xref: /dragonfly/sys/dev/drm/i915/intel_pm.c (revision 279dd846)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 #include <drm/i915_powerwell.h>
33 
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE			(1<<0)
52 #define INTEL_RC6p_ENABLE			(1<<1)
53 #define INTEL_RC6pp_ENABLE			(1<<2)
54 
55 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
56  * framebuffer contents in-memory, aiming at reducing the required bandwidth
57  * during in-memory transfers and, therefore, reduce the power packet.
58  *
59  * The benefits of FBC are mostly visible with solid backgrounds and
60  * variation-less patterns.
61  *
62  * FBC-related functionality can be enabled by the means of the
63  * i915.i915_enable_fbc parameter
64  */
65 
66 static void i8xx_disable_fbc(struct drm_device *dev)
67 {
68 	struct drm_i915_private *dev_priv = dev->dev_private;
69 	u32 fbc_ctl;
70 
71 	/* Disable compression */
72 	fbc_ctl = I915_READ(FBC_CONTROL);
73 	if ((fbc_ctl & FBC_CTL_EN) == 0)
74 		return;
75 
76 	fbc_ctl &= ~FBC_CTL_EN;
77 	I915_WRITE(FBC_CONTROL, fbc_ctl);
78 
79 	/* Wait for compressing bit to clear */
80 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
81 		DRM_DEBUG_KMS("FBC idle timed out\n");
82 		return;
83 	}
84 
85 	DRM_DEBUG_KMS("disabled FBC\n");
86 }
87 
88 static void i8xx_enable_fbc(struct drm_crtc *crtc)
89 {
90 	struct drm_device *dev = crtc->dev;
91 	struct drm_i915_private *dev_priv = dev->dev_private;
92 	struct drm_framebuffer *fb = crtc->primary->fb;
93 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
94 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
95 	int cfb_pitch;
96 	int i;
97 	u32 fbc_ctl;
98 
99 	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
100 	if (fb->pitches[0] < cfb_pitch)
101 		cfb_pitch = fb->pitches[0];
102 
103 	/* FBC_CTL wants 32B or 64B units */
104 	if (IS_GEN2(dev))
105 		cfb_pitch = (cfb_pitch / 32) - 1;
106 	else
107 		cfb_pitch = (cfb_pitch / 64) - 1;
108 
109 	/* Clear old tags */
110 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
111 		I915_WRITE(FBC_TAG + (i * 4), 0);
112 
113 	if (IS_GEN4(dev)) {
114 		u32 fbc_ctl2;
115 
116 		/* Set it up... */
117 		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
118 		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
119 		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
120 		I915_WRITE(FBC_FENCE_OFF, crtc->y);
121 	}
122 
123 	/* enable it... */
124 	fbc_ctl = I915_READ(FBC_CONTROL);
125 	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
126 	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
127 	if (IS_I945GM(dev))
128 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
129 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
130 	fbc_ctl |= obj->fence_reg;
131 	I915_WRITE(FBC_CONTROL, fbc_ctl);
132 
133 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
134 		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
135 }
136 
137 static bool i8xx_fbc_enabled(struct drm_device *dev)
138 {
139 	struct drm_i915_private *dev_priv = dev->dev_private;
140 
141 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
142 }
143 
144 static void g4x_enable_fbc(struct drm_crtc *crtc)
145 {
146 	struct drm_device *dev = crtc->dev;
147 	struct drm_i915_private *dev_priv = dev->dev_private;
148 	struct drm_framebuffer *fb = crtc->primary->fb;
149 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
150 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
151 	u32 dpfc_ctl;
152 
153 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
154 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
155 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
156 	else
157 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
158 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
159 
160 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
161 
162 	/* enable it... */
163 	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
164 
165 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
166 }
167 
168 static void g4x_disable_fbc(struct drm_device *dev)
169 {
170 	struct drm_i915_private *dev_priv = dev->dev_private;
171 	u32 dpfc_ctl;
172 
173 	/* Disable compression */
174 	dpfc_ctl = I915_READ(DPFC_CONTROL);
175 	if (dpfc_ctl & DPFC_CTL_EN) {
176 		dpfc_ctl &= ~DPFC_CTL_EN;
177 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
178 
179 		DRM_DEBUG_KMS("disabled FBC\n");
180 	}
181 }
182 
183 static bool g4x_fbc_enabled(struct drm_device *dev)
184 {
185 	struct drm_i915_private *dev_priv = dev->dev_private;
186 
187 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
188 }
189 
190 static void sandybridge_blit_fbc_update(struct drm_device *dev)
191 {
192 	struct drm_i915_private *dev_priv = dev->dev_private;
193 	u32 blt_ecoskpd;
194 
195 	/* Make sure blitter notifies FBC of writes */
196 
197 	/* Blitter is part of Media powerwell on VLV. No impact of
198 	 * his param in other platforms for now */
199 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
200 
201 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
202 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
203 		GEN6_BLITTER_LOCK_SHIFT;
204 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
205 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
206 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
207 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
208 			 GEN6_BLITTER_LOCK_SHIFT);
209 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
211 
212 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
213 }
214 
215 static void ironlake_enable_fbc(struct drm_crtc *crtc)
216 {
217 	struct drm_device *dev = crtc->dev;
218 	struct drm_i915_private *dev_priv = dev->dev_private;
219 	struct drm_framebuffer *fb = crtc->primary->fb;
220 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
221 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
222 	u32 dpfc_ctl;
223 
224 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
225 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
226 		dev_priv->fbc.threshold++;
227 
228 	switch (dev_priv->fbc.threshold) {
229 	case 4:
230 	case 3:
231 		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
232 		break;
233 	case 2:
234 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
235 		break;
236 	case 1:
237 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
238 		break;
239 	}
240 	dpfc_ctl |= DPFC_CTL_FENCE_EN;
241 	if (IS_GEN5(dev))
242 		dpfc_ctl |= obj->fence_reg;
243 
244 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
245 	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
246 	/* enable it... */
247 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
248 
249 	if (IS_GEN6(dev)) {
250 		I915_WRITE(SNB_DPFC_CTL_SA,
251 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
252 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
253 		sandybridge_blit_fbc_update(dev);
254 	}
255 
256 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
257 }
258 
259 static void ironlake_disable_fbc(struct drm_device *dev)
260 {
261 	struct drm_i915_private *dev_priv = dev->dev_private;
262 	u32 dpfc_ctl;
263 
264 	/* Disable compression */
265 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
266 	if (dpfc_ctl & DPFC_CTL_EN) {
267 		dpfc_ctl &= ~DPFC_CTL_EN;
268 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
269 
270 		DRM_DEBUG_KMS("disabled FBC\n");
271 	}
272 }
273 
274 static bool ironlake_fbc_enabled(struct drm_device *dev)
275 {
276 	struct drm_i915_private *dev_priv = dev->dev_private;
277 
278 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
279 }
280 
281 static void gen7_enable_fbc(struct drm_crtc *crtc)
282 {
283 	struct drm_device *dev = crtc->dev;
284 	struct drm_i915_private *dev_priv = dev->dev_private;
285 	struct drm_framebuffer *fb = crtc->primary->fb;
286 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
287 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
288 	u32 dpfc_ctl;
289 
290 	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
291 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
292 		dev_priv->fbc.threshold++;
293 
294 	switch (dev_priv->fbc.threshold) {
295 	case 4:
296 	case 3:
297 		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
298 		break;
299 	case 2:
300 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
301 		break;
302 	case 1:
303 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
304 		break;
305 	}
306 
307 	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
308 
309 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
310 
311 	if (IS_IVYBRIDGE(dev)) {
312 		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
313 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
314 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
315 			   ILK_FBCQ_DIS);
316 	} else {
317 		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
318 		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
319 			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
320 			   HSW_FBCQ_DIS);
321 	}
322 
323 	I915_WRITE(SNB_DPFC_CTL_SA,
324 		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
325 	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
326 
327 	sandybridge_blit_fbc_update(dev);
328 
329 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
330 }
331 
332 bool intel_fbc_enabled(struct drm_device *dev)
333 {
334 	struct drm_i915_private *dev_priv = dev->dev_private;
335 
336 	if (!dev_priv->display.fbc_enabled)
337 		return false;
338 
339 	return dev_priv->display.fbc_enabled(dev);
340 }
341 
342 static void intel_fbc_work_fn(struct work_struct *__work)
343 {
344 	struct intel_fbc_work *work =
345 		container_of(to_delayed_work(__work),
346 			     struct intel_fbc_work, work);
347 	struct drm_device *dev = work->crtc->dev;
348 	struct drm_i915_private *dev_priv = dev->dev_private;
349 
350 	mutex_lock(&dev->struct_mutex);
351 	if (work == dev_priv->fbc.fbc_work) {
352 		/* Double check that we haven't switched fb without cancelling
353 		 * the prior work.
354 		 */
355 		if (work->crtc->primary->fb == work->fb) {
356 			dev_priv->display.enable_fbc(work->crtc);
357 
358 			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
359 			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
360 			dev_priv->fbc.y = work->crtc->y;
361 		}
362 
363 		dev_priv->fbc.fbc_work = NULL;
364 	}
365 	mutex_unlock(&dev->struct_mutex);
366 
367 	kfree(work);
368 }
369 
370 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
371 {
372 	if (dev_priv->fbc.fbc_work == NULL)
373 		return;
374 
375 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
376 
377 	/* Synchronisation is provided by struct_mutex and checking of
378 	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
379 	 * entirely asynchronously.
380 	 */
381 	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
382 		/* tasklet was killed before being run, clean up */
383 		kfree(dev_priv->fbc.fbc_work);
384 
385 	/* Mark the work as no longer wanted so that if it does
386 	 * wake-up (because the work was already running and waiting
387 	 * for our mutex), it will discover that is no longer
388 	 * necessary to run.
389 	 */
390 	dev_priv->fbc.fbc_work = NULL;
391 }
392 
393 static void intel_enable_fbc(struct drm_crtc *crtc)
394 {
395 	struct intel_fbc_work *work;
396 	struct drm_device *dev = crtc->dev;
397 	struct drm_i915_private *dev_priv = dev->dev_private;
398 
399 	if (!dev_priv->display.enable_fbc)
400 		return;
401 
402 	intel_cancel_fbc_work(dev_priv);
403 
404 	work = kzalloc(sizeof(*work), GFP_KERNEL);
405 	if (work == NULL) {
406 		DRM_ERROR("Failed to allocate FBC work structure\n");
407 		dev_priv->display.enable_fbc(crtc);
408 		return;
409 	}
410 
411 	work->crtc = crtc;
412 	work->fb = crtc->primary->fb;
413 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
414 
415 	dev_priv->fbc.fbc_work = work;
416 
417 	/* Delay the actual enabling to let pageflipping cease and the
418 	 * display to settle before starting the compression. Note that
419 	 * this delay also serves a second purpose: it allows for a
420 	 * vblank to pass after disabling the FBC before we attempt
421 	 * to modify the control registers.
422 	 *
423 	 * A more complicated solution would involve tracking vblanks
424 	 * following the termination of the page-flipping sequence
425 	 * and indeed performing the enable as a co-routine and not
426 	 * waiting synchronously upon the vblank.
427 	 *
428 	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
429 	 */
430 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
431 }
432 
433 void intel_disable_fbc(struct drm_device *dev)
434 {
435 	struct drm_i915_private *dev_priv = dev->dev_private;
436 
437 	intel_cancel_fbc_work(dev_priv);
438 
439 	if (!dev_priv->display.disable_fbc)
440 		return;
441 
442 	dev_priv->display.disable_fbc(dev);
443 	dev_priv->fbc.plane = -1;
444 }
445 
446 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
447 			      enum no_fbc_reason reason)
448 {
449 	if (dev_priv->fbc.no_fbc_reason == reason)
450 		return false;
451 
452 	dev_priv->fbc.no_fbc_reason = reason;
453 	return true;
454 }
455 
456 /**
457  * intel_update_fbc - enable/disable FBC as needed
458  * @dev: the drm_device
459  *
460  * Set up the framebuffer compression hardware at mode set time.  We
461  * enable it if possible:
462  *   - plane A only (on pre-965)
463  *   - no pixel mulitply/line duplication
464  *   - no alpha buffer discard
465  *   - no dual wide
466  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
467  *
468  * We can't assume that any compression will take place (worst case),
469  * so the compressed buffer has to be the same size as the uncompressed
470  * one.  It also must reside (along with the line length buffer) in
471  * stolen memory.
472  *
473  * We need to enable/disable FBC on a global basis.
474  */
475 void intel_update_fbc(struct drm_device *dev)
476 {
477 	struct drm_i915_private *dev_priv = dev->dev_private;
478 	struct drm_crtc *crtc = NULL, *tmp_crtc;
479 	struct intel_crtc *intel_crtc;
480 	struct drm_framebuffer *fb;
481 	struct drm_i915_gem_object *obj;
482 	const struct drm_display_mode *adjusted_mode;
483 	unsigned int max_width, max_height;
484 
485 	if (!HAS_FBC(dev)) {
486 		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
487 		return;
488 	}
489 
490 	if (!i915.powersave) {
491 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
492 			DRM_DEBUG_KMS("fbc disabled per module param\n");
493 		return;
494 	}
495 
496 	/*
497 	 * If FBC is already on, we just have to verify that we can
498 	 * keep it that way...
499 	 * Need to disable if:
500 	 *   - more than one pipe is active
501 	 *   - changing FBC params (stride, fence, mode)
502 	 *   - new fb is too large to fit in compressed buffer
503 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
504 	 */
505 	for_each_crtc(dev, tmp_crtc) {
506 		if (intel_crtc_active(tmp_crtc) &&
507 		    to_intel_crtc(tmp_crtc)->primary_enabled) {
508 			if (crtc) {
509 				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
510 					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
511 				goto out_disable;
512 			}
513 			crtc = tmp_crtc;
514 		}
515 	}
516 
517 	if (!crtc || crtc->primary->fb == NULL) {
518 		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
519 			DRM_DEBUG_KMS("no output, disabling\n");
520 		goto out_disable;
521 	}
522 
523 	intel_crtc = to_intel_crtc(crtc);
524 	fb = crtc->primary->fb;
525 	obj = intel_fb_obj(fb);
526 	adjusted_mode = &intel_crtc->config.adjusted_mode;
527 
528 	if (i915.enable_fbc < 0) {
529 		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
530 			DRM_DEBUG_KMS("disabled per chip default\n");
531 		goto out_disable;
532 	}
533 	if (!i915.enable_fbc) {
534 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
535 			DRM_DEBUG_KMS("fbc disabled per module param\n");
536 		goto out_disable;
537 	}
538 	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
539 	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
540 		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
541 			DRM_DEBUG_KMS("mode incompatible with compression, "
542 				      "disabling\n");
543 		goto out_disable;
544 	}
545 
546 	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
547 		max_width = 4096;
548 		max_height = 4096;
549 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
550 		max_width = 4096;
551 		max_height = 2048;
552 	} else {
553 		max_width = 2048;
554 		max_height = 1536;
555 	}
556 	if (intel_crtc->config.pipe_src_w > max_width ||
557 	    intel_crtc->config.pipe_src_h > max_height) {
558 		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
559 			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
560 		goto out_disable;
561 	}
562 	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
563 	    intel_crtc->plane != PLANE_A) {
564 		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
565 			DRM_DEBUG_KMS("plane not A, disabling compression\n");
566 		goto out_disable;
567 	}
568 
569 	/* The use of a CPU fence is mandatory in order to detect writes
570 	 * by the CPU to the scanout and trigger updates to the FBC.
571 	 */
572 	if (obj->tiling_mode != I915_TILING_X ||
573 	    obj->fence_reg == I915_FENCE_REG_NONE) {
574 		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
575 			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
576 		goto out_disable;
577 	}
578 
579 	/* If the kernel debugger is active, always disable compression */
580 #ifdef DDB
581 	if (in_dbg_master())
582 		goto out_disable;
583 #endif
584 
585 	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
586 					      drm_format_plane_cpp(fb->pixel_format, 0))) {
587 		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
588 			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
589 		goto out_disable;
590 	}
591 
592 	/* If the scanout has not changed, don't modify the FBC settings.
593 	 * Note that we make the fundamental assumption that the fb->obj
594 	 * cannot be unpinned (and have its GTT offset and fence revoked)
595 	 * without first being decoupled from the scanout and FBC disabled.
596 	 */
597 	if (dev_priv->fbc.plane == intel_crtc->plane &&
598 	    dev_priv->fbc.fb_id == fb->base.id &&
599 	    dev_priv->fbc.y == crtc->y)
600 		return;
601 
602 	if (intel_fbc_enabled(dev)) {
603 		/* We update FBC along two paths, after changing fb/crtc
604 		 * configuration (modeswitching) and after page-flipping
605 		 * finishes. For the latter, we know that not only did
606 		 * we disable the FBC at the start of the page-flip
607 		 * sequence, but also more than one vblank has passed.
608 		 *
609 		 * For the former case of modeswitching, it is possible
610 		 * to switch between two FBC valid configurations
611 		 * instantaneously so we do need to disable the FBC
612 		 * before we can modify its control registers. We also
613 		 * have to wait for the next vblank for that to take
614 		 * effect. However, since we delay enabling FBC we can
615 		 * assume that a vblank has passed since disabling and
616 		 * that we can safely alter the registers in the deferred
617 		 * callback.
618 		 *
619 		 * In the scenario that we go from a valid to invalid
620 		 * and then back to valid FBC configuration we have
621 		 * no strict enforcement that a vblank occurred since
622 		 * disabling the FBC. However, along all current pipe
623 		 * disabling paths we do need to wait for a vblank at
624 		 * some point. And we wait before enabling FBC anyway.
625 		 */
626 		DRM_DEBUG_KMS("disabling active FBC for update\n");
627 		intel_disable_fbc(dev);
628 	}
629 
630 	intel_enable_fbc(crtc);
631 	dev_priv->fbc.no_fbc_reason = FBC_OK;
632 	return;
633 
634 out_disable:
635 	/* Multiple disables should be harmless */
636 	if (intel_fbc_enabled(dev)) {
637 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
638 		intel_disable_fbc(dev);
639 	}
640 	i915_gem_stolen_cleanup_compression(dev);
641 }
642 
643 static void i915_pineview_get_mem_freq(struct drm_device *dev)
644 {
645 	struct drm_i915_private *dev_priv = dev->dev_private;
646 	u32 tmp;
647 
648 	tmp = I915_READ(CLKCFG);
649 
650 	switch (tmp & CLKCFG_FSB_MASK) {
651 	case CLKCFG_FSB_533:
652 		dev_priv->fsb_freq = 533; /* 133*4 */
653 		break;
654 	case CLKCFG_FSB_800:
655 		dev_priv->fsb_freq = 800; /* 200*4 */
656 		break;
657 	case CLKCFG_FSB_667:
658 		dev_priv->fsb_freq =  667; /* 167*4 */
659 		break;
660 	case CLKCFG_FSB_400:
661 		dev_priv->fsb_freq = 400; /* 100*4 */
662 		break;
663 	}
664 
665 	switch (tmp & CLKCFG_MEM_MASK) {
666 	case CLKCFG_MEM_533:
667 		dev_priv->mem_freq = 533;
668 		break;
669 	case CLKCFG_MEM_667:
670 		dev_priv->mem_freq = 667;
671 		break;
672 	case CLKCFG_MEM_800:
673 		dev_priv->mem_freq = 800;
674 		break;
675 	}
676 
677 	/* detect pineview DDR3 setting */
678 	tmp = I915_READ(CSHRDDR3CTL);
679 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
680 }
681 
682 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
683 {
684 	struct drm_i915_private *dev_priv = dev->dev_private;
685 	u16 ddrpll, csipll;
686 
687 	ddrpll = I915_READ16(DDRMPLL1);
688 	csipll = I915_READ16(CSIPLL0);
689 
690 	switch (ddrpll & 0xff) {
691 	case 0xc:
692 		dev_priv->mem_freq = 800;
693 		break;
694 	case 0x10:
695 		dev_priv->mem_freq = 1066;
696 		break;
697 	case 0x14:
698 		dev_priv->mem_freq = 1333;
699 		break;
700 	case 0x18:
701 		dev_priv->mem_freq = 1600;
702 		break;
703 	default:
704 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
705 				 ddrpll & 0xff);
706 		dev_priv->mem_freq = 0;
707 		break;
708 	}
709 
710 	dev_priv->ips.r_t = dev_priv->mem_freq;
711 
712 	switch (csipll & 0x3ff) {
713 	case 0x00c:
714 		dev_priv->fsb_freq = 3200;
715 		break;
716 	case 0x00e:
717 		dev_priv->fsb_freq = 3733;
718 		break;
719 	case 0x010:
720 		dev_priv->fsb_freq = 4266;
721 		break;
722 	case 0x012:
723 		dev_priv->fsb_freq = 4800;
724 		break;
725 	case 0x014:
726 		dev_priv->fsb_freq = 5333;
727 		break;
728 	case 0x016:
729 		dev_priv->fsb_freq = 5866;
730 		break;
731 	case 0x018:
732 		dev_priv->fsb_freq = 6400;
733 		break;
734 	default:
735 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
736 				 csipll & 0x3ff);
737 		dev_priv->fsb_freq = 0;
738 		break;
739 	}
740 
741 	if (dev_priv->fsb_freq == 3200) {
742 		dev_priv->ips.c_m = 0;
743 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
744 		dev_priv->ips.c_m = 1;
745 	} else {
746 		dev_priv->ips.c_m = 2;
747 	}
748 }
749 
750 static const struct cxsr_latency cxsr_latency_table[] = {
751 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
752 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
753 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
754 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
755 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
756 
757 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
758 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
759 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
760 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
761 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
762 
763 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
764 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
765 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
766 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
767 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
768 
769 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
770 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
771 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
772 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
773 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
774 
775 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
776 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
777 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
778 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
779 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
780 
781 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
782 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
783 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
784 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
785 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
786 };
787 
788 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
789 							 int is_ddr3,
790 							 int fsb,
791 							 int mem)
792 {
793 	const struct cxsr_latency *latency;
794 	int i;
795 
796 	if (fsb == 0 || mem == 0)
797 		return NULL;
798 
799 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
800 		latency = &cxsr_latency_table[i];
801 		if (is_desktop == latency->is_desktop &&
802 		    is_ddr3 == latency->is_ddr3 &&
803 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
804 			return latency;
805 	}
806 
807 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
808 
809 	return NULL;
810 }
811 
812 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
813 {
814 	struct drm_device *dev = dev_priv->dev;
815 	u32 val;
816 
817 	if (IS_VALLEYVIEW(dev)) {
818 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
819 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
820 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
821 	} else if (IS_PINEVIEW(dev)) {
822 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
823 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
824 		I915_WRITE(DSPFW3, val);
825 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
826 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
827 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
828 		I915_WRITE(FW_BLC_SELF, val);
829 	} else if (IS_I915GM(dev)) {
830 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
831 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
832 		I915_WRITE(INSTPM, val);
833 	} else {
834 		return;
835 	}
836 
837 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
838 		      enable ? "enabled" : "disabled");
839 }
840 
841 /*
842  * Latency for FIFO fetches is dependent on several factors:
843  *   - memory configuration (speed, channels)
844  *   - chipset
845  *   - current MCH state
846  * It can be fairly high in some situations, so here we assume a fairly
847  * pessimal value.  It's a tradeoff between extra memory fetches (if we
848  * set this value too high, the FIFO will fetch frequently to stay full)
849  * and power consumption (set it too low to save power and we might see
850  * FIFO underruns and display "flicker").
851  *
852  * A value of 5us seems to be a good balance; safe for very low end
853  * platforms but not overly aggressive on lower latency configs.
854  */
855 static const int latency_ns = 5000;
856 
857 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
858 {
859 	struct drm_i915_private *dev_priv = dev->dev_private;
860 	uint32_t dsparb = I915_READ(DSPARB);
861 	int size;
862 
863 	size = dsparb & 0x7f;
864 	if (plane)
865 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
866 
867 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868 		      plane ? "B" : "A", size);
869 
870 	return size;
871 }
872 
873 static int i830_get_fifo_size(struct drm_device *dev, int plane)
874 {
875 	struct drm_i915_private *dev_priv = dev->dev_private;
876 	uint32_t dsparb = I915_READ(DSPARB);
877 	int size;
878 
879 	size = dsparb & 0x1ff;
880 	if (plane)
881 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
882 	size >>= 1; /* Convert to cachelines */
883 
884 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
885 		      plane ? "B" : "A", size);
886 
887 	return size;
888 }
889 
890 static int i845_get_fifo_size(struct drm_device *dev, int plane)
891 {
892 	struct drm_i915_private *dev_priv = dev->dev_private;
893 	uint32_t dsparb = I915_READ(DSPARB);
894 	int size;
895 
896 	size = dsparb & 0x7f;
897 	size >>= 2; /* Convert to cachelines */
898 
899 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
900 		      plane ? "B" : "A",
901 		      size);
902 
903 	return size;
904 }
905 
906 /* Pineview has different values for various configs */
907 static const struct intel_watermark_params pineview_display_wm = {
908 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
909 	.max_wm = PINEVIEW_MAX_WM,
910 	.default_wm = PINEVIEW_DFT_WM,
911 	.guard_size = PINEVIEW_GUARD_WM,
912 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
913 };
914 static const struct intel_watermark_params pineview_display_hplloff_wm = {
915 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
916 	.max_wm = PINEVIEW_MAX_WM,
917 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
918 	.guard_size = PINEVIEW_GUARD_WM,
919 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
920 };
921 static const struct intel_watermark_params pineview_cursor_wm = {
922 	.fifo_size = PINEVIEW_CURSOR_FIFO,
923 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
924 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
925 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
926 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
927 };
928 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
929 	.fifo_size = PINEVIEW_CURSOR_FIFO,
930 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
931 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
932 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
933 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
934 };
935 static const struct intel_watermark_params g4x_wm_info = {
936 	.fifo_size = G4X_FIFO_SIZE,
937 	.max_wm = G4X_MAX_WM,
938 	.default_wm = G4X_MAX_WM,
939 	.guard_size = 2,
940 	.cacheline_size = G4X_FIFO_LINE_SIZE,
941 };
942 static const struct intel_watermark_params g4x_cursor_wm_info = {
943 	.fifo_size = I965_CURSOR_FIFO,
944 	.max_wm = I965_CURSOR_MAX_WM,
945 	.default_wm = I965_CURSOR_DFT_WM,
946 	.guard_size = 2,
947 	.cacheline_size = G4X_FIFO_LINE_SIZE,
948 };
949 static const struct intel_watermark_params valleyview_wm_info = {
950 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
951 	.max_wm = VALLEYVIEW_MAX_WM,
952 	.default_wm = VALLEYVIEW_MAX_WM,
953 	.guard_size = 2,
954 	.cacheline_size = G4X_FIFO_LINE_SIZE,
955 };
956 static const struct intel_watermark_params valleyview_cursor_wm_info = {
957 	.fifo_size = I965_CURSOR_FIFO,
958 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
959 	.default_wm = I965_CURSOR_DFT_WM,
960 	.guard_size = 2,
961 	.cacheline_size = G4X_FIFO_LINE_SIZE,
962 };
963 static const struct intel_watermark_params i965_cursor_wm_info = {
964 	.fifo_size = I965_CURSOR_FIFO,
965 	.max_wm = I965_CURSOR_MAX_WM,
966 	.default_wm = I965_CURSOR_DFT_WM,
967 	.guard_size = 2,
968 	.cacheline_size = I915_FIFO_LINE_SIZE,
969 };
970 static const struct intel_watermark_params i945_wm_info = {
971 	.fifo_size = I945_FIFO_SIZE,
972 	.max_wm = I915_MAX_WM,
973 	.default_wm = 1,
974 	.guard_size = 2,
975 	.cacheline_size = I915_FIFO_LINE_SIZE,
976 };
977 static const struct intel_watermark_params i915_wm_info = {
978 	.fifo_size = I915_FIFO_SIZE,
979 	.max_wm = I915_MAX_WM,
980 	.default_wm = 1,
981 	.guard_size = 2,
982 	.cacheline_size = I915_FIFO_LINE_SIZE,
983 };
984 static const struct intel_watermark_params i830_wm_info = {
985 	.fifo_size = I855GM_FIFO_SIZE,
986 	.max_wm = I915_MAX_WM,
987 	.default_wm = 1,
988 	.guard_size = 2,
989 	.cacheline_size = I830_FIFO_LINE_SIZE,
990 };
991 static const struct intel_watermark_params i845_wm_info = {
992 	.fifo_size = I830_FIFO_SIZE,
993 	.max_wm = I915_MAX_WM,
994 	.default_wm = 1,
995 	.guard_size = 2,
996 	.cacheline_size = I830_FIFO_LINE_SIZE,
997 };
998 
999 /**
1000  * intel_calculate_wm - calculate watermark level
1001  * @clock_in_khz: pixel clock
1002  * @wm: chip FIFO params
1003  * @pixel_size: display pixel size
1004  * @latency_ns: memory latency for the platform
1005  *
1006  * Calculate the watermark level (the level at which the display plane will
1007  * start fetching from memory again).  Each chip has a different display
1008  * FIFO size and allocation, so the caller needs to figure that out and pass
1009  * in the correct intel_watermark_params structure.
