived constants */
5834 
5835 	/* Correction factor in 1/100000 units */
5836 	if (t > 80)
5837 		corr = ((t * 2349) + 135940);
5838 	else if (t >= 50)
5839 		corr = ((t * 964) + 29317);
5840 	else /* < 50 */
5841 		corr = ((t * 301) + 1004);
5842 
5843 	corr = corr * ((150142 * state1) / 10000 - 78642);
5844 	corr /= 100000;
5845 	corr2 = (corr * dev_priv->ips.corr);
5846 
5847 	state2 = (corr2 * state1) / 10000;
5848 	state2 /= 100; /* convert to mW */
5849 
5850 	__i915_update_gfx_val(dev_priv);
5851 
5852 	return dev_priv->ips.gfx_power + state2;
5853 }
5854 
5855 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5856 {
5857 	struct drm_device *dev = dev_priv->dev;
5858 	unsigned long val;
5859 
5860 	if (INTEL_INFO(dev)->gen != 5)
5861 		return 0;
5862 
5863 	spin_lock_irq(&mchdev_lock);
5864 
5865 	val = __i915_gfx_val(dev_priv);
5866 
5867 	spin_unlock_irq(&mchdev_lock);
5868 
5869 	return val;
5870 }
5871 
5872 /**
5873  * i915_read_mch_val - return value for IPS use
5874  *
5875  * Calculate and return a value for the IPS driver to use when deciding whether
5876  * we have thermal and power headroom to increase CPU or GPU power budget.
5877  */
5878 unsigned long i915_read_mch_val(void)
5879 {
5880 	struct drm_i915_private *dev_priv;
5881 	unsigned long chipset_val, graphics_val, ret = 0;
5882 
5883 	spin_lock_irq(&mchdev_lock);
5884 	if (!i915_mch_dev)
5885 		goto out_unlock;
5886 	dev_priv = i915_mch_dev;
5887 
5888 	chipset_val = __i915_chipset_val(dev_priv);
5889 	graphics_val = __i915_gfx_val(dev_priv);
5890 
5891 	ret = chipset_val + graphics_val;
5892 
5893 out_unlock:
5894 	spin_unlock_irq(&mchdev_lock);
5895 
5896 	return ret;
5897 }
5898 
5899 /**
5900  * i915_gpu_raise - raise GPU frequency limit
5901  *
5902  * Raise the limit; IPS indicates we have thermal headroom.
5903  */
5904 bool i915_gpu_raise(void)
5905 {
5906 	struct drm_i915_private *dev_priv;
5907 	bool ret = true;
5908 
5909 	spin_lock_irq(&mchdev_lock);
5910 	if (!i915_mch_dev) {
5911 		ret = false;
5912 		goto out_unlock;
5913 	}
5914 	dev_priv = i915_mch_dev;
5915 
5916 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5917 		dev_priv->ips.max_delay--;
5918 
5919 out_unlock:
5920 	spin_unlock_irq(&mchdev_lock);
5921 
5922 	return ret;
5923 }
5924 
5925 /**
5926  * i915_gpu_lower - lower GPU frequency limit
5927  *
5928  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5929  * frequency maximum.
5930  */
5931 bool i915_gpu_lower(void)
5932 {
5933 	struct drm_i915_private *dev_priv;
5934 	bool ret = true;
5935 
5936 	spin_lock_irq(&mchdev_lock);
5937 	if (!i915_mch_dev) {
5938 		ret = false;
5939 		goto out_unlock;
5940 	}
5941 	dev_priv = i915_mch_dev;
5942 
5943 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5944 		dev_priv->ips.max_delay++;
5945 
5946 out_unlock:
5947 	spin_unlock_irq(&mchdev_lock);
5948 
5949 	return ret;
5950 }
5951 
5952 /**
5953  * i915_gpu_busy - indicate GPU business to IPS
5954  *
5955  * Tell the IPS driver whether or not the GPU is busy.
5956  */
5957 bool i915_gpu_busy(void)
5958 {
5959 	struct drm_i915_private *dev_priv;
5960 	struct intel_engine_cs *ring;
5961 	bool ret = false;
5962 	int i;
5963 
5964 	spin_lock_irq(&mchdev_lock);
5965 	if (!i915_mch_dev)
5966 		goto out_unlock;
5967 	dev_priv = i915_mch_dev;
5968 
5969 	for_each_ring(ring, dev_priv, i)
5970 		ret |= !list_empty(&ring->request_list);
5971 
5972 out_unlock:
5973 	spin_unlock_irq(&mchdev_lock);
5974 
5975 	return ret;
5976 }
5977 
5978 /**
5979  * i915_gpu_turbo_disable - disable graphics turbo
5980  *
5981  * Disable graphics turbo by resetting the max frequency and setting the
5982  * current frequency to the default.
5983  */
5984 bool i915_gpu_turbo_disable(void)
5985 {
5986 	struct drm_i915_private *dev_priv;
5987 	bool ret = true;
5988 
5989 	spin_lock_irq(&mchdev_lock);
5990 	if (!i915_mch_dev) {
5991 		ret = false;
5992 		goto out_unlock;
5993 	}
5994 	dev_priv = i915_mch_dev;
5995 
5996 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5997 
5998 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5999 		ret = false;
6000 
6001 out_unlock:
6002 	spin_unlock_irq(&mchdev_lock);
6003 
6004 	return ret;
6005 }
6006 
6007 #if 0
6008 /**
6009  * Tells the intel_ips driver that the i915 driver is now loaded, if
6010  * IPS got loaded first.
6011  *
6012  * This awkward dance is so that neither module has to depend on the
6013  * other in order for IPS to do the appropriate communication of
6014  * GPU turbo limits to i915.