1010  *
1011  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1012  * on the pixel size.  When it reaches the watermark level, it'll start
1013  * fetching FIFO line sized based chunks from memory until the FIFO fills
1014  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1015  * will occur, and a display engine hang could result.
1016  */
1017 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1018 					const struct intel_watermark_params *wm,
1019 					int fifo_size,
1020 					int pixel_size,
1021 					unsigned long latency_ns)
1022 {
1023 	long entries_required, wm_size;
1024 
1025 	/*
1026 	 * Note: we need to make sure we don't overflow for various clock &
1027 	 * latency values.
1028 	 * clocks go from a few thousand to several hundred thousand.
1029 	 * latency is usually a few thousand
1030 	 */
1031 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1032 		1000;
1033 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1034 
1035 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1036 
1037 	wm_size = fifo_size - (entries_required + wm->guard_size);
1038 
1039 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1040 
1041 	/* Don't promote wm_size to unsigned... */
1042 	if (wm_size > (long)wm->max_wm)
1043 		wm_size = wm->max_wm;
1044 	if (wm_size <= 0)
1045 		wm_size = wm->default_wm;
1046 	return wm_size;
1047 }
1048 
1049 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1050 {
1051 	struct drm_crtc *crtc, *enabled = NULL;
1052 
1053 	for_each_crtc(dev, crtc) {
1054 		if (intel_crtc_active(crtc)) {
1055 			if (enabled)
1056 				return NULL;
1057 			enabled = crtc;
1058 		}
1059 	}
1060 
1061 	return enabled;
1062 }
1063 
1064 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1065 {
1066 	struct drm_device *dev = unused_crtc->dev;
1067 	struct drm_i915_private *dev_priv = dev->dev_private;
1068 	struct drm_crtc *crtc;
1069 	const struct cxsr_latency *latency;
1070 	u32 reg;
1071 	unsigned long wm;
1072 
1073 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1074 					 dev_priv->fsb_freq, dev_priv->mem_freq);
1075 	if (!latency) {
1076 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1077 		intel_set_memory_cxsr(dev_priv, false);
1078 		return;
1079 	}
1080 
1081 	crtc = single_enabled_crtc(dev);
1082 	if (crtc) {
1083 		const struct drm_display_mode *adjusted_mode;
1084 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1085 		int clock;
1086 
1087 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1088 		clock = adjusted_mode->crtc_clock;
1089 
1090 		/* Display SR */
1091 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1092 					pineview_display_wm.fifo_size,
1093 					pixel_size, latency->display_sr);
1094 		reg = I915_READ(DSPFW1);
1095 		reg &= ~DSPFW_SR_MASK;
1096 		reg |= wm << DSPFW_SR_SHIFT;
1097 		I915_WRITE(DSPFW1, reg);
1098 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1099 
1100 		/* cursor SR */
1101 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1102 					pineview_display_wm.fifo_size,
1103 					pixel_size, latency->cursor_sr);
1104 		reg = I915_READ(DSPFW3);
1105 		reg &= ~DSPFW_CURSOR_SR_MASK;
1106 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1107 		I915_WRITE(DSPFW3, reg);
1108 
1109 		/* Display HPLL off SR */
1110 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1111 					pineview_display_hplloff_wm.fifo_size,
1112 					pixel_size, latency->display_hpll_disable);
1113 		reg = I915_READ(DSPFW3);
1114 		reg &= ~DSPFW_HPLL_SR_MASK;
1115 		reg |= wm & DSPFW_HPLL_SR_MASK;
1116 		I915_WRITE(DSPFW3, reg);
1117 
1118 		/* cursor HPLL off SR */
1119 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1120 					pineview_display_hplloff_wm.fifo_size,
1121 					pixel_size, latency->cursor_hpll_disable);
1122 		reg = I915_READ(DSPFW3);
1123 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1124 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1125 		I915_WRITE(DSPFW3, reg);
1126 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1127 
1128 		intel_set_memory_cxsr(dev_priv, true);
1129 	} else {
1130 		intel_set_memory_cxsr(dev_priv, false);
1131 	}
1132 }
1133 
1134 static bool g4x_compute_wm0(struct drm_device *dev,
1135 			    int plane,
1136 			    const struct intel_watermark_params *display,
1137 			    int display_latency_ns,
1138 			    const struct intel_watermark_params *cursor,
1139 			    int cursor_latency_ns,
1140 			    int *plane_wm,
1141 			    int *cursor_wm)
1142 {
1143 	struct drm_crtc *crtc;
1144 	const struct drm_display_mode *adjusted_mode;
1145 	int htotal, hdisplay, clock, pixel_size;
1146 	int line_time_us, line_count;
1147 	int entries, tlb_miss;
1148 
1149 	crtc = intel_get_crtc_for_plane(dev, plane);
1150 	if (!intel_crtc_active(crtc)) {
1151 		*cursor_wm = cursor->guard_size;
1152 		*plane_wm = display->guard_size;
1153 		return false;
1154 	}
1155 
1156 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1157 	clock = adjusted_mode->crtc_clock;
1158 	htotal = adjusted_mode->crtc_htotal;
1159 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1160 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1161 
1162 	/* Use the small buffer method to calculate plane watermark */
1163 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1164 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1165 	if (tlb_miss > 0)
1166 		entries += tlb_miss;
1167 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1168 	*plane_wm = entries + display->guard_size;
1169 	if (*plane_wm > (int)display->max_wm)
1170 		*plane_wm = display->max_wm;
1171 
1172 	/* Use the large buffer method to calculate cursor watermark */
1173 	line_time_us = max(htotal * 1000 / clock, 1);
1174 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1175 	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1176 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1177 	if (tlb_miss > 0)
1178 		entries += tlb_miss;
1179 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1180 	*cursor_wm = entries + cursor->guard_size;
1181 	if (*cursor_wm > (int)cursor->max_wm)
1182 		*cursor_wm = (int)cursor->max_wm;
1183 
1184 	return true;
1185 }
1186 
1187 /*
1188  * Check the wm result.
1189  *
1190  * If any calculated watermark values is larger than the maximum value that
1191  * can be programmed into the associated watermark register, that watermark
1192  * must be disabled.
1193  */
1194 static bool g4x_check_srwm(struct drm_device *dev,
1195 			   int display_wm, int cursor_wm,
1196 			   const struct intel_watermark_params *display,
1197 			   const struct intel_watermark_params *cursor)
1198 {
1199 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1200 		      display_wm, cursor_wm);
1201 
1202 	if (display_wm > display->max_wm) {
1203 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1204 			      display_wm, display->max_wm);
1205 		return false;
1206 	}
1207 
1208 	if (cursor_wm > cursor->max_wm) {
1209 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1210 			      cursor_wm, cursor->max_wm);
1211 		return false;
1212 	}
1213 
1214 	if (!(display_wm || cursor_wm)) {
1215 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1216 		return false;
1217 	}
1218 
1219 	return true;
1220 }
1221 
1222 static bool g4x_compute_srwm(struct drm_device *dev,
1223 			     int plane,
1224 			     int latency_ns,
1225 			     const struct intel_watermark_params *display,
1226 			     const struct intel_watermark_params *cursor,
1227 			     int *display_wm, int *cursor_wm)
1228 {
1229 	struct drm_crtc *crtc;
1230 	const struct drm_display_mode *adjusted_mode;
1231 	int hdisplay, htotal, pixel_size, clock;
1232 	unsigned long line_time_us;
1233 	int line_count, line_size;
1234 	int small, large;
1235 	int entries;
1236 
1237 	if (!latency_ns) {
1238 		*display_wm = *cursor_wm = 0;
1239 		return false;
1240 	}
1241 
1242 	crtc = intel_get_crtc_for_plane(dev, plane);
1243 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1244 	clock = adjusted_mode->crtc_clock;
1245 	htotal = adjusted_mode->crtc_htotal;
1246 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1247 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1248 
1249 	line_time_us = max(htotal * 1000 / clock, 1);
1250 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1251 	line_size = hdisplay * pixel_size;
1252 
1253 	/* Use the minimum of the small and large buffer method for primary */
1254 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1255 	large = line_count * line_size;
1256 
1257 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1258 	*display_wm = entries + display->guard_size;
1259 
1260 	/* calculate the self-refresh watermark for display cursor */
1261 	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1262 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1263 	*cursor_wm = entries + cursor->guard_size;
1264 
1265 	return g4x_check_srwm(dev,
1266 			      *display_wm, *cursor_wm,
1267 			      display, cursor);
1268 }
1269 
1270 static bool vlv_compute_drain_latency(struct drm_device *dev,
1271 				     int plane,
1272 				     int *plane_prec_mult,
1273 				     int *plane_dl,
1274 				     int *cursor_prec_mult,
1275 				     int *cursor_dl)
1276 {
1277 	struct drm_crtc *crtc;
1278 	int clock, pixel_size;
1279 	int entries;
1280 
1281 	crtc = intel_get_crtc_for_plane(dev, plane);
1282 	if (!intel_crtc_active(crtc))
1283 		return false;
1284 
1285 	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1286 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
1287 
1288 	entries = (clock / 1000) * pixel_size;
1289 	*plane_prec_mult = (entries > 128) ?
1290 		DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1291 	*plane_dl = (64 * (*plane_prec_mult) * 4) / entries;
1292 
1293 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1294 	*cursor_prec_mult = (entries > 128) ?
1295 		DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1296 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / entries;
1297 
1298 	return true;
1299 }
1300 
1301 /*
1302  * Update drain latency registers of memory arbiter
1303  *
1304  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1305  * to be programmed. Each plane has a drain latency multiplier and a drain
1306  * latency value.
1307  */
1308 
1309 static void vlv_update_drain_latency(struct drm_device *dev)
1310 {
1311 	struct drm_i915_private *dev_priv = dev->dev_private;
1312 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1313 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1314 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1315 							either 16 or 32 */
1316 
1317 	/* For plane A, Cursor A */
1318 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1319 				      &cursor_prec_mult, &cursora_dl)) {
1320 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1321 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_64;
1322 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1323 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_64;
1324 
1325 		I915_WRITE(VLV_DDL1, cursora_prec |
1326 				(cursora_dl << DDL_CURSORA_SHIFT) |
1327 				planea_prec | planea_dl);
1328 	}
1329 
1330 	/* For plane B, Cursor B */
1331 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1332 				      &cursor_prec_mult, &cursorb_dl)) {
1333 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1334 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_64;
1335 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1336 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_64;
1337 
1338 		I915_WRITE(VLV_DDL2, cursorb_prec |
1339 				(cursorb_dl << DDL_CURSORB_SHIFT) |
1340 				planeb_prec | planeb_dl);
1341 	}
1342 }
1343 
1344 #define single_plane_enabled(mask) is_power_of_2(mask)
1345 
1346 static void valleyview_update_wm(struct drm_crtc *crtc)
1347 {
1348 	struct drm_device *dev = crtc->dev;
1349 	static const int sr_latency_ns = 12000;
1350 	struct drm_i915_private *dev_priv = dev->dev_private;
1351 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1352 	int plane_sr, cursor_sr;
1353 	int ignore_plane_sr, ignore_cursor_sr;
1354 	unsigned int enabled = 0;
1355 	bool cxsr_enabled;
1356 
1357 	vlv_update_drain_latency(dev);
1358 
1359 	if (g4x_compute_wm0(dev, PIPE_A,
1360 			    &valleyview_wm_info, latency_ns,
1361 			    &valleyview_cursor_wm_info, latency_ns,
1362 			    &planea_wm, &cursora_wm))
1363 		enabled |= 1 << PIPE_A;
1364 
1365 	if (g4x_compute_wm0(dev, PIPE_B,
1366 			    &valleyview_wm_info, latency_ns,
1367 			    &valleyview_cursor_wm_info, latency_ns,
1368 			    &planeb_wm, &cursorb_wm))
1369 		enabled |= 1 << PIPE_B;
1370 
1371 	if (single_plane_enabled(enabled) &&
1372 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1373 			     sr_latency_ns,
1374 			     &valleyview_wm_info,
1375 			     &valleyview_cursor_wm_info,
1376 			     &plane_sr, &ignore_cursor_sr) &&
1377 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1378 			     2*sr_latency_ns,
1379 			     &valleyview_wm_info,
1380 			     &valleyview_cursor_wm_info,
1381 			     &ignore_plane_sr, &cursor_sr)) {
1382 		cxsr_enabled = true;
1383 	} else {
1384 		cxsr_enabled = false;
1385 		intel_set_memory_cxsr(dev_priv, false);
1386 		plane_sr = cursor_sr = 0;
1387 	}
1388 
1389 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1390 		      planea_wm, cursora_wm,
1391 		      planeb_wm, cursorb_wm,
1392 		      plane_sr, cursor_sr);
1393 
1394 	I915_WRITE(DSPFW1,
1395 		   (plane_sr << DSPFW_SR_SHIFT) |
1396 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1397 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1398 		   planea_wm);
1399 	I915_WRITE(DSPFW2,
1400 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1401 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1402 	I915_WRITE(DSPFW3,
1403 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1404 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1405 
1406 	if (cxsr_enabled)
1407 		intel_set_memory_cxsr(dev_priv, true);
1408 }
1409 
1410 static void g4x_update_wm(struct drm_crtc *crtc)
1411 {
1412 	struct drm_device *dev = crtc->dev;
1413 	static const int sr_latency_ns = 12000;
1414 	struct drm_i915_private *dev_priv = dev->dev_private;
1415 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1416 	int plane_sr, cursor_sr;
1417 	unsigned int enabled = 0;
1418 	bool cxsr_enabled;
1419 
1420 	if (g4x_compute_wm0(dev, PIPE_A,
1421 			    &g4x_wm_info, latency_ns,
1422 			    &g4x_cursor_wm_info, latency_ns,
1423 			    &planea_wm, &cursora_wm))
1424 		enabled |= 1 << PIPE_A;
1425 
1426 	if (g4x_compute_wm0(dev, PIPE_B,
1427 			    &g4x_wm_info, latency_ns,
1428 			    &g4x_cursor_wm_info, latency_ns,
1429 			    &planeb_wm, &cursorb_wm))
1430 		enabled |= 1 << PIPE_B;
1431 
1432 	if (single_plane_enabled(enabled) &&
1433 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1434 			     sr_latency_ns,
1435 			     &g4x_wm_info,
1436 			     &g4x_cursor_wm_info,
1437 			     &plane_sr, &cursor_sr)) {
1438 		cxsr_enabled = true;
1439 	} else {
1440 		cxsr_enabled = false;
1441 		intel_set_memory_cxsr(dev_priv, false);
1442 		plane_sr = cursor_sr = 0;
1443 	}
1444 
1445 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1446 		      planea_wm, cursora_wm,
1447 		      planeb_wm, cursorb_wm,
1448 		      plane_sr, cursor_sr);
1449 
1450 	I915_WRITE(DSPFW1,
1451 		   (plane_sr << DSPFW_SR_SHIFT) |
1452 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1453 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1454 		   planea_wm);
1455 	I915_WRITE(DSPFW2,
1456 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1457 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1458 	/* HPLL off in SR has some issues on G4x... disable it */
1459 	I915_WRITE(DSPFW3,
1460 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1461 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1462 
1463 	if (cxsr_enabled)
1464 		intel_set_memory_cxsr(dev_priv, true);
1465 }
1466 
1467 static void i965_update_wm(struct drm_crtc *unused_crtc)
1468 {
1469 	struct drm_device *dev = unused_crtc->dev;
1470 	struct drm_i915_private *dev_priv = dev->dev_private;
1471 	struct drm_crtc *crtc;
1472 	int srwm = 1;
1473 	int cursor_sr = 16;
1474 	bool cxsr_enabled;
1475 
1476 	/* Calc sr entries for one plane configs */
1477 	crtc = single_enabled_crtc(dev);
1478 	if (crtc) {
1479 		/* self-refresh has much higher latency */
1480 		static const int sr_latency_ns = 12000;
1481 		const struct drm_display_mode *adjusted_mode =
1482 			&to_intel_crtc(crtc)->config.adjusted_mode;
1483 		int clock = adjusted_mode->crtc_clock;
1484 		int htotal = adjusted_mode->crtc_htotal;
1485 		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1486 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1487 		unsigned long line_time_us;
1488 		int entries;
1489 
1490 		line_time_us = max(htotal * 1000 / clock, 1);
1491 
1492 		/* Use ns/us then divide to preserve precision */
1493 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1494 			pixel_size * hdisplay;
1495 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1496 		srwm = I965_FIFO_SIZE - entries;
1497 		if (srwm < 0)
1498 			srwm = 1;
1499 		srwm &= 0x1ff;
1500 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1501 			      entries, srwm);
1502 
1503 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1504 			pixel_size * to_intel_crtc(crtc)->cursor_width;
1505 		entries = DIV_ROUND_UP(entries,
1506 					  i965_cursor_wm_info.cacheline_size);
1507 		cursor_sr = i965_cursor_wm_info.fifo_size -
1508 			(entries + i965_cursor_wm_info.guard_size);
1509 
1510 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1511 			cursor_sr = i965_cursor_wm_info.max_wm;
1512 
1513 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1514 			      "cursor %d\n", srwm, cursor_sr);
1515 
1516 		cxsr_enabled = true;
1517 	} else {
1518 		cxsr_enabled = false;
1519 		/* Turn off self refresh if both pipes are enabled */
1520 		intel_set_memory_cxsr(dev_priv, false);
1521 	}
1522 
1523 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1524 		      srwm);
1525 
1526 	/* 965 has limitations... */
1527 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1528 		   (8 << 16) | (8 << 8) | (8 << 0));
1529 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1530 	/* update cursor SR watermark */
1531 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1532 
1533 	if (cxsr_enabled)
1534 		intel_set_memory_cxsr(dev_priv, true);
1535 }
1536 
1537 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1538 {
1539 	struct drm_device *dev = unused_crtc->dev;
1540 	struct drm_i915_private *dev_priv = dev->dev_private;
1541 	const struct intel_watermark_params *wm_info;
1542 	uint32_t fwater_lo;
1543 	uint32_t fwater_hi;
1544 	int cwm, srwm = 1;
1545 	int fifo_size;
1546 	int planea_wm, planeb_wm;
1547 	struct drm_crtc *crtc, *enabled = NULL;
1548 
1549 	if (IS_I945GM(dev))
1550 		wm_info = &i945_wm_info;
1551 	else if (!IS_GEN2(dev))
1552 		wm_info = &i915_wm_info;
1553 	else
1554 		wm_info = &i830_wm_info;
1555 
1556 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1557 	crtc = intel_get_crtc_for_plane(dev, 0);
1558 	if (intel_crtc_active(crtc)) {
1559 		const struct drm_display_mode *adjusted_mode;
1560 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1561 		if (IS_GEN2(dev))
1562 			cpp = 4;
1563 
1564 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1565 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1566 					       wm_info, fifo_size, cpp,
1567 					       latency_ns);
1568 		enabled = crtc;
1569 	} else
1570 		planea_wm = fifo_size - wm_info->guard_size;
1571 
1572 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1573 	crtc = intel_get_crtc_for_plane(dev, 1);
1574 	if (intel_crtc_active(crtc)) {
1575 		const struct drm_display_mode *adjusted_mode;
1576 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1577 		if (IS_GEN2(dev))
1578 			cpp = 4;
1579 
1580 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1581 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1582 					       wm_info, fifo_size, cpp,
1583 					       latency_ns);
1584 		if (enabled == NULL)
1585 			enabled = crtc;
1586 		else
1587 			enabled = NULL;
1588 	} else
1589 		planeb_wm = fifo_size - wm_info->guard_size;
1590 
1591 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1592 
1593 	if (IS_I915GM(dev) && enabled) {
1594 		struct drm_i915_gem_object *obj;
1595 
1596 		obj = intel_fb_obj(enabled->primary->fb);
1597 
1598 		/* self-refresh seems busted with untiled */
1599 		if (obj->tiling_mode == I915_TILING_NONE)
1600 			enabled = NULL;
1601 	}
1602 
1603 	/*
1604 	 * Overlay gets an aggressive default since video jitter is bad.
1605 	 */
1606 	cwm = 2;
1607 
1608 	/* Play safe and disable self-refresh before adjusting watermarks. */
1609 	intel_set_memory_cxsr(dev_priv, false);
1610 
1611 	/* Calc sr entries for one plane configs */
1612 	if (HAS_FW_BLC(dev) && enabled) {
1613 		/* self-refresh has much higher latency */
1614 		static const int sr_latency_ns = 6000;
1615 		const struct drm_display_mode *adjusted_mode =
1616 			&to_intel_crtc(enabled)->config.adjusted_mode;
1617 		int clock = adjusted_mode->crtc_clock;
1618 		int htotal = adjusted_mode->crtc_htotal;
1619 		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1620 		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1621 		unsigned long line_time_us;
1622 		int entries;
1623 
1624 		line_time_us = max(htotal * 1000 / clock, 1);
1625 
1626 		/* Use ns/us then divide to preserve precision */
1627 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1628 			pixel_size * hdisplay;
1629 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1630 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1631 		srwm = wm_info->fifo_size - entries;
1632 		if (srwm < 0)
1633 			srwm = 1;
1634 
1635 		if (IS_I945G(dev) || IS_I945GM(dev))
1636 			I915_WRITE(FW_BLC_SELF,
1637 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1638 		else if (IS_I915GM(dev))
1639 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1640 	}
1641 
1642 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1643 		      planea_wm, planeb_wm, cwm, srwm);
1644 
1645 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1646 	fwater_hi = (cwm & 0x1f);
1647 
1648 	/* Set request length to 8 cachelines per fetch */
1649 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1650 	fwater_hi = fwater_hi | (1 << 8);
1651 
1652 	I915_WRITE(FW_BLC, fwater_lo);
1653 	I915_WRITE(FW_BLC2, fwater_hi);
1654 
1655 	if (enabled)
1656 		intel_set_memory_cxsr(dev_priv, true);
1657 }
1658 
1659 static void i845_update_wm(struct drm_crtc *unused_crtc)
1660 {
1661 	struct drm_device *dev = unused_crtc->dev;
1662 	struct drm_i915_private *dev_priv = dev->dev_private;
1663 	struct drm_crtc *crtc;
1664 	const struct drm_display_mode *adjusted_mode;
1665 	uint32_t fwater_lo;
1666 	int planea_wm;
1667 
1668 	crtc = single_enabled_crtc(dev);
1669 	if (crtc == NULL)
1670 		return;
1671 
1672 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1673 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1674 				       &i845_wm_info,
1675 				       dev_priv->display.get_fifo_size(dev, 0),
1676 				       4, latency_ns);
1677 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1678 	fwater_lo |= (3<<8) | planea_wm;
1679 
1680 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1681 
1682 	I915_WRITE(FW_BLC, fwater_lo);
1683 }
1684 
1685 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1686 				    struct drm_crtc *crtc)
1687 {
1688 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1689 	uint32_t pixel_rate;
1690 
1691 	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1692 
1693 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1694 	 * adjust the pixel_rate here. */
1695 
1696 	if (intel_crtc->config.pch_pfit.enabled) {
1697 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1698 		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1699 
1700 		pipe_w = intel_crtc->config.pipe_src_w;
1701 		pipe_h = intel_crtc->config.pipe_src_h;
1702 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1703 		pfit_h = pfit_size & 0xFFFF;
1704 		if (pipe_w < pfit_w)
1705 			pipe_w = pfit_w;
1706 		if (pipe_h < pfit_h)
1707 			pipe_h = pfit_h;
1708 
1709 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1710 				     pfit_w * pfit_h);
1711 	}
1712 
1713 	return pixel_rate;
1714 }
1715 
1716 /* latency must be in 0.1us units. */
1717 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1718 			       uint32_t latency)
1719 {
1720 	uint64_t ret;
1721 
1722 	if (WARN(latency == 0, "Latency value missing\n"))
1723 		return UINT_MAX;
1724 
1725 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1726 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1727 
1728 	return ret;
1729 }
1730 
1731 /* latency must be in 0.1us units. */
1732 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1733 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1734 			       uint32_t latency)
1735 {
1736 	uint32_t ret;
1737 
1738 	if (WARN(latency == 0, "Latency value missing\n"))
1739 		return UINT_MAX;
1740 
1741 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1742 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1743 	ret = DIV_ROUND_UP(ret, 64) + 2;
1744 	return ret;
1745 }
1746 
1747 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1748 			   uint8_t bytes_per_pixel)
1749 {
1750 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1751 }
1752 
1753 struct ilk_pipe_wm_parameters {
1754 	bool active;
1755 	uint32_t pipe_htotal;
1756 	uint32_t pixel_rate;
1757 	struct intel_plane_wm_parameters pri;
1758 	struct intel_plane_wm_parameters spr;
1759 	struct intel_plane_wm_parameters cur;
1760 };
1761 
1762 struct ilk_wm_maximums {
1763 	uint16_t pri;
1764 	uint16_t spr;
1765 	uint16_t cur;
1766 	uint16_t fbc;
1767 };
1768 
1769 /* used in computing the new watermarks state */
1770 struct intel_wm_config {
1771 	unsigned int num_pipes_active;
1772 	bool sprites_enabled;
1773 	bool sprites_scaled;
1774 };
1775 
1776 /*
1777  * For both WM_PIPE and WM_LP.