6015  */
6016 static void
6017 ips_ping_for_i915_load(void)
6018 {
6019 	void (*link)(void);
6020 
6021 	link = symbol_get(ips_link_to_i915_driver);
6022 	if (link) {
6023 		link();
6024 		symbol_put(ips_link_to_i915_driver);
6025 	}
6026 }
6027 #endif
6028 
6029 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6030 {
6031 	/* We only register the i915 ips part with intel-ips once everything is
6032 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6033 	spin_lock_irq(&mchdev_lock);
6034 	i915_mch_dev = dev_priv;
6035 	spin_unlock_irq(&mchdev_lock);
6036 
6037 }
6038 
6039 void intel_gpu_ips_teardown(void)
6040 {
6041 	spin_lock_irq(&mchdev_lock);
6042 	i915_mch_dev = NULL;
6043 	spin_unlock_irq(&mchdev_lock);
6044 }
6045 
6046 static void intel_init_emon(struct drm_device *dev)
6047 {
6048 	struct drm_i915_private *dev_priv = dev->dev_private;
6049 	u32 lcfuse;
6050 	u8 pxw[16];
6051 	int i;
6052 
6053 	/* Disable to program */
6054 	I915_WRITE(ECR, 0);
6055 	POSTING_READ(ECR);
6056 
6057 	/* Program energy weights for various events */
6058 	I915_WRITE(SDEW, 0x15040d00);
6059 	I915_WRITE(CSIEW0, 0x007f0000);
6060 	I915_WRITE(CSIEW1, 0x1e220004);
6061 	I915_WRITE(CSIEW2, 0x04000004);
6062 
6063 	for (i = 0; i < 5; i++)
6064 		I915_WRITE(PEW(i), 0);
6065 	for (i = 0; i < 3; i++)
6066 		I915_WRITE(DEW(i), 0);
6067 
6068 	/* Program P-state weights to account for frequency power adjustment */
6069 	for (i = 0; i < 16; i++) {
6070 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6071 		unsigned long freq = intel_pxfreq(pxvidfreq);
6072 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6073 			PXVFREQ_PX_SHIFT;
6074 		unsigned long val;
6075 
6076 		val = vid * vid;
6077 		val *= (freq / 1000);
6078 		val *= 255;
6079 		val /= (127*127*900);
6080 		if (val > 0xff)
6081 			DRM_ERROR("bad pxval: %ld\n", val);
6082 		pxw[i] = val;
6083 	}
6084 	/* Render standby states get 0 weight */
6085 	pxw[14] = 0;
6086 	pxw[15] = 0;
6087 
6088 	for (i = 0; i < 4; i++) {
6089 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6090 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6091 		I915_WRITE(PXW(i), val);
6092 	}
6093 
6094 	/* Adjust magic regs to magic values (more experimental results) */
6095 	I915_WRITE(OGW0, 0);
6096 	I915_WRITE(OGW1, 0);
6097 	I915_WRITE(EG0, 0x00007f00);
6098 	I915_WRITE(EG1, 0x0000000e);
6099 	I915_WRITE(EG2, 0x000e0000);
6100 	I915_WRITE(EG3, 0x68000300);
6101 	I915_WRITE(EG4, 0x42000000);
6102 	I915_WRITE(EG5, 0x00140031);
6103 	I915_WRITE(EG6, 0);
6104 	I915_WRITE(EG7, 0);
6105 
6106 	for (i = 0; i < 8; i++)
6107 		I915_WRITE(PXWL(i), 0);
6108 
6109 	/* Enable PMON + select events */
6110 	I915_WRITE(ECR, 0x80000019);
6111 
6112 	lcfuse = I915_READ(LCFUSE02);
6113 
6114 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6115 }
6116 
6117 void intel_init_gt_powersave(struct drm_device *dev)
6118 {
6119 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6120 
6121 	if (IS_CHERRYVIEW(dev))
6122 		cherryview_init_gt_powersave(dev);
6123 	else if (IS_VALLEYVIEW(dev))
6124 		valleyview_init_gt_powersave(dev);
6125 }
6126 
6127 void intel_cleanup_gt_powersave(struct drm_device *dev)
6128 {
6129 	if (IS_CHERRYVIEW(dev))
6130 		return;
6131 	else if (IS_VALLEYVIEW(dev))
6132 		valleyview_cleanup_gt_powersave(dev);
6133 }
6134 
6135 static void gen6_suspend_rps(struct drm_device *dev)
6136 {
6137 #if 0
6138 	struct drm_i915_private *dev_priv = dev->dev_private;
6139 
6140 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6141 #endif
6142 
6143 	gen6_disable_rps_interrupts(dev);
6144 }
6145 
6146 /**
6147  * intel_suspend_gt_powersave - suspend PM work and helper threads
6148  * @dev: drm device
6149  *
6150  * We don't want to disable RC6 or other features here, we just want
6151  * to make sure any work we've queued has finished and won't bother
6152  * us while we're suspended.