1778  * mem_value must be in 0.1us units.
1779  */
1780 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1781 				   uint32_t mem_value,
1782 				   bool is_lp)
1783 {
1784 	uint32_t method1, method2;
1785 
1786 	if (!params->active || !params->pri.enabled)
1787 		return 0;
1788 
1789 	method1 = ilk_wm_method1(params->pixel_rate,
1790 				 params->pri.bytes_per_pixel,
1791 				 mem_value);
1792 
1793 	if (!is_lp)
1794 		return method1;
1795 
1796 	method2 = ilk_wm_method2(params->pixel_rate,
1797 				 params->pipe_htotal,
1798 				 params->pri.horiz_pixels,
1799 				 params->pri.bytes_per_pixel,
1800 				 mem_value);
1801 
1802 	return min(method1, method2);
1803 }
1804 
1805 /*
1806  * For both WM_PIPE and WM_LP.
1807  * mem_value must be in 0.1us units.
1808  */
1809 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1810 				   uint32_t mem_value)
1811 {
1812 	uint32_t method1, method2;
1813 
1814 	if (!params->active || !params->spr.enabled)
1815 		return 0;
1816 
1817 	method1 = ilk_wm_method1(params->pixel_rate,
1818 				 params->spr.bytes_per_pixel,
1819 				 mem_value);
1820 	method2 = ilk_wm_method2(params->pixel_rate,
1821 				 params->pipe_htotal,
1822 				 params->spr.horiz_pixels,
1823 				 params->spr.bytes_per_pixel,
1824 				 mem_value);
1825 	return min(method1, method2);
1826 }
1827 
1828 /*
1829  * For both WM_PIPE and WM_LP.
1830  * mem_value must be in 0.1us units.
1831  */
1832 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1833 				   uint32_t mem_value)
1834 {
1835 	if (!params->active || !params->cur.enabled)
1836 		return 0;
1837 
1838 	return ilk_wm_method2(params->pixel_rate,
1839 			      params->pipe_htotal,
1840 			      params->cur.horiz_pixels,
1841 			      params->cur.bytes_per_pixel,
1842 			      mem_value);
1843 }
1844 
1845 /* Only for WM_LP. */
1846 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1847 				   uint32_t pri_val)
1848 {
1849 	if (!params->active || !params->pri.enabled)
1850 		return 0;
1851 
1852 	return ilk_wm_fbc(pri_val,
1853 			  params->pri.horiz_pixels,
1854 			  params->pri.bytes_per_pixel);
1855 }
1856 
1857 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1858 {
1859 	if (INTEL_INFO(dev)->gen >= 8)
1860 		return 3072;
1861 	else if (INTEL_INFO(dev)->gen >= 7)
1862 		return 768;
1863 	else
1864 		return 512;
1865 }
1866 
1867 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1868 					 int level, bool is_sprite)
1869 {
1870 	if (INTEL_INFO(dev)->gen >= 8)
1871 		/* BDW primary/sprite plane watermarks */
1872 		return level == 0 ? 255 : 2047;
1873 	else if (INTEL_INFO(dev)->gen >= 7)
1874 		/* IVB/HSW primary/sprite plane watermarks */
1875 		return level == 0 ? 127 : 1023;
1876 	else if (!is_sprite)
1877 		/* ILK/SNB primary plane watermarks */
1878 		return level == 0 ? 127 : 511;
1879 	else
1880 		/* ILK/SNB sprite plane watermarks */
1881 		return level == 0 ? 63 : 255;
1882 }
1883 
1884 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1885 					  int level)
1886 {
1887 	if (INTEL_INFO(dev)->gen >= 7)
1888 		return level == 0 ? 63 : 255;
1889 	else
1890 		return level == 0 ? 31 : 63;
1891 }
1892 
1893 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1894 {
1895 	if (INTEL_INFO(dev)->gen >= 8)
1896 		return 31;
1897 	else
1898 		return 15;
1899 }
1900 
1901 /* Calculate the maximum primary/sprite plane watermark */
1902 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1903 				     int level,
1904 				     const struct intel_wm_config *config,
1905 				     enum intel_ddb_partitioning ddb_partitioning,
1906 				     bool is_sprite)
1907 {
1908 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1909 
1910 	/* if sprites aren't enabled, sprites get nothing */
1911 	if (is_sprite && !config->sprites_enabled)
1912 		return 0;
1913 
1914 	/* HSW allows LP1+ watermarks even with multiple pipes */
1915 	if (level == 0 || config->num_pipes_active > 1) {
1916 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1917 
1918 		/*
1919 		 * For some reason the non self refresh
1920 		 * FIFO size is only half of the self
1921 		 * refresh FIFO size on ILK/SNB.
1922 		 */
1923 		if (INTEL_INFO(dev)->gen <= 6)
1924 			fifo_size /= 2;
1925 	}
1926 
1927 	if (config->sprites_enabled) {
1928 		/* level 0 is always calculated with 1:1 split */
1929 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1930 			if (is_sprite)
1931 				fifo_size *= 5;
1932 			fifo_size /= 6;
1933 		} else {
1934 			fifo_size /= 2;
1935 		}
1936 	}
1937 
1938 	/* clamp to max that the registers can hold */
1939 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1940 }
1941 
1942 /* Calculate the maximum cursor plane watermark */
1943 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1944 				      int level,
1945 				      const struct intel_wm_config *config)
1946 {
1947 	/* HSW LP1+ watermarks w/ multiple pipes */
1948 	if (level > 0 && config->num_pipes_active > 1)
1949 		return 64;
1950 
1951 	/* otherwise just report max that registers can hold */
1952 	return ilk_cursor_wm_reg_max(dev, level);
1953 }
1954 
1955 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1956 				    int level,
1957 				    const struct intel_wm_config *config,
1958 				    enum intel_ddb_partitioning ddb_partitioning,
1959 				    struct ilk_wm_maximums *max)
1960 {
1961 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1962 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1963 	max->cur = ilk_cursor_wm_max(dev, level, config);
1964 	max->fbc = ilk_fbc_wm_reg_max(dev);
1965 }
1966 
1967 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1968 					int level,
1969 					struct ilk_wm_maximums *max)
1970 {
1971 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1972 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1973 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1974 	max->fbc = ilk_fbc_wm_reg_max(dev);
1975 }
1976 
1977 static bool ilk_validate_wm_level(int level,
1978 				  const struct ilk_wm_maximums *max,
1979 				  struct intel_wm_level *result)
1980 {
1981 	bool ret;
1982 
1983 	/* already determined to be invalid? */
1984 	if (!result->enable)
1985 		return false;
1986 
1987 	result->enable = result->pri_val <= max->pri &&
1988 			 result->spr_val <= max->spr &&
1989 			 result->cur_val <= max->cur;
1990 
1991 	ret = result->enable;
1992 
1993 	/*
1994 	 * HACK until we can pre-compute everything,
1995 	 * and thus fail gracefully if LP0 watermarks
1996 	 * are exceeded...
1997 	 */
1998 	if (level == 0 && !result->enable) {
1999 		if (result->pri_val > max->pri)
2000 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2001 				      level, result->pri_val, max->pri);
2002 		if (result->spr_val > max->spr)
2003 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2004 				      level, result->spr_val, max->spr);
2005 		if (result->cur_val > max->cur)
2006 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2007 				      level, result->cur_val, max->cur);
2008 
2009 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2010 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2011 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2012 		result->enable = true;
2013 	}
2014 
2015 	return ret;
2016 }
2017 
2018 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2019 				 int level,
2020 				 const struct ilk_pipe_wm_parameters *p,
2021 				 struct intel_wm_level *result)
2022 {
2023 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2024 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2025 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2026 
2027 	/* WM1+ latency values stored in 0.5us units */
2028 	if (level > 0) {
2029 		pri_latency *= 5;
2030 		spr_latency *= 5;
2031 		cur_latency *= 5;
2032 	}
2033 
2034 	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2035 	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2036 	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2037 	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2038 	result->enable = true;
2039 }
2040 
2041 static uint32_t
2042 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2043 {
2044 	struct drm_i915_private *dev_priv = dev->dev_private;
2045 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2046 	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2047 	u32 linetime, ips_linetime;
2048 
2049 	if (!intel_crtc_active(crtc))
2050 		return 0;
2051 
2052 	/* The WM are computed with base on how long it takes to fill a single
2053 	 * row at the given clock rate, multiplied by 8.
2054 	 * */
2055 	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2056 				     mode->crtc_clock);
2057 	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2058 					 intel_ddi_get_cdclk_freq(dev_priv));
2059 
2060 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2061 	       PIPE_WM_LINETIME_TIME(linetime);
2062 }
2063 
2064 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2065 {
2066 	struct drm_i915_private *dev_priv = dev->dev_private;
2067 
2068 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2069 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2070 
2071 		wm[0] = (sskpd >> 56) & 0xFF;
2072 		if (wm[0] == 0)
2073 			wm[0] = sskpd & 0xF;
2074 		wm[1] = (sskpd >> 4) & 0xFF;
2075 		wm[2] = (sskpd >> 12) & 0xFF;
2076 		wm[3] = (sskpd >> 20) & 0x1FF;
2077 		wm[4] = (sskpd >> 32) & 0x1FF;
2078 	} else if (INTEL_INFO(dev)->gen >= 6) {
2079 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2080 
2081 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2082 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2083 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2084 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2085 	} else if (INTEL_INFO(dev)->gen >= 5) {
2086 		uint32_t mltr = I915_READ(MLTR_ILK);
2087 
2088 		/* ILK primary LP0 latency is 700 ns */
2089 		wm[0] = 7;
2090 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2091 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2092 	}
2093 }
2094 
2095 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2096 {
2097 	/* ILK sprite LP0 latency is 1300 ns */
2098 	if (INTEL_INFO(dev)->gen == 5)
2099 		wm[0] = 13;
2100 }
2101 
2102 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2103 {
2104 	/* ILK cursor LP0 latency is 1300 ns */
2105 	if (INTEL_INFO(dev)->gen == 5)
2106 		wm[0] = 13;
2107 
2108 	/* WaDoubleCursorLP3Latency:ivb */
2109 	if (IS_IVYBRIDGE(dev))
2110 		wm[3] *= 2;
2111 }
2112 
2113 int ilk_wm_max_level(const struct drm_device *dev)
2114 {
2115 	/* how many WM levels are we expecting */
2116 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2117 		return 4;
2118 	else if (INTEL_INFO(dev)->gen >= 6)
2119 		return 3;
2120 	else
2121 		return 2;
2122 }
2123 
2124 static void intel_print_wm_latency(struct drm_device *dev,
2125 				   const char *name,
2126 				   const uint16_t wm[5])
2127 {
2128 	int level, max_level = ilk_wm_max_level(dev);
2129 
2130 	for (level = 0; level <= max_level; level++) {
2131 		unsigned int latency = wm[level];
2132 
2133 		if (latency == 0) {
2134 			DRM_ERROR("%s WM%d latency not provided\n",
2135 				  name, level);
2136 			continue;
2137 		}
2138 
2139 		/* WM1+ latency values in 0.5us units */
2140 		if (level > 0)
2141 			latency *= 5;
2142 
2143 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2144 			      name, level, wm[level],
2145 			      latency / 10, latency % 10);
2146 	}
2147 }
2148 
2149 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2150 				    uint16_t wm[5], uint16_t min)
2151 {
2152 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2153 
2154 	if (wm[0] >= min)
2155 		return false;
2156 
2157 	wm[0] = max(wm[0], min);
2158 	for (level = 1; level <= max_level; level++)
2159 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2160 
2161 	return true;
2162 }
2163 
2164 static void snb_wm_latency_quirk(struct drm_device *dev)
2165 {
2166 	struct drm_i915_private *dev_priv = dev->dev_private;
2167 	bool changed;
2168 
2169 	/*
2170 	 * The BIOS provided WM memory latency values are often
2171 	 * inadequate for high resolution displays. Adjust them.
2172 	 */
2173 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2174 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2175 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2176 
2177 	if (!changed)
2178 		return;
2179 
2180 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2181 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2182 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2183 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2184 }
2185 
2186 static void ilk_setup_wm_latency(struct drm_device *dev)
2187 {
2188 	struct drm_i915_private *dev_priv = dev->dev_private;
2189 
2190 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2191 
2192 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2193 	       sizeof(dev_priv->wm.pri_latency));
2194 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2195 	       sizeof(dev_priv->wm.pri_latency));
2196 
2197 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2198 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2199 
2200 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2201 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2202 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2203 
2204 	if (IS_GEN6(dev))
2205 		snb_wm_latency_quirk(dev);
2206 }
2207 
2208 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2209 				      struct ilk_pipe_wm_parameters *p)
2210 {
2211 	struct drm_device *dev = crtc->dev;
2212 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2213 	enum i915_pipe pipe = intel_crtc->pipe;
2214 	struct drm_plane *plane;
2215 
2216 	if (!intel_crtc_active(crtc))
2217 		return;
2218 
2219 	p->active = true;
2220 	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2221 	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2222 	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2223 	p->cur.bytes_per_pixel = 4;
2224 	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2225 	p->cur.horiz_pixels = intel_crtc->cursor_width;
2226 	/* TODO: for now, assume primary and cursor planes are always enabled. */
2227 	p->pri.enabled = true;
2228 	p->cur.enabled = true;
2229 
2230 	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2231 		struct intel_plane *intel_plane = to_intel_plane(plane);
2232 
2233 		if (intel_plane->pipe == pipe) {
2234 			p->spr = intel_plane->wm;
2235 			break;
2236 		}
2237 	}
2238 }
2239 
2240 static void ilk_compute_wm_config(struct drm_device *dev,
2241 				  struct intel_wm_config *config)
2242 {
2243 	struct intel_crtc *intel_crtc;
2244 
2245 	/* Compute the currently _active_ config */
2246 	for_each_intel_crtc(dev, intel_crtc) {
2247 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2248 
2249 		if (!wm->pipe_enabled)
2250 			continue;
2251 
2252 		config->sprites_enabled |= wm->sprites_enabled;
2253 		config->sprites_scaled |= wm->sprites_scaled;
2254 		config->num_pipes_active++;
2255 	}
2256 }
2257 
2258 /* Compute new watermarks for the pipe */
2259 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2260 				  const struct ilk_pipe_wm_parameters *params,
2261 				  struct intel_pipe_wm *pipe_wm)
2262 {
2263 	struct drm_device *dev = crtc->dev;
2264 	const struct drm_i915_private *dev_priv = dev->dev_private;
2265 	int level, max_level = ilk_wm_max_level(dev);
2266 	/* LP0 watermark maximums depend on this pipe alone */
2267 	struct intel_wm_config config = {
2268 		.num_pipes_active = 1,
2269 		.sprites_enabled = params->spr.enabled,
2270 		.sprites_scaled = params->spr.scaled,
2271 	};
2272 	struct ilk_wm_maximums max;
2273 
2274 	pipe_wm->pipe_enabled = params->active;
2275 	pipe_wm->sprites_enabled = params->spr.enabled;
2276 	pipe_wm->sprites_scaled = params->spr.scaled;
2277 
2278 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2279 	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2280 		max_level = 1;
2281 
2282 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2283 	if (params->spr.scaled)
2284 		max_level = 0;
2285 
2286 	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2287 
2288 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2289 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2290 
2291 	/* LP0 watermarks always use 1/2 DDB partitioning */
2292 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2293 
2294 	/* At least LP0 must be valid */
2295 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2296 		return false;
2297 
2298 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2299 
2300 	for (level = 1; level <= max_level; level++) {
2301 		struct intel_wm_level wm = {};
2302 
2303 		ilk_compute_wm_level(dev_priv, level, params, &wm);
2304 
2305 		/*
2306 		 * Disable any watermark level that exceeds the
2307 		 * register maximums since such watermarks are
2308 		 * always invalid.
2309 		 */
2310 		if (!ilk_validate_wm_level(level, &max, &wm))
2311 			break;
2312 
2313 		pipe_wm->wm[level] = wm;
2314 	}
2315 
2316 	return true;
2317 }
2318 
2319 /*
2320  * Merge the watermarks from all active pipes for a specific level.
2321  */
2322 static void ilk_merge_wm_level(struct drm_device *dev,
2323 			       int level,
2324 			       struct intel_wm_level *ret_wm)
2325 {
2326 	struct intel_crtc *intel_crtc;
2327 
2328 	ret_wm->enable = true;
2329 
2330 	for_each_intel_crtc(dev, intel_crtc) {
2331 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2332 		const struct intel_wm_level *wm = &active->wm[level];
2333 
2334 		if (!active->pipe_enabled)
2335 			continue;
2336 
2337 		/*
2338 		 * The watermark values may have been used in the past,
2339 		 * so we must maintain them in the registers for some
2340 		 * time even if the level is now disabled.
2341 		 */
2342 		if (!wm->enable)
2343 			ret_wm->enable = false;
2344 
2345 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2346 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2347 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2348 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2349 	}
2350 }
2351 
2352 /*
2353  * Merge all low power watermarks for all active pipes.
2354  */
2355 static void ilk_wm_merge(struct drm_device *dev,
2356 			 const struct intel_wm_config *config,
2357 			 const struct ilk_wm_maximums *max,
2358 			 struct intel_pipe_wm *merged)
2359 {
2360 	int level, max_level = ilk_wm_max_level(dev);
2361 	int last_enabled_level = max_level;
2362 
2363 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2364 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2365 	    config->num_pipes_active > 1)
2366 		return;
2367 
2368 	/* ILK: FBC WM must be disabled always */
2369 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2370 
2371 	/* merge each WM1+ level */
2372 	for (level = 1; level <= max_level; level++) {
2373 		struct intel_wm_level *wm = &merged->wm[level];
2374 
2375 		ilk_merge_wm_level(dev, level, wm);
2376 
2377 		if (level > last_enabled_level)
2378 			wm->enable = false;
2379 		else if (!ilk_validate_wm_level(level, max, wm))
2380 			/* make sure all following levels get disabled */
2381 			last_enabled_level = level - 1;
2382 
2383 		/*
2384 		 * The spec says it is preferred to disable
2385 		 * FBC WMs instead of disabling a WM level.
2386 		 */
2387 		if (wm->fbc_val > max->fbc) {
2388 			if (wm->enable)
2389 				merged->fbc_wm_enabled = false;
2390 			wm->fbc_val = 0;
2391 		}
2392 	}
2393 
2394 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2395 	/*
2396 	 * FIXME this is racy. FBC might get enabled later.
2397 	 * What we should check here is whether FBC can be
2398 	 * enabled sometime later.
2399 	 */
2400 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2401 		for (level = 2; level <= max_level; level++) {
2402 			struct intel_wm_level *wm = &merged->wm[level];
2403 
2404 			wm->enable = false;
2405 		}
2406 	}
2407 }
2408 
2409 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2410 {
2411 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2412 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2413 }
2414 
2415 /* The value we need to program into the WM_LPx latency field */
2416 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2417 {
2418 	struct drm_i915_private *dev_priv = dev->dev_private;
2419 
2420 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2421 		return 2 * level;
2422 	else
2423 		return dev_priv->wm.pri_latency[level];
2424 }
2425 
2426 static void ilk_compute_wm_results(struct drm_device *dev,
2427 				   const struct intel_pipe_wm *merged,
2428 				   enum intel_ddb_partitioning partitioning,
2429 				   struct ilk_wm_values *results)
2430 {
2431 	struct intel_crtc *intel_crtc;
2432 	int level, wm_lp;
2433 
2434 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2435 	results->partitioning = partitioning;
2436 
2437 	/* LP1+ register values */
2438 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2439 		const struct intel_wm_level *r;
2440 
2441 		level = ilk_wm_lp_to_level(wm_lp, merged);
2442 
2443 		r = &merged->wm[level];
2444 
2445 		/*
2446 		 * Maintain the watermark values even if the level is
2447 		 * disabled. Doing otherwise could cause underruns.
2448 		 */
2449 		results->wm_lp[wm_lp - 1] =
2450 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2451 			(r->pri_val << WM1_LP_SR_SHIFT) |
2452 			r->cur_val;
2453 
2454 		if (r->enable)
2455 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2456 
2457 		if (INTEL_INFO(dev)->gen >= 8)
2458 			results->wm_lp[wm_lp - 1] |=
2459 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2460 		else
2461 			results->wm_lp[wm_lp - 1] |=
2462 				r->fbc_val << WM1_LP_FBC_SHIFT;
2463 
2464 		/*
2465 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2466 		 * level is disabled. Doing otherwise could cause underruns.
2467 		 */
2468 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2469 			WARN_ON(wm_lp != 1);
2470 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2471 		} else
2472 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2473 	}
2474 
2475 	/* LP0 register values */
2476 	for_each_intel_crtc(dev, intel_crtc) {
2477 		enum i915_pipe pipe = intel_crtc->pipe;
2478 		const struct intel_wm_level *r =
2479 			&intel_crtc->wm.active.wm[0];
2480 
2481 		if (WARN_ON(!r->enable))
2482 			continue;
2483 
2484 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2485 
2486 		results->wm_pipe[pipe] =
2487 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2488 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2489 			r->cur_val;
2490 	}
2491 }
2492 
2493 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2494  * case both are at the same level. Prefer r1 in case they're the same. */
2495 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2496 						  struct intel_pipe_wm *r1,
2497 						  struct intel_pipe_wm *r2)
2498 {
2499 	int level, max_level = ilk_wm_max_level(dev);
2500 	int level1 = 0, level2 = 0;
2501 
2502 	for (level = 1; level <= max_level; level++) {
2503 		if (r1->wm[level].enable)
2504 			level1 = level;
2505 		if (r2->wm[level].enable)
2506 			level2 = level;
2507 	}
2508 
2509 	if (level1 == level2) {
2510 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2511 			return r2;
2512 		else
2513 			return r1;
2514 	} else if (level1 > level2) {
2515 		return r1;
2516 	} else {
2517 		return r2;
2518 	}
2519 }
2520 
2521 /* dirty bits used to track which watermarks need changes */
2522 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2523 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2524 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2525 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2526 #define WM_DIRTY_FBC (1 << 24)
2527 #define WM_DIRTY_DDB (1 << 25)
2528 
2529 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2530 					 const struct ilk_wm_values *old,
2531 					 const struct ilk_wm_values *new)
2532 {
2533 	unsigned int dirty = 0;
2534 	enum i915_pipe pipe;
2535 	int wm_lp;
2536 
2537 	for_each_pipe(pipe) {
2538 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2539 			dirty |= WM_DIRTY_LINETIME(pipe);
2540 			/* Must disable LP1+ watermarks too */
2541 			dirty |= WM_DIRTY_LP_ALL;
2542 		}
2543 
2544 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2545 			dirty |= WM_DIRTY_PIPE(pipe);
2546 			/* Must disable LP1+ watermarks too */
2547 			dirty |= WM_DIRTY_LP_ALL;
2548 		}
2549 	}
2550 
2551 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2552 		dirty |= WM_DIRTY_FBC;
2553 		/* Must disable LP1+ watermarks too */
2554 		dirty |= WM_DIRTY_LP_ALL;
2555 	}
2556 
2557 	if (old->partitioning != new->partitioning) {
2558 		dirty |= WM_DIRTY_DDB;
2559 		/* Must disable LP1+ watermarks too */
2560 		dirty |= WM_DIRTY_LP_ALL;
2561 	}
2562 
2563 	/* LP1+ watermarks already deemed dirty, no need to continue */
2564 	if (dirty & WM_DIRTY_LP_ALL)
2565 		return dirty;
2566 
2567 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2568 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2569 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2570 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2571 			break;
2572 	}
2573 
2574 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2575 	for (; wm_lp <= 3; wm_lp++)
2576 		dirty |= WM_DIRTY_LP(wm_lp);
2577 
2578 	return dirty;
2579 }
2580 
2581 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2582 			       unsigned int dirty)
2583 {
2584 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2585 	bool changed = false;
2586 
2587 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2588 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2589 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2590 		changed = true;
2591 	}
2592 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2593 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2594 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2595 		changed = true;
2596 	}
2597 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2598 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2599 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2600 		changed = true;
2601 	}
2602 
2603 	/*
2604 	 * Don't touch WM1S_LP_EN here.
2605 	 * Doing so could cause underruns.
2606 	 */
2607 
2608 	return changed;
2609 }
2610 
2611 /*
2612  * The spec says we shouldn't write when we don't need, because every write
2613  * causes WMs to be re-evaluated, expending some power.