6153  */
6154 void intel_suspend_gt_powersave(struct drm_device *dev)
6155 {
6156 	struct drm_i915_private *dev_priv = dev->dev_private;
6157 
6158 	if (INTEL_INFO(dev)->gen < 6)
6159 		return;
6160 
6161 	gen6_suspend_rps(dev);
6162 
6163 	/* Force GPU to min freq during suspend */
6164 	gen6_rps_idle(dev_priv);
6165 }
6166 
6167 void intel_disable_gt_powersave(struct drm_device *dev)
6168 {
6169 	struct drm_i915_private *dev_priv = dev->dev_private;
6170 
6171 	if (IS_IRONLAKE_M(dev)) {
6172 		ironlake_disable_drps(dev);
6173 	} else if (INTEL_INFO(dev)->gen >= 6) {
6174 		intel_suspend_gt_powersave(dev);
6175 
6176 		mutex_lock(&dev_priv->rps.hw_lock);
6177 		if (INTEL_INFO(dev)->gen >= 9)
6178 			gen9_disable_rps(dev);
6179 		else if (IS_CHERRYVIEW(dev))
6180 			cherryview_disable_rps(dev);
6181 		else if (IS_VALLEYVIEW(dev))
6182 			valleyview_disable_rps(dev);
6183 		else
6184 			gen6_disable_rps(dev);
6185 
6186 		dev_priv->rps.enabled = false;
6187 		mutex_unlock(&dev_priv->rps.hw_lock);
6188 	}
6189 }
6190 
6191 static void intel_gen6_powersave_work(struct work_struct *work)
6192 {
6193 	struct drm_i915_private *dev_priv =
6194 		container_of(work, struct drm_i915_private,
6195 			     rps.delayed_resume_work.work);
6196 	struct drm_device *dev = dev_priv->dev;
6197 
6198 	mutex_lock(&dev_priv->rps.hw_lock);
6199 
6200 	gen6_reset_rps_interrupts(dev);
6201 
6202 	if (IS_CHERRYVIEW(dev)) {
6203 		cherryview_enable_rps(dev);
6204 	} else if (IS_VALLEYVIEW(dev)) {
6205 		valleyview_enable_rps(dev);
6206 	} else if (INTEL_INFO(dev)->gen >= 9) {
6207 		gen9_enable_rc6(dev);
6208 		gen9_enable_rps(dev);
6209 		if (IS_SKYLAKE(dev))
6210 			__gen6_update_ring_freq(dev);
6211 	} else if (IS_BROADWELL(dev)) {
6212 		gen8_enable_rps(dev);
6213 		__gen6_update_ring_freq(dev);
6214 	} else {
6215 		gen6_enable_rps(dev);
6216 		__gen6_update_ring_freq(dev);
6217 	}
6218 
6219 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6220 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6221 
6222 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6223 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6224 
6225 	dev_priv->rps.enabled = true;
6226 
6227 	gen6_enable_rps_interrupts(dev);
6228 
6229 	mutex_unlock(&dev_priv->rps.hw_lock);
6230 
6231 	intel_runtime_pm_put(dev_priv);
6232 }
6233 
6234 void intel_enable_gt_powersave(struct drm_device *dev)
6235 {
6236 	struct drm_i915_private *dev_priv = dev->dev_private;
6237 
6238 	/* Powersaving is controlled by the host when inside a VM */
6239 	if (intel_vgpu_active(dev))
6240 		return;
6241 
6242 	if (IS_IRONLAKE_M(dev)) {
6243 		mutex_lock(&dev->struct_mutex);
6244 		ironlake_enable_drps(dev);
6245 		intel_init_emon(dev);
6246 		mutex_unlock(&dev->struct_mutex);
6247 	} else if (INTEL_INFO(dev)->gen >= 6) {
6248 		/*
6249 		 * PCU communication is slow and this doesn't need to be
6250 		 * done at any specific time, so do this out of our fast path
6251 		 * to make resume and init faster.
6252 		 *
6253 		 * We depend on the HW RC6 power context save/restore
6254 		 * mechanism when entering D3 through runtime PM suspend. So
6255 		 * disable RPM until RPS/RC6 is properly setup. We can only
6256 		 * get here via the driver load/system resume/runtime resume
6257 		 * paths, so the _noresume version is enough (and in case of
6258 		 * runtime resume it's necessary).
6259 		 */
6260 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6261 					   round_jiffies_up_relative(HZ)))
6262 			intel_runtime_pm_get_noresume(dev_priv);
6263 	}
6264 }
6265 
6266 void intel_reset_gt_powersave(struct drm_device *dev)
6267 {
6268 	struct drm_i915_private *dev_priv = dev->dev_private;
6269 
6270 	if (INTEL_INFO(dev)->gen < 6)
6271 		return;
6272 
6273 	gen6_suspend_rps(dev);
6274 	dev_priv->rps.enabled = false;
6275 }
6276 
6277 static void ibx_init_clock_gating(struct drm_device *dev)
6278 {
6279 	struct drm_i915_private *dev_priv = dev->dev_private;
6280 
6281 	/*
6282 	 * On Ibex Peak and Cougar Point, we need to disable clock
6283 	 * gating for the panel power sequencer or it will fail to
6284 	 * start up when no ports are active.
6285 	 */
6286 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6287 }
6288 
6289 static void g4x_disable_trickle_feed(struct drm_device *dev)
6290 {
6291 	struct drm_i915_private *dev_priv = dev->dev_private;
6292 	enum i915_pipe pipe;
6293 
6294 	for_each_pipe(dev_priv, pipe) {
6295 		I915_WRITE(DSPCNTR(pipe),
6296 			   I915_READ(DSPCNTR(pipe)) |
6297 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6298 
6299 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6300 		POSTING_READ(DSPSURF(pipe));
6301 	}
6302 }
6303 
6304 static void ilk_init_lp_watermarks(struct drm_device *dev)
6305 {
6306 	struct drm_i915_private *dev_priv = dev->dev_private;
6307 
6308 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6309 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6310 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6311 
6312 	/*
6313 	 * Don't touch WM1S_LP_EN here.
6314 	 * Doing so could cause underruns.
6315 	 */
6316 }
6317 
6318 static void ironlake_init_clock_gating(struct drm_device *dev)
6319 {
6320 	struct drm_i915_private *dev_priv = dev->dev_private;
6321 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6322 
6323 	/*
6324 	 * Required for FBC
6325 	 * WaFbcDisableDpfcClockGating:ilk
6326 	 */
6327 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6328 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6329 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6330 
6331 	I915_WRITE(PCH_3DCGDIS0,
6332 		   MARIUNIT_CLOCK_GATE_DISABLE |
6333 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6334 	I915_WRITE(PCH_3DCGDIS1,
6335 		   VFMUNIT_CLOCK_GATE_DISABLE);
6336 
6337 	/*
6338 	 * According to the spec the following bits should be set in
6339 	 * order to enable memory self-refresh
6340 	 * The bit 22/21 of 0x42004
6341 	 * The bit 5 of 0x42020
6342 	 * The bit 15 of 0x45000
6343 	 */
6344 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6345 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6346 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6347 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6348 	I915_WRITE(DISP_ARB_CTL,
6349 		   (I915_READ(DISP_ARB_CTL) |
6350 		    DISP_FBC_WM_DIS));
6351 
6352 	ilk_init_lp_watermarks(dev);
6353 
6354 	/*
6355 	 * Based on the document from hardware guys the following bits
6356 	 * should be set unconditionally in order to enable FBC.