2614  */
2615 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2616 				struct ilk_wm_values *results)
2617 {
2618 	struct drm_device *dev = dev_priv->dev;
2619 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2620 	unsigned int dirty;
2621 	uint32_t val;
2622 
2623 	dirty = ilk_compute_wm_dirty(dev, previous, results);
2624 	if (!dirty)
2625 		return;
2626 
2627 	_ilk_disable_lp_wm(dev_priv, dirty);
2628 
2629 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2630 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2631 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2632 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2633 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2634 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2635 
2636 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2637 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2638 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2639 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2640 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2641 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2642 
2643 	if (dirty & WM_DIRTY_DDB) {
2644 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2645 			val = I915_READ(WM_MISC);
2646 			if (results->partitioning == INTEL_DDB_PART_1_2)
2647 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2648 			else
2649 				val |= WM_MISC_DATA_PARTITION_5_6;
2650 			I915_WRITE(WM_MISC, val);
2651 		} else {
2652 			val = I915_READ(DISP_ARB_CTL2);
2653 			if (results->partitioning == INTEL_DDB_PART_1_2)
2654 				val &= ~DISP_DATA_PARTITION_5_6;
2655 			else
2656 				val |= DISP_DATA_PARTITION_5_6;
2657 			I915_WRITE(DISP_ARB_CTL2, val);
2658 		}
2659 	}
2660 
2661 	if (dirty & WM_DIRTY_FBC) {
2662 		val = I915_READ(DISP_ARB_CTL);
2663 		if (results->enable_fbc_wm)
2664 			val &= ~DISP_FBC_WM_DIS;
2665 		else
2666 			val |= DISP_FBC_WM_DIS;
2667 		I915_WRITE(DISP_ARB_CTL, val);
2668 	}
2669 
2670 	if (dirty & WM_DIRTY_LP(1) &&
2671 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2672 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2673 
2674 	if (INTEL_INFO(dev)->gen >= 7) {
2675 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2676 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2677 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2678 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2679 	}
2680 
2681 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2682 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2683 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2684 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2685 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2686 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2687 
2688 	dev_priv->wm.hw = *results;
2689 }
2690 
2691 static bool ilk_disable_lp_wm(struct drm_device *dev)
2692 {
2693 	struct drm_i915_private *dev_priv = dev->dev_private;
2694 
2695 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2696 }
2697 
2698 static void ilk_update_wm(struct drm_crtc *crtc)
2699 {
2700 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2701 	struct drm_device *dev = crtc->dev;
2702 	struct drm_i915_private *dev_priv = dev->dev_private;
2703 	struct ilk_wm_maximums max;
2704 	struct ilk_pipe_wm_parameters params = {};
2705 	struct ilk_wm_values results = {};
2706 	enum intel_ddb_partitioning partitioning;
2707 	struct intel_pipe_wm pipe_wm = {};
2708 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2709 	struct intel_wm_config config = {};
2710 
2711 	ilk_compute_wm_parameters(crtc, &params);
2712 
2713 	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2714 
2715 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2716 		return;
2717 
2718 	intel_crtc->wm.active = pipe_wm;
2719 
2720 	ilk_compute_wm_config(dev, &config);
2721 
2722 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2723 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2724 
2725 	/* 5/6 split only in single pipe config on IVB+ */
2726 	if (INTEL_INFO(dev)->gen >= 7 &&
2727 	    config.num_pipes_active == 1 && config.sprites_enabled) {
2728 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2729 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2730 
2731 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2732 	} else {
2733 		best_lp_wm = &lp_wm_1_2;
2734 	}
2735 
2736 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2737 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2738 
2739 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2740 
2741 	ilk_write_wm_values(dev_priv, &results);
2742 }
2743 
2744 static void
2745 ilk_update_sprite_wm(struct drm_plane *plane,
2746 		     struct drm_crtc *crtc,
2747 		     uint32_t sprite_width, uint32_t sprite_height,
2748 		     int pixel_size, bool enabled, bool scaled)
2749 {
2750 	struct drm_device *dev = plane->dev;
2751 	struct intel_plane *intel_plane = to_intel_plane(plane);
2752 
2753 	intel_plane->wm.enabled = enabled;
2754 	intel_plane->wm.scaled = scaled;
2755 	intel_plane->wm.horiz_pixels = sprite_width;
2756 	intel_plane->wm.vert_pixels = sprite_width;
2757 	intel_plane->wm.bytes_per_pixel = pixel_size;
2758 
2759 	/*
2760 	 * IVB workaround: must disable low power watermarks for at least
2761 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
2762 	 * when scaling is disabled.
2763 	 *
2764 	 * WaCxSRDisabledForSpriteScaling:ivb
2765 	 */
2766 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2767 		intel_wait_for_vblank(dev, intel_plane->pipe);
2768 
2769 	ilk_update_wm(crtc);
2770 }
2771 
2772 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2773 {
2774 	struct drm_device *dev = crtc->dev;
2775 	struct drm_i915_private *dev_priv = dev->dev_private;
2776 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2777 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
2779 	enum i915_pipe pipe = intel_crtc->pipe;
2780 	static const unsigned int wm0_pipe_reg[] = {
2781 		[PIPE_A] = WM0_PIPEA_ILK,
2782 		[PIPE_B] = WM0_PIPEB_ILK,
2783 		[PIPE_C] = WM0_PIPEC_IVB,
2784 	};
2785 
2786 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2787 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2788 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2789 
2790 	active->pipe_enabled = intel_crtc_active(crtc);
2791 
2792 	if (active->pipe_enabled) {
2793 		u32 tmp = hw->wm_pipe[pipe];
2794 
2795 		/*
2796 		 * For active pipes LP0 watermark is marked as
2797 		 * enabled, and LP1+ watermaks as disabled since
2798 		 * we can't really reverse compute them in case
2799 		 * multiple pipes are active.
2800 		 */
2801 		active->wm[0].enable = true;
2802 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2803 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2804 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2805 		active->linetime = hw->wm_linetime[pipe];
2806 	} else {
2807 		int level, max_level = ilk_wm_max_level(dev);
2808 
2809 		/*
2810 		 * For inactive pipes, all watermark levels
2811 		 * should be marked as enabled but zeroed,
2812 		 * which is what we'd compute them to.
2813 		 */
2814 		for (level = 0; level <= max_level; level++)
2815 			active->wm[level].enable = true;
2816 	}
2817 }
2818 
2819 void ilk_wm_get_hw_state(struct drm_device *dev)
2820 {
2821 	struct drm_i915_private *dev_priv = dev->dev_private;
2822 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2823 	struct drm_crtc *crtc;
2824 
2825 	for_each_crtc(dev, crtc)
2826 		ilk_pipe_wm_get_hw_state(crtc);
2827 
2828 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2829 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2830 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2831 
2832 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2833 	if (INTEL_INFO(dev)->gen >= 7) {
2834 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2835 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2836 	}
2837 
2838 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2839 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2840 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2841 	else if (IS_IVYBRIDGE(dev))
2842 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2843 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2844 
2845 	hw->enable_fbc_wm =
2846 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2847 }
2848 
2849 /**
2850  * intel_update_watermarks - update FIFO watermark values based on current modes
2851  *
2852  * Calculate watermark values for the various WM regs based on current mode
2853  * and plane configuration.
2854  *
2855  * There are several cases to deal with here:
2856  *   - normal (i.e. non-self-refresh)
2857  *   - self-refresh (SR) mode
2858  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2859  *   - lines are small relative to FIFO size (buffer can hold more than 2
2860  *     lines), so need to account for TLB latency
2861  *
2862  *   The normal calculation is:
2863  *     watermark = dotclock * bytes per pixel * latency
2864  *   where latency is platform & configuration dependent (we assume pessimal
2865  *   values here).
2866  *
2867  *   The SR calculation is:
2868  *     watermark = (trunc(latency/line time)+1) * surface width *
2869  *       bytes per pixel
2870  *   where
2871  *     line time = htotal / dotclock
2872  *     surface width = hdisplay for normal plane and 64 for cursor
2873  *   and latency is assumed to be high, as above.
2874  *
2875  * The final value programmed to the register should always be rounded up,
2876  * and include an extra 2 entries to account for clock crossings.
2877  *
2878  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2879  * to set the non-SR watermarks to 8.
2880  */
2881 void intel_update_watermarks(struct drm_crtc *crtc)
2882 {
2883 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2884 
2885 	if (dev_priv->display.update_wm)
2886 		dev_priv->display.update_wm(crtc);
2887 }
2888 
2889 void intel_update_sprite_watermarks(struct drm_plane *plane,
2890 				    struct drm_crtc *crtc,
2891 				    uint32_t sprite_width,
2892 				    uint32_t sprite_height,
2893 				    int pixel_size,
2894 				    bool enabled, bool scaled)
2895 {
2896 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
2897 
2898 	if (dev_priv->display.update_sprite_wm)
2899 		dev_priv->display.update_sprite_wm(plane, crtc,
2900 						   sprite_width, sprite_height,
2901 						   pixel_size, enabled, scaled);
2902 }
2903 
2904 static struct drm_i915_gem_object *
2905 intel_alloc_context_page(struct drm_device *dev)
2906 {
2907 	struct drm_i915_gem_object *ctx;
2908 	int ret;
2909 
2910 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2911 
2912 	ctx = i915_gem_alloc_object(dev, 4096);
2913 	if (!ctx) {
2914 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2915 		return NULL;
2916 	}
2917 
2918 	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2919 	if (ret) {
2920 		DRM_ERROR("failed to pin power context: %d\n", ret);
2921 		goto err_unref;
2922 	}
2923 
2924 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2925 	if (ret) {
2926 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2927 		goto err_unpin;
2928 	}
2929 
2930 	return ctx;
2931 
2932 err_unpin:
2933 	i915_gem_object_ggtt_unpin(ctx);
2934 err_unref:
2935 	drm_gem_object_unreference(&ctx->base);
2936 	return NULL;
2937 }
2938 
2939 /**
2940  * Lock protecting IPS related data structures
2941  */
2942 struct lock mchdev_lock;
2943 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
2944 
2945 /* Global for IPS driver to get at the current i915 device. Protected by
2946  * mchdev_lock. */
2947 static struct drm_i915_private *i915_mch_dev;
2948 
2949 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2950 {
2951 	struct drm_i915_private *dev_priv = dev->dev_private;
2952 	u16 rgvswctl;
2953 
2954 	assert_spin_locked(&mchdev_lock);
2955 
2956 	rgvswctl = I915_READ16(MEMSWCTL);
2957 	if (rgvswctl & MEMCTL_CMD_STS) {
2958 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2959 		return false; /* still busy with another command */
2960 	}
2961 
2962 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2963 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2964 	I915_WRITE16(MEMSWCTL, rgvswctl);
2965 	POSTING_READ16(MEMSWCTL);
2966 
2967 	rgvswctl |= MEMCTL_CMD_STS;
2968 	I915_WRITE16(MEMSWCTL, rgvswctl);
2969 
2970 	return true;
2971 }
2972 
2973 static void ironlake_enable_drps(struct drm_device *dev)
2974 {
2975 	struct drm_i915_private *dev_priv = dev->dev_private;
2976 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2977 	u8 fmax, fmin, fstart, vstart;
2978 
2979 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2980 
2981 	/* Enable temp reporting */
2982 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2983 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2984 
2985 	/* 100ms RC evaluation intervals */
2986 	I915_WRITE(RCUPEI, 100000);
2987 	I915_WRITE(RCDNEI, 100000);
2988 
2989 	/* Set max/min thresholds to 90ms and 80ms respectively */
2990 	I915_WRITE(RCBMAXAVG, 90000);
2991 	I915_WRITE(RCBMINAVG, 80000);
2992 
2993 	I915_WRITE(MEMIHYST, 1);
2994 
2995 	/* Set up min, max, and cur for interrupt handling */
2996 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2997 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2998 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2999 		MEMMODE_FSTART_SHIFT;
3000 
3001 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3002 		PXVFREQ_PX_SHIFT;
3003 
3004 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3005 	dev_priv->ips.fstart = fstart;
3006 
3007 	dev_priv->ips.max_delay = fstart;
3008 	dev_priv->ips.min_delay = fmin;
3009 	dev_priv->ips.cur_delay = fstart;
3010 
3011 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3012 			 fmax, fmin, fstart);
3013 
3014 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3015 
3016 	/*
3017 	 * Interrupts will be enabled in ironlake_irq_postinstall
3018 	 */
3019 
3020 	I915_WRITE(VIDSTART, vstart);
3021 	POSTING_READ(VIDSTART);
3022 
3023 	rgvmodectl |= MEMMODE_SWMODE_EN;
3024 	I915_WRITE(MEMMODECTL, rgvmodectl);
3025 
3026 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3027 		DRM_ERROR("stuck trying to change perf mode\n");
3028 	mdelay(1);
3029 
3030 	ironlake_set_drps(dev, fstart);
3031 
3032 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3033 		I915_READ(0x112e0);
3034 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3035 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3036 	getrawmonotonic(&dev_priv->ips.last_time2);
3037 
3038 	lockmgr(&mchdev_lock, LK_RELEASE);
3039 }
3040 
3041 static void ironlake_disable_drps(struct drm_device *dev)
3042 {
3043 	struct drm_i915_private *dev_priv = dev->dev_private;
3044 	u16 rgvswctl;
3045 
3046 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3047 
3048 	rgvswctl = I915_READ16(MEMSWCTL);
3049 
3050 	/* Ack interrupts, disable EFC interrupt */
3051 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3052 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3053 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3054 	I915_WRITE(DEIIR, DE_PCU_EVENT);
3055 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3056 
3057 	/* Go back to the starting frequency */
3058 	ironlake_set_drps(dev, dev_priv->ips.fstart);
3059 	mdelay(1);
3060 	rgvswctl |= MEMCTL_CMD_STS;
3061 	I915_WRITE(MEMSWCTL, rgvswctl);
3062 	mdelay(1);
3063 
3064 	lockmgr(&mchdev_lock, LK_RELEASE);
3065 }
3066 
3067 /* There's a funny hw issue where the hw returns all 0 when reading from
3068  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3069  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3070  * all limits and the gpu stuck at whatever frequency it is at atm).
3071  */
3072 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3073 {
3074 	u32 limits;
3075 
3076 	/* Only set the down limit when we've reached the lowest level to avoid
3077 	 * getting more interrupts, otherwise leave this clear. This prevents a
3078 	 * race in the hw when coming out of rc6: There's a tiny window where
3079 	 * the hw runs at the minimal clock before selecting the desired
3080 	 * frequency, if the down threshold expires in that window we will not
3081 	 * receive a down interrupt. */
3082 	limits = dev_priv->rps.max_freq_softlimit << 24;
3083 	if (val <= dev_priv->rps.min_freq_softlimit)
3084 		limits |= dev_priv->rps.min_freq_softlimit << 16;
3085 
3086 	return limits;
3087 }
3088 
3089 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3090 {
3091 	int new_power;
3092 
3093 	new_power = dev_priv->rps.power;
3094 	switch (dev_priv->rps.power) {
3095 	case LOW_POWER:
3096 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3097 			new_power = BETWEEN;
3098 		break;
3099 
3100 	case BETWEEN:
3101 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3102 			new_power = LOW_POWER;
3103 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3104 			new_power = HIGH_POWER;
3105 		break;
3106 
3107 	case HIGH_POWER:
3108 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3109 			new_power = BETWEEN;
3110 		break;
3111 	}
3112 	/* Max/min bins are special */
3113 	if (val == dev_priv->rps.min_freq_softlimit)
3114 		new_power = LOW_POWER;
3115 	if (val == dev_priv->rps.max_freq_softlimit)
3116 		new_power = HIGH_POWER;
3117 	if (new_power == dev_priv->rps.power)
3118 		return;
3119 
3120 	/* Note the units here are not exactly 1us, but 1280ns. */
3121 	switch (new_power) {
3122 	case LOW_POWER:
3123 		/* Upclock if more than 95% busy over 16ms */
3124 		I915_WRITE(GEN6_RP_UP_EI, 12500);
3125 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3126 
3127 		/* Downclock if less than 85% busy over 32ms */
3128 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3129 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3130 
3131 		I915_WRITE(GEN6_RP_CONTROL,
3132 			   GEN6_RP_MEDIA_TURBO |
3133 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3134 			   GEN6_RP_MEDIA_IS_GFX |
3135 			   GEN6_RP_ENABLE |
3136 			   GEN6_RP_UP_BUSY_AVG |
3137 			   GEN6_RP_DOWN_IDLE_AVG);
3138 		break;
3139 
3140 	case BETWEEN:
3141 		/* Upclock if more than 90% busy over 13ms */
3142 		I915_WRITE(GEN6_RP_UP_EI, 10250);
3143 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3144 
3145 		/* Downclock if less than 75% busy over 32ms */
3146 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3147 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3148 
3149 		I915_WRITE(GEN6_RP_CONTROL,
3150 			   GEN6_RP_MEDIA_TURBO |
3151 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3152 			   GEN6_RP_MEDIA_IS_GFX |
3153 			   GEN6_RP_ENABLE |
3154 			   GEN6_RP_UP_BUSY_AVG |
3155 			   GEN6_RP_DOWN_IDLE_AVG);
3156 		break;
3157 
3158 	case HIGH_POWER:
3159 		/* Upclock if more than 85% busy over 10ms */
3160 		I915_WRITE(GEN6_RP_UP_EI, 8000);
3161 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3162 
3163 		/* Downclock if less than 60% busy over 32ms */
3164 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3165 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3166 
3167 		I915_WRITE(GEN6_RP_CONTROL,
3168 			   GEN6_RP_MEDIA_TURBO |
3169 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3170 			   GEN6_RP_MEDIA_IS_GFX |
3171 			   GEN6_RP_ENABLE |
3172 			   GEN6_RP_UP_BUSY_AVG |
3173 			   GEN6_RP_DOWN_IDLE_AVG);
3174 		break;
3175 	}
3176 
3177 	dev_priv->rps.power = new_power;
3178 	dev_priv->rps.last_adj = 0;
3179 }
3180 
3181 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3182 {
3183 	u32 mask = 0;
3184 
3185 	if (val > dev_priv->rps.min_freq_softlimit)
3186 		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3187 	if (val < dev_priv->rps.max_freq_softlimit)
3188 		mask |= GEN6_PM_RP_UP_THRESHOLD;
3189 
3190 	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3191 	mask &= dev_priv->pm_rps_events;
3192 
3193 	/* IVB and SNB hard hangs on looping batchbuffer
3194 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
3195 	 */
3196 	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3197 		mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3198 
3199 	if (IS_GEN8(dev_priv->dev))
3200 		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3201 
3202 	return ~mask;
3203 }
3204 
3205 /* gen6_set_rps is called to update the frequency request, but should also be
3206  * called when the range (min_delay and max_delay) is modified so that we can
3207  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3208 void gen6_set_rps(struct drm_device *dev, u8 val)
3209 {
3210 	struct drm_i915_private *dev_priv = dev->dev_private;
3211 
3212 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3213 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3214 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3215 
3216 	/* min/max delay may still have been modified so be sure to
3217 	 * write the limits value.
3218 	 */
3219 	if (val != dev_priv->rps.cur_freq) {
3220 		gen6_set_rps_thresholds(dev_priv, val);
3221 
3222 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3223 			I915_WRITE(GEN6_RPNSWREQ,
3224 				   HSW_FREQUENCY(val));
3225 		else
3226 			I915_WRITE(GEN6_RPNSWREQ,
3227 				   GEN6_FREQUENCY(val) |
3228 				   GEN6_OFFSET(0) |
3229 				   GEN6_AGGRESSIVE_TURBO);
3230 	}
3231 
3232 	/* Make sure we continue to get interrupts
3233 	 * until we hit the minimum or maximum frequencies.
3234 	 */
3235 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3236 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3237 
3238 	POSTING_READ(GEN6_RPNSWREQ);
3239 
3240 	dev_priv->rps.cur_freq = val;
3241 	trace_intel_gpu_freq_change(val * 50);
3242 }
3243 
3244 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3245  *
3246  * * If Gfx is Idle, then
3247  * 1. Mask Turbo interrupts
3248  * 2. Bring up Gfx clock
3249  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3250  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3251  * 5. Unmask Turbo interrupts
3252 */
3253 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3254 {
3255 	int revision;
3256 
3257 	struct drm_device *dev = dev_priv->dev;
3258 
3259 	/* Latest VLV doesn't need to force the gfx clock */
3260 	revision = pci_read_config(dev->dev, PCIR_REVID, 1);
3261 	if (revision >= 0xd) {
3262 		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3263 		return;
3264 	}
3265 
3266 	/*
3267 	 * When we are idle.  Drop to min voltage state.
3268 	 */
3269 
3270 	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3271 		return;
3272 
3273 	/* Mask turbo interrupt so that they will not come in between */
3274 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3275 
3276 	vlv_force_gfx_clock(dev_priv, true);
3277 
3278 	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3279 
3280 	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3281 					dev_priv->rps.min_freq_softlimit);
3282 
3283 	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3284 				& GENFREQSTATUS) == 0, 5))
3285 		DRM_ERROR("timed out waiting for Punit\n");
3286 
3287 	vlv_force_gfx_clock(dev_priv, false);
3288 
3289 	I915_WRITE(GEN6_PMINTRMSK,
3290 		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3291 }
3292 
3293 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3294 {
3295 	struct drm_device *dev = dev_priv->dev;
3296 
3297 	mutex_lock(&dev_priv->rps.hw_lock);
3298 	if (dev_priv->rps.enabled) {
3299 		if (IS_CHERRYVIEW(dev))
3300 			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3301 		else if (IS_VALLEYVIEW(dev))
3302 			vlv_set_rps_idle(dev_priv);
3303 		else
3304 			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3305 		dev_priv->rps.last_adj = 0;
3306 	}
3307 	mutex_unlock(&dev_priv->rps.hw_lock);
3308 }
3309 
3310 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3311 {
3312 	struct drm_device *dev = dev_priv->dev;
3313 
3314 	mutex_lock(&dev_priv->rps.hw_lock);
3315 	if (dev_priv->rps.enabled) {
3316 		if (IS_VALLEYVIEW(dev))
3317 			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3318 		else
3319 			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3320 		dev_priv->rps.last_adj = 0;
3321 	}
3322 	mutex_unlock(&dev_priv->rps.hw_lock);
3323 }
3324 
3325 void valleyview_set_rps(struct drm_device *dev, u8 val)
3326 {
3327 	struct drm_i915_private *dev_priv = dev->dev_private;
3328 
3329 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3330 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3331 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3332 
3333 	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3334 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3335 			 dev_priv->rps.cur_freq,
3336 			 vlv_gpu_freq(dev_priv, val), val);
3337 
3338 	if (val != dev_priv->rps.cur_freq)
3339 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3340 
3341 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3342 
3343 	dev_priv->rps.cur_freq = val;
3344 	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3345 }
3346 
3347 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3348 {
3349 	struct drm_i915_private *dev_priv = dev->dev_private;
3350 
3351 	I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3352 	I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3353 				   ~dev_priv->pm_rps_events);
3354 	/* Complete PM interrupt masking here doesn't race with the rps work
3355 	 * item again unmasking PM interrupts because that is using a different
3356 	 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3357 	 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3358 	 * gen8_enable_rps will clean up. */
3359 
3360 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3361 	dev_priv->rps.pm_iir = 0;
3362 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3363 
3364 	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3365 }
3366 
3367 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3368 {
3369 	struct drm_i915_private *dev_priv = dev->dev_private;
3370 
3371 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3372 	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3373 				~dev_priv->pm_rps_events);
3374 	/* Complete PM interrupt masking here doesn't race with the rps work
3375 	 * item again unmasking PM interrupts because that is using a different
3376 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3377 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3378 
3379 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3380 	dev_priv->rps.pm_iir = 0;
3381 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3382 
3383 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3384 }
3385 
3386 static void gen6_disable_rps(struct drm_device *dev)
3387 {
3388 	struct drm_i915_private *dev_priv = dev->dev_private;
3389 
3390 	I915_WRITE(GEN6_RC_CONTROL, 0);
3391 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3392 
3393 	if (IS_BROADWELL(dev))
3394 		gen8_disable_rps_interrupts(dev);
3395 	else
3396 		gen6_disable_rps_interrupts(dev);
3397 }
3398 
3399 static void cherryview_disable_rps(struct drm_device *dev)
3400 {
3401 	struct drm_i915_private *dev_priv = dev->dev_private;
3402 
3403 	I915_WRITE(GEN6_RC_CONTROL, 0);
3404 
3405 	gen8_disable_rps_interrupts(dev);
3406 }
3407 
3408 static void valleyview_disable_rps(struct drm_device *dev)
3409 {
3410 	struct drm_i915_private *dev_priv = dev->dev_private;
3411 
3412 	I915_WRITE(GEN6_RC_CONTROL, 0);
3413 
3414 	gen6_disable_rps_interrupts(dev);
3415 }
3416 
3417 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3418 {
3419 	if (IS_VALLEYVIEW(dev)) {
3420 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3421 			mode = GEN6_RC_CTL_RC6_ENABLE;
3422 		else
3423 			mode = 0;
3424 	}
3425 	DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3426 		      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3427 		      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3428 		      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3429 }
3430 
3431 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3432 {
3433 	/* No RC6 before Ironlake */
3434 	if (INTEL_INFO(dev)->gen < 5)
3435 		return 0;
3436 
3437 	/* RC6 is only on Ironlake mobile not on desktop */
3438 	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3439 		return 0;
3440 
3441 	/* Respect the kernel parameter if it is set */
3442 	if (enable_rc6 >= 0) {
3443 		int mask;
3444 
3445 		if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3446 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3447 			       INTEL_RC6pp_ENABLE;
3448 		else
3449 			mask = INTEL_RC6_ENABLE;
3450 
3451 		if ((enable_rc6 & mask) != enable_rc6)
3452 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3453 				      enable_rc6 & mask, enable_rc6, mask);
3454 
3455 		return enable_rc6 & mask;
3456 	}
3457 
3458 	/* Disable RC6 on Ironlake */
3459 	if (INTEL_INFO(dev)->gen == 5)
3460 		return 0;
3461 
3462 	if (IS_IVYBRIDGE(dev))
3463 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3464 
3465 	return INTEL_RC6_ENABLE;
3466 }
3467 
3468 int intel_enable_rc6(const struct drm_device *dev)
3469 {
3470 	return i915.enable_rc6;
3471 }
3472 
3473 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3474 {
3475 	struct drm_i915_private *dev_priv = dev->dev_private;
3476 
3477 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3478 	WARN_ON(dev_priv->rps.pm_iir);
3479 	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3480 	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3481 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3482 }
3483 
3484 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3485 {
3486 	struct drm_i915_private *dev_priv = dev->dev_private;
3487 
3488 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3489 	WARN_ON(dev_priv->rps.pm_iir);
3490 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3491 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3492 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3493 }
3494 
3495 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3496 {
3497 	/* All of these values are in units of 50MHz */
3498 	dev_priv->rps.cur_freq		= 0;
3499 	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3500 	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
3501 	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
3502 	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
3503 	/* XXX: only BYT has a special efficient freq */
3504 	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
3505 	/* hw_max = RP0 until we check for overclocking */
3506 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
3507 
3508 	/* Preserve min/max settings in case of re-init */
3509 	if (dev_priv->rps.max_freq_softlimit == 0)
3510 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3511 
3512 	if (dev_priv->rps.min_freq_softlimit == 0)
3513 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3514 }
3515 
3516 static void gen8_enable_rps(struct drm_device *dev)
3517 {
3518 	struct drm_i915_private *dev_priv = dev->dev_private;
3519 	struct intel_engine_cs *ring;
3520 	uint32_t rc6_mask = 0, rp_state_cap;
3521 	int unused;
3522 
3523 	/* 1a: Software RC state - RC0 */
3524 	I915_WRITE(GEN6_RC_STATE, 0);
3525 
3526 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
3527 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3528 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3529 
3530 	/* 2a: Disable RC states. */
3531 	I915_WRITE(GEN6_RC_CONTROL, 0);
3532 
3533 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3534 	parse_rp_state_cap(dev_priv, rp_state_cap);
3535 
3536 	/* 2b: Program RC6 thresholds.*/
3537 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3538 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3539 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3540 	for_each_ring(ring, dev_priv, unused)
3541 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3542 	I915_WRITE(GEN6_RC_SLEEP, 0);
3543 	if (IS_BROADWELL(dev))
3544 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3545 	else
3546 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3547 
3548 	/* 3: Enable RC6 */
3549 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3550 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3551 	intel_print_rc6_info(dev, rc6_mask);
3552 	if (IS_BROADWELL(dev))
3553 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3554 				GEN7_RC_CTL_TO_MODE |
3555 				rc6_mask);
3556 	else
3557 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3558 				GEN6_RC_CTL_EI_MODE(1) |
3559 				rc6_mask);
3560 
3561 	/* 4 Program defaults and thresholds for RPS*/
3562 	I915_WRITE(GEN6_RPNSWREQ,
3563 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3564 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
3565 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3566 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3567 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3568 
3569 	/* Docs recommend 900MHz, and 300 MHz respectively */
3570 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3571 		   dev_priv->rps.max_freq_softlimit << 24 |
3572 		   dev_priv->rps.min_freq_softlimit << 16);
3573 
3574 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3575 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3576 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3577 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3578 
3579 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3580 
3581 	/* 5: Enable RPS */
3582 	I915_WRITE(GEN6_RP_CONTROL,
3583 		   GEN6_RP_MEDIA_TURBO |
3584 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3585 		   GEN6_RP_MEDIA_IS_GFX |
3586 		   GEN6_RP_ENABLE |
3587 		   GEN6_RP_UP_BUSY_AVG |
3588 		   GEN6_RP_DOWN_IDLE_AVG);
3589 
3590 	/* 6: Ring frequency + overclocking (our driver does this later */
3591 
3592 	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3593 
3594 	gen8_enable_rps_interrupts(dev);
3595 
3596 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3597 }
3598 
3599 static void gen6_enable_rps(struct drm_device *dev)
3600 {
3601 	struct drm_i915_private *dev_priv = dev->dev_private;
3602 	struct intel_engine_cs *ring;
3603 	u32 rp_state_cap;
3604 	u32 gt_perf_status;
3605 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3606 	u32 gtfifodbg;
3607 	int rc6_mode;
3608 	int i, ret;
3609 
3610 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3611 
3612 	/* Here begins a magic sequence of register writes to enable
3613 	 * auto-downclocking.
3614 	 *
3615 	 * Perhaps there might be some value in exposing these to
3616 	 * userspace...
3617 	 */
3618 	I915_WRITE(GEN6_RC_STATE, 0);
3619 
3620 	/* Clear the DBG now so we don't confuse earlier errors */
3621 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3622 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3623 		I915_WRITE(GTFIFODBG, gtfifodbg);
3624 	}
3625 
3626 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3627 
3628 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3629 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3630 
3631 	parse_rp_state_cap(dev_priv, rp_state_cap);
3632 
3633 	/* disable the counters and set deterministic thresholds */
3634 	I915_WRITE(GEN6_RC_CONTROL, 0);
3635 
3636 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3637 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3638 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3639 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3640 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3641 
3642 	for_each_ring(ring, dev_priv, i)
3643 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3644 
3645 	I915_WRITE(GEN6_RC_SLEEP, 0);
3646 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3647 	if (IS_IVYBRIDGE(dev))
3648 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3649 	else
3650 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3651 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3652 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3653 
3654 	/* Check if we are enabling RC6 */
3655 	rc6_mode = intel_enable_rc6(dev_priv->dev);
3656 	if (rc6_mode & INTEL_RC6_ENABLE)
3657 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3658 
3659 	/* We don't use those on Haswell */
3660 	if (!IS_HASWELL(dev)) {
3661 		if (rc6_mode & INTEL_RC6p_ENABLE)
3662 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3663 
3664 		if (rc6_mode & INTEL_RC6pp_ENABLE)
3665 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3666 	}
3667 
3668 	intel_print_rc6_info(dev, rc6_mask);
3669 
3670 	I915_WRITE(GEN6_RC_CONTROL,
3671 		   rc6_mask |
3672 		   GEN6_RC_CTL_EI_MODE(1) |
3673 		   GEN6_RC_CTL_HW_ENABLE);
3674 
3675 	/* Power down if completely idle for over 50ms */
3676 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3677 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3678 
3679 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3680 	if (ret)
3681 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3682 
3683 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3684 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3685 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3686 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3687 				 (pcu_mbox & 0xff) * 50);
3688 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3689 	}
3690 
3691 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3692 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3693 
3694 	gen6_enable_rps_interrupts(dev);
3695 
3696 	rc6vids = 0;
3697 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3698 	if (IS_GEN6(dev) && ret) {
3699 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3700 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3701 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3702 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3703 		rc6vids &= 0xffff00;
3704 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
3705 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3706 		if (ret)
3707 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3708 	}
3709 
3710 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3711 }
3712 
3713 static void __gen6_update_ring_freq(struct drm_device *dev)
3714 {
3715 	struct drm_i915_private *dev_priv = dev->dev_private;
3716 	int min_freq = 15;
3717 	unsigned int gpu_freq;
3718 	unsigned int max_ia_freq, min_ring_freq;
3719 	int scaling_factor = 180;
3720 
3721 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3722 
3723 #if 0
3724 	policy = cpufreq_cpu_get(0);
3725 	if (policy) {
3726 		max_ia_freq = policy->cpuinfo.max_freq;
3727 		cpufreq_cpu_put(policy);
3728 	} else {
3729 		/*
3730 		 * Default to measured freq if none found, PCU will ensure we
3731 		 * don't go over
3732 		 */
3733 		max_ia_freq = tsc_khz;
3734 	}
3735 #else
3736 	max_ia_freq = tsc_frequency / 1000;
3737 #endif
3738 
3739 	/* Convert from kHz to MHz */
3740 	max_ia_freq /= 1000;
3741 
3742 	min_ring_freq = I915_READ(DCLK) & 0xf;
3743 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
3744 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3745 
3746 	/*
3747 	 * For each potential GPU frequency, load a ring frequency we'd like
3748 	 * to use for memory access.  We do this by specifying the IA frequency
3749 	 * the PCU should use as a reference to determine the ring frequency.
3750 	 */
3751 	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3752 	     gpu_freq--) {
3753 		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3754 		unsigned int ia_freq = 0, ring_freq = 0;
3755 
3756 		if (INTEL_INFO(dev)->gen >= 8) {
3757 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
3758 			ring_freq = max(min_ring_freq, gpu_freq);
3759 		} else if (IS_HASWELL(dev)) {
3760 			ring_freq = mult_frac(gpu_freq, 5, 4);
3761 			ring_freq = max(min_ring_freq, ring_freq);
3762 			/* leave ia_freq as the default, chosen by cpufreq */
3763 		} else {
3764 			/* On older processors, there is no separate ring
3765 			 * clock domain, so in order to boost the bandwidth
3766 			 * of the ring, we need to upclock the CPU (ia_freq).
3767 			 *
3768 			 * For GPU frequencies less than 750MHz,
3769 			 * just use the lowest ring freq.
3770 			 */
3771 			if (gpu_freq < min_freq)
3772 				ia_freq = 800;
3773 			else
3774 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3775 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3776 		}
3777 
3778 		sandybridge_pcode_write(dev_priv,
3779 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3780 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3781 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3782 					gpu_freq);
3783 	}
3784 }
3785 
3786 void gen6_update_ring_freq(struct drm_device *dev)
3787 {
3788 	struct drm_i915_private *dev_priv = dev->dev_private;
3789 
3790 	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3791 		return;
3792 
3793 	mutex_lock(&dev_priv->rps.hw_lock);
3794 	__gen6_update_ring_freq(dev);
3795 	mutex_unlock(&dev_priv->rps.hw_lock);
3796 }
3797 
3798 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3799 {
3800 	u32 val, rp0;
3801 
3802 	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3803 	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3804 
3805 	return rp0;
3806 }
3807 
3808 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3809 {
3810 	u32 val, rpe;
3811 
3812 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3813 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3814 
3815 	return rpe;
3816 }
3817 
3818 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3819 {
3820 	u32 val, rp1;
3821 
3822 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3823 	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3824 
3825 	return rp1;
3826 }
3827 
3828 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3829 {
3830 	u32 val, rpn;
3831 
3832 	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3833 	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3834 	return rpn;
3835 }
3836 
3837 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
3838 {
3839 	u32 val, rp1;
3840 
3841 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3842 
3843 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
3844 
3845 	return rp1;
3846 }
3847 
3848 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3849 {
3850 	u32 val, rp0;
3851 
3852 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3853 
3854 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3855 	/* Clamp to max */
3856 	rp0 = min_t(u32, rp0, 0xea);
3857 
3858 	return rp0;
3859 }
3860 
3861 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3862 {
3863 	u32 val, rpe;
3864 
3865 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3866 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3867 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3868 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3869 
3870 	return rpe;
3871 }
3872 
3873 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3874 {
3875 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3876 }
3877 
3878 /* Check that the pctx buffer wasn't move under us. */
3879 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3880 {
3881 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3882 
3883 	/* DragonFly - if EDID fails vlv_pctx can wind up NULL */
3884 	if (WARN_ON(!dev_priv->vlv_pctx))
3885 		return;
3886 
3887 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3888 			     dev_priv->vlv_pctx->stolen->start);
3889 }
3890 
3891 
3892 /* Check that the pcbr address is not empty. */
3893 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3894 {
3895 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3896 
3897 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3898 }
3899 
3900 static void cherryview_setup_pctx(struct drm_device *dev)
3901 {
3902 	struct drm_i915_private *dev_priv = dev->dev_private;
3903 	unsigned long pctx_paddr, paddr;
3904 	struct i915_gtt *gtt = &dev_priv->gtt;
3905 	u32 pcbr;
3906 	int pctx_size = 32*1024;
3907 
3908 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3909 
3910 	pcbr = I915_READ(VLV_PCBR);
3911 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3912 		paddr = (dev_priv->mm.stolen_base +
3913 			 (gtt->stolen_size - pctx_size));
3914 
3915 		pctx_paddr = (paddr & (~4095));
3916 		I915_WRITE(VLV_PCBR, pctx_paddr);
3917 	}
3918 }
3919 
3920 static void valleyview_setup_pctx(struct drm_device *dev)
3921 {
3922 	struct drm_i915_private *dev_priv = dev->dev_private;
3923 	struct drm_i915_gem_object *pctx;
3924 	unsigned long pctx_paddr;
3925 	u32 pcbr;
3926 	int pctx_size = 24*1024;
3927 
3928 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3929 
3930 	pcbr = I915_READ(VLV_PCBR);
3931 	if (pcbr) {
3932 		/* BIOS set it up already, grab the pre-alloc'd space */
3933 		int pcbr_offset;
3934 
3935 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3936 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3937 								      pcbr_offset,
3938 								      I915_GTT_OFFSET_NONE,
3939 								      pctx_size);
3940 		goto out;
3941 	}
3942 
3943 	/*
3944 	 * From the Gunit register HAS:
3945 	 * The Gfx driver is expected to program this register and ensure
3946 	 * proper allocation within Gfx stolen memory.  For example, this
3947 	 * register should be programmed such than the PCBR range does not
3948 	 * overlap with other ranges, such as the frame buffer, protected
3949 	 * memory, or any other relevant ranges.
3950 	 */
3951 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
3952 	if (!pctx) {
3953 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3954 		return;
3955 	}
3956 
3957 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3958 	I915_WRITE(VLV_PCBR, pctx_paddr);
3959 
3960 out:
3961 	dev_priv->vlv_pctx = pctx;
3962 }
3963 
3964 static void valleyview_cleanup_pctx(struct drm_device *dev)
3965 {
3966 	struct drm_i915_private *dev_priv = dev->dev_private;
3967 
3968 	if (WARN_ON(!dev_priv->vlv_pctx))
3969 		return;
3970 
3971 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3972 	dev_priv->vlv_pctx = NULL;
3973 }
3974 
3975 static void valleyview_init_gt_powersave(struct drm_device *dev)
3976 {
3977 	struct drm_i915_private *dev_priv = dev->dev_private;
3978 
3979 	valleyview_setup_pctx(dev);
3980 
3981 	mutex_lock(&dev_priv->rps.hw_lock);
3982 
3983 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3984 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3985 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3986 			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3987 			 dev_priv->rps.max_freq);
3988 
3989 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3990 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3991 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3992 			 dev_priv->rps.efficient_freq);
3993 
3994 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
3995 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
3996 			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
3997 			 dev_priv->rps.rp1_freq);
3998 
3999 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4000 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4001 			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4002 			 dev_priv->rps.min_freq);
4003 
4004 	/* Preserve min/max settings in case of re-init */
4005 	if (dev_priv->rps.max_freq_softlimit == 0)
4006 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4007 
4008 	if (dev_priv->rps.min_freq_softlimit == 0)
4009 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4010 
4011 	mutex_unlock(&dev_priv->rps.hw_lock);
4012 }
4013 
4014 static void cherryview_init_gt_powersave(struct drm_device *dev)
4015 {
4016 	struct drm_i915_private *dev_priv = dev->dev_private;
4017 
4018 	cherryview_setup_pctx(dev);
4019 
4020 	mutex_lock(&dev_priv->rps.hw_lock);
4021 
4022 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4023 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4024 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4025 			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4026 			 dev_priv->rps.max_freq);
4027 
4028 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4029 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4030 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4031 			 dev_priv->rps.efficient_freq);
4032 
4033 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4034 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4035 			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4036 			 dev_priv->rps.rp1_freq);
4037 
4038 	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4039 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4040 			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4041 			 dev_priv->rps.min_freq);
4042 
4043 	/* Preserve min/max settings in case of re-init */
4044 	if (dev_priv->rps.max_freq_softlimit == 0)
4045 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4046 
4047 	if (dev_priv->rps.min_freq_softlimit == 0)
4048 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4049 
4050 	mutex_unlock(&dev_priv->rps.hw_lock);
4051 }
4052 
4053 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4054 {
4055 	valleyview_cleanup_pctx(dev);
4056 }
4057 
4058 static void cherryview_enable_rps(struct drm_device *dev)
4059 {
4060 	struct drm_i915_private *dev_priv = dev->dev_private;
4061 	struct intel_engine_cs *ring;
4062 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4063 	int i;
4064 
4065 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4066 
4067 	gtfifodbg = I915_READ(GTFIFODBG);
4068 	if (gtfifodbg) {
4069 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4070 				 gtfifodbg);
4071 		I915_WRITE(GTFIFODBG, gtfifodbg);
4072 	}
4073 
4074 	cherryview_check_pctx(dev_priv);
4075 
4076 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
4077 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4078 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4079 
4080 	/* 2a: Program RC6 thresholds.*/
4081 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4082 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4083 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4084 
4085 	for_each_ring(ring, dev_priv, i)
4086 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4087 	I915_WRITE(GEN6_RC_SLEEP, 0);
4088 
4089 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4090 
4091 	/* allows RC6 residency counter to work */
4092 	I915_WRITE(VLV_COUNTER_CONTROL,
4093 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4094 				      VLV_MEDIA_RC6_COUNT_EN |
4095 				      VLV_RENDER_RC6_COUNT_EN));
4096 
4097 	/* For now we assume BIOS is allocating and populating the PCBR  */
4098 	pcbr = I915_READ(VLV_PCBR);
4099 
4100 	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4101 
4102 	/* 3: Enable RC6 */
4103 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4104 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
4105 		rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4106 
4107 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4108 
4109 	/* 4 Program defaults and thresholds for RPS*/
4110 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4111 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4112 	I915_WRITE(GEN6_RP_UP_EI, 66000);
4113 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4114 
4115 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4116 
4117 	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
4118 	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4119 	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4120 
4121 	/* 5: Enable RPS */
4122 	I915_WRITE(GEN6_RP_CONTROL,
4123 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4124 		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4125 		   GEN6_RP_ENABLE |
4126 		   GEN6_RP_UP_BUSY_AVG |
4127 		   GEN6_RP_DOWN_IDLE_AVG);
4128 
4129 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4130 
4131 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4132 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4133 
4134 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4135 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4136 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4137 			 dev_priv->rps.cur_freq);
4138 
4139 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4140 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4141 			 dev_priv->rps.efficient_freq);
4142 
4143 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4144 
4145 	gen8_enable_rps_interrupts(dev);
4146 
4147 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4148 }
4149 
4150 static void valleyview_enable_rps(struct drm_device *dev)
4151 {
4152 	struct drm_i915_private *dev_priv = dev->dev_private;
4153 	struct intel_engine_cs *ring;
4154 	u32 gtfifodbg, val, rc6_mode = 0;
4155 	int i;
4156 
4157 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4158 
4159 	valleyview_check_pctx(dev_priv);
4160 
4161 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4162 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4163 				 gtfifodbg);
4164 		I915_WRITE(GTFIFODBG, gtfifodbg);
4165 	}
4166 
4167 	/* If VLV, Forcewake all wells, else re-direct to regular path */
4168 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4169 
4170 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4171 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4172 	I915_WRITE(GEN6_RP_UP_EI, 66000);
4173 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4174 
4175 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4176 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4177 
4178 	I915_WRITE(GEN6_RP_CONTROL,
4179 		   GEN6_RP_MEDIA_TURBO |
4180 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4181 		   GEN6_RP_MEDIA_IS_GFX |
4182 		   GEN6_RP_ENABLE |
4183 		   GEN6_RP_UP_BUSY_AVG |
4184 		   GEN6_RP_DOWN_IDLE_CONT);
4185 
4186 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4187 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4188 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4189 
4190 	for_each_ring(ring, dev_priv, i)
4191 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4192 
4193 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4194 
4195 	/* allows RC6 residency counter to work */
4196 	I915_WRITE(VLV_COUNTER_CONTROL,
4197 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4198 				      VLV_RENDER_RC0_COUNT_EN |
4199 				      VLV_MEDIA_RC6_COUNT_EN |
4200 				      VLV_RENDER_RC6_COUNT_EN));
4201 
4202 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4203 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4204 
4205 	intel_print_rc6_info(dev, rc6_mode);
4206 
4207 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4208 
4209 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4210 
4211 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4212 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4213 
4214 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4215 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4216 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4217 			 dev_priv->rps.cur_freq);
4218 
4219 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4220 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4221 			 dev_priv->rps.efficient_freq);
4222 
4223 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4224 
4225 	gen6_enable_rps_interrupts(dev);
4226 
4227 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4228 }
4229 
4230 void ironlake_teardown_rc6(struct drm_device *dev)
4231 {
4232 	struct drm_i915_private *dev_priv = dev->dev_private;
4233 
4234 	if (dev_priv->ips.renderctx) {
4235 		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4236 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4237 		dev_priv->ips.renderctx = NULL;
4238 	}
4239 
4240 	if (dev_priv->ips.pwrctx) {
4241 		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4242 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4243 		dev_priv->ips.pwrctx = NULL;
4244 	}
4245 }
4246 
4247 static void ironlake_disable_rc6(struct drm_device *dev)
4248 {
4249 	struct drm_i915_private *dev_priv = dev->dev_private;
4250 
4251 	if (I915_READ(PWRCTXA)) {
4252 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4253 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4254 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4255 			 50);
4256 
4257 		I915_WRITE(PWRCTXA, 0);
4258 		POSTING_READ(PWRCTXA);
4259 
4260 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4261 		POSTING_READ(RSTDBYCTL);
4262 	}
4263 }
4264 
4265 static int ironlake_setup_rc6(struct drm_device *dev)
4266 {
4267 	struct drm_i915_private *dev_priv = dev->dev_private;
4268 
4269 	if (dev_priv->ips.renderctx == NULL)
4270 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4271 	if (!dev_priv->ips.renderctx)
4272 		return -ENOMEM;
4273 
4274 	if (dev_priv->ips.pwrctx == NULL)
4275 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4276 	if (!dev_priv->ips.pwrctx) {
4277 		ironlake_teardown_rc6(dev);
4278 		return -ENOMEM;
4279 	}
4280 
4281 	return 0;
4282 }
4283 
4284 static void ironlake_enable_rc6(struct drm_device *dev)
4285 {
4286 	struct drm_i915_private *dev_priv = dev->dev_private;
4287 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4288 	bool was_interruptible;
4289 	int ret;
4290 
4291 	/* rc6 disabled by default due to repeated reports of hanging during
4292 	 * boot and resume.
4293 	 */
4294 	if (!intel_enable_rc6(dev))
4295 		return;
4296 
4297 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4298 
4299 	ret = ironlake_setup_rc6(dev);
4300 	if (ret)
4301 		return;
4302 
4303 	was_interruptible = dev_priv->mm.interruptible;
4304 	dev_priv->mm.interruptible = false;
4305 
4306 	/*
4307 	 * GPU can automatically power down the render unit if given a page
4308 	 * to save state.
4309 	 */
4310 	ret = intel_ring_begin(ring, 6);
4311 	if (ret) {
4312 		ironlake_teardown_rc6(dev);
4313 		dev_priv->mm.interruptible = was_interruptible;
4314 		return;
4315 	}
4316 
4317 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4318 	intel_ring_emit(ring, MI_SET_CONTEXT);
4319 	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4320 			MI_MM_SPACE_GTT |
4321 			MI_SAVE_EXT_STATE_EN |
4322 			MI_RESTORE_EXT_STATE_EN |
4323 			MI_RESTORE_INHIBIT);
4324 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4325 	intel_ring_emit(ring, MI_NOOP);
4326 	intel_ring_emit(ring, MI_FLUSH);
4327 	intel_ring_advance(ring);
4328 
4329 	/*
4330 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4331 	 * does an implicit flush, combined with MI_FLUSH above, it should be
4332 	 * safe to assume that renderctx is valid
4333 	 */
4334 	ret = intel_ring_idle(ring);
4335 	dev_priv->mm.interruptible = was_interruptible;
4336 	if (ret) {
4337 		DRM_ERROR("failed to enable ironlake power savings\n");
4338 		ironlake_teardown_rc6(dev);
4339 		return;
4340 	}
4341 
4342 	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4343 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4344 
4345 	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4346 }
4347 
4348 static unsigned long intel_pxfreq(u32 vidfreq)
4349 {
4350 	unsigned long freq;
4351 	int div = (vidfreq & 0x3f0000) >> 16;
4352 	int post = (vidfreq & 0x3000) >> 12;
4353 	int pre = (vidfreq & 0x7);
4354 
4355 	if (!pre)
4356 		return 0;
4357 
4358 	freq = ((div * 133333) / ((1<<post) * pre));
4359 
4360 	return freq;
4361 }
4362 
4363 static const struct cparams {
4364 	u16 i;
4365 	u16 t;
4366 	u16 m;
4367 	u16 c;
4368 } cparams[] = {
4369 	{ 1, 1333, 301, 28664 },
4370 	{ 1, 1066, 294, 24460 },
4371 	{ 1, 800, 294, 25192 },
4372 	{ 0, 1333, 276, 27605 },
4373 	{ 0, 1066, 276, 27605 },
4374 	{ 0, 800, 231, 23784 },
4375 };
4376 
4377 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4378 {
4379 	u64 total_count, diff, ret;
4380 	u32 count1, count2, count3, m = 0, c = 0;
4381 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
4382 	int i;
4383 
4384 	assert_spin_locked(&mchdev_lock);
4385 
4386 	diff1 = now - dev_priv->ips.last_time1;
4387 
4388 	/* Prevent division-by-zero if we are asking too fast.
4389 	 * Also, we don't get interesting results if we are polling
4390 	 * faster than once in 10ms, so just return the saved value
4391 	 * in such cases.