6357 	 * The bit 22 of 0x42000
6358 	 * The bit 22 of 0x42004
6359 	 * The bit 7,8,9 of 0x42020.
6360 	 */
6361 	if (IS_IRONLAKE_M(dev)) {
6362 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6363 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6364 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6365 			   ILK_FBCQ_DIS);
6366 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6367 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6368 			   ILK_DPARB_GATE);
6369 	}
6370 
6371 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6372 
6373 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6374 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6375 		   ILK_ELPIN_409_SELECT);
6376 	I915_WRITE(_3D_CHICKEN2,
6377 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6378 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6379 
6380 	/* WaDisableRenderCachePipelinedFlush:ilk */
6381 	I915_WRITE(CACHE_MODE_0,
6382 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6383 
6384 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6385 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6386 
6387 	g4x_disable_trickle_feed(dev);
6388 
6389 	ibx_init_clock_gating(dev);
6390 }
6391 
6392 static void cpt_init_clock_gating(struct drm_device *dev)
6393 {
6394 	struct drm_i915_private *dev_priv = dev->dev_private;
6395 	int pipe;
6396 	uint32_t val;
6397 
6398 	/*
6399 	 * On Ibex Peak and Cougar Point, we need to disable clock
6400 	 * gating for the panel power sequencer or it will fail to
6401 	 * start up when no ports are active.
6402 	 */
6403 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6404 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6405 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6406 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6407 		   DPLS_EDP_PPS_FIX_DIS);
6408 	/* The below fixes the weird display corruption, a few pixels shifted
6409 	 * downward, on (only) LVDS of some HP laptops with IVY.
6410 	 */
6411 	for_each_pipe(dev_priv, pipe) {
6412 		val = I915_READ(TRANS_CHICKEN2(pipe));
6413 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6414 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6415 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6416 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6417 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6418 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6419 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6420 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6421 	}
6422 	/* WADP0ClockGatingDisable */
6423 	for_each_pipe(dev_priv, pipe) {
6424 		I915_WRITE(TRANS_CHICKEN1(pipe),
6425 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6426 	}
6427 }
6428 
6429 static void gen6_check_mch_setup(struct drm_device *dev)
6430 {
6431 	struct drm_i915_private *dev_priv = dev->dev_private;
6432 	uint32_t tmp;
6433 
6434 	tmp = I915_READ(MCH_SSKPD);
6435 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6436 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6437 			      tmp);
6438 }
6439 
6440 static void gen6_init_clock_gating(struct drm_device *dev)
6441 {
6442 	struct drm_i915_private *dev_priv = dev->dev_private;
6443 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6444 
6445 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6446 
6447 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6448 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6449 		   ILK_ELPIN_409_SELECT);
6450 
6451 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6452 	I915_WRITE(_3D_CHICKEN,
6453 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6454 
6455 	/* WaDisable_RenderCache_OperationalFlush:snb */
6456 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6457 
6458 	/*
6459 	 * BSpec recoomends 8x4 when MSAA is used,
6460 	 * however in practice 16x4 seems fastest.
6461 	 *
6462 	 * Note that PS/WM thread counts depend on the WIZ hashing
6463 	 * disable bit, which we don't touch here, but it's good
6464 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6465 	 */
6466 	I915_WRITE(GEN6_GT_MODE,
6467 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6468 
6469 	ilk_init_lp_watermarks(dev);
6470 
6471 	I915_WRITE(CACHE_MODE_0,
6472 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6473 
6474 	I915_WRITE(GEN6_UCGCTL1,
6475 		   I915_READ(GEN6_UCGCTL1) |
6476 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6477 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6478 
6479 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6480 	 * gating disable must be set.  Failure to set it results in
6481 	 * flickering pixels due to Z write ordering failures after
6482 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6483 	 * Sanctuary and Tropics, and apparently anything else with
6484 	 * alpha test or pixel discard.
6485 	 *
6486 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6487 	 * but we didn't debug actual testcases to find it out.
6488 	 *
6489 	 * WaDisableRCCUnitClockGating:snb
6490 	 * WaDisableRCPBUnitClockGating:snb
6491 	 */
6492 	I915_WRITE(GEN6_UCGCTL2,
6493 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6494 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6495 
6496 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6497 	I915_WRITE(_3D_CHICKEN3,
6498 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6499 
6500 	/*
6501 	 * Bspec says:
6502 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6503 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6504 	 */
6505 	I915_WRITE(_3D_CHICKEN3,
6506 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6507 
6508 	/*
6509 	 * According to the spec the following bits should be
6510 	 * set in order to enable memory self-refresh and fbc:
6511 	 * The bit21 and bit22 of 0x42000
6512 	 * The bit21 and bit22 of 0x42004
6513 	 * The bit5 and bit7 of 0x42020
6514 	 * The bit14 of 0x70180
6515 	 * The bit14 of 0x71180
6516 	 *
6517 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6518 	 */
6519 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6520 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6521 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6522 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6523 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6524 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6525 	I915_WRITE(ILK_DSPCLK_GATE_D,
6526 		   I915_READ(ILK_DSPCLK_GATE_D) |
6527 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6528 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6529 
6530 	g4x_disable_trickle_feed(dev);
6531 
6532 	cpt_init_clock_gating(dev);
6533 
6534 	gen6_check_mch_setup(dev);
6535 }
6536 
6537 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6538 {
6539 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6540 
6541 	/*
6542 	 * WaVSThreadDispatchOverride:ivb,vlv
6543 	 *
6544 	 * This actually overrides the dispatch
6545 	 * mode for all thread types.