4392 	 */
4393 	if (diff1 <= 10)
4394 		return dev_priv->ips.chipset_power;
4395 
4396 	count1 = I915_READ(DMIEC);
4397 	count2 = I915_READ(DDREC);
4398 	count3 = I915_READ(CSIEC);
4399 
4400 	total_count = count1 + count2 + count3;
4401 
4402 	/* FIXME: handle per-counter overflow */
4403 	if (total_count < dev_priv->ips.last_count1) {
4404 		diff = ~0UL - dev_priv->ips.last_count1;
4405 		diff += total_count;
4406 	} else {
4407 		diff = total_count - dev_priv->ips.last_count1;
4408 	}
4409 
4410 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4411 		if (cparams[i].i == dev_priv->ips.c_m &&
4412 		    cparams[i].t == dev_priv->ips.r_t) {
4413 			m = cparams[i].m;
4414 			c = cparams[i].c;
4415 			break;
4416 		}
4417 	}
4418 
4419 	diff = div_u64(diff, diff1);
4420 	ret = ((m * diff) + c);
4421 	ret = div_u64(ret, 10);
4422 
4423 	dev_priv->ips.last_count1 = total_count;
4424 	dev_priv->ips.last_time1 = now;
4425 
4426 	dev_priv->ips.chipset_power = ret;
4427 
4428 	return ret;
4429 }
4430 
4431 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4432 {
4433 	struct drm_device *dev = dev_priv->dev;
4434 	unsigned long val;
4435 
4436 	if (INTEL_INFO(dev)->gen != 5)
4437 		return 0;
4438 
4439 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4440 
4441 	val = __i915_chipset_val(dev_priv);
4442 
4443 	lockmgr(&mchdev_lock, LK_RELEASE);
4444 
4445 	return val;
4446 }
4447 
4448 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4449 {
4450 	unsigned long m, x, b;
4451 	u32 tsfs;
4452 
4453 	tsfs = I915_READ(TSFS);
4454 
4455 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4456 	x = I915_READ8(TR1);
4457 
4458 	b = tsfs & TSFS_INTR_MASK;
4459 
4460 	return ((m * x) / 127) - b;
4461 }
4462 
4463 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4464 {
4465 	struct drm_device *dev = dev_priv->dev;
4466 	static const struct v_table {
4467 		u16 vd; /* in .1 mil */
4468 		u16 vm; /* in .1 mil */
4469 	} v_table[] = {
4470 		{ 0, 0, },
4471 		{ 375, 0, },
4472 		{ 500, 0, },
4473 		{ 625, 0, },
4474 		{ 750, 0, },
4475 		{ 875, 0, },
4476 		{ 1000, 0, },
4477 		{ 1125, 0, },
4478 		{ 4125, 3000, },
4479 		{ 4125, 3000, },
4480 		{ 4125, 3000, },
4481 		{ 4125, 3000, },
4482 		{ 4125, 3000, },
4483 		{ 4125, 3000, },
4484 		{ 4125, 3000, },
4485 		{ 4125, 3000, },
4486 		{ 4125, 3000, },
4487 		{ 4125, 3000, },
4488 		{ 4125, 3000, },
4489 		{ 4125, 3000, },
4490 		{ 4125, 3000, },
4491 		{ 4125, 3000, },
4492 		{ 4125, 3000, },
4493 		{ 4125, 3000, },
4494 		{ 4125, 3000, },
4495 		{ 4125, 3000, },
4496 		{ 4125, 3000, },
4497 		{ 4125, 3000, },
4498 		{ 4125, 3000, },
4499 		{ 4125, 3000, },
4500 		{ 4125, 3000, },
4501 		{ 4125, 3000, },
4502 		{ 4250, 3125, },
4503 		{ 4375, 3250, },
4504 		{ 4500, 3375, },
4505 		{ 4625, 3500, },
4506 		{ 4750, 3625, },
4507 		{ 4875, 3750, },
4508 		{ 5000, 3875, },
4509 		{ 5125, 4000, },
4510 		{ 5250, 4125, },
4511 		{ 5375, 4250, },
4512 		{ 5500, 4375, },
4513 		{ 5625, 4500, },
4514 		{ 5750, 4625, },
4515 		{ 5875, 4750, },
4516 		{ 6000, 4875, },
4517 		{ 6125, 5000, },
4518 		{ 6250, 5125, },
4519 		{ 6375, 5250, },
4520 		{ 6500, 5375, },
4521 		{ 6625, 5500, },
4522 		{ 6750, 5625, },
4523 		{ 6875, 5750, },
4524 		{ 7000, 5875, },
4525 		{ 7125, 6000, },
4526 		{ 7250, 6125, },
4527 		{ 7375, 6250, },
4528 		{ 7500, 6375, },
4529 		{ 7625, 6500, },
4530 		{ 7750, 6625, },
4531 		{ 7875, 6750, },
4532 		{ 8000, 6875, },
4533 		{ 8125, 7000, },
4534 		{ 8250, 7125, },
4535 		{ 8375, 7250, },
4536 		{ 8500, 7375, },
4537 		{ 8625, 7500, },
4538 		{ 8750, 7625, },
4539 		{ 8875, 7750, },
4540 		{ 9000, 7875, },
4541 		{ 9125, 8000, },
4542 		{ 9250, 8125, },
4543 		{ 9375, 8250, },
4544 		{ 9500, 8375, },
4545 		{ 9625, 8500, },
4546 		{ 9750, 8625, },
4547 		{ 9875, 8750, },
4548 		{ 10000, 8875, },
4549 		{ 10125, 9000, },
4550 		{ 10250, 9125, },
4551 		{ 10375, 9250, },
4552 		{ 10500, 9375, },
4553 		{ 10625, 9500, },
4554 		{ 10750, 9625, },
4555 		{ 10875, 9750, },
4556 		{ 11000, 9875, },
4557 		{ 11125, 10000, },
4558 		{ 11250, 10125, },
4559 		{ 11375, 10250, },
4560 		{ 11500, 10375, },
4561 		{ 11625, 10500, },
4562 		{ 11750, 10625, },
4563 		{ 11875, 10750, },
4564 		{ 12000, 10875, },
4565 		{ 12125, 11000, },
4566 		{ 12250, 11125, },
4567 		{ 12375, 11250, },
4568 		{ 12500, 11375, },
4569 		{ 12625, 11500, },
4570 		{ 12750, 11625, },
4571 		{ 12875, 11750, },
4572 		{ 13000, 11875, },
4573 		{ 13125, 12000, },
4574 		{ 13250, 12125, },
4575 		{ 13375, 12250, },
4576 		{ 13500, 12375, },
4577 		{ 13625, 12500, },
4578 		{ 13750, 12625, },
4579 		{ 13875, 12750, },
4580 		{ 14000, 12875, },
4581 		{ 14125, 13000, },
4582 		{ 14250, 13125, },
4583 		{ 14375, 13250, },
4584 		{ 14500, 13375, },
4585 		{ 14625, 13500, },
4586 		{ 14750, 13625, },
4587 		{ 14875, 13750, },
4588 		{ 15000, 13875, },
4589 		{ 15125, 14000, },
4590 		{ 15250, 14125, },
4591 		{ 15375, 14250, },
4592 		{ 15500, 14375, },
4593 		{ 15625, 14500, },
4594 		{ 15750, 14625, },
4595 		{ 15875, 14750, },
4596 		{ 16000, 14875, },
4597 		{ 16125, 15000, },
4598 	};
4599 	if (INTEL_INFO(dev)->is_mobile)
4600 		return v_table[pxvid].vm;
4601 	else
4602 		return v_table[pxvid].vd;
4603 }
4604 
4605 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4606 {
4607 	struct timespec now, diff1;
4608 	u64 diff;
4609 	unsigned long diffms;
4610 	u32 count;
4611 
4612 	assert_spin_locked(&mchdev_lock);
4613 
4614 	getrawmonotonic(&now);
4615 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4616 
4617 	/* Don't divide by 0 */
4618 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4619 	if (!diffms)
4620 		return;
4621 
4622 	count = I915_READ(GFXEC);
4623 
4624 	if (count < dev_priv->ips.last_count2) {
4625 		diff = ~0UL - dev_priv->ips.last_count2;
4626 		diff += count;
4627 	} else {
4628 		diff = count - dev_priv->ips.last_count2;
4629 	}
4630 
4631 	dev_priv->ips.last_count2 = count;
4632 	dev_priv->ips.last_time2 = now;
4633 
4634 	/* More magic constants... */
4635 	diff = diff * 1181;
4636 	diff = div_u64(diff, diffms * 10);
4637 	dev_priv->ips.gfx_power = diff;
4638 }
4639 
4640 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4641 {
4642 	struct drm_device *dev = dev_priv->dev;
4643 
4644 	if (INTEL_INFO(dev)->gen != 5)
4645 		return;
4646 
4647 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4648 
4649 	__i915_update_gfx_val(dev_priv);
4650 
4651 	lockmgr(&mchdev_lock, LK_RELEASE);
4652 }
4653 
4654 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4655 {
4656 	unsigned long t, corr, state1, corr2, state2;
4657 	u32 pxvid, ext_v;
4658 
4659 	assert_spin_locked(&mchdev_lock);
4660 
4661 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4662 	pxvid = (pxvid >> 24) & 0x7f;
4663 	ext_v = pvid_to_extvid(dev_priv, pxvid);
4664 
4665 	state1 = ext_v;
4666 
4667 	t = i915_mch_val(dev_priv);
4668 
4669 	/* Revel in the empirically derived constants */
4670 
4671 	/* Correction factor in 1/100000 units */
4672 	if (t > 80)
4673 		corr = ((t * 2349) + 135940);
4674 	else if (t >= 50)
4675 		corr = ((t * 964) + 29317);
4676 	else /* < 50 */
4677 		corr = ((t * 301) + 1004);
4678 
4679 	corr = corr * ((150142 * state1) / 10000 - 78642);
4680 	corr /= 100000;
4681 	corr2 = (corr * dev_priv->ips.corr);
4682 
4683 	state2 = (corr2 * state1) / 10000;
4684 	state2 /= 100; /* convert to mW */
4685 
4686 	__i915_update_gfx_val(dev_priv);
4687 
4688 	return dev_priv->ips.gfx_power + state2;
4689 }
4690 
4691 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4692 {
4693 	struct drm_device *dev = dev_priv->dev;
4694 	unsigned long val;
4695 
4696 	if (INTEL_INFO(dev)->gen != 5)
4697 		return 0;
4698 
4699 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4700 
4701 	val = __i915_gfx_val(dev_priv);
4702 
4703 	lockmgr(&mchdev_lock, LK_RELEASE);
4704 
4705 	return val;
4706 }
4707 
4708 /**
4709  * i915_read_mch_val - return value for IPS use
4710  *
4711  * Calculate and return a value for the IPS driver to use when deciding whether
4712  * we have thermal and power headroom to increase CPU or GPU power budget.
4713  */
4714 unsigned long i915_read_mch_val(void)
4715 {
4716 	struct drm_i915_private *dev_priv;
4717 	unsigned long chipset_val, graphics_val, ret = 0;
4718 
4719 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4720 	if (!i915_mch_dev)
4721 		goto out_unlock;
4722 	dev_priv = i915_mch_dev;
4723 
4724 	chipset_val = __i915_chipset_val(dev_priv);
4725 	graphics_val = __i915_gfx_val(dev_priv);
4726 
4727 	ret = chipset_val + graphics_val;
4728 
4729 out_unlock:
4730 	lockmgr(&mchdev_lock, LK_RELEASE);
4731 
4732 	return ret;
4733 }
4734 
4735 /**
4736  * i915_gpu_raise - raise GPU frequency limit
4737  *
4738  * Raise the limit; IPS indicates we have thermal headroom.
4739  */
4740 bool i915_gpu_raise(void)
4741 {
4742 	struct drm_i915_private *dev_priv;
4743 	bool ret = true;
4744 
4745 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4746 	if (!i915_mch_dev) {
4747 		ret = false;
4748 		goto out_unlock;
4749 	}
4750 	dev_priv = i915_mch_dev;
4751 
4752 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4753 		dev_priv->ips.max_delay--;
4754 
4755 out_unlock:
4756 	lockmgr(&mchdev_lock, LK_RELEASE);
4757 
4758 	return ret;
4759 }
4760 
4761 /**
4762  * i915_gpu_lower - lower GPU frequency limit
4763  *
4764  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4765  * frequency maximum.
4766  */
4767 bool i915_gpu_lower(void)
4768 {
4769 	struct drm_i915_private *dev_priv;
4770 	bool ret = true;
4771 
4772 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4773 	if (!i915_mch_dev) {
4774 		ret = false;
4775 		goto out_unlock;
4776 	}
4777 	dev_priv = i915_mch_dev;
4778 
4779 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4780 		dev_priv->ips.max_delay++;
4781 
4782 out_unlock:
4783 	lockmgr(&mchdev_lock, LK_RELEASE);
4784 
4785 	return ret;
4786 }
4787 
4788 /**
4789  * i915_gpu_busy - indicate GPU business to IPS
4790  *
4791  * Tell the IPS driver whether or not the GPU is busy.
4792  */
4793 bool i915_gpu_busy(void)
4794 {
4795 	struct drm_i915_private *dev_priv;
4796 	struct intel_engine_cs *ring;
4797 	bool ret = false;
4798 	int i;
4799 
4800 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4801 	if (!i915_mch_dev)
4802 		goto out_unlock;
4803 	dev_priv = i915_mch_dev;
4804 
4805 	for_each_ring(ring, dev_priv, i)
4806 		ret |= !list_empty(&ring->request_list);
4807 
4808 out_unlock:
4809 	lockmgr(&mchdev_lock, LK_RELEASE);
4810 
4811 	return ret;
4812 }
4813 
4814 /**
4815  * i915_gpu_turbo_disable - disable graphics turbo
4816  *
4817  * Disable graphics turbo by resetting the max frequency and setting the
4818  * current frequency to the default.
4819  */
4820 bool i915_gpu_turbo_disable(void)
4821 {
4822 	struct drm_i915_private *dev_priv;
4823 	bool ret = true;
4824 
4825 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4826 	if (!i915_mch_dev) {
4827 		ret = false;
4828 		goto out_unlock;
4829 	}
4830 	dev_priv = i915_mch_dev;
4831 
4832 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4833 
4834 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4835 		ret = false;
4836 
4837 out_unlock:
4838 	lockmgr(&mchdev_lock, LK_RELEASE);
4839 
4840 	return ret;
4841 }
4842 
4843 #if 0
4844 /**
4845  * Tells the intel_ips driver that the i915 driver is now loaded, if
4846  * IPS got loaded first.
4847  *
4848  * This awkward dance is so that neither module has to depend on the
4849  * other in order for IPS to do the appropriate communication of
4850  * GPU turbo limits to i915.
4851  */
4852 static void
4853 ips_ping_for_i915_load(void)
4854 {
4855 	void (*link)(void);
4856 
4857 	link = symbol_get(ips_link_to_i915_driver);
4858 	if (link) {
4859 		link();
4860 		symbol_put(ips_link_to_i915_driver);
4861 	}
4862 }
4863 #endif
4864 
4865 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4866 {
4867 	/* We only register the i915 ips part with intel-ips once everything is
4868 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4869 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4870 	i915_mch_dev = dev_priv;
4871 	lockmgr(&mchdev_lock, LK_RELEASE);
4872 }
4873 
4874 void intel_gpu_ips_teardown(void)
4875 {
4876 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4877 	i915_mch_dev = NULL;
4878 	lockmgr(&mchdev_lock, LK_RELEASE);
4879 }
4880 
4881 static void intel_init_emon(struct drm_device *dev)
4882 {
4883 	struct drm_i915_private *dev_priv = dev->dev_private;
4884 	u32 lcfuse;
4885 	u8 pxw[16];
4886 	int i;
4887 
4888 	/* Disable to program */
4889 	I915_WRITE(ECR, 0);
4890 	POSTING_READ(ECR);
4891 
4892 	/* Program energy weights for various events */
4893 	I915_WRITE(SDEW, 0x15040d00);
4894 	I915_WRITE(CSIEW0, 0x007f0000);
4895 	I915_WRITE(CSIEW1, 0x1e220004);
4896 	I915_WRITE(CSIEW2, 0x04000004);
4897 
4898 	for (i = 0; i < 5; i++)
4899 		I915_WRITE(PEW + (i * 4), 0);
4900 	for (i = 0; i < 3; i++)
4901 		I915_WRITE(DEW + (i * 4), 0);
4902 
4903 	/* Program P-state weights to account for frequency power adjustment */
4904 	for (i = 0; i < 16; i++) {
4905 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4906 		unsigned long freq = intel_pxfreq(pxvidfreq);
4907 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4908 			PXVFREQ_PX_SHIFT;
4909 		unsigned long val;
4910 
4911 		val = vid * vid;
4912 		val *= (freq / 1000);
4913 		val *= 255;
4914 		val /= (127*127*900);
4915 		if (val > 0xff)
4916 			DRM_ERROR("bad pxval: %ld\n", val);
4917 		pxw[i] = val;
4918 	}
4919 	/* Render standby states get 0 weight */
4920 	pxw[14] = 0;
4921 	pxw[15] = 0;
4922 
4923 	for (i = 0; i < 4; i++) {
4924 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4925 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4926 		I915_WRITE(PXW + (i * 4), val);
4927 	}
4928 
4929 	/* Adjust magic regs to magic values (more experimental results) */
4930 	I915_WRITE(OGW0, 0);
4931 	I915_WRITE(OGW1, 0);
4932 	I915_WRITE(EG0, 0x00007f00);
4933 	I915_WRITE(EG1, 0x0000000e);
4934 	I915_WRITE(EG2, 0x000e0000);
4935 	I915_WRITE(EG3, 0x68000300);
4936 	I915_WRITE(EG4, 0x42000000);
4937 	I915_WRITE(EG5, 0x00140031);
4938 	I915_WRITE(EG6, 0);
4939 	I915_WRITE(EG7, 0);
4940 
4941 	for (i = 0; i < 8; i++)
4942 		I915_WRITE(PXWL + (i * 4), 0);
4943 
4944 	/* Enable PMON + select events */
4945 	I915_WRITE(ECR, 0x80000019);
4946 
4947 	lcfuse = I915_READ(LCFUSE02);
4948 
4949 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4950 }
4951 
4952 void intel_init_gt_powersave(struct drm_device *dev)
4953 {
4954 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4955 
4956 	if (IS_CHERRYVIEW(dev))
4957 		cherryview_init_gt_powersave(dev);
4958 	else if (IS_VALLEYVIEW(dev))
4959 		valleyview_init_gt_powersave(dev);
4960 }
4961 
4962 void intel_cleanup_gt_powersave(struct drm_device *dev)
4963 {
4964 	if (IS_CHERRYVIEW(dev))
4965 		return;
4966 	else if (IS_VALLEYVIEW(dev))
4967 		valleyview_cleanup_gt_powersave(dev);
4968 }
4969 
4970 /**
4971  * intel_suspend_gt_powersave - suspend PM work and helper threads
4972  * @dev: drm device
4973  *
4974  * We don't want to disable RC6 or other features here, we just want
4975  * to make sure any work we've queued has finished and won't bother
4976  * us while we're suspended.
4977  */
4978 void intel_suspend_gt_powersave(struct drm_device *dev)
4979 {
4980 	struct drm_i915_private *dev_priv = dev->dev_private;
4981 
4982 	/* Interrupts should be disabled already to avoid re-arming. */
4983 	WARN_ON(intel_irqs_enabled(dev_priv));
4984 
4985 #if 0
4986 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4987 #endif
4988 
4989 	cancel_work_sync(&dev_priv->rps.work);
4990 
4991 	/* Force GPU to min freq during suspend */
4992 	gen6_rps_idle(dev_priv);
4993 }
4994 
4995 void intel_disable_gt_powersave(struct drm_device *dev)
4996 {
4997 	struct drm_i915_private *dev_priv = dev->dev_private;
4998 
4999 	/* Interrupts should be disabled already to avoid re-arming. */
5000 	WARN_ON(intel_irqs_enabled(dev_priv));
5001 
5002 	if (IS_IRONLAKE_M(dev)) {
5003 		ironlake_disable_drps(dev);
5004 		ironlake_disable_rc6(dev);
5005 	} else if (INTEL_INFO(dev)->gen >= 6) {
5006 		intel_suspend_gt_powersave(dev);
5007 
5008 		mutex_lock(&dev_priv->rps.hw_lock);
5009 		if (IS_CHERRYVIEW(dev))
5010 			cherryview_disable_rps(dev);
5011 		else if (IS_VALLEYVIEW(dev))
5012 			valleyview_disable_rps(dev);
5013 		else
5014 			gen6_disable_rps(dev);
5015 		dev_priv->rps.enabled = false;
5016 		mutex_unlock(&dev_priv->rps.hw_lock);
5017 	}
5018 }
5019 
5020 static void intel_gen6_powersave_work(struct work_struct *work)
5021 {
5022 	struct drm_i915_private *dev_priv =
5023 		container_of(work, struct drm_i915_private,
5024 			     rps.delayed_resume_work.work);
5025 	struct drm_device *dev = dev_priv->dev;
5026 
5027 	mutex_lock(&dev_priv->rps.hw_lock);
5028 
5029 	if (IS_CHERRYVIEW(dev)) {
5030 		cherryview_enable_rps(dev);
5031 	} else if (IS_VALLEYVIEW(dev)) {
5032 		valleyview_enable_rps(dev);
5033 	} else if (IS_BROADWELL(dev)) {
5034 		gen8_enable_rps(dev);
5035 		__gen6_update_ring_freq(dev);
5036 	} else {
5037 		gen6_enable_rps(dev);
5038 		__gen6_update_ring_freq(dev);
5039 	}
5040 	dev_priv->rps.enabled = true;
5041 	mutex_unlock(&dev_priv->rps.hw_lock);
5042 
5043 	intel_runtime_pm_put(dev_priv);
5044 }
5045 
5046 void intel_enable_gt_powersave(struct drm_device *dev)
5047 {
5048 	struct drm_i915_private *dev_priv = dev->dev_private;
5049 
5050 	if (IS_IRONLAKE_M(dev)) {
5051 		mutex_lock(&dev->struct_mutex);
5052 		ironlake_enable_drps(dev);
5053 		ironlake_enable_rc6(dev);
5054 		intel_init_emon(dev);
5055 		mutex_unlock(&dev->struct_mutex);
5056 	} else if (INTEL_INFO(dev)->gen >= 6) {
5057 		/*
5058 		 * PCU communication is slow and this doesn't need to be
5059 		 * done at any specific time, so do this out of our fast path
5060 		 * to make resume and init faster.
5061 		 *
5062 		 * We depend on the HW RC6 power context save/restore
5063 		 * mechanism when entering D3 through runtime PM suspend. So
5064 		 * disable RPM until RPS/RC6 is properly setup. We can only
5065 		 * get here via the driver load/system resume/runtime resume
5066 		 * paths, so the _noresume version is enough (and in case of
5067 		 * runtime resume it's necessary).
5068 		 */
5069 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5070 					   round_jiffies_up_relative(HZ)))
5071 			intel_runtime_pm_get_noresume(dev_priv);
5072 	}
5073 }
5074 
5075 void intel_reset_gt_powersave(struct drm_device *dev)
5076 {
5077 	struct drm_i915_private *dev_priv = dev->dev_private;
5078 
5079 	dev_priv->rps.enabled = false;
5080 	intel_enable_gt_powersave(dev);
5081 }
5082 
5083 static void ibx_init_clock_gating(struct drm_device *dev)
5084 {
5085 	struct drm_i915_private *dev_priv = dev->dev_private;
5086 
5087 	/*
5088 	 * On Ibex Peak and Cougar Point, we need to disable clock
5089 	 * gating for the panel power sequencer or it will fail to
5090 	 * start up when no ports are active.
5091 	 */
5092 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5093 }
5094 
5095 static void g4x_disable_trickle_feed(struct drm_device *dev)
5096 {
5097 	struct drm_i915_private *dev_priv = dev->dev_private;
5098 	int pipe;
5099 
5100 	for_each_pipe(pipe) {
5101 		I915_WRITE(DSPCNTR(pipe),
5102 			   I915_READ(DSPCNTR(pipe)) |
5103 			   DISPPLANE_TRICKLE_FEED_DISABLE);
5104 		intel_flush_primary_plane(dev_priv, pipe);
5105 	}
5106 }
5107 
5108 static void ilk_init_lp_watermarks(struct drm_device *dev)
5109 {
5110 	struct drm_i915_private *dev_priv = dev->dev_private;
5111 
5112 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5113 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5114 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5115 
5116 	/*
5117 	 * Don't touch WM1S_LP_EN here.
5118 	 * Doing so could cause underruns.
5119 	 */
5120 }
5121 
5122 static void ironlake_init_clock_gating(struct drm_device *dev)
5123 {
5124 	struct drm_i915_private *dev_priv = dev->dev_private;
5125 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5126 
5127 	/*
5128 	 * Required for FBC
5129 	 * WaFbcDisableDpfcClockGating:ilk
5130 	 */
5131 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5132 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5133 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5134 
5135 	I915_WRITE(PCH_3DCGDIS0,
5136 		   MARIUNIT_CLOCK_GATE_DISABLE |
5137 		   SVSMUNIT_CLOCK_GATE_DISABLE);
5138 	I915_WRITE(PCH_3DCGDIS1,
5139 		   VFMUNIT_CLOCK_GATE_DISABLE);
5140 
5141 	/*
5142 	 * According to the spec the following bits should be set in
5143 	 * order to enable memory self-refresh
5144 	 * The bit 22/21 of 0x42004
5145 	 * The bit 5 of 0x42020
5146 	 * The bit 15 of 0x45000
5147 	 */
5148 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5149 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
5150 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5151 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5152 	I915_WRITE(DISP_ARB_CTL,
5153 		   (I915_READ(DISP_ARB_CTL) |
5154 		    DISP_FBC_WM_DIS));
5155 
5156 	ilk_init_lp_watermarks(dev);
5157 
5158 	/*
5159 	 * Based on the document from hardware guys the following bits
5160 	 * should be set unconditionally in order to enable FBC.
5161 	 * The bit 22 of 0x42000
5162 	 * The bit 22 of 0x42004
5163 	 * The bit 7,8,9 of 0x42020.
5164 	 */
5165 	if (IS_IRONLAKE_M(dev)) {
5166 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5167 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
5168 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
5169 			   ILK_FBCQ_DIS);
5170 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
5171 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
5172 			   ILK_DPARB_GATE);
5173 	}
5174 
5175 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5176 
5177 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5178 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5179 		   ILK_ELPIN_409_SELECT);
5180 	I915_WRITE(_3D_CHICKEN2,
5181 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5182 		   _3D_CHICKEN2_WM_READ_PIPELINED);
5183 
5184 	/* WaDisableRenderCachePipelinedFlush:ilk */
5185 	I915_WRITE(CACHE_MODE_0,
5186 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5187 
5188 	/* WaDisable_RenderCache_OperationalFlush:ilk */
5189 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5190 
5191 	g4x_disable_trickle_feed(dev);
5192 
5193 	ibx_init_clock_gating(dev);
5194 }
5195 
5196 static void cpt_init_clock_gating(struct drm_device *dev)
5197 {
5198 	struct drm_i915_private *dev_priv = dev->dev_private;
5199 	int pipe;
5200 	uint32_t val;
5201 
5202 	/*
5203 	 * On Ibex Peak and Cougar Point, we need to disable clock
5204 	 * gating for the panel power sequencer or it will fail to
5205 	 * start up when no ports are active.
5206 	 */
5207 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5208 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5209 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5210 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5211 		   DPLS_EDP_PPS_FIX_DIS);
5212 	/* The below fixes the weird display corruption, a few pixels shifted
5213 	 * downward, on (only) LVDS of some HP laptops with IVY.
5214 	 */
5215 	for_each_pipe(pipe) {
5216 		val = I915_READ(TRANS_CHICKEN2(pipe));
5217 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5218 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5219 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5220 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5221 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5222 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5223 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5224 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
5225 	}
5226 	/* WADP0ClockGatingDisable */
5227 	for_each_pipe(pipe) {
5228 		I915_WRITE(TRANS_CHICKEN1(pipe),
5229 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5230 	}
5231 }
5232 
5233 static void gen6_check_mch_setup(struct drm_device *dev)
5234 {
5235 	struct drm_i915_private *dev_priv = dev->dev_private;
5236 	uint32_t tmp;
5237 
5238 	tmp = I915_READ(MCH_SSKPD);
5239 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5240 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5241 			      tmp);
5242 }
5243 
5244 static void gen6_init_clock_gating(struct drm_device *dev)
5245 {
5246 	struct drm_i915_private *dev_priv = dev->dev_private;
5247 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5248 
5249 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5250 
5251 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5252 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5253 		   ILK_ELPIN_409_SELECT);
5254 
5255 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5256 	I915_WRITE(_3D_CHICKEN,
5257 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5258 
5259 	/* WaSetupGtModeTdRowDispatch:snb */
5260 	if (IS_SNB_GT1(dev))
5261 		I915_WRITE(GEN6_GT_MODE,
5262 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5263 
5264 	/* WaDisable_RenderCache_OperationalFlush:snb */
5265 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5266 
5267 	/*
5268 	 * BSpec recoomends 8x4 when MSAA is used,
5269 	 * however in practice 16x4 seems fastest.