6546 	 */
6547 	reg &= ~GEN7_FF_SCHED_MASK;
6548 	reg |= GEN7_FF_TS_SCHED_HW;
6549 	reg |= GEN7_FF_VS_SCHED_HW;
6550 	reg |= GEN7_FF_DS_SCHED_HW;
6551 
6552 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6553 }
6554 
6555 static void lpt_init_clock_gating(struct drm_device *dev)
6556 {
6557 	struct drm_i915_private *dev_priv = dev->dev_private;
6558 
6559 	/*
6560 	 * TODO: this bit should only be enabled when really needed, then
6561 	 * disabled when not needed anymore in order to save power.
6562 	 */
6563 	if (HAS_PCH_LPT_LP(dev))
6564 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6565 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6566 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6567 
6568 	/* WADPOClockGatingDisable:hsw */
6569 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6570 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6571 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6572 }
6573 
6574 static void lpt_suspend_hw(struct drm_device *dev)
6575 {
6576 	struct drm_i915_private *dev_priv = dev->dev_private;
6577 
6578 	if (HAS_PCH_LPT_LP(dev)) {
6579 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6580 
6581 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6582 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6583 	}
6584 }
6585 
6586 static void broadwell_init_clock_gating(struct drm_device *dev)
6587 {
6588 	struct drm_i915_private *dev_priv = dev->dev_private;
6589 	enum i915_pipe pipe;
6590 	uint32_t misccpctl;
6591 
6592 	ilk_init_lp_watermarks(dev);
6593 
6594 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6595 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6596 
6597 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6598 	I915_WRITE(CHICKEN_PAR1_1,
6599 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6600 
6601 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6602 	for_each_pipe(dev_priv, pipe) {
6603 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6604 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6605 			   BDW_DPRS_MASK_VBLANK_SRD);
6606 	}
6607 
6608 	/* WaVSRefCountFullforceMissDisable:bdw */
6609 	/* WaDSRefCountFullforceMissDisable:bdw */
6610 	I915_WRITE(GEN7_FF_THREAD_MODE,
6611 		   I915_READ(GEN7_FF_THREAD_MODE) &
6612 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6613 
6614 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6615 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6616 
6617 	/* WaDisableSDEUnitClockGating:bdw */
6618 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6619 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6620 
6621 	/*
6622 	 * WaProgramL3SqcReg1Default:bdw
6623 	 * WaTempDisableDOPClkGating:bdw
6624 	 */
6625 	misccpctl = I915_READ(GEN7_MISCCPCTL);
6626 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6627 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6628 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6629 
6630 	/*
6631 	 * WaGttCachingOffByDefault:bdw
6632 	 * GTT cache may not work with big pages, so if those
6633 	 * are ever enabled GTT cache may need to be disabled.
6634 	 */
6635 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6636 
6637 	lpt_init_clock_gating(dev);
6638 }
6639 
6640 static void haswell_init_clock_gating(struct drm_device *dev)
6641 {
6642 	struct drm_i915_private *dev_priv = dev->dev_private;
6643 
6644 	ilk_init_lp_watermarks(dev);
6645 
6646 	/* L3 caching of data atomics doesn't work -- disable it. */
6647 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6648 	I915_WRITE(HSW_ROW_CHICKEN3,
6649 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6650 
6651 	/* This is required by WaCatErrorRejectionIssue:hsw */
6652 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6653 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6654 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6655 
6656 	/* WaVSRefCountFullforceMissDisable:hsw */
6657 	I915_WRITE(GEN7_FF_THREAD_MODE,
6658 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6659 
6660 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6661 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6662 
6663 	/* enable HiZ Raw Stall Optimization */
6664 	I915_WRITE(CACHE_MODE_0_GEN7,
6665 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6666 
6667 	/* WaDisable4x2SubspanOptimization:hsw */
6668 	I915_WRITE(CACHE_MODE_1,
6669 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6670 
6671 	/*
6672 	 * BSpec recommends 8x4 when MSAA is used,
6673 	 * however in practice 16x4 seems fastest.
6674 	 *
6675 	 * Note that PS/WM thread counts depend on the WIZ hashing
6676 	 * disable bit, which we don't touch here, but it's good
6677 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6678 	 */
6679 	I915_WRITE(GEN7_GT_MODE,
6680 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6681 
6682 	/* WaSampleCChickenBitEnable:hsw */
6683 	I915_WRITE(HALF_SLICE_CHICKEN3,
6684 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6685 
6686 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6687 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6688 
6689 	/* WaRsPkgCStateDisplayPMReq:hsw */
6690 	I915_WRITE(CHICKEN_PAR1_1,
6691 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6692 
6693 	lpt_init_clock_gating(dev);
6694 }
6695 
6696 static void ivybridge_init_clock_gating(struct drm_device *dev)
6697 {
6698 	struct drm_i915_private *dev_priv = dev->dev_private;
6699 	uint32_t snpcr;
6700 
6701 	ilk_init_lp_watermarks(dev);
6702 
6703 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6704 
6705 	/* WaDisableEarlyCull:ivb */
6706 	I915_WRITE(_3D_CHICKEN3,
6707 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6708 
6709 	/* WaDisableBackToBackFlipFix:ivb */
6710 	I915_WRITE(IVB_CHICKEN3,
6711 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6712 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6713 
6714 	/* WaDisablePSDDualDispatchEnable:ivb */
6715 	if (IS_IVB_GT1(dev))
6716 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6717 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6718 
6719 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6720 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6721 
6722 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6723 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6724 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6725 
6726 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6727 	I915_WRITE(GEN7_L3CNTLREG1,
6728 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6729 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6730 		   GEN7_WA_L3_CHICKEN_MODE);
6731 	if (IS_IVB_GT1(dev))
6732 		I915_WRITE(GEN7_ROW_CHICKEN2,
6733 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6734 	else {
6735 		/* must write both registers */
6736 		I915_WRITE(GEN7_ROW_CHICKEN2,
6737 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6738 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6739 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6740 	}
6741 
6742 	/* WaForceL3Serialization:ivb */
6743 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6744 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6745 
6746 	/*
6747 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6748 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6749 	 */
6750 	I915_WRITE(GEN6_UCGCTL2,
6751 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6752 
6753 	/* This is required by WaCatErrorRejectionIssue:ivb */
6754 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6755 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6756 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6757 
6758 	g4x_disable_trickle_feed(dev);
6759 
6760 	gen7_setup_fixed_func_scheduler(dev_priv);
6761 
6762 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6763 		/* enable HiZ Raw Stall Optimization */
6764 		I915_WRITE(CACHE_MODE_0_GEN7,
6765 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6766 	}
6767 
6768 	/* WaDisable4x2SubspanOptimization:ivb */
6769 	I915_WRITE(CACHE_MODE_1,
6770 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6771 
6772 	/*
6773 	 * BSpec recommends 8x4 when MSAA is used,
6774 	 * however in practice 16x4 seems fastest.
6775 	 *
6776 	 * Note that PS/WM thread counts depend on the WIZ hashing
6777 	 * disable bit, which we don't touch here, but it's good
6778 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6779 	 */
6780 	I915_WRITE(GEN7_GT_MODE,
6781 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6782 
6783 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6784 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6785 	snpcr |= GEN6_MBC_SNPCR_MED;
6786 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6787 
6788 	if (!HAS_PCH_NOP(dev))
6789 		cpt_init_clock_gating(dev);
6790 
6791 	gen6_check_mch_setup(dev);
6792 }
6793 
6794 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6795 {
6796 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6797 
6798 	/*
6799 	 * Disable trickle feed and enable pnd deadline calculation
6800 	 */
6801 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6802 	I915_WRITE(CBR1_VLV, 0);
6803 }
6804 
6805 static void valleyview_init_clock_gating(struct drm_device *dev)
6806 {
6807 	struct drm_i915_private *dev_priv = dev->dev_private;
6808 
6809 	vlv_init_display_clock_gating(dev_priv);
6810 
6811 	/* WaDisableEarlyCull:vlv */
6812 	I915_WRITE(_3D_CHICKEN3,
6813 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6814 
6815 	/* WaDisableBackToBackFlipFix:vlv */
6816 	I915_WRITE(IVB_CHICKEN3,
6817 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6818 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6819 
6820 	/* WaPsdDispatchEnable:vlv */
6821 	/* WaDisablePSDDualDispatchEnable:vlv */
6822 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6823 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6824 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6825 
6826 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6827 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6828 
6829 	/* WaForceL3Serialization:vlv */
6830 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6831 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6832 
6833 	/* WaDisableDopClockGating:vlv */
6834 	I915_WRITE(GEN7_ROW_CHICKEN2,
6835 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6836 
6837 	/* This is required by WaCatErrorRejectionIssue:vlv */
6838 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6839 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6840 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6841 
6842 	gen7_setup_fixed_func_scheduler(dev_priv);
6843 
6844 	/*
6845 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6846 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6847 	 */
6848 	I915_WRITE(GEN6_UCGCTL2,
6849 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6850 
6851 	/* WaDisableL3Bank2xClockGate:vlv
6852 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6853 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6854 	I915_WRITE(GEN7_UCGCTL4,
6855 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6856 
6857 	/*
6858 	 * BSpec says this must be set, even though
6859 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6860 	 */
6861 	I915_WRITE(CACHE_MODE_1,
6862 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6863 
6864 	/*
6865 	 * BSpec recommends 8x4 when MSAA is used,
6866 	 * however in practice 16x4 seems fastest.
6867 	 *
6868 	 * Note that PS/WM thread counts depend on the WIZ hashing
6869 	 * disable bit, which we don't touch here, but it's good
6870 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6871 	 */
6872 	I915_WRITE(GEN7_GT_MODE,
6873 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6874 
6875 	/*
6876 	 * WaIncreaseL3CreditsForVLVB0:vlv
6877 	 * This is the hardware default actually.
6878 	 */
6879 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6880 
6881 	/*
6882 	 * WaDisableVLVClockGating_VBIIssue:vlv
6883 	 * Disable clock gating on th GCFG unit to prevent a delay
6884 	 * in the reporting of vblank events.
6885 	 */
6886 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6887 }
6888 
6889 static void cherryview_init_clock_gating(struct drm_device *dev)
6890 {
6891 	struct drm_i915_private *dev_priv = dev->dev_private;
6892 
6893 	vlv_init_display_clock_gating(dev_priv);
6894 
6895 	/* WaVSRefCountFullforceMissDisable:chv */
6896 	/* WaDSRefCountFullforceMissDisable:chv */
6897 	I915_WRITE(GEN7_FF_THREAD_MODE,
6898 		   I915_READ(GEN7_FF_THREAD_MODE) &
6899 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6900 
6901 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6902 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6903 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6904 
6905 	/* WaDisableCSUnitClockGating:chv */
6906 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6907 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6908 
6909 	/* WaDisableSDEUnitClockGating:chv */
6910 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6911 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6912 
6913 	/*
6914 	 * GTT cache may not work with big pages, so if those
6915 	 * are ever enabled GTT cache may need to be disabled.