5270 	 *
5271 	 * Note that PS/WM thread counts depend on the WIZ hashing
5272 	 * disable bit, which we don't touch here, but it's good
5273 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5274 	 */
5275 	I915_WRITE(GEN6_GT_MODE,
5276 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5277 
5278 	ilk_init_lp_watermarks(dev);
5279 
5280 	I915_WRITE(CACHE_MODE_0,
5281 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5282 
5283 	I915_WRITE(GEN6_UCGCTL1,
5284 		   I915_READ(GEN6_UCGCTL1) |
5285 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5286 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5287 
5288 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5289 	 * gating disable must be set.  Failure to set it results in
5290 	 * flickering pixels due to Z write ordering failures after
5291 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
5292 	 * Sanctuary and Tropics, and apparently anything else with
5293 	 * alpha test or pixel discard.
5294 	 *
5295 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
5296 	 * but we didn't debug actual testcases to find it out.
5297 	 *
5298 	 * WaDisableRCCUnitClockGating:snb
5299 	 * WaDisableRCPBUnitClockGating:snb
5300 	 */
5301 	I915_WRITE(GEN6_UCGCTL2,
5302 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5303 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5304 
5305 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5306 	I915_WRITE(_3D_CHICKEN3,
5307 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5308 
5309 	/*
5310 	 * Bspec says:
5311 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5312 	 * 3DSTATE_SF number of SF output attributes is more than 16."
5313 	 */
5314 	I915_WRITE(_3D_CHICKEN3,
5315 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5316 
5317 	/*
5318 	 * According to the spec the following bits should be
5319 	 * set in order to enable memory self-refresh and fbc:
5320 	 * The bit21 and bit22 of 0x42000
5321 	 * The bit21 and bit22 of 0x42004
5322 	 * The bit5 and bit7 of 0x42020
5323 	 * The bit14 of 0x70180
5324 	 * The bit14 of 0x71180
5325 	 *
5326 	 * WaFbcAsynchFlipDisableFbcQueue:snb
5327 	 */
5328 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
5329 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
5330 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5331 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5332 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5333 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5334 	I915_WRITE(ILK_DSPCLK_GATE_D,
5335 		   I915_READ(ILK_DSPCLK_GATE_D) |
5336 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5337 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5338 
5339 	g4x_disable_trickle_feed(dev);
5340 
5341 	cpt_init_clock_gating(dev);
5342 
5343 	gen6_check_mch_setup(dev);
5344 }
5345 
5346 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5347 {
5348 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5349 
5350 	/*
5351 	 * WaVSThreadDispatchOverride:ivb,vlv
5352 	 *
5353 	 * This actually overrides the dispatch
5354 	 * mode for all thread types.
5355 	 */
5356 	reg &= ~GEN7_FF_SCHED_MASK;
5357 	reg |= GEN7_FF_TS_SCHED_HW;
5358 	reg |= GEN7_FF_VS_SCHED_HW;
5359 	reg |= GEN7_FF_DS_SCHED_HW;
5360 
5361 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5362 }
5363 
5364 static void lpt_init_clock_gating(struct drm_device *dev)
5365 {
5366 	struct drm_i915_private *dev_priv = dev->dev_private;
5367 
5368 	/*
5369 	 * TODO: this bit should only be enabled when really needed, then
5370 	 * disabled when not needed anymore in order to save power.
5371 	 */
5372 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5373 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
5374 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
5375 			   PCH_LP_PARTITION_LEVEL_DISABLE);
5376 
5377 	/* WADPOClockGatingDisable:hsw */
5378 	I915_WRITE(_TRANSA_CHICKEN1,
5379 		   I915_READ(_TRANSA_CHICKEN1) |
5380 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5381 }
5382 
5383 static void lpt_suspend_hw(struct drm_device *dev)
5384 {
5385 	struct drm_i915_private *dev_priv = dev->dev_private;
5386 
5387 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5388 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5389 
5390 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5391 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5392 	}
5393 }
5394 
5395 static void gen8_init_clock_gating(struct drm_device *dev)
5396 {
5397 	struct drm_i915_private *dev_priv = dev->dev_private;
5398 	enum i915_pipe pipe;
5399 
5400 	I915_WRITE(WM3_LP_ILK, 0);
5401 	I915_WRITE(WM2_LP_ILK, 0);
5402 	I915_WRITE(WM1_LP_ILK, 0);
5403 
5404 	/* FIXME(BDW): Check all the w/a, some might only apply to
5405 	 * pre-production hw. */
5406 
5407 	/* WaDisablePartialInstShootdown:bdw */
5408 	I915_WRITE(GEN8_ROW_CHICKEN,
5409 		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5410 
5411 	/* WaDisableThreadStallDopClockGating:bdw */
5412 	/* FIXME: Unclear whether we really need this on production bdw. */
5413 	I915_WRITE(GEN8_ROW_CHICKEN,
5414 		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5415 
5416 	/*
5417 	 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5418 	 * pre-production hardware
5419 	 */
5420 	I915_WRITE(HALF_SLICE_CHICKEN3,
5421 		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5422 	I915_WRITE(HALF_SLICE_CHICKEN3,
5423 		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5424 	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5425 
5426 	I915_WRITE(_3D_CHICKEN3,
5427 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5428 
5429 	I915_WRITE(COMMON_SLICE_CHICKEN2,
5430 		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5431 
5432 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5433 		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5434 
5435 	/* WaDisableDopClockGating:bdw May not be needed for production */
5436 	I915_WRITE(GEN7_ROW_CHICKEN2,
5437 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5438 
5439 	/* WaSwitchSolVfFArbitrationPriority:bdw */
5440 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5441 
5442 	/* WaPsrDPAMaskVBlankInSRD:bdw */
5443 	I915_WRITE(CHICKEN_PAR1_1,
5444 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5445 
5446 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5447 	for_each_pipe(pipe) {
5448 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5449 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5450 			   BDW_DPRS_MASK_VBLANK_SRD);
5451 	}
5452 
5453 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
5454 	 * workaround for for a possible hang in the unlikely event a TLB
5455 	 * invalidation occurs during a PSD flush.
5456 	 */
5457 	I915_WRITE(HDC_CHICKEN0,
5458 		   I915_READ(HDC_CHICKEN0) |
5459 		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5460 
5461 	/* WaVSRefCountFullforceMissDisable:bdw */
5462 	/* WaDSRefCountFullforceMissDisable:bdw */
5463 	I915_WRITE(GEN7_FF_THREAD_MODE,
5464 		   I915_READ(GEN7_FF_THREAD_MODE) &
5465 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5466 
5467 	/*
5468 	 * BSpec recommends 8x4 when MSAA is used,
5469 	 * however in practice 16x4 seems fastest.
5470 	 *
5471 	 * Note that PS/WM thread counts depend on the WIZ hashing
5472 	 * disable bit, which we don't touch here, but it's good
5473 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5474 	 */
5475 	I915_WRITE(GEN7_GT_MODE,
5476 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5477 
5478 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5479 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5480 
5481 	/* WaDisableSDEUnitClockGating:bdw */
5482 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5483 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5484 
5485 	/* Wa4x4STCOptimizationDisable:bdw */
5486 	I915_WRITE(CACHE_MODE_1,
5487 		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5488 }
5489 
5490 static void haswell_init_clock_gating(struct drm_device *dev)
5491 {
5492 	struct drm_i915_private *dev_priv = dev->dev_private;
5493 
5494 	ilk_init_lp_watermarks(dev);
5495 
5496 	/* L3 caching of data atomics doesn't work -- disable it. */
5497 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5498 	I915_WRITE(HSW_ROW_CHICKEN3,
5499 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5500 
5501 	/* This is required by WaCatErrorRejectionIssue:hsw */
5502 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5503 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5504 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5505 
5506 	/* WaVSRefCountFullforceMissDisable:hsw */
5507 	I915_WRITE(GEN7_FF_THREAD_MODE,
5508 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5509 
5510 	/* WaDisable_RenderCache_OperationalFlush:hsw */
5511 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5512 
5513 	/* enable HiZ Raw Stall Optimization */
5514 	I915_WRITE(CACHE_MODE_0_GEN7,
5515 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5516 
5517 	/* WaDisable4x2SubspanOptimization:hsw */
5518 	I915_WRITE(CACHE_MODE_1,
5519 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5520 
5521 	/*
5522 	 * BSpec recommends 8x4 when MSAA is used,
5523 	 * however in practice 16x4 seems fastest.
5524 	 *
5525 	 * Note that PS/WM thread counts depend on the WIZ hashing
5526 	 * disable bit, which we don't touch here, but it's good
5527 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5528 	 */
5529 	I915_WRITE(GEN7_GT_MODE,
5530 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5531 
5532 	/* WaSwitchSolVfFArbitrationPriority:hsw */
5533 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5534 
5535 	/* WaRsPkgCStateDisplayPMReq:hsw */
5536 	I915_WRITE(CHICKEN_PAR1_1,
5537 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5538 
5539 	lpt_init_clock_gating(dev);
5540 }
5541 
5542 static void ivybridge_init_clock_gating(struct drm_device *dev)
5543 {
5544 	struct drm_i915_private *dev_priv = dev->dev_private;
5545 	uint32_t snpcr;
5546 
5547 	ilk_init_lp_watermarks(dev);
5548 
5549 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5550 
5551 	/* WaDisableEarlyCull:ivb */
5552 	I915_WRITE(_3D_CHICKEN3,
5553 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5554 
5555 	/* WaDisableBackToBackFlipFix:ivb */
5556 	I915_WRITE(IVB_CHICKEN3,
5557 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5558 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5559 
5560 	/* WaDisablePSDDualDispatchEnable:ivb */
5561 	if (IS_IVB_GT1(dev))
5562 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5563 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5564 
5565 	/* WaDisable_RenderCache_OperationalFlush:ivb */
5566 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5567 
5568 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5569 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5570 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5571 
5572 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5573 	I915_WRITE(GEN7_L3CNTLREG1,
5574 			GEN7_WA_FOR_GEN7_L3_CONTROL);
5575 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5576 		   GEN7_WA_L3_CHICKEN_MODE);
5577 	if (IS_IVB_GT1(dev))
5578 		I915_WRITE(GEN7_ROW_CHICKEN2,
5579 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5580 	else {
5581 		/* must write both registers */
5582 		I915_WRITE(GEN7_ROW_CHICKEN2,
5583 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5584 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5585 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5586 	}
5587 
5588 	/* WaForceL3Serialization:ivb */
5589 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5590 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5591 
5592 	/*
5593 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5594 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5595 	 */
5596 	I915_WRITE(GEN6_UCGCTL2,
5597 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5598 
5599 	/* This is required by WaCatErrorRejectionIssue:ivb */
5600 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5601 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5602 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5603 
5604 	g4x_disable_trickle_feed(dev);
5605 
5606 	gen7_setup_fixed_func_scheduler(dev_priv);
5607 
5608 	if (0) { /* causes HiZ corruption on ivb:gt1 */
5609 		/* enable HiZ Raw Stall Optimization */
5610 		I915_WRITE(CACHE_MODE_0_GEN7,
5611 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5612 	}
5613 
5614 	/* WaDisable4x2SubspanOptimization:ivb */
5615 	I915_WRITE(CACHE_MODE_1,
5616 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5617 
5618 	/*
5619 	 * BSpec recommends 8x4 when MSAA is used,
5620 	 * however in practice 16x4 seems fastest.
5621 	 *
5622 	 * Note that PS/WM thread counts depend on the WIZ hashing
5623 	 * disable bit, which we don't touch here, but it's good
5624 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5625 	 */
5626 	I915_WRITE(GEN7_GT_MODE,
5627 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5628 
5629 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5630 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5631 	snpcr |= GEN6_MBC_SNPCR_MED;
5632 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5633 
5634 	if (!HAS_PCH_NOP(dev))
5635 		cpt_init_clock_gating(dev);
5636 
5637 	gen6_check_mch_setup(dev);
5638 }
5639 
5640 static void valleyview_init_clock_gating(struct drm_device *dev)
5641 {
5642 	struct drm_i915_private *dev_priv = dev->dev_private;
5643 	u32 val;
5644 
5645 	mutex_lock(&dev_priv->rps.hw_lock);
5646 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5647 	mutex_unlock(&dev_priv->rps.hw_lock);
5648 	switch ((val >> 6) & 3) {
5649 	case 0:
5650 	case 1:
5651 		dev_priv->mem_freq = 800;
5652 		break;
5653 	case 2:
5654 		dev_priv->mem_freq = 1066;
5655 		break;
5656 	case 3:
5657 		dev_priv->mem_freq = 1333;
5658 		break;
5659 	}
5660 	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5661 
5662 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5663 
5664 	/* WaDisableEarlyCull:vlv */
5665 	I915_WRITE(_3D_CHICKEN3,
5666 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5667 
5668 	/* WaDisableBackToBackFlipFix:vlv */
5669 	I915_WRITE(IVB_CHICKEN3,
5670 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5671 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5672 
5673 	/* WaPsdDispatchEnable:vlv */
5674 	/* WaDisablePSDDualDispatchEnable:vlv */
5675 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5676 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5677 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5678 
5679 	/* WaDisable_RenderCache_OperationalFlush:vlv */
5680 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5681 
5682 	/* WaForceL3Serialization:vlv */
5683 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5684 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5685 
5686 	/* WaDisableDopClockGating:vlv */
5687 	I915_WRITE(GEN7_ROW_CHICKEN2,
5688 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5689 
5690 	/* This is required by WaCatErrorRejectionIssue:vlv */
5691 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5692 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5693 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5694 
5695 	gen7_setup_fixed_func_scheduler(dev_priv);
5696 
5697 	/*
5698 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5699 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5700 	 */
5701 	I915_WRITE(GEN6_UCGCTL2,
5702 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5703 
5704 	/* WaDisableL3Bank2xClockGate:vlv
5705 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
5706 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5707 	I915_WRITE(GEN7_UCGCTL4,
5708 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5709 
5710 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5711 
5712 	/*
5713 	 * BSpec says this must be set, even though
5714 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5715 	 */
5716 	I915_WRITE(CACHE_MODE_1,
5717 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5718 
5719 	/*
5720 	 * WaIncreaseL3CreditsForVLVB0:vlv
5721 	 * This is the hardware default actually.
5722 	 */
5723 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5724 
5725 	/*
5726 	 * WaDisableVLVClockGating_VBIIssue:vlv
5727 	 * Disable clock gating on th GCFG unit to prevent a delay
5728 	 * in the reporting of vblank events.
5729 	 */
5730 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5731 }
5732 
5733 static void cherryview_init_clock_gating(struct drm_device *dev)
5734 {
5735 	struct drm_i915_private *dev_priv = dev->dev_private;
5736 	u32 val;
5737 
5738 	mutex_lock(&dev_priv->rps.hw_lock);
5739 	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
5740 	mutex_unlock(&dev_priv->rps.hw_lock);
5741 	switch ((val >> 2) & 0x7) {
5742 	case 0:
5743 	case 1:
5744 			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
5745 			dev_priv->mem_freq = 1600;
5746 			break;
5747 	case 2:
5748 			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
5749 			dev_priv->mem_freq = 1600;
5750 			break;
5751 	case 3:
5752 			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
5753 			dev_priv->mem_freq = 2000;
5754 			break;
5755 	case 4:
5756 			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
5757 			dev_priv->mem_freq = 1600;
5758 			break;
5759 	case 5:
5760 			dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
5761 			dev_priv->mem_freq = 1600;
5762 			break;
5763 	}
5764 	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5765 
5766 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5767 
5768 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5769 
5770 	/* WaDisablePartialInstShootdown:chv */
5771 	I915_WRITE(GEN8_ROW_CHICKEN,
5772 		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5773 
5774 	/* WaDisableThreadStallDopClockGating:chv */
5775 	I915_WRITE(GEN8_ROW_CHICKEN,
5776 		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5777 
5778 	/* WaVSRefCountFullforceMissDisable:chv */
5779 	/* WaDSRefCountFullforceMissDisable:chv */
5780 	I915_WRITE(GEN7_FF_THREAD_MODE,
5781 		   I915_READ(GEN7_FF_THREAD_MODE) &
5782 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5783 
5784 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
5785 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5786 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5787 
5788 	/* WaDisableCSUnitClockGating:chv */
5789 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5790 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5791 
5792 	/* WaDisableSDEUnitClockGating:chv */
5793 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5794 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5795 
5796 	/* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5797 	I915_WRITE(HALF_SLICE_CHICKEN3,
5798 		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5799 
5800 	/* WaDisableGunitClockGating:chv (pre-production hw) */
5801 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5802 		   GINT_DIS);
5803 
5804 	/* WaDisableFfDopClockGating:chv (pre-production hw) */
5805 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5806 		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5807 
5808 	/* WaDisableDopClockGating:chv (pre-production hw) */
5809 	I915_WRITE(GEN7_ROW_CHICKEN2,
5810 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5811 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5812 		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5813 }
5814 
5815 static void g4x_init_clock_gating(struct drm_device *dev)
5816 {
5817 	struct drm_i915_private *dev_priv = dev->dev_private;
5818 	uint32_t dspclk_gate;
5819 
5820 	I915_WRITE(RENCLK_GATE_D1, 0);
5821 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5822 		   GS_UNIT_CLOCK_GATE_DISABLE |
5823 		   CL_UNIT_CLOCK_GATE_DISABLE);
5824 	I915_WRITE(RAMCLK_GATE_D, 0);
5825 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5826 		OVRUNIT_CLOCK_GATE_DISABLE |
5827 		OVCUNIT_CLOCK_GATE_DISABLE;
5828 	if (IS_GM45(dev))
5829 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5830 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5831 
5832 	/* WaDisableRenderCachePipelinedFlush */
5833 	I915_WRITE(CACHE_MODE_0,
5834 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5835 
5836 	/* WaDisable_RenderCache_OperationalFlush:g4x */
5837 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5838 
5839 	g4x_disable_trickle_feed(dev);
5840 }
5841 
5842 static void crestline_init_clock_gating(struct drm_device *dev)
5843 {
5844 	struct drm_i915_private *dev_priv = dev->dev_private;
5845 
5846 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5847 	I915_WRITE(RENCLK_GATE_D2, 0);
5848 	I915_WRITE(DSPCLK_GATE_D, 0);
5849 	I915_WRITE(RAMCLK_GATE_D, 0);
5850 	I915_WRITE16(DEUC, 0);
5851 	I915_WRITE(MI_ARB_STATE,
5852 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5853 
5854 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
5855 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5856 }
5857 
5858 static void broadwater_init_clock_gating(struct drm_device *dev)
5859 {
5860 	struct drm_i915_private *dev_priv = dev->dev_private;
5861 
5862 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5863 		   I965_RCC_CLOCK_GATE_DISABLE |
5864 		   I965_RCPB_CLOCK_GATE_DISABLE |
5865 		   I965_ISC_CLOCK_GATE_DISABLE |
5866 		   I965_FBC_CLOCK_GATE_DISABLE);
5867 	I915_WRITE(RENCLK_GATE_D2, 0);
5868 	I915_WRITE(MI_ARB_STATE,
5869 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5870 
5871 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
5872 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5873 }
5874 
5875 static void gen3_init_clock_gating(struct drm_device *dev)
5876 {
5877 	struct drm_i915_private *dev_priv = dev->dev_private;
5878 	u32 dstate = I915_READ(D_STATE);
5879 
5880 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5881 		DSTATE_DOT_CLOCK_GATING;
5882 	I915_WRITE(D_STATE, dstate);
5883 
5884 	if (IS_PINEVIEW(dev))
5885 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5886 
5887 	/* IIR "flip pending" means done if this bit is set */
5888 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5889 
5890 	/* interrupts should cause a wake up from C3 */
5891 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5892 
5893 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5894 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5895 }
5896 
5897 static void i85x_init_clock_gating(struct drm_device *dev)
5898 {
5899 	struct drm_i915_private *dev_priv = dev->dev_private;
5900 
5901 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5902 
5903 	/* interrupts should cause a wake up from C3 */
5904 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5905 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5906 }
5907 
5908 static void i830_init_clock_gating(struct drm_device *dev)
5909 {
5910 	struct drm_i915_private *dev_priv = dev->dev_private;
5911 
5912 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5913 }
5914 
5915 void intel_init_clock_gating(struct drm_device *dev)
5916 {
5917 	struct drm_i915_private *dev_priv = dev->dev_private;
5918 
5919 	dev_priv->display.init_clock_gating(dev);
5920 }
5921 
5922 void intel_suspend_hw(struct drm_device *dev)
5923 {
5924 	if (HAS_PCH_LPT(dev))
5925 		lpt_suspend_hw(dev);
5926 }
5927 
5928 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
5929 	for (i = 0;							\
5930 	     i < (power_domains)->power_well_count &&			\
5931 		 ((power_well) = &(power_domains)->power_wells[i]);	\
5932 	     i++)							\
5933 		if ((power_well)->domains & (domain_mask))
5934 
5935 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5936 	for (i = (power_domains)->power_well_count - 1;			 \
5937 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5938 	     i--)							 \
5939 		if ((power_well)->domains & (domain_mask))
5940 
5941 /**
5942  * We should only use the power well if we explicitly asked the hardware to
5943  * enable it, so check if it's enabled and also check if we've requested it to
5944  * be enabled.
5945  */
5946 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5947 				   struct i915_power_well *power_well)
5948 {
5949 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
5950 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5951 }
5952 
5953 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
5954 					  enum intel_display_power_domain domain)
5955 {
5956 	struct i915_power_domains *power_domains;
5957 	struct i915_power_well *power_well;
5958 	bool is_enabled;
5959 	int i;
5960 
5961 	if (dev_priv->pm.suspended)
5962 		return false;
5963 
5964 	power_domains = &dev_priv->power_domains;
5965 
5966 	is_enabled = true;
5967 
5968 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5969 		if (power_well->always_on)
5970 			continue;
5971 
5972 		if (!power_well->hw_enabled) {
5973 			is_enabled = false;
5974 			break;
5975 		}
5976 	}
5977 
5978 	return is_enabled;
5979 }
5980 
5981 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5982 				 enum intel_display_power_domain domain)
5983 {
5984 	struct i915_power_domains *power_domains;
5985 	bool ret;
5986 
5987 	power_domains = &dev_priv->power_domains;
5988 
5989 	mutex_lock(&power_domains->lock);
5990 	ret = intel_display_power_enabled_unlocked(dev_priv, domain);
5991 	mutex_unlock(&power_domains->lock);
5992 
5993 	return ret;
5994 }
5995 
5996 /*
5997  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5998  * when not needed anymore. We have 4 registers that can request the power well
5999  * to be enabled, and it will only be disabled if none of the registers is
6000  * requesting it to be enabled.
6001  */
6002 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6003 {
6004 	struct drm_device *dev = dev_priv->dev;
6005 
6006 	/*
6007 	 * After we re-enable the power well, if we touch VGA register 0x3d5
6008 	 * we'll get unclaimed register interrupts. This stops after we write
6009 	 * anything to the VGA MSR register. The vgacon module uses this
6010 	 * register all the time, so if we unbind our driver and, as a
6011 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
6012 	 * console_unlock(). So make here we touch the VGA MSR register, making
6013 	 * sure vgacon can keep working normally without triggering interrupts
6014 	 * and error messages.
6015 	 */
6016 #if 0
6017 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6018 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6019 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6020 #endif
6021 
6022 	if (IS_BROADWELL(dev))
6023 		gen8_irq_power_well_post_enable(dev_priv);
6024 }
6025 
6026 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6027 			       struct i915_power_well *power_well, bool enable)
6028 {
6029 	bool is_enabled, enable_requested;
6030 	uint32_t tmp;
6031 
6032 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6033 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6034 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6035 
6036 	if (enable) {
6037 		if (!enable_requested)
6038 			I915_WRITE(HSW_PWR_WELL_DRIVER,
6039 				   HSW_PWR_WELL_ENABLE_REQUEST);
6040 
6041 		if (!is_enabled) {
6042 			DRM_DEBUG_KMS("Enabling power well\n");
6043 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6044 				      HSW_PWR_WELL_STATE_ENABLED), 20))
6045 				DRM_ERROR("Timeout enabling power well\n");
6046 		}
6047 
6048 		hsw_power_well_post_enable(dev_priv);
6049 	} else {
6050 		if (enable_requested) {
6051 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6052 			POSTING_READ(HSW_PWR_WELL_DRIVER);
6053 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
6054 		}
6055 	}
6056 }
6057 
6058 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6059 				   struct i915_power_well *power_well)
6060 {
6061 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6062 
6063 	/*
6064 	 * We're taking over the BIOS, so clear any requests made by it since
6065 	 * the driver is in charge now.
6066 	 */
6067 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6068 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6069 }
6070 
6071 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6072 				  struct i915_power_well *power_well)
6073 {
6074 	hsw_set_power_well(dev_priv, power_well, true);
6075 }
6076 
6077 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6078 				   struct i915_power_well *power_well)
6079 {
6080 	hsw_set_power_well(dev_priv, power_well, false);
6081 }
6082 
6083 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6084 					   struct i915_power_well *power_well)
6085 {
6086 }
6087 
6088 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6089 					     struct i915_power_well *power_well)
6090 {
6091 	return true;
6092 }
6093 
6094 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6095 			       struct i915_power_well *power_well, bool enable)
6096 {
6097 	enum punit_power_well power_well_id = power_well->data;
6098 	u32 mask;
6099 	u32 state;
6100 	u32 ctrl;
6101 
6102 	mask = PUNIT_PWRGT_MASK(power_well_id);
6103 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6104 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
6105 
6106 	mutex_lock(&dev_priv->rps.hw_lock);
6107 
6108 #define COND \
6109 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6110 
6111 	if (COND)
6112 		goto out;
6113 
6114 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6115 	ctrl &= ~mask;
6116 	ctrl |= state;
6117 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6118 
6119 	if (wait_for(COND, 100))
6120 		DRM_ERROR("timout setting power well state %08x (%08x)\n",
6121 			  state,
6122 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6123 
6124 #undef COND
6125 
6126 out:
6127 	mutex_unlock(&dev_priv->rps.hw_lock);
6128 }
6129 
6130 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6131 				   struct i915_power_well *power_well)
6132 {
6133 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6134 }
6135 
6136 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6137 				  struct i915_power_well *power_well)
6138 {
6139 	vlv_set_power_well(dev_priv, power_well, true);
6140 }
6141 
6142 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6143 				   struct i915_power_well *power_well)
6144 {
6145 	vlv_set_power_well(dev_priv, power_well, false);
6146 }
6147 
6148 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6149 				   struct i915_power_well *power_well)
6150 {
6151 	int power_well_id = power_well->data;
6152 	bool enabled = false;
6153 	u32 mask;
6154 	u32 state;
6155 	u32 ctrl;
6156 
6157 	mask = PUNIT_PWRGT_MASK(power_well_id);
6158 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6159 
6160 	mutex_lock(&dev_priv->rps.hw_lock);
6161 
6162 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6163 	/*
6164 	 * We only ever set the power-on and power-gate states, anything
6165 	 * else is unexpected.