6916 	 */
6917 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6918 }
6919 
6920 static void g4x_init_clock_gating(struct drm_device *dev)
6921 {
6922 	struct drm_i915_private *dev_priv = dev->dev_private;
6923 	uint32_t dspclk_gate;
6924 
6925 	I915_WRITE(RENCLK_GATE_D1, 0);
6926 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6927 		   GS_UNIT_CLOCK_GATE_DISABLE |
6928 		   CL_UNIT_CLOCK_GATE_DISABLE);
6929 	I915_WRITE(RAMCLK_GATE_D, 0);
6930 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6931 		OVRUNIT_CLOCK_GATE_DISABLE |
6932 		OVCUNIT_CLOCK_GATE_DISABLE;
6933 	if (IS_GM45(dev))
6934 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6935 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6936 
6937 	/* WaDisableRenderCachePipelinedFlush */
6938 	I915_WRITE(CACHE_MODE_0,
6939 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6940 
6941 	/* WaDisable_RenderCache_OperationalFlush:g4x */
6942 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6943 
6944 	g4x_disable_trickle_feed(dev);
6945 }
6946 
6947 static void crestline_init_clock_gating(struct drm_device *dev)
6948 {
6949 	struct drm_i915_private *dev_priv = dev->dev_private;
6950 
6951 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6952 	I915_WRITE(RENCLK_GATE_D2, 0);
6953 	I915_WRITE(DSPCLK_GATE_D, 0);
6954 	I915_WRITE(RAMCLK_GATE_D, 0);
6955 	I915_WRITE16(DEUC, 0);
6956 	I915_WRITE(MI_ARB_STATE,
6957 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6958 
6959 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6960 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6961 }
6962 
6963 static void broadwater_init_clock_gating(struct drm_device *dev)
6964 {
6965 	struct drm_i915_private *dev_priv = dev->dev_private;
6966 
6967 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6968 		   I965_RCC_CLOCK_GATE_DISABLE |
6969 		   I965_RCPB_CLOCK_GATE_DISABLE |
6970 		   I965_ISC_CLOCK_GATE_DISABLE |
6971 		   I965_FBC_CLOCK_GATE_DISABLE);
6972 	I915_WRITE(RENCLK_GATE_D2, 0);
6973 	I915_WRITE(MI_ARB_STATE,
6974 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6975 
6976 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6977 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6978 }
6979 
6980 static void gen3_init_clock_gating(struct drm_device *dev)
6981 {
6982 	struct drm_i915_private *dev_priv = dev->dev_private;
6983 	u32 dstate = I915_READ(D_STATE);
6984 
6985 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6986 		DSTATE_DOT_CLOCK_GATING;
6987 	I915_WRITE(D_STATE, dstate);
6988 
6989 	if (IS_PINEVIEW(dev))
6990 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6991 
6992 	/* IIR "flip pending" means done if this bit is set */
6993 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6994 
6995 	/* interrupts should cause a wake up from C3 */
6996 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6997 
6998 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6999 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7000 
7001 	I915_WRITE(MI_ARB_STATE,
7002 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7003 }
7004 
7005 static void i85x_init_clock_gating(struct drm_device *dev)
7006 {
7007 	struct drm_i915_private *dev_priv = dev->dev_private;
7008 
7009 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7010 
7011 	/* interrupts should cause a wake up from C3 */
7012 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7013 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7014 
7015 	I915_WRITE(MEM_MODE,
7016 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7017 }
7018 
7019 static void i830_init_clock_gating(struct drm_device *dev)
7020 {
7021 	struct drm_i915_private *dev_priv = dev->dev_private;
7022 
7023 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7024 
7025 	I915_WRITE(MEM_MODE,
7026 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7027 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7028 }
7029 
7030 void intel_init_clock_gating(struct drm_device *dev)
7031 {
7032 	struct drm_i915_private *dev_priv = dev->dev_private;
7033 
7034 	if (dev_priv->display.init_clock_gating)
7035 		dev_priv->display.init_clock_gating(dev);
7036 }
7037 
7038 void intel_suspend_hw(struct drm_device *dev)
7039 {
7040 	if (HAS_PCH_LPT(dev))
7041 		lpt_suspend_hw(dev);
7042 }
7043 
7044 /* Set up chip specific power management-related functions */
7045 void intel_init_pm(struct drm_device *dev)
7046 {
7047 	struct drm_i915_private *dev_priv = dev->dev_private;
7048 
7049 	intel_fbc_init(dev_priv);
7050 
7051 	/* For cxsr */
7052 	if (IS_PINEVIEW(dev))
7053 		i915_pineview_get_mem_freq(dev);
7054 	else if (IS_GEN5(dev))
7055 		i915_ironlake_get_mem_freq(dev);
7056 
7057 	/* For FIFO watermark updates */
7058 	if (INTEL_INFO(dev)->gen >= 9) {
7059 		skl_setup_wm_latency(dev);
7060 
7061 		if (IS_BROXTON(dev))
7062 			dev_priv->display.init_clock_gating =
7063 				bxt_init_clock_gating;
7064 		dev_priv->display.update_wm = skl_update_wm;
7065 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7066 	} else if (HAS_PCH_SPLIT(dev)) {
7067 		ilk_setup_wm_latency(dev);
7068 
7069 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7070 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7071 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7072 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7073 			dev_priv->display.update_wm = ilk_update_wm;
7074 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7075 		} else {
7076 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7077 				      "Disable CxSR\n");
7078 		}
7079 
7080 		if (IS_GEN5(dev))
7081 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7082 		else if (IS_GEN6(dev))
7083 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7084 		else if (IS_IVYBRIDGE(dev))
7085 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7086 		else if (IS_HASWELL(dev))
7087 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7088 		else if (INTEL_INFO(dev)->gen == 8)
7089 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7090 	} else if (IS_CHERRYVIEW(dev)) {
7091 		vlv_setup_wm_latency(dev);
7092 
7093 		dev_priv->display.update_wm = vlv_update_wm;
7094 		dev_priv->display.init_clock_gating =
7095 			cherryview_init_clock_gating;
7096 	} else if (IS_VALLEYVIEW(dev)) {
7097 		vlv_setup_wm_latency(dev);
7098 
7099 		dev_priv->display.update_wm = vlv_update_wm;
7100 		dev_priv->display.init_clock_gating =
7101 			valleyview_init_clock_gating;
7102 	} else if (IS_PINEVIEW(dev)) {
7103 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7104 					    dev_priv->is_ddr3,
7105 					    dev_priv->fsb_freq,
7106 					    dev_priv->mem_freq)) {
7107 			DRM_INFO("failed to find known CxSR latency "
7108 				 "(found ddr%s fsb freq %d, mem freq %d), "
7109 				 "disabling CxSR\n",
7110 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7111 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7112 			/* Disable CxSR and never update its watermark again */
7113 			intel_set_memory_cxsr(dev_priv, false);
7114 			dev_priv->display.update_wm = NULL;
7115 		} else
7116 			dev_priv->display.update_wm = pineview_update_wm;
7117 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7118 	} else if (IS_G4X(dev)) {
7119 		dev_priv->display.update_wm = g4x_update_wm;
7120 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7121 	} else if (IS_GEN4(dev)) {
7122 		dev_priv->display.update_wm = i965_update_wm;
7123 		if (IS_CRESTLINE(dev))
7124 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7125 		else if (IS_BROADWATER(dev))
7126 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7127 	} else if (IS_GEN3(dev)) {
7128 		dev_priv->display.update_wm = i9xx_update_wm;
7129 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7130 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7131 	} else if (IS_GEN2(dev)) {
7132 		if (INTEL_INFO(dev)->num_pipes == 1) {
7133 			dev_priv->display.update_wm = i845_update_wm;
7134 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7135 		} else {
7136 			dev_priv->display.update_wm = i9xx_update_wm;
7137 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7138 		}
7139 
7140 		if (IS_I85X(dev) || IS_I865G(dev))
7141 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7142 		else
7143 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7144 	} else {
7145 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7146 	}
7147 }
7148 
7149 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7150 {
7151 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7152 
7153 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7154 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7155 		return -EAGAIN;
7156 	}
7157 
7158 	I915_WRITE(GEN6_PCODE_DATA, *val);
7159 	I915_WRITE(GEN6_PCODE_DATA1, 0);
7160 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7161 
7162 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7163 		     500)) {
7164 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7165 		return -ETIMEDOUT;
7166 	}
7167 
7168 	*val = I915_READ(GEN6_PCODE_DATA);
7169 	I915_WRITE(GEN6_PCODE_DATA, 0);
7170 
7171 	return 0;
7172 }
7173 
7174 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7175 {
7176 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7177 
7178 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7179 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7180 		return -EAGAIN;
7181 	}
7182 
7183 	I915_WRITE(GEN6_PCODE_DATA, val);
7184 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7185 
7186 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7187 		     500)) {
7188 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7189 		return -ETIMEDOUT;
7190 	}
7191 
7192 	I915_WRITE(GEN6_PCODE_DATA, 0);
7193 
7194 	return 0;
7195 }
7196 
7197 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7198 {
7199 	switch (czclk_freq) {
7200 	case 200:
7201 		return 10;
7202 	case 267:
7203 		return 12;
7204 	case 320:
7205 	case 333:
7206 		return 16;
7207 	case 400:
7208 		return 20;
7209 	default:
7210 		return -1;
7211 	}
7212 }
7213 
7214 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7215 {
7216 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7217 
7218 	div = vlv_gpu_freq_div(czclk_freq);
7219 	if (div < 0)
7220 		return div;
7221 
7222 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7223 }
7224 
7225 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7226 {
7227 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7228 
7229 	mul = vlv_gpu_freq_div(czclk_freq);
7230 	if (mul < 0)
7231 		return mul;
7232 
7233 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7234 }
7235 
7236 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7237 {
7238 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7239 
7240 	div = vlv_gpu_freq_div(czclk_freq) / 2;
7241 	if (div < 0)
7242 		return div;
7243 
7244 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7245 }
7246 
7247 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7248 {
7249 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7250 
7251 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7252 	if (mul < 0)
7253 		return mul;
7254 
7255 	/* CHV needs even values */
7256 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7257 }
7258 
7259 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7260 {
7261 	if (IS_GEN9(dev_priv->dev))
7262 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7263 					 GEN9_FREQ_SCALER);
7264 	else if (IS_CHERRYVIEW(dev_priv->dev))
7265 		return chv_gpu_freq(dev_priv, val);
7266 	else if (IS_VALLEYVIEW(dev_priv->dev))
7267 		return byt_gpu_freq(dev_priv, val);
7268 	else
7269 		return val * GT_FREQUENCY_MULTIPLIER;
7270 }
7271 
7272 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7273 {
7274 	if (IS_GEN9(dev_priv->dev))
7275 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7276 					 GT_FREQUENCY_MULTIPLIER);
7277 	else if (IS_CHERRYVIEW(dev_priv->dev))
7278 		return chv_freq_opcode(dev_priv, val);
7279 	else if (IS_VALLEYVIEW(dev_priv->dev))
7280 		return byt_freq_opcode(dev_priv, val);
7281 	else
7282 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7283 }
7284 
7285 struct request_boost {
7286 	struct work_struct work;
7287 	struct drm_i915_gem_request *req;
7288 };
7289 
7290 static void __intel_rps_boost_work(struct work_struct *work)
7291 {
7292 	struct request_boost *boost = container_of(work, struct request_boost, work);
7293 	struct drm_i915_gem_request *req = boost->req;
7294 
7295 	if (!i915_gem_request_completed(req, true))
7296 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7297 			       req->emitted_jiffies);
7298 
7299 	i915_gem_request_unreference__unlocked(req);
7300 	kfree(boost);
7301 }
7302 
7303 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7304 				       struct drm_i915_gem_request *req)
7305 {
7306 	struct request_boost *boost;
7307 
7308 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7309 		return;
7310 
7311 	if (i915_gem_request_completed(req, true))
7312 		return;
7313 
7314 	boost = kmalloc(sizeof(*boost), M_DRM, M_NOWAIT);
7315 	if (boost == NULL)
7316 		return;
7317 
7318 	i915_gem_request_reference(req);
7319 	boost->req = req;
7320 
7321 	INIT_WORK(&boost->work, __intel_rps_boost_work);
7322 	queue_work(to_i915(dev)->wq, &boost->work);
7323 }
7324 
7325 void intel_pm_setup(struct drm_device *dev)
7326 {
7327 	struct drm_i915_private *dev_priv = dev->dev_private;
7328 
7329 	lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7330 	lockinit(&dev_priv->rps.client_lock, "i915rcl", 0, LK_CANRECURSE);
7331 
7332 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7333 			  intel_gen6_powersave_work);
7334 	INIT_LIST_HEAD(&dev_priv->rps.clients);
7335 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7336 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7337 
7338 	dev_priv->pm.suspended = false;
7339 }
7340