6166 	 */
6167 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6168 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6169 	if (state == ctrl)
6170 		enabled = true;
6171 
6172 	/*
6173 	 * A transient state at this point would mean some unexpected party
6174 	 * is poking at the power controls too.
6175 	 */
6176 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6177 	WARN_ON(ctrl != state);
6178 
6179 	mutex_unlock(&dev_priv->rps.hw_lock);
6180 
6181 	return enabled;
6182 }
6183 
6184 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6185 					  struct i915_power_well *power_well)
6186 {
6187 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6188 
6189 	vlv_set_power_well(dev_priv, power_well, true);
6190 
6191 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
6192 	valleyview_enable_display_irqs(dev_priv);
6193 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
6194 
6195 	/*
6196 	 * During driver initialization/resume we can avoid restoring the
6197 	 * part of the HW/SW state that will be inited anyway explicitly.
6198 	 */
6199 	if (dev_priv->power_domains.initializing)
6200 		return;
6201 
6202 	intel_hpd_init(dev_priv->dev);
6203 
6204 	i915_redisable_vga_power_on(dev_priv->dev);
6205 }
6206 
6207 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6208 					   struct i915_power_well *power_well)
6209 {
6210 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6211 
6212 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
6213 	valleyview_disable_display_irqs(dev_priv);
6214 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
6215 
6216 	vlv_set_power_well(dev_priv, power_well, false);
6217 }
6218 
6219 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6220 					   struct i915_power_well *power_well)
6221 {
6222 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6223 
6224 	/*
6225 	 * Enable the CRI clock source so we can get at the
6226 	 * display and the reference clock for VGA
6227 	 * hotplug / manual detection.
6228 	 */
6229 	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6230 		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6231 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6232 
6233 	vlv_set_power_well(dev_priv, power_well, true);
6234 
6235 	/*
6236 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6237 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
6238 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
6239 	 *   b.	The other bits such as sfr settings / modesel may all
6240 	 *	be set to 0.
6241 	 *
6242 	 * This should only be done on init and resume from S3 with
6243 	 * both PLLs disabled, or we risk losing DPIO and PLL
6244 	 * synchronization.
6245 	 */
6246 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6247 }
6248 
6249 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6250 					    struct i915_power_well *power_well)
6251 {
6252 	struct drm_device *dev = dev_priv->dev;
6253 	enum i915_pipe pipe;
6254 
6255 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6256 
6257 	for_each_pipe(pipe)
6258 		assert_pll_disabled(dev_priv, pipe);
6259 
6260 	/* Assert common reset */
6261 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6262 
6263 	vlv_set_power_well(dev_priv, power_well, false);
6264 }
6265 
6266 static void check_power_well_state(struct drm_i915_private *dev_priv,
6267 				   struct i915_power_well *power_well)
6268 {
6269 	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6270 
6271 	if (power_well->always_on || !i915.disable_power_well) {
6272 		if (!enabled)
6273 			goto mismatch;
6274 
6275 		return;
6276 	}
6277 
6278 	if (enabled != (power_well->count > 0))
6279 		goto mismatch;
6280 
6281 	return;
6282 
6283 mismatch:
6284 	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6285 		  power_well->name, power_well->always_on, enabled,
6286 		  power_well->count, i915.disable_power_well);
6287 }
6288 
6289 void intel_display_power_get(struct drm_i915_private *dev_priv,
6290 			     enum intel_display_power_domain domain)
6291 {
6292 	struct i915_power_domains *power_domains;
6293 	struct i915_power_well *power_well;
6294 	int i;
6295 
6296 	intel_runtime_pm_get(dev_priv);
6297 
6298 	power_domains = &dev_priv->power_domains;
6299 
6300 	mutex_lock(&power_domains->lock);
6301 
6302 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
6303 		if (!power_well->count++) {
6304 			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6305 			power_well->ops->enable(dev_priv, power_well);
6306 			power_well->hw_enabled = true;
6307 		}
6308 
6309 		check_power_well_state(dev_priv, power_well);
6310 	}
6311 
6312 	power_domains->domain_use_count[domain]++;
6313 
6314 	mutex_unlock(&power_domains->lock);
6315 }
6316 
6317 void intel_display_power_put(struct drm_i915_private *dev_priv,
6318 			     enum intel_display_power_domain domain)
6319 {
6320 	struct i915_power_domains *power_domains;
6321 	struct i915_power_well *power_well;
6322 	int i;
6323 
6324 	power_domains = &dev_priv->power_domains;
6325 
6326 	mutex_lock(&power_domains->lock);
6327 
6328 	WARN_ON(!power_domains->domain_use_count[domain]);
6329 	power_domains->domain_use_count[domain]--;
6330 
6331 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6332 		WARN_ON(!power_well->count);
6333 
6334 		if (!--power_well->count && i915.disable_power_well) {
6335 			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6336 			power_well->hw_enabled = false;
6337 			power_well->ops->disable(dev_priv, power_well);
6338 		}
6339 
6340 		check_power_well_state(dev_priv, power_well);
6341 	}
6342 
6343 	mutex_unlock(&power_domains->lock);
6344 
6345 	intel_runtime_pm_put(dev_priv);
6346 }
6347 
6348 static struct i915_power_domains *hsw_pwr;
6349 
6350 /* Display audio driver power well request */
6351 int i915_request_power_well(void)
6352 {
6353 	struct drm_i915_private *dev_priv;
6354 
6355 	if (!hsw_pwr)
6356 		return -ENODEV;
6357 
6358 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6359 				power_domains);
6360 	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6361 	return 0;
6362 }
6363 
6364 /* Display audio driver power well release */
6365 int i915_release_power_well(void)
6366 {
6367 	struct drm_i915_private *dev_priv;
6368 
6369 	if (!hsw_pwr)
6370 		return -ENODEV;
6371 
6372 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6373 				power_domains);
6374 	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6375 	return 0;
6376 }
6377 
6378 /*
6379  * Private interface for the audio driver to get CDCLK in kHz.
6380  *
6381  * Caller must request power well using i915_request_power_well() prior to
6382  * making the call.
6383  */
6384 int i915_get_cdclk_freq(void)
6385 {
6386 	struct drm_i915_private *dev_priv;
6387 
6388 	if (!hsw_pwr)
6389 		return -ENODEV;
6390 
6391 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6392 				power_domains);
6393 
6394 	return intel_ddi_get_cdclk_freq(dev_priv);
6395 }
6396 
6397 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6398 
6399 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
6400 	BIT(POWER_DOMAIN_PIPE_A) |			\
6401 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
6402 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
6403 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
6404 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
6405 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
6406 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
6407 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
6408 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
6409 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
6410 	BIT(POWER_DOMAIN_PORT_CRT) |			\
6411 	BIT(POWER_DOMAIN_PLLS) |			\
6412 	BIT(POWER_DOMAIN_INIT))
6413 #define HSW_DISPLAY_POWER_DOMAINS (				\
6414 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
6415 	BIT(POWER_DOMAIN_INIT))
6416 
6417 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
6418 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
6419 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6420 #define BDW_DISPLAY_POWER_DOMAINS (				\
6421 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
6422 	BIT(POWER_DOMAIN_INIT))
6423 
6424 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
6425 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
6426 
6427 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
6428 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
6429 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
6430 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
6431 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
6432 	BIT(POWER_DOMAIN_PORT_CRT) |		\
6433 	BIT(POWER_DOMAIN_INIT))
6434 
6435 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
6436 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
6437 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
6438 	BIT(POWER_DOMAIN_INIT))
6439 
6440 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
6441 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
6442 	BIT(POWER_DOMAIN_INIT))
6443 
6444 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
6445 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
6446 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
6447 	BIT(POWER_DOMAIN_INIT))
6448 
6449 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
6450 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
6451 	BIT(POWER_DOMAIN_INIT))
6452 
6453 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6454 	.sync_hw = i9xx_always_on_power_well_noop,
6455 	.enable = i9xx_always_on_power_well_noop,
6456 	.disable = i9xx_always_on_power_well_noop,
6457 	.is_enabled = i9xx_always_on_power_well_enabled,
6458 };
6459 
6460 static struct i915_power_well i9xx_always_on_power_well[] = {
6461 	{
6462 		.name = "always-on",
6463 		.always_on = 1,
6464 		.domains = POWER_DOMAIN_MASK,
6465 		.ops = &i9xx_always_on_power_well_ops,
6466 	},
6467 };
6468 
6469 static const struct i915_power_well_ops hsw_power_well_ops = {
6470 	.sync_hw = hsw_power_well_sync_hw,
6471 	.enable = hsw_power_well_enable,
6472 	.disable = hsw_power_well_disable,
6473 	.is_enabled = hsw_power_well_enabled,
6474 };
6475 
6476 static struct i915_power_well hsw_power_wells[] = {
6477 	{
6478 		.name = "always-on",
6479 		.always_on = 1,
6480 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6481 		.ops = &i9xx_always_on_power_well_ops,
6482 	},
6483 	{
6484 		.name = "display",
6485 		.domains = HSW_DISPLAY_POWER_DOMAINS,
6486 		.ops = &hsw_power_well_ops,
6487 	},
6488 };
6489 
6490 static struct i915_power_well bdw_power_wells[] = {
6491 	{
6492 		.name = "always-on",
6493 		.always_on = 1,
6494 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6495 		.ops = &i9xx_always_on_power_well_ops,
6496 	},
6497 	{
6498 		.name = "display",
6499 		.domains = BDW_DISPLAY_POWER_DOMAINS,
6500 		.ops = &hsw_power_well_ops,
6501 	},
6502 };
6503 
6504 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6505 	.sync_hw = vlv_power_well_sync_hw,
6506 	.enable = vlv_display_power_well_enable,
6507 	.disable = vlv_display_power_well_disable,
6508 	.is_enabled = vlv_power_well_enabled,
6509 };
6510 
6511 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6512 	.sync_hw = vlv_power_well_sync_hw,
6513 	.enable = vlv_dpio_cmn_power_well_enable,
6514 	.disable = vlv_dpio_cmn_power_well_disable,
6515 	.is_enabled = vlv_power_well_enabled,
6516 };
6517 
6518 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6519 	.sync_hw = vlv_power_well_sync_hw,
6520 	.enable = vlv_power_well_enable,
6521 	.disable = vlv_power_well_disable,
6522 	.is_enabled = vlv_power_well_enabled,
6523 };
6524 
6525 static struct i915_power_well vlv_power_wells[] = {
6526 	{
6527 		.name = "always-on",
6528 		.always_on = 1,
6529 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6530 		.ops = &i9xx_always_on_power_well_ops,
6531 	},
6532 	{
6533 		.name = "display",
6534 		.domains = VLV_DISPLAY_POWER_DOMAINS,
6535 		.data = PUNIT_POWER_WELL_DISP2D,
6536 		.ops = &vlv_display_power_well_ops,
6537 	},
6538 	{
6539 		.name = "dpio-tx-b-01",
6540 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6541 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6542 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6543 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6544 		.ops = &vlv_dpio_power_well_ops,
6545 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6546 	},
6547 	{
6548 		.name = "dpio-tx-b-23",
6549 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6550 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6551 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6552 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6553 		.ops = &vlv_dpio_power_well_ops,
6554 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6555 	},
6556 	{
6557 		.name = "dpio-tx-c-01",
6558 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6559 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6560 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6561 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6562 		.ops = &vlv_dpio_power_well_ops,
6563 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6564 	},
6565 	{
6566 		.name = "dpio-tx-c-23",
6567 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6568 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6569 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6570 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6571 		.ops = &vlv_dpio_power_well_ops,
6572 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6573 	},
6574 	{
6575 		.name = "dpio-common",
6576 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6577 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6578 		.ops = &vlv_dpio_cmn_power_well_ops,
6579 	},
6580 };
6581 
6582 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6583 						 enum punit_power_well power_well_id)
6584 {
6585 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
6586 	struct i915_power_well *power_well;
6587 	int i;
6588 
6589 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6590 		if (power_well->data == power_well_id)
6591 			return power_well;
6592 	}
6593 
6594 	return NULL;
6595 }
6596 
6597 #define set_power_wells(power_domains, __power_wells) ({		\
6598 	(power_domains)->power_wells = (__power_wells);			\
6599 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
6600 })
6601 
6602 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6603 {
6604 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
6605 
6606 	lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE);
6607 
6608 	/*
6609 	 * The enabling order will be from lower to higher indexed wells,
6610 	 * the disabling order is reversed.
6611 	 */
6612 	if (IS_HASWELL(dev_priv->dev)) {
6613 		set_power_wells(power_domains, hsw_power_wells);
6614 		hsw_pwr = power_domains;
6615 	} else if (IS_BROADWELL(dev_priv->dev)) {
6616 		set_power_wells(power_domains, bdw_power_wells);
6617 		hsw_pwr = power_domains;
6618 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
6619 		set_power_wells(power_domains, vlv_power_wells);
6620 	} else {
6621 		set_power_wells(power_domains, i9xx_always_on_power_well);
6622 	}
6623 
6624 	return 0;
6625 }
6626 
6627 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6628 {
6629 	hsw_pwr = NULL;
6630 }
6631 
6632 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6633 {
6634 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
6635 	struct i915_power_well *power_well;
6636 	int i;
6637 
6638 	mutex_lock(&power_domains->lock);
6639 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6640 		power_well->ops->sync_hw(dev_priv, power_well);
6641 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
6642 								     power_well);
6643 	}
6644 	mutex_unlock(&power_domains->lock);
6645 }
6646 
6647 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
6648 {
6649 	struct i915_power_well *cmn =
6650 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
6651 	struct i915_power_well *disp2d =
6652 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
6653 
6654 	/* nothing to do if common lane is already off */
6655 	if (!cmn->ops->is_enabled(dev_priv, cmn))
6656 		return;
6657 
6658 	/* If the display might be already active skip this */
6659 	if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
6660 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
6661 		return;
6662 
6663 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
6664 
6665 	/* cmnlane needs DPLL registers */
6666 	disp2d->ops->enable(dev_priv, disp2d);
6667 
6668 	/*
6669 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
6670 	 * Need to assert and de-assert PHY SB reset by gating the
6671 	 * common lane power, then un-gating it.
6672 	 * Simply ungating isn't enough to reset the PHY enough to get
6673 	 * ports and lanes running.
6674 	 */
6675 	cmn->ops->disable(dev_priv, cmn);
6676 }
6677 
6678 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6679 {
6680 	struct drm_device *dev = dev_priv->dev;
6681 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
6682 
6683 	power_domains->initializing = true;
6684 
6685 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
6686 		mutex_lock(&power_domains->lock);
6687 		vlv_cmnlane_wa(dev_priv);
6688 		mutex_unlock(&power_domains->lock);
6689 	}
6690 
6691 	/* For now, we need the power well to be always enabled. */
6692 	intel_display_set_init_power(dev_priv, true);
6693 	intel_power_domains_resume(dev_priv);
6694 	power_domains->initializing = false;
6695 }
6696 
6697 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6698 {
6699 	intel_runtime_pm_get(dev_priv);
6700 }
6701 
6702 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6703 {
6704 	intel_runtime_pm_put(dev_priv);
6705 }
6706 
6707 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6708 {
6709 #if 0
6710 	struct drm_device *dev = dev_priv->dev;
6711 	struct device *device = &dev->pdev->dev;
6712 
6713 	if (!HAS_RUNTIME_PM(dev))
6714 		return;
6715 
6716 	pm_runtime_get_sync(device);
6717 	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6718 #endif
6719 }
6720 
6721 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6722 {
6723 	struct drm_device *dev = dev_priv->dev;
6724 #if 0
6725 	struct device *device = &dev->pdev->dev;
6726 #endif
6727 
6728 	if (!HAS_RUNTIME_PM(dev))
6729 		return;
6730 
6731 	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6732 #if 0
6733 	pm_runtime_get_noresume(device);
6734 #endif
6735 }
6736 
6737 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6738 {
6739 #if 0
6740 	struct drm_device *dev = dev_priv->dev;
6741 	struct device *device = &dev->pdev->dev;
6742 
6743 	if (!HAS_RUNTIME_PM(dev))
6744 		return;
6745 
6746 	pm_runtime_mark_last_busy(device);
6747 	pm_runtime_put_autosuspend(device);
6748 #endif
6749 }
6750 
6751 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6752 {
6753 	struct drm_device *dev = dev_priv->dev;
6754 #if 0
6755 	struct device *device = &dev->pdev->dev;
6756 #endif
6757 
6758 	if (!HAS_RUNTIME_PM(dev))
6759 		return;
6760 
6761 #if 0
6762 	pm_runtime_set_active(device);
6763 
6764 	/*
6765 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6766 	 * requirement.
6767 	 */
6768 	if (!intel_enable_rc6(dev)) {
6769 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6770 		return;
6771 	}
6772 
6773 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6774 	pm_runtime_mark_last_busy(device);
6775 	pm_runtime_use_autosuspend(device);
6776 
6777 	pm_runtime_put_autosuspend(device);
6778 #endif
6779 }
6780 
6781 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6782 {
6783 #if 0
6784 	struct drm_device *dev = dev_priv->dev;
6785 	struct device *device = &dev->pdev->dev;
6786 
6787 	if (!HAS_RUNTIME_PM(dev))
6788 		return;
6789 
6790 	if (!intel_enable_rc6(dev))
6791 		return;
6792 
6793 	/* Make sure we're not suspended first. */
6794 	pm_runtime_get_sync(device);
6795 	pm_runtime_disable(device);
6796 #endif
6797 }
6798 
6799 /* Set up chip specific power management-related functions */
6800 void intel_init_pm(struct drm_device *dev)
6801 {
6802 	struct drm_i915_private *dev_priv = dev->dev_private;
6803 
6804 	if (HAS_FBC(dev)) {
6805 		if (INTEL_INFO(dev)->gen >= 7) {
6806 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6807 			dev_priv->display.enable_fbc = gen7_enable_fbc;
6808 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
6809 		} else if (INTEL_INFO(dev)->gen >= 5) {
6810 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6811 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
6812 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
6813 		} else if (IS_GM45(dev)) {
6814 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6815 			dev_priv->display.enable_fbc = g4x_enable_fbc;
6816 			dev_priv->display.disable_fbc = g4x_disable_fbc;
6817 		} else {
6818 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6819 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
6820 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
6821 
6822 			/* This value was pulled out of someone's hat */
6823 			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6824 		}
6825 	}
6826 
6827 	/* For cxsr */
6828 	if (IS_PINEVIEW(dev))
6829 		i915_pineview_get_mem_freq(dev);
6830 	else if (IS_GEN5(dev))
6831 		i915_ironlake_get_mem_freq(dev);
6832 
6833 	/* For FIFO watermark updates */
6834 	if (HAS_PCH_SPLIT(dev)) {
6835 		ilk_setup_wm_latency(dev);
6836 
6837 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6838 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6839 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6840 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6841 			dev_priv->display.update_wm = ilk_update_wm;
6842 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6843 		} else {
6844 			DRM_DEBUG_KMS("Failed to read display plane latency. "
6845 				      "Disable CxSR\n");
6846 		}
6847 
6848 		if (IS_GEN5(dev))
6849 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6850 		else if (IS_GEN6(dev))
6851 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6852 		else if (IS_IVYBRIDGE(dev))
6853 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6854 		else if (IS_HASWELL(dev))
6855 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6856 		else if (INTEL_INFO(dev)->gen == 8)
6857 			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6858 	} else if (IS_CHERRYVIEW(dev)) {
6859 		dev_priv->display.update_wm = valleyview_update_wm;
6860 		dev_priv->display.init_clock_gating =
6861 			cherryview_init_clock_gating;
6862 	} else if (IS_VALLEYVIEW(dev)) {
6863 		dev_priv->display.update_wm = valleyview_update_wm;
6864 		dev_priv->display.init_clock_gating =
6865 			valleyview_init_clock_gating;
6866 	} else if (IS_PINEVIEW(dev)) {
6867 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6868 					    dev_priv->is_ddr3,
6869 					    dev_priv->fsb_freq,
6870 					    dev_priv->mem_freq)) {
6871 			DRM_INFO("failed to find known CxSR latency "
6872 				 "(found ddr%s fsb freq %d, mem freq %d), "
6873 				 "disabling CxSR\n",
6874 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6875 				 dev_priv->fsb_freq, dev_priv->mem_freq);
6876 			/* Disable CxSR and never update its watermark again */
6877 			intel_set_memory_cxsr(dev_priv, false);
6878 			dev_priv->display.update_wm = NULL;
6879 		} else
6880 			dev_priv->display.update_wm = pineview_update_wm;
6881 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6882 	} else if (IS_G4X(dev)) {
6883 		dev_priv->display.update_wm = g4x_update_wm;
6884 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6885 	} else if (IS_GEN4(dev)) {
6886 		dev_priv->display.update_wm = i965_update_wm;
6887 		if (IS_CRESTLINE(dev))
6888 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6889 		else if (IS_BROADWATER(dev))
6890 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6891 	} else if (IS_GEN3(dev)) {
6892 		dev_priv->display.update_wm = i9xx_update_wm;
6893 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6894 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6895 	} else if (IS_GEN2(dev)) {
6896 		if (INTEL_INFO(dev)->num_pipes == 1) {
6897 			dev_priv->display.update_wm = i845_update_wm;
6898 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6899 		} else {
6900 			dev_priv->display.update_wm = i9xx_update_wm;
6901 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6902 		}
6903 
6904 		if (IS_I85X(dev) || IS_I865G(dev))
6905 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6906 		else
6907 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
6908 	} else {
6909 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6910 	}
6911 }
6912 
6913 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6914 {
6915 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6916 
6917 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6918 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6919 		return -EAGAIN;
6920 	}
6921 
6922 	I915_WRITE(GEN6_PCODE_DATA, *val);
6923 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6924 
6925 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6926 		     500)) {
6927 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6928 		return -ETIMEDOUT;
6929 	}
6930 
6931 	*val = I915_READ(GEN6_PCODE_DATA);
6932 	I915_WRITE(GEN6_PCODE_DATA, 0);
6933 
6934 	return 0;
6935 }
6936 
6937 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6938 {
6939 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6940 
6941 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6942 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6943 		return -EAGAIN;
6944 	}
6945 
6946 	I915_WRITE(GEN6_PCODE_DATA, val);
6947 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6948 
6949 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6950 		     500)) {
6951 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6952 		return -ETIMEDOUT;
6953 	}
6954 
6955 	I915_WRITE(GEN6_PCODE_DATA, 0);
6956 
6957 	return 0;
6958 }
6959 
6960 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6961 {
6962 	int div;
6963 
6964 	/* 4 x czclk */
6965 	switch (dev_priv->mem_freq) {
6966 	case 800:
6967 		div = 10;
6968 		break;
6969 	case 1066:
6970 		div = 12;
6971 		break;
6972 	case 1333:
6973 		div = 16;
6974 		break;
6975 	default:
6976 		return -1;
6977 	}
6978 
6979 	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6980 }
6981 
6982 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6983 {
6984 	int mul;
6985 
6986 	/* 4 x czclk */
6987 	switch (dev_priv->mem_freq) {
6988 	case 800:
6989 		mul = 10;
6990 		break;
6991 	case 1066:
6992 		mul = 12;
6993 		break;
6994 	case 1333:
6995 		mul = 16;
6996 		break;
6997 	default:
6998 		return -1;
6999 	}
7000 
7001 	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7002 }
7003 
7004 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7005 {
7006 	int div, freq;
7007 
7008 	switch (dev_priv->rps.cz_freq) {
7009 	case 200:
7010 		div = 5;
7011 		break;
7012 	case 267:
7013 		div = 6;
7014 		break;
7015 	case 320:
7016 	case 333:
7017 	case 400:
7018 		div = 8;
7019 		break;
7020 	default:
7021 		return -1;
7022 	}
7023 
7024 	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7025 
7026 	return freq;
7027 }
7028 
7029 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7030 {
7031 	int mul, opcode;
7032 
7033 	switch (dev_priv->rps.cz_freq) {
7034 	case 200:
7035 		mul = 5;
7036 		break;
7037 	case 267:
7038 		mul = 6;
7039 		break;
7040 	case 320:
7041 	case 333:
7042 	case 400:
7043 		mul = 8;
7044 		break;
7045 	default:
7046 		return -1;
7047 	}
7048 
7049 	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7050 
7051 	return opcode;
7052 }
7053 
7054 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7055 {
7056 	int ret = -1;
7057 
7058 	if (IS_CHERRYVIEW(dev_priv->dev))
7059 		ret = chv_gpu_freq(dev_priv, val);
7060 	else if (IS_VALLEYVIEW(dev_priv->dev))
7061 		ret = byt_gpu_freq(dev_priv, val);
7062 
7063 	return ret;
7064 }
7065 
7066 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7067 {
7068 	int ret = -1;
7069 
7070 	if (IS_CHERRYVIEW(dev_priv->dev))
7071 		ret = chv_freq_opcode(dev_priv, val);
7072 	else if (IS_VALLEYVIEW(dev_priv->dev))
7073 		ret = byt_freq_opcode(dev_priv, val);
7074 
7075 	return ret;
7076 }
7077 
7078 void intel_pm_setup(struct drm_device *dev)
7079 {
7080 	struct drm_i915_private *dev_priv = dev->dev_private;
7081 
7082 	lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7083 
7084 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7085 			  intel_gen6_powersave_work);
7086 
7087 	dev_priv->pm.suspended = false;
7088 	dev_priv->pm._irqs_disabled = false;
7089 }
7090